
Verification of multiresolution model 
forecasts of heavy rainfall events from 23 
to 26 August 2017 over Nigeria 
Article 

Published Version 

Creative Commons: Attribution 4.0 (CC-BY) 

Open Access 

Gbode, Imoleayo E., Ajayi, Vincent O., Adefisan, Elijah A., 
Okogbue, Emmanuel C., Cafaro, Carlo ORCID logoORCID: 
https://orcid.org/0000-0001-8063-4887, Olaniyan, Eniola A., 
Ogungbenro, Stephen B/, Oluleye, Ayodeji, Lawal, Kamoru A., 
Omotosho, Jerome A. and Stein, Thorwald ORCID 
logoORCID: https://orcid.org/0000-0002-9215-5397 (2023) 
Verification of multiresolution model forecasts of heavy rainfall 
events from 23 to 26 August 2017 over Nigeria. Meteorological
Applications, 30 (4). e2135. ISSN 1469-8080 doi: 
https://doi.org/10.1002/met.2135 Available at 
https://centaur.reading.ac.uk/112892/ 

It is advisable to refer to the publisher’s version if you intend to cite from the 
work.  See Guidance on citing  .

To link to this article DOI: http://dx.doi.org/10.1002/met.2135 

Publisher: John Wiley & Sons, Ltd. 

All outputs in CentAUR are protected by Intellectual Property Rights law, 
including copyright law. Copyright and IPR is retained by the creators or other 
copyright holders. Terms and conditions for use of this material are defined in 

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf


the End User Agreement  . 

www.reading.ac.uk/centaur   

CentAUR 

Central Archive at the University of Reading 
Reading’s research outputs online

http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence


R E S E A R CH AR T I C L E

Verification of multiresolution model forecasts of heavy
rainfall events from 23 to 26 August 2017 over Nigeria

Imoleayo E. Gbode1 | Vincent O. Ajayi1 | Elijah A. Adefisan1,2 |

Emmanuel C. Okogbue1 | Carlo Cafaro3 | Eniola A. Olaniyan4 |

Stephen B. Ogungbenro1 | Ayodeji Oluleye1 | Kamoru A. Lawal4,5 |

Jerome A. Omotosho1 | Thorwald Stein6

1Department of Meteorology and Climate
Science, Federal University of Technology
Akure, Akure, Nigeria
2GCRF African SWIFT Project Office,
African Center Of Meteorological
Applications for Development,
Niamey, Niger
3Met Office@Reading, Department of
Meteorology, Brian Hoskins Building,
University of Reading, Reading,
United Kingdom
4Deparment Weather Forecasting Services
Numerical Weather Prediction, Nigerian
Meteorological Agency (NiMet), Abuja,
Nigeria
5African Climate and Development
Initiative, University of Cape Town,
South Africa
6Department of Meteorology, University
of Reading, Berkshire, United Kingdom

Correspondence
Imoleayo E. Gbode, Department of
Meteorology and Climate Science, Federal
University of Technology Akure, Nigeria.
Email: iegbode@futa.edu.ng

Funding information
UK Research and Innovation as part of the
Global Challenges Research Fund,
Grant/Award Number: NE/P021077/1

Abstract

The study uses numerical weather prediction models to predict the occurrence of

heavy convective rainfall associated with the passage of the African Easterly Wave

(AEW) during the period 23–26 August 2017 over Nigeria. Fraction skill score

(FSS) and method for object-based diagnostic evaluation (MODE) verification

techniques were applied to verify how well the models predict the high-impact

event and to demonstrate how these tools can support operational forecasting.

Ensemble model forecasts at a convective scale from UK Met Office Unified

Model (MetUM) and a one-way nested weather research and forecasting (WRF)

model were compared with the integrated multisatellite retrievals for global pre-

cipitation measurement (IMERG GPM). The purpose is to examine skills of

improved model resolution and ensemble in reproducing rainfall forecasts on use-

ful scales and how the skill varies with spatial scale. WRF 2 and 6 km model fore-

casts show comparable skill at smaller grid scales. The skill of MetUM improves

dramatically when the verification statistics are applied to the ensemble mean of

the binary fields of the individual member forecast. The object-based analysis

reveals a similar structure as observed, although displaced eastwards. Most

improvement occurred for heavier rainfall events associated with the passage of

the AEW. WRF 6 km compares reasonably well with WRF 2 km in terms of

shape and structure of rainfall underscoring the ability of the model to reasonably

represent convection at 6 km horizontal resolution. The ensemble members in

MetUM explicitly reproduce convection at 4 km resolution but are displaced at

about 166 km behind observed rainfall.
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1 | INTRODUCTION

The socioeconomic importance of high-impact events
such as extreme rain or wind storms are phenomena
resulting in loss of lives and livelihoods, damage to physi-
cal environments, and cancelation of national develop-
ment gains. Nigeria is increasingly suffering from annual
flooding during the rainy seasons caused by increased
precipitation linked to high-impact events (Aja &
Olaore, 2014). Such extreme weather events are becom-
ing more intense while they remain difficult to forecast
using numerical weather prediction models. Sub-grid
scale variability, even in high-resolution models, makes it
challenging to verify forecast performance. Most conven-
tional verification scores do not characterize forecast
quality at spatiotemporal scales because they only con-
sider comparisons on a point-to-point basis (Baldwin &
Kain, 2006; Casati et al., 2008; Gilleland et al., 2009;
Jolliffe & Stephenson, 2012; Wilks, 2005). For instance, a
good forecast with a reasonable size and structure of the
feature of interest might give very poor verification when
displaced slightly in space because it misses the observa-
tions and gives a false alarm, known as “double penalty”
(Ebert, 2008; Gilleland et al., 2009; Rossa et al., 2008).

Predicting the occurrence of convective rainfall is, how-
ever, challenging owing to possible rapid growth of errors
on small scales together with inherent errors on larger
scales. This often makes higher-resolution forecasts at
convection-permitting resolution less skillful, with higher
probability of having a larger amount of small-scale inten-
sity error (Bannister et al., 2017; Gilleland et al., 2009);
therefore, making the traditional verification method less
useful in determining the true quality of a forecast. A way
of verifying forecasts using widely used statistical measures
such as Pearson correlation, mean bias, mean absolute
error, among others, is by synthesizing the individual statis-
tics to create a comparative model skill score (Gbode et al.,
2019). While this type of score could be more applicable for
evaluating long-term averaged fields, it provides no infor-
mation regarding the location and structure errors, which
are of more importance to operational forecasting.

Over the past few decades, researchers have proposed
numerous spatial verification methods to address the short-
comings inherent in the traditional verification methods
when applied to high-resolution forecasts (Gilleland et al.,
2009). These methods can basically be grouped into two
major categories: filtering methods and displacement
methods. The two main techniques under the filtering
methods are neighborhood (or fuzzy) and scale separation
(or scale decomposition) techniques while the displacement
methods are the features based (or object based) and field
deformation techniques (Gilleland et al., 2010; Dorninger
et al., 2018). In essence, the spatial verification techniques

are broadly grouped into four categories under the two
major categories. Depending on the user's need and pur-
pose, these methods give more detailed information than
conventional metrics. Spatial verification methods have
been used recently in Tropical Africa to assess the skill of
convection-permitting ensembles (East Africa; Cafaro et al.,
2021) and an operational deterministic model (West Africa;
Olaniyan et al., 2022).

The current study will apply neighborhood and
feature-based techniques from the filtering and displace-
ment methods, respectively, to investigate the forecast
performance based on different scales, location and struc-
ture errors, and timing errors of multiresolution model
forecasts of heavy rainfall events.

The purpose of this study is to apply different spatial
forecast verification methods so as to examine how forecast
skill varies with spatial scale in a manner that can be com-
prehensively understood by users and applied to operational
forecasting. The study focused on a heavy rainfall event that
took place across West Africa as part of westward move-
ment of an African Easterly Wave. The reason for selecting
a single case study is to illustrate the use of this type of anal-
ysis for operational verification by forecasters. Furthermore,
it is important to note that the use and implementation of
convection-permitting ensembles for operational forecasting
are novel in Tropical Africa (see Cafaro et al., 2021, in the
references). Therefore, operational forecasters of the coun-
tries of Tropical Africa do not have any experience with the
interpretation and verification of probabilistic products.
Thus, we believe that the analysis of this article, even if for
a single case study, can provide valuable information and
enhance operational forecasting in tropical Africa. The fol-
lowing section describes the model configurations and veri-
fication techniques in detail. The results and discussion are
presented in Section 3 and conclusion is made in Section 4.

2 | DATA AND METHODS

2.1 | Model description and setup

The individual Met Office Unified Model (MetUM)
18-member ensemble (hereafter MetUM Ens) forecast is a
downscaler of the global ensemble similar to the setup used
by the UK regional ensemble, that is, MOGREPS-UK
(Hagelin et al., 2017), at 4 km convection-permitting limited-
area covering West African domain (Figure 1a). The initial
and boundary conditions for MetUM are taken from the
global ensemble running at the Met Office, MOGREPS-G at
�0.28� resolution with 18 members (Bowler et al., 2008;
Bowler & Mylne, 2009; Tennant & Beare, 2014). Each
of the ensemble members was run for 5 days with initiali-
zation times of 0000 and 1200 UTC for the regional
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ensemble covering the heavy rainfall events period,
August 23–28, 2017. In this study, we only analyze the
5-day forecast initialized at 0000 UTC on August 23,
2017. A series of mesoscale convective systems (MCSs)
moved over West Africa between August 19 and 26, 2017.
The propagating systems along their course caused heavy
rainfall, which led to flooding in numerous regions
throughout the region. This flooding disaster had signifi-
cant socioeconomic repercussions. Over 100,000 people
were reportedly homeless, and over 4000 homes were
destroyed in 12 local government areas, according to
Nigeria's National Emergency Management Agency. The
Niger Republic, with an estimated 200,000 displaced
people, Guinea, with about 3500 affected individuals
and 10 fatalities, and Ghana, with an estimated 3000
displaced persons and seven fatalities, are other nations
impacted by these events (OCHA, 2017).

Another deterministic model setup was made using
the WRF version 4.2 model as a common framework
to perform two nested domain simulations with
18, 6, and 2 km (hereafter WRF18, WRF6, and WRF2;
Figure 1a) horizontal resolutions. The outer domain
covers West Africa and the innermost domain, which
runs at convection-permitting scale, focuses on
Nigeria (Figure 1b). When interpreting the results, it
is worthy of note that scale 0 = 18 km, which is three
times the grid scale for WRF6, nine times the grid
scale for WRF2, and approximately four times the grid
scale for MetUM Ens, that is, there is a fair degree of
smoothing that has been applied using a bilinear
regridding process to get the models onto a level play-
ing field. Only WRF18 is really evaluated on its native
grid and has not benefited from any additional
smoothing.

FIGURE 1 Shows maps of (a)WRF

model domain with a parent domain

(WRFd01) of 18 km horizontal

resolution while the two inner domains

(i.e., WRFd02 and WRFd03) have

resolutions of 6 and 2 km, respectively,

and (b) WRFd03 domain with elevation

in meters.
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The WRF model setup is similar to the study by
Gbode et al. (2019) in terms of the model physics
combination used in the model simulations. The param-
eterization schemes used are the Goddard (GD) WRF
model microphysics (MP), the Mellor–Yamada–Janjic
(MYJ) planetary boundary layer (PBL), and the Bett-
Miller-Janjic (BMJ) cumulus convection (CU) parameter-
ization schemes. This combination was found to repro-
duce realistic rainfall and temperature relative to gridded
observations in a previous study over West Africa (Gbode
et al., 2019). The GD is a six-class microphysics with
graupel and modifications for ice/water saturation based
on Lin et al. (1983). MYJ is a local closure scheme that
predicts turbulent kinetic energy (Zhang et al., 2012) and
the BMJ CU is a profile adjustment scheme that relaxes
both deep and shallow profiles toward a reference profile
without explicit updraft, downdraft, or cloud entrain-
ment. However, the CU scheme was turned off in the
2 km domain to explicitly represent convection. The
initial and boundary conditions used are the historical
reanalysis of the Global Forecast System (GFS-ANL;
https://www.ncdc.noaa.gov/data-access/model-data/model-
datasets/global-forcast-system-gfs) at 0.5� horizontal resolu-
tion. GFS is a weather forecast model produced by the
National Centers for Environmental Prediction (NCEP).
The forecast model produces a global dataset of several
atmospheric and land-soil variables such as temperatures,
winds, precipitation, soil moisture, and atmospheric ozone
concentration at a base horizontal resolution of 18 miles
(28 km) between grid points, which is used operationally
to produce 16-day weather forecasts. The one-way nested
WRF model forecast was initialized at 0000 UTC on 23rd
and was run for 5 days till August 28, 2017. The WRF
model became stable after 3 h of initialization and pro-
duced realistic forecast.

The precipitation forecasts were verified against the
half-hourly final Integrated Multi-satellitE Retrievals
for Global Precipitation Measurement (GPM) (IMERG;
hereafter GPM) at 0.1� horizontal resolution. The esti-
mates are derived from various precipitation-relevant
satellite passive microwave (PMW) sensors comprising
the GPM constellation using the 2017 version of the
Goddard Profiling Algorithm (GPROF2017), then gridded,
inter-calibrated to the GPM Combined Ku Radar-
Radiometer Algorithm (CORRA) product, and merged
into half-hourly 0.1� � 0.1� (roughly 10 � 10 km)
fields. The “Final” satellite-gauge product is produced
�3.5 months after the observation month, using both
forward and backward morphing and including monthly
gauge analyses, which makes it a very good alternative
in a data sparse region like West Africa (Maranan
et al., 2020).

2.2 | Verification techniques

The below subsections will briefly describe the two spatial
verification methods used in the current study. These
methods were selected from the filtering methods
(i.e., neighborhood approaches) and displacement methods
(i.e., feature-based (or object-based) approaches).

2.2.1 | Neighborhood techniques

The neighborhood verification techniques compare fore-
casts and observed values in space–time neighborhoods rel-
ative to a point of the field of interest. The approach
upscales the field by averaging the values of neighbors of
grid points within a certain radius of each other. This cre-
ates a smoothed field from the original field that is used to
compute the summary statistics that follow closely the tra-
ditional verification statistics. The comparisons are repeated
for incrementally larger neighborhoods in order to deter-
mine the scale at which a desired level of skill is attained
by the forecast. Depending on the neighborhood techniques
used, the approach can provide useful qualitative informa-
tion, determining the optimum resolutions the forecast per-
forms best and reducing the double-penalty problem
(Ebert, 2008; Gilleland et al., 2009; Rossa et al., 2008).

One of the widely used techniques in this approach is
the fractions skill score (FSS, Roberts, 2008; Roberts &
Lean, 2008). FSS provides an assessment of the depen-
dency of skill on spatial scale and intensity, thereby mak-
ing it an ideal skill score for verifying high-resolution
rainfall forecasts. It compares the fractional coverage of
events defined by occurrences of values exceeding a given
threshold in windows surrounding the observations and
forecasts (Mittermaier & Roberts, 2010). The forecast and
observed values are projected onto the same verification
grid. User-defined thresholds (e.g., rainfall thresholds
[tr] of 0.5, 1, 2, and 4 mm) are used to convert the
observed (Or) and forecast (Fr) rainfall fields into binary
fields Io and IF (Equation 1). Any grid point where the
values exceed the threshold is assigned a value of 1 and
where the conditions are not met have a value of 0,

Io ¼
1,Or ≥ tr

0,Or < tr

(
and IF ¼

1,Fr ≥ tr

0,Fr < tr

(
ð1Þ

Also, percentile-based thresholds instead of rainfall
amount thresholds can be used to generate the binary fields
from forecast and observations. This removes the impact of
any bias in rainfall amounts and thus allows for a good
judgment of the spatial accuracy of the forecasts.

4 of 18 GBODE ET AL.Meteorological Applications
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The fractions are generated to obtain the probabilities
following the same nearest-neighbors method proposed
by Theis et al. (2005) and Roberts (2008) as described in
Equations 2 and 3, where the quantities derived are used
to assess the spatial density in the binary fields. The frac-
tion of surrounding points within a given square n that
have a value of 1 was obtained for every grid point in the
binary fields.

O nð Þ i, jð Þ¼ 1
n2

Xn
k¼1

Xn
l¼1

Io iþk�1� n�1ð Þ
2

,

�

jþ l�1� n�1ð Þ
2

�,
ð2Þ

F nð Þ i, jð Þ¼ 1
n2

Xn
k¼1

Xn
l¼1

IF iþk�1� n�1ð Þ
2

,

�

jþ l�1� n�1ð Þ
2

�
,

ð3Þ

where O(n) (i, j) and F(n) (i, j) are the resultant fields of
observed and forecast fractions, respectively, for a square
of length n obtained from the corresponding binary field
Io and IF . The index i ranges from 1 to Nx number of col-
umns in the domain, and j from 1 to Ny, number of rows
in the domain. The value of n can be any odd value up to
2N�1, where N is the number of points along the longest
side of the domain, and can be varied to compute frac-
tions at different spatial scales.

For comparison, a convolution kernel for the mean
filter is applied to the binary field to create squares. Thus
Equation 2 becomes:

O nð Þ ijð Þ¼
Xn
k¼1

Xn
l¼1

Io iþk�1� n�1ð Þ
2

, jþ l

�

� 1� n�1ð Þ
2

�
K nð Þ k, lð Þ,

ð4Þ

where K nð Þ k, lð Þ is the n�n kernel for a (square) mean
filter.

The mean square error (MSE) for the observed and fore-
cast fractions from a neighborhood of length n is given by

MSE nð Þ ¼ 1
NxNy

XNx

i¼1

XNy

j¼1

O nð Þi,j�F nð Þi,j
� �2 ð5Þ

The MSE is less useful because it highly depends
on the frequency of the event itself; therefore, another
skill score (i.e., Fractional Skill Score [FSS]; Murphy &
Epstein, 1989) based on MSE is computed relative to a
low-skill reference forecast.

FSS nð Þ ¼
MSE nð Þ �MSE nð Þref

MSE nð Þperfect�MSE nð Þref
¼ 1� MSE nð Þ

MSE nð Þref
, ð6Þ

where MSE nð Þperfect ¼ 0 is the MSE of a perfect forecast for
neighborhood length n. The reference MSE nð Þref for each
neighborhood length n is given by,

MSE nð Þref ¼ 1
NxNy

XNx

i¼1

XNy

j¼1

O2
nð Þi,jþ

XNx

i¼1

XNy

j¼1

F2
nð Þi,j

" #
: ð7Þ

The MSE nð Þref is a measure of the largest possible
MSE that can be obtained from the forecast and observed
fractions.

In the current study, a bilinear regridding method
was applied to both observed and modeled datasets to
regrid to 18 km horizontal resolution, which is the coars-
est resolution derived from the model forecast. This was
done for direct grid point comparison between observa-
tion and forecast. The FSS was computed using different
rainfall amount thresholds on the 3 h precipitation from
0300 UTC of 23rd to 0000 UTC of August 26, 2017.
Another FSS was computed using the 95th percentile
threshold instead of rainfall amount thresholds to gener-
ate binary fields from forecast and observations. This
approach eliminates the effect of any bias in rainfall
amounts and therefore provides a good judgment of the
spatial accuracy of the forecasts.

2.2.2 | Features-based techniques

The features-based approach, also known as object-based
or cell identification techniques, can be used to determine
what constitutes a feature, whether spatially discontinu-
ous features within a field should be treated as one fea-
ture or separate features, how they match features from
one field to the other, and what sort of diagnostics and/or
summary measures they produce (Gilleland et al., 2009).
An object is identified by applying a threshold to the
fields. The attributes of each of the identified objects, for
example, the size, shape, and average intensity, are calcu-
lated for the forecast or observation field. These charac-
teristics can be compared against identified features in
the corresponding field in terms of their spatial proximity
and summary statistics describing how well these objects
compared can be calculated.

The Method for Object-Based Diagnostic Evaluation
(MODE) is a feature-based technique particularly useful
for application to high-resolution numerical weather pre-
diction of high-impact weather events. MODE can deter-
mine how similar the forecast objects are to the observed

GBODE ET AL. 5 of 18Meteorological Applications
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objects according to a variety of descriptive criteria
including the size, shape, and average intensity (Brown
et al., 2007; Bullock et al., 2016; Davis et al., 2006a,
2006b). The method uses a convolution filter and thresh-
olding to first identify objects in gridded fields. Forecast
skill at different spatial scales can be investigated by
changing the values of the filter and threshold parame-
ters. After the objects are identified, a feature-based
scheme is used to merge objects within a field and match
them between the forecast and the observations (Brown
et al., 2007; Davis et al., 2006a, 2006b). The characteristics
of the matched objects (e.g., location, area, volume, inten-
sity, shape, etc.) are compared to examine their similari-
ties. Information derived from these attributes is
combined to give an interesting value that summarizes
the goodness of the match. MODE attributes can provide
details of single matched shapes (i.e., hits), single
unmatched shapes (i.e., false alarms, misses), clustered
objects (i.e., groups of forecast or observed objects that
are merged together), and interest to specific users
(e.g., distance between storms, which is relevant for avia-
tion strategic planning), as well as details of how fore-
casts represent the storm/precipitation climatology,
understand systematic errors, and document variability
in performance in different situations.

In this study, the MODE was applied to the 18 km
regridded forecasts and observation. A threshold of 5 mm
rainfall amount and radius of 60 km was used to charac-
terize the forecast and observed objects and a merge
threshold of 1.25 mm was chosen. The merging tech-
nique in MODE requires that the chosen merge threshold
should be less than the threshold uses to define objects,
to produce larger merged objects that fully contain the
originally defined objects. The total interest value of 0.7 is
used to summarize the goodness of the matched objects.

3 | RESULTS AND DISCUSSION

3.1 | Spatial distribution and statistics of
rainfall

First, we consider the propagation of the rainfall features
in observations and the different models. Figures 2–6
show the 3-h observed and predicted rainfall distribution
from GPM, MetUM, and WRF for the period 2100UTC of
August 24 to 0900UTC of August 25, 2017. The period
corresponds to the time when there was an east to west
propagation of rainfall maximum across the domain. This
convective activity is associated with the passage of an
African Easterly Wave (AEW) over Nigeria (Olaniyan
et al., 2022). At 21:00 UTC of August 24, 2017, GPM
observed accumulated rainfall extending from the

southern part of Nigeria to around latitude 10.5oN
(Figure 2). Maximum values of about 40 mm hr�1 are
observed in GPM with north-west orientation and maxi-
mum cores at approximately latitude 6oN along longi-
tudes 10.5�E and latitude 9oN between longitudes 6 and
7.5�E. Rainfall forecasts of August 24, 2017 valid for
21:00 UTC are generally displaced behind the region of
observed rainfall in MetUM and WRF. MetUM ensemble
mean (MetUM-Ens) shows a wide northward spread of
rainfall, mostly restricted to the eastern part of the coun-
try. Also, MetUM-Ens forecast shows an isolated feature
of rainfall maximum at the location near latitude 4.5oN
and longitude 9�E. Deterministic forecast from WRF
18 km (WRF18) resolution shows regions of maximum
rainfall (i.e., >40 mm hr�1) along longitude 13.5�E with a
similar north-west orientation structure as observed in
GPM. Similar structures were forecast by WRF6 and
WRF2 but with less intense magnitude. Most ensemble
members except MetUM11, 16, and 17 show maximum
at about latitude 6oN distributed between 10.5 and
13.5�E. This region of maximum corresponds approxi-
mately to the location of maximum in the three WRF
deterministic forecasts.

On August 25, 2017, at 0000 UTC, the rainfall produc-
ing system associated with AEW became well organized
producing more intense rainfall (Figure 3). The observed
maximum core of rainfall has propagated westward by
approximately 1.5�. This westward shift deforms the
north-west rainfall structure observed in the previous 3 h
and the leading maximum core in the north dissociates
completely from the southern core. The dissociated core
forms a distinct area of isolated rainfall along longitude
5�E and lies between latitudes 9� and 10.5oN, thereby caus-
ing the feature to assume a new south-east structure with
eastward tilt. Similar to the observed rainfall, the model
forecasts show a more organized and intense north-west
line rainfall, although with spatial differences. Also, the
forecast rainfall distribution propagates westward behind
the observed rainfall. MetUM-Ens shows a large rainfall
spread covering the south-eastern and central region of
Nigeria and maximum core along the eastern border
between the country and Cameroun. The rainfall spread is
given by the underlying ensemble members and reflects
the positional uncertainties; therefore, this bigger rainfall
footprint in the ensemble mean is due to the spatial uncer-
tainty as reflected by the ensemble members. Forecasts
from the WRF model possess similar structure as observed
but are displaced to the east. Relative to WRF18, the
intensity of rainfall decreases in WRF2 and WRF6 forecasts.
Upon visual inspection, some individual MetUM ensemble
members, especially MetUM00 (control simulation, hereaf-
ter, MetUM Ctrl) and MetUM10, are closer to observations
than others.

6 of 18 GBODE ET AL.Meteorological Applications
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At 0300 UTC on August 25, 2017 (Figure 4), the
observed cores of rainfall maximum propagate further to
the west of the Nigerian domain. The approximate rate of
westward propagation is about 1.5�/3 h. Both observed
and forecast rainfall features become well-defined having
a continuous line of rainfall with north-west orientation,
particularly in WRF. Despite the westward movement of
the rainfall core, the latitudinal position remains almost
unchanged compared with the previous 3 h. Similarly,
the rainfall distribution of some of the individual MetUM
ensemble members (e.g., MetUM00, 01, 02, 05, 09, 10, 14,
and 17) starts to develop into a well-defined structure as
they transit further westwards.

At 0600 UTC of the same day (Figure 5), the observed
rainfall amount has already reached the southwestern
corner of the domain and values of the inland maximum
core begin to reduce while the values of the coastal maxi-
mum core have increased. Though the rainfall forecast
remains displaced behind the observed rainfall feature by
approximately 2�, the rainfall of MetUM-Ens and the
three WRF (WRF18, 6, and 2) forecasts becomes nearly
identical in terms of shape and orientation. Members
contributing to the more realistic feature of the MetUM-
Ens include MetUM00 (MetUM Ctrl), 01, 02, 10 and 14.

As the observed system moves away from Nigeria into
the Benin Republic and Atlantic Ocean to the west, an

FIGURE 2 Spatial distribution of 3-h rainfall amount (mm hr�1) valid for August 24, 2017 at 21:00 UTC. The first-row shows results

from GPM, MetUM 18-member ensemble mean, and WRF forecast from 18, 6, and 2 km resolution deterministic forecast while rows 2–5
show the rainfall forecast from the individual MetUM ensemble member.
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isolated rainfall-producing system not captured in the
models appears to creep into the domain from the east at
about 9oN (Figure 6). The forecasts start to produce
reduced rainfall as it propagates further west. The simi-
larity in WRF6 and WRF2 rainfall structure suggests that
the model produced a reasonable representation of con-
vection at 6 km horizontal resolution.

The distribution and descriptive statistics of the
observed and forecast rainfall for the period August 23–25,
2017, are presented in Figure 7. The frequency of forecast
rainfall of about 25 mm and below are comparable
between GPM and MetUM Ctrl and WRF18, although
MetUM Ctrl underestimates rainfall below and overesti-
mates rainfall above this threshold. WRF2 and WRF6
underestimate the observed rainfall amount frequency,

particularly for lower rainfall values. While MetUM Ctrl
overestimates higher rainfall amounts, MetUM-Ens under-
estimate higher rainfall values and overestimates lower
values.

3.2 | Forecast verification

3.2.1 | Fraction skill score

Figure 8 shows the FSS of different rainfall forecast
thresholds for the period August 23–26, 2017. The FSS
scores are derived by comparing these forecast thresholds
with the observed thresholds from GPM. In general, the
model forecast clearly shows that the forecast skill

FIGURE 3 Same as Figure 2 but valid for August 25, 2017 at 00:00 UTC.
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improves as the neighborhood scale increases. In WRF,
the skill generally increases as the grid scale decreases,
although 2 and 6 km are indistinguishable as shown in
Figure 9. Also, the skill of the model forecast is higher for
lower rainfall thresholds compared with higher thresh-
olds, especially at higher neighborhood scales. For exam-
ple, FSS only reaches 0.5 when the rainfall threshold is
less than 10 mm in WRF and less than 12 mm in
MetUM. MetUM Ens is the most skillful relative to the
other models in terms of a wider range of rainfall thresh-
olds (up to 20 mm) of FSS greater than 0.5. The area of
FSS greater than 0.5 in WRF forecasts is small compared
with the MetUM ensemble and control, particularly in
WRF2 and WRF6 (Figure 8b, c). Although higher FSS
can be seen in higher rainfall thresholds (up to 16 mm)

in WRF2, this value is however attained at higher neigh-
borhood scales (> 60). The results are consistent with
Cafaro et al. (2021), that the ensemble tends to outper-
form the deterministic forecast, although spatial smooth-
ing of the deterministic forecast can improve the skill.

The results from Figure 8 are affected by model biases
in the rain rate distribution. As the neighborhood scale
increases, the FSS should asymptote to 1 if there were no
frequency bias. This can indeed be observed for the lowest
rainfall rates, as Figure 7 indicates that the model fre-
quency bias is close to 1 for those rain rates. For high rain-
fall rates, which are the subject of this study, frequency
bias affects our interpretation of the FSS. We therefore
consider FSS using a percentile threshold instead, shown
in Figure 9a for the 95th percentile. The original MetUM

FIGURE 4 Same as Figure 2 but valid for August 25, 2017 at 03:00 UTC.
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forecast (MetUM00) was considered as the control forecast
(MetUM Ctrl). The ensemble mean was derived from the
17 members, and its FSS curve against spatial scales is
plotted on the same chart with the ensemble FSS. Here,
the 95th percentile threshold averaged over the entire
domain was used to compute the scores. The deterministic
FSSs of all MetUM member forecasts were also plotted for
reference. The threshold used corresponds to MetUM
ensemble, MetUM Ctrl, WRF18, WRF6, and WRF2.
Figure 9b shows the rainfall values of the 95th percentile
rainfall threshold used to generate the binary fields. FSS of
MetUM ensemble shows dramatic improvement at all grid
scales highlighting the benefits of applying verification
score using a percentile threshold. The ensemble also per-
forms better than most individual members. The FSS

curve of each MetUM ensemble member in Figure 9 is
similar to the findings of Roberts and Lean (2008) and
Duc et al. (2013) where the FSS values are equal to zeros
for all spatial scales less than or equal to displacement
errors. Similar to the current study, their study computed
ensemble FSS and the FSS of ensemble mean using all
members, which is expected to show curves with zero
values only when the spatial scales are smaller than the
minimum displacement error of all members. According
to Duc et al. (2013), this means that even when a control
forecast shows an unskillful forecast via an FSS value of
zero, the ensemble and ensemble mean FSS values may
differ from zero, showing that the ensemble system pos-
sesses a certain level of skill in which good forecasts occur
in some members different from the control.

FIGURE 5 Same as Figure 2 but valid for August 25, 2017 at 06:00 UTC.
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The useful scale (i.e., FSS = 0.5) at 18 km horizontal
resolution is 14.5 grid points (261 km) and 18.5 grid
points (333 km) for MetUM ensemble and Ctrl (Figure
9a), respectively. These values are better compared with
WRF2, 6, and 18, where corresponding grid scales of
21 grid points (378 km), 22 grid points (396 km), and
24 grid points (432 km), respectively, are obtained. The
actual useful scale, calculated on the original grid, might
be lower than these values for all the model simulations,
except for WRF18 where the original grid was used. This
analysis is useful to assess the relative skill of each model
compared with the others and the information about
which model is the most skillful is of course necessary for
the forecast users. Both WRF2 and WRF6 compare well
at lower scales, but the former shows slightly higher skill.

In general, MetUM Ens is more skillful than the MetUM
Ctrl and WRF deterministic forecast. FSS of nearly all the
individual MetUM ensemble members and WRF6 and
2 are higher than WRF18. Figure 9b shows the 3 h time
series of the considered period (August 23–26, 2017). All
models show comparable evolution with GPM but missed
the peak time of the 95th percentile rainfall amount. Dur-
ing the early hours of the first day, the simulated rainfall
in MetUM is comparable to GPM. The ensemble spread
also shows good agreement during the first and second
peaks. MetUM Ctrl overestimated the first peak but fore-
casts magnitude closer to the observation. Although the
WRF models have their peaks close to the observed
peaks, WRF18 over- and under-estimate the first and sec-
ond rainfall peaks, respectively. WRF2 and 6 show a

FIGURE 6 Same as Figure 2 but valid for August 25, 20177 at 09:00 UTC.

GBODE ET AL. 11 of 18Meteorological Applications
Science and Technology for Weather and Climate

 14698080, 2023, 4, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/m
et.2135 by U

niversity of R
eading, W

iley O
nline L

ibrary on [14/09/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



FIGURE 7 Frequency and

descriptive statistics of observed and

forecast 3-h rainfall amount (mm) for

the period August 23–25, 2017.

FIGURE 8 FSS of different forecast rainfall thresholds for (a) WRF18, (b) WRF6, (c) WRF2, (d) MetUM Ens (excluding the control

forecast), and (e) MetUM Control run for the period August 23–26, 2017.
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general underestimation of the observed 95th percentile
rainfall amount.

3.2.2 | Method for object-based diagnostic
evaluation

The MODE (John et al., 2022) provides an opportunity to
verify the forecast in an intuitive manner such that rain-
fall thresholds are used to delineate forecast objects to
compare with objects derived from the observed field
using the same thresholds. Figure 10 shows observed and
forecast features on August 25, 2017 at 00:00 UTC (com-
pare with Figure 2). The top row shows the raw precipita-
tion while the middle and third rows show the identified

objects (shaded area) and overlay of matched forecast
(blue line) and forecast objects (dashed blue line) on
observed objects (red area), respectively. The matches of
the objects derived from the raw precipitation fields are
determined using a matched threshold greater than or
equal to 1.25 mm. At this hour, the observed object is
defined within the area bounded by latitudes 4�–10.5oN
and longitudes 6�–9�E. Two objects were identified in the
observed features. MetUM Ctrl forecast identifies four
objects, but only two of these objects were matched with
the observed objects. The features defined in WRF18,
6, and 2 are also found behind the observed feature.
Matching the observed and forecast objects, only a frac-
tional portion of MetUM Ctrl overlaps with the observed
object. WRF18 has a broad object and lags behind the

FIGURE 9 FSS of 95th percentile

threshold of rainfall forecast (a) and

rainfall values of 95th percentile

threshold (b) for the period August 23–
26, 2017. The gray lines and shades on

panels a and b, respectively, represent

the values of the individual MetUM

ensemble member excluding the control

forecast.
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observed feature covering the area of the observed object
around the central region of the domain. Objects of
WRF6 and 2 are formed in three clusters and are almost
identical with insignificant differences. Only one of these
objects matches with a fractional part of the observed fea-
ture, which extends from the southern coast to the mid-
dle belt of Nigeria.

At 03:00 UTC of the same day, the observed feature
propagates further to the west. The area of the MetUM
Ctrl object expands and elongates north–south as it

moves further west into the observed object (Figure 11).
Also, the area defined by WRF18 becomes wider and
matches more area of the observed feature. The area
defined by WRF6 and 2 objects is narrow but matches
almost the same portion of the observed objects relative
to WRF18. The shape of the WRF objects extends further
north of the domain. The forecast objects continue to lag
behind the westward propagating observed feature. The
MetUM Ctrl object is a better fit to the object though still
lagging behind the observed object. An elongated

FIGURE 10 Observed and forecast features on August 25, 2017 at 00:00 UTC. The top row shows the raw rainfall amount, the middle

row shows the forecast, and observed objects (shaded area) based on 5-mm rainfall threshold, and the third row presents the overlay of

matched forecast (blue line) and forecast objects (dashed blue line) on observed objects (red area) determined by using 0.7 total interest

threshold.

FIGURE 11 Same as Figure 10 but for August 25, 2017 at 03:00 UTC.
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continuous structure is defined in WRF with a northeast
orientation.

At 06:00 UTC (Figure 12), the observed rainfall activi-
ties have transited further west and resides around the
southwest of Nigeria. The boundary of the MetUM Ctrl
object overlays the eastern boundary of the observed object
while objects defined in WRF cover larger area of the
observed feature, especially in WRF18, compared with the
previous hours. The rainfall activities reside around the
southwest border of the country with another system enter-
ing into the country from the eastern region at 09:00UTC
(Figure 13). All models were not sensitive to the encroach-
ment of the rainfall producing system from the eastern part

of the country. Only the smallest of the three objects in
MetUM Ctrl matched well with the observed feature. The
objects derived from the raw WRF6 and WRF2 overlap a
sizable area of the observed object. Objects defined by
WRF18 cover a wider area, but the largest feature delin-
eated in MetUM Ctrl was unmatched.

The analysis of the MODE statistics, which require a
careful interpretation, was omitted because of the impli-
cations of the model boundary. MODE works best when
the objects are relatively small compared with the size of
the domain, so that all the focus is on what goes on in
the interior of the domain. Here the size of the objects
relative to the domain size is comparable, which leads to

FIGURE 12 Same as Figure 10 but for August 25, 2017 at 06:00 UTC.

FIGURE 13 Same as Figure 10 but for August 25, 2017 at 09:00 UTC.
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many of the objects being truncated by the domain
boundaries in some way. This means that all the object
attributes are affected. Therefore, none of the statistics
are really usable because either the forecast or observed
(or both) objects are not seen in their entirety. However,
the most important outcomes from the MODE results is
in terms of the positional information, which is likely to
be less compromised (as here the translation appears to
be more east–west than north–south), but anything else
including the area ratios, unions, and complexity are all
compromised in some way through the interaction/
influence of the boundary.

4 | CONCLUSION

The study employs spatial forecast verification methods,
FSS and MODE, to verify the skills of two NWP models in
predicting the occurrence of heavy convective rainfall asso-
ciated with the passage of the AEW during the period of
August 23–26, 2017 over Nigeria. The purpose is to verify
how well the models predict a high-impact event using two
different spatial forecast verification methods so as to
examine how forecast skill varies with spatial scale in a
manner that can be comprehensively understood by users
and applied to operational forecasting. Rainfall from
ensemble model forecast at convection-permitting scale
from MetUM and one-way nested WRF model were
compared with the GPM IMERG. Results show that the
forecast of the core of rainfall amount is displaced by about
1–1.5� behind the observed GPM rainfall in all the model
forecasts. During the considered time frame, most of the
individual MetUM members and WRF forecast produces
convective rainfall with spatial and temporal biases. This
underscores the need to further improve the model tuning
and proper initialization of MetUM in order to improve the
forecast. The MetUM ensemble could, however, improves
the skill as was seen in the FSS statistics derived from the
ensemble mean of the binary fields, as long as percentile
thresholds are considered. WRF model forecasts clearly
demonstrate skills in terms of forecasting reasonable shape
and structure of rainfall distribution at 18, 6, and 2 km hor-
izontal resolution, although with location displacement.
This highlights the benefit of proper model setup as dem-
onstrated in Gbode et al. (2019). Rainfall forecasts from
WRF6 and WRF2 have almost the same shape and struc-
ture, suggesting that the model produced a reasonable rep-
resentation of convection at 6 km horizontal resolution.
The useful scales (i.e., FSS = 0.5) at 18 km horizontal reso-
lution are 14.5 grid points (261 km) for MetUM Ens, 18.5
grid points (333 km) for MetUM Ctrl, 21 grid points
(378 km) for WRF2, 22 grid points (396 km) for WRF6,
and 24 grid points (432 km) for WRF18.

WRF 2 and 6 km model forecasts show comparable
skills at lower neighborhood grid scales. The notable
improvement seen in MetUM when the FSS verification
statistics are applied to the ensemble mean of the binary
fields of the individual member forecast highlights the
benefit of the model ensembles. Also, the object-based
analysis reveals a similar structure as observed, although
displaced eastwards. The individual members of MetUM
have difficulties in reproducing convective rainfall at
appropriate time and location, which is also the case
for WRF.

The results from this study highlight the potential of
convection-permitting ensemble models to produce qual-
ity forecasts with respect to deterministic coarser resolu-
tion forecasts. Also, it shows that the use of verification
techniques can be beneficial to inform operational
weather forecasts and decision-making processes. It is,
however, expected that numerical weather predictions of
high-impact weather will continue to improve over time
as quality and quantity of observation data, computa-
tional power, and knowledge of atmospheric processes
improve in tropical African countries. While FSS and
MODE seemingly contradict each other, they supply
complementary information, with the object-based
approach of MODE providing further details on displace-
ment of individual storms. Therefore, while limited to a
single case study, this study shows also the importance of
applying several verification scores in order to have a
more complete picture of the forecast quality. This will
hopefully encourage more and deeper analysis in the
future to issue better weather warnings of high-impact
weather.
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