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Abstract 

 

The present dissertation collects methodological and empirical works developed with the aim 

of moving forward the debate on the diffusion and the economic implications of advanced 

manufacturing technologies (AMTs) of the Industry 4.0 (I4.0) wave. In line with current open 

research avenues in the literature, in the four Chapters we answer the following research 

questions: (i) How can we measure with precision both the adoption and the production – i.e. 

the overall diffusion – of AMTs across countries and over time? (ii) What is the relationship 

between the adoption of AMTs, total factor productivity (TFP) growth, and technological 

catch-up across manufacturing industries? (iii) Does the adoption of AMTs push or 

discourage manufacturing firms to restructure business activities through collective layoffs? 

(iv) What is the relationship between the growing diffusion of additive manufacturing (or 3D 

printing) innovations and employment across manufacturing industries? We address these 

questions with methodological and empirical rigour, providing novel insights on still 

underexplored research areas. On the one hand, our findings open up for further research 

across several streams of both the economics and management literature. On the other hand, 

they allow us to outline clear implications and potential suggestions for both institutional 

policymakers and managers, analysing the effectiveness of current policies targeting the I4.0 

revolution and support managers in harnessing the benefits spurring from the adoption of 

AMTs. 
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Introduction 

 

This dissertation collects methodological and empirical studies aiming at moving forward the 

understanding of the diffusion dynamics and the economic implications of advanced 

manufacturing technologies of the Industry 4.0 wave. 

Over the last decade, the emergence and growing diffusion of new digital 

technologies has led governments, national and international institutions, industry 

practitioners and academic scholars to discuss the advent of a fourth industrial revolution 

(4IR) wave, also called Industry 4.0 (I4.0) (e.g. Brynjolfsson and McAfee, 2014; EIB, 2019; 

OECD, 2017; UNCTAD, 2020; WIPO, 2019). Specifically, the concept of Industry 4.0 (I4.0) 

was first introduced in 2011 by the German Government, synthesising the will to revitalise 

the manufacturing industry in the aftermath of the 2008 global financial crisis as a way to 

boost prosperity among developed economies, through to the adoption and integration of a set 

of advanced, smart and digital technologies (Kagermann et al., 2013; Rüßmann et al., 2015). 

The term ‘fourth industrial revolution’ is commonly used worldwide to address the unfolding 

and diffusion of such new digital transformation, while the use of the ‘Industry 4.0’ 

terminology has been relatively more adopted across European countries Nonetheless, the 

two terms are frequently used interchangeably referring to the same set of technologies. As 

such, ‘Industry 4.0’ can be considered as an umbrella term (Mariani and Borghi, 2019), 

grouping together a set of heterogeneous technologies as well as industrial policy initiatives 

that emerged to support their diffusion and adoption. 

 Within the spectrum of technologies embedded in the I4.0 wave – most frequently, 

industrial robots, additive manufacturing, internet of things, cyber-physical systems, cloud 

computing, big data analytics, virtual reality, machine learning and artificial intelligence – the 

works presented in the following Chapters focus on three of these technologies, namely 
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advanced industrial robots (AIRs), additive manufacturing (AM) and industrial internet of 

things (IIoT). The choice of such technological focus and the related terminology lies at the 

intersection of three main considerations: first, the technical characteristics of these 

technologies make them internally homogeneous and externally different with respect to the 

other technologies of the 4IR, reflecting OECD’s (2012) definition of “computer-controlled 

or micro-electronics-based equipment used in the design, manufacture or handling of a 

product”. Second, from an economic standpoint, these three technologies represent forms of 

‘embodied technologies’, meaning that their adoption entails the physical installation of a 

specific type of machinery and/or capital equipment. As also discussed by Foster-McGregor 

et al. (2019), this characteristic represents a crucial distinction relative to other technologies 

of the 4IR, where the physical component of the technology is usually standardised and 

multi-purpose (e.g. computers and servers). As further discussed later, such intrinsic feature 

makes these three technologies the most appropriate to be investigated through the devised 

methodology. Third and most importantly, from a conceptual standpoint, they represent a 

new and more advanced form of manufacturing technology, which can be thought of as the 

evolution of those advanced manufacturing technologies which diffused over the 90s and had 

been conceptualised in previous studies (e.g. Udo and Ehie, 1996; Cagliano and Spina, 2000; 

Kotha and Swamidass, 2000). Furthermore, since these three technologies of the I4.0 wave 

bear the highest potential impact on advanced manufacturing processes – ranging from the 

management of productive operations to the organisation of human work – they have also 

been defined as ‘game-changing technologies’ (Eurofound, 2018). Throughout the 

dissertation, we will refer to these technologies as ‘advanced manufacturing technologies’ 

(AMTs). 

As we further discuss throughout the thesis, new technologies of the I4.0 wave are 

widely recognised to bring major benefits, such as higher operational flexibility, higher 
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production efficiency and quality, lower set-up costs and integration along the value chain, 

resulting in higher productivity in manufacturing operations and better performance overall 

(e.g. Rüßmann et al., 2015; Schwab, 2016; Skilton and Hovsepian, 2017; Eurofound, 2018). 

At the same time, additional high-level impact resides in the world of work and, in general, 

the entire society. On the one hand, a general concern around the “risks of new monopolies, 

mass redundancies, spying on workers, and the extension of precarious digital work” 

(Davies, 2015, p. 9) emerges. On the other hand, this transformation calls for a policy debate 

on the upcoming changes in the task content and occupational profiles of manufacturing 

employment (Frey and Osborne, 2017; Eurofound, 2018). 

The growing attention given to such technologies of the I4.0 wave has resulted in 

substantial body of both theoretical and empirical literature, exploring several research 

avenues. First and foremost, this work deals with the overall process of technology diffusion 

(e.g. Acharya and Keller, 2009; Caselli and Coleman, 2001; Caselli and Wilson, 2004; Comin 

and Hobijn, 2010; Eaton and Kortum, 1999; Keller, 2002; 2004), specifically with the 

development of technological innovations, the production of new and more advanced forms 

of technology and, ultimately, with their adoption. The term ‘technology diffusion’ is 

traditionally conceived as to describe the process by which innovations are first known and, 

eventually, adopted by individuals and/or firms in a place. However, such process is “neither 

inevitable nor automatic” (Keller, 2004, p. 753). New technologies usually emerge locally, 

due to the required presence of a certain level of tacit knowledge and a localised producing 

industry developing them. However, their diffusion might not necessarily imply actual 

adoption outside the geographical boundaries in which they originate: the essence of the 

diffusion concept does not just entail that a new technology is used abroad – actual adoption 

usually going along with overall economic integration (Keller, 2004) – but also allow for the 

simple spread of awareness of the existence of a new technology or innovation, thus enabling 
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its use, in principle (Eaton and Kortum, 1999). Thus, the diffusion, production and adoption 

of a new technology are usually considered as distinct concepts: the latter two imply the first 

one, but not the other way round. 

 These concepts are of crucial importance in several areas of economic research: most 

cross-country differences in per capita income and inequality are due to differences in total 

factor productivity (TFP), rather than to differences in the levels of factor inputs (Comin and 

Hobijn, 2010; Keller, 2002). Such productivity differences, in turn, depends largely on 

technological differences (Comin and Hobijn, 2010; Keller, 2002; 2004). Thus, relatedly to 

the empirical work developed throughout this dissertation, a first stream of this literature 

delves into the relationship between the diffusion of some technologies of the I4.0 wave 

(mostly adoption of AIRs) and productivity gains happening at different levels of analysis, 

i.e. country, sector, and firm (Jäger et al., 2015; Graetz and Michaels, 2018; Edquist et al., 

2019; Acemoglu et al., 2020; Alderucci et al., 2020; Benassi et al., 2020; Ballestar et al., 

2020; Bonfiglioli et al., 2020; Espinoza et al., 2020; Cette et al., 2021; Damioli et al., 2021; 

Du and Lin, 2022; Venturini, 2022). One main finding from these works is that I4.0 

technologies are, generally, positively associated with productivity. However, they also 

highlight that the magnitude of such relationship is largely sensitive to the way of measuring 

productivity, the specific technology investigated, the data source, the level of aggregation, 

and the estimation method. More specifically, all these studies fail in providing comparable 

estimates of the productivity gains associated with the diffusion of different technologies, 

alone and in bundle. 

A second research stream investigates the role played by technologies of the 4IR in 

affecting the way firms operate and organise their activities both at a local level and on an 

international scale (Alcácer et al., 2016; Autio et al., 2021; de Beule et al., 2022; Hannibal 

and Knight, 2018; Laplume et al., 2016; Strange and Zucchella, 2017). These new digital 
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technologies can affect firms in different ways, pushing businesses to either contract or 

expand the geographical scope of their activities, as well as to consider either expanding or 

restructuring current operations in a variety of ways. High-impact restructuring events like 

downsizing and closures have only received lateral attention, mainly in relation to the 

implications for laid-off employees in contexts of growing automation (Beer et al., 2019; 

Blien et al., 2021; Goos et al., 2021; Olsson and Tåg, 2017). Hence, so far, this remains a 

strongly under investigated area, still lacking a deeper analysis of the potential direct 

relationship between the diffusion of 4IR technologies and the occurrence of restructuring 

events, especially when such events entail collective layoffs. 

 Finally, a third stream of the literature on technologies of the I4.0 wave addresses the 

relationship between automation and employment, analysing how the diffusion of these 

technologies affects both the level of employment and its composition. Taking stock of 

previous works analysing how new forms of automation affect the different tasks necessary 

to perform jobs (e.g. Acemoglu and Autor, 2011; Acemoglu and Restrepo, 2018; 2019; Frey 

and Osborne, 2017), several empirical studies have analysed different employment-related 

outcomes, mainly at the sectoral and firm level (e.g. Acemoglu and Restrepo, 2020; 

Acemoglu et al., 2020; Bonfiglioli et al., 2020; Chiacchio et al., 2018; Dauth et al., 2021; 

Domini et al., 2021; 2022; Graetz and Michels, 2018; Mann and Püttmann, 2021; Ni and 

Obashi, 2021). While findings from sectoral analyses converge towards a negative effect of 

new automation technologies, firm-level studies provide mixed evidence resulting from 

differences in the investigated employment outcome, in the focal technology and measure, 

the data source and the methodology used. This calls for further work aimed at reconciling 

firm-level and more aggregate evidence. At the same time, as most studies focus on the effect 

of adopting AIRs, it becomes important to fill the research gap with respect to the 

relationship between employment and other, less investigated, technologies of the 4IR. 
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 From a methodological perspective, most studies across all these bodies of research 

present limitations in the measurement of the diffusion of new technologies of the 4IR. While 

the last few years have witnessed a growing availability of comparable data on the diffusion 

of these technologies across countries, sectors and firms, high quality sources offering more 

opportunities to researchers remain either private or commercial (e.g. data from the 

International Federation of Robotics (IFR) or from the European Manufacturing Survey 

(EMS)). Such scarcity of accurate and freely available information stems from the dynamic 

nature of the transformation under analysis, which is relatively recent and still ongoing. In 

this context, clear trade-offs emerge between precision and coverage of different measures, as 

well as over the measurement scope, by addressing complementary yet distinct aspects of the 

diffusion of a new technology, namely production and adoption. As a result, the different 

measures and proxies used in the above-mentioned studies all bear pros and cons, making 

them more suitable to assess the implications of adopting (i.e. survey data, actual adoption 

data, or imports) or producing (i.e. actual production data or patents) a technology, yet 

complementary to the aim of measuring its overall diffusion. 

 Following these conversations, this dissertation aims at answering the following 

research questions: 

i. How can we measure both the adoption and the production – i.e. the overall diffusion 

– of AMTs of the I4.0 wave across countries and over time? 

ii. What is the relationship between the adoption of AMTs, total factor productivity 

(TFP) growth, and technological catch-up across manufacturing industries? 

iii. Does the adoption of AMTs push or discourage manufacturing firms to restructure 

business activities through collective layoffs? 

iv. What is the relationship between the growing diffusion of additive manufacturing (or 

3D printing) innovations and employment across manufacturing industries? 
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Figure 1 presents a conceptual map summarising the overall content of this dissertation and 

the research gap behind the above listed research questions. 

 

Figure 1. Thesis’ conceptual map 

 
Notes: Authors’ own elaboration. 

 

The first Chapter addresses the above-discussed measurement issues and trade-offs, affecting 

existing measures of overall diffusion, adoption or production of AMTs at different level of 

analysis and based on different sources of information. Hence, building on previous works 

we present a new empirical perspective overcoming such limitations. Our study provides a 

refined methodological approach that allows us to precisely measure AMT adoption across 

countries and that can be continuously updated over time. Specifically, we build on the well-

established idea in the international economics literature that trade of capital goods captures 

technology diffusion, and its adoption across countries. We combine data on trade (imports 

and exports) and production of highly disaggregated product categories (at the 8-digit level) 

strictly related to AMTs from Eurostat’s Comext and Prodcom databases. Our identification 

of AMT-related product codes emerges from a comprehensive knowledge of the 

technologies, their technical characteristics and components involved in their application, and 

has been cross-validated with information provided by technology manufacturers worldwide, 
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by the Italian Customs Agency, and by a private customs broker. We build different measures 

of adoption by using import data alone as well as all available information (i.e. import, export 

and production data), bearing different levels of precision. In so doing, we provide fresh 

comprehensive evidence on the adoption of AMTs in Europe, showing that import-based 

adoption measures highly correlate with more precise, yet more data demanding, proxies also 

accounting for the production and exports of AMTs. Ultimately, the use of import-based 

adoption measures enables a more extensive geographical coverage. We further check the 

robustness of our descriptive results by comparing them with evidence from other recent 

works, adopting similar approaches, but neglecting a precise identification, selection and 

validation process for product codes related to AMTs. All in all, we set the premise for 

monitoring the evolution of AMT adoption on a large scale and over time, and discuss its 

implications and potential research directions along a variety of research fields ranging from 

economics to innovation and international business studies. 

 In the second Chapter, we explore whether the adoption of AMTs affects the TFP 

growth rates across manufacturing industries. We explore the productivity effects associated 

with these new advanced technologies by looking at their direct contribution to TFP growth 

rates, as well as the role they play in the technological catching-up of those countries which 

are more distant from the technology frontier. To measure AMT adoption at the sectoral 

level, we move forward with the methodology discussed in Chapter 1 and build measures of 

sectoral adoption for each AMT, exploiting information on (i) a country’s total imports of 

AMT-related goods, (ii) a country’s total imports from AMT-producing sectors, and (iii) 

cross-country and cross-sector data on imported intermediates from world input-output 

tables. Using these measures we are able to both quantify the overall effect deriving from the 

adoption of these technologies and to disentangle potential heterogenous effects across 

technologies. The empirical analysis relies on a panel of 13 manufacturing industries across 
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14 European countries over the 2009–2019 period, and employs a robust empirical setting 

widely used in the literature studying aggregate productivity growth and technological catch-

up. Our results suggest AMTs to be relevant contributors to sectoral TFP growth rates. When 

looking at AMTs as a bundle, they have statistically and quantitatively significant effects, 

however hiding heterogeneous contributions if looking at each technology alone. 

Specifically, we find that AM and AIRs are more beneficial on average for European 

countries, while IIoT seems to have a weaker effect on TFP growth rates, limited to 

technologically advanced countries. Most importantly, we find evidence that productivity 

gains associated with overall AMT adoption are mostly concentrated in more advanced 

economies, closer to the technology frontier. These findings add to recent contributions to the 

literature on the effect of AIRs and IIoT, shed light on the yet unexplored relationship 

between AM adoption and TFP growth, and contribute with novel evidence on the role 

played by these technologies on productivity convergence. 

 The third Chapter delves into the role played by AMT adoption in firms’ decision to 

restructure their business activities by resorting to collective employee layoffs, implemented 

either through downsizing, offshoring or closure. We develop a conceptual framework to 

analyse how the benefits and implications associated with the adoption of AMTs affect a 

firm’s operational activities and its organisation, ultimately influencing its propensity to 

undertake the decision to restructure. Specifically, we illustrate competing theoretical 

arguments predicting either a positive or a negative association between AMTs’ technical 

features and a firm’s propensity to restructure. The rising diffusion of new automation 

technologies may be seen, on the one hand, as threatening jobs and triggering the 

displacement of workers and, on the other hand, as a strategy that could sustain firm 

competitiveness, hence reducing the likelihood of collective layoffs. Furthermore, we 

contend that adopting these technologies may result in different types of restructuring events 
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being pursued by firms. In order to test our hypotheses, we estimate a two-stage model where 

we first test whether AMT adoption influences a firm’s propensity to undertake a 

restructuring decision, and then, once the decision to restructure has been taken, whether it 

influences a firm’s propensity to either displace employees collectively (i.e. downsizing), 

move a part of its business activities abroad (i.e. offshoring), or layoff the whole workforce 

(i.e. closure). The study draws on 730 restructuring decisions implemented across about 

12.000 European manufacturing firms between 2013 and 2020. Our findings reveal that 

AMTs influence a firm’s strategy by lowering its propensity to restructure through collective 

layoffs. We find robust evidence that the adoption of AMTs helps save jobs by reducing a 

firm’s propensity to close either the whole firm or part of its plants. Conditional on 

restructuring, AMT adoption is found to increase the probability of laying-off a part of the 

workforce and downsize firm’s activities, as opposed to plant closure. Our results set the 

premise to further investigate the relationship between the adoption of AMTs of the I4.0 

wave and firms’ organisational and restructuring decisions, a research field still under-

investigated, while still offering fresh and useful insights to both managers and policymakers. 

 Finally, the fourth Chapter focuses on additive manufacturing (AM) technologies and 

explores the relationship between the overall diffusion of AM innovations and sectoral 

employment. Our focus on this AMT is motivated by its unique technical characteristics and 

how they link to production processes in manufacturing industries. Specifically, AM 

represents a form of capital-embodied process innovation, similar to the widely investigated 

AIRs. Notwithstanding, due to its specific characteristics, the diffusion of AM innovations is 

motivated by market-seeking economic incentives, rather than the classical labour-saving 

aims behind AIRs. Specifically, AM innovations increase the potential for product 

customization and decrease the time-to-market, creating market expansion effects, ultimately 

fostering labour demand. In the empirical application, we build a novel database based on 
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AM patent information in order to analyse the origins and uses of all AM innovations (i.e. 

both product and process). We use patent application data from the USPTO to build a proxy 

of the overall diffusion of AM innovations and to estimate the relationship between this 

technology of the 4IR and employment across 21 manufacturing industries of 31 OECD 

countries, between 2009 and 2017. Our empirical strategy is based on the estimation of both 

unconditional and conditional labour demand functions. In the former, AM relates to 

employment via all potential channels: by affecting product demand and, in turn, production 

and employment levels, as well as by altering the relative intensity of the production factors 

used in the process; in the latter, the market expansion channel is ‘switched off’. 

Furthermore, we explore the potential heterogeneity of these mechanisms across sectoral 

groups based on innovation sourcing and intensity, i.e. across categories of the Pavitt 

taxonomy (Pavitt, 1984). Our results highlight a positive relationship between AM 

innovations and employment at the industry level associated with both market expansion and 

complementarity between AM and labour. This represents a clear distinction as compared to 

findings from previous works on other AMTs like AIRs at the aggregate or sectoral level, 

where a dominant labour-saving effect in manufacturing have been observed. Conversely, our 

results go along recent firm-level evidence hinting at an overall positive relationship between 

technologies of the I4.0 wave and employment (Domini et al., 2021). Furthermore, we find 

such positive relationship to characterise manufacturing sectors differently, depending on the 

prevailing mechanism between market expansion and factor complementarity. 

 In sum, the present dissertation provides several insights and contribute to the above 

introduced streams of the literature. First, findings from Chapter 1 highlight that the 

envisioned methodology to measure AMT diffusion and adoption provides reliable results as 

compared to previous works in the literature, at the same time improving the measurement 

precision and coverage. One main advantage of our methodology is that it is easy to update 
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over time, enabling continuous monitoring of the geographical and temporal patterns of AMT 

adoption. Furthermore, it can be extended to other countries outside Europe and, due to the 

increasing availability of transaction-level data, it can be used to precisely track AMT 

adoption at the firm level across large samples, avoiding the use of proxies or self-reported 

data from surveys. We take advantage of all these insights and outline an agenda for future 

research, spanning across different research fields. 

Secondly, Chapter 2 moves forward the debate on the methodology by discussing a measure 

proxying sectoral adoption of AMTs. At the same time, it also provides new evidence on the 

relationship between TFP growth and new technologies of the I4.0 wave, taking into account 

both the overall effect of AMT adoption and that of every single technology alone. 

Furthermore, the Chapter explores how these technologies differentially affect TFP growth 

rates across manufacturing sectors of European countries, also taking into account their 

distance from the world technology frontier, showing that the observed effects across 

countries and sectors are far from being evenly spread. 

To the best of our knowledge, Chapter 3 takes the first steps into a research area still 

untapped and looks at the relationship between AMT adoption and a firm’s restructuring 

choices involving collective employee layoffs. Beyond the empirical results, one important 

contribution of this Chapter is the conceptualisation of the mechanisms linking together 

technical and economic features, benefits and implications associated with AMT adoption to 

those firm-level characteristics eventually pushing towards a business restructuring 

implemented through either downsizing, offshoring or closure. 

To conclude, in the last Chapter we take a different perspective and try to analyse how the 

overall diffusion of one specific AMT, i.e. AM, relates to sectoral employment. One main 

contribution of this work is that it provides an in-depth analysis of AM innovations, their 

development, production, and industrial use, using detailed information contained in patent 



15 

applications. Such insight enables to comprehensively measure the diffusion of both product 

and process innovations in the field of AM technologies and helps filling a gap in the extant 

literature, which has so far neglected a deeper economic analysis on this unique production 

method. 

 The contributions of this dissertation come with clear policy and managerial 

implications. First, Chapter 2 highlights the need for firms not to take benefits associated to 

AMT adoption for granted and to carefully consider the right mix of technologies to adopt 

relatively to their stage of maturity and level of technological readiness, as well as for 

policymakers to set proper incentives towards the adoption of I4.0-related technologies with 

the final goal of boosting productivity. Secondly, Chapter 3 shows how AMTs provide new 

tools and opportunities for managers to keep up with rising competition and increase chances 

of business success, simultaneously enabling firms to avoid the worst-case scenario, implying 

firm’s closure. Under this light, industrial and innovation policies launched across Europe in 

the past decade may have resulted in a secondary positive effect beyond a relaunch of 

productivity growth, by reducing jobs lost through corporate restructuring. Finally, Chapter 4 

provides valuable insights for policymakers aiming to foster the diffusion of welfare-

enhancing innovations and job creation, considering the sectors more likely to experience 

employment-related gains from AM. Similarly, it informs managers of the potential synergies 

resulting from the integration of AM technologies in their production processes, leading to a 

deeper understanding of the related benefits. 

 Table 1 summarises the content of the four Chapters presented in this dissertation. 
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Table 1. Thesis chapters’ overview and status 
 Chapter 1 Chapter 2 Chapter 3 Chapter 4 

Title Measuring Adoption of 
Advanced 
Manufacturing 
Technologies via 
International Trade 
Data: Insights from 
European Countries 

Advanced 
Manufacturing 
Technologies and 
Productivity Growth: 
Evidence from Europe 

Firm Restructuring 
Modes and Advanced 
Manufacturing 
Technologies: 
Evidence from 
Collective Layoffs 
across Europe 

The Employment 
Implications of Additive 
Manufacturing 

Topic Measurement of 
advanced 
manufacturing 
technology adoption 

Advanced 
manufacturing 
technology and 
productivity growth 

Advanced 
manufacturing 
technology and firm’s 
restructuring 
decisions 

Additive manufacturing 
and employment 

Broad 
research 
question 

How can we measure 
both the adoption and 
the production – i.e. 
the overall diffusion – 
of AMTs of the I4.0 
wave across countries 
and over time? 

What is the relationship 
between the adoption 
of AMTs, total factor 
productivity (TFP) 
growth, and 
technological catch-up 
across manufacturing 
industries? 

Does the adoption of 
AMTs push or 
discourage 
manufacturing firms 
to restructure 
business activities 
through collective 
layoffs? 

What is the relationship 
between the growing 
diffusion of additive 
manufacturing (or 3D 
printing) innovations 
and employment across 
manufacturing 
industries? 

Level of 
analysis 

Country Country-sector Firm Country-sector 

Main data 
sources 

Eurostat’s Comext and 
Prodcom 

Eurostat’s Comext and 
Prodcom, WIOD, EU 
KLEMS 

Eurofound’s ERM, 
Eurostat’s Comext and 
Prodcom, WIOD, 
Bureau van Dijk’s 
Amadeus 

PATSTAT, WIOD, OECD’s 
STAN 

Sample EU 27 countries and the 
UK 

14 European countries, 
13 manufacturing 
industries 

730 restructuring 
decisions 
implemented across 
manufacturing firms 
in 19 European 
countries 

31 OECD countries, 21 
manufacturing 
industries 

Time period 2009-2018 2009-2019 2013-2020 2009–2017 
Dependent 
variable(s) 

- TFP growth Dummy indicating if 
the firm restructured 
via layoffs 

Employment 

Empirical 
methods 

Descriptive statistics Panel data fixed effect 
regressions (equilibrium 
correction model) 

Two-stage model 
(first-stage probit 
model and second-
stage multinomial 
logit model), 
propensity score 
matching 

Cross-sectional 
regressions with 
multiple fixed effects, 
instrumental variable 
(2SLS) 

Co-authors Davide Castellani, 
Katiuscia Lavoratori 

Davide Castellani, 
Katiuscia Lavoratori 

Davide Castellani, 
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Chapter 1 

 

Measuring Adoption of Advanced Manufacturing 

Technologies via International Trade Data: Insights from 

European Countries†* 

 

Abstract 

The investigation of the adoption of advanced manufacturing technologies (AMTs) of the 

Industry 4.0 (I4.0) wave and their implications, both at the macro and micro level, has 

attracted growing interest in the recent literature. Most studies have looked at the overall 

diffusion or the production of related innovations and knowledge, but what do we know 

about the adoption of these technologies over time and across countries? In this Chapter, we 

look at three technologies of the I4.0 wave and present a new empirical perspective able to 

overcome the limitations of existing attempts at measuring their adoption, generally based on 

small-scale and country-specific studies. Our study provides a methodology that allows 

measuring adoption across countries for a relatively long time period. In so doing, we build 

on the well-established idea in the international economics literature that trade of capital 

goods captures technology diffusion, and thus adoption across countries. We provide 

preliminary and comprehensive evidence on the adoption of these AMTs in Europe and set 

the premise for monitoring its evolution and implications on a large scale and over time. 

 

Keywords: Advanced manufacturing technologies; Industry 4.0; technology diffusion; 

advanced industrial robots; additive manufacturing; industrial internet of things; Covid-19. 

  

 

† This Chapter is a slightly revised version of Castellani, D., Lamperti, F., & Lavoratori, K. (2022). Measuring 

adoption of industry 4.0 technologies via international trade data: insights from European countries. Journal of 

Industrial and Business Economics, 49(1), 51–93. https://doi.org/10.1007/s40812-021-00204-y. The Journal 

article has been edited to reduce redundancies with the overall thesis. 
* This Chapter is co-authored with Katiuscia Lavoratori (Henley Business School, University of Reading, UK) 

and Davide Castellani (Henley Business School, University of Reading, UK). Contributions: Fabio Lamperti 

55% (Conceptualisation, Methodology, Investigation, Data curation, Formal analysis, Writing – Original draft, 

Visualisation); Katiuscia Lavoratori 35% (Conceptualisation, Methodology, Validation, Writing – 

Review/editing, Visualisation, Supervision); Davide Castellani 10% (Conceptualisation, Methodology, Writing 

– Review/editing, Supervision). 

https://doi.org/10.1007/s40812-021-00204-y
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1.1. Introduction 

While there is no universal agreement about what an industrial revolution is, there is 

consensus that three major technological shocks had a substantial impact on the way goods 

were manufactured throughout history. That is, the introduction of water and steam-powered 

manufacturing facilities; the electrically powered technologies enabling mass production; the 

introduction of Information and Communication Technology (ICT) in the manufacturing 

process. More recently, governments, industries and academic scholars have highlighted the 

emergence of a new set of digital (and ‘smart’) technologies as the key players of a fourth 

industrial revolution (4IR) wave, also called Industry 4.0 (I4.0) (Brynjolfsson and McAfee, 

2014; Davies, 2015; Schwab, 2016; OECD, 2017; WIPO, 2019; UNCTAD, 2020).1 

Within the industrial manufacturing domain, the term of ‘Industry 4.0’ was coined in 

2011 by the German Government to embrace the challenge of revitalising the manufacturing 

industry and boosting prosperity among developed economies, driven by the adoption and 

integration of a set of enabling advanced technologies (Kagermann et al., 2013; Rüßmann et 

al., 2015; Mariani and Borghi, 2019). In this Chapter, we will refer to ‘advanced 

manufacturing technologies’ (AMTs) as a group of key player technologies driving such 

changing environment. AMTs are defined as “computer-controlled or micro-electronics-

based equipment used in the design, manufacture or handling of a product” (OECD, 2012). 

These technologies are seen as able to enhance operational flexibility, production 

efficiency and quality, and to reduce set-up costs, and so in turn to boost productivity and 

performance (Rüßmann et al., 2015; Schwab, 2016; Skilton and Hovsepian, 2017; Büchi et 

 

1 Several initiatives from national governments have taken place worldwide, starting with the ‘Advanced 

Manufacturing Partnership’ in the USA and the ‘High-tech Strategy 2020’ in Germany, followed by ‘La 

Nouvelle France Industrielle’ in France, the ‘Future of Manufacturing’ in the United Kingdom, ‘Industria 4.0’ in 

Italy, the ‘Factories of the Future’ as part of the European Programme Horizon 2020 (Liao et al., 2017; Mariani 

and Borghi, 2019); some, emerging also in developing countries like Morocco (Gallab et al., 2021). 
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al., 2020), and create the conditions for sustainable operation management among supply 

chain operators (Lopes de Sousa Jabbour et al., 2018). In addition, they also allow for 

flexibility and speed in prototyping and responding to unpredictable demand needs and 

uncertainty. This has become extremely important since consumer needs and, more generally, 

the economic external environment have become more and more volatile. Indeed, the role of 

technologies under the recent unprecedented global event of the Covid-19 pandemic is an 

inspiring example (The Guardian, 2020; European Commission, 2020; UNCTAD, 2020). 

Despite the growing popularity of the matter across policy institutions, media and 

academic scholars, a clear picture of the adoption of AMTs on the global economy is still an 

under-investigated research area. Some evidence is provided using data collected from 

surveys in specific countries or looking at specific technologies or on a small number of 

firms, through case studies (Sandström, 2016; Dachs et al., 2019; Delic and Eyers, 2020, 

among others). The main motivation for such paucity of evidence is the lack of reliable and 

precise measures of adoption on a large scale across countries and over time. 

Beyond measurement issues, the process of technology diffusion itself is “neither 

inevitable nor automatic” (Keller, 2004, p. 753). New technologies usually emerge locally, 

due to the required presence of a certain level of tacit knowledge and a localised producing 

industry developing them. However, their diffusion might not necessarily imply actual 

adoption outside the geographical boundaries in which they originate: the essence of the 

diffusion concept does not just entail that a new technology is used abroad – actual adoption 

usually going along with overall economic integration (Keller, 2004) – but also allow for the 

simple spread of awareness of the existence of a new technology or innovation, thus enabling 

its use, in principle (Eaton and Kortum, 1999). Thus, in this study we consider the diffusion, 

production and adoption of a new technology as distinct concepts: the latter two imply the 

first one, but not the other way round. 
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With this respect, some studies have looked at the overall diffusion and the production 

of innovation and knowledge associated with the 4IR (Benassi et al., 2020; Balland and 

Boschma, 2021; Corradini et al., 2021; Felice et al., 2022;2 Venturini, 2022), with special 

reference to the technological and geographical aspects of the origin and diffusion of I4.0 

knowledge and innovations (Ciffolilli and Muscio, 2018; Balland and Boschma, 2021; 

Corradini et al., 2021; Martinelli et al., 2021). However, more effort is needed to enhance our 

understanding of the magnitude and evolution over time, geographical spread across 

countries and the presence of specialisation patterns in the adoption of AMTs. This becomes 

extremely important for understanding a relatively new phenomenon and to provide 

suggestions both for policymakers and managers that are dealing with such technological 

changes. 

From a methodological perspective, tracking the growth and evolution of emerging 

technologies is particularly complicated since there are no available data, especially when the 

transformation is still ongoing and the technology is not yet mature. Our empirical approach 

addresses this problem by relying on the well-established idea that cross-country technology 

transfer can occur via international trade of capital goods.  

In a seminal work, Caselli and Coleman (2001) investigate the technology diffusion of 

computers in the 70s–80s. At that time, computers represented a revolutionary innovation and 

a direct measure of capital investments was not available on a large scale. As an embodied 

technology, computers are an ideal case of technology diffusion to investigate, and as the 

authors do remark “technology diffusion takes place through imports of the equipment 

embodying the technology” (Caselli and Coleman, 2001, p. 328). Inspired by their intuition, 

we measure adoption of AMTs with import flows of selected products and machinery that 

 

2 I.e. Chapter 4. 
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embody such technologies, and we corroborate this measure with the use of production data 

able to capture the component of adoption, related to domestically produced goods. The idea 

of using imports as a proxy of technology adoption and diffusion has been developed in the 

literature (e.g. Caselli and Wilson, 2004; Acemoglu and Restrepo, 2022; Domini et al., 2021), 

and since these technologies belong to complex and high value categories of capital goods, 

the problem concerning re-exporting activities of imports in the form of intermediate inputs is 

very unlikely (Bernard et al 2015).  

In a nutshell, our methodology consists of identifying the fine-grained (8-digit) 

product codes of capital goods related to advance industrial robots (AIRs), additive 

manufacturing (AM) and industrial internet of things (IIoT), i.e. the three capital-embodied 

AMTs will we focus on. Based on these product codes, we can quantify the adoption of these 

technologies for 28 European countries over the 2009–2018 period. Our evidence suggests 

that the most advanced European economies have been investing in these technologies over 

the years with different degrees and technology specialisation. Interestingly, we also uncover 

a growing presence of a cluster of Central and Eastern European countries as AMT adopters. 

Two reasons can explain this finding: first, national industrial policies are massively 

supporting the adoption of such technologies to sustain long-term international competitive 

advantages; second, the increasing participation of these countries in global value chains 

(GVCs) facilitates the multinational enterprise (MNE) transfer of sophisticated production 

technologies to their foreign subsidiaries through imports of capital goods or encourages local 

suppliers to adopt advanced technologies in their production processes. 

The main contribution of this work resides in moving forward the conversation about 

the adoption of AMTs within the I4.0 context, by introducing and improving an empirical 

measure able to capture the phenomenon. We provide prima facie empirical evidence of the 

diffusion of AMTs across European countries over the period 2009–2018. At the same time, 
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we provide a discussion about possible extensions of such methodology at the industry and 

firm level, alongside a further research agenda. 

The Chapter is organised as follows. Section 1.2 briefly describes the advanced 

manufacturing technologies under investigation. Section 1.3 describes the data and the 

methodology employed to create the measure of adoption and to identify AMTs from trade 

data. Section 1.4 provides an empirical application of the proposed methodology illustrating 

the relevance, evolution and geographical diffusion of AMT adoption across European 

countries. Section 1.5 concludes, summarizing the main findings and proposing possible 

research directions. 

 

1.2. Defining advanced manufacturing technologies 

As discussed in the previous Section, the I4.0 wave (or 4IR) gathers a heterogeneous set of 

technologies, bearing different levels of complementarity as well as different degrees of 

relatedness with specific industrial operations. These underlying similarities and differences, 

together with the characteristics of each new digital technology associated with the I4.0 

wave, motivate our focus on those technologies that have the highest potential impact in 

advanced manufacturing processes.3 Keeping this as our starting point, we embrace the 

definition provided by the European Foundation for the Improvement of Living and Working 

Conditions, which identifies five ‘game-changing technologies’, namely, advanced industrial 

 

3 While we already acknowledged the impact new technologies of the I4.0 wave have on manufacturing 

operations – e.g. higher operational flexibility, higher production efficiency and quality, lower set-up costs and 

integration along the value chain, resulting in higher productivity and better performance overall (Rüßmann et 

al., 2015; Schwab, 2016; Skilton and Hovsepian, 2017; Eurofound, 2018) – additional high-level impact resides 

in the world of work and, in general, the entire society. On the one hand, a general concern around the “risks of 

new monopolies, mass redundancies, spying on workers, and the extension of precarious digital work” (Davies, 

2015, p. 9) emerges. On the other hand, this transformation calls for a policy debate on the upcoming changes in 

the task content and occupational profiles of manufacturing employment (Frey and Osborne, 2017; Eurofound, 

2018). 
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robots (AIRs), additive manufacturing (AM), industrial internet of things (IIoT), electric 

vehicles and industrial biotechnologies (Eurofound, 2018). As anticipated, this Chapter 

focuses on the first three technologies given their potential to impact significantly all 

manufacturing sectors to the core of their operations, being key components of the 4IR. 

Moreover, these are embodied technologies, so that their adoption requires a physical 

installation of a specific type of capital equipment. This is a crucial distinction concerning 

other new digital technologies of the 4IR (e.g. artificial intelligence, machine learning, cloud 

computing, big data, etc.), whose physical component of the technology is usually 

standardised and multi-purpose (Foster-McGregor et al., 2019). In turn, this further intrinsic 

feature of the three AMTs we investigate makes them more appropriate for the methodology 

that we devised in this Chapter. 

Advanced industrial robots (AIRs): This category includes advanced industrial 

robots, which leverage high-level and dynamic programming (i.e. able to perform ‘smarter’ 

tasks) and enable more flexibility in production (Eurofound, 2018). Thanks to the falling cost 

of hardware and software experienced during the last decade, there has been a huge 

improvement in the technical features of industrial robotics. Advanced robots existing 

nowadays can perform a wider set of tasks compared to their predecessors, especially those 

requiring high flexibility and accuracy. The possibility of equipping robots also with 

advanced sensors and functionalities, and the potential for human-machine interactions has 

enabled their adoption to spread from traditional sectors of usage (e.g. automotive and 

electronics) to several others (e.g. agriculture and logistics). 

Additive manufacturing (AM): The International Organization for Standardization 

(ISO) defines additive manufacturing as “the general term for those technologies that based 

on a geometrical representation creates physical objects by successive addition of material” 

(ISO, 2015). Currently, these technologies are used for various applications in the 
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engineering industry, but also in other areas such as medicine, architecture, education, and 

several handcrafted segments (Wohlers Associates, 2014). This category includes highly 

flexible and adaptable machinery leveraging on digital production technique enabling 

reduced material consumption and waste as compared to ‘traditional’ subtracting methods 

(Tuck et al., 2008; Atzeni and Salmi, 2012; Achillas et al., 2015; Chekurov et al., 2018), 

technically enhanced and highly customised products (Diegel et al., 2010; Atzeni and Salmi, 

2012; Petrick and Simpson, 2013; Mellor et al., 2014; Khorram Niaki and Nonino, 2017), as 

well as fewer manufacturing steps, especially reducing assembly operations (Weller et al., 

2015; Sandström, 2016; Cuellar et al., 2018; Singamneni et al., 2019). Additive 

manufacturing (also referred to as 3D printing) techniques work by following a reversed logic 

than traditional manufacturing processes (Attaran et al., 2017), adding or melting subsequent 

2D layers of material to generate the final product. Already implemented in the production of 

plastic consumer products, aerospace and human prosthetics, additive manufacturing is 

increasingly adopted in other manufacturing sectors (Laplume et al., 2016; OECD, 2017; 

EIB, 2019). 

Industrial Internet of Things (IIoT): The Industrial Internet of Things is used to 

identify the industrial specializations of the Internet of Things (IoT). The latter consists of “a 

global infrastructure for the information society, enabling advanced services by 

interconnecting (physical and virtual) things based on existing and evolving interoperable 

information and communication technologies” (ITU, 2012). This category includes wireless 

(and not) sensors, actuators, control and regulation systems, microchips and distributed 

systems such as Near Field Communication (NFC) chips, Radio-Frequency Identification 

(RFID) tags and Global Positioning Systems (GPS) (Atzori et al., 2010; Gubbi et al., 2013). 

IoT systems can be applied to several different contexts to create smart environments (e.g. 

smart cities, smart homes, smart factories, smart vehicles, etc.). Specifically, Industrial IoT 
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refers to the creation of a digital environment in which (1) controlling machines (i.e. 

computers), (2) process machinery (e.g. ‘traditional’ automatic manufacturing stations, 

additive manufacturing machines and industrial robots) and (3) smart products (i.e. products 

incorporating an RFID tag, NFC chip, GPS or alike systems) are all connected. Hence, IIoT 

integrates a high-level processing and communication potential able to elaborate huge data 

amount, collected and transferred between each node of a widespread, seamless network 

(Atzori et al., 2010; Gubbi et al., 2013). In turn, this creates opportunities for enhanced 

working conditions, more flexible operations and digital integration along the value chain 

(Stock and Seliger, 2016; Wang, Wan, Li and Zhang, 2016; Wang, Wan, Zhang, Li and 

Zhang, 2016). 

 

1.3. Data and methodology 

1.3.1. Building measures of AMT technology adoption 

So far, the empirical literature has been strongly limited by the absence of an extensive, 

precise and comprehensive measure of adoption to capture such a complex phenomenon, 

across technologies, across countries and over time. 

In particular, some evidence comes from data collected through surveys in specific 

countries or looking at specific technologies. For instance, data collected by the European 

Investment Bank (EIB, 2019) and from Eurostat (Eurostat, 2021) provide cross-country 

insights from a representative sample of firms adopting various technologies of the 4IR – at 

the aggregate and sectoral level, respectively, at the same time providing only cross-sectional 

evidence. Conversely, survey data providing insight at a finer level – cross-country, sectoral, 

or even firm-level adoption – cover long time-series although focusing on single technologies 

(like industrial robots in the case of data from the International Federation of Robotics (IFR)) 

or for more technologies but on a shorter period (such as for data from the European 
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Manufacturing Survey (EMS)4), but are only available either privately or for commercial use. 

Alternatively, several contributions have addressed the implications of adopting technologies 

of the I4.0 through case studies based on specific sectors or a small number of firms (e.g. 

Sandström, 2016; Khorram Niaki and Nonino, 2017), by small-scale firm-based surveys (e.g. 

Kianian et al., 2016; Delic and Eyers, 2020), or by extrapolation from alternative sources 

(e.g. Ancarani et al., 2019). In turn, these limits associated with the existing data sources 

hamper the comparison across countries and sectors, as well as across technologies. We aim 

at overcoming such data and methodology limitations. 

Drawing from Caselli and Coleman (2001), we create two measures as a proxy of 

adoption: first, we measure adoption by the import of AMT capital goods, using bilateral 

trade data at the finest level of disaggregated product classes. However, we acknowledge that 

imports may underestimate adoption in countries that have a large local production of AMTs, 

since these countries already feature local producing firms, potentially selling domestically. 

Similarly, measuring adoption via imports could overestimate adoption in countries where the 

import of these technologies does not translate into local adoption, but in re-export, since 

importing capital goods does not necessarily mean that technology is successfully transferred 

and assimilated. To assess the extent of this potential measurement issue, we also resort to a 

different measure of adoption, which we call net consumption, based on the formula: 

𝑛𝑒𝑡 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 = (𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 + 𝑖𝑚𝑝𝑜𝑟𝑡 − 𝑒𝑥𝑝𝑜𝑟𝑡). In this way, we can account for 

both sources of capital investments determining adoption of AMTs, that is domestic and 

foreign production, and also for how much of this remains in the country (i.e. is not 

exported). This second measure is not available for all countries and technologies considered, 

as production data on goods embodying AMTs are in some cases missing or not reliable. 

 

4 See Dachs et al. (2019) for a recent application. 
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Therefore, this measure is mainly used to validate our import measure of AMT adoption, 

which is more widely available (also outside the EU) and thus allow us to extend the 

application of this methodology. 

After completing the data collection on trade and production information, we create 

these adoption proxies for each of the three AMTs we look at (i.e. AIRs, AM and IIoT). First, 

we compute import variables by creating three ‘synthetic’ measures computed as the sum of 

all 8-digit product codes relating to the same technology (as illustrated in detail in Section 

1.3.3), for each country-year observation in our EU28 sample. Following the same logic, we 

build our second proxy measuring adoption (i.e. the net consumption variables) by combining 

import, export and production data for each AMT. 

We finally adjusted values for PPP and converted them in constant 2011 USD using 

exchange rates and PPP conversion factors from Eurostat and the World Development 

Indicator (WDI) data set of the World Bank, respectively, to allow for intertemporal and 

geographical comparison and to filter out cross-country differences in prices. 

 

1.3.2. Data 

We rely on two main sources of data to generate measures of AMT adoption. First, we use 

highly disaggregated trade data collected from the Comext data set, available from the 

Eurostat website. Comext provides statistics on the value of goods traded between the EU28 

member states (i.e. intra-EU trade) and traded by the EU member states with non-EU 

countries (i.e. extra-EU trade) (Eurostat, 2019). Goods are classified according to the 

Combined Nomenclature (CN) classification, which is based on the harmonised Commodity 

Description and Coding System (HS). The HS provides information up to the 6-digits level of 

commodity disaggregation, and then the CN builds on the HS by adding a further breakdown 

at the 8-digit level. This extension allows us to consider around 9,500 8-digit product codes, 
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which are subject to annual revisions that ensure the CN to be up to date to changes in 

technology or patterns of international trade (Eurostat, 2019).5 As our interest lies in the 

identification of very specific capital goods associated with three technologies, the use of 8-

digit disaggregated data provides the insight needed to identify with a sufficient deal of 

precision those product categories in which it is more likely that these AMTs are traded. 

Second, we use production data from the Prodcom data set (Eurostat, 2018) to provide 

further detail to our analysis and build a measure of net consumption. The Prodcom data set 

provides information on the value of goods produced and sold in EU28 countries. Differently 

from the data reported in Comext, Prodcom data follow the Classification of Products by 

Activity (CPA). As in the case of the CN classification, the CPA is revised every year and 

consists of around 3,900 products; hence, one CPA product may correspond to one or more 

CN goods (even though in the case of some product categories the CPA features a higher 

level of detail as compared to the CN). Furthermore, the CPA classification differentiates 

itself from the CN one as it is based on the NACE Rev.2 classification. This means that the 

first 4-digits of each product code in the CPA corresponds to the 4-digit sector in which the 

product is manufactured. 

As further discussed later in this Section, we took the 2017 release of both the CN and 

the CPA as reference for our initial identification of AMT-related product codes. Further 

details on the methodology followed to reconcile the two classifications over time and to 

build a unique time series for each identified product code are reported in the following 

Section. 

Both Comext and Prodcom databases also report data on quantities of 8-digit 

products, traded and produced. Though quantities would represent a more desirable measure 

 

5 Data included in the Comext data set are converted in Euros for reporting purposes by Eurostat and expressed 

in current prices. 
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as they are not affected by inflation dynamics or conversions for international and 

intertemporal comparison, our preferred measures are based on value data. There are two 

main reasons for this choice: first, quantities are frequently reported in different ways in the 

two data sets,6 thus not allowing for comparison on the quantities of all product categories we 

look at. Second, data on quantities present a high share of missing values in our country-year 

observations for many of the disaggregated product codes we consider. Hence, we decided to 

employ value data as they enable higher comparability across the two sets of data. 

We acknowledge that the informations provided by Comext and Prodcom bear 

different level of precision: while trade data are collected by customs and hence represent the 

universe of cross-border transactions (Eurostat, 2019), production data are collected through 

a survey of a representative sample of firms in each country’s 4-digit NACE sector, making 

up at least 90% of real national production (Eurostat, 2018). Despite we recognise that such 

difference may represent a potential source of measurement bias, we highlight that Comext 

and Prodcom databases represent the most precise, detailed and updated sources of 

information for the purpose of our analysis. 

 

1.3.3. Identifying AMTs via trade data 

Our identification of the specific types of machinery, equipment and components related to 

AMTs starts from the analysis of several sources of information. In particular, we relied on: i) 

the relevant engineering literature both from the practitioner – for instance, the standard 

international terminology approved by ASTM International (2013) and ISO (2015) for AM 

technologies, concepts and definitions on IIoT provided by ITU (2012) – and an academic 

point of view; ii) product catalogues of representative producing firms for AIRs, IIoT and 

 

6 For instance, in Comext, quantities are usually reported in 100 kg, while in Prodcom are reported in different 

units such as kg, m2 or number of items. 
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AM;7 iii) the World Customs Organisation (WCO), and; iv) Eurostat.8 From these sources, 

we were able to develop a list of keywords related to our AMTs of interest. This keyword-

based approach has been widely used lately, and applied to different data sources – e.g. 

patents, business registers, scientific publications, trade and industrial records (Craglia et al., 

2018; De Prato et al., 2019; Van Roy et al., 2019). The list of identified keywords is reported 

in Table B1 in Appendix B. 

The identified keywords were then used to define an initial list of 25 8-digit CN 

product codes.9 We acknowledge that some of the technologies we focus on may be 

embedded also in other product classes not included in our shortlist. However, we adopt a 

conservative approach that allows us to consider only those product codes reporting a precise, 

coherent and unquestionable description, and to underestimate rather than overestimate the 

phenomenon. At the same time, the selected keywords might also lead to false-positive 

results or matches with product codes at a lower level of disaggregation (e.g. 6- or 4-digit 

codes). Hence, we performed a second stage of manual screening in which we exclude 

potential false-positive matches and identify the relevant 8-digit codes included in the less 

disaggregated categories matching with our keywords. More specifically, we focus on trade 

in capital goods of product codes included in the 4-digit CN codes 8463 (Machine tools for 

working metal or cermets, without removing material), 8471 (Automatic data-processing 

machines and units thereof […]), 8477 (Machinery for working rubber or plastics or for the 

manufacture of products from these materials), 8479 (Machines and mechanical appliances 

 

7 Given its wider discussion in the existing literature (e.g. Acemoglu and Restrepo, 2022), the identification of 

the relevant nomenclature is a lesser problem in the case of AIRs; hence, as a reference, we looked at ABB Ltd 

product catalogue. Concerning AM, we looked at product catalogues from three main producers worldwide, 

namely Stratasys Ltd., 3D Systems Inc. and EOS GmbH. Finally, relatively to IIoT, given that it is the 

technology bearing the widest set of capital goods among the technologies we focus on, we consulted product 

catalogues from Intel Corp., ABB Ltd., Siemens AG, Hewlett Packard Enterprise LP, Bosch GmbH, GE Digital 

Plc., Cisco System Inc. and Rockwell Automation Inc. 
8 For more details, see https://trade.ec.europa.eu/tradehelp/classifying-computers-software. 
9 We define the product categories of interest starting from CN-2017 classification (that following the latest 

revision of the HS classification, HS-2017). 

https://new.abb.com/products/robotics
https://www.stratasys.com/
https://www.3dsystems.com/
https://www.eos.info/en
https://www.intel.com/content/www/us/en/manufacturing/manufacturing-industrial-overview.html
https://new.abb.com/process-automation
https://new.siemens.com/global/en/products/automation.html
https://www.hpe.com/uk/en/solutions/industrial-internet-of-things.html
https://www.bosch.com/products-and-services/connected-products-and-services/industry-4-0/
https://www.ge.com/digital/
https://www.ge.com/digital/
https://www.cisco.com/c/en/us/solutions/internet-of-things/overview.html
https://www.rockwellautomation.com/global/products/overview.page?
https://trade.ec.europa.eu/tradehelp/classifying-computers-software
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having individual functions), 8515 (Electric, laser or other light or photon beam, electron 

beam […] machines and apparatus for hot spraying of metals or cermets), 8517 (Apparatus 

for the transmission or reception of voice, images or other data, including apparatus for 

communication in a wired or wireless network […]), 8526 (Radar apparatus, radio 

navigational aid apparatus and radio remote control apparatus), 8542 (Electronic integrated 

circuits) and 9032 (Automatic regulating or controlling instruments and apparatus). The full 

list of product codes initially identified and the related descriptions are reported in Table B2 

in Appendix B. 

In the case of AIRs, our initial research brought to the identification of a single, main, 

code – since we do not aim at considering other forms of more traditional automation like 

non-robotics handling machines or conveyor belt systems. The other two cases present more 

challenges: specific codes for AM machines and IIoT devices do not yet exist in either the HS 

or the CN classifications. In the case of AM, the World Customs Organisation recognises the 

lack of a specific chapter in the HS classification encompassing these types of machinery, 

thus resulting in their categorisation being spread in several other product codes (Yuk, 2018). 

To the best of our knowledge, the identified codes are those most suitable to be used in 

practice and reflect the specific characteristics of the existing AM processes, as described 

above. The case of IIoT is even more challenging as the variety of devices is larger than in 

the case of AM, and cases of our focus goods being matched to a wider set of product 

categories greatly increases. Nonetheless, based on further validation discussed below, we 

believe the set of codes shortlisted here should capture much of the trade associated with IIoT 

components as product descriptions of the shortlisted goods refer to very specific products, 

classified in a highly detailed way. 

To validate the selection process for the shortlisted CN codes, we first developed a 

survey to collect information on the CN (and/or CPA) product codes used by producers of the 
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three AMTs when exporting (and/or producing) their products. Then, we consulted experts 

and practitioners from the Italian Customs Agency and a private customs broker. Overall, the 

large majority of the 8-digit codes originally identified (21 out of 25) were confirmed, hinting 

to the goodness of the overall identification procedure. Appendix A provides further details 

on the validation process. 

After the validation process, we matched the 21 CN codes considered in Table B2 

(see Appendix B) with 22 codes in the CPA nomenclature, according to the 2017 

correspondence table provided by Eurostat. A crucial task for our analysis lies indeed in the 

identification of the correct product codes associated with our AMTs, when looking at past 

and subsequent years. Hence, we first used year-to-year correspondence tables provided by 

Eurostat, and we manually checked for forward and backwards changes that occurred in each 

of the two classifications along the period considered (2009–2018), for each identified code 

starting from the 2017’s release of the CN and CPA. Second, for each product code we cross-

checked the correspondence between the CN and the CPA classifications year-by-year in 

order to track any potential change in the identified codes and to reconcile ‘within 

nomenclature’ correspondences along the time series. 

Changes in the CN and CPA classifications are of two types: (1) new products are 

added to the classifications with new codes; (2) existing product codes are converted into new 

product codes. Changes of this second type are problematic, as they might imply not just the 

‘recoding’ of certain products but also the elimination of ‘old’ product codes, whose related 

products are then absorbed in one (or more) new codes. Specifically, in cases in which 

multiple CN codes correspond to one or more CPA codes (or vice versa), as well as for cases 

in which the classification has changed over time, we followed the methodology by Van 

Beveren et al. (2012). This methodology proceeds by creating ‘synthetic’ codes by grouping 
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together the codes which are subject to changes. In this way, we ensure full consistency in the 

correspondence between trade and production data over time. 

When looking at the product codes we have identified as capturing AMTs, this 

procedure resulted in the reduction of our product codes from 21 to 18 following the CN 

nomenclature, and from 22 to 18 following the CPA nomenclature. Our cross-checking 

procedure highlighted a mostly consistent correspondence of the product codes, across both 

years and classifications, with only a few cases in our list of codes subject to either type (1) 

or type (2) changes. Table 1 reports the correspondence table between CN and CPA codes, in 

2017. 

-------------------------------- 

Table 1 around here 

-------------------------------- 

 

1.4. Discussion of findings 

In this Section, we present the main trends over time and across countries characterising the 

adoption of AIRs, AM and IIoT across EU28 countries, between 2009 and 2018. The choice 

of focussing on the period after 2009 is driven by the following considerations. In 2006 the 

German government has launched the High-Tech Strategy to drive innovation actions and 

technological innovation. In 2009, after the global financial crisis, the demand for mechanical 

engineering products returned to normal (Kagermann et al., 2013). In the same year, Korea 

has launched a five-year plan to encourage Research and Development (R&D) investments in 

the intelligent robot industry aiming at expanding the adoption of industrial robots in other 

industrial sectors, since industrial robotics can be considered the first key technological driver 

(De Backer et al., 2018). Furthermore, several core patents protecting additive manufacturing 

technologies, such as fused deposition modelling and selective laser sintering, expired 
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between 2009 and 2014 (Laplume et al., 2016). This created the right conditions for many 

new producers of additive manufacturing machinery to start their business about spill-over 

inventions (Wohlers Associates, 2014). Thus, we start the period of observation from 2009, 

which can be reasonably recognised as the beginning of a global interest on this technological 

wave. 

 

1.4.1. Preliminary insights on AMT adoption 

Our first focus is on the relationship between import and net consumption measures in our 

EU28 sample, over the 2009–2018 period. This relationship can be explored only on the 

subsample of countries for which production data are available for the product codes 

described in Section 1.3; hence, for which net consumption can be computed. 

Rooting our argument in the literature on technology diffusion (e.g. Caselli and 

Coleman, 2001; Caselli and Wilson, 2004; Acharya and Keller, 2009),10 we argue that import 

represents a good proxy of AMT adoption, especially for those countries not characterised by 

a strong local production for such technologies. Conversely, when local producers account 

for a substantial share of adoption, the net consumption proxy should provide more precise 

insights into the phenomenon. 

Figure 1 plots values of our two adoption proxies at the beginning and the end of the 

observation period, showing that import and net consumption are highly correlated, with 

pairwise correlation coefficients of 0.83 for AIR, 0.65 for AM and 0.66 for IIoT. With the 

exception of The Netherlands in IIoT, where import is much larger than net consumption, 

probably due to the export of imported components, import and net consumption largely 

coincide for all three AMTs. Indeed, the Figure reveals our two measures to be largely 

 

10 See also Keller (2004) for an extensive review. 
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comparable across European countries for which we have production data – because the net 

difference between production and export of AMTs is negligible in the case of most countries 

and technologies – and import to be an almost perfect measure of adoption. 

-------------------------------- 

Figure 1 around here 

-------------------------------- 

Despite some differences across the three technologies, this first descriptive evidence 

suggests that import can be a good proxy of adoption for AMTs across EU countries. 

Furthermore, looking at the relative positioning of most EU28 countries in the initial and 

final year in our sample highlight a proportional change in both import and net consumption 

proxies. This suggests that the large majority of European countries have been increasingly 

adopting AMTs. In the following, we argue that this measure indeed captures the patterns of 

adoption over time and across countries.11 

 

1.4.2. Temporal and geographical patterns of AMT adoption 

As discussed in the previous Sections, these technologies have received considerable 

attention from businesses and policymakers, and they have been at the core of several 

industrial initiatives worldwide after the 2009 financial crisis. Hence, we expect the adoption 

of AMTs across EU28 countries to have significantly increased over our observation period. 

 

 

11 As a further robustness check, since virtually all European countries in our sample (with the exception of 

Cyprus, Greece and Malta in the case of AIRs) are also exporters of AMTs – similarly to what found by Caselli 

and Coleman (2001) in the case of computing equipment already in the mid-90s – we computed import to export 

ratios for each country and each technology in order to show which countries are net importers of AMTs (ratios 

above 1) and which countries are exporters of AMTs (ratios below 1). To show the evolution of this dynamics 

over the observation period we computed initial (2009-2011) and final (2016-2018) three-year averages, to 

smooth potential peaks in the data. We report this additional analysis in Table B3 in Appendix B. Most 

countries in our sample (14 in the case of AIRs, 17 in the case of AM and 20 in the case of IIoT) consistently 

import more AMTs than they export. 



37 

-------------------------------- 

Figure 2 around here 

-------------------------------- 

Figure 2 explores the change in the flow of import (panel A) and net consumption (panel B) 

measures between 2009 and 2018, in the aggregate of the European countries for which we 

have production data (those for which we can compute the net consumption measure). The 

Figure reports shares of import and net consumption per 1,000 workers to account for 

differences in country size; we express them as an index (2009=1). Panel A reveals that the 

adoption of all three AMTs has increased by about 2.1 times, with a peak in the import proxy 

for AIRs that reached a 3.5-fold increase. The observed pattern looking at the net 

consumption adoption proxies (panel B) is quite similar (i.e. adoption increasing by between 

2 and 2.7 times), although revealing a more homogeneous growth across the three AMTs 

until 2015, with AM then growing relatively more than its peer AMTs in 2017 and 2018. 

Foster-McGregor et al. (2019) highlight that while there has been a rise in the absolute 

value of technologies related to the 4IR over the last two decades, the share of these products 

in total imports remains very small, actually declining over time. To test our measures to this 

prior finding, panel C in Figure 2 reports the shares of the AMT import measures in import of 

reference benchmark categories. As a benchmark, we use the aggregate of the 2-digit product 

category(ies) in the CN classification to which our product codes (for each AMT) belong (i.e. 

product category 84 for AIRs and AM, and the sum of product categories 84, 85 and 90 for 

IIoT). Specifically, we compare AMT imports with imports of similar and related, yet highly 

aggregated, goods; this allows to avoid confounding effects due to trends in import flows of 

goods that are completely unrelated with AMTs. When compared with the product 

category(ies), we observe that all three technologies have experienced a trend of increasing 

shares of imports over the period 2009–2018 relative to their benchmark, with AIRs 
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increasing from 0.11% to 0.24% (+114%), AM imports rising from 0.11% to 0.17% 

(+56.3%) and IIoT increasing from 4.75% to 7.36% (+55.1%). 

As an additional robustness check, Figure B1 in Appendix B replicates the analysis in 

Figure 2 but looking at the full sample of all EU28 countries: panel A explores the change in 

the flow of import measure for our three AMTs between 2009 and 2018, while panel B 

analyses the trend in the ratio between imports in each AMT and imports of the related 

benchmark category(ies). Also in this case, as compared to 2009 all three AMTs have 

increased consistently, with AM and IIoT rising by 2.2 and 1.5 times respectively, and AIRs 

even peaking at about 4.9 times. Looking at the share of AMTs in imports of the related 

benchmarks, the trend is very similar to that observed for the smaller sample of EU countries 

for which we can compute the net consumption measure, with all AMTs increasing their 

import components in the benchmark categories (AIRs rising by 126.8%, AM by 63.2% and 

IIoT increasing by 53%). 

To provide further insight, in Appendix B, we analyse the composition of the 

observed trend for AIRs, AM and IIoT, by looking at the shares of aggregate imports across 

all EU28 countries in single product codes included in each of our adoption measures. 

Specifically, Table B4 reports shares for each year in the observation period and product code 

composing import measures for AM and IIoT, as well as the observed percentage change 

between 2009 and 2018 (for AIRs, Table B4 reports the same data presented in panel B of 

Figure B1 since the measure includes a single CN/CPA product code). Such analysis provides 

insights about some heterogeneity in the trends for individual product codes building our 

adoption measures: overall, in the vast majority of specific product codes, imports have 

grown faster compared to the related 2-digit benchmark category(ies), thus leading to an 

increase in the shares. Specifically, in the case of AM, 3 out of 4 product codes experience an 

increase in their shares of import (between +11.9% and +85%), while only 1 product code 
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experiences a slight drop (–18.9%); similarly, in the case of IIoT, 11 out 13 product codes 

feature an increase in their share of imports relative to the benchmarks (ranging between 

+8.3% and +225.7%). 

Tables 2, 3 and 4 provide detailed data on cross-country differences in the importance 

of import and net consumption flows per 1,000 workers of AMTs in 2009 and 2018 (AIRs, 

AM and IIoT, respectively), as well as their growth over this period. 

-------------------------------- 

Tables 2, 3 and 4 around here 

-------------------------------- 

Table 2 shows the import value of AIRs in 2009 and 2018. Among the European countries, 

we can observe the central role played by Germany, Italy, Sweden, and Austria during the 

period, although some Central and Eastern European countries (CEECs) such as the Czech 

Republic, Hungary, Slovakia and Slovenia complete the scenario, featuring as important 

players in the adoption of AIRs.12 The net consumption data return a very similar picture to 

the import measure, supporting the strong correlation between the two adoption proxies. 

Moving to AM, Table 3 shows that the biggest importer is Slovakia, followed by Czech 

Republic, Hungary, Lithuania and Slovenia. It is worth highlighting the increasing role of 

CEECs at the end of the period in the imports of AM, underlining the importance of the 

adoption of advanced technologies in these transition countries. Among the most advanced 

and industrialised countries in the EU, Austria, Denmark, Germany and Italy present the 

highest growth rate of AM adoption when looking at the net consumption measure. Finally, 

looking at data for the IIoT adoption proxies in Table 4, we can observe a more widespread 

adoption, based on both the import and the net consumption data, across Europe. Austria, the 

 

12 We suggest caution in the interpretation of values for Cyprus, Malta, and Luxemburg. In such cases the 

accuracy of our adoption measure may be lower, for instance given the presence of pass-on trade practices 

eventually inflating national statistics. 
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United Kingdom (UK), Hungary, Poland, and Romania have registered a substantial increase 

also in net consumption, representing the major consumers of IIoT at the end of the period. 

It is worth noting that among the advanced European economies, the UK registers not only 

the lowest initial values of adoption across technologies but also lower growth rates in terms 

of import and net consumption, except for IIoT. On the contrary, countries that report 

important growth rates over the years are located in Central and Eastern Europe. In particular, 

some of these countries emerge as strong AMT adopters not just when looking at our import 

measure (as one would expect), but consistently also when looking at the more precise net 

consumption proxy for adoption. Notably, Czech Republic and Hungary in the case of AIRs, 

Poland and Slovakia in the case of AM, and Czech Republic, Hungary, Lithuania, Poland, 

Romania and Slovakia in the case of IIoT. 

In Figure 3, we further confirm these insights with the cumulated rates of AMT 

adoption at the end of the period, computed as the stock over the 2009–2018 period per 1,000 

workers of both import (left-hand side, in green) and net consumption (right-hand side, in 

red) measures. Figure 3 shows the coverage and scale, leaders and laggards in the adoption of 

AMTs in Europe. The combined graphical representation of both measures makes even 

clearer the role of Central and Eastern Europe (mainly Hungary, Slovakia, and the Czech 

Republic) as key adopters, followed by Western European countries such as Germany, Italy, 

Austria, France and Sweden. 

-------------------------------- 

Figure 3 around here 

-------------------------------- 
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To provide further insight and robustness to our analysis on the adoption and diffusion of I4.0 

technologies, we compute normalised relative import propensity (RIP) indexes13 in each 

country and AMT in our sample, following Foster-McGregor et al. (2019). Such 

complementary analysis provides insight into the evolution of relative intensity in the 

adoption of each AMT across EU28 countries, at the beginning and the end of our 

observation period. Results, which are reported in Figure B2 in Appendix B, denote 

remarkable stability in the propensity to import AMTs across countries, but with a handful of 

countries, mostly among the new member states, that have significantly increased their 

propensity to import AIRs (e.g. Croatia, Czech Republic, Lithuania and Poland) and AM 

(Hungary). 

Two main factors can help explain this pattern. On the one hand, governments of 

these countries are strongly supporting the investment in the adoption of such game-changing 

technologies given the industrial composition of their manufacturing industries. For example, 

the Czech Republic is one of the most industrialised countries, where the automotive industry 

has an important weight in the industrial composition.14 Investing in these technologies is 

crucial for maintaining the (international) competitiveness of the country and for the long run 

economic growth, as part of future innovation strategies and industrial policy objectives 

(Ministry of Industry and Trade of the Czech Republic, 2019). 

On the other hand, over the last two decades, CEECs have massively strengthened the 

link with Western European countries through global value chain participation. At the end of 

2005, Western European firms were responsible for around 80% of foreign direct investment 

 

13 These indexes are positive (negative) if the share of imports more of a certain AMT in total import of a given 

country is higher (lower) than the corresponding share in the EU as a whole. 
14 After the global financial crisis in 2009, car manufacturers worldwide started to restructure their business 

operations, investing heavily in new digital technologies. For instance, since 2010 the automotive industry has 

witnessed rising investments in new production capacities as well as investments in modern production 

technologies, resulting in major car-producing countries driving the demand for industrial robots (IFR, 2020). 



42 

(FDI) stock in CEECs, with Germany, Austria, France and Italy accounting for the majority 

of shares (ECB, 2013). The large-scale investment flow directed from Western European 

countries towards several CEECs over the last 10 to 15 years is, in fact, the result of their 

economic transition from planning and control economies into market economies over the 

90s, combined with the benefits of the European Single Market integration policies, as a 

result of their access to the EU in 2004 (Cséfalvay, 2020). Furthermore, countries like the 

Czech Republic, Hungary, Slovakia and Poland are the preferred host locations, especially 

due to their relatively higher political and institutional stability, the availability of relatively 

skilled workers and the low unit labour costs (Carstensen and Toubal, 2004). 

On a complementary perspective, Western European countries are the main 

destinations of CEECs total exports, 45% related to foreign value-added or domestic value-

added for the exports of other countries, suggesting that participation in GVCs is mostly 

associated with western (particularly European) MNEs (ECB, 2013, 2020). A strong 

interdependence with parent firms allows the transfer of sophisticated machinery and capital 

goods to local affiliates through imports, able to boost productivity upgrading and develop a 

domestic industry operated by major productive firms in the sector (Chiacchio et al, 2019). 

Seen under this light, our evidence points at Europe to be the perfect case to understand how 

MNEs organize and reconfigure the geographical structure of their supply chains over time – 

for instance, from global to regional, nearshoring activities in CEECs  (Pavlínek, 2018) – and 

how this can have implications also relatedly to the adoption of new technologies.15 Recent 

evidence from Cséfalvay (2020) on AIRs confirms this to be one of the critical factors 

driving the diffusion of technologies related to the I4.0 across CEECs. 

 

15 The latest data from Eurostat seems to corroborate our evidence, highlighting that, across European countries, 

AMT adoption is mostly concentrated in large firms. In 2020, across EU27 countries, only 4% of small 

enterprises (10–49 employees) employ AIRs, while this share grows to 23% among large enterprises (250+ 

employees). Similarly, these shares amount to 4% and 17% in the case of AM, to 16% and 38% in the case of 

IIoT, respectively for small and large firms (Eurostat, 2021). 
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In sum, these findings provide first evidence of the geographical pattern and scale of 

AMT adoption in Europe: while the most advanced countries have been steadily investing in 

these technologies in the whole period, we uncover the growing importance of CEECs as 

AMT adopters. At the same time, together with the descriptive statistics provided in Section 

1.4.1, our findings provide additional evidence that our import and net consumption measures 

return consistent results, with the major advantage of the import adoption proxy of being 

available for an enlarged sample of countries. 

 

1.5. Conclusions, future developments and applications 

This Chapter proposes a fine-grained methodology to measure the adoption of AMTs using 

trade and production data and provides some descriptive evidence on the patterns of adoption 

over the last decade across EU countries. Our findings suggest the importance of further 

investigating the topic and intensifying research efforts to find better, more refined and 

precise measures able to proxy the adoption of these new technologies. In this respect, the 

methodology presented here outlines a potential way of overcoming data limitations 

associated with technologies like AIRs, AM and IIoT. The use of highly disaggregated and 

detailed trade and production data seems to hold promising opportunities to fill a knowledge 

gap and offer a powerful tool to investigate how these AMTs are affecting several economic 

aspects in developed countries, as well as developing countries. At the same time, if 

compared to prior works in the field (e.g. Foster-McGregor et al., 2019), our findings also 

highlight how crucial it is to: i) properly understand the technologies involved, and; ii) 

develop precise and structured identification methodologies aimed at tracking their trade and 

production, hence eliminating the most possible sources of measurement error. 

Our methodology, although not free from caveat (as discussed in Section 1.3), is 

easily scalable and can provide up-to-date information on the adoption of AMTs across 
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countries and over time. Considering that the production of AMTs is highly geographically 

concentrated in a few countries,16 in most countries imports represent a perfect proxy of 

adoption. This means that our analysis can be easily extended using 6-digit UN COMTRADE 

data, which are available for all countries in the world and updated regularly to enlarge the 

sample with non-European countries. Notwithstanding, we recognise that the findings 

presented here are specific to European countries, hence the validity of such insight outside 

the EU boundaries is still to be assessed. Furthermore, while the focus of this Chapter is at a 

macro-level, trade data are available at the sector and, increasingly, at the establishment level. 

Indeed, several statistical offices worldwide are allowing researchers to access detailed 

import and export data at the transaction level. This opens up the opportunity to build 

measures of the adoption of AMTs at the firm/establishment level (e.g. Domini et al. 2021), 

which so far have been hampered by a chronic lack of information. 

From a policy perspective, we provide evidence on the adoptionof AMTs across 

countries within the European region in a relatively large time window, especially 

considering countries that are linked through the participation to GVCs orchestrated by 

western European countries, and the industrial strategies targeting these technologies adopted 

by CEECs. Yet, given the purely descriptive nature of the analysis reported in this Chapter, 

the presence of context-specific and/or conditioning factors (e.g. economic integration, R&D 

investments and investments in enabling technologies, potentially building AMT-specific 

absorptive capacity) affecting the adoption pattern observed across CEECs is still to be 

explored and represents an avenue for future research. Coherently, our data can also provide 

 

16 Our production data indicates that, even within the sample of countries featuring some AMT production (i.e. 

those reported in the scatterplots in Figure 1), the large majority of EU production is concentrated in few 

countries, particularly in the case of AIRs (mostly Austria, Denmark, France, Germany, Italy, Hungary and 

Sweden) and AM (mostly Austria, Denmark, Germany and Italy). Conversely, production of IIoT is much more 

evenly distributed across all EU producers. 
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suggestions and be used to investigate statistically robust causation of the effectiveness of 

policy incentives put in place to stimulate the adoption of such technologies across countries. 

Our effort can provide a set of insights and help define a further research agenda. 

There are several research areas in the context of I4.0 and the adoption of its technologies, 

which are still under-investigated and that can be explored using the methodology proposed 

in this Chapter. 

Productivity, occupation and growth. The transition to a digital economy may boost 

the competitiveness of a country, create new opportunities for business and entrepreneurial 

initiatives, as well as a new way to reach international markets, affecting productivity and 

economic growth as a consequence (UNCTAD, 2017, 2020). The manufacturing sector is 

still recognised as crucial and remains one of the main drivers of employment and economic 

growth. For this reason, national and supra-national institutions should devote their effort to 

incentivising and supporting ‘digital development’ investments (Davies, 2015; European 

Commission, 2017), also monitoring the returns and response to incentives already in place. 

As existing evidence suggests, new digital manufacturing technologies can boost productivity 

and sustain GDP growth (e.g. Dauth et al., 2021; Graetz and Michaels, 2018; Edquist et al., 

2019). This can be particularly important for emerging economies and their catching-up 

process, since the adoption of digital technologies may facilitate access to production means 

and the creation of local (new) enterprises and entrepreneurial initiatives, to contribute to 

sustainable country development and international competitiveness. However, such 

technologies can asymmetrically contribute to the growth process, since some countries can 

have easier access and the ability to use some technologies (e.g. additive manufacturing) 

rather than others (e.g. advanced industrial robots), due to their particular characteristics. 

Furthermore, these technologies require high-skilled labour (especially with science, 

technology, engineering, and mathematics (STEM) education). As a form of knowledge-
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intensive, skill-biased technologies, these could affect occupations, education systems, job 

profiles and labour rewards (Frey and Osborne, 2017). Digitalisation may change jobs, their 

nature and tasks, the skills required, and new jobs may emerge as a result of a digital 

revolution (Brynjolfsson and Mitchell, 2017). This may affect the employment patterns and 

the demand for skills associated with both existing and new jobs (Grundke et al., 2018). 

Thus, policy interventions should also operate to create the necessary skills and capabilities to 

promote and support such digital transition, properly mixing economic and social policy 

actions to balance potentially rising inequality and managerial control over the workforce 

(Cetrulo and Nuvolari, 2019). 

International business and global value chains. Nowadays, companies require more 

operational flexibility, reduced time-to-market and closer proximity to their consumption 

markets to be more responsive to local tastes. This may result in the need of reshaping the 

organisation of global networks and location advantages toward shorter GVC configurations. 

The higher capital-intensive nature of these digital and automated technologies can change 

the landscape of country competitive advantages, since the location of manufacturing 

facilities in low labour-cost countries becomes less and less attractive (Laplume et al., 2016). 

Besides, these peculiar characteristics may affect the dynamics and drivers of inward/outward 

FDI, MNEs' internationalisation strategy and location decisions for different value chain 

activities, and in turn, this may affect GVC organisations (UNCTAD, 2017; Hannibal and 

Knight, 2018; Castellani et al. 2021). Following this argument, the adoption of AMTs can 

incentivize the reshoring of manufacturing operations – i.e. relocation decision back to the 

firm’s home country (Kinkel and Maloca, 2009; Ellram et al. 2013) – especially when the 

company aims at increasing its productivity and flexibility (Dachs et al., 2019), or at 

enhancing the quality of manufactured products, brand recognition and post-sales processes 

(Ancarani et al., 2019). Thus, sound empirical evidence can help with the development of 
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effective policies and incentives to boost the digital transformation and influence inward and 

outward FDI flows. In this respect, the intra-firm co-location of production and R&D 

activities is considered crucial to facilitate knowledge transfer across units within the firm’s 

network and to enhance innovation capabilities, especially when the knowledge is tacit and 

hard to codify (Pisano and Shih, 2012). However, AMTs can make some knowledge-

intensive and production-related research activities more codified and standardised, therefore 

easy to be transferred across value chain activities and borders. As a consequence, this could 

affect national and international location and co-location decisions, and the 

concentration/dispersion of R&D activities and collaboration across places (Castellani and 

Lavoratori, 2020). 

Covid-19 and current challenges. The unprecedented disruptions created by the 

Covid-19 pandemic have strongly challenged businesses across countries and highlighted 

how sensitive to external shocks particularly dispersed GVCs are, as well as how difficult the 

management of global organisational structure can be. Recently, the picture has been fuelled 

by the global shortage of critical components across industries (e.g. semiconductors), and the 

huge increase in shipping costs per container (UNCTAD 2021; Forbes, 2021). This has 

revived the conversation about GVC configurations and more ‘regionalised’ global networks, 

and how automation and digitalisation can speed such restructuring process, although the 

sticky nature of GVCs needs to be considered (The Economist, 2020; Antràs, 2021). 

Furthermore, the Covid-19 shock has caused a ‘wake-up call’ for late digital adopters and the 

need to start rethinking their operational strategies and business models (McKinsey, 2021; 

Amankwah-Amoah et al., 2021). Understanding how single AMTs can respond to specific 

challenges, and whether such technologies can help firms to be more resilient and agile in the 

long run becomes crucial to create incentives aiming at stimulating timely investment and 

speeding recovery. Finally, the pandemic has accelerated the call for more environmental-
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friendly production processes and sustainable manufacturing, where global warming and 

higher environmental pollution are ascribable to traditional manufacturing technologies, 

therefore AMTs can play a pivotal role (Bai et al., 2020). In the years to come, rich and up-

to-date data are necessary to address all these open questions, and trade data can provide 

invaluable help in this regard.  
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1.7. Tables and Figures 

Table 1. Correspondence between CN and CPA product codes related to AMTs 

  

8-digits 
product 
codes CN 

CPA product 
codes 

CPA product descriptions  
Advanced Industrial Robots     

  
84795000 28993935 

Industrial robots for multiple uses (excluding robots designed to perform a specific function 
(e.g. lifting, handling, loading or unloading)) 

Additive Manufacturing     

 
84639000 

28413471 
Swaging machines and spinning lathes for working metal, machines for manufacturing flexible 
tubes of spiral metal strip and electro-magnetic pulse metal forming machines, and other 
machine tools for working metal without removing metal (excluding riveting machines) 

 28491360 Riveting machines 

 

289900Z0 
Riveting machines, swaging machines and spinning lathes for working metal, machines for 
manufacturing flexible tubes of spiral metal strip and electro-magnetic pulse metal forming 
machines, and other machine tools for working metal without removing metal 

 84778011 28961082 Machines for processing reactive resins 

 
84778019 28961084 

Machines for the manufacture of foam products (excluding machines for processing reactive 
resins) 

 
84778099 28961097 

Machinery for working rubber or plastics or for the manufacture of products from these 
materials, n.e.c. 

Industrial Internet of Things   

 

84718000 
26122000 

Network communications equipment (e.g. hubs, routers, gateways) for LANs and WANs and 
sound, video, network and similar cards for automatic data processing machines  

 
26203000 

Other units of automatic data processing machines (excluding network communications 
equipment (e.g. hubs, routers, gateways) for LANs and WANs and sound, video, network and 
similar cards for automatic data processing machines)  

84719000 
 

269900Z0 Other units of automatic data processing machines 
 

 
85176200 26302320 

Machines for the reception, conversion and transmission or regeneration of voice, images or 
other data, including switching and routing apparatus 

 
85269120 26512050 

Radio navigational aid apparatus (including radio beacons and radio buoys, receivers, radio 
compasses equipped with multiple aerials or with a directional frame aerial) 

 
85269200 26512080 

Radio remote control apparatus (including for ships, pilotless aircraft, rockets, missiles, toys, 
and model ships or aircraft, for machines, for the detonation of mines) 

 85423111 
26113003 

Multichip integrated circuits: processors and controllers, whether or not combined with 
memories, converters, logic circuits, amplifiers, clock and timing circuits, or other circuits  85423119 

 

85423190 26113006 
Electronic integrated circuits (excluding multichip circuits): processors and controllers, 
whether or not combined with memories, converters, logic circuits, amplifiers, clock and 
timing circuits, or other circuits 

 85423911 
26113091 Other multichip integrated circuits n.e.c. 

 85423919 

 85423990 26113094 Other electronic integrated circuits n.e.c. 

 90321020 26517015 Electronic thermostats 

 90321080 26517019 Non-electronic thermostats 

 90322000 26517030 Manostats 

 90328100 26516500 Hydraulic or pneumatic automatic regulating or controlling instruments and apparatus 

 90328900 26517090 Instruments and apparatus, regulating or controlling, n.e.c. 

Notes: The reference CN and CPA classifications are 2017 versions.  
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Table 2. Import and net consumption of AIRs by European country and growth rates between 2009 and 2018 

 Import  Net consumption 

 2009 2018 Growth Rate (%)  2009 2018 Growth Rate (%) 

 (1) (2) (3)  (4) (5) (6) 

Austria 9.6 22.3 133.7  19.5 35.1 79.8 

Belgium 10.9 21.5 97.7  12.0 7.4 -38.3 

Bulgaria 2.5 6.1 148.8     

Croatia 1.2 6.3 424.5  1.4 3.4 147.5 

Cyprus 0.6 0.0 -98.2     

Czech Republic 4.0 53.9 1262.2  2.7 55.7 1950.6 

Denmark 4.3 10.2 138.6  5.6 5.4 -3.6 

Estonia 1.6 4.3 162.4     

Finland 2.9 8.5 198.2  4.8 0.3 -93.1 

France 2.1 6.7 226.0  17.1 25.2 47.6 

Germany 4.7 14.6 211.9  11.9 33.4 180.2 

Greece 0.8 1.5 86.6     

Hungary 4.2 17.6 321.9  9.6 31.7 231.3 

Ireland 1.0 4.5 326.2     

Italy 4.3 12.8 201.9  20.9 69.0 230.7 

Latvia 1.4 2.5 76.9     

Lithuania 2.4 7.2 203.9  2.0 3.0 49.4 

Luxemburg 16.7 204.5 1123.0     

Malta 6.4 3.9 -38.8     

Netherlands 8.5 18.8 121.6  0.6 12.9 1916.0 

Poland 2.2 10.9 387.6     

Portugal 4.6 21.4 363.9  1.8 18.2 904.3 

Romania 4.3 10.3 137.8     

Slovakia 8.0 73.6 817.4     

Slovenia 5.5 35.8 556.9     

Spain 2.8 9.1 221.8  3.8 9.5 150.5 

Sweden 4.3 13.0 198.6  25.7 7.0 -72.9 

United Kingdom 1.8 3.1 74.7  3.0 2.9 -3.3 

All Countries Mean 4.4 21.6 390.0  8.9 20.0 124.7 

Notes: Authors’ own computations based on Comext and Prodcom data. Import and net consumption measures 
converted in constant PPP USD and reported per 1,000 workers. 
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Table 3. Import and net consumption of AM by European country and growth rates between 2009 and 2018 

 Import  Net consumption 

 2009 2018 Growth Rate (%)  2009 2018 Growth Rate (%) 

 (1) (2) (3)  (4) (5) (6) 

Austria 10.4 19.6 88.1 
 

15.6 37.0 137.2 

Belgium 7.0 17.1 143.3 
 

   
Bulgaria 3.7 13.0 250.7 

 
2.7 8.6 214.8 

Croatia 2.2 3.9 76.1 
 

   
Cyprus 4.9 3.0 -38.5 

 
   

Czech Republic 11.0 32.1 191.6 
 

5.1 0.6 -88.1 

Denmark 2.2 6.8 205.1 
 

1.0 10.2 899.5 

Estonia 3.8 8.4 122.7 
 

   
Finland 7.8 4.4 -43.0 

 
6.9 5.4 -21.8 

France 2.9 4.4 50.2 
 

5.1 3.4 -32.0 

Germany 3.0 10.2 244.4 
 

6.1 38.0 525.5 

Greece 4.5 5.8 27.4 
 

   
Hungary 4.8 26.0 446.0 

 
   

Ireland 4.0 5.9 49.6 
 

   
Italy 2.8 7.3 161.8 

 
20.8 60.7 192.1 

Latvia 1.1 14.0 1162.0 
 

   
Lithuania 6.3 28.9 359.7 

 
   

Luxemburg 12.1 4.5 -62.9 
 

   
Malta 5.7 2.4 -57.0 

 
   

Netherlands 2.0 6.6 227.8 
 

   
Poland 6.2 14.0 125.4 

 
2.1 12.2 482.6 

Portugal 4.2 13.4 220.5 
 

0.9 7.1 677.3 

Romania 4.2 13.0 212.5 
 

   
Slovakia 21.5 40.3 87.0 

 
0.4 3.1 659.5 

Slovenia 7.9 18.2 129.5 
 

   
Spain 3.9 5.4 38.2 

 
5.0 9.2 82.9 

Sweden 2.0 3.6 77.9 
 

0.3 2.1 698.5 

United Kingdom 1.2 2.2 78.3 
 

0.5 1.4 173.6 

All Countries Mean 5.5 11.9 163.4 
 

5.2 14.2 328.7 

Notes: Authors’ own computations based on Comext and Prodcom data. Import and net consumption measures 
converted in constant PPP USD and reported per 1,000 workers. 
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Table 4. Import and net consumption of IIoT by European country and growth rates between 2009 and 2018 

 Import  Net consumption 

 2009 2018 Growth Rate (%)  2009 2018 Growth Rate (%) 

 (1) (2) (3)  (4) (5) (6) 

Austria 341.3 671.0 96.6  64.1 207.5 223.4 

Belgium 526.9 644.5 22.3  118.0 69.0 -41.5 

Bulgaria 134.5 360.6 168.1  111.7 170.1 52.3 

Croatia 136.9 277.7 102.9  66.1 325.9 392.9 

Cyprus 94.3 166.6 76.6     

Czech Republic 798.9 2208.9 176.5  34.7 114.7 230.3 

Denmark 270.4 591.3 118.7  210.3 349.2 66.1 

Estonia 332.3 1154.2 247.4     

Finland 331.3 735.6 122.0  183.5 294.2 60.3 

France 225.5 430.4 90.8  155.2 82.1 -47.1 

Germany 397.3 939.2 136.4  236.1 382.8 62.1 

Greece 84.1 108.0 28.5  48.0 64.5 34.3 

Hungary 1324.6 1903.3 43.7  88.0 452.9 414.5 

Ireland 626.3 824.8 31.7     

Italy 173.1 276.8 59.9  211.7 277.0 30.9 

Latvia 113.2 652.8 476.6     

Lithuania 113.6 361.6 218.4  47.8 137.1 186.7 

Luxemburg 742.4 528.9 -28.8     

Malta 4892.0 1763.2 -64.0     

Netherlands 1527.9 4224.5 176.5  5.3 36.8 590.7 

Poland 297.6 555.6 86.7  49.5 225.5 355.6 

Portugal 190.6 402.2 111.0  90.2 101.6 12.7 

Romania 179.4 626.0 249.0  113.1 360.9 219.0 

Slovakia 534.7 929.9 73.9  124.8 344.3 175.9 

Slovenia 269.5 488.4 81.2     

Spain 118.2 257.1 117.6  114.6 224.1 95.4 

Sweden 541.4 728.9 34.6  240.0 221.9 -7.5 

United Kingdom 281.4 624.5 122.0  159.4 434.3 172.4 

All Countries Mean 557.1 837.0 50.2  117.7 232.2 97.2 

Notes: Authors’ own computations based on Comext and Prodcom data. Import and net consumption measures 
converted in constant PPP USD and reported per 1,000 workers. 
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Figure 1. Relationship between import and net consumption measures of AMT adoption, 2009 and 2018 values and pairwise 
correlation coefficients 

 
Notes: Authors’ own computations based on Comext and Prodcom data. Import and net consumption measures converted 
in constant PPP USD to increase comparability over time and filter out cross-country differences in prices. 
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Figure 2. Change in import and net consumption measures of AMT adoption and shares of AMT imports in imports of the 
reference benchmark categories (%) – sample of AMT producers in the EU28 sample, 2009–2018 period 

 
Notes: Authors’ own computations based on Comext and Prodcom data. Panel A reports import measures converted in 
constant PPP USD and reported per 1,000 workers. Panel B reports net consumption measures converted in constant PPP 
USD and reported per 1,000 workers. Panel C reports the share of imports of each AMT in imports of the reference 
benchmark categories (%); 2-digit benchmark categories are product category 84 for AIRs and AM, and the sum of product 
categories 84, 85 and 90 for IIoT. Given the high level of aggregation characterising our benchmark product categories in 
the CN classification, reconstructing similar benchmark codes from the CPA classification using the methodology presented 
in Section 1.3 would result in extensive overlapping and the creation of a high number of synthetic codes (resulting from 
the aggregation of hundreds of 8-digit CPA product codes), in turn not enabling the computation of a precise benchmark.  
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Figure 3. Import and net consumption of AMTs by EU28 country, 2009–2018 period stocks 

 
Notes: Authors’ own computations based on Comext and Prodcom data. Import (in green) and net consumption (in red) 
measures converted in constant PPP USD, reported per 1,000 workers and expressed as 2009–2018 period stocks (in log). 
Maps created using QGIS software. 
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1.8. Appendix A: Data Validation 

In order to validate the selection process for the CN codes reported in Table 1, we consulted a 

pool of experts composed of both scientists and practitioners, whose expertise relates to the 

technologies under investigation, as well as to both trade and customs procedures through 

which CN codes are assigned to capital goods when they are shipped. Overall, the large 

majority of the 8-digit codes originally identified were confirmed, hinting at the goodness of 

the overall identification procedure. 

As a first step, we checked if and which product codes are used in practice when 

goods related to our three AMTs of interest are shipped from their producers to clients 

worldwide. Clearly, CN codes – as any other national or international trade classification – 

are only used when the shipment of goods involves a cross-border transaction. Conversely, 

domestic transactions are not recorded on trade registers. Bearing this in mind, we created a 

survey aimed at confirming the 25 8-digit CN product codes matching with our keywords list 

and collecting information on any other code used in practice. We sent the survey to 229 

worldwide producers of industrial robots, additive manufacturing/3D printing machines, and 

industrial IoT and automation equipment on the 3rd of June 2020, followed by a first reminder 

sent on the 10th of June and a final reminder on the 17th of June. Respondents were asked to 

select one or more technologies associated with products in their catalogues and report which 

CN codes they use when they export abroad. To maximize the response rate and coverage, as 

well as provide respondents with the widest range of options, we allowed respondents to 

choose among other major classifications used in the accounting of both trade and production 

statistics, alongside the CN classification.17 Unfortunately, despite the response period 

 

17 Other trade classifications listed as option were: The Standard International Trade Classification (SITC), the 

Harmonized System (HS) classification, the Broad Economic Categories (BEC) classification, the U.S. Schedule 

B number classification, the Japanese Commodity Classification for Foreign Trade Statistics (CCFTS), the 
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overlapped with the ease of lockdown measures following the Covid-19 pandemic and with 

many firms starting back their operations, the response rate was heavily penalised as only 

3.5% of the firms surveyed completed the questionnaire. Nonetheless, the few answers 

collected allowed us to validate two product codes associated with our AMTs: the 8-digit CN 

code 84795000 covering the trade of industrial robots and the 8-digit Prodcom code 

28413471, corresponding to the CN code 84639000 and supposedly capturing one of the 

processes related to additive manufacturing. A further takeaway from the survey came from 

conversations with a few respondents, carried out via email exchange, who highlighted scarce 

familiarity with the trade and production nomenclatures we suggested as options in the 

survey. 

As a second step, we consulted practitioners and experts working for the Italian 

Customs Agency (Agenzia delle Dogane e dei Monopoli) and a private customs broker and 

logistic service provider.18 Phone conversations with these experts helped clarify the steps 

through which CN product codes are assigned to goods when these transit customs in or 

outbound. Specifically, goods are classified under a unique classification (e.g. CN, SITC, 

BEC, etc.) code that describes the product and not its use or specific function. Since incorrect 

classification can lead to delays in clearing goods, unnecessary overpayment or potential 

underpayment of duties (the latter resulting in penalties for the shipping firm), this procedure 

is generally carried out with the highest care and the high majority of firms trading abroad 

relies on custom brokers to determine the correct product code to be used. In principle, if the 

 

Chinese HS classification. Other product classification commonly used in production accounting, listed as option 

were: the Central Product Classification (CPC), the Statistical Classification of Products by Activity (CPA), the 

Community Production (PRODCOM) classification, the Austrian OEPRODCOM, the Croatian NIP, the Czech 

CZ-PRODCOM, the Finnish PRODCOM, the French PRODFRA, the German GP, the Hungarian ITO, the 

Italian ATECO, the Latvian PRODCOM LV, the Lithuanian PGPK, the Polish PRODPOL, the Romanian 

PRODROM, the Slovak PRODSLOV, the Slovenian NIP.  
18 We contacted the private custom broker and logistic provider Sebi S.r.l. based at the two Milan (IT) airports, 

Malpensa and Linate. 

https://www.sebigroup.com/en
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shipped good belongs to a very specific category, univocally defined by a product code in the 

classification adopted, there is little space for errors during the matching procedure. 

Conversely, in cases where the classification is not up to date with newly developed 

goods, the identification of the correct product code can suffer from potential misallocations. 

As custom operators are generally not experts of products, machinery or equipment 

specificities, when doubts arise, the matching is performed taking the 8-digit product code 

whose description is the most similar to the in- or outbound good, a more general 6- or 4-digit 

code, or even the one corresponding to the lowest custom duty among the range of potentially 

appropriate product codes. 

In our specific case, further phone calls with these experts validated other product 

codes initially selected and associated with our AMTs, upon consultation of private databases 

to which we could not otherwise get access. Specifically, this second consultation 

unambiguously validated the selected CN product code for industrial robots (i.e. 84795000) 

and several codes presumably related to industrial IoT (i.e. all 8-digit codes shortlisted and 

included in the 4-digit categories 8471, 8526 and 9032), thanks to the high specificity of 

capital goods associated to these technologies. Furthermore, some procedures were also 

recorded for the 8-digit code belonging to categories 8517 and 8542, even though only some 

of them were univocally related to IoT applications. We nonetheless deem these codes 

validated for the purpose of our investigation, as we are not interested in the actual percentage 

of matches for each product code in relation to a specific AMT, but rather in confirming that a 

specific product code was indeed used at least once in trade related to these technologies. 

From our understanding, the validation of product codes linked to industrial robots and 

industrial IoT capital goods was possible thanks to the high specificity of good descriptions in 

both shipment orders and the CN classification, allowing for an unambiguous match in the 

majority of cases. 
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The case of additive manufacturing/3D printing machines is relatively more complex 

as specific CN product codes do not exist yet (as described above). In this specific case, our 

phone conversation with the custom experts highlighted a lack of expertise on the technology 

specificities illustrated in Section 1.2, which guided our initial selection. In turn, only three 

additional product codes associated with additive manufacturing were validated (i.e. CN 

codes belonging to the 6-digit HS product category 847780), having got confirmed records of 

trade of 3D printers under this codes. Finally, further conversations with one of the experts 

also confirmed the potential goodness of the selected 8-digit codes 85158010 and 85158090 

upon fit with the specific additive manufacturing process for which they were initially 

shortlisted, however, we could not get confirmation of any custom practice specifically using 

these codes in relation to shipments of 3D printers using powder bed fusion processes (e.g. 

laser sintering, laser metal deposition, etc.). Thus, we discarded CN codes 85158010 and 

85158090, together with CN codes 84772000 and 84775980 for which we did not get any 

confirmed match. 

  



67 

1.9. Appendix B: Additional Tables and Figures 

Table B1. List of Keywords Related to AMTs 

Keywords related to AMTs   
Advanced Industrial Robots   
    Robot* Industrial robot*  
Additive Manufacturing   

 First tier keywords (General terminology, processes, technologies)  

  Additive manufacturing Additive process* 3d print* 

  3-d print* 3-dimensional print* 3d manufacturing 

  3-d manufacturing 3-dimensional manufacturing Three-d print* 

  Three-dimensional print* Three-d manufacturing Three-dimensional manufacturing 

  Binder jetting Direct energy deposition Material extrusion 

  Material Jetting Powder bed fusion Sheet lamination 

  Vat photopolymerization Fused deposition modelling Fused filament fabrication 

  Laser sintering Laser melting Direct metal laser deposition 

  Laser metal deposition Electron beam melting Laser engineering net shaping 

  Stereolithography Poly-jet matrix Multi-jet modelling 

   Continuous liquid interface production   

 Second tier keywords (Components, tools, methods, materials)  

  Laser* Electron beam* Plasma 

  Extrusion Extruder* Metal* 

  Plastic* Resin* Photopolymer* 
    Wax* Powder*  
Industrial Internet of Thighs   

 First tier keywords (General terminology, acronyms, concepts, technologies)  

  Internet of thing* IoT Industrial Internet of thing* 

  IIoT Industrial Internet Communication network* 

  Automatic network* Wireless network* Controller area network 

  CAN Public switched telephone network PSTN 

  Local area network LAN Wireless local area network 

  WLAN Long-term evolution network LTE 

  Digital subscriber line DSL Second generation network 

  2G Third generation network 3G 

  Fourth generation network 4G Fifth generation network 

  5G Next generation network NGN 

  Ethernet Wi-Fi Advanced sensor* 

  Automatic sensor* Advanced actuator* Automatic actuator* 

  Advanced communication system* Automatic regulator* Automatic controller* 

  Integrated circuit* System on chip SOC 

  Microcontroller MCU Radio-frequency identification 

  RFID Near-field communication NFC 

  Global positioning system GPS Switcher* 

  Router* Gateway* Cable* 

   Optical fibre* Data processing machine*  

 Second tier keywords (Components, tools, methods)  

  Communication* Network* Automatic 

  Sensor* Actuator* Reception* 

  Transmission* Transfer* Regulator* 

  Regulating Controller* Controlling 

  Processor* Converter* Amplifier* 

  Integrated chip* Chip* Circuit* 

  Identifier* Transponder* Tag* 

  Microchip* Card* Reader* 

  Radar* Navigation* Switching 

  Routing Wire* Connector* 
    Optical fiber* Data  
Notes: Keyword selection based on the engineering literature, terminology from ruling bodies and product catalogues on AMTs. 
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Table B2. List of initially identified CN product codes related to AMTs 

4-digits HS product codes, 8-digits CN product codes and CN product descriptions  
Advanced Industrial Robots   

 

8479 Machines and mechanical appliances having individual functions, not specified or included elsewhere in this 
chapter 

 

 
84795000 Industrial robots, not elsewhere specified or included 

Additive Manufacturing   

 8463 Other machine tools for working metal or cermets, without removing material 

 

 
84639000 Other machine tools for working metal or cermets, without removing material; Other 

 

8477 Machinery for working rubber or plastics or for the manufacture of products from these materials, not specified 
or included elsewhere in this chapter 

 

 
84772000† Extruders 

 

 
84775980† Other machinery for moulding or otherwise forming; Other; Other 

 

 
84778011 Machines for the manufacture of foam products; Machines for processing reactive resins 

 

 
84778019 Machines for the manufacture of foam products; Others 

 

 
84778099 Other machinery; Other; Other 

 

8515 Electric (including electrically heated gas), laser or other light or photon beam, ultrasonic, electron beam, 
magnetic pulse or plasma arc soldering, brazing or welding machines and apparatus, whether or not capable of 
cutting; electric machines and apparatus for hot spraying of metals or cermets 

 

 
85158010† Other machines and apparatus; For treating metals 

 

 
85158090† Other machines and apparatus; Other 

Industrial Internet of Things   

 

8471 Automatic data-processing machines and units thereof; magnetic or optical readers, machines for transcribing 
data onto data media in coded form and machines for processing such data, not elsewhere specified or included 

 

 
84718000 Other units of automatic data-processing machines 

 

 
84719000 Other 

 

8517 Telephone sets, including telephones for cellular networks or for other wireless networks; other apparatus for the 
transmission or reception of voice, images or other data, including apparatus for communication in a wired or 
wireless network (such as a local or wide area network), other than transmission or reception apparatus of 
heading 8443, 8525, 8527 or 8528 

 

 
85176200 Machines for the reception, conversion and transmission or regeneration of voice, images or other 

data, including switching and routing apparatus 

 8526 Radar apparatus, radio navigational aid apparatus and radio remote control apparatus 

 

 
85269120 Radio navigational aid apparatus; Radio navigational receivers 

 

 
85269200 Radio remote control apparatus 

 8542 Electronic integrated circuits 

 

 
85423111 Processors and controllers, whether or not combined with memories, converters, logic circuits, 

amplifiers, clock and timing circuits, or other circuits; Goods specified in note 9(b)(3 and 4) to 
chapter 85; Multi-component integrated circuits (MCOs) 

 

 
85423119 Processors and controllers, whether or not combined with memories, converters, logic circuits, 

amplifiers, clock and timing circuits, or other circuits; Goods specified in note 9(b)(3 and 4) to 
chapter 85; Other 

 

 
85423190 Processors and controllers, whether or not combined with memories, converters, logic circuits, 

amplifiers, clock and timing circuits, or other circuits; Other 

 

 
85423911 Other; Goods specified in note 9(b)(3 and 4) to chapter 85; Multi-component integrated circuits 

(MCOs)* 

 

 
85423919 Other; Goods specified in note 9(b)(3 and 4) to chapter 85; Other* 

 

 
85423990 Other; Other 

 9032 Automatic regulating or controlling instruments and apparatus 

 

 
90321020 Thermostats; Electronic 

 

 
90321080 Thermostats; Other 

 

 
90322000 Manostats 

 

 
90328100 Other instruments and apparatus; Hydraulic or pneumatic 

 

 
90328900 Other instruments and apparatus; Other 

Notes: The reference CN classification is the 2017 version. Product codes denoted with * have been checked through assessment 
of the related additional notes. Product codes denoted with † did not satisfy our validation procedure; all other codes were 
validated. 
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Table B3. Import to export ratios for each AMT, by country and time period 
 AIR  AM  IIoT 

  2009-2011 2016-2018  2009-2011 2016-2018  2009-2011 2016-2018 

Austria 0.51 0.44  0.25 0.21  1.06 0.93 

Belgium 2.61 1.41  1.83 1.70  1.43 1.10 

Bulgaria 11.87 1.25  7.83 3.04  1.98 1.21 

Croatia 9.36 0.79  0.87 0.20  1.83 2.21 

Cyprus    729.67 1.19  10.14 9.59 

Czech Republic 2.39 10.72  1.46 0.72  1.28 1.38 

Denmark 0.80 0.17  0.27 0.19  1.53 1.48 

Estonia 3.00 2.23  3.92 5.20  1.47 0.54 

Finland 0.38 0.48  1.78 7.37  1.61 1.46 

France 0.60 0.42  1.05 0.96  0.98 0.88 

Germany 0.64 0.61  0.12 0.19  1.01 1.05 

Greece    4.24 6.96  5.59 4.83 

Hungary 0.66 2.21  5.69 17.44  1.29 0.92 

Ireland 7.65 3.76  3.33 3.80  0.40 0.23 

Italy 0.81 0.50  0.11 0.17  1.67 1.76 

Latvia 4.98 2.65  2.13 1.47  1.64 0.82 

Lithuania 2.81 1.77  4.94 2.39  2.05 1.27 

Luxemburg 0.85 0.61  38.08 68.19  1.05 1.74 

Malta    22.97 11496.44  32.16 0.47 

Netherlands 0.99 0.73  0.60 0.55  0.91 0.91 

Poland 16.80 15.94  2.92 4.14  4.44 2.08 

Portugal 1.23 3.17  3.52 5.88  7.60 1.63 

Romania 2.51 4.72  6.78 9.69  3.59 1.97 

Slovakia 8.63 16.02  0.69 0.82  3.61 2.16 

Slovenia 3.92 2.73  2.83 1.83  1.14 1.33 

Spain 1.50 1.23  1.55 1.76  4.30 2.91 

Sweden 0.21 0.29  0.56 1.20  1.26 1.31 

United Kingdom 1.54 1.09   0.76 1.34   1.42 2.17 

Notes: Authors’ own computations based on Comext and Prodcom data. We compute three-year averages of import to 
export ratios as simple averages. Ratios above 1 indicates net importers of AMTs, conversely ratios below 1 indicates net 
exporters of AMTs. 
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Table B4. Shares of CPA/CN product codes imports in imports of the reference benchmark categories (%) and changes between 
2009 and 2018 (%), full sample of EU28 countries 

    2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 ∆(2009-2018) 

AIR 
CPA 28993935/ CN 
84795000 

0.109 0.135 0.158 0.171 0.159 0.175 0.239 0.215 0.238 0.247 126.8 

AM 

CPA 28961082/ CN 
84778011  

0.004 0.002 0.002 0.003 0.003 0.002 0.004 0.005 0.004 0.004 11.9 

CPA 28961084/ CN 
84778019 

0.011 0.009 0.007 0.007 0.008 0.005 0.009 0.009 0.008 0.009 -18.9 

CPA 28961097/ CN 
84778099 

0.070 0.065 0.075 0.087 0.082 0.104 0.122 0.132 0.142 0.129 85.0 

Synthetic CPA for 28413471, 
28491360, 289900Z0/ CN 
84639000 

0.019 0.018 0.019 0.035 0.022 0.020 0.026 0.030 0.026 0.026 38.8 

IIoT 

CPA 26113003/ Synthetic CN 
for 85423111, 85423119 

0.121 0.102 0.079 0.102 0.094 0.066 0.071 0.125 0.107 0.152 25.5 

CPA 26113006/ CN 
85423190 

0.971 1.110 0.995 1.036 0.972 0.974 1.211 1.307 1.530 1.475 51.9 

CPA 26113091/ Synthetic CN 
for 85423911, 85423919 

0.020 0.036 0.033 0.024 0.023 0.025 0.029 0.030 0.059 0.065 225.7 

CPA 26113094/ CN 
85423990 

0.729 1.000 0.803 0.839 0.830 0.863 1.082 1.073 1.153 1.141 56.6 

CPA 26302320/ CN 
85176200 

1.617 1.769 1.635 1.887 1.947 2.054 2.865 3.066 3.097 3.021 86.8 

CPA 26512050/ CN 
85269120 

0.309 0.266 0.237 0.242 0.224 0.240 0.298 0.300 0.294 0.258 -16.3 

CPA 26512080/ CN 
85269200 

0.028 0.029 0.032 0.040 0.041 0.045 0.054 0.056 0.056 0.052 89.8 

CPA 26516500/ CN 
90328100 

0.013 0.017 0.020 0.022 0.024 0.027 0.032 0.041 0.046 0.039 198.8 

CPA 26517015/ CN 
90321020 

0.028 0.029 0.029 0.031 0.032 0.033 0.044 0.049 0.049 0.045 63.3 

CPA 26517019/ CN 
90321080 

0.050 0.050 0.047 0.050 0.048 0.048 0.055 0.057 0.050 0.045 -9.5 

CPA 26517030/ CN 
90322000 

0.024 0.026 0.029 0.034 0.031 0.029 0.034 0.036 0.034 0.036 51.0 

CPA 26517090/ CN 
90328900 

0.332 0.371 0.361 0.408 0.393 0.380 0.449 0.455 0.454 0.404 21.6 

Synthetic CPA for 26122000, 
26203000, 269900Z0/ 
Synthetic CN for 84718000, 
84719000 

0.552 0.527 0.481 0.521 0.499 0.489 0.574 0.579 0.622 0.598 8.3 

Notes: Authors’ own computations based on Comext and Prodcom data. We take the CN-CPA correspondence in 2017 as the 
reference. Whenever a change in the classifications impacts the identified product codes in 2017, we highlight any data 
manipulation with 'Synthetic', following the methodology by Van Beveren et al. (2012). Any other change in the classifications 
which is related to the years before and after 2017 (e.g. a change in the product code identifying a specific product category) are 
not highlighted here. 2-digit benchmark categories are product category 84 for CPA/CN codes related to AIRs and AM, and the 
sum of product categories 84, 85 and 90 for CPA/CN codes related to IIoT. 
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Figure B1. Change in import measures of AMT adoption and shares of AMT imports in imports of the reference benchmark 
categories (%), full sample of EU28 countries, 2009–2018 period 

 
Notes: Authors’ own computations based on Comext and Prodcom data. Panel A reports import measures converted in constant 
PPP USD and reported per 1,000 workers. Panel B reports the share of imports of each AMT in imports of the reference benchmark 
categories (%); 2-digit benchmark categories are product category 84 for AIRs and AM, and the sum of product categories 84, 85 
and 90 for IIoT. 
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Figure B2. Comparison between the initial and final three-year averages in the relative import propensity (RIP) indexes for each 
AMT 

 
Notes: Authors’ own computations based on Comext and Prodcom data. We compute three-year averages of RIP indexes as simple 
averages. RIPs for each AMT are transformed as (RIP-1)/(RIP+1) to increase symmetry and comparability so that RIPs above 0 
indicates indicate a comparative advantage. 
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Chapter 2 

 

Advanced Manufacturing Technologies and Productivity 

Growth: Evidence from Europe* 

 

Abstract 

Do advanced manufacturing technologies (AMTs) boost TFP growth? This Chapter explores 

whether the adoption of advanced technologies affects the sectoral TFP growth rates across the 

manufacturing industries of 14 European countries, during the period 2009–2019. We rely on a 

novel measure of adoption of advanced manufacturing technologies (namely, advanced industrial 

robots, additive manufacturing and industrial internet of things), exploiting information on imports 

of capital goods embodying such technologies. Our results suggest that the adoption of AMTs of 

the Industry 4.0 wave spurs quantitatively important and statistically significant gains in TFP 

growth rates. These productivity gains are mostly concentrated in countries closer to the technology 

frontier. 

 

Keywords: Advanced manufacturing technologies; Industry 4.0; technology diffusion; total factor 

productivity (TFP); economic growth; technological convergence. 
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2.1. Introduction 

Over the last decade, academics, policymakers, and practitioners ranging from engineers to 

managers and entrepreneurs have been increasingly focused on the latest wave of technological 

change in production processes, embodied by the advent of new digital and smart technologies 

(Brynjolfsson and McAfee, 2014; Liao et al., 2017; EIB, 2019). 

This new stage in the technological progress is nowadays advocated to be the fourth 

industrial revolution (4IR), also known as Industry 4.0 (I4.0) in manufacturing (Skilton and 

Hovsepian, 2017), leading to new digital paradigms and guided by the diffusion of a vast array of 

automation technologies. The combination of industrial robots, additive manufacturing (or 3D 

printing), internet of things, cloud computing, big data, machine learning, artificial intelligence, 

virtual and augmented reality enables the creation of cyber-physical systems which integrate 

seamlessly physical operations with digital insight (Lee et al., 2015; Rajkumar et al., 2010; Alcácer 

and Cruz-Machado, 2019), enabling the creation of smart factories (Lucke et al., 2008; Wang et al., 

2016). 

In the factory shop floor, the use of sensors, paired with today’s improvements in dynamic 

programming, enables advanced industrial robots to perform a broader range of tasks as compared 

to their predecessors, offering accuracy, flexibility, and collaborative human-machine applications 

(Davies, 2015; Stock and Seliger, 2016; Eurofound, 2018). At the same time, additive 

manufacturing provides firms with the possibility to expand their product range – for instance, by 

creating new niche markets, offering new opportunities for real-time customization and enabling to 

speed-up the entire product development cycle (Atzeni and Salmi, 2012; Mellor et al., 2014; Bogers 

et al., 2016; Rayna and Striukova, 2016), while also reducing the number of production stages and 

material consumption (Atzeni and Salmi, 2012; Weller et al., 2015; Cuellar et al., 2018). On top of 

this, the extensive implementation of sensors, actuators and distributed systems (e.g. Near Field 

Communication microchips, Radio-Frequency Identification tags and Global Positioning Systems) 
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enables the creation of industrial internet of things environments (Atzori et al., 2010; Gubbi et al., 

2013), resulting in a high potential for communication and integration and, ultimately, into more 

efficient management of industrial operations, and in higher digital integration along the value chain 

(Stock and Seliger, 2016; Wang et al., 2016). 

The OECD defines advanced manufacturing technologies (AMTs) as “computer-controlled 

or micro-electronics-based equipment used in the design, manufacture or handling of a product” 

(OECD, 2012). This definition reflects the role of applications based on Information and 

Communication Technologies (ICTs), developed with the third industrial revolution started in the 

1950s and later became the mainstream industrial paradigm throughout the 70s and the 90s, which 

paved the way for today’s core technologies of the 4IR. In this Chapter, we focus on three new 

AMTs, which are well-suited for manufacturing applications and bear a high potential in 

revolutionising the industrial landscape of advanced economies: industrial robots (AIRs), additive 

manufacturing (AM) and industrial internet of things (IIoT). 

The revolutionary role that these digital technologies have on manufacturing operations is 

well recognised: the European Foundation for the Improvement of Living and Working Conditions 

(Eurofound) highlights them as ‘game-changing’ or disrupting technologies as they can find 

widespread application across every manufacturing industry due to their ‘versatility and 

complementarity’ (Eurofound, 2018, p. 3). Beyond that, a critical factor characterising these three 

AMTs is that they are technologies usually embodied in capital goods. This characteristic makes it 

possible to measure their adoption across countries using data on imports of the capital goods 

embodying such technologies.19 

AMTs and other automation technologies of the 4IR can boost firms’ capabilities to perform 

flexibly, collaboratively and resiliently (Lee et al., 2014; Schuh et al., 2014; Lee et al., 2015; Stock 

 

19 In line with recent descriptive evidence (e.g. Foster‐McGregor et al., 2019), we do not consider other new digital 

technologies like cloud computing, big data, machine learning and artificial intelligence. As the most important 

component of these technologies resides in the software, while the hardware used is usually standard and multi-purpose 

(e.g. computers, servers, etc.), it is very difficult to trace and measure the adoption of these technology on a large scale. 
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and Seliger, 2016; Lee et al., 2018). Overall, the digital transformation brought by the 4IR is 

expected to lead to higher cost-efficiency and rising productivity (Kagermann et al., 2013; Schuh et 

al., 2014; Müller et al., 2018; Dachs et al., 2019), while also benefitting market competition and 

contribute to overall GDP growth, particularly in advanced economies. 

However, despite the attention given to the 4IR by academics and institutional actors, the 

empirical evidence concerning these phenomena is still limited, along with suitable measures of 

adoption of such technologies allowing an investigation of the effects of AMTs on a large scale 

across countries, industries and over time. Guided by these premises, our research question is: What 

is the relationship between the adoption of AMTs of the 4IR, total factor productivity (TFP) growth 

and technological catch-up across manufacturing industries of European economies? 

We attempt to fill this gap following the intuition by Caselli and Coleman (2001) and 

subsequent studies – such as Blanas et al. (2019) and Acemoglu and Restrepo (2022) at the country-

level; Acemoglu et al. (2020), Bonfiglioli et al. (2020) and Domini et al. (2021, 2022) at the firm-

level – who relied on import data for product categories (mostly, at the 6-digit level) to build 

proxies of technology adoption. However, these studies exploit a much broader definition of 

automation technologies, reaching outside the boundaries of the 4IR, thus capturing a large share of 

machinery and equipment already in use and potentially to be considerate as enabling technologies. 

Conversely, we move forward such approch by adopting a structured methodology to identify 

capital and intermediate goods specifically related to the three digital technologies of interest, using 

highly disaggregated data on 8-digit product codes. Through these precise measures, we provide 

fresh empirical evidence on the productivity gains and the technological convergence associated 

with the adoption of a bundle of AMTs, strictly related to the I4.0 wave. 

The 4IR-productivity nexus has attracted an increasing amount of research (e.g. Graetz and 

Michaels, 2018; Edquist et al., 2019; Acemoglu et al., 2020; Damioli et al., 2021; Venturini, 2022). 

However, these studies have mostly focused on the adoption of specific technologies (namely 

AIRs). We build on this growing literature by exploring the role played by a larger set of 
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technologies, including AIRs, AM and IIoT, in generating productivity growth and convergence20 

using a panel of 13 manufacturing industries across 14 European countries over the 2009–2019 

period. 

Moving forward the methodology developed in Chapter 1, our contribution is twofold: first, 

we provide suitable proxies to measure the adoption of the three (capital-embodied) AMTs across 

countries and sectors, as well as to explore empirically how they affect productivity growth, a 

research area still severely under investigated. Second, we explore the productivity effects 

associated with AMTs by looking at their direct contribution (i.e. through domestic adoption) to 

TFP growth rates and the role they play in the technological catching-up of European economies 

more distant from the technology frontier. 

Our results highlight that AMTs are relevant contributors to TFP growth rates over the 

investigation period. When taken together, AMTs have statistically and quantitatively significant 

effects. Looking at individual AMTs, we find that AM (and, to a lower extent, AIRs) the more 

beneficial on average for European economies, while the effect of IIoT on TFP growth is weaker 

and limited to technologically advanced countries. One main result emerging from the analysis is 

that the productivity gains from AMT adoption mostly concentrate in countries closer to the 

technology frontier. Furthermore, our results are robust to different measures of TFP growth, to the 

presence of cointegration, and to the use of both alternative AMT adoption proxies and estimation 

methods. 

The rest of the Chapter is structured as follows. Section 2.2 briefly discusses the relevant 

literature on the topic, Section 2.3 highlights the analytical framework and the empirical strategy for 

our empirical investigation. Section 2.4 discusses the data used, while Section 2.5 presents and 

discusses the results of our econometric analysis and the related robustness tests. Finally, Section 

 

20 See, for instance, Griffith et al. (2004), Cameron et al. (2005), Griffith et al. (2009), Minniti and Venturini (2017) and 

Mason et al. (2020) for recent empirical studies on productivity convergence. 
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2.6 discusses results, the related policy implications, and concludes discussing limitations and 

outlining future research. 

 

2.2. Background literature 

The 4IR and its technologies have been at the core of academics’ debate for over a decade now. 

From a conceptual standpoint, AMTs of the I4.0 wave represent a new and more advanced form of 

capital, which can be thought of as the evolution of those advanced manufacturing technologies 

which diffused over the 90s and had been conceptualised in previous studies (e.g. Udo and Ehie, 

1996; Cagliano and Spina, 2000; Kotha and Swamidass, 2000). By substituting or complementing 

traditional types of automated machinery, AMTs can perform a growing number of tasks in a faster 

and more efficient way, in turn, rising productivity. In addition, other forms of automation like 

artificial intelligence (AI) may also contribute to the generation of new ideas and innovations – for 

instance, continuously improving other forms of automation – and in the production of goods, 

generating economic and productivity growth (see Aghion et al., 2019, for a detailed discussion). 

There is an emerging agreement among academics to consider the digital technologies of the 

I4.0 wave as new general purpose technologies (GPTs). The distinctive trait of GPTs is that they 

can generate sustained economic growth by boosting continuous innovation and co-invention, 

spreading to every sector of the economy (Bresnahan and Trajtenberg, 1995; Carlaw and Lipsey, 

2002; Jovanovic and Rousseau, 2005; Bresnahan, 2010). For instance, AIRs and AI are now 

commonly seen as a technological platform for innovation (Cockburn et al., 2019), which enable 

firms to define new productive ways of recombining existing technologies (Agrawal et al., 2019) 

and improve forecast-making, reducing uncertainty and harness more and new opportunities 

(Agrawal et al., 2019). However, the view of AMTs as GPTs is still very much in its infancy, both 

on a theoretical (Trajtenberg, 2019; Aghion et al., 2019) and empirical ground (Brynjolfsson et al., 

2019b; Martinelli et al., 2021). 
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Over the last few years, data on the diffusion of these technologies have become 

increasingly available from different sources. For instance, the 2019 European Investment Bank 

Investment Survey (EIBIS) shows consistent adoption shares for these three technologies across 

European manufacturing firms: AIRs have the highest uptake (around 47% of firms), followed by 

IIoT and AM (around 34% and 28% of firms, respectively). Conversely, 2020 Eurostat’s data hints 

at more conservative figures, suggesting actual adoption to be lower across EU27 countries (i.e. 

among manufacturing firms 17% use AIRs, 19% use IIoT and 12% use AM). 

This anecdotal evidence suggests that these technologies have reached non-negligible 

diffusion rates and have the potential to affect different aspects of the economy. Nonetheless, it also 

highlights how sensitive these insights can be depending on the sources of data and survey design 

(i.e. sample size, composition, timing of the data collection). 

Prima facie empirical evidence hints at the larger ecosystem created by the bundle of 

technologies of the 4IR to be the next GPT, rather than a single highly promising technology. For 

instance, Venturini (2022) finds that the stock of innovations related to I4.0 can generate 

productivity spillovers, whose pattern conforms to the productivity ‘J-curve’ typically observed in 

the early stage of diffusion of new GPTs. Nonetheless, the lack of reliable and precise measures 

capturing the diffusion of I4.0-related technologies has so far hampered empirical investigations, 

and only few works have contributed to the identification of the real economic impact brought by 

the 4IR. Given the lack of extensive and detailed sources of information (Brynjolfsson et al., 2019a; 

Cockburn et al., 2019), most of the studies in the field have focused on AIRs using data from the 

International Federation of Robotics (IFR), mostly looking at the occupational and wage effects of 

robotisation at different level of analysis (e.g. Graetz and Michaels, 2018; Dauth et al., 2021; 

Acemoglu and Restrepo, 2020). 

Recently, some works have looked at the productivity effects (both labour productivity and 

TFP) deriving from either adopting or producing specific automation technologies or I4.0-related 

innovations (Jäger et al., 2015; Graetz and Michaels, 2018; Edquist et al., 2019; Acemoglu et al., 
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2020; Alderucci et al., 2020; Benassi et al., 2020; Ballestar et al., 2020; Bonfiglioli et al., 2020; 

Espinoza et al., 2020; Cette et al., 2021; Damioli et al., 2021; Du and Lin, 2022; Venturini, 2022). 

Overall, these studies highlight the magnitude of the expected effect to depend largely on the 

technology investigated, the data source and the estimation method, thus not providing a unified 

view of their implications. Importantly, most evidence currently comes either from surveys (mostly 

cross-sections) conducted in selected countries, case studies on a small number of firms, or from 

empirical works looking at specific technologies for which data are currently available (e.g. IFR 

data). This limits comparison across countries, sectors, and technologies. 

Studies investigating adoption-related productivity effects are those most closely related to 

our work. Using the growth accounting approach and looking at 30 OECD countries, Cette et al. 

(2021) find that aggregate AIR adoption does not appear to have been a quantitatively significant 

source of productivity growth between 1975 and 2019. Similarly, also Edquist et al. (2019) and 

Espinoza et al. (2020) leverage on growth accounting to investigate productivity gains associated 

with the adoption of IoT yet taking different approaches to measure technology adoption. On the 

one hand, Edquist et al. (2019) uses data on licensed IoT connections across 82 countries for the 

period 2010–2017 to investigate the relationship between IoT adoption and cross-country TFP 

growth, finding that a 10% increase in the growth rate of IoT connections per inhabitant is 

associated with a 0.23% increase in the rate of growth of TFP. On the other hand, Espinoza et al. 

(2020) combine earlier findings on the estimated contribution of ICT capital investments to labour 

productivity growth and new cross-country data on IoT expenditure in the attempt to single out the 

proportion of ICT-related productivity gains coming from investments in IoT. Their findings point 

at negligible contributions to annual labour productivity growth of about 0.01 and 0.006 percentage 

points in the US and across EU10 countries, respectively. 

Along this aggregate evidence, other works attempt to provide a more precise picture by also 

considering sectoral heterogeneity. Graetz and Michaels (2018) estimate that the rising adoption of 

AIRs can explain between 0.4 and 1% of the increase in labour productivity and between 0.3 and 
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0.8% of TFP growth, between 1993 and 2007, across manufacturing and non-manufacturing sectors 

in a sample of 17 advanced economies. Similarly, Du and Lin (2022) exploit sectoral data on 

installed AIR to measure robotisation rates across Chinese regions – following the empirical 

approach by Acemoglu and Restrepo (2020) – and uncover a U-shaped relationship between AIR 

adoption and TFP growth: quantitatively significant productivity gains are associated mostly with 

regions featuring a sufficiently high level of robotisation. 

Looking at a finer unit of analysis, firm-level evidence highlights similar findings. Jäger et 

al. (2015) find significant higher labour productivity gains associated with AIR adoption in 

manufacturing operations by looking at around 1,400 Swiss and Dutch businesses. Similarly, 

Ballestar et al. (2020) analyse a sample of Spanish firms between 2008 and 2015, uncovering a rise 

in productivity of about 3% across small and medium sized firms (SMEs) associated with AIR 

adoption, but no effect on large companies. The works by Acemoglu et al. (2020) and Bonfigliolo et 

al. (2020) look at AIR adoption across French firms, although uncovering mixed findings: while the 

former find unconclusive and not robust evidence on the impact of AIR adoption on TFP growth 

between 2010 and 2015, the latter find a positive and significant effect over a longer period from 

1994 to 2013, robust to several checks. 

Although previous studies have moved the debate forward, they bear some limitations. First, 

they measure the adoption of single technologies (mostly AIR and, in some cases, IoT) and neglect 

the implications coming from a wider and more complete nexus of technologies. Second, they focus 

on different levels of aggregation (country vs sector vs firm level) and on different periods, thus 

making it hard to compare insights. Furthermore, while providing interesting insights, these works 

base their analysis on different and only partially comparable measures for the same technology: 

e.g. IFR data in Graetz and Michaels (2018), Cette et al. (2021) and Du and Lin (2022), AIR 

adoption dummy in Ballestar et al. (2020), and AIR imports in Acemoglu et al. (2020) and 

Bonfigliolo et al. (2020). Finally, some of these works bear important limitations from and 

empirical standpoint: on the one hand, cross-sectional data (e.g. Jäger et al., 2015; Ballestar et al., 
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2020) or too short time series (e.g. Edquist et al., 2019) do not allow to investigate causal 

relationships; on the other hand, broad assumptions21 do not enable to produce accurate estimates 

(e.g. Espinoza et al., 2020). This study addresses these limitations by providing a unified 

measurement framework for different AMTs and testing their effect on productivity growth of 14 

European countries and 13 2-digit manufacturing industries over a decade (2009–2019) employing 

panel data econometric modelling that allows to investigate causal relationships. We model the 

technological change associated with AMTs by studying how the adoption of the latest technologies 

of the 4IR, embodied in capital and intermediate goods, relates to sectoral productivity growth.22 As 

such, our work also relates to the literature on investment-specific technological change 

(Greenwood et al., 1997, 2000), which recognises the role of capital investments in specific types of 

machinery and equipment as one of the most relevant sources of productivity growth. This literature 

has investigated thoroughly the role played by ICT (vs non-ICT) investments in determining 

productivity growth over the last few decades (e.g. Bakhshi and Larsen, 2005; Martínez et al., 2010; 

Venturini, 2015; Chung, 2018). In this work, we take stock of this literature and investigate the 

distinct contribution to productivity of the capital and intermediate goods embodying AMTs from 

other more traditional types of ICT investments. 

This study also relates to two other well-established literatures. On one hand, it deals with 

the study of endogenous innovation, economic growth (e.g. Romer, 1990; Aghion and Howitt, 

1992; 1997) and productivity gains coming from different sources, such as traditionally, research 

and development (R&D), imports and human capital (e.g. Coe and Helpman, 1995; Keller, 1998; 

Eaton and Kortum, 2001; Caselli and Wilson, 2004; Caselli and Coleman, 2006; Acharya and 

 

21 The authors use existing survey data on installed IoT devices by region (e.g. North America, Western Europe, 

Asia/Pacific, etc.), combined with earlier published estimates of the contribution of ICT capital to labour productivity 

growth, in order to estimate how much of such ICT contribution relates to IoT capital by developing different scenarios 

(i.e. assuming different percentage of ICT expenditure devoted to IoT). 
22 This approach enables a more general formalisation of the adoption phenomena, as well as a scalable methodology 

which can be used to trace AMT adoption at different level of aggregation (i.e. from the macro to the micro), depending 

on data availability. 
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Keller, 2009). On the other hand, it links with the debate on the source of differences in income and 

productivity across countries (e.g. Acemoglu and Zilibotti, 2001; Caselli and Coleman, 2006) and 

their implications for economic and technological convergence (e.g. Griffith et al., 2004; Cameron 

et al., 2005; Griffith et al., 2009; Madsen et al., 2010; Bourlès et al., 2013; Bergeaud et al., 2016; 

Minniti and Venturini, 2017; Mason et al., 2020). 

These literatures propose that variables like R&D, imports and investments in new and more 

advanced technologies (e.g. ICTs or AMTs) play a role in determining both productivity growth and 

the speed of convergence of TFP levels across countries. In past decades, between the 70s and the 

90s, both R&D and imports have been important sources of productivity growth across countries 

and sectors, although not reaching consensus on the role of trade patterns as a way for R&D-related 

technology transfer and productivity growth (Coe and Helpman, 1995; Coe et al., 1997; Keller, 

1998; Griffith et al., 2004; Acharya and Keller, 2009). Other studies recognise that the role of 

imports is particularly important for countries away from the technology frontier (Keller, 2000) and 

that the composition of imports matters in determining productivity gains, which are mostly 

associated with trade in more advanced capital goods (Eaton and Kortum, 2001; Caselli and Wilson, 

2004). The role of ICT investments is also well documented in these literatures and found to be a 

leading source of productivity growth across countries and sectors ever since the 80s (Bakhshi and 

Larsen, 2005; Martínez et al., 2010; Venturini, 2015; Bergeaud et al., 2016). However, decreasing 

productivity gains from ICTs are documented over the past decades (Bergeaud et al., 2016; Chung, 

2018), and mixed findings on the overall effect associated with these type of capital investments 

emerge when focusing on manufacturing industries alone (e.g. Mc Morrow et al., 2008; Edquist and 

Henrekson, 2017). 

While all these studies represent the starting point of our empirical investigation, our aim is 

to move forward the debate by exploring which role is played by new AMTs of the I4.0 wave. 

Specifically, we address the limitations of prior studies looking at technologies of the 4IR by 

providing a unified measurement framework for different AMTs, hence making the observed effect 
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comparable across technologies, and testing their potential role as enablers of productivity catch-up 

(convergence) across manufacturing industries of European economies leveraging on the well-

established distance-to-frontier framework. 

 

2.3. Empirical setting 

An established approach to model country-sector productivity growth (e.g. Bernard and Jones, 

1996a,b) posits that TFP in sector 𝑗 of country 𝑖 grows both as a result of domestic investment and 

of the opportunities offered by being relatively more distant from the technological frontier (i.e. 

catching-up).23 Hence, TFP growth (∆𝑙𝑛𝐴𝑖𝑗𝑡) can be modelled as follows: 

∆𝑙𝑛𝐴𝑖𝑗𝑡 = 𝛽𝑖𝑗 + 𝛾𝑖𝑗𝑙𝑛 (
𝐴𝐹
𝐴𝑖
)
𝑗𝑡−1

 (1) 

where 𝐴 represents total factor productivity (TFP) as an index of technical efficiency (i.e. 

technological progress). TFP is allowed to vary across countries, industries and time and derived 

from the following production function: 

𝑌𝑖𝑗𝑡 = 𝐴𝑖𝑗𝑡𝐺𝑖𝑗(𝑋𝑖𝑗𝑡, 𝐿𝑖𝑗𝑡, 𝐾𝑖𝑗𝑡) (2) 

where, in each time period, 𝑌 denotes gross output produced in each country using intermediate 

inputs 𝑋, labour 𝐿 and capital 𝐾 inputs; function 𝐺(·,·) is assumed to be homogeneous of degree 

one and to exhibit diminishing marginal returns to the accumulation of each individual production 

factor and constant returns to scale. At any time 𝑡, one of the countries 𝑖 will feature the highest 

level of TFP in sector 𝑗, i.e. the technological frontier (𝐴𝐹). 𝛽𝑖𝑗 and 𝛾𝑖𝑗 (with 𝛽𝑖𝑗, 𝛾𝑖𝑗 ≥ 0) are 

parameters capturing the rate of country-industry-specific innovation and the speed of technological 

catch-up, respectively; the term 𝑙𝑛(𝐴𝐹 𝐴𝑖⁄ )𝑗𝑡−1 represents the catch-up component of productivity 

growth in country 𝑖, expressed as a function of the lagged productivity differentials in sector 𝑗 

 

23 See Islam (1999) for a review of theories, approaches, and measurement issues. 
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between country 𝑖 and country 𝐹. The rationale for equation (1) is that, for a non-frontier country 𝑖 

the catch-up term (𝑙𝑛(𝐴𝐹 𝐴𝑖⁄ )𝑗𝑡−1) is positive and larger the further away country 𝑖 lies far from the 

frontier in sector 𝑗, making greater the potential for productivity gains. In the case of frontier 

countries instead, the sole source of productivity growth resides in domestic innovation, such that 

the second term in the right-hand side of equation (1) is null. 

According to the model, in steady-state equilibrium, TFP in each sector 𝑗 in all countries 

will grow at the same constant rate, such that in each non-frontier country TFP growth from 

domestic innovation and from technological catch-up equals TFP growth from domestic innovation 

alone for the technological leader. The model also allows any country 𝑖 to switch endogenously 

from being a frontier to a non-frontier country and vice versa, in a way that in steady state the 

frontier for sector 𝑗 will be whichever country featuring the highest TFP level in that sector. Each 

non-frontier country will be at an equilibrium distance behind the leader such that all countries 

feature the same TFP growth rate. 

Equation (1) can be thought as an equilibrium correction model (ECM) representation 

featuring a first-order autoregressive distributed lag model (ADL(1,1)), which assumes a long-run 

cointegrating relationship between a country’s own TFP and technological leader’s TFP:24 

𝑙𝑛𝐴𝑖𝑗𝑡 = 𝜆1𝑙𝑛𝐴𝑖𝑗𝑡−1 + 𝜆2𝑙𝑛𝐴𝐹𝑗𝑡 + 𝜆3𝑙𝑛𝐴𝐹𝑗𝑡−1 + 𝛽𝑖𝑗 + 𝜀𝑖𝑗𝑡 (3) 

Assuming long-run homogeneity (𝜆1 + 𝜆2 + 𝜆3 = 1), this equation can be expressed as: 

∆𝑙𝑛𝐴𝑖𝑗𝑡 = 𝜆2∆𝑙𝑛𝐴𝐹𝑗𝑡 + (1 − 𝜆1)𝑙𝑛 (
𝐴𝐹
𝐴𝑖
)
𝑗𝑡−1

+ 𝛽𝑖𝑗 + 𝜀𝑖𝑗𝑡 (4) 

so that equation (4) is identical to (2) with 1 − 𝜆1 = 𝛾 and 𝜆2 = 0. This ECM representation offers 

a straightforward interpretation: TFP growth in country 𝑖 and industry 𝑗 increases with TFP growth 

of the industry featuring as frontier (i.e. 𝐹) and with the distance of each country-sector pair from 

the frontier sector (Bourlès et al., 2013). 

 

24 See Hendry (1996) for further details. 
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As discussed in Section 2.2, following the extensive literature on endogenous innovation 

and growth we recognise the role variables such as R&D, international trade and ICTs have in 

determining productivity growth. At the same time, following the literature on technological 

convergence, we assume these variables can affect TFP growth through both domestic innovation 

and technological catch-up. In addition to these traditional determinants of TFP growth, in this 

Chapter we augment the model with the introduction of a variable measuring the adoption of 

AMTs. We account for these sources of productivity growth by allowing parameters 𝛽𝑖𝑗 and 𝛾𝑖𝑗 in 

equation (1) to be functions of R&D, international trade, investments in ICTs and in AMTs. Hence, 

our final econometric specification becomes: 

∆𝑙𝑛𝐴𝑖𝑗𝑡 = 𝛼1∆𝑙𝑛𝐴𝐹𝑗𝑡 + 𝛼2𝑙𝑛𝐷𝑇𝐹𝑖𝑗𝑡−1 + 𝛼3𝐴𝑀𝑇𝑖𝑗𝑡−1 + 𝛼4𝐴𝑀𝑇𝑖𝑗𝑡−1 × 𝑙𝑛𝐷𝑇𝐹𝑖𝑗𝑡−1 

+𝛼5𝑋𝑖𝑗𝑡−1 + 𝛼6𝑋𝑖𝑗𝑡−1 × 𝑙𝑛𝐷𝑇𝐹𝑖𝑗𝑡−1 + 𝜂𝑖𝑗 + 𝜏𝑡 + 𝜀𝑖𝑗𝑡 
(5) 

where ∆𝑙𝑛𝐴𝑖𝑗𝑡 and ∆𝑙𝑛𝐴𝐹𝑗𝑡 represent the TFP growth rate in sector 𝑗 of country 𝑖 and the TFP 

growth rate in sector 𝑗 of the frontier, respectively; 𝑙𝑛𝐷𝑇𝐹𝑖𝑗𝑡−1 is the distance from the frontier (the 

empirical counterpart of 𝑙𝑛(𝐴𝐹 𝐴𝑖⁄ )𝑗𝑡−1), 𝐴𝑀𝑇𝑖𝑗𝑡−1 is our main explanatory variable capturing the 

stock of investments in the three I4.0-related technologies (i.e. AIRs, AM and IIoT) at the country-

sector level and 𝑋𝑖𝑗𝑡−1 is a vector of control variables (i.e. R&D, overall sectoral imports, ICT 

investments). We further explore specification of our model where we estimate equation (5) by 

substituting overall AMT investments 𝐴𝑀𝑇𝑖𝑗𝑡−1 with single technologies (i.e. 𝐴𝐼𝑅𝑖𝑗𝑡−1, 𝐴𝑀𝑖𝑗𝑡−1 

and 𝐼𝐼𝑜𝑇𝑖𝑗𝑡−1) in order to explore potential heterogeneities across technologies. 

A positive value for 𝛼2 implies that technology transfers are relevant for technological 

laggards, thus translating in productivity catch-up. If AMT adoption spurs productivity gains, 𝛼3 

should be positive; at the same time, if it brings greater TFP growth for countries closer to (farther 

away from) the frontier 𝛼4 should be negative (positive). As described in Chapter 1, the AMTs 

under investigation show a distinct pattern of diffusion across Europe. Since AMTs embody some 

of the most recent forms of technological change, they require absorptive capacity and 
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complementarity with existing enabling technologies to be efficiently adopted (Ciffolilli and 

Muscio, 2018; Corradini et al., 2021). Hence, while we expect positive TFP gains from AMT 

adoption (i.e. a positive 𝛼3), it is likely that the effect on the speed of catching-up will be very 

limited and not beneficial for technological laggard (i.e. we expect a negative 𝛼4). 

The information on AMT imports is available only at the country-year level for the sample 

of European countries included in our analysis. In order to have variation across sectors we exploit: 

(i) data on the share of AMT-related capital and intermediate goods produced by AMT-producing 

industries and (ii) sectoral information on the share of intermediates imported from AMT-producing 

industries. In this way we can build a measure of sectoral AMT imports, which should well 

approximate true sectoral imports for disaggregated 8-digit product codes, otherwise not available.25 

Section 2.4.2 provides a detailed description on how we compute the 𝐴𝑀𝑇𝑖𝑗𝑡 variable. In Section 

2.5.3 we provide a robustness test to our main results, by exploring specifications of our model in 

which we allow AMT adoption to vary only across countries and years. Equation (5) includes 

unobserved heterogeneity arising from country-industry characteristics not captured by our 

explanatory variables, affecting rates of TFP growth, and possibly correlated with our controls. For 

instance, there may be some specific characteristics related to the production technology in specific 

countries and sectors that might push TFP to grow faster in exactly those country-sector pairs 

showing higher intensities in investments in AMTs, R&D or trade patterns. For this reason, we 

include country-sector fixed effects (𝜂𝑖𝑗), i.e. use the within-groups estimator. We further include 

time fixed effects (𝜏𝑡) to capture the potential component of technical change, evolving over time, 

which is common to all countries and sectors, as well as common macroeconomic trends and 

shocks. Since heteroskedasticity is pervasive in our industry-level data, and hypotheses tests on our 

sectoral variables indicates that variances are heterogeneous across country-sector groups, we 

 

25 This measure is close in spirit to the robot exposure index proposed by Acemoglu and Restrepo (2020) to measure 

robot adoption at the local labour market level, also used by several empirical studies in the automation-employment 

literature. 
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estimate all specifications of equation (5) by Weighted Least Squares (WLS) using value added 

shares in total economy as weights. As robustness check, in Section 2.5.3, we also explore 

unweighted specifications, estimated via Ordinary Least Squares (OLS). 

 

2.4. Data 

2.4.1. TFP growth and levels 

To compute our dependent variable, TFP growth rate, we use 2-digit sectoral data on gross output, 

value added, labour, total capital stock and intermediate inputs for European countries, the US and 

Japan from the 2021 release of EU KLEMS database (February 2022 revision). We complement EU 

KLEMS data with comparable information from OECD STAN data set. 

Following an established approach (Islam, 1999), we adopt the superlative index approach 

by Caves et al. (1982a,b). The approach assumes that the underlying production function is translog, 

allowing a more flexible specification of the production technology and outperforming other 

measures assuming alternative production function (e.g. Cobb-Douglas technologies) in terms of 

comparability (e.g. Griffith et al., 2004; Keller, 2004; Venturini, 2015). Following Jorgenson et al. 

(2005), we compute TFP growth rates as: 

∆𝑙𝑛𝐴𝑖𝑗𝑡 = ∆𝑙𝑛𝑌𝑖𝑗𝑡 − �̆�𝑖𝑗𝑡
𝑋 ∆𝑙𝑛𝑋𝑖𝑗𝑡 − �̆�𝑖𝑗𝑡

𝐾 ∆𝑙𝑛𝐾𝑖𝑗𝑡 − �̆�𝑖𝑗𝑡
𝐿 ∆𝑙𝑛𝐿𝑖𝑗𝑡 (6) 

where �̆�𝑖𝑙𝑡
𝑋 , �̆�𝑖𝑙𝑡

𝐾  and �̆�𝑖𝑙𝑡
𝐿  represent the share of nominal intermediate inputs, the share of capital 

compensation and the share of labour compensation in gross output, respectively. Terms �̆�𝑖𝑗𝑡 

represent the ‘divisia index’26 and are computed as �̆�𝑖𝑗𝑡 = 0.5(𝑣𝑖𝑗𝑡 + 𝑣𝑖𝑗𝑡−1). Due to assumption on 

constant returns to scale it holds that �̆�𝑖𝑗𝑡
𝑋 + �̆�𝑖𝑗𝑡

𝐾 + �̆�𝑖𝑗𝑡
𝐿 = 1.  

 

26 The 'divisia index’ is used in economic modelling to account for changes over time (e.g. quantity, price) related to 

subcomponents of a production function, which are usually measured in different units (e.g. labor hours, investments in 

capital equipment and purchase of intermediates). 
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We measure TFP levels using the same approach, evaluating TFP relative to a common 

reference point (i.e. the geometric mean of the TFP levels of all other countries): 

ln𝐴𝑖𝑗𝑡 = 𝑙𝑛 (
𝑌𝑖

�̅�
)
𝑗𝑡
− �̃�𝑖𝑗𝑡

𝑋 𝑙𝑛 (
𝑋𝑖

�̅�
)
𝑗𝑡
− �̃�𝑖𝑗𝑡

𝐾 𝑙𝑛 (
𝐾𝑖

�̅�
)
𝑗𝑡
− �̃�𝑖𝑗𝑡

𝐿 𝑙𝑛 (
𝐿𝑖

�̅�
)
𝑗𝑡

 (7) 

where �̅�, �̅�, �̅� and �̅� denote the geometric means of gross output, intermediate inputs, aggregate 

capital stock and labour, and �̃�𝑖𝑗𝑡 = 0.5(𝑣𝑖𝑗𝑡 + �̅�𝑖𝑗𝑡) are the averages of nominal input cost shares 

and their geometric means. In each time 𝑡 and sector 𝑗, we take the country with the highest TFP 

level as the frontier, so that the 𝑙𝑛𝐷𝑇𝐹𝑖𝑗𝑡 term is computed as the difference between 𝑙𝑛𝐴𝐹𝑗𝑡 and 

𝑙𝑛𝐴𝑖𝑗𝑡. Coherently, ∆𝑙𝑛𝐴𝐹𝑗𝑡 is the TFP growth rate observed at the frontier, in each sector 𝑗 at each 

time 𝑡. 

Given the characteristics of our model, despite our geographical focus is on Europe, we also 

use data on the US and Japan in the computation of TFP levels and growth rates to expand the range 

of advanced economies possibly featuring as the frontier, being these two countries worldwide 

technological champions. Similar studies take a similar approach (e.g. Griffith et al., 2004), thus 

omitting them and constrain the range of countries featuring as frontier to Europe only could result 

in a serious bias in our results. 

We also deal with important measurement issues related to differences across countries in 

hours worked and skills levels. To support the robustness of our results, we compute alternative 

measures of TFP that adjust for differences in hours worked and skills levels. Appendix A reports 

details on how we compute these alternative TFP measures. 

 

2.4.2. Measuring AMT adoption 

The main variables of interest, the adoption of the three AMTs considered in this Chapter (i.e. 

AIRs, AM and IIoT), are computed by starting from country-level highly disaggregated trade data 

from Eurostat’s Comext database, thanks to the availability of fine-grained 8-digit product codes 

related to such technologies. Product codes in Comext data follow the Combined Nomenclature 
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(CN), a further breakdown of the Harmonised System. We checked for changes occurred in the 

classification between 2009 and 2019 in each year, in order to track all potential changes related to 

the selected codes. Whenever the CN classification changed over time, we followed the 

methodology by Van Beveren et al. (2012), creating ‘synthetic’ codes grouping together the 

relevant CN codes. This procedure grants full consistency in the correspondence between trade data 

over time and resulted in a slight reduction in the number of 8-digit product codes considered 

(shrinking from 21 to 18). Further details on technical caveats related with Comext data, along with 

the list of identified product used in our analysis are reported in Chapter 1. 

Starting from this harmonised list of product codes, we computed our measure to proxy the 

adoption of AMTs by creating one summary measure for the three technologies as the sum of the 

value of imports for all product codes relating to AIRs AM and IIoT, for each country and year of 

observation. In this way, we can identify for each European country in our panel a unique measure 

embodying all the imported goods associated with AMTs. This measure is inspired by Caselli and 

Coleman (2001) and similar measures of technology adoption have been used in several recent 

studies (e.g. Blanas et al., 2019; Acemoglu et al., 2020; Bonfiglioli et al., 2020; Domini et al., 2021; 

2022; Acemoglu and Restrepo, 2022). 

Caselli and Coleman (2001) also argue that an alternative approach would be to exploit both 

production and trade data, to account for both domestic and foreign sources of adoption of a 

technology. Such a measure would capture the net consumption (i.e. production + import – export) 

of a technology. For AMTs, we highlighted in Chapter 1 that the availability of production data is 

constrained by the actual presence of local producers, resulting in this alternative measure to be 

available for a restricted sample of European countries. We also showed that, imports and net 

consumption are highly correlated, and the former represents a good proxy of AMT adoption across 

European countries. 

As anticipated in Section 2.3, in order to measure AMT adoption at the sector level we build 

an exposure index by using: (i) the information on each country’s share of imported AMT-related 
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goods over total imports from AMT-producing sectors;27 (ii) cross-country and cross-sector data on 

imported intermediate inputs from WIOD data set (Timmer et al., 2015). In doing so, we assume 

that each industry adopts AMT in the same proportion as it uses AMT-related inputs from the 2-

digit sector producing each specific AMT (i.e. 28 for AIRs and AM, 26 for IIoT): 

𝑀𝑖,𝑗,𝑡
𝐴𝑀𝑇 = (𝑀𝑖,𝑡

𝐴𝐼𝑅 × 𝜑𝑖
𝐴𝐼𝑅 ×

∑ 𝑖𝑛𝑡𝑖,𝑗
𝑐,28

𝑐

∑ ∑ 𝑖𝑛𝑡𝑖,𝑗
𝑐,𝑠

𝑠𝑐

) + (𝑀𝑖,𝑡
𝐴𝑀 × 𝜑𝑖

𝐴𝑀 ×
∑ 𝑖𝑛𝑡𝑖,𝑗

𝑐,28
𝑐

∑ ∑ 𝑖𝑛𝑡𝑖,𝑗
𝑐,𝑠

𝑠𝑐

) 

+(𝑀𝑖,𝑡
𝐼𝐼𝑜𝑇 × 𝜑𝑖

𝐼𝐼𝑜𝑇 ×
∑ 𝑖𝑛𝑡𝑖,𝑗

𝑐,26
𝑐

∑ ∑ 𝑖𝑛𝑡𝑖,𝑗
𝑐,𝑠

𝑠𝑐

) 

(8) 

where 𝑖 and 𝑗 denote the country and the sector buying intermediates (i.e. the destination); 𝑐 and 𝑠 

denote the country and the sector selling intermediates (i.e. the source); 𝜑𝑖
𝐴𝐼𝑅 = 𝑀𝑖

𝐴𝐼𝑅 𝑀𝑖
28⁄  denotes, 

in each country 𝑖, the share of AIR imports in all imports of goods produced by sector 28; 𝜑𝑖
𝐴𝑀 =

𝑀𝑖
𝐴𝑀 𝑀𝑖

28⁄  denotes the same share for AM; 𝜑𝑖
𝐼𝐼𝑜𝑇 = 𝑀𝑖

𝐼𝐼𝑜𝑇 𝑀𝑖
26⁄  denotes the share of IIoT imports 

in all imports of goods produced by sector 26. 

For each country 𝑖, sector 𝑗 and year 𝑡, AMT imports (𝑀𝑖𝑗𝑡
𝐴𝑀𝑇) are then equal to the sum of 

imports of each AMT in each country, weighted by the ratio of AMT-related intermediate goods 

bought by sector 𝑗 of country 𝑖 from the sector producing each specific AMT (i.e. 28 for AIRs and 

AM, 26 for IIoT) in all other countries (𝑐 ≠ 𝑖) over total intermediate goods used by sector 𝑗 in 

country 𝑖 (𝑖𝑛𝑡𝑖𝑗). We take predetermined weights (i.e. in 2008) in order to avoid potential biases 

associated with reverse causality. The idea behind this measure is that true sectoral AMT adoption 

(unfortunately, not available) should be positively correlated with our measure, i.e. the more a 

sector buys AMT-related inputs from AMT producing sectors, the larger its AMT adoption. 

We then compute the stock of sectoral AMT imports (𝐴𝑀𝑇𝑖𝑗𝑡) following the perpetual 

inventory method as 𝐴𝑀𝑇𝑖𝑗𝑡 = 𝑀𝑖𝑗𝑡
𝐴𝑀𝑇 + (1 − 𝛿)𝐴𝑀𝑇𝑖𝑗𝑡−1, assuming a depreciation rate or 15%. 

 

27 As discussed in Chapter 1, this information can be computed by matching the 8-digit CN product codes for AMT-

related capital and intermediate goods with the corresponding 8-digit codes in Prodcom classification. In the Prodcom 

list, the first 4 digits of each product code coincide with the 4-digit NACE sector producing the good (Eurostat, 2021). 
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We also test specifications of our model in which we delve into the specific relationship, and related 

magnitude, of each single AMT. The related measures for AIRs, AM and IIoT are built following 

the same methodology used for the total AMT variable. 

 

2.4.3. Other independent variables  

In addition to country-sector and year fixed-effects, we include controls for R&D and ICT 

capital stocks as shares of value added. To avoid that our AMT adoption variables pick up a general 

effect from imported goods, we also control for the share of imports in value added. All these 

variables vary over countries, sectors, and years. We sourced this information from EU KLEMS 

database, OECD STAN, ANBERD and BTDIxE data sets. When building all our variables, we 

adjusted current values using specific sectoral deflators from OECD STAN and converting all data 

in USD.28 This allows for more precise intertemporal and geographical comparison while 

performing our sectoral empirical analysis. 

Our sample consists of 14 European countries29 and 13 2-digit manufacturing industries30 

over the 2009–2019 period. Table 1 below reports a detailed description of all variables and a 

summary description, while Table 2 presents summary statistics. 

 

 

 

28 We do not use sectoral PPPs, which would enable a more precise comparison across countries and sectors, since these 

are hardly available for all countries, sectors and years in our analysis. However, this is a lesser concern for our work as 

by using the within-groups estimator we should be able to filter out cross-country and cross-sector differences in prices. 
29 Country list: Austria (AUT), Belgium (BEL), Czech Republic (CZE), Germany (DEU), Denmark (DNK), Spain 

(ESP), Finland (FIN), France (FRA), United Kingdom (GBR), Italy (ITA), Netherland (NLD), Portugal (PRT), Slovak 

Republic (SVK), Sweden (SWE). 
30 Manufacturing industries list (NACE rev.2): 1 - Food products, beverages and tobacco (10-12); 2 - Textiles, wearing 

apparel, leather and related products (13-15); 3 - Wood and paper products; printing and reproduction of recorded 

media (16-18); 4 - Coke and refined petroleum products (19); 5 - Chemicals and chemical products (20); 6 - Basic 

pharmaceutical products and pharmaceutical preparations (21); 7 - Rubber and plastics products, and other non-metallic 

mineral products (22-23); 8 - Basic metals and fabricated metal products, except machinery and equipment (24-25); 9 - 

Computer, electronic and optical products (26); 10 - Electrical equipment (27); 11 - Machinery and equipment n.e.c. 

(28); 12 - Transport equipment (29-30); 13 - Other manufacturing; repair and installation of machinery and equipment 

(31-33). 
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-------------------------- 

Tables 1 and 2 around here 

-------------------------- 

 

2.5. Results 

2.5.1 Main results 

Table 3 shows our estimates of the model described by equation (5) in Section 2.3. Our starting 

point is to estimate a benchmark model including only determinants of TFP growth extensively 

studied in the literature, i.e. R&D, imports and ICT intensity. 

We begin in column (1) by estimating the long-run relationship between TFP growth rates 

and R&D, import and ICT variables between 1995 and 2019. This baseline model provides us with 

a robust starting point for the analysis, directly connects our work to the existing literature and 

increases comparability with prior studies. TFP growth of the frontier (∆𝑙𝑛𝐴𝐹) and the 𝑙𝑛𝐷𝑇𝐹 terms 

are positive and statistically significant at the 1% level. This indicates that, within each 

manufacturing industry, while all European countries benefit from technological progress at the 

frontier, countries lagging behind the frontier also experience additional productivity gains (i.e. TFP 

grows faster) as a result of catching-up. This result is in line with prior sector-level evidence for 

developed economies spanning between the 70s and early 2000s (e.g. Griffith et al., 2004; Cameron 

et al., 2005; Mc Morrow et al., 2008; Bourlès et al., 2013; Minniti and Venturini, 2017; Mason et 

al., 2020), and persistent up to before the Covid-19 pandemic, as shown by our results. 

In line with other studies (e.g. Griffith et al., 2004; Madsen et al., 2010), we find a positive 

and statistically significant (at the 1% level) relationship between R&D investments and TFP 

growth across all countries and sectors, but these gains are concentrated in countries closer to the 

frontier (i.e. the interaction with the 𝑙𝑛𝐷𝑇𝐹 term is also statistically significant and negative). 

Conversely, import intensity seems to feature a negative relationship with TFP growth and a 
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catching-up effect due to a positive contribution to the speed of technology transfer (both significant 

at the 5% level). Although these effects are small in magnitude, our findings are broadly in line with 

works looking at earlier decades (e.g. Keller, 2000; Griffith et al., 2004). Finally, in line with other 

studies (e.g. Bakhshi and Larsen, 2005; Martínez et al., 2010; Venturini, 2015; Bergeaud et al., 

2016), our estimates highlight that ICT investments had a positive effect on TFP growth rates 

(significant at the 5% level), yet mostly concentrated in more advanced European economies. 

In columns (2) and (3) we then split the sample period, looking at the period 1995–2008 in 

column (2) and at the period 2009–2019 in column (3). As discussed in Chapter 1, the year 2009 

represents a meaningful starting point for our investigation since: (i) only after the 2008 global 

financial crisis these technologies started receiving increasing attention from European 

policymakers and the worldwide demand for advanced mechanical and automation equipment 

returned to normal (Kagermann et al., 2013; De Backer et al., 2018); (ii) several core patents 

protecting AM technologies, such as fused deposition modelling and selective laser sintering, 

expired between 2009 and 2014 (Laplume et al., 2016), leading to a proliferation of spill-over 

inventions and machinery producers.  

Comparing column (2) with (1), we note that imports had a no significant effect between 

1995 and 2008. Similarly, the effect of ICT investments is estimated less precisely and turns out not 

significant, pointing at similar results as found in some studies looking at manufacturing industries 

over the same period (e.g. Mc Morrow et al., 2008; Edquist and Henrekson, 2017). Conversely, 

looking at the 2009–2019 period in column (3), ICT investments appear to have a large positive and 

significant effect on TFP growth rates across manufacturing industries, concentrated in more 

advanced countries. This finding provides updated evidence of the role of ICTs as a driver of 

productivity, highlighting that the trend of diminishing gains observed in previous studies (e.g. 

Bergeaud et al., 2016; Chung, 2018) has turned in the case of European countries in our sample. 

Next, in columns (4) and (5), we augment the baseline catch-up model by including our 

measure of sectoral AMT adoption (column (4)) and by allowing it to have an effect on the speed of 
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technology transfer from the frontier (column (5)). In column (4), the effect of AMT adoption alone 

is negative, very small in magnitude and not statistically different from zero. However, in column 

(5), when we also consider its relationship with TFP growth mediated by the distance from the 

technology frontier (𝐴𝑀𝑇 × 𝑙𝑛𝐷𝑇𝐹), the AMT adoption variable increases in magnitude and 

become statistically significant at the 1% level, while the interaction term enters our specification 

with a negative and statistically significant (1% level) coefficient. This result suggests that, AMT 

adoption spurs positive productivity gains for economies closer to the frontier while countries 

lagging behind the frontier do not benefit from AMT-related technological catch-up. 

In columns from (6) to (8) we explore specifications similar to that in column (5) where our 

TFP measures reflect cross-country differences in the skill composition of the workforce (column 

(6)), in hours worked and skill composition (column (7)), and also for an alternative definition of 

the technology frontier31 (column (8)). Our main results are robust and qualitatively unchanged 

cross these specifications, confirming a positive effect of AMT adoption on TFP growth rates 

across manufacturing industries of European countries. 

The specifications correcting TFP measurement for hours worked and skills also highlight 

that accounting for these factors reduces the importance of spill-overs from the leader’s growth (i.e. 

∆𝑙𝑛𝐴𝐹 's coefficient reduces in magnitude and is no longer significant), while it also uncovers a 

much bigger role of R&D investments (e.g. in column (6), 𝑅𝐷’s coefficient becomes three times 

bigger than in column (5), while its interaction with 𝑙𝑛𝐷𝑇𝐹 remains virtually unchanged) and a 

more uncertain role of ICTs (e.g. 𝐼𝐶𝑇’s coefficients are less precisely estimated in column (7)). 

 

 

31 The model described in Section 3 assumes that it is not the identity of the technology frontier that is relevant in 

equation (5), but the distance from the frontier itself, capturing the potential for technological catch-up. As the model 

allows for any country to switch endogenously from being a frontier to a non-frontier country and vice versa, only 

requiring that the 𝑙𝑛𝐷𝑇𝐹 term correlates with the potential for technology transfer and productivity gains from 

catching-up. Thus, in column (8) we test an alternative specification of our model in which we measure 𝑙𝑛𝐷𝑇𝐹 using 

the average TFP level for the two countries featuring the highest value as the frontier, and by computing ∆𝑙𝑛𝐴𝐹  as the 

average growth rate between these two countries. 
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-------------------------- 

Table 3 around here 

-------------------------- 

In Table 4, we test the sensitivity of our main results when using three different and disaggregated 

measures for each AMT, i.e. we report estimates of equation (5) in which we consider 

disaggregated measures for AIRs, AM and IIoT. In column (1) we only consider the direct 

relationship between AIR adoption on TFP growth, which results to be positive and statistically 

significant, although only at the 10% level. When we also consider the (𝐴𝐼𝑅 × 𝑙𝑛𝐷𝑇𝐹) interaction 

term in column (2), we observe a positive direct effect of AIR investments, which also increase in 

magnitude, and a negative sign for the interaction term (both statistically significant at the 10% 

level). This result suggests similar implications as for the aggregate AMT variable: while AIRs spur 

TFP gains across manufacturing industries, these gains are larger for European economies closer to 

the frontier. 

Columns (3) and (4), (5) and (6) replicate the same specifications considering the adoption 

of AM and IIoT, respectively. Results for both the main and the moderated relationships are 

qualitatively unchanged across specifications reported in Table 4 as compared to the main results in 

Table 3, however the estimates presented in columns (2), (4) and (6) of Table 4 highlight 

relationships of different magnitude with TFP growth, depending on the specific technology. 

-------------------------- 

Table 4 around here 

-------------------------- 

 

2.5.2. Quantitative importance of the estimated effects 

In this Section, we focus on the interpretation of the estimated coefficients for the specifications just 

presented and on their quantitative importance. 
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-------------------------- 

Figure 1 around here 

-------------------------- 

The average marginal effect of AMT adoption on TFP growth rates across all countries and sectors 

in our sample computed as 𝛼3 + 𝛼4 × 𝑙𝑛𝐷𝑇𝐹̅̅ ̅̅ ̅̅ ̅̅ ̅ is positive (i.e. 0.329 − 0.313 × 0.899 = 0.047), 

based on estimates from column (7) of Table 3. To get a more detailed view, Figure 1 plots the 

marginal effects of AMT adoption, considering heterogeneity across countries by computing 

marginal effects for each country-sector pair. The box-plot graph shows, for each country, the 

mean, the median, the interquartile range and the upper and lower adjacent values (excluding 

outliers). 

Between 2009 and 2019, imports of AMT-related technologies had a positive effect on TFP 

growth in many sectors and countries in our sample. In 5 out of 14 countries (i.e. Germany, the UK, 

France, Italy and Spain), productivity growth has been boosted by imports of AMTs in virtually all 

manufacturing industries. In the Netherlands, about 75% of the sector-year distribution experience 

positive gains, together with just more than 50% of the distribution for Austria, Belgium and 

Sweden. Conversely, in Finland and Czech Republic, more than 50% of the sector-year distribution 

experience a negative effect on TFP growth rates. Denmark, Portugal and Slovakia are the 

European countries less able to harness benefits from the adoption of the three AMTs we consider, 

with about 75% of sector-year observations showing a negative effect on TFP growth.32 

In quantitative terms, more AMT-advanced countries like Germany, the UK, France and 

Italy experienced a positive average (black dots) marginal effects across all manufacturing 

industries ranging between +0.1 and +0.18 percentage points (pp) associated with a 10% increase in 

 

32 While such result may be related to the yet mentioned lack of necessary conditions (e.g. a certain level of absorptive 

capacity) in the case of Slovakia and, to a certain extent, Portugal, the findings for Denmark may relate to the sectoral 

composition of the country, with a small and decreasing share of manufacturing as compared to services (similarly to 

other Nordic countries in our sample, i.e. Sweden and Finland). With this respect, we acknowledge that our analysis of 

the import-technology transfer-productivity growth is conditional on the local specific industrial structure. 
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AMT adoption. Conversely, Portugal and Slovakia seems to have suffered a negative average 

marginal effect deriving from AMT adoption, mild in the case of Portugal (i.e. about –0.024 pp), 

more severe for Slovakia (i.e. about –0.062 pp). 

Figure 2 explores differences in the average marginal effect of adopting each AMT 

singularly (i.e. AIRs, AM and IIoT) on TFP growth, based on estimates from columns (2), (4) and 

(6) of Table 4. Decomposing the aggregate measure helps identifying which technology of the 4IR 

has contributed more – on average across manufacturing industries of European countries – to 

productivity growth between 2009 and 2019. Our estimates highlight that a 10% increase in the 

adoption of AIRs resulted, on average, in about +0.194 pp rise in TFP growth (black dot), while the 

same increase in AM adoption spurred a mean growth of about +0.308 pp. The lower contribution 

we estimate is associated with IIoT adoption (i.e. +0.062 pp, on average). In the case of AIRs and 

IIoT, the estimated marginal effects are positive for the large majority of the country-sector 

distribution (i.e. more than 75%), although productivity gains from the former spans over a larger 

positive range (i.e. up to about +0.7), while those associated with the latter are much lower (i.e. only 

up to about +0.22 pp). Most strikingly, our results highlight that TFP growth rates in manufacturing 

industries of the analysed European countries are mostly boosted by AM adoption, as virtually no 

country-sector pair experience a negative marginal effect, the bottom percentiles of the distribution 

experience moderate positive marginal effects and TFP gains above the 25th percentile of the 

distribution range between +0.23 and +0.55 pp. 

Our results on AIR and IIoT adoption are on average more conservative, but in line with 

evidence from more comparable studies Graetz and Michaels (2018) and Edquist et al. (2019). To 

the best of our knowledge, so far there is no evidence on the relationship between AM adoption and 

productivity measures and this work represents the first attempt of quantifying AM contribution to 

TFP growth. 
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-------------------------- 

Figure 2 around here 

-------------------------- 

In Figure 3, we further delve into the heterogeneity of effects associated with each different AMT 

by plotting marginal effects for the European countries in our sample. In the case of AIRs and IIoT, 

most countries enjoy net TFP gains from their adoption above the 25th percentile of the distribution. 

Only Portugal and Slovakia have a consistent portion of the distribution (i.e. about 50% or more) 

experiencing negative marginal effects of TFP growth. However, TFP gains and losses from IIoT 

adoption spans over a narrower range compared to that resulting from AIR adoption, reflecting the 

pattern seen in Figure 2. Similarly, the insight presented here on AM adoption is in line with that 

discussed above: almost all countries and sectors experience positive marginal effects (except the 

bottom percentiles of the Slovak distribution). 

 To conclude, findings presented in Figure 3 suggest that AM adoption spurs a more 

homogeneous positive effect on productivity growth across countries and manufacturing sectors, 

while the effect of AIRs and IIoT is positive for most (if not all) sectors in more advanced European 

countries and negative in many industries in countries lagging behind the frontier. The latter effect 

is generally smaller in magnitude in the case of IIoT, according to our findings. 

-------------------------- 

Figure 3 around here 

-------------------------- 

 

2.5.3. Robustness checks 

In this Section, we address different econometric issues, which might affect our empirical strategy. 

Serial correlation: The first concern might relate with the effect of AMTs on TFP growth 

rates being overestimated because firms operating within sectors in our sample might import, invest 

in, and adopt more AMTs in periods characterised by a faster productivity growth. Since our 
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specifications in Tables 3 and 4 highlight a strong correlation between our measures proxying the 

AMT adoption and TFP growth, we need to be cautious in interpreting our results as causal, as we 

cannot rule out simultaneity bias and reverse causality. The relevant assumption needed here is that 

lagged values of AMT adoption should be predetermined to TFP growth in equation (5) (i.e. 

𝐸(𝐴𝑀𝑇𝑖𝑗𝑡−1, 𝜀𝑖𝑗𝑡) = 0), while current shocks on productivity growth are allowed to feed back to 

both current and future values of AMT adoption (i.e. 𝐸(𝐴𝑀𝑇𝑖𝑗𝑡+s, 𝜀𝑖𝑗𝑡) ≠ 0, 𝑠 ≥ 0). Such condition 

could be violated if, for example, firms would be able to predict a positive shock on TFP one period 

in advance and be instantly able to increase their investments in AMTs. In this scenario, the 

condition 𝐸(𝐴𝑀𝑇𝑖𝑗𝑡−1, 𝜀𝑖𝑗𝑡) = 0 would be violated and residuals in equation (5) would result being 

serially correlated. 

Furthermore, since our empirical model is designed as an ECM – thus capturing the long-run 

(cointegrating) relationship between TFP growth and our explanatory variables – testing the 

presence of serial correlation in the residuals (i.e. stationarity) is equivalent to a cointegration test. 

We test each specification for the presence of first-order serial correlation in the residuals by 

using Born and Breitung (2014) version of the Lagrange Multiplier (LM) test, which allows for bias 

correction in fixed effect panel data models with relatively short 𝑇 periods like ours. We report p-

values of the test at the bottom of each specification in Tables 3 and 4.33 p-values are always above 

the critical value for the test of 0.05, thus suggesting our model not to be affected by serial 

correlation. In addition, we formally tested for the presence of unit roots in our data and we tested 

the long-run cointegrating relationship among the variables included in our model by using the 

appropriate tests. Finally, to further address reverse causality concerns, we estimated the model in 

equation (5) using the (System-)GMM estimator, which provided confirmatory results.34Aggregate 

AMT variables: Our main explanatory variables capturing overall AMT adoption and the adoption 

 

33 We report results of the LM test for the presence of first-order serial correlation in the residuals also at the bottom of 

Tables B1, B2, B3 and B4 in Appendix B. 
34 Further detail on the tests and GMM model’s results are available upon request. 
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AIRs, AM and IIoT at the sector level are built as exposure measures, in the spirit of Acemoglu and 

Restrepo (2020), by accounting for the existing linkages between aggregate AMT imports and 

sectoral trade patterns. Despite these variables should proxy sufficiently well true sectoral imports 

of AMTs, not otherwise available, their construction is based on the assumption that each industry 

adopts AMT in the same proportion as it uses AMT-related inputs sourced from the 2-digit sector 

producing each specific AMT from every other country. To provide further robustness to our main 

results, we relax this assumption and use observed AMT imports at country level as a measure of 

adoption. 

We estimate specifications of the model described in equation (5) in which our AMT 

adoption variable is allowed to vary only across countries and time. This means that differently 

from our main results, these estimates should be interpreted only as the average relationship 

between AMT adoption and TFP growth across countries. Table B1 in Appendix B presents our 

estimates using aggregate AMT adoption and replicating specifications in Table 3 and 4. Overall, 

Table B1 confirms our main findings: results for both our main AMT adoption variables and other 

variables included in the model are qualitatively unchanged and statistically robust. 

Alternative TFP growth measure: In our econometric analysis we account for two main 

factors which might lead to deviations from real patterns when measuring TFP growth (i.e. 

differences in hours worked and skill composition). At the same time, we acknowledge that there 

are other potential sources of measurement error which might affect the measurement of TFP 

growth rates. In order to provide robustness the methodology we adopted to measure TFP growth 

(Caves et al., 1982a;b) and to our main results by using an alternative approach, we use data on TFP 

growth rates provided by EU KLEMS35 to measure our dependent variable (∆𝑙𝑛𝐴𝑖𝑗𝑡) and one of the 

explanatories (i.e. the contemporaneous TFP growth at the frontier, ∆𝑙𝑛𝐴𝐹𝑗𝑡). Table B2 in 

 

35 Computed following a different growth accounting approach as described Stehrer et al. (2019). 
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Appendix B reports estimates comparable to that in Table 3 and 4, using EU KLEMS’s TFP growth 

measure: our main results are robust to the use of this alternative measure. 

Unweighted regressions: Our main results are estimated through WLS-FE (i.e. using the 

within-groups estimator). We use industry-level shares of value added in total economy to account 

for the fact that manufacturing industries might have different size and relative weight when 

compared across countries, according to the local industrial structure. Coherently, in our model, 

AMT adoption might have a relatively more important role in some countries and sectors, 

depending on their relative importance in the whole economy. 

To further test the robustness of our main results, in Tables B3 and B4 in Appendix B, we 

report estimates from unweighted regressions, estimated through OLS-FE. In so doing, we test the 

less restrictive assumption that all sectors have the same relative weight across countries. Table B3 

shows results comparable to those reported in Table 3 and 4, while Table B4 shows results obtained 

using aggregate AMT adoption variables (i.e. comparable to those in Table B1). Our main findings 

are robust to this further check. 

 

2.6. Discussion and conclusions 

Total factor productivity has been stagnating across European economies ever since the second half 

of the 90s and throughout the early 2000s as a result of the inability of European countries to 

harness the benefits of investments R&D, human capital accumulation and the diffusion of ICTs. 

(Mc Morrow et al., 2008). Although we can still find evidence of β-convergence and σ-

convergence36 within specific manufacturing sectors, economic convergence in manufacturing as a 

whole has been hampered by institutional factors (e.g. weak policy), existing structural rigidities 

 

36 β-convergence occurs when TFP rises faster in countries far from the technological frontier than in countries closer to 

it, i.e. technological laggards experiencing catch-up; σ-convergence refers to the reduction of the sample dispersion (i.e. 

standard deviation) of relative TFP levels across countries over time. 
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and the economic downturns observed in Europe after the 2008 global financial crisis (ECB, 2015; 

Bergeaud et al., 2016; Eurofound, 2020), culminating in 2020 with the Covid-19 pandemic. This 

evidence signs a clear break with the pattern of TFP growth and convergence observed in several 

empirical works looking at earlier decades, i.e. between the 70s and early 90s (e.g. Griffith et al., 

2004; Cameron et al., 2005). 

This study investigates to what extent the adoption of AMTs could contribute to end this 

pattern of sluggish productivity growth. In line with other recent works (e.g. Venturini, 2022) our 

results suggest that AMTs of the I4.0 wave could play an important role in the long run to reverse 

the observed productivity growth stagnation. However, we find that gains related to the rising 

adoption of embodied AMT are unevenly distributed across Europe, with more technologically 

advanced countries benefitting more, while technological laggards lack enough absorptive capacity 

and technological capabilities to harness the related productivity gains. For instance, one of the 

most advanced European economies, Germany, is a leading actor in AMTs (UNIDO, 2018; 

Martinelli et al., 2021). Conversely, other European countries like Portugal and Slovakia – despite 

showing not negligible adoption levels, as seen in Chapter 1 – still lag behind in the adoption of 

enabling technologies, in the development of 4IR-related competences and policies (Ciffolilli and 

Muscio, 2018; Corradini et al., 2021), thus hampering productivity gains potentially deriving from 

investments in AMTs. In turn, this pattern may contribute to widen the productivity gap between 

more advanced and laggard countries, ultimately increasing inequalities. 

We also highlight some heterogeneity across technologies. Our results on AIRs and IIoT are 

in line with previous evidence from comparable works (e.g. Graetz and Michaels, 2018; Edquist et 

al., 2019), although our estimates point at more conservative average productivity gains associated 

with the adoption of these technologies. At the same time, to the best of our knowledge, our work 

provides a first quantification of productivity gains deriving from the adoption of AM. Our results 

suggest such gains to be positive and quantitatively important as much as that coming from AIRs. 
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The adoption of AIRs and AM seem to bring higher and, in the case of AM, more evenly 

distributed contributions to TFP growth rates across European countries studied here, while gains 

spurred from IIoT adoption are suggested to be lower and even more concentrated in the most 

advanced economies. Possible reasons behind these heterogeneous results might relate with either 

the level of technological maturity associated with different AMTs or with the differences in the 

associated investment costs.37 In fact, also Chiacchio et al. (2019) and Martinelli et al. (2021) 

discuss how high investment costs and lack of sufficient absorptive capacity remain two of the main 

factors limiting the adoption of these technologies, especially for SMEs, while large companies 

(mostly multinationals) are better suited to efficiently adopt AMTs. 

Another barrier to the adoption of AMTs is the lack of precise and unified standards (above 

all, technical) across countries and industries (Martinelli et al., 2021), enabling interoperability 

between different technologies. While leading AMT producers sponsor proprietary standards, 

adopters ask for more open and universal standards like the Reference Architectural Model 

Industrie 4.0 (Schweichhart, 2017) or alternatives emerging under the supervision of international 

bodies like the International Telecommunication Union (ITU) or the ISO. This issue is particularly 

important for IIoT, given its crucial and infrastructural role within the I4.0 architecture (Atzori et 

al., 2010). 

This leads directly to the debate on whether the bulk of policy initiatives put in place by 

European countries over the last decade has led to significant results in boosting the diffusion of 

such advances technologies. Surely, developing policy incentives fostering innovation and adoption 

of AMTs across SMEs would bring more widespread benefits across European economies, given 

 

37 According to estimates from Acemoglu and Restrepo (2020), the average price of AIR ranges between 50,000 and 

100,000 USD, while the average price for an industrial AM machine is between 200,000 and 250,000 USD according to 

our computations based on data from all major AM producers worldwide and reported by Senvol. Senvol’s data are 

available at http://senvol.com/machine-search/. Concerning IIoT, the total cost of deployment greatly varies depending 

on the sector and on the scale of the project. Using total cost of ownership (TCO) calculator for IoT applications by 

NOKIA, we estimate cost for a medium-sized factory to range between 1.6mln and 0.8mln USD. NOKIA’s IoT TCO 

calculator is available at https://pages.nokia.com/T007K9-Compare-Wireless-Critical-Connectivity-Options. 

http://senvol.com/machine-search/
https://pages.nokia.com/T007K9-Compare-Wireless-Critical-Connectivity-Options
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the major role played by this class of firms: a more integrated approach across different AMTs must 

go along with dedicated incentives and approaches for individual technologies, which are more 

exposed to inefficient implementation. At the same time, these needs to be paired with a broader 

recognition among policymakers that integrating economic incentives with local dissemination of 

competencies and specific I4.0 knowledge content, and coordinated national and regional policies 

across the continent (i.e. following a common framework and standards) would create the potential 

for larger gains. The latter realising not just in terms of productivity growth but also in terms of 

aggregate economic growth and better employment conditions in the decades ahead. 

 To sum up, this Chapter adds to other recent contributions in the literature proposing a 

precise measure that uses fine-grained information (8-digit product codes) on the import of capital 

and intermediate goods related to AMTs. Our methodology allows the highest precision in the 

identification of such product codes, removing potential noise brought by all unrelated product 

codes otherwise considered when looking at more aggregated trade data (e.g. at the 4- or 6-digit 

level). The resulting measures enable us to study how these technologies affect TFP growth and 

technological convergence when actual adoption data are not publicly available. By doing so, our 

contribution is twofold: on the one hand, we provide new robust measures to study the adoption of 

multiple AMTs; on the other hand, we analyse the related implications for productivity growth, 

providing insight of the effects of different technologies (one of which, AM, has not been 

investigated before) across manufacturing sectors of European countries. 

Our findings should be considered under the light of the caveats that characterise our 

analysis: as trade data for highly disaggregated products are not directly available at the industry 

level, we can only link them to the importing sector by means of input-output tables, i.e. by creating 

proxies of sectoral adoption. Furthermore, although we provide several econometric checks to our 

model of catching-up (e.g. testing for cointegration), our relatively short panel poses limits to the 

use of more sophisticated and robust econometric techniques accounting for cross-sectional 

dependence, and enabling a robust analysis of the long run effects of adopting AMTs. Furthermore, 
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our findings highlight that ex-ante (i.e. prior to 2009) more advanced countries, like Germany, are 

those benefitting the most from AMT adoption. Arguably, such pre-existing trend may have led 

firms in more advanced economies to massively adopt AMTs to further sustain and increase 

productivity growth, making the evaluation of the net contribution of AMT adoption to productivity 

growth hard to quantify. With respect to such potential reverse causality issue we provide 

reassuring evidence, although we acknowledge the limitations of our work and leave a more 

accurate evaluation for future research. 

To conclude, as our import-based, sectoral measure of AMT adoption provides robust 

results which are in line with prior findings in the literature, it could be used to delve into several 

possible avenues for future research. Since import data at the fine-grained product level are 

available for a growing number of countries and for long and constantly updated time series, our 

methodology is scalable and can be used to analyse larger samples of countries and industries. 

Furthermore, international transaction-level data are available and increasingly accessible in many 

countries. This can allow an extension of this analysis to the firm level, possibly link adoption of 

AMTs to firm productivity, international competitiveness, offshoring and reshoring or employment 

dynamics and composition. 

Further research in this area might investigate the role of different contextual conditions in 

explaining why we witness heterogeneous results in the way European countries benefits from 

adopting AMTs. As discussed in above, following the wave of I4.0 policy initiatives introduced by 

European countries during latest years, incentives targeted more towards some technologies than 

others might have had a role in explaining the differences documented here. Another interesting 

direction of research should investigate the underlying mechanisms at place, which might either 

help or hinder TFP growth associated with the adoption of AMTs, such as the degree of 

capital/labour complementarity featured by each of these technologies. 
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2.8. Tables and Figures 

Table 1. Description of the variables 

Variable Label Variable Description 

∆𝑙𝑛𝐴𝑖𝑗𝑡  Growth rate of total factor productivity (TFP) 

∆𝑙𝑛𝐴𝐹𝑗𝑡  Growth rate of total factor productivity (TFP) of the frontier country 

𝑙𝑛𝐷𝑇𝐹𝑖𝑗𝑡−1 1-year lagged distance from the technology frontier 

𝑅𝐷𝑖𝑗𝑡−1 
1-year lagged ratio between sectoral stock of R&D investments and sectoral value 
added 

𝑀𝑖𝑗𝑡−1 
1-year lagged ratio between sectoral imports from the rest of the world and sectoral 
value added 

𝐼𝐶𝑇𝑖𝑗𝑡−1 1-year lagged ratio between sectoral stock of ICT investments and sectoral value added 

𝐴𝑀𝑇𝑖𝑗𝑡−1 
1-year lagged ratio between sectoral stock of advanced manufacturing technology 
imports (AIRs + AM + IIoT) and sectoral value added 

𝐴𝐼𝑅𝑖𝑗𝑡−1 
1-year lagged ratio between sectoral stock of advanced industrial robot imports (AIRs) 
and sectoral value added 

𝐴𝑀𝑖𝑗𝑡−1 
1-year lagged ratio between sectoral stock of additive manufacturing imports (AM) and 
sectoral value added 

𝐼𝐼𝑜𝑇𝑖𝑗𝑡−1 
1-year lagged ratio between sectoral stock of industrial internet of thing imports (IIoT) 
and sectoral value added 

Notes: Data on aggregate imports comes from Eurostat’s Comext data sets; data on sectoral variables comes 
from EU KLEMS, STAN, ANBERD and BTDIxE data sets. 

 

Table 2. Summary statistics of the main variables 

  ∆𝑙𝑛𝐴𝑖𝑗𝑡  ∆𝑙𝑛𝐴𝐹𝑗𝑡  𝑙𝑛𝐷𝑇𝐹𝑖𝑗𝑡−1 𝑅𝐷𝑖𝑗𝑡−1 𝑀𝑖𝑗𝑡−1 𝐼𝐶𝑇𝑖𝑗𝑡−1 𝐴𝑀𝑇𝑖𝑗𝑡−1 𝐴𝐼𝑅𝑖𝑗𝑡−1 𝐴𝑀𝑖𝑗𝑡−1 𝐼𝐼𝑜𝑇𝑖𝑗𝑡−1 

Mean 0.0082 0.0165 0.8992 0.0599 4.2768 0.0973 0.2436 0.3438 0.3583 0.2368 

SD 0.0610 0.0844 0.3298 0.0938 24.2155 0.3909 0.2212 0.2394 0.4750 0.2190 

Max 0.8993 0.6955 2.0327 1.8348 981.4395 15.6755 1.4864 2.7346 6.0443 1.4432 

Median 0.0035 0.0064 0.9295 0.0299 2.1856 0.0648 0.1692 0.2667 0.2068 0.1637 

Min -0.4817 -0.1321 0.1303 -0.0043 0.2567 0.0003 0.0007 0.0013 0.0005 0.0007 

Notes: Sample size for all variables is 1,760 observations over the 2009–2019 period. ∆𝑙𝑛𝐴𝑖𝑗𝑡, ∆𝑙𝑛𝐴𝐹𝑗𝑡  and 𝑙𝑛𝐷𝑇𝐹𝑖𝑗𝑡−1 variables 

include controls for differences in hours worked and skill composition. 
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Table 3. WLS-FE estimates: relationship between sectoral AMT adoption and TFP growth 

 1995-2019  1995-2008  2009-2019 

∆𝑙𝑛𝐴𝑖𝑗𝑡  (1)   (2)   (3) (4) (5) (6) (7) (8) 

            
∆𝑙𝑛𝐴𝐹𝑗𝑡  0.163***  0.199***  0.257*** 0.258*** 0.258*** 0.021 0.029 0.299*** 
 (0.030)  (0.047)  (0.036) (0.036) (0.035) (0.050) (0.057) (0.092) 
𝑙𝑛𝐷𝑇𝐹𝑖𝑗𝑡−1 0.102***  0.167***  0.243*** 0.244*** 0.238*** 0.207*** 0.223*** 0.311*** 
 (0.012)  (0.026)  (0.036) (0.036) (0.036) (0.029) (0.037) (0.042) 
𝑅𝐷𝑖𝑗𝑡−1 0.177***  0.134***  0.282*** 0.282*** 0.243*** 0.892*** 1.236*** 1.274*** 
 (0.039)  (0.045)  (0.071) (0.071) (0.067) (0.173) (0.250) (0.216) 
(𝑅𝐷 × 𝑙𝑛𝐷𝑇𝐹)𝑖𝑗𝑡−1 -0.248***  -0.175**  -0.965*** -0.970*** -0.849*** -0.874*** -1.150*** -1.228*** 
 (0.070)  (0.075)  (0.237) (0.239) (0.235) (0.195) (0.254) (0.240) 
𝑀𝑖𝑗𝑡−1 -0.001**  0.004  -0.003*** -0.003*** -0.004*** -0.005*** -0.010*** -0.009*** 
 (0.000)  (0.002)  (0.001) (0.001) (0.001) (0.002) (0.003) (0.003) 
(𝑀 × 𝑙𝑛𝐷𝑇𝐹)𝑖𝑗𝑡−1 0.002**  -0.004  0.006*** 0.006** 0.007*** 0.005*** 0.008*** 0.009*** 
 (0.001)  (0.002)  (0.002) (0.002) (0.002) (0.002) (0.003) (0.003) 
𝐼𝐶𝑇𝑖𝑗𝑡−1 0.052**  0.045  0.197*** 0.189*** 0.216*** 0.181 0.491** 0.465** 
 (0.025)  (0.037)  (0.061) (0.058) (0.045) (0.129) (0.234) (0.198) 
(𝐼𝐶𝑇 × 𝑙𝑛𝐷𝑇𝐹)𝑖𝑗𝑡−1 -0.083*  -0.046  -0.387*** -0.379*** -0.400*** -0.157 -0.526* -0.568** 
 (0.046)  (0.055)  (0.143) (0.137) (0.114) (0.163) (0.279) (0.262) 
𝐴𝑀𝑇𝑖𝑗𝑡−1      -0.007 0.292*** 0.206*** 0.329*** 0.311*** 
 

     (0.029) (0.057) (0.059) (0.102) (0.089) 
(𝐴𝑀𝑇 × 𝑙𝑛𝐷𝑇𝐹)𝑖𝑗𝑡−1       -0.544*** -0.247*** -0.313*** -0.323*** 

       (0.096) (0.059) (0.089) (0.087) 

           
TFP controls -  -  - - - s h,s h,s,2c 

Observations 4,048  2,291  1,757 1,757 1,757 1,757 1,760 1,760 

R-squared (within) 0.488  0.577  0.423 0.422 0.439 0.324 0.305 0.339 
Serial correlation (p-
value) 0.264   0.302   0.328 0.337 0.401 0.093 0.143 0.282 

Notes: Robust standard errors in parentheses. All regressions include a full set of time and country-industry dummies (within-
group estimator) and are estimated through WLS using value added shares in total economy as weights. Serial correlation is LM 
test for the presence of first-order serial correlation in the residuals. TFP controls are h: hours worked; s: skill composition; 2c: 
two-country frontier. The dependent variable is the growth rate of TFP. ∆𝑙𝑛𝐴𝐹𝑗𝑡  is the contemporaneous growth rate of TFP for 

the frontier; 𝑙𝑛𝐷𝑇𝐹𝑖𝑗𝑡−1 is the lagged distance from the technology frontier; 𝑅𝐷𝑖𝑗𝑡−1 is the lagged sectoral R&D intensity; 𝑀𝑖𝑗𝑡−1 

is lagged sectoral import intensity; 𝐼𝐶𝑇𝑖𝑗𝑡−1 is lagged sectoral ICT investments; 𝐴𝑀𝑇𝑖𝑗𝑡−1 is lagged sectoral adoption of advanced 

manufacturing technologies. Significance levels: *** p<0.01, ** p<0.05, * p<0.1. 

  



 

117 

Table 4. WLS-FE estimates: relationship between sectoral AIR, AM and IIoT adoption measures and TFP growth 

∆𝑙𝑛𝐴𝑖𝑗𝑡  (1) (2) (3) (4) (5) (6) 

        
∆𝑙𝑛𝐴𝐹𝑗𝑡  0.032 0.030 0.029 0.034 0.029 0.030 

 (0.057) (0.057) (0.057) (0.057) (0.057) (0.057) 

𝑙𝑛𝐷𝑇𝐹𝑖𝑗𝑡−1 0.191*** 0.202*** 0.188*** 0.209*** 0.197*** 0.219*** 

 (0.035) (0.037) (0.032) (0.033) (0.035) (0.039) 

𝑅𝐷𝑖𝑗𝑡−1 1.270*** 1.323*** 1.208*** 1.260*** 1.294*** 1.254*** 

 (0.245) (0.254) (0.242) (0.237) (0.248) (0.250) 

(𝑅𝐷 × 𝑙𝑛𝐷𝑇𝐹)𝑖𝑗𝑡−1 -1.180*** -1.226*** -1.139*** -1.162*** -1.210*** -1.163*** 

 (0.249) (0.256) (0.245) (0.235) (0.252) (0.254) 

𝑀𝑖𝑗𝑡−1 -0.009*** -0.011*** -0.005* -0.008*** -0.009*** -0.010*** 

 (0.003) (0.004) (0.002) (0.003) (0.003) (0.003) 

(𝑀 × 𝑙𝑛𝐷𝑇𝐹)𝑖𝑗𝑡−1 0.007*** 0.010*** 0.004 0.006** 0.008*** 0.008*** 

 (0.002) (0.003) (0.003) (0.003) (0.003) (0.003) 

𝐼𝐶𝑇𝑖𝑗𝑡−1 0.435** 0.538** 0.189 0.357** 0.464** 0.493** 

 (0.215) (0.247) (0.165) (0.171) (0.195) (0.198) 

(𝐼𝐶𝑇 × 𝑙𝑛𝐷𝑇𝐹)𝑖𝑗𝑡−1 -0.481* -0.589** -0.250 -0.445* -0.515** -0.530** 

 (0.265) (0.296) (0.213) (0.234) (0.249) (0.247) 

𝐴𝐼𝑅𝑖𝑗𝑡−1 0.267* 0.788*     

 (0.160) (0.424)     
(𝐴𝐼𝑅 × 𝑙𝑛𝐷𝑇𝐹)𝑖𝑗𝑡−1  -0.661*     

  (0.401)     
𝐴𝑀𝑖𝑗𝑡−1   0.024 0.596***   

   (0.017) (0.193)   
(𝐴𝑀 × 𝑙𝑛𝐷𝑇𝐹)𝑖𝑗𝑡−1    -0.320***   

    (0.109)   
𝐼𝐼𝑜𝑇𝑖𝑗𝑡−1     0.081** 0.248*** 

     (0.034) (0.076) 

(𝐼𝐼𝑜𝑇 × 𝑙𝑛𝐷𝑇𝐹)𝑖𝑗𝑡−1      -0.207*** 

      (0.068) 

       

TFP controls h,s h,s h,s h,s h,s h,s 

Observations 1,760 1,760 1,760 1,760 1,760 1,760 

R-squared (within) 0.291 0.298 0.287 0.309 0.295 0.302 

Serial correlation (p-value) 0.309 0.162 0.878 0.863 0.224 0.132 

Notes: Robust standard errors in parentheses. All regressions include a full set of time and country-industry dummies (within-group 
estimator) and are estimated through WLS using value added shares in total economy as weights. Serial correlation is LM test for 
the presence of first-order serial correlation in the residuals. TFP controls are h: hours worked; s: skill composition. The dependent 
variable is the growth rate of TFP. ∆𝑙𝑛𝐴𝐹𝑗𝑡  is the contemporaneous growth rate of TFP for the frontier; 𝑙𝑛𝐷𝑇𝐹𝑖𝑗𝑡−1 is the lagged 

distance from the technology frontier; 𝑅𝐷𝑖𝑗𝑡−1 is the lagged sectoral R&D intensity; 𝑀𝑖𝑗𝑡−1 is lagged sectoral import intensity; 

𝐼𝐶𝑇𝑖𝑗𝑡−1 is lagged sectoral ICT investments; 𝐴𝐼𝑅𝑖𝑗𝑡−1 is lagged sectoral adoption of advanced industrial robots; 𝐴𝑀𝑖𝑗𝑡−1 is lagged 

sectoral adoption of additive manufacturing; 𝐼𝐼𝑜𝑇𝑖𝑗𝑡−1 is lagged sectoral adoption of industrial internet of things. Significance 

levels: *** p<0.01, ** p<0.05, * p<0.1. 
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Figure 1. Marginal effect of AMT adoption on TFP growth rates, by country 

 
Notes: Authors’ own estimates. Average marginal effects of AMT adoption on TFP growth rates computed as 𝛼3 + 𝛼4 × 𝑙𝑛𝐷𝑇𝐹𝑖𝑗𝑡, 

using 𝛼3 = 0.329 and 𝛼4 = −0.313 from column (7) of Table 3. The black dot indicates the mean value across sectors; the line 
inside the box indicates the median sector; the box shows the interquartile range (IQR); the extreme values are the lower adjacent 
value (25th %ile – 1.5*IQR) on the left and the upper adjacent value (75th %ile + 1.5*IQR) on the right; outliers are excluded. 
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Figure 2. Marginal effect of AIR, AM and IIoT adoption on TFP growth rates 

 
Notes: Authors’ own estimates. Average marginal effects of AIR, AM and IIoT adoption on TFP growth rates computed as 𝛼3 +

𝛼4 × 𝑙𝑛𝐷𝑇𝐹𝑖𝑗𝑡, using 𝛼3
𝐴𝐼𝑅 = 0.788 and 𝛼4

𝐴𝐼𝑅 = −0.661 from column (2) of Table 4, 𝛼3
𝐴𝑀 = 0.596 and 𝛼4

𝐴𝑀 = −0.320 from 

column (4) of Table 4, and 𝛼3
𝐼𝐼𝑜𝑇 = 0.248 and 𝛼4

𝐼𝐼𝑜𝑇 = −0.207 from column (6) of Table 4. The black dot indicates the mean value 
across sectors; the line inside the box indicates the median sector; the box shows the interquartile range (IQR); the extreme values 
are the lower adjacent value (25th %ile – 1.5*IQR) on the left and the upper adjacent value (75th %ile + 1.5*IQR) on the right; 
outliers are excluded. 
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Figure 3. Marginal effect of AIR, AM and IIoT adoption on TFP growth rates, by country 

 
Notes: Authors’ own estimates. Average marginal effects of AIR, AM and IIoT adoption on TFP growth rates computed as 𝛼3 + 𝛼4 × 𝑙𝑛𝐷𝑇𝐹𝑖𝑗𝑡, using 𝛼3

𝐴𝐼𝑅 = 0.788 and 𝛼4
𝐴𝐼𝑅 = −0.661 from 

column (2) of Table 4, 𝛼3
𝐴𝑀 = 0.596 and 𝛼4

𝐴𝑀 = −0.320 from column (4) of Table 4, and 𝛼3
𝐼𝐼𝑜𝑇 = 0.248 and 𝛼4

𝐼𝐼𝑜𝑇 = −0.207 from column (6) of Table 4. The black dot indicates the mean value 
across sectors; the line inside the box indicates the median sector; the box shows the interquartile range (IQR); the extreme values are the lower adjacent value (25th %ile – 1.5*IQR) on the left 
and the upper adjacent value (75th %ile + 1.5*IQR) on the right; outliers are excluded.  
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2.9. Appendix A: Alternative TFP measures 

We compute different TFP measures, correcting for two different characteristics which may be 

sources of cross-country differences: (a) we adjust the measure of labour inputs for differences in 

hours worked; (b) we adjust the measure of labour inputs for differences in the skill composition of 

the workforce. 

Differences in the skill composition of the workforce: We control for differences in the 

quality of the labour inputs. Using a similar index to that proposed by Griffith et al. (2004), we 

express employment in each country, sector, and year as: 

𝐿𝑖𝑗𝑡 = (𝐸𝑖𝑗𝑡 × 𝐻_ℎ𝑖𝑗𝑡)
𝑊_ℎ𝑖𝑗𝑡

× (𝐸𝑖𝑗𝑡 × 𝐻_𝑚𝑖𝑗𝑡)
𝑊_𝑚𝑖𝑗𝑡

× (𝐸𝑖𝑗𝑡 × 𝐻_𝑙𝑖𝑗𝑡)
𝑊_𝑙𝑖𝑗𝑡

 

where 𝐸𝑖𝑗𝑡 denotes the number of people employed in sector 𝑗 of country 𝑖, at time 𝑡; 𝐻_ℎ𝑖𝑗𝑡, 

𝐻_𝑚𝑖𝑗𝑡 and 𝐻_𝑙𝑖𝑗𝑡 denote shares of hours worked by employees with high, medium and low 

education level across manufacturing sectors, respectively; 𝑊_ℎ𝑖𝑗𝑡, 𝑊_𝑚𝑖𝑗𝑡 and 𝑊_𝑙𝑖𝑗𝑡 denote 

shares of workers with high, medium and low education level in the wage bill across manufacturing 

sectors, respectively. Since our analysis only covers manufacturing industries and information on 

the skill composition of the workforce in EU KLEMS dataset are available only at the 1-digit level 

of sectoral aggregation (i.e. the whole manufacturing), shares of hours worked and wages by 

employees with different education are proportionally derived by weighting 1-digit manufacturing 

data on composition by the share of hours worked in each 2-digit manufacturing industry. 

Differences in hours worked: Our baseline TFP measures uses the number of people 

employed in sector 𝑗 of country 𝑖 as a measure of the labour input in the production function. The 

first adjustment we make is using the number of hours worked by people employed. This is a 

sector-specific adjustment. 
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2.10. Appendix B: Additional Tables 

Table B1. WLS-FE estimates: relationship between aggregate AMT adoption measures and TFP growth  

∆𝑙𝑛𝐴𝑖𝑗𝑡 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 

             
∆𝑙𝑛𝐴𝐹𝑗𝑡 0.257*** 0.332*** 0.040 0.040 0.354*** 0.028 0.035 0.029 0.032 0.029 0.040 
 (0.036) (0.038) (0.046) (0.053) (0.091) (0.057) (0.053) (0.058) (0.055) (0.058) (0.053) 

𝑙𝑛𝐷𝑇𝐹𝑖𝑗𝑡−1 0.244*** 0.307*** 0.246*** 0.259*** 0.358*** 0.183*** 0.237*** 0.183*** 0.221*** 0.183*** 0.258*** 
 (0.036) (0.040) (0.032) (0.040) (0.045) (0.032) (0.037) (0.032) (0.035) (0.032) (0.040) 

𝑅𝐷𝑖𝑗𝑡−1 0.283*** 0.248*** 0.855*** 1.168*** 1.204*** 1.239*** 1.148*** 1.251*** 1.266*** 1.262*** 1.173*** 
 (0.071) (0.064) (0.153) (0.224) (0.195) (0.245) (0.227) (0.243) (0.228) (0.242) (0.226) 

(𝑅𝐷 × 𝑙𝑛𝐷𝑇𝐹)𝑖𝑗𝑡−1 -0.969*** -0.816*** -0.793*** -1.046*** -1.122*** -1.164*** -1.041*** -1.176*** -1.159*** -1.185*** -1.051*** 
 (0.244) (0.233) (0.166) (0.223) (0.208) (0.247) (0.227) (0.247) (0.226) (0.247) (0.224) 

𝑀𝑖𝑗𝑡−1 -0.003*** -0.002*** -0.003*** -0.005*** -0.005*** -0.006*** -0.007*** -0.006*** -0.006*** -0.006*** -0.005*** 
 (0.001) (0.001) (0.001) (0.002) (0.001) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) 

(𝑀 × 𝑙𝑛𝐷𝑇𝐹)𝑖𝑗𝑡−1 0.006*** 0.006*** 0.004*** 0.006*** 0.006*** 0.007*** 0.008*** 0.007*** 0.008*** 0.007*** 0.006*** 
 (0.002) (0.002) (0.001) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) 

𝐼𝐶𝑇𝑖𝑗𝑡−1 0.196*** 0.109** 0.060 0.183 0.180* 0.224 0.345** 0.256* 0.255** 0.256* 0.182 
 (0.060) (0.048) (0.070) (0.117) (0.108) (0.150) (0.138) (0.147) (0.126) (0.144) (0.118) 

(𝐼𝐶𝑇 × 𝑙𝑛𝐷𝑇𝐹)𝑖𝑗𝑡−1 -0.384*** -0.171 -0.020 -0.209 -0.254 -0.280 -0.419** -0.310 -0.327* -0.314 -0.207 
 (0.139) (0.121) (0.104) (0.166) (0.168) (0.201) (0.196) (0.198) (0.186) (0.199) (0.167) 

𝐴𝑀𝑇𝑖𝑡−1 -0.001 0.093*** 0.288*** 0.370*** 0.401***       
 (0.014) (0.026) (0.054) (0.079) (0.083)       
(𝐴𝑀𝑇 × 𝑙𝑛𝐷𝑇𝐹)𝑖𝑗𝑡−1  -0.367*** -0.438*** -0.507*** -0.600***       

  (0.082) (0.079) (0.104) (0.118)       
𝐴𝐼𝑅𝑖𝑡−1      -0.038*** 0.229***     

      (0.013) (0.054)     
(𝐴𝐼𝑅 × 𝑙𝑛𝐷𝑇𝐹)𝑖𝑗𝑡−1       -0.262***     

       (0.051)     
𝐴𝑀𝑖𝑡−1        -0.003 0.113***   

        (0.008) (0.025)   
(𝐴𝑀 × 𝑙𝑛𝐷𝑇𝐹)𝑖𝑗𝑡−1         -0.155***   

         (0.032)   
𝐼𝐼𝑜𝑇𝑖𝑡−1          0.006 0.376*** 

          (0.019) (0.082) 

(𝐼𝐼𝑜𝑇 × 𝑙𝑛𝐷𝑇𝐹)𝑖𝑗𝑡−1           -0.511*** 

           (0.106)             
TFP controls - - s h,s h,s,2c h,s h,s h,s h,s h,s h,s 

Observations 1,757 1,757 1,757 1,760 1,760 1,760 1,760 1,760 1,760 1,760 1,760 

R-squared (within) 0.422 0.457 0.376 0.359 0.409 0.289 0.353 0.285 0.323 0.285 0.357 

Serial correlation (p-value) 0.328 0.453 0.153 0.114 0.130 0.781 0.327 0.563 0.260 0.496 0.116 

Notes: Robust standard errors in parentheses. All regressions include a full set of time and country-industry dummies (within-group estimator) and are estimated 
through WLS using value added shares in total economy as weights. Serial correlation is LM test for the presence of first-order serial correlation in the residuals. TFP 
controls are h: hours worked; s: skill composition; 2c: two-country frontier. The dependent variable is the growth rate of TFP. ∆𝑙𝑛𝐴𝐹𝑗𝑡 is the contemporaneous 

growth rate of TFP for the frontier; 𝑙𝑛𝐷𝑇𝐹𝑖𝑗𝑡−1 is the lagged distance from the technology frontier; 𝑅𝐷𝑖𝑗𝑡−1 is the lagged sectoral R&D intensity; 𝑀𝑖𝑗𝑡−1 is lagged 

sectoral import intensity; 𝐼𝐶𝑇𝑖𝑗𝑡−1 is lagged sectoral ICT investments; 𝐴𝑀𝑇𝑖𝑡−1 is lagged aggregate adoption of advanced manufacturing technologies; 𝐴𝐼𝑅𝑖𝑡−1 is 

lagged aggregate adoption of advanced industrial robots; 𝐴𝑀𝑖𝑡−1 is lagged aggregate adoption of additive manufacturing; 𝐼𝐼𝑜𝑇𝑖𝑡−1 is lagged aggregate adoption of 
industrial internet of things. Significance levels: *** p<0.01, ** p<0.05, * p<0.1. 
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Table B2. WLS-FE estimates: relationship between sectoral AMT adoption measures and TFP growth using alternative measure from EU KLEMS 

 1995-2019  1995-2008  2009-2019 

∆𝑙𝑛𝐴𝑖𝑗𝑡 (1)   (2)   (3) (4) (5) (6) (7) (8) (9) (10) (11) 

               
∆𝑙𝑛𝐴𝐹𝑗𝑡 0.337***  0.416***  0.376*** 0.349*** 0.355*** 0.308*** 0.375*** 0.361*** 0.388*** 0.350*** 0.354*** 
 (0.089)  (0.096)  (0.059) (0.069) (0.069) (0.073) (0.069) (0.061) (0.063) (0.069) (0.070) 

𝑙𝑛𝐷𝑇𝐹𝑖𝑗𝑡−1 0.414***  0.538***  0.692*** 0.719*** 0.813*** 0.709*** 0.770*** 0.590*** 0.875*** 0.719*** 0.808*** 
 (0.068)  (0.094)  (0.160) (0.168) (0.164) (0.144) (0.151) (0.169) (0.189) (0.169) (0.164) 

𝑅𝐷𝑖𝑗𝑡−1 0.900***  0.487***  0.704* 0.756** 0.654* 0.680* 0.633* 0.619 0.590 0.755** 0.652* 
 (0.204)  (0.171)  (0.393) (0.384) (0.363) (0.365) (0.361) (0.406) (0.385) (0.384) (0.363) 

(𝑅𝐷 × 𝑙𝑛𝐷𝑇𝐹)𝑖𝑗𝑡−1 -1.236***  -0.718***  -0.606 -0.776 -0.560 -0.697 -0.411 -0.229 -0.919 -0.770 -0.545 
 (0.352)  (0.259)  (0.982) (0.944) (0.951) (0.911) (0.954) (0.991) (0.964) (0.945) (0.952) 

𝑀𝑖𝑗𝑡−1 0.022**  0.022**  0.018 0.017 0.016 0.019 0.018 0.013 0.006 0.017 0.016 
 (0.009)  (0.009)  (0.016) (0.015) (0.012) (0.015) (0.014) (0.015) (0.012) (0.015) (0.012) 

(𝑀 × 𝑙𝑛𝐷𝑇𝐹)𝑖𝑗𝑡−1 -0.020*  -0.026***  -0.016 -0.014 -0.010 -0.017 -0.013 -0.008 0.002 -0.015 -0.010 
 (0.010)  (0.009)  (0.028) (0.028) (0.021) (0.028) (0.024) (0.026) (0.022) (0.028) (0.021) 

𝐼𝐶𝑇𝑖𝑗𝑡−1 0.629***  -0.162  1.078*** 0.998*** 0.704* 0.998*** 0.910** 1.070*** 0.952*** 1.000*** 0.705* 
 (0.197)  (0.178)  (0.412) (0.375) (0.363) (0.379) (0.388) (0.383) (0.368) (0.377) (0.363) 

(𝐼𝐶𝑇 × 𝑙𝑛𝐷𝑇𝐹)𝑖𝑗𝑡−1 -0.778**  0.270  -2.679*** -2.638*** -1.805** -2.578*** -2.318** -2.949*** -2.611*** -2.636*** -1.802** 
 (0.315)  (0.243)  (0.933) (0.889) (0.871) (0.887) (0.911) (0.911) (0.873) (0.890) (0.869) 

𝐴𝑀𝑇𝑖𝑗𝑡−1      0.042 0.341***       
 

     (0.073) (0.122)       
(𝐴𝑀𝑇 × 𝑙𝑛𝐷𝑇𝐹)𝑖𝑗𝑡−1       -1.070***       

       (0.351)       
𝐴𝐼𝑅𝑖𝑗𝑡−1        -0.051 0.126*     

        (0.031) (0.066)     

(𝐴𝐼𝑅 × 𝑙𝑛𝐷𝑇𝐹)𝑖𝑗𝑡−1         -0.430**     

         (0.189)     
𝐴𝑀𝑖𝑗𝑡−1          0.104* 0.301***   

          (0.053) (0.073)   

(𝐴𝑀 × 𝑙𝑛𝐷𝑇𝐹)𝑖𝑗𝑡−1           -0.396***   

           (0.111)   
𝐼𝐼𝑜𝑇𝑖𝑗𝑡−1            0.041 0.338*** 

            (0.073) (0.123) 

(𝐼𝐼𝑜𝑇 × 𝑙𝑛𝐷𝑇𝐹)𝑖𝑗𝑡−1             -1.089*** 

             (0.361) 

              

Observations 3,827  2,227  1,600 1,600 1,600 1,600 1,600 1,600 1,600 1,600 1,600 

R-squared (within) 0.951  0.979  0.688 0.777 0.878 0.867 0.746 0.647 0.879 0.756 0.880 

Serial correlation (p-value) 0.471   0.396   0.845 0.768 0.576 0.363 0.817 0.609 0.479 0.777 0.579 

Notes: Robust standard errors in parentheses. All regressions include a full set of time and country-industry dummies (within-group estimator) and are estimated 
through WLS using value added shares in total economy as weights. Serial correlation is LM test for the presence of first-order serial correlation in the residuals. Data 
on TFP growth rate for manufacturing industries in Portugal are missing in EU KLEMS dataset. The dependent variable is the growth rate of TFP. ∆𝑙𝑛𝐴𝐹𝑗𝑡 is the 

contemporaneous growth rate of TFP for the frontier; 𝑙𝑛𝐷𝑇𝐹𝑖𝑗𝑡−1 is the lagged distance from the technology frontier; 𝑅𝐷𝑖𝑗𝑡−1 is the lagged sectoral R&D intensity; 

𝑀𝑖𝑗𝑡−1 is lagged sectoral import intensity; 𝐼𝐶𝑇𝑖𝑗𝑡−1 is lagged sectoral ICT investments; 𝐴𝑀𝑇𝑖𝑗𝑡−1 is lagged sectoral adoption of advanced manufacturing technologies; 

𝐴𝐼𝑅𝑖𝑗𝑡−1 is lagged sectoral adoption of advanced industrial robots; 𝐴𝑀𝑖𝑗𝑡−1 is lagged sectoral adoption of additive manufacturing; 𝐼𝐼𝑜𝑇𝑖𝑗𝑡−1 is lagged sectoral adoption 

of industrial internet of things. Significance levels: *** p<0.01, ** p<0.05, * p<0.1. 
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Table B3. OLS-FE estimates: relationship between sectoral AMT adoption measures and TFP growth  

∆𝑙𝑛𝐴𝑖𝑗𝑡 (1) (2) (3) (4) (5) (6) (7) (8) 

          
∆𝑙𝑛𝐴𝐹𝑗𝑡 0.029 0.029 0.032 0.030 0.029 0.033 0.029 0.030 
 (0.061) (0.061) (0.061) (0.061) (0.062) (0.061) (0.061) (0.061) 
𝑙𝑛𝐷𝑇𝐹𝑖𝑗𝑡−1 0.187*** 0.227*** 0.197*** 0.206*** 0.195*** 0.215*** 0.203*** 0.224*** 
 (0.036) (0.040) (0.039) (0.043) (0.034) (0.038) (0.040) (0.043) 
𝑅𝐷𝑖𝑗𝑡−1 1.361*** 1.274*** 1.316*** 1.354*** 1.277*** 1.320*** 1.336*** 1.294*** 
 (0.318) (0.327) (0.309) (0.327) (0.300) (0.305) (0.317) (0.324) 
(𝑅𝐷 × 𝑙𝑛𝐷𝑇𝐹)𝑖𝑗𝑡−1 -1.259*** -1.184*** -1.221*** -1.254*** -1.201*** -1.215*** -1.248*** -1.199*** 
 (0.309) (0.314) (0.305) (0.319) (0.296) (0.293) (0.309) (0.314) 
𝑀𝑖𝑗𝑡−1 -0.009** -0.010*** -0.009*** -0.011*** -0.005 -0.008** -0.009*** -0.010*** 
 (0.004) (0.004) (0.003) (0.004) (0.003) (0.003) (0.003) (0.003) 
(𝑀 × 𝑙𝑛𝐷𝑇𝐹)𝑖𝑗𝑡−1 0.008*** 0.009*** 0.007*** 0.010*** 0.004 0.007 0.008*** 0.008*** 
 (0.003) (0.003) (0.002) (0.004) (0.004) (0.004) (0.003) (0.003) 
𝐼𝐶𝑇𝑖𝑗𝑡−1 0.474* 0.507* 0.450* 0.553* 0.201 0.368* 0.477** 0.505** 
 (0.276) (0.272) (0.250) (0.285) (0.200) (0.205) (0.225) (0.226) 
(𝐼𝐶𝑇 × 𝑙𝑛𝐷𝑇𝐹)𝑖𝑗𝑡−1 -0.524 -0.544* -0.499 -0.605* -0.267 -0.459 -0.530* -0.545* 
 (0.336) (0.323) (0.308) (0.342) (0.257) (0.281) (0.289) (0.282) 
𝐴𝑀𝑇𝑖𝑗𝑡−1 0.087 0.338***       
 (0.060) (0.127)       
(𝐴𝑀𝑇 × 𝑙𝑛𝐷𝑇𝐹)𝑖𝑗𝑡−1  -0.319**       

  (0.126)       
𝐴𝐼𝑅𝑖𝑗𝑡−1   0.282 0.829*     

   (0.190) (0.441)     
(𝐴𝐼𝑅 × 𝑙𝑛𝐷𝑇𝐹)𝑖𝑗𝑡−1    -0.700*     

    (0.396)     
𝐴𝑀𝑖𝑗𝑡−1     0.024 0.609***   

     (0.018) (0.124)   
(𝐴𝑀 × 𝑙𝑛𝐷𝑇𝐹)𝑖𝑗𝑡−1      -0.328***   

      (0.071)   
𝐼𝐼𝑜𝑇𝑖𝑗𝑡−1       0.084** 0.254*** 

       (0.038) (0.093) 
(𝐼𝐼𝑜𝑇 × 𝑙𝑛𝐷𝑇𝐹)𝑖𝑗𝑡−1        -0.210** 

        (0.087) 

         
TFP controls h,s h,s h,s h,s h,s h,s h,s h,s 

Observations 1,760 1,760 1,760 1,760 1,760 1,760 1,760 1,760 

R-squared (within) 0.232 0.246 0.232 0.239 0.228 0.251 0.236 0.244 

Serial correlation (p-value) 0.276 0.147 0.316 0.161 0.868 0.884 0.229 0.134 

Notes: Robust standard errors in parentheses. All regressions include a full set of time and country-industry dummies (within-group estimator) 
and are estimated through OLS. Serial correlation is LM test for the presence of first-order serial correlation in the residuals. TFP controls are h: 
hours worked; s: skill composition. The dependent variable is the growth rate of TFP. ∆𝑙𝑛𝐴𝐹𝑗𝑡 is the contemporaneous growth rate of TFP for the 

frontier; 𝑙𝑛𝐷𝑇𝐹𝑖𝑗𝑡−1 is the lagged distance from the technology frontier; 𝑅𝐷𝑖𝑗𝑡−1 is the lagged sectoral R&D intensity; 𝑀𝑖𝑗𝑡−1 is lagged sectoral 

import intensity; 𝐼𝐶𝑇𝑖𝑗𝑡−1 is lagged sectoral ICT investments; 𝐴𝑀𝑇𝑖𝑗𝑡−1 is lagged sectoral adoption of advanced manufacturing technologies; 

𝐴𝐼𝑅𝑖𝑗𝑡−1 is lagged sectoral adoption of advanced industrial robots; 𝐴𝑀𝑖𝑗𝑡−1 is lagged sectoral adoption of additive manufacturing; 𝐼𝐼𝑜𝑇𝑖𝑗𝑡−1 is 

lagged sectoral adoption of industrial internet of things. Significance levels: *** p<0.01, ** p<0.05, * p<0.1. 
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Table B4. OLS-FE estimates: relationship between aggregate AMT adoption measures and TFP growth  

∆𝑙𝑛𝐴𝑖𝑗𝑡 (1) (2) (3) (4) (5) (6) (7) (8) 

          
∆𝑙𝑛𝐴𝐹𝑗𝑡 0.029 0.040 0.028 0.036 0.029 0.032 0.029 0.040 
 (0.062) (0.056) (0.062) (0.057) (0.062) (0.060) (0.062) (0.056) 
𝑙𝑛𝐷𝑇𝐹𝑖𝑗𝑡−1 0.190*** 0.262*** 0.189*** 0.240*** 0.189*** 0.230*** 0.190*** 0.260*** 
 (0.036) (0.045) (0.035) (0.042) (0.036) (0.040) (0.036) (0.045) 
𝑅𝐷𝑖𝑗𝑡−1 1.318*** 1.184*** 1.297*** 1.169*** 1.311*** 1.348*** 1.319*** 1.188*** 
 (0.305) (0.262) (0.303) (0.266) (0.307) (0.305) (0.305) (0.262) 
(𝑅𝐷 × 𝑙𝑛𝐷𝑇𝐹)𝑖𝑗𝑡−1 -1.235*** -1.060*** -1.215*** -1.058*** -1.230*** -1.232*** -1.236*** -1.064*** 
 (0.302) (0.250) (0.298) (0.257) (0.304) (0.293) (0.302) (0.251) 
𝑀𝑖𝑗𝑡−1 -0.006*** -0.005*** -0.006** -0.007*** -0.006*** -0.007*** -0.006*** -0.005*** 
 (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) 
(𝑀 × 𝑙𝑛𝐷𝑇𝐹)𝑖𝑗𝑡−1 0.007*** 0.006*** 0.007*** 0.008*** 0.007*** 0.008*** 0.007*** 0.006*** 
 (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) 
𝐼𝐶𝑇𝑖𝑗𝑡−1 0.264 0.185 0.233 0.351** 0.264 0.262* 0.265 0.183 
 (0.167) (0.129) (0.178) (0.153) (0.168) (0.145) (0.167) (0.130) 
(𝐼𝐶𝑇 × 𝑙𝑛𝐷𝑇𝐹)𝑖𝑗𝑡−1 -0.326 -0.211 -0.293 -0.427* -0.323 -0.340 -0.327 -0.208 
 (0.233) (0.186) (0.238) (0.221) (0.231) (0.218) (0.233) (0.187) 

𝐴𝑀𝑇𝑖𝑡−1 0.005 0.375***       
 (0.013) (0.120)       
(𝐴𝑀𝑇 × 𝑙𝑛𝐷𝑇𝐹)𝑖𝑗𝑡−1  -0.513***       

  (0.158)       
𝐴𝐼𝑅𝑖𝑡−1   -0.039*** 0.235***     

   (0.013) (0.068)     
(𝐴𝐼𝑅 × 𝑙𝑛𝐷𝑇𝐹)𝑖𝑗𝑡−1    -0.267***     

    (0.062)     
𝐴𝑀𝑖𝑡−1     -0.002 0.116***   

     (0.007) (0.035)   
(𝐴𝑀 × 𝑙𝑛𝐷𝑇𝐹)𝑖𝑗𝑡−1      -0.155***   

      (0.039)   
𝐼𝐼𝑜𝑇𝑖𝑡−1       0.007 0.381*** 

       (0.013) (0.124) 
(𝐼𝐼𝑜𝑇 × 𝑙𝑛𝐷𝑇𝐹)𝑖𝑗𝑡−1        -0.516*** 

        (0.162) 

         
TFP controls h,s h,s h,s h,s h,s h,s h,s h,s 

Observations 1,760 1,760 1,760 1,760 1,760 1,760 1,760 1,760 

R-squared (within) 0.226 0.305 0.230 0.299 0.226 0.266 0.226 0.302 

Serial correlation (p-value) 0.532 0.106 0.841 0.372 0.588 0.274 0.527 0.109 

Notes: Robust standard errors in parentheses. All regressions include a full set of time and country-industry dummies (within-group estimator) 
and are estimated through OLS. Serial correlation is LM test for the presence of first-order serial correlation in the residuals. TFP controls are h: 
hours worked; s: skill composition. The dependent variable is the growth rate of TFP. ∆𝑙𝑛𝐴𝐹𝑗𝑡 is the contemporaneous growth rate of TFP for the 

frontier; 𝑙𝑛𝐷𝑇𝐹𝑖𝑗𝑡−1 is the lagged distance from the technology frontier; 𝑅𝐷𝑖𝑗𝑡−1 is the lagged sectoral R&D intensity; 𝑀𝑖𝑗𝑡−1 is lagged sectoral 

import intensity; 𝐼𝐶𝑇𝑖𝑗𝑡−1 is lagged sectoral ICT investments; 𝐴𝑀𝑇𝑖𝑗𝑡−1 is lagged aggregate adoption of advanced manufacturing technologies; 

𝐴𝐼𝑅𝑖𝑗𝑡−1 is lagged aggregate adoption of advanced industrial robots; 𝐴𝑀𝑖𝑗𝑡−1 is lagged aggregate adoption of additive manufacturing; 𝐼𝐼𝑜𝑇𝑖𝑗𝑡−1 is 

lagged aggregate adoption of industrial internet of things. Significance levels: *** p<0.01, ** p<0.05, * p<0.1. 
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Chapter 3 

 

Firm Restructuring Modes and Advanced Manufacturing 

Technologies: Evidence from Collective Layoffs across 

Europe* 

 

Abstract 

Shifts in globalisation dynamics, rising international competition, worldwide economic crises and, 

lately, new challenges posed by the recent Covid-19 pandemic, have pushed firms to pursue 

different restructuring strategies, including downsizing, offshoring or plant closure, aiming at 

improving operational and financial performances and resulting in collective employee layoffs. In 

this context, the rising diffusion of new automation technologies is seen, on the one hand, as 

threatening jobs and triggering the displacement of workers and, on the other hand, as a strategy 

that could sustain firm competitiveness, hence reducing the likelihood of collective layoffs. This 

Chapter adds to the extant literature by analysing how the adoption of advanced manufacturing 

technologies (AMTs) of the Industry 4.0 wave (namely, advanced industrial robots, additive 

manufacturing, and industrial internet of things) (i) influence a firm’s propensity to undertake 

restructuring decisions, and (ii) once the decision to restructure is taken, influence a firm’s 

propensity to either reduce its workforce significantly (downsizing), move a part of its activities 

abroad (offshoring), or dismiss all employees (closure). Our findings, based on 730 restructuring 

decisions implemented across 12.000 European manufacturing firms between 2013 and 2020, 

reveal that the adoption of AMTs contribute to saving jobs by lowering the propensity to engage in 

restructuring strategies that involve collective layoffs. In addition, conditional on restructuring, we 

find robust evidence that the adoption of AMTs contribute reduce a firm’s probability of pursuing 

the ‘worst-case scenario’ strategy, i.e. closure, while increasing the probability of downsizing. We 

do not uncover any significant effect on firm’s offshoring decisions. 

 

Keywords: Advanced manufacturing technologies; Industry 4.0; collective layoffs: restructuring; 

closure; downsizing; offshoring. 
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3.1. Introduction 

The current debate on new digital technologies has devoted much attention to the understanding of 

the mechanisms through which the adoption of new forms of automation triggers a displacement 

mechanism affecting jobs whose tasks can now be performed by capital (Acemoglu and Autor, 

2011; Acemoglu and Restrepo, 2018; 2019; Frey and Osborne, 2017). Likewise, the adoption of 

new digital technologies is also changing the way businesses operate and are organised (Dalenogare 

et al., 2018; Porter and Heppelmann, 2014; 2015) both at a local level and on an international scale 

(Alcácer et al., 2016; Autio et al., 2021; de Beule et al., 2022; Hannibal and Knight, 2018; Laplume 

et al., 2016; Strange and Zucchella, 2017), and pushing firms to reorganise and rationalise their 

productive operations. With disruptive technologies of the Industry 4.0 (I4.0) wave (Kagermann et 

al., 2013) like advanced industrial robots (AIRs), additive manufacturing (AM) and industrial 

internet of things (IIoT) – which we refer to as advanced manufacturing technologies (AMTs) – 

firms can build upon intelligent production systems and digitally integrated value chains in order to 

increase operational efficiency, implement new business models and improve their strategic and 

competitive advantage (Bogers et al., 2016; Dalenogare et al., 2018; Frank et al., 2019; Lee et al., 

2015; Müller et al., 2018; Porter and Heppelmann, 2014; 2015; Rayna and Striukova, 2016; Schuh 

et al., 2014; Weller et al., 2015). These changes are happening at an ever-faster pace and have lately 

received much attention from academics, businesses, and institutions. 

Along with the diffusion of new digital technologies, past decades have been characterised 

by fast changes in the global configuration of production activities and growing international 

competition, pushing firms to adopt quick and drastic strategic decisions in order to survive these 

challenges (Coucke et al., 2007). The negative effect and rising uncertainty associated with 

conjunctural macroeconomic events – ranging from the 2008 global financial crisis to the latest 

outbreak of the Covid-19 pandemic – have added to this trend, producing long-lasting consequences 

on the organisation of firms (Antràs, 2020; Blit, 2020; di Stefano et al., 2022; Kwak and Lee, 2017). 
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As a result, ever more frequently, restructuring strategies aimed at improving operational and 

financial performance have turned into collective employee layoffs. 

From a pure economic perspective, a firm’s decision to undertake a strategic restructuring 

resulting in a collective layoff may signal a process of adjustment from the current workforce’s size 

to that which would enable the firm to operate in the most efficient way and, hence maximize its 

market value (Coucke et al., 2007). However, such workforce reductions may result from the 

implementation of different and alternative strategies. Concurrently, when firms face uncertainty, 

competitive market condition, low profitably or a mix of these factors, both the strategic analysis of 

the different choices managers can pursue (Coucke and Sleuwaegen, 2008; Datta et al., 2010; 

O’Brien and Folta, 2009), and the formal microeconomic evaluation of alternative restructuring 

choices (Bandick, 2016; Coucke et al., 2007) can provide insights on the conditions under which 

one alternative prevails on the others. 

In this Chapter, we focus on three types of events which produce collective employee 

layoffs, namely: (i) the dismissal of a proportion of the workforce (i.e. downsizing); (ii) the 

dismissal of either the entire workforce or a part of it as a result of relocating activities abroad, 

either maintaining ownership on the relocated activities or not (i.e. offshoring), and; (iii) the worst-

case option, implying the cessation of activities in a plant resulting in the dismissal of the entire 

firm workforce (i.e. closure). Managers will evaluate the optimal strategy to pursue by comparing 

costs and gains associated with each of these alternatives. Such costs and gains directly depend both 

on firm’s characteristics and industry conditions. Rational managers should undertake the strategy 

which, by providing the maximum net gain, dominates any other restructuring alternative. Clearly, 

if such evaluation results in negative prospects, they will refrain from pursuing any restructuring 

decision, holding to the existing conditions. 

Within this context, our analysis focuses on the role played by the adoption of AMTs on 

firms’ decision to undertake any of the above cited restructuring modes. While a substantial body of 

the labour economics literature points at a negative effect of automation technologies on 
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employment – even more so when manufacturing activities are concerned –, in some cases, past 

decisions to adopt new digital technologies may turn out to be beacons of hope for workers. In 

particular, the adoption of AMTs brings several benefits (e.g. higher efficiency, flexibility and 

productivity), higher competitiveness, and sets operational and economic implications (e.g. 

affecting firm’s cost structure) which might prevent the realisation of the worst-case scenario, i.e. a 

firm’s closure. As such, we argue that a firm’s decision to adopt AMTs and the associated benefit 

interplay with several strategic and operational considerations which managers should take into 

account when evaluating whether restructuring or not and, eventually, which is the optimal 

restructuring mode to implement. 

Our analysis deals with multilevel restructuring decisions, whereby we assess the role of 

AMT adoption when a firm first face the decision whether restructuring or not, given its operational 

and financial characteristics as well as other industry- and country-specific factors. Then, once a 

firm’s managers have decided to restructure, it faces a second decision on which restructuring mode 

to undertake between the three options discussed above. Furthermore, we assess the role of adopting 

AMTs on the magnitude of collective layoffs triggered by restructuring decisions. 

This multilevel decision problem implies a first selection problem (i.e. whether a firm 

decides to restructure or not) and a second choice problem (i.e. which restructuring mode to pursue 

among downsizing, offshoring and closure) which needs to account for the self-selection 

mechanisms described by the first selection problem. We address this scenario by modelling the 

selection problem following Heckman’s (1979) two-step procedure, first estimating a probit model, 

then by estimating a multinomial logit modelling the choice problem, and finally by evaluating the 

role of AMT adoption on the number of laid-off employees. To test the robustness of our findings 

we perform several checks, by: (i) testing alternative and more demanding specifications including 

a different combination of fixed effects; (ii) checking the consistency of the underlying model’s 

assumptions, estimating an alternative specification of the first selection problem by means of a 
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logit model; (iii) estimating the multinomial logit model by using a control group of non-

restructuring firms featuring comparable characteristics as benchmark. 

The central message of this work is that, while a growing body of evidence suggests that 

new automation technologies like AMTs and other I4.0-related technologies trigger employment 

displacement effects and foster job cuts among workers performing particularly exposed tasks, the 

same technologies may also act as a countervailing force by creating benefits (e.g. productivity 

growth, as discussed in Chapter 2) and by setting incentives which allow companies to avoid 

closure and, ultimately, to save jobs. 

We examine a large sample of 12,162 manufacturing firms located across 19 European 

countries and including 730 restructuring events over the period 2013–2020, finding robust 

evidence that AMT adoption has a negative effect on their probability of pursuing any of the 

restructuring modes discussed above and involving collective layoffs. Conditional on restructuring, 

we find robust evidence of a negative effect of AMT adoption on the probability of closure and a 

positive effect on the probability of continuing business activity by pursuing downsizing. We also 

find no significant evidence that adopting AMTs spurs incentives pushing firms to offshore as an 

alternative to end business activities. Consistently with our prior results, when looking at the effect 

of AMT adoption at the intensive margin of restructuring choices, we find evidence that these 

technologies play a mitigating role by reducing the magnitude of layoffs associated with 

restructuring strategies. 

Industrial and innovation policies have promoted the adoption of new digital technologies of 

the I4.0 wave to increase firms’ efficiency and productivity; ultimately, to achieve sustained 

economic growth. The main implication of this research is that these same policies have a 

secondary positive effect by providing firms with means to sustain their operations, become more 

competitive, productive and avoid economic hardship. Furthermore, the magnitude of such 

phenomenon may have been underdiscussed in the current literature, being overshadowed by the 
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major debate on the negative employment effects associated with new automation technologies of 

the fourth industrial revolution (4IR). 

The remainder of this Chapter is structured as follows: Section 2 presents the literature and 

frame the hypotheses. Section 3 presents our empirical setting, the data and variables used, and 

provides descripting evidence. Section 4 discussed the results of the empirical analyses and Section 

5 concludes. 

 

3.2. Background literature and hypotheses 

In this work, we focus on advanced manufacturing technologies (AMTs) of the I4.0 wave and on 

their impact on firm business activities in terms of performances, the organisation of their 

operations and their strategic choices concerning restructuring. The industrial application of AMTs 

includes advanced industrial robots (AIRs), additive manufacturing (AM) and industrial internet of 

things (IIoT) (Alcácer and Cruz-Machado, 2019; Mariani and Borghi, 2019). To date, these new 

digital technologies of the 4IR – along with several others – have been increasingly investigated in 

many fields, ranging from international business and economics to industrial economics, operations 

and technology management. Notwithstanding, to the best of our knowledge, a thorough 

investigation on the relationship between AMTs, the reorganisation strategies and the associated 

restructuring decisions that firms pursue to increase their competitiveness, performances, and future 

chances of success has been neglected to date. 

Restructuring events can be thought as the visible consequences of management actions 

taken in order to improve firm’s current operational, organisational and financial conditions 

(Coucke et al., 2007). Yet, restructuring decisions can be implemented in different ways depending 

on the specific underlying goal, thus bearing different consequences. Specifically, looking at the 

implications they bear for employees, these strategic decisions can lead to very different outcomes 

and, hence gather either a positive or a negative connotation. For instance, restructuring events that 
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usually happen on a large scale, entailing the displacement of a large portion of a firm or plant 

workforce, result in extensive media coverage due to their negative consequences. With respect to 

this type of events, some studies have devoted attention to the implication of adopting AMTs and 

other automation technologies of the I4.0 wave for laid-off workers in the aftermath of closures 

(Beer et al., 2019; Goos et al., 2021) and downsizing decisions (Blien et al., 2021; Olsson and Tåg, 

2017). Nonetheless, these studies have neglected a deeper investigation of the potential direct 

relationship between AMT adoption and the occurrence of restructuring events. Besides, AMTs 

have also been advocated to play a role in other types of restructuring decisions which, conversely, 

entails a positive connotation, generally associated with bringing back to the home country jobs and 

business activities previously offshored. As such, we acknowledge that the current debate has also 

focused on the implications that new technologies of the I4.0 have on decisions such as reshoring or 

backshoring (e.g. Ancarani et al., 2019; Barbieri et al., 2022; Dachs et al., 2019; Kinkel, 2020; 

Krenz et al., 2021). 

 

3.2.1. Restructuring through collective layoffs 

Hereafter, we summarise the main building blocks enabling us to study the potential impact of 

AMT adoption on the firm decision to restructure its current operation through employee layoffs by 

either downsize, offshore or close. 

 The economics and management literatures have devoted much attention to the different 

types of restructuring events associated with collective layoffs (Bandick, 2016; Brauer and 

Zimmermann, 2017; Coucke et al., 2007; Coucke and Sleuwaegen, 2008; Datta et al., 2010; 

O’Brien and Folta, 2009; Powell and Yawson, 2012; Reynaud, 2013). Although these works resort 

to several different theoretical backgrounds, they provide us with the key concepts, strategic factors, 

and economic variables which are of crucial importance to analyse how managers and firms 

evaluate and compare different restructuring options. 
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Closure represents the most drastic restructuring mode. Companies may choose to terminate 

all their activities when they incur in losses and any other restructuring option is not possible or is 

too costly (Coucke et al., 2007; O’Brien and Folta, 2009). They may decide to permanently divest – 

for instance, by closing a plant – to increase performances and strengthen remaining business 

activities (Atkins and Favreau, 2022; Powell and Yawson, 2012). Reaching such strategic and 

operational decision implies accounting for critical factors like sunk costs, uncertainty about the 

future value of business (i.e. computing the net present value of assets), recent investments, and the 

scrap value of the company (Coucke et al., 2007; O’Brien and Folta, 2009). Likewise, several works 

emphasise the role of industry-specific characteristics such as asset specificity, the presence of 

economies of scale, high capital and/or technology intensity, profitability, and import competition 

strategies, as these are expected to play a role in determining the firm’s propensity to either exit or 

continue its operations (Colantone et al., 2015; Colombo and Delmastro, 2001; Fichman, 2004; 

O’Brien and Folta, 2009; Porter, 1980). Once such considerations have been accounted for, rational 

managers will decide to close a plant if the scrap value is low, there have been no or little recent 

investments, and the firm has few technological assets or innovations to leverage on as a source of 

future competitive advantage (Colombo and Delmastro, 2001; Coucke et al., 2007; O’Brien and 

Folta, 2009). Conversely, since investments in technology and new specialised capital equipment 

are generally considered as highly irreversible (Fichman, 2004), firms will refrain from closing 

when recent investments are high, thus raising sunk costs. 

Underperforming firms may also opt for downsizing through employee layoffs. Companies 

mostly take this decision when the market presents declining demand and investment opportunities 

or when they experience high costs and need to improve efficiency, frequently because of rising 

global competition or as a result of economic cycles (Cascio, 2012; Datta et al., 2010; Freeman and 

Ehrhardt, 2012). Resorting to collective layoffs may also denote a defensive reaction to sudden 

macroeconomic shocks (Datta et al., 2010; Reynaud, 2013). On the one hand, the literature 

highlights that several industry characteristics – namely, capital and innovation intensity, research 
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and development (R&D) expenditure, market concentration, rivalry, and the influence of industry 

trends (e.g. competitors or peers’ restructuring strategy) – are likely to influence the downsizing 

decision (Brauer and Zimmermann, 2017; Cascio, 2012; Datta et al., 2010). On the other hand, 

crucial firm-specific factors that managers take into consideration are profitability (e.g. return on 

assets, return on equity), debt level, capital intensity, productivity, and internationalisation strategies 

(Campos-García et al., 2020; Cascio, 2012; Coucke et al., 2007; Freeman and Ehrhardt, 2012; 

Reynaud, 2013). Nonetheless, many studies highlight one further and critical mechanism associated 

with the downsizing decision: the substitution of labour for capital (Cascio, 2012; Coucke et al., 

2007; Datta et al., 2010; Freeman and Ehrhardt, 2012). As emphasised by many authors 

(Brynjolfsson et al., 1994; Budros, 2004; Coucke et al., 2007; Fligstein and Shin, 2007; Wagar, 

1997; Yoo and Mody, 2000), this mechanism entails increasing investments in information and 

communication technologies (ICTs) and automation (usually, labour-saving technologies) – 

motivated by cost saving and efficiency increase aims – result in internal adjustment processes and, 

ultimately, in workforce reductions. 

Finally, firms may decide to offshore their manufacturing operations most often to pursue an 

efficiency-seeking strategy, aimed at lowering costs and rise productivity (Sethupathy, 2013). When 

the offshored activities are manufacturing ones, this is usually done by moving existing assets to 

those locations which enable to exploit labour cost differential vis-à-vis the home country (Bandick, 

2016; Coucke et al., 2007; Coucke and Sleuwaegen, 2008), or to increase proximity with the final 

market, lowering logistic costs (Kinkel and Maloca, 2009). Alternatively, when offshored activities 

are not (or not only) manufacturing ones but rather IT or R&D, the decision usually entails a 

strategy aimed at seeking access to qualified personnel (Lewin et al., 2009), or new knowledge 

sources (Jensen, 2009). The implications of moving abroad different firm activities have been 

extensively analysed in the literature. On the one hand, mixed evidence emerges when 

manufacturing activities are offshored: while some authors call the attention on how moving 

productive operations abroad lowers home countries’ capabilities to be competitive and innovative 
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(Pisano and Shih, 2012), others emphasize how outward investments in cheap labour countries lead 

to overall firm and employment growth thanks to higher competitiveness, innovation and value 

added from activities retained in the home country (Lee and Jung, 2015; Barba Navaretti et al., 

2010). On the other hand, the assessment of offshoring strategies related to high value adding 

activities, like advanced services or innovation activities, has resulted in growing consensus towards 

the positive impact these choices have on overall business performances (Castellani and Pieri, 2013; 

Dachs et al., 2015; D’Agostino et al., 2013; Jensen, 2009; Lewin et al., 2009; Mihalache et al., 

2012). Instead, looking at the determinants behind the offshoring decision, while the literature 

highlights the critical role that variables like access to a multinational network, international 

sourcing from developed and/or developing countries, the skill level of the workforce, and the role 

of prior physical investments play in the choice of moving activities abroad (Bandick, 2016; 

Coucke et al., 2007; Coucke and Sleuwaegen, 2008; Pennings and Sleuwaegen, 2000), some 

authors also point out how neglecting considerations on organisational complexity and experience 

may lead firms to take biased decisions due to a wrong assessment of the true costs associated with 

the offshoring decision (Larsen et al., 2013). 

 

3.2.2. AMT adoption and restructuring choices 

The literature looking at AMTs and other technologies of the I4.0 wave agrees that the digital 

transformation these technologies bring forward is creating profound and disruptive changes to 

business processes, industrial operations, supply chains, and business models (Marcucci et al., 

2021). The key principles behind the adoption of AMTs can be reconnected to concepts such as 

advanced manufacturing processes, optimisation, flexible adaptation, data integration and 

interoperability. However, firms may adopt different AMTs following these principles to achieve 

different and/or more specific objectives. As discussed by Shafiq et al. (2016), some of these 

objectives may relate to: implementing automatic systems enabling the flexible adaptation of 

productive activities, the supply chain and products tracking in logistics; setting up a 
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communication network between machines, parts, and final products; achieve mass-customisation 

in manufacturing; facilitating human-machine interaction; creating a digital and optimised smart 

factory networked and readily interacting with the rest of the supply chain. These goals bear a 

varying level of pervasiveness in the adoption of technologies of the 4IR, entailing different 

potential level of achieving the associated benefits, hence various degrees of transformation within 

the company organisation. 

 For instance, Dalenogare et al. (2018) investigate how the adoption of different I4.0-related 

technologies associates with expected benefits for product, operations, and side-effects aspects, by 

analysing secondary survey data on more than 2.000 Brazilian companies across 27 industrial 

sectors. Their findings highlight that different AMTs are beneficial under different perspectives: for 

instance, while AM brings product-related benefits and positive side-effects potentially related with 

sustainability of the production process, the benefits of adopting IIoT are more concentrated in 

operations due to the digital integration of manufacturing systems and data exchange. Likewise, 

Frank et al. (2019) look at the Brazilian context by exploring adoption patterns of I4.0 technologies 

across 92 manufacturing companies. They highlight wide differences in the extent of adoption of 

different technologies: while AMTs like AIRs and AM are more widely adopted – being considered 

as base investments to build up the I4.0 technological infrastructure of the firm – other 

complementary technologies like IIoT or big data analytics are still relatively less frequently 

implemented, eventually hampering the achievement of higher levels of productivity and efficiency. 

In Europe, Marcucci et al. (2021) use survey data from 160 Italian manufacturing firms to analyse 

the relationship between I4.0 technology adoption, firm’s organisational resilience and company 

performances, finding that a positive effect on both dimensions is associated only with more IT-

related technologies, like IIoT, which also ensure higher survival chances in the long-run via to 

increased resilience. Müller et al. (2018) qualitatively analyse 68 German firms across three 

industries (i.e. automotive, mechanical and plant engineering, ICTs) by looking at changes in the 

business models following adoption and find that most I4.0-related technologies are highly 
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influential on all the elements of business models (i.e. value creation, value capture and values 

offer). The authors’ results support previous findings from Bogers et al. (2016) and Rayna and 

Striukova (2016), who look specifically at AM, yet highlighting that the driver of adoption (i.e. 

internal motivation vs external pressure) influence the extent of effective implementation of these 

technologies. 

 

3.2.2.1. AMT adoption and the probability of restructuring  

One main finding from the extant literature is that the extent of adoption of different AMTs and the 

perceived associated benefits are highly dependent on contextual factors (e.g. firm’s location, 

sectors, size, as well as the survey and sample design). Notwithstanding, most authors emphasize 

how benefits of well-designed adoption and integration with business practices outweigh the 

drawbacks associated with an only partial implementation. For example, AMTs like AIRs create 

new space for firms to improve flexibility and efficiency, while also increasing reliability and 

quality standards in productive activities (Dalenogare et al., 2018; Frank et al., 2019). AM allows to 

speed up the prototyping stage, foster the development and innovation of new and enhanced 

products, the adoption of new business models featuring co-design with costumers, and mass-

customisation (Bogers et al., 2016; Rayna and Striukova, 2016), while also adopting a more 

sustainable production regime consuming and wasting less resources (Weller et al., 2015). At the 

same time, the combination of AMTs, particularly IIoT, with other technologies of the 4IR enables 

the creation of cyber-physical systems which entail the seamless digital integration of different 

physical components (i.e. machines, computers and products) and provide digital insight (Alcácer 

and Cruz-Machado, 2019; Lee et al., 2015; Schuh et al., 2014). Such integration brings twofold 

gains: first, it allows to reduce set-up, production, and maintenance costs as well as improving 

safety conditions, reliability, and eventually boosts productivity (Kagermann et al., 2013; Müller et 

al., 2018; Schuh et al., 2014). Second, it creates the condition to extend integration along the supply 

chain, reducing logistic costs and making operations more sustainable (Frank et al., 2019; Lee et al., 
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2015; Müller et al., 2018). For instance, implementing IIoT helps companies to enrich their business 

offer by adding new smart features and enabling connection between products and with the firm, 

helps traceability along the supply chain and optimise inventory management, and provide the base 

elements to enable autonomous production and self-monitoring of machines along the production 

chain (Wang et al., 2016). 

These benefits translate in overall higher levels of productivity (see also Chapter 2) and thus 

enable companies to quickly adapt to uncertainty, unforeseen demand shifts (Müller et al., 2018), as 

well as economic shocks by improving their organisational resilience (Marcucci et al., 2021). In 

turn, by providing new sources of competitive advantage (Porter and Heppelmann, 2015), AMTs 

increase firm’s chances to survive without resorting to disruptive adjustment processes involving an 

extensive restructuring of business activities, based on collective layoffs of employees. Coherently, 

we hypothesize: 

 

H1a. A higher level of AMT adoption is negatively related with a firm’s probability of 

restructuring through collective layoffs. 

 

Taking a different perspective, several authors emphasize that adopting AMTs requires firms to 

increasingly commit to capital investments in highly specialised hardware and software 

infrastructures (Marcucci et al., 2021). For instance, Müller et al. (2018) discuss how adopting these 

technologies is generally perceived as costly in the short run, whereas their benefits require longer 

time to be achieved. Besides, AMT adoption leads to a shift in the skill content of tasks performed 

in several activities, above all in production (Frey and Osborne, 2017). This shift in the labour 

content is likely to affect both the skills required and the overall level of employment, potentially 

resulting in either retraining and up-skilling programs for employees, in the layoff of some jobs, or 

in a mix of both. For example, AIRs also improve working conditions by limiting space for human 

errors, by carrying out operations without any worker’s assistance, and ensuring safer working 
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standards and higher reliability in harmful situations (Koos et al., 2013; Złotowski et al., 2017). AM 

requires more highly specialised workers in both high value-adding activities like design, R&D, and 

operations, making it skill-biased in favour of high-skilled workers (Felice et al., 2022). Similarly, 

adopting cyber-physical systems enabled by IIoT devices push in the same direction of a reduced 

and skill-upgraded need for human labour in manufacturing activities, considering new machines’ 

ability to self-adapt without resorting to human interventions (Lee et al., 2015; Schuh et al., 2014). 

These arguments are further supported by the extensive recent literature on new automation 

technologies of the 4IR and their effect on labour (e.g. Acemoglu and Restrepo, 2018; 2019; 2020; 

Frey and Osborne, 2017): AMTs and other companion technologies of the I4.0 wave substantially 

represent a mechanism of automation deepening, which entails a substitution between capital and 

labour inputs in production and, at the same time, requires employees to possess a different mix of 

skills, i.e. they are skill-biased (Acemoglu and Autor, 2011). 

 Furthermore, as already discussed above, AMTs provide companies with the opportunity to 

tackle new markets by enriching their product portfolio at reduced costs, enhancing product 

characteristics, or adopting new business models (Bogers et al., 2016; Müller et al., 2018; Rayna 

and Striukova, 2016). While the literature on the innovation-employment nexus (see, among the 

others, Vivarelli, 2014) traditionally associates product innovations with positive employment 

effects, here we focus on the changes in both organisational and manufacturing processes that lie 

behind the new product- and business model-related opportunities. For instance, AM shifts the 

relative weight of in-house product development due to co-creation with consumers, hence 

changing the nature of the production process and management perceptions of the related 

geographical and organisational boundaries (Strange and Zucchella, 2017). Specifically, some 

authors point out that AM makes production more suitable to be decentralised and located closer to 

final customers, creating conditions for saving on logistic costs and delivery times (Hannibal and 

Knight, 2018; Laplume et al., 2016; Strange and Zucchella, 2017). Findings from de Beule et al. 

(2022) support this argument by highlighting how AM firms have more foreign production 
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subsidiaries than non-AM companies, especially when compared to similarly innovative firms. 

Besides, IIoT allows firms to achieve greater integration along the value chain by connecting 

manufacturers with suppliers and customers worldwide thanks to seamless and instantaneous data 

exchange, lowering the need for intermediaries and reducing transaction and coordination costs 

(Porter and Heppelmann, 2014; 2015). This eventually makes the management of geographically 

dispersed value chain activities more effective and less costly (Strange and Zucchella, 2017), 

lowering perceived barriers towards locating different value-adding activities in different locations 

(e.g. closer to the final market, or in lower cost locations). 

 These arguments thus support a view of AMTs as triggers of more profound changes to the 

organisation of production than those solely associated with the flexibility, efficiency, and 

productivity gains highlighted above. These changes pertain the organisation of labour within and 

across countries by changing the relative weight of human content in production and control tasks, 

and the geographical location of different activities. Following this alternative perspective, we argue 

that AMT adoption is likely to push firms towards a restructuring of their activities, resulting in 

layoffs associated with the potential displacement of workers or the delocalisation of some 

activities. This leads to formulate a competing hypothesis to H1a: 

 

H1b. A higher level of AMT adoption is positively related with a firm’s probability of 

restructuring through collective layoffs. 

 

3.2.2.2. AMT adoption and alternative restructuring choices 

As highlighted above, benefits deriving from AMT adoption are likely to provide firms with new 

sources of competitive advantage over non-adopters (Porter and Heppelmann, 2014; 2015), 

ultimately increasing their chances of future survival (Marcucci et al., 2021). Notwithstanding, 

AMT adopters and non-adopters alike face the same challenges and uncertainty related to the 

surrounding market conditions and the same risk of being exposed to sudden macroeconomic 
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shocks (e.g. the 2008 financial crisis, the 2020 Covid-19 pandemic) as well as industry- or market-

specific downturns. Although these unforeseen events can be mitigated by the firm’s ability to 

develop higher level of organisation resilience thanks to AMTs (Marcucci et al., 2021), managers 

can still decide to undertake drastic strategic decisions. Thus, hereafter we focus on the implications 

of AMT adoption for companies, once they have decided to restructure by resorting to collective 

layoffs. 

 In this context, as anticipated in Section 2.1, rational managers’ decision boils down to the 

evaluation of gains and costs associated with each restructuring opportunity and eventually 

choosing the restructuring alternative that allows to maximise the future value of the firm’s business 

activities (Coucke et al., 2007). While taking stock of the bulk of literature on the topic and 

acknowledging the role played by different firm and industry characteristics, we take the worst-case 

scenario (i.e. plant or firm closure) as reference to compare alternative restructuring modes and 

analyse the implications AMTs have in such evaluation. 

 When comparing downsizing and closure, managers evaluate the net present value obtained 

by continuing operations, net of the adjustment costs associated with the adaptation of business 

activities to the reduced workforce because of the layoff. This is then evaluated against the scrap 

value of current assets in the case of closure. Considering downsizing, as discussed earlier, AMT-

enabled efficiency, flexibility, higher productivity, and deeper integration of different business 

activities within the firm and across the value chain make companies more resilient and able to 

absorb shocks (Marcucci et al., 2021), lowering the organisational and operational costs of adapting 

firm’s activities after the restructuring while also increasing their competitiveness vis-à-vis non-

adopters. At the same time, AMTs require less human content in production (e.g. due to AIRs), as 

well as a different mix of more qualified workforce. Likewise, adopting automatised and integrated 

production methods allows to carry on operations reducing both production and logistic costs (e.g. 

thanks to AM and IIoT) and achieve optimised work-flows, further reducing adjustment costs. This 
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eventually results in a higher intensity of capital relatively to labour due to this process of 

automation deepening (Cascio, 2012; Coucke et al., 2007; Freeman and Ehrhardt, 2012).  

Considering closure, the adoption of AMTs represents an investment in capital intensive 

machinery and equipment, which are generally expensive (Müller et al., 2018). Furthermore, the 

decision to invest in these technologies usually entails a long-term perspective, necessary to realise 

the above-mentioned benefits. Consequently, once a firm adopts AMTs, the costs associated with 

such decision are largely sunk. As discussed in Section 2.1, sunk costs associated with past capital 

investments play a critical role in managers’ decision to pursue any restructuring option (Coucke et 

al., 2007; O’Brien and Folta, 2009). As argued by Fichman (2004), investments in technologies are 

usually tailored on firm’s needs around specific production settings and/or monitoring systems, 

generally making them highly irreversible. Likewise, while capital assets like AIRs or AM can be 

sold or more easily adapted and redeployed, IIoT investments in digital sensors and automation 

systems are not easily re-assembled and readily made productive after closure.38 Additionally, as in 

the case of other ICTs (Fichman, 2004), additional costs relate to the technical training of 

employees to use new machines and systems, learning new practices, hiring professional 

consultants to support the transformation, the organisational effort put on adapting to the 

transformation, and absorbing productivity losses incurred over the transition. These additional 

investments associated with employees’ training, establishing new routines and practices are 

generally considered largely sunk, since they are strictly related to the firm’s organisation (Kogut 

and Kulatilaka, 2001), hence lost in case of closure. 

While some of these arguments are more settled in the literature on companies’ restructuring 

decisions, others follow from our discussion of the implications and benefits associated with the 

adoption of AMTs. Overall, while AMT characteristics should push firms towards a smoother and 

less disruptive adaptation to downsizing through collective layoffs – thus increasing the likelihood 

 

38 As highlighted in Chapter 2 (footnote 33, p. 100), we note that IIoT investments are, generally, substantially more 

expensive than those in AIRs or AM, thus bearing a more important weight in the computation of sunk costs. 
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of preferring such option –, other considerations like sunk costs and investments’ irreversibility 

should make the option of terminating business activities less appealing to managers. Thus, we 

hypothesize that: 

  

H2. Conditional on restructuring, a higher level of AMT adoption is associated with a 

higher probability of firms choosing downsizing over closure. 

 

To complete our conceptual framework, we analyse the role of AMTs in the decision to restructure 

via offshoring, as compared to closure. New business opportunities created by AMTs like AM and 

IIoT enable firms to better serve new markets, facilitating the extent to which they are able to serve 

geographically distant locations and the coordination between dispersed activities (de Beule et al., 

2022; Hannibal and Knight, 2018; Laplume et al., 2016; Strange and Zucchella, 2017). Under this 

perspective, these technologies of the 4IR may act as catalysts of the traditional motives behind the 

offshoring decision: they allow companies to reduce the costs associated with these decisions by 

reducing logistic costs when they offshore production activities abroad (Kinkel and Maloca, 2009), 

while also pursuing an efficiency-seeking strategy benefitting from the lower production costs in 

the offshoring location (Bandick, 2016; Coucke and Sleuwaegen, 2008; Sethupathy, 2013). At the 

same time, the benefits gained through their adoption may also result in additional productivity 

effects for those value-adding activities retained in the home country: for example, as pointed out 

by Porter and Heppelmann (2015), IIoT enabled connectivity between the firm and its customers 

makes it easier to manage remote customer services thanks to the continuous data exchange 

between smart products and firm’s monitoring systems, enabling such services to be outsourced to 

lower wage but high IT skills locations. All in all, these mechanisms should further facilitate 

achieving higher competitiveness from not offshored activities (Barba Navaretti et al., 2010), 

overall business performances, productivity (Castellani and Pieri, 2013) and chances of survival 

(Grazzi et al., 2022). 
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 Coherently, combining these considerations with the above discussion about the 

implications of AMT adoption on closure decisions, the characteristics of these technologies should 

make it rather convenient for a firm to offshore production activities, laying-off employees and 

seeking a more efficient and productive business structure. Hence, we hypothesize: 

 

H3. Conditional on restructuring, a higher level of AMT adoption is associated with a 

higher probability of firms choosing offshoring over closure. 

 

3.3. Empirical model and data  

3.3.1. Modelling restructuring decisions 

To test empirically our hypotheses, first we analyse the role of AMT adoption on the firm’s 

decision on whether to restructure or not, conditionally to other firm and industry characteristics. 

Second, we observe the role of AMTs when a firm chooses which restructuring mode to pursue 

among downsizing, offshoring and closure. This multilevel decision problem implies accounting for 

the selection bias deriving from firm’s characteristics which may naturally lead to a higher 

propensity to restructure. To account for this selection bias problem, we follow Heckman’s (1979) 

two-step procedure: in the first stage of our empirical analysis, we estimate a probit model 

describing the selection problem (i.e. whether to restructure through employee layoff or not), while 

in then the second stage we estimate a multinomial logit model describing the choice problem (i.e. 

to choose among the three alternative restructuring modes discussed here). In this second stage, we 

need to account for the self-selection mechanisms described by the first selection problem by 

including the inverse Mills ratio (IMR). 

Besides AMT adoption, following the relevant literature discussed in Section 2.1, our model 

includes a set of firm-level controls, the level of sectoral AMT investments describing the AMT-

related technological environment in which the firm operates, other key industry characteristics and 
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a full set of country, sector and year fixed effects (FEs). Heckman’s (1979) model obtains formal 

identification from the inclusion of at least one explanatory variable in the model describing the 

first selection problem which does not appear in the model for the second selection problem, i.e. an 

exclusion restriction. Our conceptual framework implies that firms will be able to achieve higher 

productivity levels because of AMT adoption, thus lowering chances that they will resort to 

restructuring via layoffs. Nonetheless, while economic theory suggests that firms which are more 

productive per se will naturally be less prone to any restructuring, the managerial decision-making 

processes frequently results in ex ante more productive firms to proactively undertake restructuring 

decisions with the aim of pursuing a further a productivity increase. Thus, we include labour 

productivity in the probit model as the main exclusion restriction which should help identifying the 

self-selection mechanism. Besides, in the first-stage probit model we further include two additional 

control variables – i.e. investment intensity and product differentiation – which should capture any 

industry characteristic related to technology and competitive dynamics (e.g. Datta et al., 2010) not 

purely related to AMTs, but which could affect the firm’s propensity to restructure. 

 In the first-stage probit model, our dependent variable is a dummy variable which equals 1 if 

a firm undertake any restructuring decision entailing a collective layoff, 0 otherwise. Similarly, in 

the second-stage multinomial logit model the dependent variable is a categorical variable assuming 

value 𝑘 = 0 in case of the reference category (i.e. closure), value 𝑘 = 1 in case of downsizing and 

value  𝑘 = 2 in case of offshoring. 

 In addition, we explore alternative specifications of the second-stage model featuring an 

OLS regression in which the dependent variable is the size of the collective layoff (i.e. the number 

of displaced workers). The dependent variable is here expressed as the natural logarithm of the 

number of employees laid-off, i.e. 𝑙𝑛(𝑙𝑎𝑖𝑑-𝑜𝑓𝑓). We expect a negative relationship between AMT 

adoption and the number of laid-off employees, because firms adopting more AMT are less likely to 

close – laying-off either the whole workforce or a large share of it – and rather more likely to opt 

for a downsize – laying-off only a portion of the workforce. 
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 To sum up, we estimate the following equations: 

𝑃(𝑅𝑒𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑖𝑛𝑔𝑖,𝑗,𝑐,𝑡 = 1)

=
exp (𝛽0 + 𝛽1𝐴𝑀𝑇 𝑎𝑑𝑜𝑝𝑡𝑖𝑜𝑛𝑖,𝑗,𝑐,𝑡−1 + 𝛽2𝐹𝐿𝐶𝑖,𝑗,𝑐,𝑡−1 + 𝛽3𝑆𝐿𝐶𝑗,𝑐,𝑡−1 + 𝐹𝐸𝑠)

1 + exp (𝛽0 + 𝛽1𝐴𝑀𝑇 𝑎𝑑𝑜𝑝𝑡𝑖𝑜𝑛𝑖,𝑗,𝑐,𝑡−1 + 𝛽2𝐹𝐿𝐶𝑖,𝑗,𝑐,𝑡−1 + 𝛽3𝑆𝐿𝐶𝑗,𝑐,𝑡−1 + 𝐹𝐸𝑠)
 

 

(1) 

𝑃(𝑅𝑒𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑖𝑛𝑔𝑖,𝑗,𝑐,𝑡 = 𝑘)

=
exp (𝛽𝑘0 + 𝛽𝑘1𝐴𝑀𝑇 𝑎𝑑𝑜𝑝𝑡𝑖𝑜𝑛𝑖,𝑗,𝑐,𝑡−1 + 𝛽𝑘2𝐹𝐿𝐶𝑖,𝑗,𝑐,𝑡−1 + 𝛽𝑘3𝑆𝐿𝐶𝑗,𝑐,𝑡−1 + 𝛽𝑘4𝐼𝑀𝑅𝑖,𝑗,𝑐,𝑡 + 𝐹𝐸𝑠)

∑ exp (𝛽0 + 𝛽𝑚1𝐴𝑀𝑇 𝑎𝑑𝑜𝑝𝑡𝑖𝑜𝑛𝑖,𝑗,𝑐,𝑡−1 + 𝛽𝑚2𝐹𝐿𝐶𝑖,𝑗,𝑐,𝑡−1 + 𝛽𝑚3𝑆𝐿𝐶𝑗,𝑐,𝑡−1 + 𝛽𝑚4𝐼𝑀𝑅𝑖,𝑗,𝑐,𝑡 + 𝐹𝐸𝑠)
𝑘
𝑚=1

 

 

(2) 

𝑙𝑛(𝑙𝑎𝑖𝑑-𝑜𝑓𝑓) = 𝛽0 + 𝛽1𝐴𝑀𝑇 𝑎𝑑𝑜𝑝𝑡𝑖𝑜𝑛𝑖,𝑗,𝑐,𝑡−1 + 𝛽2𝐹𝐿𝐶𝑖,𝑗,𝑐,𝑡−1 + 𝛽3𝑆𝐿𝐶𝑗,𝑐,𝑡−1 + 𝛽4𝐼𝑀𝑅𝑖,𝑗,𝑐,𝑡 + 𝐹𝐸𝑠 + 𝜀𝑖,𝑡 (3) 

where 𝐹𝐿𝐶 and 𝑆𝐿𝐶 are vectors of firm-level and sector-level controls, respectively. 

3.3.2. Variables 

Hereafter, we introduce all the explanatory variables included in our econometric model and the 

related motivation. All variables included in our specifications are lagged by one year, to avoid 

simultaneity issues. 

 

3.3.2.1. Main explanatory variable 

AMT adoption: As pointed out by many authors, a firm’s capital structure and intensity are likely to 

affect its propensity to adopt different restructuring modes. Specifically, several studies highlight 

that more capital-intensive firms, which use more advanced technologies and invest in automation, 

are more likely to pursue further capital deepening (Bandick, 2016; Cascio, 2012; Coucke et al., 

2007; Coucke and Sleuwaegen, 2008; Freeman and Ehrhardt, 2012; Pennings and Sleuwaegen, 

2000). Yet, capital intensity alone is not able to properly capture a process of capital deepening 

involving investments in advanced technologies of the 4IR. Besides, the level of technological and 

capital intensity characterising the external environment represent important factors determining 

industry competitive dynamics as well as shaping firm’s technological and investment decisions 

(Porter, 1980; Porter and Heppelmann, 2014). In turn, firms operating in industries characterised by 
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higher levels of AMT investments will also be likely to invest in AMTs to sustain competition and 

achieve supply chain integration with customers and suppliers (Müller et al., 2018; Porter and 

Heppelmann, 2014; 2015). 

Exact data on AMT investments at the level of the firm are not available for an extensive 

sample covering several countries and years, but based the discussion above, we measure the 

adoption of AMTs as a combination of two elements. The first is the firm’s level of capital 

intensity, measured by the natural log of tangible fixed assets over the number of employees. The 

second is the level of AMT investment intensity of the industry in which the firm operates, measured 

as the natural log of the stock of sectoral AMT imports.39 Formally, AMT adoption in firm 𝑖, 

operating in industry 𝑗 of country 𝑐 is measured as: 

𝐴𝑀𝑇 𝑎𝑑𝑜𝑝𝑡𝑖𝑜𝑛𝑖,𝑗,𝑐 =

[
 
 
 
 

𝑙𝑛 (
𝑇𝑎𝑛𝑔𝑖𝑏𝑙𝑒 𝐹𝑖𝑥𝑒𝑑 𝐴𝑠𝑠𝑒𝑡𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒𝑠
)
𝑖,𝑗,𝑐⏟                    

𝐶𝑎𝑝𝑖𝑡𝑎𝑙 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦

× 𝑙𝑛(𝐴𝑀𝑇 𝐼𝑚𝑝𝑜𝑟𝑡 𝑆𝑡𝑜𝑐𝑘)𝑗,𝑐⏟                
𝐴𝑀𝑇 𝐼𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦

]
 
 
 
 

 (4) 

Sectoral AMT imports are computed using an exposure index in the spirit of Acemoglu and 

Restrepo (2020), following the approach described in Chapter 2. Since the measure is effectively an 

interaction between firm capital intensity and sectoral AMT investment intensity, we also include the 

two variables in both the first-stage probit model and in the second stage multinomial logit as 

controls for the main effects. 

 

3.3.2.2. Firm-level controls 

 Size: Following the literature on firms’ restructuring choices, larger firms will be more 

likely to restructure resorting to collective layoffs since they generally enjoy a larger pool of 

available resources and are relatively better suited to face uncertainty and fast-changing market 

conditions (Bandick, 2016; Brauer and Zimmermann, 2017; Coucke et al., 2007; Coucke and 

 

39 The stock of sectoral AMT imports is computed using the perpetual inventory method, assuming a depreciation rate 

of 15%. 
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Sleuwaegen, 2008; O’Brien and Folta, 2009). At the same time, they will prefer to downsize or 

offshore their activities rather than terminate activities and exit from the market. We include the 

natural log of the number of employees as a measure of firm’s size. 

 Age: Looking at the firm under an evolutionary perspective, younger firms enjoy faster 

potential growth conditional to their ability to learn from the market, to adopt the right 

organisational structure and routines. However, while younger firms may experience a higher 

pressure to restructure due to the lack of such experience, older firms with established business 

procedures and practices are more likely to endure weak performances, market turmoil and less 

likely to restructure (Coucke et al., 2007; Coucke and Sleuwaegen, 2008). We control for firm’s 

experience including the natural log of its age. 

 Return on assets (ROA): Many authors highlight that scarce business performances and the 

lack of profitability may signal a higher likelihood to restructure as compared to peer firms 

operating in the same market (Brauer and Zimmermann, 2017; Campos-García et al., 2020; Coucke 

et al., 2007; Kang and Shivdasani, 1997; O’Brien and Folta, 2009; Powell and Yawson, 2012; 

Reynaud, 2013). Coherently, in case of weak performance, managers will be pushed to restructure 

with the aim of achieving a higher profitability. Thus, we include the return on assets (ROA) as a 

measure of profitability, computed as the ratio of net income over total assets. 

 Leverage: Similarly, also the financial structure of a company has been largely observed to 

be influential on the restructuring decision (Brauer and Zimmermann, 2017; Campos-García et al., 

2020; Coucke et al., 2007; Kang and Shivdasani, 1997; O’Brien and Folta, 2009; Powell and 

Yawson, 2012; Reynaud, 2013). In principles, highly leveraged firms may face debtholders’ 

pressure to liquidate or sell assets and, eventually, lay-off employees when financial obligations are 

not met. However, previous studies find mixed evidence on the role of financial leverage measures 

over the propensity to restructure, highly dependent on the type of restructuring decision under 

analysis, firm and industry characteristics (Coucke et al., 2007). We control for firm’s financial 

leverage, computed as the natural log of the ratio of long-term debt over total assets. 
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 Labour productivity: More productive firms enjoy higher survival chances and future 

growth prospects, while less productive firms have higher probability to exit the market (Bandick, 

2016; Coucke and Sleuwaegen, 2008). At the same time, higher productivity also comes with 

increasing capital investments and reduction in inefficiencies (Cascio, 2012; Datta et al., 2010; 

Freeman and Ehrhardt, 2012) potentially obtained through restructuring decision like downsizing or 

offshoring. Hence, depending on the prevailing relationship with the propensity to restructure, we 

are likely to see mixed results. We measure labour productivity with the natural log of the ratio of 

firm’s turnover and the number of employees. 

 Corporate group: The literature extensively highlight how firms belonging to a 

multinational network are relatively better suited to survive through economic shocks and market 

downturns, benefit from their higher international experience, are more efficient, but also how they 

are more likely to benefit from a higher potential to relocate capacity across borders at a reduced 

cost, increasing their likelihood of pursuing flexibility through offshoring and/or relocations rather 

than via downsizing (Coucke et al., 2007; Coucke and Sleuwaegen, 2008; Pennings and 

Sleuwaegen, 2000). Overall, these firms enjoy higher survival chances. We control for a firm’s 

being part of a corporate group by including a dummy variable which equals 1 if the firm has at 

least one subsidiary (both national and multinational), 0 otherwise. 

 Innovator: Several authors point out that firms competing over innovation are less likely to 

terminate activities, showing higher management commitment to remain on the market (Campos-

García et al., 2020; O’Brien and Folta, 2009; Pennings and Sleuwaegen, 2000) and higher chances 

of preferring alternative restructuring measures to closure in case of declining performances. 

Likewise, innovators are more likely to achieve and maintain new sources of competitive 

advantage, further increasing survival chances. Conversely, restructuring options involving loss of 

human capital, like downsizing, may affect firm’s innovative capabilities (Datta et al., 2010). We 

account for a firm’s status as innovator, measured as a dummy equalling 1 if the firm has at least 

one granted patent, 0 otherwise. 
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 Recent investments: As discussed by Coucke et al. (2007), capital investments represent a 

barrier to exit and downsizing, given the high sunk costs associated with specialised machinery and 

equipment, as well as intangible assets like employee technical training (see also the discussion in 

Section 2.2). Hence, recent investments are generally assumed to hamper firm’s likelihood of 

restructuring, given the consistent adjustment costs incurred by the firm in case of high recent 

investments. We characterise firms having performed recent investments using a dummy variable, 

assuming value 1 if the growth rate of tangible fixed assets is positive, 0 otherwise. 

 

3.3.2.3. Industry controls and other variables 

Investment intensity: The general investment intensity, capturing technological and capital-related 

features of environment surrounding a firm, represents an important factor determining industry 

competitive dynamics, shaping both the future chances of success for firms operating in an industry, 

and potential factors influencing firms’ restructuring decisions (Datta et al., 2010; O’Brien and 

Folta, 2009; Porter, 1980; Porter and Heppelmann, 2014). Thus, we include a measure of 

investment intensity computed as the ratio of gross fixed capital formation to value added, both 

expressed in real terms. 

 Product differentiation: Another feature that may affect the probability to restructure is the 

level of product differentiation in an industry (Datta et al., 2010). Specifically, competitive pressure 

is generally assumed to be lower in industry with a high degree of product differentiation, thus 

decreasing firm’s incentives to restructure via layoffs (Coucke et al., 2007). We proxy product 

differentiation using intra-industry trade, measured following Marvel and Ray’s (1987) formulation 

of the Grubel and Lloyd (1975) index, computed as 2𝑚𝑖𝑛(𝑋𝑗, 𝑀𝑗) (𝑋𝑗 +𝑀𝑗)⁄ , where 𝑋𝑗 and 𝑀𝑗 

represent total exports and total imports of sector 𝑗, respectively. 

 Fixed effects (FEs): We further control for potential unobserved heterogeneity including 

country, sector, and year FEs. Country FEs should capture all country-specific institutional factors 

that may affect the decision to restructure through collective employee layoffs, such as labour 
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market institutions and union activity. Sector FEs should capture industry-specific factors which are 

common to all countries, e.g. efficiency in the use of natural resources, the presence of scale 

economies, and the level of market competition. Year FEs should capture all time specific shocks 

and trends, as well as the cost of capital, which should affect the propensity of investing in 

technologies like AMTs, is generally assumed to be equal for all firms, and to vary over time. 

 

3.3.3. Data and descriptive evidence 

As a first step to create the dataset used for the empirical analysis, we sourced data on restructuring 

events from the European Restructuring Monitor (ERM) database, which provides a rich set of 

information about business restructuring events involving firms operating within the European 

Union (EU) 27 countries, the United Kingdom (UK) (until the end of 2019) and Norway. The 

information on restructuring events reported in the ERM database is collected by an international 

team of researchers at Eurofound and affiliates, by checking daily newspapers and business press, 

and integrated with online resources like company websites (Eurofound, 2022). Eurofound ensures 

the quality of the data published in the ERM database by continuously monitoring and cross-

checking the information they gather. At the same time, data published in the ERM satisfy strict 

criteria, aimed at publishing information only on significant, large-scale, restructuring events taking 

place across the EU: “an event is included if it entails the announced destruction or creation of at 

least 100 jobs, or at least 10% of the workforce at sites employing more than 250 people” 

(Eurofound, 2022).40 

Eurofound granted us bulk data access on all restructuring events happened in the EU27, UK 

and Norway between 2002 and February 2021. As a first step in data preparation, we focus on 

restructuring events in manufacturing (i.e. 2-digit NACE codes from 10 to 33) and discarded 

 

40 We acknowledge this might represent a source of potential bias, making our results not fully representative of 

medium, small and micro firms. 
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information on cases pertaining service industries and all other sectors.41 Second, since the structure 

of the data and of the collected information allows for the presence of cross-country events whose 

consequences affect more than one European country or even countries outside Europe (i.e. those 

flagged as ‘European Union’ or ‘World’ in the related variable included in the ERM database), we 

discarded all events taking place outside Europe or in more than one European country. This step is 

necessary to exclude events reporting either incomplete or not sufficiently detailed information, as 

well as to avoid double counting of events: if one event affect several European countries and the 

available information is sufficiently detailed to identify single-country implications, one event for 

each country is also created (Eurofound, 2022). Finally, we focused on restructuring events 

described by Eurofound (2022) as ‘closure/bankruptcy’ (i.e. “when a company goes bankrupt/a 

company or an industrial site is closed for economic reasons not directly connected to relocation or 

outsourcing”), ‘offshoring/delocalisation’ (i.e. “when the activity is relocated or outsourced outside 

of the country’s borders”), and ‘internal restructuring’ (i.e. “when the company undertakes a job-

cutting plan, which is not linked to another type of restructuring […]”),. By looking at these 

categories of events, we acknowledge that some events entail both the hiring and the displacement 

of workers. Hence, given the purpose of our analysis, we computed the net impact of each 

restructuring decision on employment and discarded from our data all events not implying a net 

negative effect on the workforce, i.e. an employee layoff. 

Furthermore, we acknowledge that offshoring events might be seen as the combination of a 

firm deciding to offshore activities abroad (i.e. to a host country) and to close or downsize in the 

home country. However, this is not a concern for our analysis as data on restructuring events 

reported in ERM database are mutually exclusive in nature, hence not subject to double counting 

(i.e. the same event is recorded twice in the dataset as a closure or downsizing in the home country 

and an offshoring in the host country). In fact, ERM event categories reflect the full extent of the 

 

41 As discussed in Chapter 1, we focus on manufacturing firms since the AMTs analysed here are more likely to affect 

manufacturing operations. 
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ultimate goal behind the restructuring decision: in the case of offshoring, events are recorded in the 

home country, job losses (and, potentially, hirings) refer to the home country, and the only 

information about the host country lies in the destination country and, potentially, the location 

within the country. 

As discussed in Chapter 1 and 2, we sourced the data used to build our main explanatory 

variable, AMT adoption, as well as sectoral AMT investment intensity from Eurostat’s Comext 

database and from the World Input-Output Database (WIOD) (Timmer et al., 2015). From Comext 

database we took highly detailed information, at the 8-digit level of product disaggregation, on 

country-level imports of AMT-related goods and aggregate country imports from AMT-producing 

industries (i.e. NACE 2-digit sector 28 for AIRs and AM, 26 for IIoT). From WIOD database we 

sourced data on intermediate inputs imported across countries and sectors, necessary to build 

sectoral weights describing each sector and country’s purchase of AMT-related intermediates. 

The other firm-level data necessary to compute our main explanatory variable capturing 

AMT adoption, together with data used to construct all firm-level controls were sourced from 

Bureau van Dijk’s Amadeus database. The database provides us with detailed firm-level 

longitudinal data over the period 2012–2020. First, we downloaded information for manufacturing 

firms active in the EU27 countries, the UK and Norway, with at least 9 employees, and having 

known values (i.e. non-missing) for key financial and balance sheet variables over the observation 

period.42 Second, we matched data on the three layoff-related restructuring events from the ERM 

database with firm-level data from Amadeus database, discarding all observations for which it was 

not possible to obtain non-missing firm data necessary to compute the variables of interest. Third, 

we dropped all observations for firms in Amadeus database matching with firms reporting other 

restructuring events included in the ERM database, i.e. those not reporting any type of restructuring 

investigated here, but undertaking other types of restructuring not strictly implying collective 

 

42 Specifically, we considered: number of employees, fixed tangible assets, fixed intangible assets, operating revenue, 

and profit/loss. The resulting search featured 217,377 firms respecting such criteria. 
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employee layoffs (e.g. merger and acquisitions, business expansions, etc.). Finally, the information 

for European firms in our Amadeus data, but not matching with any restructuring firms in the ERM 

database, were used as counterfactual (i.e. non-restructuring firms) in our empirical analysis. 

Clearly, these preparation steps also resulted in a reduction of the sample our analysis to the 2012–

2020 period. However, loosing information on the 2002-2011 period is not likely to represent a 

limitation to our empirical analysis on the role played by AMTs in affecting firm’s restructuring 

decisions as the adoption of such technologies picked up in the last decade. First, it was only after 

the global financial crisis, driven by a fast-moving debate on new technologies and manufacturing 

models, virtually all most advanced economies – and, most importantly, almost all European 

countries – launched their industrial policy programmes targeting I4.0 (Mariani and Borghi, 2019). 

Second, only starting from 2009 the global demand for mechanical engineering goods, machinery 

and enabling equipment for I4.0 returned to their pre-crisis level (Kagermann et al., 2013). Third, 

the core patents protecting some AMTs – in particular, AM – expired in 2009 and in subsequent 

years, allowing a strong diffusion of these technologies worldwide (Buonafede et al., 2018; Felice 

et al., 2022; Laplume et al., 2016). 

  Finally, we also used data from the OECD’s Structural Analysis (STAN) and Bilateral 

Trade by Industry and End-use (BTDIxE) datasets, which we used to compute the two additional 

industry controls, i.e. investment intensity and product differentiation. 

-------------------------- 

Table 1 around here 

-------------------------- 

Our final sample include 77,556 observations over 12,162 firms operating across 24 manufacturing 

industries and located across 19 European countries between 2013 and 2020.43 This sample includes 

730 restructuring events, pertaining to 565 firms. Tables 1, 2 and 3 highlight the distribution of 

 

43 We recall that all our explanatory variables are lagged by one year, so to avoid the risk of simultaneity issues, hence 

why the observation starts in 2013. 
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restructuring events of each category across years, sectors, and countries, respectively. These tables 

also provide information on the characteristics of a restricted control sample of 2,552 firm-year 

observations with highly similar characteristics of restructuring firms and used in one of the 

robustness tests of our main analysis (see Section 4.2). 

-------------------------- 

Table 2 around here 

-------------------------- 

Table 1 shows that downsizing events are the more frequent mode of restructuring (546), while 

closure and offshoring are less numerous (126 and 58 overall). All three types of restructuring 

events have been more frequent at the beginning and at the end of our observation period. This 

insight further reinforces the idea that there is a correlation between economic shocks and 

restructuring through collective layoffs. Specifically, early years in our time series (2013 and 

following) bear the aftermath of local sovereign debt crises affecting European countries, while the 

steep increase witnessed in 2020 is clearly related with the outbreak of the Covid-19 pandemic.  

-------------------------- 

Table 3 around here 

-------------------------- 

Table 2 highlights that restructuring events are well dispersed across all manufacturing industries, 

exception made for offshoring cases which appear to be more concentrated in some sectors. A 

notable concentration of restructuring events characterises sectors 10 (manufacturing of food 

products), sector 28 (manufacturing of machinery and equipment) and sector 29 (manufacturing of 

motor vehicles, trailers and semi-trailers). Likewise, Table 3 presents the geography of the 

restructuring events discussed in this work: across the 19 European countries in our data, most 

closure cases are concentrated in Germany, France, the UK and Poland. Cases of restructuring 

through downsizing present a similar pattern, with the notable addition of northern EU countries 

like Finland and Sweden, which also present a consistent number of cases. Finally, offshoring, 
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which is the less frequent event, appears also to be rather constrained to few countries, mostly 

Germany, France and, to a lesser extent, Belgium. 

-------------------------- 

Figure 1 and Table 4 around here 

-------------------------- 

Looking at the size of collective layoffs across our sample, Figure 1 describes the frequency 

distribution of normalised employee layoffs.44 We expressed the size of layoffs as a share of the 

previous year’s number of employees of the firm. Collective layoffs in our sample involve a large 

portion of the firm workforce: on average about 69%, ranging between 38% and full dismissal of 

the workforce. This suggests that only few cases of closure involve the actual closure of the firm, 

but rather closure of a firm’s plant. At the same time, it also highlights that employee reductions 

following downsizing or offshoring decisions have resulted in large portion of the workforce being 

laid-off. Table 4 reports summary statistics of normalised employee layoffs reported in Figure 1 and 

the log value of layoff size: mean normalised employee layoffs ranks highest in the case of closure 

(0.764), but remains high also in the case of downsizing (0.678) and offshoring (0.705), supporting 

the insight from Figure 1. At the same time, closure events feature the highest (log) mean layoff 

size as compared to the other restructuring events considered. Specifically, the magnitude of layoffs 

associated with closure events is larger than that observed for offshoring events at any point of the 

layoff distribution, while it remains larger than that for downsizing events up to the 75th percentile. 

These insights suggest that downsizing firms are on average higher than that of closing ones, 

resulting in higher absolute layoffs at the top of the distribution. 

Finally, Table 5 presents the summary statistics and the correlation matrix for the variables 

used in our main analysis, while Table 6 presents descriptive statistics distinguishing firm and 

 

44 We note that, by construction, normalised employee layoffs can also be seen as firm’s employment growth. 

Coherently with prior literature on growth rates for several firm-level variables, Figure 1 presents the typical tent-shape 

distribution characterised by fat tails (see, for instance, Bottazzi and Secchi, 2003; Barba Navaretti et al., 2022). 



 

158 

industry characteristics across the three restructuring modes we investigate. Notably, AMT adoption 

is significantly higher across downsizing firms as compared to those who decided to close, 

coherently with our expectations discussed in Section 2.2. It is also interesting to note that, 

coherently with what discussed above, the size of the firms involved in closure events is much 

smaller than that of downsizing firms. 

-------------------------- 

Tables 5 and 6 around here 

-------------------------- 

 

3.4. Results 

3.4.1. Main results 

Table 7 reports the main results of the regression analysis testing our hypotheses. Results of the 

probit model describing the first stage selection problem are presented in column (1), exploring the 

relationship between firm and industry characteristics and firm’s propensity to restructure by 

resorting to collective employee layoffs. The AMT adoption variable indicates that firms featuring a 

higher level of adoption are, on average, less likely to restructure (𝑝 = 0.067).45 This result 

supports the view that AMTs can represent a source of competitive advantage and that adopting 

firms enjoy benefits in terms of efficiency, flexibility and productivity, making them more likely to 

face challenging economic conditions and macroeconomic shocks without experiencing pressure to 

restructure by laying-off workers. These findings lend support for Hypothesis 1a, while the 

competing Hypothesis 1b suggesting that AMT adoption would lead to more job-destructing 

restructuring events is not supported.  

 

45 Although this finding shows statistical significance only at the 10% level, we note that the 𝑝-value is not far from the 

5% threshold. Furthermore, the robustness checks on the first-stage model reported in the following Section all 

highlight statistical significance at the 5% level, making us confident on the goodness of our main findings. 
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 Like most studies in the literature, we also find evidence that restructuring firms are on 

average bigger and less profitable. However, we also find that restructuring firms are less leveraged 

as compared to non-restructuring ones, suggesting that the presence of a high debt is not per se 

indicative of a higher propensity to restructure. This result highlights a more proactive approach, 

suggesting that restructuring firms are likely to do so pushed by performance-increasing aims 

(Reynaud, 2013). Besides, such managerial decision may be conditional on the market’s perception 

of the firm’s health status and profitability (Atkins and Favreau, 2022), but also to other context-

specific factors like the level of liquidity available on the market and borrowed by firms. As 

highlighted by Berg et al. (2021), over the last decades and especially after the 2008 financial crisis, 

European firms have been accumulating relatively more debt as compared to US companies, also 

due to a significantly lower cost of debt. 

-------------------------- 

Table 7 around here 

-------------------------- 

While we find no significant difference between restructuring and non-restructuring firms when 

looking at firm’s age and capital intensity, our results suggest that restructuring firms are, on 

average, more productive than their counterfactual (𝑝 < 0.001, i.e. passing test of relevance as 

exclusion restriction, according to Wolfolds and Siegel (2019)).46 Similarly, innovation (as 

measured by firms having an active patent) is associated with an higher probability of restructuring. 

Several empirical studies (most recently, Grazzi et al., 2022) highlight that more innovative and 

productive firms are likely to survive while less productive firms may be pushed to restructure in 

order to improve operational efficiency or to exit the market (Coucke and Sleuwaegen, 2008). Thus, 

several authors  highlight how ex ante more productive and innovative firms are more likely to 

proactively undertake restructuring decisions, especially through downsizing and offshoring (e.g. 

 

46 This result supports our choice of using labour productivity as main exclusion restriction in our model. 
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Bandick, 2016; Barba Navaretti et al., 2010; Yoo and Mody, 2000). Furthermore, on average, we 

find that firms which are part of a corporate group are less likely to restructure through employee 

layoffs. 

 Concurrently with the extant literature (e.g. Coucke et al., 2007), we find that companies 

who have recently invested in physical assets are less likely to pursue collective layoffs; this 

emphasises the role of recent capital investments in lowering incentives to restructure. Finally, none 

of the three additional sectoral controls in our model are significantly different from zero, 

suggesting that the combination of FEs in our specification well captures the underlying sectoral 

and country-specific trends, in particular, relatedly to technological and investment intensity. 

 Columns (2) and (3) present the results of the multinomial logit model describing the second 

stage choice problem. The IMR from the first stage is either weakly significant (in column (2)) or 

not (in column (3)), suggesting that a weak self-selection mechanism only identifies restructuring 

firms opting for downsizing.47 The estimated coefficient for the AMT adoption variable is positive 

and statistically significant (𝑝 < 0.001) in column (2), supporting Hypothesis 2 and highlighting 

that restructuring firms which also adopt AMTs are more likely to downsize and layoff a portion of 

the workforce rather than close an entire plant or, in the worst case, terminate all activities. 

Likewise, the AMT adoption coefficient is statistically significant in column (3) (𝑝 = 0.036), 

suggesting Hypothesis 3 is also supported and meaning that AMT adoption affect firm’s propensity 

to restructure by pushing them towards preferring the offshoring option as compared to closure. 

 To further dig into the mechanisms behind these results, columns (4) to (6) present the 

marginal effect of adopting AMTs on the probability to pursue each specific restructuring mode. 

Hypotheses 2 and 3 argued that AMTs can influence the firm’s propensity to prefer downsizing and 

 

47 Beside highlighting that our exclusion restriction (i.e. labour productivity) passes the test of relevance in the first 

stage being highly significant, we further check robustness our result on the presence of a weak self-selection by 

checking for multicollinearity between the IMR and other explanatory variables (variance inflation factors (VIFs) never 

above 5) and by testing the robustness of our main results on the AMT adoption variable in a model without IMR, and 

including the labour productivity variable and the two additional sectoral controls. Results for this last check are in line 

with those shown in Table 7. 
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offshoring over closure as a result of a double mechanism, since adoption-related benefits and 

implications may act on the one hand by creating incentives to downsize or offshore activities (e.g. 

increasing efficiency, flexibility, and productivity; lowering coordination costs), and on the other 

hand by creating barriers to closure (e.g. rising sunk costs). We find evidence that these 

hypothesised mechanisms behind firm’s observed behaviour are partially in place: on average, a 1% 

increase in the level of AMT adoption is associated with a 0.0038 drop in the probability of closure 

(𝑝 < 0.001, column (4)), to a 0.004 increase in the probability of downsizing (𝑝 = 0.002, column 

(5)), but to no significant effect on the probability of offshoring. This insight suggests that the 

observed effect of AMT adoption in column (2) results from the simultaneous positive effect of 

AMT-related benefits in terms of flexibility, efficiency and productivity on the probability of 

downsizing, associated with a process of automation deepening, and the negative effect of resources 

committed to investments in AMTs, resulting in higher sunk costs. Conversely, the positive effect 

observed in column (3) only spurs from the latter mechanism, as our results shows that AMTs exert 

no influence on the likelihood of the offshoring decision. 

 Finally, column (7) presents the results of our analysis on the relationship between AMT 

adoption and the magnitude of collective layoffs associated with the restructuring modes discussed 

above. On average, we find a negative relationship between AMT adoption and the size of 

collective layoffs, small in magnitude but statistically significant (𝑝 = 0.009), thus indicating that 

higher AMT adoption is associated with layoffs involving fewer workers. Overall, these findings 

point at the existence of a less explored side of the effects of AMTs on employment: while 

extensive evidence in the literature suggests these new digital automation technologies of the 4IR 

displace jobs, we uncover a secondary effect which works in the opposite direction, by affecting 

firm’s operational performance and strategic decisions, and resulting in a lower likelihood of 

pursuing restructuring decisions involving a high number of laid-off employees. 
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3.4.2. Robustness checks 

Alternative FEs specification: Column (2) of Table 7 shows that, beyond firm’s AMT adoption, 

also the level of sectoral AMT investments is related to the propensity to downsize and shut down 

business activities. In Table 8 we conduct a further robustness check including country-sector 

dummies, that is a more demanding combination of FEs. Through this test, we aim at excluding the 

possibility that our results for the firm-level AMT adoption variable could be conditional to the 

significance of the sectoral AMT investments control. On the contrary, the latter variable could 

capture unobserved trends which are simultaneously country- and sector-specific. This robustness 

test implies a reduction in our sample due to the lack of sufficient variability in our data at the 

country-sector level, leading to exact outcome predictions. 

-------------------------- 

Table 8 around here 

-------------------------- 

The results, reported in Table 8, are highly similar to our main findings shown in Table 7. Notably, 

including country-sector FEs implies a consistent reduction in our sample making it shrink by 8% 

or around 20.000 observation referring to almost 3.000 firms in column (1) (i.e. the probit model for 

the first stage selection problem), but it also results in several explanatory variables of the probit 

model (including AMT adoption, our main explanatory) being estimated with higher precision. 

Even controlling for country-sector FE, AMT adoption reduces the likelihood of restructuring. As 

for the estimates for the multinomial logit model describing the second stage choice problem, in 

columns (2) and (3), our findings concerning the role of AMT adoption are consistent with the 

corresponding estimates in Table 7, showing an even larger probability of offshoring relative to 

closure (column 3). The coefficients for the sectoral AMT investment intensity variable are now no 

longer significant, as most of their variation is picked up by the country-sector fixed effects. The 

marginal effects in columns (4) to (7) are qualitatively and quantitatively unchanged as compared to 

the same specifications in Table 7. 
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First-stage logit model: The standard Heckman (1979) two-step correction method assumes 

that the error terms both in the model describing the selection equation (1) – usually estimated using 

a probit model – and in the main model describing the outcome generation process – usually 

estimated via OLS – are normally distributed (Wolfolds and Siegel, 2019). This is not the case in 

our model, since the multinomial logit used in the second stage describing the determinants of a 

firm’s restructuring choice among different alternatives is based on a different set of assumptions, 

specifically, the independence of irrelevant alternatives (IIA). Hence, we test the robustness of our 

main results by estimating an alternative specification of the first-stage model using a logit model, 

which only requires the random component of the underlying utility function to be independent and 

identically distributed (IID). The estimated coefficients are shown in Table 9. Also in this case, our 

main results are qualitatively and quantitatively unchanged. 

-------------------------- 

Table 9 around here 

-------------------------- 

Multinomial logit model with control group: As final robustness check, we explore specifications 

of the multinomial logit model describing the relationship between AMT adoption and other 

explanatories, and the probability of choosing alternative restructuring options using a group of 

non-restructuring firms as reference category. This test can be thought as an alternative of the 

Heckman-type two-step correction model discussed above, where the selection mechanism is 

embedded in the multinomial logit model describing the choice problem, including the main 

exclusion restriction (i.e. labour productivity) and the other additional sectoral controls. Yet, since 

our counterfactual used in the first-stage probit model include more than 75.000 observations (i.e. 

more than 75.000 non-restructuring events), in order to reduce computational complexity and 

facilitate the convergence of the maximisation algorithm, we use a subsample of non-restructuring 

firms as reference group. 
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-------------------------- 

Figure 2 around here 

-------------------------- 

In order to define the counterfactual group of non-restructuring firms, we relied on the nearest 

neighbour matching algorithm using the seven48 closest neighbours (i.e. resorting to oversampling) 

with replacement (i.e. a non-restructuring firm-year observation can be used more than once as a 

match for a restructuring one). The idea is to define a control group of non-restructuring firms that 

are sufficiently similar to firms that have engaged in restructuring events. We performed the 

propensity score matching using all firm-level variables, sectoral controls and FEs used in the main 

analysis.  Observations for restructuring and control firms falling outside of the region of common 

support have been discarded. Overall, we have identified 2,552 firms in the counterfactual control 

group. Diagnostic tests suggest our matching procedure performs well: Rosenbaum and Rubin’s 

(1985) standardised bias falls below 5% (i.e. mean bias is 3.3% and median bias is 2.6% for 

matched firms), and t-test on differences in sample means in observable characteristics between 

restructuring and control firms (matched firms) are always statistically equal to zero (i.e. no 

significant difference between restructuring and non-restructuring firms after matching). Figure 2 

reports standardised percentage bias reduction across firm-level explanatory variables and sectoral 

controls, ordered by decreasing bias reduction. Furthermore, following Sianesi (2004), we also 

check for 𝑝𝑠𝑒𝑢𝑑𝑜-𝑅2 the likelihood ratio (LR) test on the joint significance of regressors from a 

probit model49 re-estimated on the matched sample: the 𝑝𝑠𝑒𝑢𝑑𝑜-𝑅2 is very small and the LR test is 

 

48 We also tested alternative specifications using control groups defined using alternative matching procedures, by 

allowing for a smaller and larger number of nearest neighbours (i.e. three, five and nine). We report estimates using 

seven nearest neighbours since this matching allows obtaining the highest bias reduction. Results obtained using three, 

five and nine nearest neighbours are in line with those reported in Table 10 and available upon request. 
49 The dependent variable equals 1 if the firm is a restructuring one, 0 otherwise. 



 

165 

rejected (i.e. 𝑝𝑠𝑒𝑢𝑑𝑜-𝑅2 = 0.021 and LR 𝑝 = 0.958), further suggesting the validity of our 

matching strategy.50 

-------------------------- 

Table 10 around here 

-------------------------- 

Table 10 reports results of our robustness check using the identified counterfactual as reference 

group for the multinomial logit model, additionally including a full set of country-sector and year 

FEs. Column (1) reports estimated coefficients for the probability of choosing closure over non-

restructuring: the AMT adoption coefficient is negative and statistically significant (𝑝 = 0.002). 

Together with the estimated marginal effect reported in column (4), this results further confirm the 

previous insight on the hypothesised role that sunk costs and high specificity associated with AMTs 

have in making firms less likely to close, but rather to continue operations by opting for alternative 

restructuring modes. However, looking at the estimated coefficient for AMT adoption in columns 

(2)-(3) and at the related marginal effect in column (5)-(6), we find that the adoption of AMTs has a 

positive, but not significant, impact on the probability of downsizing and offshoring. This result 

might highlight that AMT adoption has similar implications for non-restructuring firms and 

downsizing/offshoring firms (e.g. improved resource usage, efficiency and productivity), hence 

implying no statistically significant difference between these categories. 

 

3.5. Discussion and conclusions 

The management decision to lay-off employees and restructure business activities results from the 

interplay of several diverse strategic considerations around the firm’s level of performance, its 

financial status and competitive position on the market. At the same time, such decision responds to 

 

50 We used STATA’s psmatch2 and pstest routines to compute the nearest neighbour matching algorithm and to check 

the diagnostics. 
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the stimuli that comes from the external environment, as a result of changing macroeconomic 

conditions, new global challenges and investment opportunities across the world, as well as to 

sudden and unforeseen shocks. As such, research (e.g. Bandick, 2016; Brauer and Zimmermann, 

2017; Coucke et al., 2007; Coucke and Sleuwaegen, 2008; O’Brien and Folta, 2009; Powell and 

Yawson, 2012; Reynaud, 2013) has largely focussed so far on understanding the organisational and 

contextual features that influence the strategic decision process involving the restructuring of 

business activities, in the attempt of providing clear and meaningful policy recommendations 

helping to mitigate the negative consequences of collective employee layoffs. 

 In this context, we focus on the role of advanced technology, specifically looking at 

advanced manufacturing technologies (AMTs) of the Industry 4.0 (I4.0) wave. We take stock of 

prior research in the operations and technology management literature (e.g. Bogers et al., 2016; 

Dalenogare et al., 2018; Frank et al., 2019; Marcucci et al., 2021; Müller et al., 2018; Porter and 

Heppelmann, 2014; 2015; Rayna and Striukova, 2016) on the implications associated with the 

adoption of these technologies for firms, industries and markets. in doing so, we propose a 

conceptual framework accounting for the adoption-related benefits, barriers and implications, and 

highlighting the main features that come into play when the adoption of AMTs interplays with the 

strategic decision-making process ending with a restructuring decision involving a collective layoff. 

To the best of our knowledge, such relationship has been largely neglected to date and represents a 

research gap deserving further investigation. 

 We test our hypotheses by addressing a multilevel problem, first by analysing the role of 

AMT adoption in the decision to restructure or not, and secondly by analysing its effect on the 

likelihood of opting for a specific type of restructuring once the firm has decided to restructure. Our 

findings suggest that AMTs influence the firm’s propensity to restructure via employee layoffs by 

reducing the likelihood of such events. The observed overall effect comes as a combination of 

multiple mechanisms: a lower probability of permanently closing a firm’s plant or even terminating 

activities and a higher probability of pursuing downsizing, instead. The former behaviour is 
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coherent with the established theoretical and empirical background (e.g. Coucke et al., 2007; 

O’Brien and Folta, 2009) arguing that investments in highly specialised, capital-intensive 

technologies create a ‘lock-in’ effect by rising sunk costs associated with both physical and 

intangible assets, and lower the firm’s ability to reuse – by either redeploy or sell – previously 

acquired assets. The latter is instead coherent with the extensive research on the benefits spurring 

from the adoption of new advanced digital technologies of the fourth industrial revolution (4IR), 

which provide firms with higher efficiency and flexibility, increase the level of productivity and 

enable a deeper digital integration within and across organisations (e.g. Dalenogare et al., 2018; 

Frank et al., 2019; Kagermann et al., 2013; Müller et al., 2018; Schuh et al., 2014; Weller et al., 

2015). In addition, such research stream also highlights that the adoption of these technologies 

entail a process of automation deepening (Cascio, 2012; Coucke et al., 2007; Freeman and Ehrhardt, 

2012), resulting in a reduced and/or changed need for human labour. 

 Prior research on the nexus of new automation technologies of the 4IR and employment has 

been devoting much attention on the compositional dynamics of such relationship, investigating the 

exposure of jobs to automation by digging into the differences across tasks and skills (e.g. 

Acemoglu and Autor, 2011; Acemoglu and Restrepo, 2018; 2019; 2020; Frey and Osborne, 2017), 

resulting in the widespread agreement that, so far, these technologies have displaced more jobs than 

they have contributed to create, especially in manufacturing. However, only few works have made a 

first move into the intersection between the adoption of these technologies and collective layoff 

resulting from restructuring events, whilst looking at the implications for displaced workers (Beer et 

al., 2019; Blien et al., 2021; Goos et al., 2021; Olsson and Tåg, 2017). Thus, this research presents 

fresh evidence that investments in AMTs of the I4.0 wave and the associated benefits may also 

trigger additional side effects, providing new tools and opportunities for managers to sustain 

competition and increase chances of success, as well as creating incentives for firms to avoid 

restructuring decisions implying a heavy toll on the workforce. To this end, while assessing the role 

of the industrial and innovation policies launched by virtually every EU country over the last 
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decade (Mariani and Borghi, 2019) and promoting the adoption of new digital technologies of the 

I4.0 wave, our work stresses prior findings on the efficiency and productivity gains brough by 

AMTs, and further highlights a secondary positive effect acting as a countervailing force and 

reducing the number of jobs lost through corporate restructuring. 

 We acknowledge that while benefits for adopting firms are well documented in the 

literature, the observed employment effect on adopting firms might not be as large as expected. On 

the one hand, our results suggest this empirical behaviour to be related to the role of AMTs of the 

I4.0 wave in creating the conditions for firms to avoid restructuring events implying employment 

layoffs. On the other hand, we might not exclude that the automation-related displacement of 

workers documented in sectoral and aggregate studies are largely happening to non-adopting firms, 

as a result of business stealing (see, for instance, Acemoglu et al., 2020). Unfortunately, our 

empirical framework and the data used does not allow to disentangle such potential issue, hence 

leaving it for future research.  

 While we believe this study is a first step in exploring this yet unexplored relationship, we 

acknowledge the limitations of our research. First and foremost, the current lack of precise 

quantitative measures of firm-level adoption of AMTs, especially for a large enough sample 

covering several industries and countries, makes it necessary to resort to a proxy like the one used 

in this study. Besides, while focusing on an extensive sample of restructuring events allow us to 

better understand the phenomenon of interest, we acknowledge that restructuring data provided in 

the ERM database presents some limitations. In particular, since the database relies on a list of 

major media titles active in each EU country to collect information on each restructuring events, its 

coverage of restructuring activity cannot be considered representative of the whole population 

(Eurofound, 2022). Furthermore, as already noted above, since ERM only reports on restructuring 

events in medium-sized and large establishment (as discussed in Section 3.3) a size bias is likely to 

arise, potentially leading to either over- or under-representation of some countries and/or sectors. 

Finally, ERM data only reports the number of workers displaced and/or hired because of a 
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restructuring event, unfortunately it does not provide information on the type of workers affected by 

such events. This makes it impossible to establish a detailed analysis of the compositional and/or 

inequality-enhancing employment effects associated with restructuring events. 

 Despite its limitation, ERM’s data also provide a rich set of unstructured information. 

Further research could dig into such richness, for instance, by understanding the locations of 

offshoring decisions, tracking firm’s movement across countries, analysing the compositional 

effects of restructuring events over the affected workforce, disentangling the net effect on hirings 

and layoffs, as well as monitoring with a higher degree of accuracy specific mention to the role of 

AMTs and other technologies of the 4IR. To this end, machine learning techniques and advanced 

data analysis tools could prove to be helpful methodologies to extract value from the available 

unstructured information and make them available for both economics and management research. 
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3.7. Tables and Figures 

Table 1. Distribution of restructuring events by year 

Year Closure  Downsizing  Offshoring  Control  Total 

  N %   N %   N %   N %   N 

2013 13 2.77  73 15.57  10 2.13  373 79.53  469 

2014 19 4.55  60 14.35  7 1.67  332 79.43  418 

2015 11 3.22  58 16.96  6 1.75  267 78.07  342 

2016 9 2.59  57 16.38  7 2.01  275 79.02  348 

2017 17 4.64  58 15.85  7 1.91  284 77.60  366 

2018 16 5.13  42 13.46  5 1.60  249 79.81  312 

2019 20 4.55  75 17.05  4 0.91  341 77.50  440 

2020 21 3.58   123 20.95   12 2.04   431 73.42   587 

Total 126  3.84   546 16.64    58 1.77    2552 77.76    3282 

Notes: Authors’ own computations based on ERM and Amadeus data. 

 

Table 2. Distribution of restructuring events by 2-digit NACE code 

NACE 2-digit code Closure  Downsizing  Offshoring  Control  Total 

N %   N %   N %   N %   N 

10 – Man. of food prod. 26 6.21 
 

49 11.69 
 

7 1.67 
 

337 80.43 
 

419 

11 – Man. of beverages 6 7.06 
 

9 10.59 
 

2 2.35 
 

68 80.00 
 

85 

12 – Man. of tobacco prod. 1 3.70 
 

3 11.11 
 

1 3.70 
 

22 81.48 
 

27 

13 – Man. of textiles 1 1.72 
 

7 12.07 
 

1 1.72 
 

49 84.48 
 

58 

14 – Man. of wearing apparel 3 6.25 
 

5 10.42 
 

0 0.00 
 

40 83.33 
 

48 

15 – Man. of leather and related prod. 1 7.69 
 

2 15.38 
 

0 0.00 
 

10 76.92 
 

13 

16 – Man. of wood and of prod. of wood and cork 2 3.39 
 

7 11.86 
 

1 1.69 
 

49 83.05 
 

59 

17 – Man. of paper and paper prod. 9 6.82 
 

21 15.91 
 

1 0.76 
 

101 76.52 
 

132 

18 – Printing and reproduction of recorded media 1 3.13 
 

5 15.63 
 

0 0.00 
 

26 81.25 
 

32 

19 – Man. of coke and refined petroleum prod. 1 3.13 
 

7 21.88 
 

0 0.00 
 

24 75.00 
 

32 

20 – Man. of chemicals and chemical prod. 3 1.91 
 

29 18.47 
 

4 2.55 
 

121 77.07 
 

157 

21 – Man. of basic pharmaceutical prod. and pharmaceutical preparations 4 3.51 
 

20 17.54 
 

3 2.63 
 

87 76.32 
 

114 

22 – Man. of rubber and plastic prod. 6 5.26 
 

14 12.28 
 

3 2.63 
 

91 79.82 
 

114 

23 – Man. of other non-metallic mineral prod. 6 5.22 
 

15 13.04 
 

1 0.87 
 

93 80.87 
 

115 

24 – Man. of basic metals 4 2.25 
 

34 19.10 
 

2 1.12 
 

138 77.53 
 

178 

25 – Man. of fabricated metal prod., except machinery and equipment 4 3.25 
 

18 14.63 
 

2 1.63 
 

99 80.49 
 

123 

26 – Man. of computer, electronic and optical prod. 5 2.50 
 

34 17.00 
 

2 1.00 
 

159 79.50 
 

200 

27 – Man. of electrical equipment 9 4.62 
 

31 15.90 
 

10 5.13 
 

145 74.36 
 

195 

28 – Man. of machinery and equipment n.e.c. 13 3.09 
 

73 17.34 
 

5 1.19 
 

330 78.38 
 

421 

29 – Man. of motor vehicles, trailers and semi-trailers 15 3.75 
 

90 22.50 
 

8 2.00 
 

287 71.75 
 

400 

30 – Man. of other transport equipment 0 0.00 
 

54 31.03 
 

0 0.00 
 

120 68.97 
 

174 

31 – Man. of furniture 1 1.96 
 

7 13.73 
 

2 3.92 
 

41 80.39 
 

51 

32 – Other manufacturing 2 3.17 
 

4 6.35 
 

3 4.76 
 

54 85.71 
 

63 

33 – Repair and installation of machinery and equipment 3 4.17   8 11.11   0 0.00   61 84.72   72 

Total 126     546     58     2552     3282 

Notes: Authors’ own computations based on ERM and Amadeus data. 
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Table 3. Distribution of restructuring events by country 

ISO Closure  Downsizing  Offshoring  Control  Total 

N %   N %   N %   N %   N 

AUT 5 4.76  13 12.38  5 4.76  82 78.10  105 

BEL 9 10.23  27 30.68  7 7.95  45 51.14  88 

CZE 2 2.38  11 13.10  1 1.19  70 83.33  84 

DEU 24 3.83  131 20.89  10 1.59  462 73.68  627 

DNK 1 1.85  8 14.81  1 1.85  44 81.48  54 

EST 0 0.00  4 13.33  0 0.00  26 86.67  30 

FIN 7 1.93  58 15.98  3 0.83  295 81.27  363 

FRA 20 5.10  109 27.81  13 3.32  250 63.78  392 

GBR 29 5.13  59 10.44  5 0.88  472 83.54  565 

GRC 1 14.29  1 14.29  0 0.00  5 71.43  7 

HUN 4 7.14  4 7.14  1 1.79  47 83.93  56 

IRL 2 11.11  0 0.00  0 0.00  16 88.89  18 

LTU 0 0.00  7 14.58  0 0.00  41 85.42  48 

LVA 0 0.00  2 12.50  1 6.25  13 81.25  16 

NLD 1 1.28  10 12.82  3 3.85  64 82.05  78 

POL 12 4.11  34 11.64  0 0.00  246 84.25  292 

SVK 4 5.48  8 10.96  2 2.74  59 80.82  73 

SVN 2 2.15  14 15.05  1 1.08  76 81.72  93 

SWE 3 1.02   46 15.70   5 1.71   239 81.57   293 

Total 126     546     58     2552     3282 

Notes: Authors’ own computations based on ERM and Amadeus data. 

 

Table 4. Descriptive statistics: summary statistics of employee layoffs  

Closure  Downsizing  Offshoring  Total 

  Normalised log   Normalised log   Normalised log   Normalised log 

Mean 0.764 5.393  0.678 5.351  0.705 5.193  0.694 5.346 

SD 0.148 0.689  0.127 1.014  0.171 0.616  0.138 0.939 

p10 0.554 4.625  0.508 4.277  0.449 4.564  0.507 4.394 

p25 0.662 4.883  0.592 4.644  0.578 4.736  0.596 4.710 

Median 0.782 5.250  0.680 5.142  0.723 5.075  0.694 5.176 

p75 0.890 5.861  0.762 5.861  0.835 5.525  0.786 5.832 

p90 0.964 6.293   0.834 6.553   0.920 6.256   0.884 6.399 

Notes: Authors own computations based on ERM and Orbis data. Observations: 126 closures; 546 downsizing; 58 offshoring. Normalised values 
expressed as employee layoffs over firm’s number of workers in the year preceding the restructuring event (corresponding to values reported in 
Figure 1). 
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Table 5. Descriptive statistics: summary statistics and correlation matrix 

Variable [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] 

Firm-level variables              
[1] AMT adoption               

             
[2] Size 0.349              

0.337             
[3] Age 0.114 0.275             

0.190 0.214            
[4] ROA 0.189 0.133 0.128            

0.122 0.104 0.058           
[5] Leverage 0.195 0.160 0.070 -0.043           

0.132 0.116 -0.012 -0.125          
[6] Capital intensity 0.828 0.276 0.091 0.151 0.185          

0.883 0.257 0.157 0.109 0.120         
[7] Labour productivity 0.227 -0.057 0.035 0.048 0.019 0.308         

0.311 -0.033 0.077 0.051 -0.073 0.340        
[8] MNE dummy 0.247 0.371 0.266 -0.008 0.169 0.193 0.117        

0.240 0.388 0.227 0.014 0.146 0.184 0.105       
[9] Innovator dummy 0.222 0.371 0.232 -0.059 0.141 0.194 0.029 0.402       

0.174 0.237 0.279 -0.004 0.042 0.109 0.072 0.266      
[10] Recent investments dummy  0.209 0.186 0.030 0.127 0.038 0.048 0.065 0.120 0.115     

0.186 0.233 0.035 0.063 0.028 0.056 0.029 0.129 0.092     
Sectoral variables              
[11] AMT investment intensity  0.101 0.275 0.107 -0.047 -0.009 -0.134 0.081 0.180 0.207 0.128    

0.149 0.206 0.150 -0.031 0.034 -0.105 0.107 0.203 0.276 0.104    
[12] Investment intensity -0.001 0.053 -0.001 0.014 -0.059 -0.034 0.073 -0.039 -0.045 0.053 0.160    

0.042 0.025 0.001 0.002 -0.037 0.028 0.079 -0.053 0.028 0.046 0.099   
[13] Product differentiation  -0.130 -0.161 -0.014 -0.019 -0.035 -0.135 0.042 -0.099 -0.152 -0.102 0.040 0.144  

0.007 -0.034 0.054 -0.005 0.003 -0.017 -0.010 -0.023 0.026 0.016 0.102 0.186   

N 730 730 730 730 730 730 730 730 730 730 730 730 730 

 3282 3282 3282 3282 3282 3282 3282 3282 3282 3282 3282 3282 3282 

Mean 73.508 7.726 3.532 -0.006 0.081 3.646 5.636 0.766 0.701 0.374 20.590 22.500 0.795 

 71.388 7.054 3.386 0.010 0.076 3.549 5.576 0.722 0.645 0.365 20.368 21.491 0.795 

SD 28.660 2.098 0.909 0.196 0.120 1.236 0.915 0.424 0.458 0.484 1.895 11.509 0.163 

 26.779 1.736 0.879 0.293 0.121 1.265 0.908 0.448 0.478 0.482 2.003 12.219 0.163 

Min -143.354 1.792 0.000 -2.498 -0.315 -1.375 2.066 0.000 0.000 0.000 13.637 3.740 0.150 

 -172.197 1.792 0.000 -8.683 -0.773 -10.404 1.607 0.000 0.000 0.000 13.323 3.260 0.136 

Max 223.975 13.393 5.606 0.514 0.701 11.077 12.651 1.000 1.000 1.000 25.263 81.400 1.000 

  223.975 13.393 5.606 0.938 1.818 11.077 12.651 1.000 1.000 1.000 25.263 119.550 1.000 

Notes: Statistics in italic refer to the robustness analysis including the control group. All statistics refer to 1-year lagged variables. 
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Table 6. Descriptive statistics: t-test for differences in sample means across restructuring events 

Variable Closure  Downsizing  Offshoring  Closure vs Downsizing  Closure vs Offshoring 

Mean SD   Mean SD   Mean SD   T-test (p-value)   T-test (p-value) 

Firm-level variables             

 AMT adoption 62.378 36.927  76.243 26.010  71.943 26.429  0.000  0.047 

 Size 6.850 1.852  7.924 2.097  7.765 2.152  0.000  0.006 

 Age 3.304 0.968  3.575 0.876  3.626 1.024  0.005  0.046 

 ROA -0.037 0.259  0.001 0.185  -0.003 0.128  0.127  0.235 

 Leverage 0.069 0.114  0.081 0.116  0.100 0.159  0.302  0.195 

 Capital intensity 3.369 1.190  3.714 1.256  3.610 1.059  0.004  0.171 

 Labour productivity 5.595 0.935  5.637 0.902  5.712 0.998  0.648  0.454 

 MNE dummy 0.643 0.481  0.795 0.404  0.759 0.432  0.001  0.106 

 Innovator dummy 0.579 0.496  0.727 0.496  0.724 0.451  0.003  0.052 

 Recent investments dummy 0.302 0.461  0.396 0.489  0.328 0.473  0.043  0.728 

Sectoral variables             

 AMT investment intensity 20.538 1.740  20.611 1.936  20.506 1.852  0.678  0.912 

 Investment intensity 20.170 10.234  23.030 11.998  22.566 8.571  0.007  0.100 

 Product differentiation 0.785 0.176  0.794 0.161  0.831 0.154  0.573  0.070 

Notes: Observations: 126 closures; 546 downsizing; 58 offshoring. All statistics refer to 1-year lagged variables. 
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Table 7. Main results 

  First stage (selection problem): Probit model   Second stage (choice problem): Multinomial Logit model  Second stage: OLS 

  H1  H2 H3  Marginal Effects  Layoff size 
   Downsizing vs Closure Offshoring vs Closure  Closure Downsizing Offshoring  

    (1)   (2) (3)   (4) (5) (6)   (7) 

Firm-level variables           

 AMT adoption -0.005*  0.0357*** 0.0260**  -0.0038*** 0.0040*** -0.0002  -0.006*** 

  (0.003)  (0.010) (0.012)  (0.001) (0.001) (0.001)  (0.002) 

 Size 0.440***  -0.2887 -0.2137  0.0305 -0.0320 0.0015  0.281*** 

  (0.027)  (0.326) (0.356)  (0.035) (0.039) (0.017)  (0.070) 

 Age 0.015  0.2575* 0.3370  -0.0289* 0.0208 0.0081  0.012 

  (0.036)  (0.150) (0.232)  (0.016) (0.019) (0.013)  (0.040) 

 ROA -0.636***  1.4621 1.1360  -0.1552 0.1591 -0.0040  -0.434** 

  (0.125)  (1.022) (1.153)  (0.111) (0.112) (0.045)  (0.186) 

 Leverage -0.524**  0.6377 1.0922  -0.0746 0.0379 0.0367  -0.684*** 

  (0.233)  (1.028) (1.673)  (0.111) (0.134) (0.093)  (0.258) 

 Capital intensity 0.012  -0.5333*** -0.4037*  0.0565*** -0.0586** 0.0021  0.075 

  (0.060)  (0.182) (0.232)  (0.019) (0.024) (0.014)  (0.054) 

 Labour productivity 0.213***          

  (0.038)          

 Corporate group dummy -0.110*  0.3604 0.0204  -0.0352 0.0529 -0.0177  0.034 

  (0.057)  (0.343) (0.551)  (0.037) (0.045) (0.031)  (0.086) 

 Innovator dummy 0.139**  -0.0260 0.3039  -0.0010 -0.0199 0.0209  -0.016 

  (0.060)  (0.312) (0.514)  (0.033) (0.042) (0.029)  (0.076) 

 Recent investments dummy -0.371***  0.3735 0.2345  -0.0390 0.0436 -0.0046  -0.067 

  (0.049)  (0.400) (0.525)  (0.043) (0.047) (0.025)  (0.086) 
Sectoral variables           

 AMT investment intensity -0.037  -0.8805*** -0.7157  0.0938*** -0.0942*** 0.0004  -0.039 

  (0.053)  (0.284) (0.461)  (0.030) (0.035) (0.025)  (0.056) 

 Investment intensity -0.000          

  (0.003)          

 Product differentiation -0.107          

  (0.215)          
First-stage IMR   -1.6020* -1.6636  0.1749* -0.1523 -0.0226  0.280 

    (0.944) (1.164)  (0.102) (0.114) (0.058)  (0.208) 
                        

Observations 77.556  730  730  730 
Firms 12.162  565  565  565 
(pseudo) R2 0.464  0.225  -  0.373 
Log-likelihood -2214   -408.0   -   - 

Notes: All regressions include 18 country dummies, 23 sector dummies and 7 year dummies. Coefficients and standard errors for the intercept and for FEs dummies have been omitted due to space constraints. All 
variables are 1-year lagged. The Labour productivity variable is used as exclusion restriction in the first-stage model, the Investment intensity and Product differentiation variables are included as additional controls in 
the first-stage model. Robust standard errors in brackets are clustered at the firm level. Significance levels: *** p<0.01, ** p<0.05, * p<0.1. 
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Table 8. Robustness of main results: Country-Sector FEs 

  First stage (selection problem): Probit model   Second stage (choice problem): Multinomial Logit model  Second stage: OLS 

  H1  H2 H3  Marginal Effects  Layoff size 
   Downsizing vs Closure Offshoring vs Closure  Closure Downsizing Offshoring  

    (1)   (2) (3)   (4) (5) (6)   (7) 

Firm-level variables           

 AMT adoption -0.006**  0.0399*** 0.0550***  -0.0029*** 0.0021** 0.0008  -0.007** 

  (0.003)  (0.011) (0.018)  (0.001) (0.001) (0.001)  (0.003) 

 Size 0.520***  0.1647 -0.4568  -0.0081 0.0317 -0.0236  0.305*** 

  (0.032)  (0.354) (0.483)  (0.025) (0.027) (0.015)  (0.082) 

 Age -0.016  0.2956 0.5717*  -0.0227 0.0101 0.0127  0.022 

  (0.040)  (0.206) (0.336)  (0.014) (0.017) (0.011)  (0.051) 

 ROA -0.693***  0.5277 1.7758  -0.0450 -0.0074 0.0524  -0.531** 

  (0.142)  (0.997) (1.376)  (0.071) (0.077) (0.041)  (0.243) 

 Leverage -0.667**  0.2678 3.3491  -0.0373 -0.0860 0.1233  -0.729** 

  (0.267)  (1.473) (2.302)  (0.104) (0.128) (0.080)  (0.316) 

 Capital intensity 0.012  -0.7698*** -0.9327***  0.0559*** -0.0449** -0.0110  0.135* 

  (0.065)  (0.245) (0.341)  (0.016) (0.023) (0.013)  (0.070) 

 Labour productivity 0.240***          

  (0.043)          

 Corporate group dummy -0.142**  0.6180 0.3985  -0.0428 0.0478 -0.0050  0.054 

  (0.066)  (0.456) (0.789)  (0.032) (0.040) (0.027)  (0.112) 

 Innovator dummy 0.267***  0.6140 0.5353  -0.0433 0.0428 0.0005  -0.008 

  (0.072)  (0.460) (0.723)  (0.032) (0.039) (0.025)  (0.112) 

 Recent investments dummy -0.410***  -0.2893 -0.1860  0.0200 -0.0224 0.0024  -0.067 

  (0.052)  (0.464) (0.743)  (0.033) (0.039) (0.025)  (0.100) 
Sectoral variables           

 AMT investment intensity 0.440  -5.5882 -2.9502  0.3831 -0.4542 0.0712  0.320 

  (0.329)  (5.471) (6.129)  (0.385) (0.385) (0.137)  (0.802) 

 Investment intensity -0.006          

  (0.004)          

 Product differentiation 0.418          

  (0.512)          
First-stage IMR   -0.2111 -1.9795  0.0255 0.0456 -0.0711  0.372 

    (0.975) (1.594)  (0.069) (0.082) (0.053)  (0.228) 
                        

Observations 57.212  671  671  671 
Firms 9246  515  515  515 
(pseudo) R2 0.495  0.509  -  0.513 
Log-likelihood -1844   -230.0   -   - 

Notes: All regressions include 263 country-sector dummies and 7 year dummies. Coefficients and standard errors for the intercept and for FEs dummies have been omitted due to space constraints. All variables are 1-
year lagged. The Labour productivity variable is used as exclusion restriction in the first-stage model, the Investment intensity and Product differentiation variables are included as additional controls in the first-stage 
model. Robust standard errors in brackets are clustered at the firm level. Significance levels: *** p<0.01, ** p<0.05, * p<0.1. 
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Table 9. Robustness of main results: First-stage logit model 

  First stage (selection problem): Logit model   Second stage (choice problem): Multinomial Logit model 

  H1  H2 H3  Marginal Effects 

   Downsizing vs Closure Offshoring vs Closure  Closure Downsizing Offshoring 

    (1)   (2) (3)   (4) (5) (6) 

Firm-level variables         

 AMT adoption -0.014**  0.0346*** 0.0256**  -0.0037*** 0.0038*** -0.0002 

  (0.007)  (0.009) (0.012)  (0.001) (0.001) (0.001) 

 Size 0.951***  -0.1335 -0.0795  0.0139 -0.0158 0.0019 

  (0.061)  (0.227) (0.239)  (0.024) (0.027) (0.011) 

 Age 0.053  0.2511* 0.3274  -0.0282* 0.0203 0.0078 

  (0.091)  (0.151) (0.232)  (0.016) (0.019) (0.013) 

 ROA -1.347***  1.2294 0.9526  -0.1304 0.1339 -0.0035 

  (0.417)  (0.938) (1.035)  (0.102) (0.101) (0.039) 

 Leverage -1.118*  0.4391 0.9356  -0.0535 0.0164 0.0371 

  (0.602)  (0.985) (1.636)  (0.107) (0.129) (0.092) 

 Capital intensity 0.022  -0.5168*** -0.3999*  0.0548*** -0.0563** 0.0015 

  (0.145)  (0.179) (0.231)  (0.018) (0.024) (0.013) 

 Labour productivity 0.552***        

  (0.092)        

 Corporate group dummy -0.304**  0.3481 0.0168  -0.0340 0.0513 -0.0173 

  (0.145)  (0.342) (0.552)  (0.037) (0.045) (0.031) 

 Innovator dummy 0.269*  0.0249 0.3504  -0.0065 -0.0148 0.0212 

  (0.159)  (0.310) (0.511)  (0.033) (0.041) (0.029) 

 Recent investments dummy -0.902***  0.2932 0.1842  -0.0306 0.0342 -0.0036 

  (0.121)  (0.356) (0.473)  (0.038) (0.042) (0.024) 
Sectoral variables         

 AMT investment intensity -0.110  -0.8859*** -0.7190  0.0943*** -0.0948*** 0.0004 

  (0.143)  (0.284) (0.462)  (0.030) (0.035) (0.025) 

 Investment intensity 0.003        

  (0.007)        

 Product differentiation -0.242        

  (0.561)        
First-stage IMR   -0.5254* -0.5962 0.0579* -0.0472 -0.0107 -0.0226 

    (0.296) (0.367) (0.032) (0.036) (0.019) (0.058) 
                    

Observations 77.556  730  730 
Firms 12.162  565  565 
(pseudo) R2 0.454  0.226  - 
Log-likelihood -2255   -407.9   - 

Notes: All regressions include 18 country dummies, 23 sector dummies and 7 year dummies. Coefficients and standard errors for the intercept and for FEs dummies have been omitted due to space constraints. All 
variables are 1-year lagged. The Labour productivity variable is used as exclusion restriction in the first-stage model, the Investment intensity and Product differentiation variables are included as additional controls in 
the first-stage model. Robust standard errors in brackets are clustered at the firm level. Significance levels: *** p<0.01, ** p<0.05, * p<0.1. 
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Table 10. Robustness of main results: Multinomial logit model with control group as reference category 
  

Closure vs Control Downsizing vs Control Offshoring vs Control 
 Marginal Effects 

   Closure Downsizing Offshoring 

    (1) (2) (3)   (4) (5) (6) 

Firm-level variables        

 AMT adoption -0.0297*** 0.0009 0.0022  -0.0011*** 0.0003 0.0001 

  (0.009) (0.005) (0.009)  (0.000) (0.001) (0.000) 

 Size 0.0737 0.2699*** 0.1839  0.0005 0.0326*** 0.0023 

  (0.089) (0.060) (0.113)  (0.003) (0.007) (0.002) 

 Age -0.0988 0.0413 0.1022  -0.0042 0.0055 0.0020 

  (0.136) (0.092) (0.210)  (0.005) (0.011) (0.004) 

 ROA -0.3115 -0.2977* -0.2403  -0.0092 -0.0339* -0.0030 

  (0.216) (0.163) (0.239)  (0.008) (0.019) (0.005) 

 Leverage -0.7618 -0.3197 0.0601  -0.0265 -0.0348 0.0038 

  (0.776) (0.571) (1.313)  (0.029) (0.070) (0.027) 

 Capital intensity 0.4806** -0.0476 -0.1068  0.0188** -0.0092 -0.0025 

  (0.208) (0.111) (0.183)  (0.008) (0.014) (0.004) 

 Labour productivity 0.1003 0.1114 0.1650  0.0027 0.0124 0.0027 

  (0.124) (0.103) (0.197)  (0.005) (0.013) (0.004) 

 Corporate group dummy -0.1958 -0.1603 -0.2987  -0.0058 -0.0172 -0.0051 

  (0.240) (0.168) (0.342)  (0.009) (0.021) (0.007) 

 Innovator dummy 0.0183 0.1300 0.1210  -0.0005 0.0157 0.0018 

  (0.240) (0.174) (0.355)  (0.009) (0.021) (0.007) 

 Recent investments dummy -0.0244 -0.1424 -0.1969  0.0004 -0.0168 -0.0033 

  (0.194) (0.118) (0.273)  (0.007) (0.015) (0.006) 
Sectoral variables        

 AMT investment intensity 0.8110 -0.2143 1.4149  0.0307 -0.0406 0.0293 

  (1.594) (0.778) (1.696)  (0.061) (0.100) (0.036) 

 Investment intensity 0.0049 -0.0095 -0.0087  0.0003 -0.0012 -0.0001 

  (0.016) (0.008) (0.019)  (0.001) (0.001) (0.000) 

 Product differentiation 2.7388 0.2409 0.1037  0.1020 0.0087 -0.0025 
  (1.969) (1.109) (2.772)  (0.075) (0.139) (0.057) 

                  

Observations 3.282  3.282 
Firms 1.762  1.762 
(pseudo) R2 0.267  - 
Log-likelihood -1660   - 

Notes: All regressions include 495 country-sector dummies and 7 year dummies. Coefficients and standard errors for the intercept and for FEs dummies have been omitted due to space constraints. All variables are 1-
year lagged. Robust standard errors in brackets are clustered at the firm level. Significance levels: *** p<0.01, ** p<0.05, * p<0.1. 
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Figure 1. Frequency distribution of normalised employee layoffs 

 
Notes: Authors’ own computations based on ERM and Amadeus data. Employee layoffs have been normalised using the firm’s number of workers in 

the year preceding the restructuring event. 

 

Figure 2. Robustness check: % bias reduction across explanatory variables in the matched and unmatched sample of non-restructuring firms 

 
Notes: Authors’ own estimates. % bias reductions for FEs have been omitted due to space constraints. 
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Chapter 4 

 

The Employment Implications of Additive Manufacturing†* 

 

Abstract 

Despite the fast pace at which Additive Manufacturing (AM) has been spreading across several 

countries and industries, its impact on employment is still theoretically ambiguous and vastly 

unexplored from an empirical standpoint. On the one hand, these technologies bring higher product 

customization and shorter time-to-market, entailing market expansion effects which, in turn, foster 

labour demand. On the other hand, AM innovations imply profound changes in the way goods are 

manufactured. Yet, little empirical evidence exists on the complementarity or substitutability 

between AM and labour. We contribute to the literature filling this gap by estimating labour 

demand functions augmented with a measure of diffusion of AM-related innovations, based on 

patent data from the USPTO. Our analysis spans across 31 OECD countries, 21 manufacturing 

industries, over the 2009–2017 period. Our econometric results highlight an average positive 

relationship between AM technologies and employment at the industry level, resulting from both 

market expansion and complementarity between AM and labour; at the same time, no labour-saving 

effect emerges. However, the quantitative importance of each mechanism is heterogeneous across 

sectors. 

 

Keywords: Additive manufacturing; 3D printing; employment; technological change; industry-

level analysis. 
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4.1. Introduction 

The question of whether technological change creates more jobs than it destroys has been at the 

core of the academic and policy debates since the early stages of industrialization, dating back to 

the contributions of classical economists (e.g. Ricardo, 1951). More recently, important 

contributions related to the impact of Information and Communication Technology (ICT) on 

employment initiated by the seminal contribution of Autor and colleagues (2003) pushed forward 

this debate. Recently, the diffusion of automation, artificial intelligence and, in general, advanced 

manufacturing technologies of the Industry 4.0 (I4.0) wave – or fourth industrial revolution (4IR) –

fostered a renewed interest in the effect of technology (Brynjolfsson and McAfee, 2014; Schwab, 

2016). For instance, the diffusion of industrial robots in the 1990s and 2000s has created fear that 

this new wave of innovations may foster technological unemployment: although existing 

contributions show employment polarization effects, evidence is more mixed when looking at total 

employment (e.g. Graetz and Michels, 2018; Dauth et al., 2021; Acemoglu and Restrepo, 2020). 

Similarly, while new technologies of the 4IR are suggested to create a displacement effect in 

manufacturing (e.g. Acemoglu and Restrepo, 2020; Dauth et al., 2021), they also bring benefits and 

set incentives that may help sustaining manufacturing firms’ activities, avoiding their closure (as 

discussed in Chapter 3). 

The rising industrial automation and the rapid diffusion of industrial robots are not the sole 

technological trends characterizing the advent of the I4.0 wave (Kagermann et al., 2013; Davies, 

2015). Indeed, additive manufacturing (or 3D printing; AM hereafter) is assuming an increasingly 

important role due to its diffusion in several countries and industries (OECD, 2017; EIB, 2019; 

Eurostat, 202151), being widely discussed and receiving great attention from institutional actors and 

policymakers for its potential economic impacts (OECD, 2016; European Commission, 2016, 2017; 

 

51 See also Table A1 in Appendix A. 
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UNCTAD, 2017, 2020).52 Yet, the effects of AM on employment remain unexplored from a 

quantitative standpoint, extant contributions providing only anecdotal evidence. 

This Chapter contributes to the established literature analysing the employment-technology 

nexus and to the growing literature looking at the economic implications of advanced 

manufacturing technologies of the I4.0 wave by empirically investigating the relationship between 

AM innovations and employment at the industry level, thus providing an important contribution to 

these current debates. Specifically, we argue that AM technologies deserve a special focus, since 

they differ consistently from other digital production technologies so far investigated in the 

literature. 

 AM embodies a radical process innovation that reduces the number of production stages, at 

the same time increasing product customization and, ultimately, demand. Contrary to other forms of 

capital-embodied process innovations such as industrial robots, the diffusion of AM innovations is 

more likely to follow market seeking – rather than a labour-saving – economic incentive.53 At the 

same time, AM ‘activates’ all those channels through which capital-embodied technological 

innovations can affect employment. On the one hand, AM triggers market-driven employment 

effects both in upstream and downstream industries: in the former, happening as a displacement of 

jobs from the production of old machines and materials to that of new machines and materials; in 

the latter, moving jobs from the production of old products to that of new ones. On the other hand, 

in both the innovation-using and innovation-producing industries, the effect of AM on employment 

– for a given level of production – depends on their level of complementarity with labour and other 

production factors, as compared to traditional manufacturing methods. 

 

52 AM is becoming one of the main areas of study in the social sciences, from economics to business and management 

(Mariani and Borghi, 2019). 
53 Indeed, this revolutionary manufacturing perspective, which involves adding and instantly joining layers of various 

materials in specific locations and creating objects from digital 3D data (ASTM International, 2013), has progressively 

gained attention in several fields, being used either as a complementary or mainstream manufacturing technology 

(Laplume et al., 2016). 
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 Building on these theoretical arguments, in order to investigate the effect of AM innovations 

on total employment at the industry level, we build a patent-based proxy – namely patent family 

applications (hereafter, patents) – to the United States Patent and Trademark Office (USPTO), 

capturing the whole ecosystem of innovations relating to AM. Specifically, since the goal of this 

Chapter is to look at the overall diffusion of AM innovations, we rely on patent information, as they 

provide a deeper and more detailed insight on both AM-related product and process innovations. 

Our measure is built using patents protecting innovations for AM processes, AM machines and 

apparatus, materials used in AM, pre- and post-processing operations related to AM, software for 

AM, products made via AM techniques (WIPO, 2019). We attribute AM patents to countries 

through the inventor’s residence and to NACE 2-digit manufacturing industries that are likely to 

feature higher diffusion of AM innovations leveraging on a widely used concordance methodology. 

 We estimate standard labour demand functions, which are augmented with our measure of 

AM innovations across 31 OECD countries and 21 manufacturing industries over the 2009–2017 

period. As opposed to most research looking at the effects of technological change on employment, 

we estimate both unconditional and conditional labour demand functions: in the former, labour 

demand is uncompensated and we control for labour cost and technical progress, whereas in the 

latter labour demand is compensated – i.e. we control for the level of output – (Ugur et al., 2018) 

and the market expansion channel is ‘switched off’. Estimating both types of labour demand 

provides useful insight into the mechanisms characterising the AM-employment nexus. Yet, given 

the way AM affects industrial operations, we expect the channels linking these technological 

innovations to employment to work differently depending on the industry characteristics. Thus, we 

further extend our analysis to account for industrial heterogeneities, leveraging on the Pavitt 

classification (Pavitt, 1984). 

 We find an average positive relationship between AM innovations and the level of 

employment in both conditional and unconditional labour demand estimations, albeit of a larger 

magnitude in the latter. At the same time, our results show no labour-saving mechanisms to be in 
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place with AM. Indeed, both market expansion and complementarity between labour and AM 

technologies drive the positive relationship we uncover with employment. Despite this average 

positive relationship holds across all manufacturing industries, its magnitude is highly 

heterogeneous across sectoral groups depending on the main source of innovation, the level of 

product differentiation, the degree of economies of scale, the related magnitude of market 

expansion, and factor complementarity effects. 

 The remainder of the Chapter is organised as follows. In Section 4.2, after shortly reviewing 

the main theories and empirical evidence on the relationship between technological change and 

employment, we develop our conceptual framework and hypotheses on the employment effects of 

AM. In Section 4.3, we describe the data used and the construction of our diffusion measure for AM 

innovations. Section 4.4 introduces the methodology used for the empirical strategy, while Section 

4.5 focuses on the main findings. Section 4.6 draws conclusions and discusses limitations and future 

research avenues. 

 

4.2. Technological change, employment, and the case of AM 

The economic theory views capital-embodied technological change as driven mainly by cost-saving 

motivations, ultimately being labour-saving. As a result, the implications resulting from the 

introduction of process innovations are generally expected to be negative for employment. Yet, 

indirect channels possibly counterbalance these negative effects. These compensation mechanisms 

typically relate to market expansion effects induced by lower prices set by firms using the 

innovation, by the expansion of product demand for firms operating in upstream industries 

producing the new machines or complementary inputs – since process innovations are also product 

innovations in upstream sectors – and by higher income at the aggregate level (Freeman et al., 1982; 

Stoneman, 1983; Petit, 1995). At the same time, several contributions also argue that technological 

change associated with the introduction of new production technologies may result in uneven 
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effects on the composition of labour (i.e. by the level of education and skills, occupation, age and 

gender) without affecting the total labour demand (Acemoglu, 2002). Conversely, product 

innovations are usually seen as positively affecting employment by creating new markets. Still, also 

this type of innovation can have negative counterbalancing forces, mainly related to the 

displacement of old products occurring when new ones are introduced, i.e. business stealing or 

cannibalization effects (Katsoulacos 1984, 1986).54 

 The relationship between technological change and employment has been subject to 

extensive analysis in the empirical literature, by looking at different aggregation levels – firms, 

industries and countries – and using different sources of information to measure technological 

innovations (i.e. R&D or investment expenditures, patents, survey data looking at process and/or 

product innovations or the adoption of specific technologies). 

 Several works – particularly, those using R&D expenditure or patent data as proxies – look 

at the effects of technological change on employment without distinguishing between types of 

innovation (product vs process) nor addressing a specific technology or product (Ugur et al., 2018). 

Conversely, those studies distinguishing between process and product innovations usually rely on 

survey data. On the one hand, these works mainly find a positive relationship between product 

innovation and employment; on the other hand, results for (capital-embodied) process innovation 

are heterogeneous depending on the aggregation level considered, vary by country and industry 

group (Chennells and Van Reenen, 2002, and Ugur et al., 2018). 

 More recently, a stream of literature has focused on the employment implications resulting 

from the diffusion of specific capital-embodied innovations like ICT, automation in general or 

industrial robots. While empirical evidence highlights the emergence of polarization effects in the 

labour market associated with the adoption of these technologies, results are still inconclusive when 

looking at the implications for total employment (Autor and Dorn, 2013; Michaels et al., 2014; 

 

54 For recent surveys, see Pianta (2006) and Vivarelli (2014). 
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Graetz and Michels, 2018; Mann and Püttmann, 2021; Acemoglu and Restrepo, 2020; Dauth et al., 

2021). 

 As opposed to these technologies, the use of AM is not driven by labour-saving aims. The 

inherent characteristics of AM – specifically, higher potential for product customization and overall 

cost reduction – open space for new and different links with employment, as compared to other 

capital-embodied technological innovations. Hence, AM deserves particular attention when being 

assessed empirically, addressing all potential channels – highlighted in the literature – through 

which it could affect employment. For instance, compared to industrial robots, the effect of AM on 

the level of employment at constant output – the potential labour substitution effect – is likely to be 

less relevant than market-related effects. 

 

4.2.1. AM and changes in industrial processes 

AM is an innovative manufacturing process used in both prototyping and in the production of tools 

and final products (Mellor et al., 2014). More precisely, the term AM groups together seven distinct 

technologies and related production processes working in different ways and using different input 

materials, although all following the same production logic (ASTM International, 2013). The way 

these technologies work is rather simple: the AM machine receives the digital three-dimensional 

model of the object to be manufactured, the model is broken down into a set of bi-dimensional 

models, which are subsequently reproduced one-by-one by one or more printing heads physically 

juxtaposing the material and recreating the whole object.55 

 AM distinguishes itself from traditional manufacturing technologies for two main 

characteristics: it allows for a reduction in the number of production stages, while increasing the 

potential for product customization (Attaran, 2017). These two peculiar features of AM create 

several potential economic advantages for adopting firms (Weller et al., 2015). 

 

55 See ASTM International (2013) for a detailed description of processes and specificities. 
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 Commonly, traditional manufacturing techniques produce rather simple objects or 

components, which subsequently require some assembly procedure to build the final articulated 

product desired. Conversely, AM enables the production of functional articulated assemblies in a 

few or even in a single step, in turn completely offsetting or strongly reducing post-manufacturing 

assembly operations (Weller et al., 2015; Cuellar et al., 2018; Singamneni et al., 2019). On the one 

hand, the lower number of production steps implied by AM also results in an overall shorter time 

needed to get the final product to the market. This results in the opportunity for firms to achieve an 

overall supply chain simplification by reducing inventory stocks and therefore logistic, transport, 

and communication costs (Holmström et al., 2010; Liu et al., 2014; Delic and Eyers, 2020). On the 

other hand, as far as other production costs are concerned, the implications of adopting AM either 

as main or as complementary production mode are more ambiguous: potential cost reductions may 

arise relatedly to the waste cut introduced by AM, but at the same time the process may require 

more costly input materials (Tuck et al., 2008; Atzeni and Salmi, 2012; Achillas et al., 2015; Weller 

et al., 2015; Baumers et al., 2016). 

 The second main characteristic of AM – higher potential for product customization – results 

from the underlying production logic behind these technologies. As AM methods build the final 

object without needing tools or moulds, at the same time enhancing the manufacturability of highly 

complex products (Diegel et al., 2010; Schniederjans, 2017), these technologies provide engineers 

with higher flexibility in manufacturing and prototyping, and designers with complete freedom and 

considerable scope for customization (Rosen, 2014), in turn better satisfying customer demands. 

Relatedly, AM further reduces the time-to-market of new products (Petrovic et al., 2011, Petrick 

and Simpson, 2013; Achillas et al., 2015), speeding up the whole design process and increasing 

product innovation (Leal et al., 2017). Notwithstanding, these opportunities come at a minimum 

cost, while also opening space for enhanced technical and physical product characteristics (Atzeni 

and Salmi, 2012; Petrick and Simpson, 2013), and creating new business opportunities and rising 

AM diffusion across several industries (Mellor et al., 2014; Bogers et al., 2016; Attaran, 2017). In 
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fact, these benefits associated with AM have been the main driver of adoption in sectors producing, 

for instance, prosthetics and dental implants (Chen et al., 2016), hearing aid apparatuses, (Petrovic 

et al., 2011) and in the aerospace industry (Singamneni et al., 2019). 

 As a result, faster delivery times – enabled by the boost in the overall production cycle – and 

greater product customization increase consumers’ willingness to pay for goods produced via AM 

techniques (Bogers et al., 2016; Rayna and Striukova, 2016) and benefit adopting firms by 

mitigating demand shrinkage and potentially rising mark-ups (Weller et al., 2015). 

 The advantages which AM brings over other traditional manufacturing methods stand out in 

the production of goods usually featuring complex designs and characterised by low volumes for 

which mainstream techniques would be too expensive, requiring high volumes to exploit economies 

of scale in production (Ruffo and Hague, 2007; Baumer et al., 2016). Conversely, applying AM to 

the mass production of standardized products requires a substantial re-design of both the product 

and the production process (Mellor et al., 2014; Kianian et al., 2015), making the economic 

advantages related to cost optimisation more uncertain. 

 From a conceptual standpoint, customization motives prevail over scale-seeking ones. 

Therefore, AM brings higher gains in markets showing strong demand for product customization, 

flexibility and freedom in design, allowing for the acquisition of broader customer base (Weller et 

al., 2015). Nonetheless, recent years have witnessed the diffusion of AM technologies in the 

production of several mass-consumption products – for instance, Adidas shoes (Cheng, 2018) – thus 

signalling technological maturity and a major shift from a primary use for rapid prototyping 

applications to direct manufacturing ones in a growing number of sectors (Laplume et al., 2016; 

Attaran, 2017). 

 

4.2.2. AM and employment 

The distinct characteristics of AM are likely to affect the channels through which these technologies 

may have an impact on employment. Thus, in order to investigate such relationship and to 
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disentangle the main links at work, we distinguish between – and estimate both – unconditional and 

conditional labour demand functions (Hamermesh, 1986; Lichter et al., 2015; Ugur et al., 2018). 

Unconditional (i.e. uncompensated) labour demand allows technological innovations to affect 

employment via all potential channels: by affecting firms’ product demand and, in turn, production 

and employment levels, and by altering the relative intensity of the production factors used in the 

process. By contrast, in conditional (i.e. compensated) labour demand the market expansion channel 

is ‘switched off’. 

 Most of the empirical literature looking at the employment effects associated with 

technological change does not compare the two types of labour demand, focusing either on the 

conditional (e.g. Bogliacino and Pianta, 2010  ̧Bogliacino et al., 2012; Dachs et al., 2017; Pantea et 

al., 2017; Van Roy et al., 2018; Acemoglu and Restrepo, 2020) or on the unconditional demand 

(Graetz and Michaels, 2018; Mann and Püttmann, 2021; Dauth et al., 2021). Only few works 

represent notable exceptions to this common research practice, where both types of labour demand 

functions are estimated and compared, gaining deeper understanding of the underlying mechanisms 

driving the relationship between technological innovations and employment (Van Reenen, 1997; 

Michels et al., 2014). Similarly, given the peculiarities of AM technologies presented in the 

previous Section, this distinction seems relevant for disentangling the mechanisms through which 

AM innovations may affect employment. 

 AM opens up space for product innovation and customization that potentially result in 

market expansions, which could nonetheless be mitigated depending on the substitution effect 

between new and old products, potentially making the marginal contribution of AM innovations to 

employment less relevant. In turn, at the sector level, the total market expansion effect associated 

with AM will depend on the relative magnitude of these contrasting forces. At the same time, AM is 

a technological innovation embodied in new machines – hence, a capital-embodied form of 

technological change – which also requires new specific intermediate inputs, like different and non-

standard raw materials and software. Coherently, AM machines represent a new wave of product 
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innovation in upstream sectors producing such machinery, this making such innovation likely to 

open new market segments. As a result, at the sector level, the employment effect will reflect the 

extent to which new AM machines and inputs substitute for old ones. 

 When these market-related effects are taken into account – i.e. when labour demand is 

estimated at a given level of output – the relationship between AM and employment will depend 

solely on its level of complementarity with or substitution between labour, capital and other 

production factors. In addition, the way this potential complementarity is affected by AM will shape 

its link with employment (e.g. labour-augmenting vs labour-biased innovations),56 as the direct 

effect technological change on labour demand also depends on how a technology impacts on 

different types of labour (e.g. by gender, age or skill composition) and their degree of 

substitutability with other production factors. Indeed, several recent works have looked at the 

implications of technological change for the composition of employment, highlighting that adopting 

innovations like ICT potentially alters the relative demand for high-skilled, medium-skilled, and 

unskilled workers (Michaels et al. 2014) or between different tasks (Autor et al., 2013; Graetz and 

Michaels, 2017), although not necessarily affecting the total level of employment. 

 Similarly, AM innovations are likely to trigger potential composition effects, too. in AM-

using sectors, given the high customization component and the increased production efficiency – for 

instance, resulting from the strong reduction of the assembly stages – brought by AM, more highly 

specialized workers are likely to be required in both design and operations activities relatively to 

traditional manufacturing methods, making AM processes skill-biased (Kianian et al., 2015). In 

AM-producing sectors (i.e. machines and complementary inputs), instead, the overall demand of 

labour is likely to remain unchanged, although its composition is again likely to shift in favour of 

higher-skilled workers given the advanced technological characteristics of these machines.57 

 

56 See also Acemoglu (2009, pp. 500–503) for a detailed discussion. 
57 Unfortunately, sectoral data on the composition of employment (i.e. by educational level, age and gender) are not 

available for the sample of countries we investigate here. EU KLEMS provides such data, yet at the aggregate level, for 

EU27 countries and the UK. In Appendix C we preliminary explore how AM innovations affect the composition of 
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 Building on the specific characteristics of AM reviewed in the previous Section and on the 

above discussion, we hypothesise that: 

 

 H1. AM innovations have a positive effect on employment in both unconditional (i.e. 

 uncompensated) and conditional (i.e. compensated) demand estimations since its primary 

 goal is not saving on labour costs. 

 

 H2. AM innovations have a higher positive effect in unconditional (i.e. uncompensated) than 

 in conditional (i.e. compensated) demand estimations, driven by large and positive market-

 creation effects. 

 

 Another important strand of the literature investigates the existing differential effects that 

various forms of technological change have on employment across individual sectors or sectoral 

groups (Van Reenen, 1997; Greenhalg et al., 2001; Bogliacino et al., 2012; Dachs et al., 2017; Van 

Roy et al., 2018). As discussed in the previous Section, the diffusion of AM technologies is likely to 

affect differently some industries as compared to others because of its characteristics. Thus, we 

further explore the differential links characterising the relationship between AM and employment in 

order to account for such heterogeneity. We rely on the Pavitt taxonomy58 (Pavitt, 1984), which is 

widely used for both theoretical and empirical investigation, as well as for policy analysis. This 

classification groups together sectors with different levels of product differentiation, diverse sources 

of innovation (sectors producing and adopting the innovation), and varying relevance of scale 

economies into four sectoral groups: Science Based (SB) industries, Specialized Supplier (SS) 

 

employment for the whole economy across EU27+1 countries. Results are reported in Table C7 and confirms that that 

while workers with lower educational levels are not affected by AM innovations, these are found to boost demand for 

both highly educated and middle educated workers, thus confirming AM to be a skill-biased but not a displacing 

technology. Clearly, such findings are to be further investigated at a finer level of sectoral disaggregation depending on 

future data availability. 
58 More specifically, we use the revised version form Bogliacino and Pianta (2016). 
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industries, Supplier Dominated (SD) industries and Scale and Information Intensive (SII) 

industries.59 As the factors driving diversity across these sectoral groups coincide with most of the 

factors that should affect their exposure to AM, this taxonomy is particularly suitable to study the 

heterogeneity of its industry-level implications for employment. 

 The SB and the SS groups include those sectors featuring the highest diffusion of AM: 

industries producing AM machinery and equipment, industries producing the chemicals used in AM 

processes, as well as some high-tech sectors adopting the AM technology (i.e. manufacture of 

computer, electronic, and optical products and manufacture of other transport equipment). These are 

also specialized and highly innovative industries where many firms lead technological progress 

(Pavitt, 1984; Bogliacino and Pianta, 2010, 2016), thus implying the marginal contribution of AM 

innovations to be possibly limited. In fact, the growing diffusion of AM in highly differentiated 

sectors producing specialized goods has the potential to enhance firms’ ability to meet sophisticated 

needs and the demand for customization, resulting in consistent employment effects related to 

market expansion. Yet, in these sectors, the magnitude of such market expansion will depend on the 

extent to which products already bears high levels of customization and on the playfield on which 

competition occurs (i.e. mostly around product innovation and quality improvement). In turn, new 

AM machines, equipment, materials, and additively manufactured products could substitute older 

ones,60 helping firms to survive competition instead of increasing market shares. 

 The SD category includes industries which generally adopts outside-generated innovations. 

As shown in Table A1 in Appendix A, AM diffusion is now consistent in sectors like manufacture 

of fabricated metal products, as well as furniture and other manufacturing, while also growing in 

industries like the manufacture of textiles, wearing apparel, leather and related products (Eurostat, 

2021). Nonetheless, SD industries generally manufacture standardized goods by using scale-

 

59 See Table A2 in Appendix A for further details. 
60 Several works looking at product innovations show evidence of business stealing effects by competing firms and of 

cannibalization effects by the same firm (recently, Harrison et al., 2014). 



 

199 

intensive processes. Here, new AM methods open space for new ways of customizing previously 

standardized products, although AM could represent a costly alternative to mainstream technologies 

and therefore followed by too few firms in order to result in a large impact on demand. Yet, 

differently from other sectoral groups already seen, in SD sectors, the diffusion of AM technologies 

is likely to create new market niches instead of substituting for the existing standardized products 

and – given the rising level of product sophistication needed to survive competition – AM likely 

becomes a relevant source of innovation also in traditional industries. 

 Finally, the SII group includes both adopting sectors (e.g. manufacture of motor vehicles, 

trailers, and semi-trailers) and industries producing some of the input materials used in AM 

methods (e.g. manufacture of rubber, plastic products, and basic metals), thus featuring some 

diffusion. However, these industries traditionally feature consistent scale economies, thus strongly 

limiting the incentives to switch from traditional production methods to AM. 

 Similarly to when looking at the average industry-level effect on employment, at a constant 

level of output, AM diffusion is likely to have a positive or null impact on labour demand in SB and 

SS categories, as these sectors are characterised by already high levels of complementarity between 

skilled labour and capital but AM may further increase it. At the same time, given that AM methods 

bear higher complementarity with skilled labour with respect to traditional production technologies 

typically adopted in SII and SD sectors, the effect there is likely to be again positive but larger than 

in the SB and SS groups. 

 In turn, our hypotheses on the prevailing average relationship between AM innovations and 

employment across all manufacturing industries may hold with varying degrees to the different 

sectoral groups outlined in the Pavitt taxonomy. Indeed, as discussed above, the mechanisms 

highlighted in the compensation theory are likely to work differently across the four categories. 

Hence, we leave a further exploration of the prevailing effects in each industry to the empirical 

assessment. 
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4.3. Data and descriptive evidence 

4.3.1. AM patents and innovation measure 

Patent data are used extensively to measure technological change and innovation (recently, Van 

Roy et al., 2018, Mann and Püttmann, 2021, Venturini, 2022). Following the discussion in Section 

4.2.2, in order to investigate properly the effect of AM innovations on total employment, our 

measure should capture the overall diffusion of AM innovations, i.e. it should capture both AM-

related product innovations in both upstream and downstream industries and AM-related process 

innovations affecting downstream industries. In this way, we can capture all of the channels through 

which these innovations can affect the demand of labour.61 Indeed, AM innovations include both 

machinery, equipment and complementary goods used in manufacturing processes, like materials 

and software – i.e. new products for technology producers, which also represent process innovations 

for firms in using industries – and products made via AM techniques by firms in adopting sectors. 

 We build our AM diffusion proxy by identifying AM-related patents and by matching them 

to sectors and countries using the methodology described in the following Sections. Our strategy 

bears pros and cons. On the one hand, using industry-level patent data allow us to capture the 

effects that AM innovations might have on sectoral employment, that are external to the firm, and 

we can gain insight on the sectoral heterogeneity potentially characterising the AM-employment 

nexus. On the other hand, our level of analysis does not allow us to capture the effects of AM 

technologies, that are external to the industry and to the country in which AM innovations occur, as 

well as general equilibrium effects.62 As discussed later in this Section and in Appendix B, 

measuring AM diffusion using a patent-based measure built at the sector level poses that we are not 

able to unambiguously disentangle between the product and the process nature of AM innovations. 

 

61 The pros and cons of different innovation proxies are widely analysed in the literature (see, for instance, Archibugi 

and Pianta, 1996; Hagedoorn and Cloodt, 2003). 
62 In Section 4.5.1.1 we discuss a robustness check aimed at accounting for the role of ‘external’ AM innovations. 
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Yet, distinguishing the two does not represent a strict requirement in order to test our hypotheses – 

i.e. whether AM-related innovations produce more jobs than they destroy – and to provide insight 

of the potential sectoral heterogeneity of such mechanisms. 

 We collected data on AM patents at the USPTO63 from the PATSTAT data set.64 First, we 

identified a list of keywords (see Table A3 in Appendix A) using several sources such as the 

international standard-regulating organisation for AM technologies (ASTM International, 2013), the 

engineering literature, as well as product catalogues from manufacturers of AM machines.65 Then, 

we considered patents classified under the International Patent Classification (IPC) code B33Y, 

specifically created in 2015 by the World Intellectual Property Organisation (WIPO) to group all 

AM innovations related with processes, apparatuses, materials, ancillary equipment and software, 

and products made via 3D printing – namely, all the aspects of AM innovations not covered 

elsewhere in the IPC classification (WIPO, 2019). 

 Our analysis covers the 2009–2017 period, since between 2009 and 2014 core patents 

protecting AM technologies – such as fused deposition modelling (FDM) and selective laser 

sintering (SLS) – expired, thus boosting patenting activity66 and before 2009 AM-related patenting 

activity was indeed rather limited (Laplume et al., 2016; EPO, 2017). In total, we collected data on 

around 3,500 AM patents over the period we investigate. 

 

4.3.1.1. Sectoral attribution of AM patents 

PATSTAT data include several information on inventors, applicants, IPC classes, and the 

probability of use by NACE Rev.2 2-digit sectors (NACE sectors, hereafter) – i.e. the sector in 

 

63 We focus on applications to the USPTO as it is considered the reference patent office when seeking protection for 

innovative technologies (Cantwell, 1995). 
64 The version of PATSTAT used is PATSTAT Online (2019 Autumn edition) V5.14, accessed between September and 

October 2019. We followed guidelines from Pasimeni (2019) to improve the effectiveness of our SQL query in 

PATSTAT. 
65 We looked at product catalogues from three main manufacturers of AM machinery, equipment and materials 

worldwide: Stratasys Ltd., 3D Systems Inc. and EOS GmbH. 
66 FDM and SLS were invented and their patent applications first filed at the USPTO in 1989 and 1986, respectively. 

Patents were granted in 1992 and 1997. The core patent for FDM expired in 2009 and SLS’s one in 2014. 

https://www.stratasys.com/
https://www.3dsystems.com/
https://www.eos.info/en
https://patents.google.com/patent/US5121329A/en
https://patents.google.com/patent/US5597589A/en
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which operating firms are more likely to use the innovation protected by each specific patent. To 

match patents to industries, we rely on the DG Concordance Table constructed by Schmoch et al. 

(2003) and subsequently updated in more recent years (Van Looy et al., 2014; 2015). This 

attribution strategy – included in PATSTAT data – is commonly accepted and particularly 

appropriate for our purposes. The matching exploits a statistical approach building the concordance 

between IPC codes and NACE sectors by identifying the NACE sector with the highest occurrence 

rate amongst NACE sectors of the firms applying for a patent classified under a specific IPC code. 

This turns out to be particularly useful in cases where the applicant is, for instance, the holding of a 

conglomerate, or a large firm operating in a value chain (and large firms are more likely to apply for 

patents), as the matching approach even out the potential bias in the sectoral matching introduced 

such ‘extreme’ cases. Using the DG Concordance Table implies that the potential effect a patent 

might have on employment would then emerge in the sector to which the firm – or the controlled 

firm/subsidiary – actually exploiting the patent belongs to. In fact, attributing the patent to the 

applicant’s NACE sector – a possible alternative strategy – would be misleading in our AM case as 

well since we find several large firms, multinationals, and conglomerates – like Boeing, Airbus, 

General Electric and Siemens – amongst AM patent applicants. 

 To show how the sectoral attribution method we adopted works, Table 1 illustrates two 

examples of AM patents in our data, their focus/content, applicants, and matched sectors. These 

examples suggest that the patents we collected capture both AM (product and process) innovations 

– in this specific case, of footwear and other apparel products by Nike and Adidas. As shown in 

Table 1, the larger sectoral weight of the patent describes its probability-of-use in NACE sector 15 

(manufacturing of leather and related products), indicating that the applicants employ AM methods 

to produce specific and customised products for commercialisation. Nonetheless, minority shares of 

the first patent link to other sectors. Patents pertaining to additively manufactured products may 

also relate to other aspects of the described AM innovation – e.g. the AM production technique or 

the materials. Specifically, as sports footwear and equipment are mostly plastic products, the patent 
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shows some probability-of-use in NACE sector 22 (manufacturing of rubber and plastic products); 

furthermore, since it describes possible production techniques it also features a lower probability-

of-use in NACE sector 28 (manufacturing of machinery and equipment). This stems from the 

characteristic of patents of usually featuring more than one IPC code and hence being cross-

matched to multiple industries according to different proportions. In general, depending on the inner 

nature of an AM innovation, the probabilistic matching between patents and sectors in the DG 

Concordance Table allows us to gain insight into the distribution of AM innovations across 

industries. Yet, as in the example in Table 1, the correspondence between patents and sectors is not 

unique, the subject of a patent being potentially relevant to multiple industries. This makes it almost 

impossible to unambiguously disentangle AM patents relating to either product or process 

innovations. Further details on the case shown in Table 1 and other examples of our sectoral 

attribution are reported and discussed in Appendix B. 

-------------------------- 

Table 1 around here 

-------------------------- 

Mann and Püttmann (2021) adopt a similar sectoral attribution strategy – the Yale Technology 

Concordance (Kortum and Putnam, 1997) – to investigate the effect of automation on employment 

across US commuting zones, using patent data selected through text analysis to proxy for 

automation. Our choice of the PATSTAT concordance method is motivated by its fit to the current 

NACE classification, being also widely appreciated for its user-friendliness and international 

comparability thanks to the correspondence between the latest versions of NACE and ISIC 

classifications. Hence, we discarded other matching methodologies as they are used less frequently 

or provide matching for older or different industrial classifications (see Dorner and Harhoff, 2018). 

Similarly, we decided to rely on the DG Concordance Table and not on newer ones such as those 

provided by Lybbert and Zolas (2014) and Dorner and Harhoff (2018), given the lack of empirical 

testing for these new concordances. More importantly, as shown in Dorner and Harhoff (2018) the 
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three concordance methodologies lead to a highly similar matching of patents to sectors in 

manufacturing. 

 

4.3.1.2. Geographical attribution of AM patents 

As discussed above, we collect information on patent applications filed at the USPTO alone; yet, as 

patent applications can be filed more than once in the same jurisdiction, there might be potential 

double-counting issues if considering overall patent applications in our data set. Thus, in order to 

avoid such issue, we used AM patent family applications and allocated patents to the year of the 

priority filing – i.e. the earliest filing. We then matched AM patents to the countries of residence of 

their inventors using fractional counting, a diffused principle used for instance by Eurostat and the 

OECD (2009). In turn, in each year, our AM data are structured as the patent fraction by inventor 

country and by sector. 

 By attributing AM patents to the country of residence of the inventor(s), we assume that 

countries featuring a high patent count in AM are likely to have high diffusion rates. Conversely, 

countries showing no or a low number of AM patents, by being scarcely innovative in AM, are also 

likely to have a lower level of diffusion of these technologies relatively to those countries being 

active AM innovators.67 Alternative strategies attribute patents based on the jurisdiction – i.e. where 

the patent provides protection – or to the applicants’ country. While recognising the limitations of 

our attribution strategy, in Appendix B we discuss alternative approaches and argue why they 

would result in a less appropriate AM measure for the purpose of our analysis. 

 

67 We acknowledge that local innovation does not represent the only source of diffusion of a technology. Specifically, 

as shown in Chapter 1, AM devices may become known and available in a country even without the presence of local 

innovators thanks to imports of such machinery from abroad. Across EU countries, this seems to be the case of, for 

instance, Latvia and Hungary, who feature zero or very few patents, no local production (coherently), but high import 

growth rates over our observation period. Furthermore, also in cases characterised by a relatively low innovation 

(patenting) activity in AM, such as that of Denmark, our measure could underestimate actual diffusion, since in Chapter 

1 we acknowledge a high growth rate of our net consumption measure (i.e. considering both imports, local production 

and exports). This highlights a growing level of adoption, but also growing local production, hence overall diffusion. 

Unfortunately, this is a limitation of our work exploiting patent data, which further emphasize the need for analysing a 

more complete picture by looking at different sources of information such as those used here (patents) and in Chapter 1 

(trade and production data). 
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4.3.1.3. Descriptive evidence on AM diffusion 

Figure 1 shows the distribution of AM patents at the USPTO between 2009 and 2017. Notably, the 

distribution for our AM patents is highly skewed across years, thus we transformed the data into 

natural logarithms to increase comparability across years (we also report the actual value of the AM 

patent count at the end of each bar in Figure 1). The pattern shows a steep increase between 2009 

and 2015, moving from an initial patent count of around 70 to a peak of more than 900 AM patents. 

More recent years instead witnessed a decline in the number of applications filed. However, this 

pattern is not related to a decline in innovation activity in AM per se, but rather relates to 

bureaucratic delays affecting the filing of an application at the patent office due to screening and 

checking procedures, corrections, and resubmission requests. Depending on the regulation of the 

specific patent office considered, such time lag might vary, resulting in applications being published 

around 18 months after the actual filing date (EPO, 2019; USPTO, 2019). 

-------------------------- 

Figure 1 around here 

-------------------------- 

Figure 2 presents the breakdown of AM patents by country (panel A) and by sector in our sample 

(panel B). The US, Japan and Germany together have the highest patent counts in AM, with the US 

alone making up the 57.2% of all AM patents at the USPTO and reaching about 80% of the total all 

together. The sectoral distribution of AM patents presents a similar pattern, with the highest share 

of AM patents (42.5%) concentrated in the sector manufacturing machinery and equipment. 

 Figure 3 shows the distribution of AM patents across countries and years, by each of the 

four sectoral groups included in the Pavitt classification. Furthermore, it is worth noting that these 

are absolute numbers, i.e. they are not normalized by country population or by industry 

employment. This must be taken into account when looking at the distribution by country and 
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industry. In particular, the four industry classes have very different weights in terms of total 

employment. 

-------------------------- 

Figures 2 and 3 around here 

-------------------------- 

 

4.3.2. Data and variables 

For our main explanatory variable measuring the diffusion of AM innovations, we use the three-

year-lagged natural logarithm of the stock of AM-related patents at the USPTO.68 For each country-

sector-year observation, we compute the stock of AM patents using the perpetual inventory method 

as 𝐴𝑀𝑖𝑗𝑡 = 𝐹𝑖𝑗𝑡
𝐴𝑀 + (1 − 𝛿) 𝐴𝑀𝑖𝑗𝑡−1, where 𝐹𝑖𝑗𝑡

𝐴𝑀 represents the count, or flow, of AM patents.69 We 

assume a depreciation rate of 15%, as commonly done in the literature on I4.0/4IR technologies 

(e.g. Graetz and Michaels, 2018; Corradini et al., 2021; Venturini, 2022). 

 All other explanatory variables in our models derive from a standard labour demand 

equation (Hamermesh, 1986; Van Reenen, 1997). We use sectoral data on employment, labour cost, 

and output from the Statistical Analysis (STAN) database of the OECD for 2-digit manufacturing 

industries in the NACE classification. Specifically, our dependent variable is the natural logarithm 

of the number of people employed in each country-sector pair in each year, sectoral labour cost is 

measured by the natural logarithm of labour cost per thousand employees and gross output through 

the natural logarithm of gross sectoral output produced. 

 Using data from PATSTAT data set, we build a variable to control for the stock of non-AM 

patents filed at the USPTO at the industry level, the complement to our main explanatory variable. 

 

68 Since the variables include zeros, we added 1 before taking natural logarithms.  
69 According to the perpetual inventory method, the initial stock is given by 𝐹𝑖𝑗0

𝐴𝑀/(𝛿 + 𝐺𝑅𝑖𝑗), with 𝐺𝑅𝑖𝑗 representing 

the average growth rate in AM patents between 1989 and 2015. Having collected patent information over the 1989–

2017 period, we build the stock using additional information on pre-sample years. We use 2015 as the last year to 

compute 𝐺𝑅𝑖𝑗 in order to avoid the drop in the absolute value of 𝐹𝑖𝑗𝑡
𝐴𝑀 in following years, as explained above. 



 

207 

This control allows us to isolate the effect of AM-related innovations from other types of 

innovation. We compute the sectoral stock of non-AM patents following the same methodology and 

assumptions as for our main explanatory variable. 

 STAN data set reports all nominal variables in local currency units. As industry-specific 

deflators are not available for all countries considered in this work, in order to compare sectoral 

variables across OECD members we convert them into Purchasing Power Parity (PPP) constant 

2011 US dollars using country-wide PPP conversion factors from the World Development 

Indicators (WDI) data set of the World Bank.  

 Our sample includes 31 OECD countries70 and 21 2-digit manufacturing industries (see 

Table A2 in Appendix A). The resulting dataset is an unbalanced panel of 5,741 country-sector 

observations between 2009 and 2017. Table 2 presents a summary description of the variables used 

in our empirical analysis, while Table A4 in Appendix A reports the related summary statistics and 

the correlation matrix. 

-------------------------- 

Table 2 around here 

-------------------------- 

Figure 4 reports the overall stock of AM patents for all 31 OECD countries in our sample (on the 

right vertical axis), together with the share of AM patent stock in the total stock of patents at the 

USPTO (on the left vertical axis), between 2009 and 2017. Both figures have been rising steadily 

over our observation period, experiencing a strong increase especially around 2014 – most 

probably, following the expiration of the yet cited core patents. The total AM patent stock 

experienced about a 6-fold increase, rising from around 400 in 2009 to around 2500 in 2017. 

 

70 Country list: Australia (AUS), Austria (AUT), Belgium (BEL), Canada (CAN), Czech Republic (CZE), Denmark 

(DNK), Estonia (EST), Finland (FIN), France (FRA), Germany (DEU), Greece (GRC), Hungary (HUN), Ireland (IRL), 

Israel (ISR), Italy (ITA), Japan (JPN), Korea (KOR), Latvia (LVA), Lithuania (LTU), Luxembourg (LUX), Mexico 

(MEX), Netherlands (NLD), Norway (NOR), New Zealand (NZL), Portugal (POR), Slovakia (SVK), Slovenia (SVN), 

Spain (ESP), Sweden (SWE), United Kingdom (GBR), and the United States (USA). 
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Similarly, the share of AM patent stock in the total stock of patents moved from 0.05% to 0.22% 

over the observed period. 

 Figure 5 illustrates the correlation between the level of employment and the stock of AM 

innovations, measured at the average levels of logged variables over the 2009–2017 period. Panel A 

shows the cross-country variation in the relationship, on average, across 21 manufacturing 

industries. Looking at the simple OLS cross-sectional linear regression fit line, there appears to be a 

positive relationship between our measure of AM-related patents and employment.71 Similarly, 

panel B in Figure 5 plots sectoral employment against AM innovation stock, expressed as the 

average across 31 OECD countries, between 2009 and 2017. Although this suggestive evidence 

goes in the same direction as our model’s predictions (as the slope is positive), it does not account 

for potential confounders that might influence the relationship at the country and industry level. In 

general, several factors might influence the link between labour demand and AM. Hence, our 

econometric strategy in the following analysis aims to account for country and industry factors that 

might confound the relation under investigation. 

-------------------------- 

Figures 4 and 5 around here 

-------------------------- 

 

4.4. Empirical strategy 

Our aim is to investigate the relationship between AM innovations and employment. As a first step, 

we estimate both unconditional and conditional, industry-level, labour demand functions augmented 

 

71 Panel A in Figure 5 shows a higher number of countries presenting no patenting activity as compared to panel A in 

Figure 2. This is due to constraints in the computation of the stock measure used in our estimations because of countries 

showing single or few patent applications, hence making it impossible to compute an average growth rate 𝐺𝑅𝑖,𝑗 ≥ 0. 

The same holds for similar sectoral cases reported in panel B. 
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with our variable measuring the diffusion of AM innovations (for a similar approach, see Van 

Reenen, 1997). Our baseline specification is: 

𝐿𝑖𝑗𝑡 = 𝛼0 + 𝛼1𝐴𝑀𝑖𝑗𝑡−3 + 𝛼2𝑛𝑜𝑛𝐴𝑀𝑖𝑗𝑡−3 + 𝜶3𝑿𝑖𝑗𝑡−1 + 𝛾𝑖 + 𝛾𝑗 + 𝛾𝑡 + 𝑢𝑖𝑗𝑡 , (1) 

where 𝐴𝑀𝑖𝑗𝑡−3 is our measure of AM innovations, 𝑛𝑜𝑛𝐴𝑀𝑖𝑗𝑡−3 is our measure of non-AM 

innovations, 𝑿𝑖,𝑗,𝑡−1 is a vector of sectoral control variables. 𝑿𝑖,𝑗,𝑡−1 includes labour cost per 

thousand workers (𝐿𝐶𝑖𝑗𝑡−1), in the unconditional demand specification and both labour cost per 

thousand workers and gross output (𝑌𝑖𝑗𝑡−1) in the conditional demand specification. 𝛾𝑖, 𝛾𝑗 , and 𝛾𝑡 

are country, industry, and year fixed effects (FEs, hereafter), respectively, and 𝑢𝑖,𝑗,𝑡 is the 

idiosyncratic error term. By including a variable capturing all non-AM innovations, we control for 

all the innovation output different from AM. We do not include controls for input of innovation at 

the sectoral level, such as sectoral R&D, as they should affect employment by affecting the 

innovation output – i.e. they are correlated with non-AM patents. Clearly, we cannot exclude 

𝑛𝑜𝑛𝐴𝑀𝑖𝑗𝑡−3 as this would result in a serious omitted-variable problem in our model. 

 All the explanatory variables enter our model with a one-year lag in order to avoid potential 

contemporaneity issues, while our main explanatory variable (𝐴𝑀𝑖𝑗𝑡−3) and the other innovation 

variable (𝑛𝑜𝑛𝐴𝑀𝑖𝑗𝑡−3) enter our model with a three-year lag in order to account for the delay in the 

potential impact of the new technology on employment. Following the discussion in Section 4.3 

(see Figure 1), we argue that in our case a three-year time window is the proper lag as it accounts 

for pendency following the application process at the USPTO, the average time needed to receive 

the grant (USPTO, 2019) and use the patent in production. 

 Equation (1) includes a set of FEs in order to account for potential unobserved 

heterogeneity. Specifically, country FEs should capture all country-specific institutional factors, 

which may affect the level of employment (e.g. labour market institutions and union activity), 

although being common across sectors (Graetz and Michaels, 2017; 2018). Sector FEs should 

instead capture all those characteristics related to technology and production processes that are 
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industry-specific and common across countries (e.g. the level of efficiency, standardization and 

economies of scale, use of natural resources, relevance of intermediate inputs in production and the 

level of market competition). Finally, year FEs should capture all those time trends evolving 

commonly across all countries and sectors (e.g. the general trajectory of technological progress and 

the cost of capital).72 

 In addition, in our preferred specifications, we consider a stricter FEs strategy by including 

country-year (𝛾𝑖𝑡) and sector-year (𝛾𝑗𝑡) FEs.73 These combinations allow us to control for those 

unobservables that might affect employment and are characterised by time trends specific to either 

the geographical or the sectoral dimension. This set of FEs should control for the dynamics of 

technological progress – for instance, related to the use of industrial robots or ICT – as well as the 

dynamics of income, population, and other macroeconomic factors.74 

 All of our model specifications are estimated using the pooled OLS estimator. Since our 

panel is quite short (i.e. 9 years) we do not have sufficient time variation to use the within estimator, 

thus including country-sector (𝛾𝑖𝑗) FEs. Indeed, the country-sector FEs alone capture almost all of 

the variation in our employment data (i.e. the R2 of the regression with sectoral employment as 

dependent variable and country-industry and year FEs alone as independent variables is above 

0.99). 

 As a second step in our analysis, we estimate specifications similar to those described above, 

but also allowing for potential heterogeneity across sectoral groups, following the literature on AM 

 

72 In particular, the cost of capital is not usually measured and available in the data, and it is traditionally assumed to be 

common across firms, but neither sectoral- nor country-specific (Van Reenen, 1997; Onaran, 2008). 
73 We used STATA’s reghdfe command to estimate OLS regressions including either unit-specific FEs and linear 

trends. We also test additional specifications including unit-specific FEs (country, sector, year) and linear trends 

(country-year, sector-year) simultaneously. Results (available upon request) are qualitatively unchanged in both 

unconditional and conditional specifications (we only witness a drop in significance for the coefficient of our AM 

variable to the 10% level in the unconditional specification). When looking at the sectoral heterogeneity in the effect of 

AM innovations, our main results are qualitatively confirmed, although the coefficient for the SS category is no longer 

significant in the unconditional specification and the coefficient for the SII category is no longer significant in the 

conditional specification. 
74 For instance, country-year FEs should also capture the fact that, in some cases, labour cost is partially determined at 

the national level and not at the industry level (Michaels et al., 2014). 



 

211 

discussed in Section 4.2. As further discussed in Section 4.2, we rely upon the revised version 

(Bogliacino and Pianta, 2016) of the Pavitt taxonomy (see Table A2 in Appendix A) and we 

estimate the specifications of the type: 

𝐿𝑖𝑗𝑡 = 𝛼0 + 𝛼1𝐴𝑀𝑖𝑗𝑡−3 + 𝛼2𝐴𝑀𝑖𝑗𝑡−3 × 𝑆𝐵 + 𝛼3𝐴𝑀𝑖𝑗𝑡−3 × 𝑆𝑆 + 𝛼4𝐴𝑀𝑖𝑗𝑡−3 × 𝑆𝐼𝐼 

+𝛼5𝑛𝑜𝑛𝐴𝑀𝑖𝑗𝑡−3 + 𝜶6𝑿𝑖𝑗𝑡−1 + 𝛾𝑖 + 𝛾𝑗 + 𝛾𝑡 + 𝑢𝑖𝑗𝑡 , 
(2) 

where 𝑆𝐵, 𝑆𝑆, and 𝑆𝐼𝐼 are dummies for Science Based, Specialized Suppliers, and Scale and 

Information Intensive industry groups, respectively. All other terms in equation (2) are defined as in 

equation (1). In this specification, the coefficient of our measure of AM innovations captures the 

potential relationship between AM and employment for the omitted sectoral category of Supplier 

Dominated industries.75 We report results of specifications estimated following equations (1) and 

(2) respectively in Tables 3 and 4, in the following Section. In addition, we perform different 

robustness checks to our main results, which are described in Section 4.5.1.1 and in Appendix C, 

together with a further robustness using instrumental variables estimation, reported in Section 

4.5.2.2. 

 

4.5. Results 

4.5.1. Main results 

Table 3 reports our first set of results where we look at the average relationship between AM 

innovations and employment across sectors and countries. We start our analysis by looking at the 

simple relationship between our dependent and main explanatory variables in column (1), where a 

positive relationship emerges between AM innovations and employment. In columns (2) and (3) we 

estimate the unconditional demand functions, including labour cost per worker and the stock of 

 

75 We omit the terms 𝑆𝐵, 𝑆𝑆, and 𝑆𝐼𝐼 in equation (2) as they are collinear with the sector FEs included in all 

specifications. 
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non-AM patents, as well as our baseline and stricter set of Fes (in columns (2) and (3), 

respectively). In all three models, the coefficient of AM is positive and statistically significant at the 

1% level, dropping from 0.19 to 0.09 when shifting from the simple relationship (column (1)) to the 

augmented unconditional labour demand function (column (2)). In column (3) – our preferred 

specification where we adopt a stricter Fes strategy – the elasticity of employment to AM is 0.095, 

meaning that a one-percent increase in the industry-level stock of AM patents associates with, on 

average, almost 0.1 percent rise in the level of sectoral employment. 

 In columns (4) and (5) of Table 3, we show estimates of the augmented conditional labour 

demand functions – including the level of gross output – again including the different combinations 

of Fes as in columns (2) and (3), respectively. Results highlight the relationship between AM and 

employment to be again positive and statistically significant at the 1% level, although the elasticity 

coefficients feature a slight drop as compared to those in the unconditional specifications. In our 

preferred conditional specification in column (5), a one-percent increase in the AM patent stock 

relates with an increase of about 0.07 percent in employment. 

 The difference we find in the magnitude of the coefficients for AM between unconditional 

and conditional specifications – a 30% drop in the elasticity, decreasing from about 0.1 to around 

0.07 – seems to be in line with our theoretical expectations. In our interpretation, the conditional 

demand estimation switches off the market-related channels through which AM innovations, due to 

the characteristics described in Section 4.2, can possibly have an effect on employment. According 

to our estimates, across all countries and sectors in our data, such link would account for 30% of the 

overall relationship between AM an employment. Furthermore, we still witness a positive average 

relationship in the conditional labour demand estimations, suggesting that AM also features a 

certain level of capital-labour complementarity. 

 Notably, the difference between the elasticities of employment to the stock of non-AM 

patents in the unconditional and conditional labour demand specifications is much larger than in the 

case of AM (columns (3) and (5)). This suggests that market-related channels have a more relevant 
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role for all other innovations together as compared to AM alone.76 At the same time, we find the 

coefficient of the non-AM patent stock variable to be smaller in conditional labour demand 

specifications relatively to that for AM patent stock, suggesting that AM innovations have a 

comparatively higher level of complementarity with labour than the bulk of all other innovations. 

 To conclude, the sign of the other variables included in our specifications – labour costs and 

gross output – is in line with the type of relationship predicted by the theory, i.e. labour cost (in 

both unconditional and conditional specifications) and gross output (in conditional specifications) 

are negatively and positively associated with the level of employment, respectively. 

-------------------------- 

Table 3 around here 

-------------------------- 

Relatively to the predictions discussed in Section 4.2, our findings seem to support hypotheses H1 

and H2. Indeed, in the estimates of both uncompensated and compensated labour demand functions, 

AM innovations and employment are positively associated (H1), thus AM technologies appear not 

to be labour-saving in nature. At the same time, the elasticity of employment to AM is larger in 

uncompensated than in compensated specifications (H2), confirming a role of AM in creating 

market-expansion effects. Nonetheless, the magnitude of such effects is smaller than expected (in 

turn, being much larger for other innovations altogether). This latter finding might result from 

compositional effects across industries, with the market-creation and the AM-labour 

complementarity mechanisms having different relevance across sectors, as we argued in Section 

4.2. In Section 4.5.2, we further analyse industry heterogeneity to explore the potential presence of 

such effects, while hereafter we discuss the robustness checks for our main results. 

 

 

76 Indeed, this finding is coherent with the literature, which traditionally assumes patents to proxy primarily product 

innovations, while in this case AM patents capture the diffusion of both process (capital-embodied) and product 

innovations. 
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4.5.1.1. Robustness checks 

Alternative AM innovation proxy and inter-sectoral/inter-country relationships: As discussed in 

Section 4.3.1, our baseline industry-level analysis of the relationship between AM diffusion and 

employment only accounts for the industry’s own AM patent stock to proxy AM innovations. In 

turn, we do not capture inter-sectoral linkages through which AM innovations developed in a 

specific sector may affect employment in other industries, i.e. general equilibrium effects 

propagating along (within-country) supply chain links.77 Similarly, our main AM diffusion proxy 

does not capture inter-country linkages, i.e. AM innovations created in sectors of another country 

may affect the level of a country’s sectoral employment via intermediates featuring some AM 

content (e.g. AM devices or goods produced using AM technologies).78 Hence, we are cautious in 

the interpretation of our results since the diffusion of AM innovations in a sector of a country might 

spur from AM machinery or products generated in other industries and/or countries, this eventually 

not showing up in the sector’s own stock of AM patents. 

 For these reasons, hereafter we introduce a robustness test conducted by creating a proxy for 

the inter-country and inter-sectoral effect of AM innovations using the world input-output tables 

from the WIOD data set (Timmer et al., 2015): 

𝑒𝑥𝑡𝐴𝑀𝑖𝑗𝑡 =∑∑𝐴𝑀𝑐𝑠𝑡
𝑠

× (
𝑖𝑛𝑡𝑖𝑗2008

𝑐𝑠

𝑖𝑛𝑡𝑖𝑗2008
)

𝑐

  (3) 

 

77 As further robustness check, we carried out a country-level analysis in order to capture potential inter-sectoral 

interactions and general equilibrium effects. Using country-level data, we also undertook a preliminary exploration of 

the heterogeneous links that AM innovations may have on employment by education level. We report results in Table 

C7 in Appendix C together with the details of the analysis (in the Table’s notes). We found the elasticity of employment 

to AM to be, on average, about 0.12 and 0.06 in unconditional and conditional labour demand specifications, 

respectively (both statistically significant at the 1% level). Such elasticity appears to be larger for middle-educated 

workers compared to highly educated workers, while it is rather small (and not significant) in the case of low-educated 

workers. 
78 In such case, intermediate goods incorporating some AM content would entail potentially different labour 

requirements during assembly operations or they would potentially change competitive dynamics of the downstream 

using sector (e.g. by increasing the quality or reducing the cost of the good incorporating it). Furthermore, potential 

reshoring induced by the adoption of AM technologies in a country could also affect sectoral employment in countries 

where production was offshored, a mechanism widely discussed in the literature that we further address in the 

concluding Section. 
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for each country 𝑖, sector 𝑗 and year 𝑡, 𝑒𝑥𝑡𝐴𝑀𝑖𝑗𝑡 variable is then the weighted sum of the AM patent 

stock of each country and industry, where the weights are built as the ratio of intermediate goods 

bought by sector 𝑗 of country 𝑖 from sector 𝑠 ≠ 𝑗 in country 𝑖 and from all industries in country 𝑐 ≠

𝑖  (i.e. all sectoral domestic intermediates bought from all sectors excluding owns, plus all foreign 

intermediates bought from all sectors) over total intermediate goods used by sector 𝑗 in country 𝑖 

(𝑖𝑛𝑡𝑖𝑗). We take predetermined weights in order to minimize potential endogeneity concerns and 

avoid biases induced by reverse causality. 

 The baseline assumption we make while building this external AM innovations proxy is that 

the higher the amount of intermediates purchased by one sector from sectors/countries with a high 

stock of AM patents, the larger the AM content of its upstream relationships. This additional AM 

innovations proxy should (at least partially) capture the inter-sectoral and inter-country transfers of 

technological content described above. Similarly, it should measure the diffusion of outside-

generated AM innovations not captured by our baseline AM variable. We investigate specifications 

like those in Table 3 by including this additional AM variable, together with three additional 

controls: a variable built in the same way but for all non-AM innovations, a variable capturing the 

degree of domestic vertical fragmentation and a variable capturing the level of foreign exposure. 

These three further controls are included as the new additional AM innovation proxy could 

otherwise capture all other inter-sectoral and inter-country mechanisms, yet not related to AM. 

 The details of the construction of the new variables and the results of this robustness 

analysis are reported in Appendix C. Our results – reported in Table C1 – are robust to the inclusion 

of the new AM variable and the three additional controls: the elasticity of employment to the 

original AM innovations proxy ranges between 0.075 and 0.079 in unconditional labour demand 

specifications and around 0.045 in the conditional labour demand specifications, always statistically 

significant at the 1% level. In contrast, the new variable for external AM innovations is not 

statistically significant in models estimating the unconditional labour demand, while being positive 

and statistically significant in conditional labour demand models (the elasticity coefficient is 0.07 
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and significant at the 5% level in our preferred specification with more demanding Fes). Overall, 

these results confirm our main findings, uncovering a positive relationship between AM 

technologies and employment. 

 Countries and sectors: Figure 2 in Section 4.3 highlights that the distribution of AM patents 

is very skewed, both across countries (panel A) and across industries (panel B). We conduct further 

robustness tests to control that major innovators in AM do not drive our main results. Specifically, 

we investigate models in which we exclude the top six countries producing AM-related patents (US, 

Japan, Germany, UK, France, and Korea) from our estimation sample. Results, reported in Table C2 

in Appendix C, confirm our main findings. Similarly, we test for the presence of biases in our 

results due to the role of the leading sector in AM innovations by excluding NACE sector 28 – i.e. 

manufacturing of machinery and equipment, which is also the sector producing the AM machines. 

The results, reported in Table C3 in Appendix C, show that the findings of the main analysis are 

robust and unlikely to be solely driven by producers of AM innovations. 

 As discussed in the notes of Figure 2, our sample includes a few countries (i.e. Estonia, 

Greece, Latvia, and Portugal) and sectors (i.e. NACE sector 19 - manufacture of coke and refined 

petroleum products; NACE sector 33 - repair and installation of machinery and equipment) that do 

not have AM patents at the USPTO. Thus, we further control for the robustness of our main results 

when we drop observations related to these countries and sectors. Similarly, the results (reported in 

Table C4) are robust. 

 Other robustness checks: alternative patent offices and lag structures: We further conduct 

different robustness tests by using data on patent applications to other major patent authorities (i.e. 

the European Patent Office and the Patent Cooperation Treaty) to check for the presence of home 

bias resulting from the usage of USPTO data. In addition, we explore specifications of our 

regression analysis using alternative lag structures for our AM innovations variable. The details of 

these further robustness checks are reported in Appendix C. Results reported in Tables C5 and C6 

suggest robustness to these additional checks. 
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4.5.2. Sectoral heterogeneity 

As we suggest in Section 4.2, the average positive relationship between AM innovations and 

employment emerging from our main analysis could hide heterogeneous effects taking place at the 

industry level. Therefore, in Table 4 we explore the presence of heterogeneous effects across groups 

of the revised Pavitt taxonomy by estimating equation (2). 

 As in our main analysis, we explore unconditional labour demand specifications in models 

(1) and (2) – including the labour cost and the non-AM patent stock control variable, and testing for 

different combinations of FEs – whereas we estimate conditional labour demand specifications in 

models (3) and (4) – also including the level of gross output. Panel A reports the coefficients of the 

baseline group (SD) and the interaction coefficients, while panel B reports the sum of the baseline 

and the interaction coefficients together with the related standard errors – i.e. coefficients for the 

SB, SS, and SII categories. 

-------------------------- 

Table 4 around here 

 --------------------------  

Results reported in Table 4 confirm the average relationship emerged in Table 3: the diffusion of 

AM innovations positively relates with employment in both unconditional and conditional demand 

estimations. Nonetheless, our results highlight the presence of some interesting sectoral 

heterogeneity, as two Pavitt’s categories, SB and SD, seem to drive the average relationship shown 

in Table 3 while, in both unconditional and conditional models, the coefficients for SS and SII 

groups are much smaller. At the same time, the difference in the coefficients between unconditional 

and conditional specifications found in our main analysis – the market-expansion effects – appears 

to be driven almost entirely by SD industries. In the other sectoral categories, the differences 

between the coefficients for the two types of model are not statistically significant – or we even find 

a larger coefficient in conditional labour demand models, as in the case of SII industries. This 
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means that the expansion of the market emerges as relevant for the SD class only. Overall, results 

reported in Table 4 suggest that, in all sectoral groups, there is a certain degree of complementarity 

between AM and labour (i.e. positive coefficients in conditional specifications), although such 

complementarity is suggested to be higher for SD and SB industries where elasticities are about 

0.08 and 0.12, respectively (statistically significant at the 1% level). 

 The role of market expansion mechanisms clearly emerges in SD sectors – the coefficient of 

our AM variable drops from 0.23 in the unconditional specification in model (2) to 0.08 in the 

conditional specification in model (4) (both statistically significant at the 1% level) – and is in line 

with that found for non-AM innovations (dropping from 0.28 to 0.035). Yet, there is still evidence 

of higher AM-labour complementarity than in the case of non-AM innovations, as the coefficient of 

the AM variable in model (4) is still positive and larger than that for the non-AM control. Indeed, 

the SD category includes traditional industries using outside-generated technologies (Bogliacino 

and Pianta, 2010, 2016). Therefore, here our findings are likely to reflect the market-seeking aim of 

firms who introduce AM technologies in order to innovate on new products without necessarily 

substituting older ones (e.g. Nike, Adidas and other shoes manufacturers introducing new AM-

based product lines). In turn, SD industries are those more likely to experience the higher marginal 

contribution of AM to the overall innovation rate. 

 In SB industries, the estimated elasticities are quite similar in both conditional and 

unconditional labour demand specifications – around 0.12, statistically significant at the 1% level. 

The SB group traditionally includes large R&D-intensive firms (Bogliacino and Pianta, 2010, 

2016), some of which are producers of input materials for AM processes and others are adopters 

(e.g. manufacturers of computer, electronic and optical products), as discussed earlier in Section 

4.2.2. Being highly innovative, SB industries already lies at the innovation frontier, thus limiting the 

potential role of AM innovations to create further market expansions. Nonetheless, the magnitude 

of the estimated elasticity – particularly in model (4) estimating conditional labour demand – 
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suggests AM to have some role in further enhancing capital-labour complementarities in these skill-

intensive industries. 

 Across sectors of the SS group, our estimates in panel B of Table 4 highlight the elasticity of 

employment to AM to drop from about 0.06 in unconditional labour demand specifications to about 

0.04 in conditional models – both statistically significant at the 1% level, although the difference 

between the coefficients is not statistically significant. SS industries generally include small and 

highly specialized firms producing new process innovations then employed by buying sectors 

(Bogliacino and Pianta, 2010, 2016), such as the case of AM machinery. Although we expected 

market expansion to be a relevant factor relevant in these sectors, our results instead suggest that 

new AM machines and related products may, to a certain extent, be substituting older ones. 

 Finally, sectors of the SII category seem to less affected by AM innovations than all other 

Pavitt groups, probably due to the innovation patterns characterising these industries. In models 

investigating the unconditional labour demand, results are not statistically significant and 

coefficients are rather small, while in conditional specifications some complementarity between 

AM and labour emerges (the elasticity coefficient is 0.04, statistically significant at the 1% level). 

 

4.5.2.1. AM and the role of demand 

As discussed in Section 4.5.2, the larger elasticity coefficient we uncover in unconditional labour 

demand models as compared to that found in conditional specifications might be a consequence of 

new products introduced by firms thanks to the technical features of AM. These new products might 

either erode market shares of competitors in the same sector or erode sales of existing products by 

the same firm. For instance, in the case of SII sectors, these are mainly producing input materials 

used in AM processes and the use of AM techniques is probably still very limited – due to the role 

played by scale economies – thus explaining the low coefficient reported in Table 4 for our 

estimates of the compensated labour demand model, as compared to SD industries. 
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 To further investigate the heterogeneity in the market-creation channel, we explore models 

in which we regress sectoral gross output on our AM innovations proxy, by groups of the revised 

Pavitt taxonomy and controlling for all other innovations and FEs. Results are reported in Table 5 

and clearly highlight that AM innovations seem to have a strong role in affecting demand in SD 

industries, while it does not show up in SB and SS sectors and it is actually detrimental in the case 

of SII industries. In turn, these results point to AM innovations creating markets for completely new 

products primarily in sectors of the SD group, while in other sectoral categories its role may be 

limited to a substitution one between new and old products, potentially helping to survive 

competition also through the opportunity for firms to rise mark-ups. 

-------------------------- 

Table 5 around here 

-------------------------- 

 

4.5.2.2. Instrumental variables estimations 

Our model assumes the diffusion of AM innovations to be predetermined to employment decisions. 

Yet, there may be endogeneity issues in presence of unobservable factors correlated with the error 

term and simultaneously affecting employment and AM innovations (e.g. demand shocks). 

Similarly, we might incur in reverse-causality issues if the level of sectoral employment drives the 

pattern of technological change, and specifically the choice of developing or adopting AM 

innovations. Hence, given that our main results highlight a strong correlation between our main 

explanatory variable and employment, we need to be cautious in the interpretation of such a result 

as causal. 

 To address these concerns, we employ an instrumental variables (IV) approach using the 

Two-Stage Least Squares (2SLS) estimator. We instrument the current stock of AM patent stock 

with past values. Following Van Reenen (1997), we assume that past patenting activity should be a 

good predictor of current patenting activity since innovation activity is usually path-dependent and 
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firms operating in the sectors introducing a technological innovation are likely to be the same ones 

subsequently updating the new technology. In addition to this, since our focus is a single specific 

technology and our AM proxy variable already enters all our models with sufficient lags, it is 

unlikely that past AM innovations directly affects employment, unless through its subsequent 

upgrades. In practice, we use longer-lagged values of the AM patents’ flow (i.e. 𝐹𝑖𝑗𝑡−4
𝐴𝑀 , 𝐹𝑖𝑗𝑡−5

𝐴𝑀 ) as 

instruments for our AM patent stock variable (𝐴𝑀𝑖𝑗𝑡−3). Similarly, in models analysing industry-

level heterogeneity, we use lags of the interacted variables as instruments for the interaction terms 

between AM innovations variable and dummies for the Pavitt categories. At the same time, as we 

cannot exclude sources of endogeneity simultaneously affecting sectoral employment and all other 

explanatory variables in our model, we also instrument all the control variables following the same 

strategy. 

 Table 6 reports 2SLS estimates for unconditional and conditional labour demand models 

augmented with our variables capturing AM and non-AM innovations. We first present the analysis 

on average across all sectors in column (1) and then by sectoral groups in column (2) for 

unconditional models; columns (3) and (4) replicate the analysis for conditional specifications. 

Overall, estimates reported in Table 6 the main findings presented in Tables 3 and 4 to be robust to 

endogeneity problems, with only minor differences emerging in the magnitudes of the coefficients. 

 Diagnostic tests for our 2SLS models show no sign of under identification issues (the 

Kleibergen–Paap rk LM test whether the instruments are correlated with the endogenous 

regressors): under the null hypothesis, the estimated equation is underidentified; our tests always 

reject the null hypothesis (p-values are always below 0.05). Furthermore, the chosen instruments 

(i.e. lags) perform well in all IV specifications, presenting no sign of weak identification (the 

Kleibergen–Paap rk Wald F-statistics are always well above the Stock–Yogo critical values for 

maximal bias). Furthermore, the null hypothesis of valid instruments is never rejected by the 

Hansen J-statistics, confirming that the set of chosen instruments is valid and uncorrelated with the 

error term 𝑢𝑖𝑗𝑡. 
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-------------------------- 

Table 6 around here 

-------------------------- 

 

4.6. Conclusions 

This Chapter addresses the relationship between AM and employment using data on patent 

applications filed at the USPTO as a proxy for the whole ecosystem of AM innovations, in the 

attempt of capturing the overall employment effect resulting from the growing diffusion of this 

technologies. We explore this relationship estimating labour demand functions using data on 31 

OECD countries and on 21 manufacturing sectors over the period 2009–2017. 

 We have shown that a statistically significant positive relationship between AM innovations 

and overall employment emerges in both our unconditional and conditional labour demand models, 

the latter featuring a smaller coefficient of elasticity. On the one hand, this evidence supports our 

intuition – rooted in the very nature of AM technologies – that market-related (job-creating) 

compensation mechanisms have a particularly important role when looking at the employment 

implications of AM innovations. On the other hand, our results from compensated labour demand 

models highlight a certain level of AM-labour complementarity.  

 At the same time, our exploratory analysis of the potential sectoral heterogeneity in the 

relationship between AM and employment – considering categories of the Pavitt taxonomy – 

suggests the positive effect we uncover across all manufacturing industries is substantially driven 

by the SD and SB groups. Specifically, the market-expansion mechanisms strongly emerge in the 

former category, whereas the latter shows the highest level of complementarity between AM 

innovations and labour. By contrast, our findings suggest that AM innovations are not developed 

and used following labour-saving aims. 
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 Our results are robust various checks ranging from testing for different combinations of FEs, 

the use of an alternative AM innovations proxy controlling for inter-sectoral and inter-country 

transfers, various tests on restricted samples, to the use of IV estimations. Our sectoral analysis 

allows us to capture inter-firm employment effects, as opposed to works looking at the firm level, 

like those related with competitive mechanisms. At the same time, we are able to explore sectoral 

heterogeneity, as opposed to country-level studies. 

 Our findings provide valuable insight for policymakers aiming to foster the diffusion of 

welfare-enhancing innovations and job creation, providing indication of the sectors more likely to 

experience employment-related gains from AM innovations. To the best of our knowledge, our 

study is the first one addressing specifically the employment implications of AM technologies and 

related innovations. With this respect, the evidence we provide adds to and complement the existing 

one on latest forms of technological change associated with new digital technologies of the I4.0 

wave (e.g. Graetz and Michaels, 2018; Mann and Püttmann, 2021; Acemoglu and Restrepo, 2020). 

Yet, we conceptualise and highlight the specificities of AM technologies, in our opinion 

fundamental in understanding the existing differences with other technologies of the 4IR like 

industrial robots, internet of things or artificial intelligence. Indeed, studies already cited above 

usually found these technologies to be labour displacing at different levels (particularly so in 

manufacturing and for lesser educated or skilled workers). However, recent firm-level evidence 

suggests the aggregate effect of automation technologies of the 4IR to be labour-friendly (e.g. 

Domini et al., 2021). Our industry-level results for AM go in the same direction, although positive 

employment effects at the firm-level do not necessarily translate into employment gains at the 

sectoral or at the aggregate level (Acemoglu et al., 2020). 

 Our study is not exempt from limitations. First, the use of patent data at the sectoral level 

bears some shortcomings: although the methodology we implement to identify AM-related patents 

and their geographical and sectoral attribution is, in our opinion, the best possible to capture the 

diffusion of AM innovations, a portion of their sectoral diffusion may not be captured by our main 
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explanatory variable. Secondly, our main industry-level analysis could miss some relevant inter-

sectoral and inter-country effects associated with transfer of AM innovations and related 

technological content. With respect to the latter concern, we nonetheless provide some reassuring 

evidence through our robustness tests, as discussed above. Finally, we have shown that our 

relatively short panel exhibit too little time variation in employment, within country and industry, 

preventing us from adopting a more precise econometric strategy (i.e. using the within estimator). 

Although we control for different FEs specifications in our models, our source of identification 

remains mainly cross-sectional; hence, exploiting additional sources of within-sector or within-firm 

variation in the data would help to further analyse the AM-employment nexus. 

 As our work only represents a first attempt to dig into such relationship, future research 

could take different directions. Depending on the data availability, a firm-level analysis exploiting 

on survey data could further explore the role played by AM adoption in affecting employment and 

its composition – e.g. differential effects due to the skill composition of the workforce, tasks and 

occupations. As we could not address this issue, mainly due to the lack of employment data by skill 

and task composition for disaggregated industries, a deeper investigation of the relationship 

between AM and employment focusing on these compositional mechanisms would provide further 

evidence on the AM-labour complementarity. At the same time, a country-level study, possibly 

exploiting data on longer time series, could shed more light on potential general equilibrium effects 

triggered by the diffusion of AM. 

 In addition, a further promising avenue for future research would also consist in the 

exploration of the role of inter-country effects associated with AM technologies; specifically, those 

related to AM diffusion in other countries due to the reshoring and/or the relocation of production 

across countries. Indeed, AM is increasingly diffusing across a growing number of countries and 

sectors, while also a growing number of mass-consumption products are partially or completely 

manufactured using AM processes. As a result, the cost advantage of producing in low-wage 
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countries is also likely to be eroded if not to vanish completely, this potentially inducing some 

reshoring in the long-run (Weller et al., 2015; Laplume et al., 2016; UNCTAD, 2020). 
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4.8. Figures and Tables 

Figure 1. Distribution of AM patents, 2009–2017 period 

 
Notes: Authors’ own computations based on USPTO data extracted from PATSTAT database. Data reported on a natural logarithmic 
scale. Numbers reported at the edge of each bar are actual AM patent counts. The total number of AM patents is 3,500.6. 

 

Figure 2. Distribution of AM patents by country and sector, 2009–2017 period 

 
Notes: Authors’ own computations based on USPTO data extracted from PATSTAT database. Data reported on a natural logarithmic 
scale. Numbers reported at the edge of each bar are actual AM patent counts. We omit Estonia, Greece, Latvia, and Portugal from 
panel A and sectors 19 (Coke and refined petroleum products) and 33 (Repair and installation of machinery and equipment) from 
panel B as they feature zero AM patents. The total number of AM patents is 3,500.6. 
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Figure 3. Distribution of AM patents by Pavitt taxonomy class, 2009–2017 period 

 
Notes: Authors’ own computations based on USPTO data extracted from PATSTAT database. Data reported on a natural logarithmic 
scale. Numbers reported at the edge of each bar are actual AM patent counts. The total number of AM patents is 3,500.6. 

 

Figure 4. AM patent stock and share of AM patent stock in total patent stock, 2009–2017 period 

 
Notes: Authors’ own computations based on USPTO data extracted from PATSTAT database. 
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Figure 5. Cross-country and cross-sector variation in employment and AM patent stock, average values, 2009–2017 period 

 
Notes: Authors’ own estimates. Panel A plots the average employment level between 2009 and 2017 against the average stock of 
AM patents at the USPTO (both expressed as their natural logarithms) by country, averaged across industries. Panel B repeats the 
exercise by sector and averaging across countries. 
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Table 1. Examples of the link between AM patents and NACE Rev.2 sectors 

Title Abstract Applicant NACE 2 
Sectors 

Sectoral 
Weights 

Articles and 
methods of 
manufacture 
of articles 

Various articles, such as footwear, apparel, athletic equipment, watchbands, 
and the like, and methods of forming those articles are presented. The 
articles are generally formed, in whole or in part, using rapid manufacturing 
techniques, such as laser sintering, stereolithography, solid deposition 
modelling, and the like. The use of rapid manufacturing allows for relatively 
economical and time efficient manufacture of customized articles. [...] The 
methods may also include performing a scan of an appropriate body part of a 
user, such as a foot, in order to create a customized article of footwear for 
the user. 

Nike 
International 
Ltd., US 

22 
15 
28.9 

0.25 
0.5 
0.25 

Additive 
manufactured 
metal sports 
performance 
footwear 
components 

The present invention relates to a sole for a shoe, in particular for a cycling 
shoe, comprising: (a.) a three-dimensionally shaped rim; and (b.) a plurality of 
first reinforcing struts, wherein (c.) at least two of the plurality of first 
reinforcing struts extend from a heel region of the rim of the sole to a toe 
region of the rim of the sole, and wherein (d.) the rim of the sole and the 
plurality of first reinforcing struts are integrally manufactured as a single 
piece in an additive manufacturing process. 

Adidas AG., 
DE 

15 1.0 

Source: PATSTAT database. 

 

Table 2. Descriptions of the variables used 

Variable Name Variable Description Variable Label 

Employment Natural logarithm of the number of people employed, by 
sector 

𝐿𝑖𝑗𝑡  

AM patent stock Natural logarithm of the stock of AM patents at the USPTO, 
by sector, 3-y lagged 

𝐴𝑀𝑖𝑗𝑡−3 

Non-AM patent stock Natural logarithm of the stock of non-AM patents at the 
USPTO (in thousands), by sector, 3-y lagged 

𝑛𝑜𝑛𝐴𝑀𝑖𝑗𝑡−3 

Labour cost Natural logarithm of the cost of labour per thousand 
employees, by sector, 1-y lagged 

𝐿𝐶𝑖𝑗𝑡−1 

Gross output Natural logarithm of gross output, by sector, 1-y lagged 𝑌𝑖𝑗𝑡−1 

Notes: Data on sectoral variables comes from OECD's STAN data set; data on AM and non-AM patents 
collected from PATSTAT database. 

 

Table 3. Relationship between AM patent stock and average employment, 2009–2017 period 

 Unconditional  Conditional 

Employment (𝐿𝑖𝑗𝑡) (1) (2) (3)  (4) (5) 

              
AM patent stock (𝐴𝑀𝑖𝑗𝑡−3) 0.190*** 0.090*** 0.095***  0.065*** 0.069*** 

 (0.019) (0.017) (0.019)  (0.008) (0.008) 
Non-AM patent stock (𝑛𝑜𝑛𝐴𝑀𝑖𝑗𝑡−3)  0.270*** 0.270***  0.036*** 0.034*** 

  (0.011) (0.011)  (0.005) (0.005) 
Labour cost (𝐿𝐶𝑖𝑗𝑡−1)  -0.186*** -0.202***  -0.793*** -0.806*** 

  (0.065) (0.065)  (0.040) (0.039) 
Gross output (𝑌𝑖𝑗𝑡−1)     0.782*** 0.788*** 

     (0.011) (0.011) 

       
Observations 5,741 5,741 5,741  5,741 5,741 

R2 0.865 0.881 0.883  0.974 0.975 

Country, Sector, Year FEs 🗸 🗸   🗸  
Country-Year, Sector-Year FEs     🗸     🗸 

Notes: Coefficients estimated by OLS with robust standard errors in parentheses. All variables are expressed in natural logarithms 
and measure elasticities. The dependent variable is sectoral employment (𝐿𝑖𝑗𝑡). Coefficients for the constant term, for 59 

countries, for sector and year dummies (columns (1), (2), and (4)), and for 459 country-year and sector-year dummies (columns 
(3) and (5)) are omitted due to space limitations. Significance levels: *** p<0.01, ** p<0.05, * p<0.1. 
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Table 4. Relationship between AM patent stock and employment by Pavitt class, 2009–2017 period 

 Unconditional  Conditional 

Employment (𝐿𝑖𝑗𝑡) (1) (2)  (3) (4) 

Panel A. OLS estimates           

AM patent stock (𝐴𝑀𝑖𝑗𝑡−3) 0.219*** 0.228***  0.080*** 0.080*** 

 (0.043) (0.045)  (0.011) (0.012) 

(𝐴𝑀𝑖𝑗𝑡−3 × 𝑆𝐵) -0.102** -0.104**  0.034** 0.036** 

 (0.044) (0.046)  (0.017) (0.018) 

(𝐴𝑀𝑖𝑗𝑡−3 × 𝑆𝑆) -0.164*** -0.171***  -0.046*** -0.044*** 

 (0.045) (0.047)  (0.012) (0.012) 

(𝐴𝑀𝑖𝑗𝑡−3 × 𝑆𝐼𝐼) -0.214*** -0.225***  -0.047*** -0.043*** 

 (0.043) (0.045)  (0.012) (0.013) 

Non-AM patent stock (𝑛𝑜𝑛𝐴𝑀𝑖𝑗𝑡−3) 0.280*** 0.281***  0.037*** 0.035*** 

 (0.011) (0.011)  (0.005) (0.005) 

Labour cost (𝐿𝐶𝑖𝑗𝑡−1) -0.193*** -0.210***  -0.798*** -0.811*** 

 (0.065) (0.065)  (0.040) (0.039) 

Gross output (𝑌𝑖𝑗𝑡−1)    0.782*** 0.787*** 

    (0.011) (0.011) 

      
Observations 5,741 5,741  5,741 5,741 

R2 0.882 0.883  0.974 0.975 

Country, Sector, Year FEs 🗸   🗸  
Country-Year, Sector-Year FEs   🗸     🗸 

Panel B. Baseline + sectoral interaction coefficients      
(𝐴𝑀𝑖𝑗𝑡−3) + (𝐴𝑀𝑖𝑗𝑡−3 × 𝑆𝐵) 0.117*** 0.124***  0.114*** 0.116*** 

 (0.022) (0.022)  (0.015) (0.016) 

(𝐴𝑀𝑖𝑗𝑡−3) + (𝐴𝑀𝑖𝑗𝑡−3 × 𝑆𝑆) 0.055*** 0.057***  0.034*** 0.036*** 

 (0.020) (0.021)  (0.008) (0.008) 

(𝐴𝑀𝑖𝑗𝑡−3) + (𝐴𝑀𝑖𝑗𝑡−3 × 𝑆𝐼𝐼) 0.005 0.003  0.033*** 0.037*** 

 (0.020) (0.022)  (0.009) (0.011) 

Notes: Coefficients estimated by OLS with robust standard errors in parentheses. All variables are expressed in natural logarithms 
and measure elasticities. The dependent variable is sectoral employment (𝐿𝑖𝑗𝑡). Dummies for 𝑆𝐵, 𝑆𝑆, and 𝑆𝐼𝐼 classes are omitted 

due to collinearity with sector FEs. The excluded class captured by the coefficient of the main variable is 𝑆𝐷. Coefficients for the 
constant term, for 59 countries, for sector and year dummies (columns (1) and (3)), and for 459 country-year and sector-year 
dummies (columns (2) and (4)) are omitted due to space limitations. Significance levels: *** p<0.01, ** p<0.05, * p<0.1. 
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Table 5. Relationship between AM patent stock and gross output by Pavitt class, 2009–2017 period 

Gross output (𝑌𝑖𝑗𝑡) (1) (2) 

Panel A. OLS estimates     
AM patent stock (𝐴𝑀𝑖𝑗𝑡−3) 0.164*** 0.170*** 

 (0.055) (0.058) 

(𝐴𝑀𝑖𝑗𝑡−3 × 𝑆𝐵) -0.127** -0.128** 

 (0.057) (0.059) 

(𝐴𝑀𝑖𝑗𝑡−3 × 𝑆𝑆) -0.152*** -0.160*** 

 (0.056) (0.059) 

(𝐴𝑀𝑖𝑗𝑡−3 × 𝑆𝐼𝐼) -0.260*** -0.279*** 

 (0.055) (0.058) 
Non-AM patent stock (𝑛𝑜𝑛𝐴𝑀𝑖𝑗𝑡−3) 0.319*** 0.321*** 

 (0.012) (0.013) 

   
Observations 5,741 5,741 

R-squared 0.866 0.868 

Country, Sector, Year FEs 🗸  
Country-Year, Sector-Year FEs   🗸 

Panel B. Baseline + Pavitt interaction coefficients   
(𝐴𝑀𝑖𝑗𝑡−3) + (𝐴𝑀𝑖𝑗𝑡−3 × 𝑆𝐵) 0.037 0.042 

 (0.027) (0.028) 

(𝐴𝑀𝑖𝑗𝑡−3) + (𝐴𝑀𝑖𝑗𝑡−3 × 𝑆𝑆) 0.011 0.011 

 (0.024) (0.025) 

(𝐴𝑀𝑖𝑗𝑡−3) + (𝐴𝑀𝑖𝑗𝑡−3 × 𝑆𝐼𝐼) -0.096*** -0.109*** 

 (0.025) (0.028) 

Notes: Coefficients estimated by OLS with robust standard errors in parentheses. All variables are expressed in natural 
logarithms. The dependent variable is sectoral gross output (𝑌𝑖𝑗𝑡). Dummies for 𝑆𝐵, 𝑆𝑆, and 𝑆𝐼𝐼 Pavitt categories are omitted due 

to collinearity with sector FEs. The excluded Pavitt category captured by the coefficient of the main variable is 𝑆𝐷. Coefficients for 
the constant term, for 59 countries, for sector and year dummies (column (1)), and for 459 country-year and sector-year 
dummies (column (2)) are omitted due to space limitations. Significance levels: *** p<0.01, ** p<0.05, * p<0.1. 
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Table 6. Effect of AM patent stock on employment, on average and by Pavitt class, 2009–2017 period 

 Unconditional  Conditional 

Employment (𝐿𝑖𝑗𝑡) (1) (2)  (3) (4) 

Panel A. 2SLS estimates           

AM patent stock (𝐴𝑀𝑖𝑗𝑡−3) 0.098*** 0.300***  0.059*** 0.082*** 

 (0.021) (0.053)  (0.010) (0.014) 

(𝐴𝑀𝑖𝑗𝑡−3 × 𝑆𝐵)  -0.164***   0.037* 

  (0.053)   (0.020) 

(𝐴𝑀𝑖𝑗𝑡−3 × 𝑆𝑆)  -0.250***   -0.058*** 

  (0.053)   (0.014) 

(𝐴𝑀𝑖𝑗𝑡−3 × 𝑆𝐼𝐼)  -0.303***   -0.058*** 

  (0.052)   (0.015) 

Non-AM patent stock (𝑛𝑜𝑛𝐴𝑀𝑖𝑗𝑡−3) 0.286*** 0.301***  0.050*** 0.050*** 

 (0.012) (0.012)  (0.006) (0.006) 

Labour cost (𝐿𝐶𝑖𝑗𝑡−1) -0.204*** -0.213***  -0.838*** -0.845*** 

 (0.065) (0.065)  (0.039) (0.039) 

Gross output (𝑌𝑖𝑗𝑡−1)    0.785*** 0.785*** 

    (0.011) (0.011) 

      
Observations 5,741 5,741  5,741 5,741 

R2 0.883 0.883  0.975 0.975 

Country-Year, Sector-Year FEs 🗸 🗸  🗸 🗸 

Underidentification test 300.347*** 289.375***  296.481*** 307.178*** 

Weak identification test 419.958 203.236  427.203 215.442 

Hansen J statistic (p-value) 0.635 0.809  0.439 0.628 

      

Panel B. Baseline + Pavitt interaction coefficients      
(𝐴𝑀𝑖𝑗𝑡−3) + (𝐴𝑀𝑖𝑗𝑡−3 × 𝑆𝐵)  0.136***   0.119*** 

  (0.022)   (0.017) 

(𝐴𝑀𝑖𝑗𝑡−3) + (𝐴𝑀𝑖𝑗𝑡−3 × 𝑆𝑆)  0.050**   0.023*** 

  (0.020)   (0.008) 

(𝐴𝑀𝑖𝑗𝑡−3) + (𝐴𝑀𝑖𝑗𝑡−3 × 𝑆𝐼𝐼)  -0.003   0.024** 

  (0.022)   (0.010) 

Notes: Coefficients estimated by 2SLS with robust standard errors in parentheses. All variables are expressed in natural 
logarithms. The dependent variable is sectoral employment (𝐿𝑖𝑗𝑡). In columns (2) and (4), dummies for 𝑆𝐵, 𝑆𝑆, and 𝑆𝐼𝐼 sectoral 

classes are omitted due to collinearity with sector FEs. The excluded class captured by the coefficient of the main variable is 𝑆𝐷. 
Coefficients for the constant term and for 459 country-year and sector-year dummies are omitted due to space limitations. All 
right-hand-variables are considered as endogenous and instrumented with their lagged values (see Section 4.5.2.2). The 
underidentification test is the Kleibergen–Paap rk LM test; weak identification test based on Kleibergen–Paap rk Wald F statistics, 
to be compared with Stock–Yogo critical values. Significance levels: *** p<0.01, ** p<0.05, * p<0.1. 
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4.9. Appendix A: Additional Tables 

Table A1. AM usage by 2-digit sector of the NACE Rev.2 classification, % of enterprises with 10+ employees, 2018 

  10–12 13–15 16–18 19–23 24–25 26 27–28 29–30 31–33 10–33 

Austria 3  2       14 

Belgium 6 5 <1 16       
Czech Republic 1 4 3 9 5 27 13 20 6 8 

Denmark 1 <1 8 19 16 58 26 17 10 17 

Estonia <1 1 2 5 1 13 9 9 3 3 

Finland    20 12     17 

France 1 4 4 18 11 37 16 29 16 11 

Germany 1 4 6 14 14 34 20 22 14 13 

Greece 2 3 2 6 3  8  9  
Hungary <1 3 1 7 5 13 13 10 7 5 

Ireland 2 <1 1 11 11 17 18 <1 9 8 

Italy 2 2 2 9 9 30 16 25 14 9 

Latvia <1 1 1 3 1 19 9 11 5 3 

Lithuania 4 6 6 7 6 35 18 19 11 8 

Luxembourg    9 7     9 

Netherlands 2 6 3 16 10 27 14 19 13 11 

Norway <1 2 6 2 9 63 20 41 6 10 

Poland 1 2 1 6 6 27 12 16 5 5 

Portugal <1 1 10 14 11 35 14 16 14 7 

Slovakia 1 1 1 4 3 4 7 17 7 4 

Slovenia  <1 2 15 8 25 18 29 11 10 

Spain    8 7     7 

Sweden <1 7 3 14 10 45 16 12 9 10 

United Kingdom 8 5 13 7 8     24 20 14 

Notes: Sectors: 10–12 - Manufacture of beverages, food, and tobacco products; 13–15 - Manufacture of textiles, wearing apparel, 
leather, and related products; 16–18 - Manufacture of wood and products of wood and cork, except furniture; articles of straw 
and plaiting materials; paper and paper products; printing and reproduction of recorded media; 19–23 - Manufacture of coke, 
refined petroleum, chemical and basic pharmaceutical products, rubber and plastics, other non-metallic mineral products; 24–25 
- Manufacture of basic metals and fabricated metal products excluding machines and equipment; 26 - Manufacture of computer, 
electronic, and optical products; 27–28 - Manufacture of electrical equipment, machinery and equipment n.e.c.; 29–30 - 
Manufacture of motor vehicles, trailers and semi-trailers, other transport equipment; 31–33 - Manufacture of furniture and other 
manufacturing; repair and installation of machinery and equipment; 10–33 - Total manufacturing. Usage includes use to produce 
goods for both external sale and internal use and prototyping for both external sale and internal use. 
Source: Eurostat's European ICT usage survey. 
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Table A2. 2-digit manufacturing sectors of the NACE Rev.2 classification, by group of the Pavitt taxonomy 

Science Based  
Manufacture of chemicals and chemical products  20 

Manufacture of basic pharmaceutical products and pharmaceutical prep.  21 

Manufacture of computer, electronic, and optical products  26 

Specialised Suppliers  
Manufacture of electrical equipment  27 

Manufacture of machinery and equipment n.e.c.  28 

Manufacture of other transport equipment  30 

Repair and installation of machinery and equipment  33 

Scale and Information Intensive  
Manufacture of paper and paper products  17 

Printing and reproduction of recorded media  18 

Manufacture of coke and refined petroleum products  19 

Manufacture of rubber and plastic products  22 

Manufacture of other non-metallic mineral products  23 

Manufacture of basic metals  24 

Manufacture of motor vehicles, trailers, and semi-trailers  29 

Supplier Dominated  
Manufacture of food products, beverages, and tobacco products  10-12 

Manufacture of textiles  13 

Manufacture of wearing apparel  14 

Manufacture of leather and related products  15 

Manufacture of wood and of products of wood and cork, except furniture  16 

Manufacture of fabricated metal products, except machinery and equipment  25 

Manufacture of furniture and other manufacturing  31-32 

Notes: By considering the sources and patterns of innovation, firm characteristics, and market structure, the Pavitt taxonomy 
identifies similarities among industries. It allows to distinguish four sectoral groups: (a) Science Based industries, where 
innovation is based on R&D and there is high propensity towards product innovation and patenting; (b) Specialized Supplier 
industries, where the source of innovation is only partially R&D and most of the innovation occurs through tacit knowledge and 
skills embodied in the labour force; average firm size is small and buyer-supplier relationships and exchange of knowledge are a 
fundamental source of innovation; the products of these industries are new processes for other industries; (c) Scale and 
Information Intensive industries, typically characterized by large economies of scale and a concentrated industrial structure, 
where technological change is in general incremental and new products and new processes coexist; (d) Supplier Dominated 
industries mainly include traditional sectors, where technological change is introduced mainly through the adoption of new 
inputs and machinery produced in other sectors and where internal innovation activities are low. 
Source: Bogliacino and Pianta (2016). 
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Table A3. List of keywords related to AM 

First-tier keywords (General terminology, processes, technologies) 

 Additive manufacturing Additive process 3d printing 

 3-d printing 3-dimensional printing 3d manufacturing 

 3-d manufacturing 3-dimensional manufacturing Three-d printing 

 Three-dimensional printing Three-d manufacturing Three-dimensional manufacturing 

 Binder jetting Direct energy deposition Material extrusion 

 Material Jetting Powder bed fusion Sheet lamination 

 Vat photopolymerization Fused deposition modelling Fused filament fabrication 

 Laser sintering Laser melting Direct metal laser deposition 

 Laser metal deposition Electron beam melting Laser engineering net shaping 

 Stereolithography Poly-jet matrix Multi-jet modelling 
 Continuous liquid interface production   

Second-tier keywords (Specific IPC codes) 

 B33   

Notes: Keywords’ selection based on the engineering literature, terminology from ruling bodies, and product catalogues on AM. 

 

Table A4. Summary statistics for OECD countries and manufacturing industries, 2009–2017 period 

  [1] [2] [3] [4] [5] 

[1] Employment (𝐿𝑖𝑗𝑡) 1.000     

[2] AM patent stock (𝐴𝑀𝑖𝑗𝑡−3) 0.444 1.000    

[3] Non-AM patent stock (𝑛𝑜𝑛𝐴𝑀𝑖𝑗𝑡−3) 0.524 0.529 1.000   

[4] Labour cost (𝐿𝐶𝑖𝑗𝑡−1) 0.054 0.251 0.516 1.000  

[5] Gross output (𝑌𝑖𝑗𝑡−1) 0.889 0.430 0.628 0.383 1.000 

N. of Countries 31 31 31 31 31 

N. of Sectors 21 21 21 21 21 

N. of Obs. 5,741 5,741 5,741 5,741 5,741 

Mean 10.114 0.215 3.524 17.537 8.729 

SD 1.771 0.581 2.785 0.564 1.969 

Min. 0.000 0.000 0.000 15.065 0.233 

p25 8.939 0.000 1.064 17.193 7.337 

Median 10.074 0.000 3.209 17.590 8.828 

p75 11.370 0.009 5.431 17.906 10.103 

Max. 14.458 5.627 12.604 20.347 13.737 

Notes: Statistics reported here refer to cross-sectional variation across all country-sector-year cells. 
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4.10. Appendix B: On the AM proxy: keywords, industries, and 

countries 

4.10.B1. On the sectoral attribution of AM patents 

Hereafter, we provide a few examples on how the DG Concordance Table (Schmoch et al., 2003; 

Van Looy et al., 2014; 2015) used in PATSTAT database to match patents to sectors relatedly to 

their probability of being used in a specific industry. We argue that our measure of AM innovations 

captures the overall diffusion of AM innovations (i.e. both product and process innovations). To 

show this, we first provide an example of a patent capturing an AM-related product innovations for 

an upstream industry, becoming a process innovation for downstream sectors. Table B1 reports an 

AM patent filed at the USPTO, representative of a patent family describing an AM system and the 

related production process. The largest share of the patent links to NACE sector 28 (manufacture of 

machinery and equipment) as most of the information included in the patent deals with the specifics 

of the AM device. In addition, as the process described is specifically suited for the production of 

airfoils (i.e. metallic components used in engines/aerospace industries), a minor share of the patent 

is attributed to NACE sector 25 (manufacture of fabricated metal products). 

 The example illustrates the way in which patents are matched with sectors in our data: the 

weights allocated to NACE sector 28 measure the probability of the AM invention described in the 

patent being used in NACE sector 28, i.e. in producing the AM machinery in question. On the other 

hand, it also shows that to a lesser extent the patent is likely to be related to the usage of the 

described AM device to produce airfoils, i.e. by using the AM machine for production purposes. 

 Furthermore, and quite interestingly, the identity of the applicant (i.e. General Electric) 

provides additional insight into the nature of the AM innovation process itself. In recent years, 

advancements in AM technologies have not been developed solely by established 3D printer 

producers (e.g. Stratasys, 3D Systems, EOS, among others). Firms like General Electric, Rolls-

Royce, and several others (who traditionally are both producers of other types of equipment and 
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users of other types of machinery, produced in upstream sectors) have been developing their own 

AM processes and machines, leveraging partnerships (Colyer, 2019) or acquisitions of other 

machinery producers (Kellner, 2018a; 2018b), allowing them to internalise core competencies. 

 

Table B1. Example 1 on the link between AM patents and NACE Rev.2 sectors 

Title Abstract Applicant NACE 2 
Sectors 

Sectoral 
Weights 

A high temperature 
additive 
manufacturing system 
for making near net 
shape airfoil leading 
edge protection with a 
cladded mandrel 

A high temperature additive manufacturing system comprising a high 
temperature additive manufacturing device for providing a metallic 
deposit; and a tooling system comprising a mandrel for receiving and 
providing shape to, the metallic deposit, a metallic cladding applied 
to the mandrel for reducing contamination of the metallic deposit, 
and at least one cooling channel associated with the mandrel for 
removing heat from the system. 

General 
Electric 
Company, US  

28.9 
28.4 
25.5 

0.143* 
0.714* 
0.143 

Source: PATSTAT database. * Since our analysis focuses on the 2-digit level of sectoral aggregation, sectoral weights such as those 
reported in the example (at the 3-digit level) were summed to reach the 2-digit level. 

 

Similarly, we now provide key examples suggesting that AM innovations in our data also relate to 

the product innovations in downstream (using) industries, i.e. suggesting adoption of AM 

innovations for production purposes. Table B2 presents two examples of patent applications 

describing 3D-printed products, i.e. footwear and other apparel products, and the method for 

producing such products. In these examples, the larger sectoral weight of the patent describes its 

probability-of-use in NACE sector 15 (manufacture of leather and related products), suggesting that 

the applicants, i.e. Nike and Adidas (also like Reebok) adopt AM techniques to produce specific 

and customised products suitable for commercialisation. In fact, Nike’s Zoom Vaporfly Elite 

Flyprint (Nike, 2018), Vapor Laser Talon, and Vapor Hyper Agility (Del Nibletto, 2017), and 

Adidas’ Futurecraft 3D (Nelson, 2015) and Alphaedge 4D (Adidas, 2019) are just some of the 3D 

printed footwear currently sold by these two firms. Specifically, Nike and Adidas developed these 

new products in partnership with firms like Materialise for the design phase (Materialise, 2019), 

then started production by setting up dedicated plants with machines supplied by the 3D-printer 

producer Carbon (Cheng, 2018). 

 Like in the previous example, here minority shares of the patent also link to other sectors 

differently related to the AM innovation described. Specifically, as sports footwear and equipment 
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are mostly plastic products, the patent also shows some probability-of-use in NACE sector 22 

(manufacture of rubber and plastic products); furthermore, since it also describes possible 

production techniques, it also features a lower probability-of-use in NACE sector 28. 

 

Table B2. Examples 2 and 3 on the link between AM patents and NACE Rev.2 sectors (Table 1 in Section 4.3.1.1) 

Title Abstract Applicant NACE 2 
Sectors 

Sectoral 
Weights 

Articles and 
methods of 
manufacture 
of articles 

Various articles, such as footwear, apparel, athletic equipment, watchbands, 
and the like, and methods of forming those articles are presented. The 
articles are generally formed, in whole or in part, using rapid manufacturing 
techniques, such as laser sintering, stereolithography, solid deposition 
244odelling, and the like. The use of rapid manufacturing allows for relatively 
economical and time efficient manufacture of customized articles. [...] The 
methods may also include performing a scan of an appropriate body part of a 
user, such as a foot, in order to create a customized article of footwear for 
the user. 

Nike 
International 
Ltd., US 

22 
15 
28.9 

0.25 
0.5 
0.25 

Additive 
manufactured 
metal sports 
performance 
footwear 
components 

The present invention relates to a sole for a shoe, in particular for a cycling 
shoe, comprising: (a.) a three-dimensionally shaped rim; and (b.) a plurality of 
first reinforcing struts, wherein (c.) at least two of the plurality of first 
reinforcing struts extend from a heel region of the rim of the sole to a toe 
region of the rim of the sole, and wherein (d.) the rim of the sole and the 
plurality of first reinforcing struts are integrally manufactured as a single 
piece in an additive manufacturing process. 

Adidas AG., 
DE 

15 1.0 

Source: PATSTAT database. 

 

Another example we present shows an AM patent pertaining a product innovation, featuring a one-

to-one correspondence to NACE sector 25 (manufacture of fabricated metal products), again 

suggesting AM processes are adopted in this specific industry. The metallic product described in 

Table B3 is specifically designed to be manufactured using additive techniques. In fact, over the last 

few years companies like General Electric, Airbus, and Rolls-Royce have directly used AM 

techniques in the production of parts and components installed in their turbine engines (Kellner, 

2018b; Kingsbury, 2019). 

 

Table B3. Example 4 on the link between AM patents and NACE Rev.2 sectors 

Title Abstract Applicant NACE 2 
Sectors 

Sectoral 
Weights 

Article 
produced by 
additive 
manufacturing 

An article includes at least one first portion, wherein the at least one first 
portion is additively manufactured by depositing successive layers of one or 
more materials upon a surface such that a three dimensional structure is 
obtained; at least one second portion […]; and at least one third portion, 
wherein the at least one third portion is additively manufactured by 
depositing successive layers of one or more materials upon the at least one 
top surface such that a three dimensional structure is obtained. 

General 
Electric 
Company, US  

25.5 1.0 

Source: PATSTAT database. 
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Finally, in addition to these examples, and as extensively analysed in the literature on AM, other 

industry applications deal with the production of medical devices (e.g. prostheses, surgical and 

dental implants, hearing aids), luxury goods (i.e. jewellery), and musical instruments and toys 

(Laplume et al., 2016). Several patents dealing with these types of products in our data present 

majority shares relating to sectors 26 (manufacture of computer, electronic, and optical products), 

32 (other manufacturing, including the manufacturing of medical devices), and 22 (manufacture of 

rubber and plastic products). These industries witnessed the diffusion of AM innovations well 

before others (Sandström, 2016), and direct manufacturing via AM is now an established 

manufacturing method, especially due to the high potential for customization (Laplume et al., 2016; 

Sandström, 2016). We provide some examples in Table B4. 

 

Table B4. Example 5 and 6 on the link between AM patents and NACE Rev.2 sectors 

Title Abstract Applicant NACE 2 
Sectors 

Sectoral 
Weights 

3-D printing 
of bone 
grafts 

Computer implemented methods of producing a bone graft are provided. 
These methods include obtaining a 3-D image of an intended bone graft site; 
generating a 3-D digital model of the bone graft based on the 3-D image of the 
intended bone graft site, the 3-D digital model of the bone graft being 
configured to fit within a 3-D digital model of the intended bone graft site; [..]. 
A layered 3-D printed bone graft prepared by the computer implemented 
method is also provided. 

Warsaw 
Orthopedic, 
Inc., US 

32.5 1.0 

A method for 
fabricating a 
hearing 
device 

A method for fabricating a hearing aid using a self contained hearing aid 
production laboratory employing three dimensional printing technology. The 
method comprises the steps of conducting audiometric testing of an individual 
with a hearing impairment; selecting and customizing a product design for the 
hearing aid to be produced; producing the selected and customized hearing 
aid; and performing final adjustments to the produced hearing aid. 

Siemens 
Hearing 
Instruments, 
Inc., US 

26.3 1.0 

Source: PATSTAT database. 

 

In turn, the examples just presented also highlight that in the alternative case of attributing AM 

patents only to the sector of the applicant we would have potentially incurred in strong 

misallocations. Obviously, given the lack of information on licencing agreements, both attribution 

strategies have drawbacks. The size of the misattribution basically depends on the number of 

multiproduct firms, conglomerates, or firms involved in complex value chains and therefore 
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possibly patenting but not directly using the patent (except through firms in other sectors) that are in 

the sample as applicants, as already pointed out by Dorner and Harhoff (2018). 

 

4.10.B2. On the geographical attribution 

In Section 4.3.1.2 we explain how we allocated patents to the country of residence of their inventors 

using fractional counting. An alternative strategy would be to attribute patents on the basis of the 

jurisdiction, i.e. where the patent provides protection. In our opinion, this strategy would result in a 

worse proxy for several reasons. First, this way would be more likely to capture defensive or 

strategic patenting. Second, firms may extend the number of countries where they apply for 

protection for reasons different from the real ‘economic’ rationale for protection. In fact, many 

patent authorities, e.g. the European Patent Office (EPO) or Patent Cooperation Treaty (PCT), 

provide the opportunity to protect patent families for which an application is filed in all or a 

selection of member states (i.e. contracting states) with just one application (EPO, 2019). This may 

induce applicants to extend the countries where they seek protection somehow automatically, 

because the cost is negligible. In turn, this would lead to a measure highly skewed towards, for 

instance, EPO member states, and thus not reflecting the real diffusion of AM innovations. 

 Furthermore, in the alternative scenario where, for instance, protection is sought to slow-

down competitors in the market where the applicant firm wants to sell the capital-embodied 

innovation, even if we capture partially the diffusion of these innovations in the importing country, 

such proxy would most likely overestimate the level of local innovation activity in the field of AM. 

It is also worth noting that the resulting skewed distribution, in particular for our sample of 

countries, would not allow for enough variation in the data to carry out the econometric analysis. 

 Finally, the alternative strategy of assigning patent families to the country of the applicant 

would not be exempt from some pitfalls as well. For example, if the applicant is a small-medium 

firm – as often is the case in the AM field – this would not be an issue since the country of the 

applicant and the inventor would be the same. On the contrary, if the applicant is a large 
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multinational, for instance, we would end up in assigning it to the country where the multinational 

enterprise (MNE) has its (legal) headquarters, which in many cases is not the place (or sector) 

where the production or the adoption occurs. Clearly, in view of the lack of direct information on 

where the patent is used, either alternative could be considered a second best rather than a first best 

choice. 
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4.11. Appendix C: Details on the robustness checks 

4.11.C1. Alternative AM innovation proxy and inter-sectoral/inter-country 

relationships 

In Section 4.5.1.1, we explain that our main analysis could miss inter-sectoral and inter-country 

linkages through which the diffusion of AM innovations may affect industry-level employment. 

These mechanisms represent general equilibrium effects acting through the existing links along 

supply chains. Moreover, firms in an industry may use AM machines that are produced by firms in 

other sectors or countries, this not showing up in the sectoral own patenting activity, i.e. in our main 

proxy for AM diffusion. To check for potential bias in our results arising from these relationships, 

we build a measure that should be able to capture also AM innovations generated outside of the 

focal industry, which still may have an effect on the employment of the focal sector via transfer of 

AM-related technological content embodied in the imported intermediate inputs. Hereafter, we 

illustrate in more detail the data used, the technical caveats of building these measures, and the 

results of the related analysis. 

 We use the world input–output tables from the 2016 release of the WIOD data set (Timmer 

et al., 2015). The use of these data results in a slight reduction of the sample used in our main 

investigation. Specifically, we lose two countries (Israel and New Zealand) and the detailed 

disaggregated information for two industries, namely NACE sectors 13 to 15 (manufacturing of 

textiles, wearing apparel, leather, and related products), which is provided as a unique aggregate. 

 We build an index of AM innovations capturing both potential inter-sectoral and inter-

country transfers of AM innovations going through value-chain relationships as follows: 

𝑒𝑥𝑡𝐴𝑀𝑖𝑗𝑡 =∑∑𝐴𝑀𝑐𝑠𝑡
𝑠

× (
𝑖𝑛𝑡𝑖𝑗2008

𝑐𝑠

𝑖𝑛𝑡𝑖𝑗2008
)

𝑐

  (A1) 

for each country 𝑖, sector 𝑗, and year 𝑡. The 𝑒𝑥𝑡𝐴𝑀𝑖𝑗𝑡 variable is then the weighted sum of the AM 

patent stock in each country and industry, where the weights are built as the ratio of intermediate 
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inputs bought by sector 𝑗 of country 𝑖 from sector 𝑠 ≠ 𝑗 in country 𝑖 and from all industries in 

country 𝑐 ≠ 𝑖,  i.e. all sectoral domestic intermediates bought from all sectors excluding one’s own, 

plus all foreign intermediates bought from all sectors, over the total intermediate goods used by 

sector 𝑗 in country 𝑖 (𝑖𝑛𝑡𝑖𝑗). Weights 𝑖𝑛𝑡𝑖𝑗
𝑐𝑠 𝑖𝑛𝑡𝑖𝑗⁄  are constant over time and predetermined with 

respect to our observation period, as they refer to year 2008. We take predetermined weights in 

order to minimize potential endogeneity concerns and avoid biases induced by reverse causality. 

We estimate the following specification: 

𝐿𝑖𝑗𝑡 = 𝛼0 + 𝛼1𝐴𝑀𝑖𝑗𝑡−3 + 𝛼2𝑛𝑜𝑛𝐴𝑀𝑖𝑗𝑡−3 + 𝛼3𝑒𝑥𝑡𝐴𝑀𝑖𝑗𝑡−3 + 𝛼4𝑒𝑥𝑡𝑛𝑜𝑛𝐴𝑀𝑖𝑗𝑡−3 

+𝛼5𝐷𝑉𝐹𝑖𝑗2008 + 𝛼6𝐹𝐸𝑖𝑗2008 + 𝜶7𝑿𝑖𝑗𝑡−1 + 𝛾𝑖 + 𝛾𝑗 + 𝛾𝑡 + 𝑢𝑖𝑗𝑡, 
(A2) 

Where, in addition to the measure of AM innovations used in the main analysis and all other 

controls, we include the new 𝑒𝑥𝑡𝐴𝑀𝑖𝑗𝑡−3 variable, a similar variable – built following equation 

(A1) – capturing inter-sectoral and inter-country technology transfers associated with non-AM 

patents (𝑒𝑥𝑡𝑛𝑜𝑛𝐴𝑀𝑖𝑗𝑡−3), two controls for foreign exposure (𝐹𝐸𝑖𝑗2008,  in the spirit of the 

offshoring index originally introduced by Feenstra and Hanson, 1996), and a measure of domestic 

vertical fragmentation (𝐷𝑉𝐹𝑖𝑗2008). The numerator of the foreign-exposure variable is the sum of 

the value of all intermediate inputs imported by sector 𝑗 of country 𝑖 from all sectors of all partner 

countries, while the denominator is the total value of all intermediate inputs used in production in 

sector  𝑗 of country 𝑖. The numerator of the domestic vertical fragmentation variable is the sum of 

the value of all intermediate inputs bought by sector 𝑗 of country 𝑖 from all sectors 𝑠 ≠ 𝑗 of country 

𝑖, while the denominator is the total value of all intermediate inputs used in production by sector 𝑗. 

Both variables are time-invariant as they refer to the year 2008, again to avoid reverse-causality 

issues. They both play a similar role to country-sector Fes (𝛾𝑖𝑗), which as explained in Section 4.4 

cannot be included in the analysis due to the short time span of our series and the scarce variation 

over time left along the country-sector dimension. We therefore underline that the inclusion of the 

two control variables also works as a relevant robustness check per se. 
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 As can be seen from Table C1, our results are robust to the inclusion of the new proxy and 

control variables. The employment elasticity to the original AM proxy is about 0.075 in 

unconditional demand estimations and 0.045 in the conditional demand estimations, both being 

statistically significant at the 1% level. In contrast, the newly added external AM innovations 

variable is not statistically significant in the unconditional demand estimations; for conditional 

demand it is positive and statistically significant (0.07, statistically significant at the 5% level in the 

most demanding specification in terms of FEs). Thus, the results confirm the complementarity 

between AM technologies and labour. The new variable capturing technology transfer for all non-

AM innovations is also positive and statistically significant at the 1% level in all specifications, 

with an elasticity again much larger in unconditional demand estimations (about 0.5) than in 

conditional ones (about 0.05), as in our baseline model. The domestic vertical fragmentation control 

is negatively and significantly (at the 1% level) correlated with employment in the unconditional 

demand estimation, potentially capturing an outsourcing effect. It is positively and significantly 

correlated with sectoral employment (significant at the 10% level) in conditional estimations and is 

probably capturing a composition effect since most labour-intensive tasks/activities are less likely to 

be outsourced, both at the bottom and at the top of the skill distribution. The foreign-exposure 

variable correlates negatively with employment in all specifications, but the elasticity is smaller 

(about 0.2) and not statistically significant in the unconditional demand estimations while it is about 

0.7 and statistically significant at the 1% level in the conditional demand estimations. This is in line 

with the theoretical literature, suggesting that offshoring has pro-competitive effects and increases 

production and sales, but also a large labour-saving effect (at constant output). 
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Table C1. Relationship between AM patent stock and average employment, 2009–2017 period, inter-sectoral/inter-country AM 
relationships 

 Unconditional  Conditional 

Employment (𝐿𝑖𝑗𝑡) (1) (2)  (3) (4) 

            

AM patent stock (𝐴𝑀𝑖𝑗𝑡−3) 0.075*** 0.079***  0.045*** 0.046*** 

 (0.017) (0.018)  (0.008) (0.009) 

Non-AM patent stock (𝑛𝑜𝑛𝐴𝑀𝑖𝑗𝑡−3) 0.175*** 0.176***  0.023*** 0.021*** 

 (0.009) (0.009)  (0.005) (0.005) 
External AM patent stock (𝑒𝑥𝑡𝐴𝑀𝑖𝑗𝑡−3) -0.004 -0.001  0.044* 0.074** 
 (0.048) (0.059)  (0.023) (0.029) 
External non-AM patent stock (𝑒𝑥𝑡𝑛𝑜𝑛𝐴𝑀𝑖𝑗𝑡−3) 0.512*** 0.513***  0.051*** 0.041*** 
 (0.015) (0.016)  (0.013) (0.014) 

Domestic vertical fragmentation (𝐷𝑉𝐹𝑖𝑗2008) -1.304*** -1.318***  0.126* 0.124* 

 (0.122) (0.126)  (0.068) (0.070) 

Foreign exposure (𝐹𝐸𝑖𝑗2008) -0.118 -0.117  -0.698*** -0.689*** 

 (0.216) (0.222)  (0.101) (0.104) 

Labour cost (𝐿𝐶𝑖𝑗𝑡−1) -0.107 -0.133*  -0.641*** -0.667*** 

 (0.069) (0.068)  (0.029) (0.028) 

Gross output (𝑌𝑖𝑗𝑡−1)    0.716*** 0.725*** 

    (0.016) (0.015) 

      
Observations 4,854 4,854  4,854 4,854 

R-squared 0.936 0.937  0.980 0.981 

Country, Sector, Year FEs 🗸   🗸  
Country-Year, Sector-Year FEs   🗸     🗸 

Notes: Coefficients estimated by OLS with robust standard errors in parentheses. All variables are expressed in natural 
logarithms. The dependent variable is sectoral employment (𝐿𝑖𝑗𝑡). Coefficients for the constant term, for 55 countries, sector and 

year dummies (columns (1) and (3)), and for 423 country-year and sector-year dummies (columns (2) and (4)) are omitted due to 
space limitations. Significance levels: *** p<0.01, ** p<0.05, * p<0.1. 
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4.11.C2. Countries and sectors 

Hereafter, we provide results for the robustness checks described in Section 4.5.1.1 pertaining to the 

exclusion of the top six AM-patenting countries and of NACE sector 28 (manufacturing of 

machinery and equipment), which produce AM machines. As can be seen from Tables C2 and C3 

below, our findings are robust to these checks. Similarly, Table C4 present results related to the 

further robustness test we conduct to test our results to the exclusion of country and sector, which 

have no AM patents in our data; also in this case, results are robust. 

 

Table C2. Relationship between AM patent stock and average employment, 2009–2017 period, excluding the top six AM-
patenting countries 

 Unconditional  Conditional 

Employment (𝐿𝑖𝑗𝑡) (1) (2)  (3) (4) 

            

AM patent stock (𝐴𝑀𝑖𝑗𝑡−3) 0.112*** 0.130***  0.093*** 0.109*** 

 (0.036) (0.041)  (0.018) (0.021) 

Non-AM patent stock (𝑛𝑜𝑛𝐴𝑀𝑖𝑗𝑡−3) 0.308*** 0.310***  0.043*** 0.041*** 

 (0.013) (0.014)  (0.007) (0.007) 

Labour cost (𝐿𝐶𝑖𝑗𝑡−1) -0.225*** -0.245***  -0.833*** -0.849*** 

 (0.077) (0.079)  (0.048) (0.046) 

Gross output (𝑌𝑖𝑗𝑡−1)    0.785*** 0.791*** 

    (0.012) (0.012) 

      
Observations 4,625 4,625  4,625 4,625 

R-squared 0.829 0.832  0.962 0.964 

Country, Sector, Year FEs 🗸   🗸  
Country-Year, Sector-Year FEs   🗸     🗸 

Notes: Coefficients estimated by OLS with robust standard errors in parentheses. All variables are expressed in natural 
logarithms. The dependent variable is sectoral employment (𝐿𝑖𝑗𝑡). Coefficients for the constant term, for 53 countries, sector and 

year dummies (columns (1) and (3)), and for 405 country-year and sector-year dummies (columns (2) and (4)) are omitted due to 
space limitations. The top six AM-patenting countries excluded are the US, Japan, Germany, UK, France, and Korea. Significance 
levels: *** p<0.01, ** p<0.05, * p<0.1. 
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Table C3. Relationship between AM patent stock and average employment, 2009–2017 period, excluding AM machinery-
producing sector 

 Unconditional  Conditional 

Employment (𝐿𝑖𝑗𝑡) (1) (2)  (3) (4) 

            

AM patent stock (𝐴𝑀𝑖𝑗𝑡−3) 0.100*** 0.106***  0.081*** 0.086*** 

 (0.020) (0.022)  (0.009) (0.010) 

Non-AM patent stock (𝑛𝑜𝑛𝐴𝑀𝑖𝑗𝑡−3) 0.265*** 0.266***  0.036*** 0.034*** 

 (0.011) (0.012)  (0.005) (0.005) 

Labour cost (𝐿𝐶𝑖𝑗𝑡−1) -0.189*** -0.204***  -0.792*** -0.805*** 

 (0.066) (0.066)  (0.041) (0.039) 

Gross output (𝑌𝑖𝑗𝑡−1)    0.781*** 0.787*** 

    (0.011) (0.011) 

      
Observations 5,462 5,462  5,462 5,462 

R-squared 0.878 0.879  0.973 0.974 

Country, Sector, Year FEs 🗸   🗸  
Country-Year, Sector-Year FEs   🗸     🗸 

Notes: Coefficients estimated by OLS with robust standard errors in parentheses. All variables are expressed in natural 
logarithms. The dependent variable is sectoral employment (𝐿𝑖𝑗𝑡). Coefficients for the constant term, for 58 countries, sector and 

year dummies (columns (1) and (3)), and for 450 country-year and sector-year dummies (columns (2) and (4)) are omitted due to 
space limitations. The sector producing AM machinery is sector NACE 28 - Manufacture of machinery and equipment. Significance 
levels: *** p<0.01, ** p<0.05, * p<0.1. 

 

Table C4. Relationship between AM stock and average employment, 2009–2017 period, excluding countries and sectors with no 
AM patents 

 Unconditional  Conditional 

Employment (𝐿𝑖𝑗𝑡) (1) (2)  (3) (4) 

            

AM patent stock (𝐴𝑀𝑖𝑗𝑡−3) 0.054*** 0.056***  0.039*** 0.041*** 

 (0.017) (0.019)  (0.008) (0.009) 

Non-AM patent stock (𝑛𝑜𝑛𝐴𝑀𝑖𝑗𝑡−3) 0.306*** 0.308***  0.045*** 0.043*** 

 (0.015) (0.016)  (0.005) (0.006) 

Labour cost (𝐿𝐶𝑖𝑗𝑡−1) -0.233*** -0.245***  -0.847*** -0.857*** 

 (0.059) (0.062)  (0.022) (0.022) 

Gross output (𝑌𝑖𝑗𝑡−1)    0.780*** 0.784*** 

    (0.009) (0.009) 

      
Observations 4,545 4,545  4,545 4,545 

R-squared 0.904 0.905  0.980 0.981 

Country, Sector, Year FEs 🗸   🗸  
Country-Year, Sector-Year FEs   🗸     🗸 

Notes: Coefficients estimated by OLS with robust standard errors in parentheses. All variables are expressed in natural 
logarithms. The dependent variable is sectoral employment (𝐿𝑖𝑗𝑡). Coefficients for the constant term, for 53 countries, sector and 

year dummies (columns (1) and (3)), and for 405 country-year and sector-year dummies (columns (2) and (4)) are omitted due to 
space limitations. This estimation only exploits the intensive margin of AM (i.e. it excludes observations for which the AM stock is 
zero). Countries with no AM patents are Estonia, Greece, Latvia and Portugal. Sectors with no AM patents are: sector NACE 19 - 
Manufacture of coke and refined petroleum products; sector NACE 33 - Repair and installation of machinery and equipment. 
Significance levels: *** p<0.01, ** p<0.05, * p<0.1. 
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4.11.C3. Alternative patent data 

In order to test the robustness of our main results, we perform a battery of additional checks. First, 

in our main analysis we focus on AM patent families applied for at the USPTO. Although the 

USPTO represents the reference patent office where inventors and applicants worldwide tend to file 

their new inventions to seek IP protection, being a large and highly innovative market, it is not the 

only important patent authority worldwide. Thus, we collected information on AM patent families 

filed at the European Patent Office (EPO) and at the Patent Cooperation Treaty (PCT), which allow 

inventors and applicants to seek protection for their invention in a large number of countries 

simultaneously (European countries in the case of the EPO, internationally in the case of the PCT). 

We build AM patent stock measures following the methodology described in Section 4.3 using both 

EPO and PCT applications, which we test alternatives to our main AM measure based on USPTO 

data. As shown in Table C5 below, our results are robust to these checks. 

 

Table C5. Relationship between AM patent stock and average employment, period 2009-2017, AM patents at alternative patent authorities 

 EPO  PCT 

 Unconditional  Conditional  Unconditional  Conditional 

Employment (𝐿𝑖𝑗𝑡) (1) (2)  (3) (4)  (5) (6)  (7) (8) 

                      

AM patent stock (𝐴𝑀𝑖𝑗𝑡−3
𝐸𝑃𝑂 ) 0.120*** 0.121***  0.061*** 0.062***       

 (0.019) (0.020)  (0.010) (0.010)       
AM patent stock (𝐴𝑀𝑖𝑗𝑡−3

𝑃𝐶𝑇 )       0.090*** 0.093***  0.069*** 0.073*** 

       (0.017) (0.019)  (0.008) (0.009) 

Non-AM patent stock (𝑛𝑜𝑛𝐴𝑀𝑖𝑗𝑡−3) 0.270*** 0.271***  0.038*** 0.036***  0.269*** 0.270***  0.035*** 0.033*** 

 (0.011) (0.012)  (0.005) (0.005)  (0.011) (0.012)  (0.005) (0.005) 

Labour cost (𝐿𝐶𝑖𝑗𝑡−1) -0.187*** -0.203***  -0.794*** -0.807***  -0.186*** -0.201***  -0.793*** -0.806*** 

 (0.065) (0.065)  (0.040) (0.039)  (0.065) (0.065)  (0.040) (0.039) 

Gross output (𝑌𝑖𝑗𝑡−1)    0.782*** 0.788***     0.782*** 0.788*** 

    (0.011) (0.011)     (0.011) (0.011) 

            
Observations 5,741 5,741  5,741 5,741  5,741 5,741  5,741 5,741 

R-squared 0.881 0.883  0.974 0.975  0.881 0.883  0.974 0.975 

Country, Sector, Year FEs 🗸   🗸   🗸   🗸  
Country-Year, Sector-Year FEs   🗸     🗸     🗸     🗸 

Notes: Coefficients estimated by OLS with robust standard errors in parentheses. All variables are expressed in natural logarithms. The 
dependent variable is sectoral employment (𝐿𝑖𝑗𝑡). Coefficients for the constant term, for 59 countries, sector and year dummies (odd 

columns), and for 459 country-year and sector-year dummies (even columns) are omitted due to space limitations. Significance levels: *** 
p<0.01, ** p<0.05, * p<0.1. 
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4.11.C4. Alternative lag structures 

A further check we conduct concerns the lag structure that we assume for our main variable of 

interest. As described in Sections 4.3.2 and 4.4, our assumption regarding the three-year lag is based 

on both practical considerations related to the time required to get from the application of a patent 

to the moment at which the innovation it seeks to protect is actually brought to the market and on 

econometric practices in the related literature. Nonetheless, depending on the specificity of the 

innovation this time window could vary; alternatively, this rule of thumb may not be appropriate in 

the case of very narrow categories of innovation, as in the case of AM. Hence, we also explore 

specifications in which we allow for different lag structures for both our patent-based variables (i.e. 

the AM patent stock and the non-AM patent stock). Specifically, we test models in which these 

variables may have a relationship with employment over a shorter period, i.e. including these 

variables with a one-year (𝐴𝑀𝑖𝑗𝑡−1, 𝑛𝑜𝑛𝐴𝑀𝑖𝑗𝑡−1) and a two-year lag (𝐴𝑀𝑖𝑗𝑡−2, 𝑛𝑜𝑛𝐴𝑀𝑖𝑗𝑡−2). 

Alternatively, we allow the AM–employment relationship to be in place with longer lags 

(𝐴𝑀𝑖𝑗𝑡−4, 𝑛𝑜𝑛𝐴𝑀𝑖𝑗𝑡−4, 𝐴𝑀𝑖𝑗𝑡−5, 𝑛𝑜𝑛𝐴𝑀𝑖𝑗𝑡−5). These results are reported in Table C6 below and 

again show that our findings are robust. 

 Notably, as presented in columns (1) to (8), assuming a shorter lag structure for our AM 

patent stock variable – thus, assuming the effect of AM on employment happens almost 

synchronously with the filing of the related innovation – turns out to still highlight a positive 

relationship, but one predominantly driven by existing complementarities between AM and labour. 

Conversely, market-related channels appear negligible for shorter lags as we observe almost no (for 

𝐴𝑀𝑖𝑗𝑡−1) and little (for 𝐴𝑀𝑖𝑗𝑡−2) change in the coefficient when comparing unconditional and 

conditional specifications. 

 However, and coherently with our main assumption on the appropriate lag structure to 

assume in order to properly and fully gauge the effects of AM on employment, specifications 

testing longer lag structures (columns (9) to (16)) show a positive impact of AM, highlighting both 
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an important role of the market channel as well as complementarities between the technology and 

labour.
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Table C6. Relationship between AM patent stock and average employment, 2009–2017 period, alternative lag structures for AM and non-AM patent stocks 

 1-year lag  2-year lag  4-year lag  5-year lag 

 Unconditional  Conditional  Unconditional  Conditional  Unconditional  Conditional  Unconditional  Conditional 

Employment (𝐿𝑖𝑗𝑡) (1) (2)  (3) (4)   (5) (6)   (7) (8)   (9) (10)   (11) (12)   (13) (14)   (15) (16) 

                              
AM patent stock 
(𝐴𝑀𝑖𝑗𝑡−1) 

0.059*** 0.062***  0.056*** 0.061***                   
(0.015) (0.017)  (0.007) (0.007)                   

Non-AM patent stock 
(𝑛𝑜𝑛𝐴𝑀𝑖𝑗𝑡−1) 

0.279*** 0.280***  0.035*** 0.033***                   
(0.011) (0.012)  (0.005) (0.005)                   

AM patent stock 
(𝐴𝑀𝑖𝑗𝑡−2) 

      0.071*** 0.076***  0.060*** 0.065***             

      (0.016) (0.018)  (0.007) (0.008)             
Non-AM patent stock 
(𝑛𝑜𝑛𝐴𝑀𝑖𝑗𝑡−2) 

      0.275*** 0.275***  0.035*** 0.033***             

      (0.011) (0.012)  (0.005) (0.005)             
AM patent stock 
(𝐴𝑀𝑖𝑗𝑡−4) 

            0.109*** 0.113***  0.070*** 0.072***       

            (0.019) (0.020)  (0.009) (0.009)       
Non-AM patent stock 
(𝑛𝑜𝑛𝐴𝑀𝑖𝑗𝑡−4) 

            0.264*** 0.265***  0.036*** 0.034***       

            (0.011) (0.011)  (0.005) (0.005)       
AM patent stock 
(𝐴𝑀𝑖𝑗𝑡−5) 

                  0.119*** 0.122***  0.072*** 0.072*** 

                  (0.019) (0.020)  (0.009) (0.009) 
Non-AM patent stock 
(𝑛𝑜𝑛𝐴𝑀𝑖𝑗𝑡−5) 

                  0.260*** 0.262***  0.037*** 0.035*** 

                  (0.011) (0.011)  (0.005) (0.005) 
Labour cost (𝐿𝐶𝑖𝑗𝑡−1) -

0.188*** 
-
0.203***  

-
0.793*** 

-
0.806***  

-
0.188*** 

-
0.202***  

-
0.793*** 

-
0.806***  

-
0.185*** 

-
0.201***  

-
0.793*** 

-
0.806***  

-
0.183*** 

-
0.199***  -0.793*** 

-
0.806***  

(0.064) (0.065)  (0.040) (0.038)  (0.064) (0.065)  (0.040) (0.038)  (0.065) (0.065)  (0.040) (0.039)  (0.065) (0.066)  (0.040) (0.039) 
Gross output (𝑌𝑖𝑗𝑡−1)    0.782*** 0.788***     0.782*** 0.788***     0.782*** 0.788***     0.782*** 0.788***  

   (0.011) (0.011)     (0.011) (0.011)     (0.011) (0.011)     (0.011) (0.011)  

                       
Observations 5,741 5,741  5,741 5,741  5,741 5,741  5,741 5,741  5,741 5,741  5,741 5,741  5,741 5,741  5,741 5,741 

R-squared 0.882 0.883  0.974 0.975  0.882 0.883  0.974 0.975  0.881 0.883  0.974 0.975  0.881 0.882  0.974 0.975 
Country, Sector, Year 
FEs 🗸   🗸   🗸   🗸   🗸   🗸   🗸   🗸  
Country-Year, Sector-
Year FEs   🗸     🗸     🗸     🗸     🗸     🗸     🗸     🗸 

Notes: Coefficients estimated by OLS with robust standard errors in parentheses. All variables are expressed in natural logarithms. The dependent variable is sectoral employment (𝐿𝑖𝑗𝑡). Coefficients for the constant 

term, for 59 countries, sector and year dummies (odd columns), and for 459 country-year and sector-year dummies (even columns) are omitted due to space limitations. Significance levels: *** p<0.01, ** p<0.05, * 
p<0.1. 
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Table C7. Relationship between AM patent stock and average employment, 2009–2017 period, country-level analysis 

 Full sample   European sample  High education  Middle education  Low education 

Employment (1) (2)   (3) (4)  (5) (6)  (7) (8)  (9) (10) 

                              

AM patent stock (𝐴𝑀𝑖𝑡−3) 0.154*** 0.063***  0.122*** 0.064***  0.176*** 0.102***  0.243*** 0.177***  0.082 -0.005 

 (0.034) (0.008)  (0.040) (0.013)  (0.038) (0.024)  (0.040) (0.026)  (0.069) (0.057) 

Non-AM patent stock (𝑛𝑜𝑛𝐴𝑀𝑖𝑡−3) 0.645*** -0.026  0.583*** -0.019  0.541*** 0.045  0.616*** 0.168***  0.552*** -0.034 

 (0.031) (0.019)  (0.035) (0.021)  (0.027) (0.035)  (0.029) (0.042)  (0.048) (0.086) 
Labour cost (𝐿𝐶𝑖𝑡−1) -1.329*** -0.626***  -0.443** -0.763***  -0.512** -0.714***  -1.698*** -1.880***  0.862*** 0.624**  

(0.121) (0.032)  (0.197) (0.082)  (0.221) (0.145)  (0.179) (0.099)  (0.306) (0.281) 
Gross output (𝑌𝑖𝑡−1)  0.936***   0.933***   0.801***   0.722***   0.946*** 

  (0.019)   (0.021)   (0.047)   (0.054)   (0.111) 

               
Observations 270 270  205 205  205 205  205 205  205 205 

R-squared 0.949 0.996  0.951 0.995  0.956 0.984  0.964 0.986  0.926 0.950 

Notes: Coefficients estimated by OLS with robust standard errors in parentheses. All variables are expressed in natural logarithms. All specifications include time FEs; country FEs are not 
included since our panel is short in T, not providing enough time variation in the data (the R2 of a regression of the dependent variable on country FEs is 0.99). Coefficients for the constant term, 
9 year dummies, and all additional country-level controls are not reported in the table due to space limitations (full results are available upon request).The dependent variable is country-level 

employment (𝐿𝑖𝑡) in columns (1) to (4); the dependent variable is country-level employment by education category (𝐿𝑖𝑡
𝐸𝐷𝑈) in columns (5) to (10). Data on employment by education category 

comes from the EU KLEMS database (2019 release). Specifications in columns (1) and (2) include 31 OECD countries in our original sample; specifications in columns (3) to (10) include 23 
countries included in the EU KLEMS database (Austria, Belgium, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Japan, Latvia, Lithuania, 
Luxembourg, Netherlands, Portugal, Slovakia, Slovenia, Spain, Sweden, United Kingdom). Variables for AM patent stock and non-AM patent stock are included in all specifications with a three-
year lag; all other explanatory variables are included with a one-year lag. All specifications include additional country-level controls (data comes from the World Development Indicators 
database of the World Bank): R&D expenditure (as share of GDP), trade openness (the sum of import and export as share of GDP), labour force share of workers with at least post-secondary 
education (age 25+), share of working-age (age 15–64) population. Specifications reported in columns (5) to (10) further include additional country-level controls (data comes from the EU 
KLEMS database): employment share of female workers, employment share of workers aged 30–49, employment share of workers aged 50+.  
Significance levels: *** p<0.01, ** p<0.05, * p<0.1. 
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