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Abstract 

Among the many disasters, floods are the most common disaster worldwide. The number 

of flood events worldwide has increased by 23% between 2000 and 2019. The trend is 

expected to increase due to climate variability and other environmental factors. Efforts to 

reduce the impacts of extreme events such as floods have been emphasised through 

various multilateral frameworks, resulting in the development of early warning systems. 

Technological advancement has also contributed to significant improvement in 

forecasting science leading to more accurate predictions and improved forecast skills. 

Despite these improvements, more focus has been on early warning of physical risks and 

less on incorporating the needs of the most at-risk populations and early action disaster 

responders. Thus, early warning systems (EWS) should be people-centred to ensure that 

at-risk populations can access tailored early warning information to inform their 

preparedness actions and protect their lives and livelihoods.  

The potential for early warning information (EWI) can be achieved if all the components 

of a people-centred early warning system are implemented through an integrated 

approach that involves the at-risk population. Therefore, there is a need to redefine the 

development of EWS by shifting from top-down to more bottom-up community-driven 

approaches. To address this gap, the research developed an impact-based flood early 

warning trigger system for anticipatory action through a community-led process. As 

shown through community and disaster management practitioners’ engagements, a more 

coordinated institutional response is needed to understand the gaps in the provision and 

use of EWI at the local level. Local context-specific information can also be used to verify 

forecast information to make them more acceptable in informing early and anticipatory 

actions in data-scarce regions. Further, such information could enhance the existing 

hazard-based systems by redefining the design of trigger thresholds and early actions.  

Overall, this thesis has shown that community-led approaches based on holistic 

engagements can effectively ensure EWSs are locally targeted to inform local 

anticipatory actions.  
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Chapter 1 

 

1 Introduction  

 

1.1 Wider context and motivation 
 

The global population faces severe impacts from disasters. According to the Centre for 

Research on the Epidemiology of Disasters (CRED), in 2020, disasters affected 

approximately 98 million people and resulted in economic losses of over USD 171 billion 

(CRED, 2021). Floods were the most common disaster worldwide, with a 23% increase 

in events between 2000 and 2019. These impacts are increasing due to climate variability 

and population growth (Morton, 2007; Cools, Innocenti, and O’Brien, 2016), especially 

in countries in the Global South (Bunce, Rosendo, and Brown, 2010). For example, over 

7 million people in Africa were affected by floods in 2020, the highest since 2006 (CRED, 

2021). Many rural communities are among the most at-risk as they exhibit low coping 

capacity and lack localised tailor-made early warning information (EWI) to inform 

coping practices (Amegnaglo et al., 2017; Naab, Abubakari and Ahmed, 2019). 

Efforts to reduce the impacts of natural disasters on the population have been emphasised 

in various multilateral frameworks for the last three decades, namely: the Yokohama 

Strategy for a safer world (UN, 1994), the Hyogo Framework for Action (UNISDR, 

2005), and the Sendai Framework for Disaster Risk Reduction (UN, 2015). These 

frameworks reinforce the need to promote disaster risk reduction efforts at national and 

local levels while calling for regions and nations to take primary responsibility for 

preventing the adverse effects of hazards. In Africa, efforts toward disaster management 

have resulted in the development of the Africa Regional Strategy for Disaster Risk 

Reduction (ARSDRR), which aims to strengthen the integration of Disaster Risk 

Reduction (DRR) into development processes (AU, 2004). Consequently, the African 

Union Agenda 2063 underpins the implementation of such a strategy by setting goals and 

targets to be attained (AUC, 2012). The recognition of the need for EWI for DRR is 

apparent in multilateral frameworks and regional strategies. However, more focus is 

needed to improve the access and availability of EWI to all people to reduce the effects 

of disasters. 
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Early warning systems (EWSs) play a critical role in DRR (Thiemig, de Roo, and Gadain, 

2011; Okonya and Kroschel, 2013). These systems should be people-centred to ensure 

that communities and individuals are supported to take the necessary preparedness 

actions to reduce the impacts on their lives and livelihoods (Baudoin et al., 2016; Cools, 

Innocenti and O’Brien, 2016). According to United Nations International Strategy for 

Disaster Reduction (UNISDR), an effective people-centred EWS should have four 

interrelated components (see Figure 1), which include; 1) knowledge of risks and 

vulnerability of the at-risk populations, 2) monitoring and forecasting of the hazard and 

its consequences, 3) communication and dissemination of useful early warning 

information using appropriate channels to at-risk population, and 4) preparedness and 

response capability at all levels. A failure in any component can fail the entire system 

(UNISDR, 2016).  

Technological advancements have significantly improved forecasting and monitoring 

science over the last decade (Hallegatte, 2012; UNEP, 2012), resulting in improved 

forecast skills and, consequently, more accurate predictions (Cloke and Pappenberger, 

2009; Mittermaier, Roberts and Thompson, 2011). However, such progress has been seen 

more in the Global North than in the Global South countries (Perera et al., 2019). In 

addition, despite such improvements in forecasting science, other components of an EWS 

have not advanced in parallel, which often results in the warning information being 

perceived as unclear in informing the target user's needs (Basher et al., 2006; Demeritt 

and Nobert, 2014). Several recent studies have focused on approaches for communicating 

to users complex forecasts information to improve decision-making (Taylor, Kox and 

Johnston, 2018; Budimir et al., 2020) as well as the influence of the EWI on risk 

perception and early actions (Weyrich, Scolobig and Patt, 2019; Weyrich et al., 2020).   

The potential for effective EWI can be achieved if all the components of a people centred 

EWS are implemented through an integrated approach. The approach would ensure that 

the EWI is understandable, communicated promptly using appropriate channels, meets 

the intended user's needs, and is used to trigger preparedness actions (UN, 2015; Baudoin 

et al., 2016). Robust EWSs for monitoring and forecasting extreme events are now 

common worldwide.  However, developing robust EWSs based solely on the physical 

characteristics of an event only conveys information on weather and environmental 

conditions (e.g., ‘what the weather will be’) rather than what the impacts will be (e.g. 
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‘What the weather will do’).  Therefore, hazard-based systems may not be fully adequate 

to trigger the required anticipatory actions if people are not guided on the appropriate 

measures to safeguard their lives and livelihoods (WMO, 2021b). 

 

Figure 1: The components of an end-to-end people-centred EWSs: Source-(UNISDR, 

2016) 

 

In 2015 under the recommendations of the World Meteorological Organization (WMO), 

the development of EWSs shifted towards impact-based forecasting to address some of 

the challenges of the hazard-based systems (WMO, 2021b). Impact-based EWSs ensure 

that hazard warnings are integrated with information about the risk and vulnerability of 

the population and translated into possible socio-economic consequences to understand 

when, where, and what actions are required to reduce the impacts (Merz et al., 2020). 

Impact-based forecasting approaches can be either quantitative or qualitative, depending 

on the context (Hemingway and Robbins, 2020; Kaltenberger, Schaffhauser and 

Staudinger, 2020). The information from impact-based forecasting and warning systems 

(IBFWs) can influence risk perception and preparedness actions if the users understand 

the magnitude of impacts that is likely to occur (Potter et al., 2018; Weyrich et al., 2018). 

Best practices of impact-based systems can already be found in several National 

Meteorological Services such as the United Kingdom Met Office (UK Met Office, 2019) 
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and the National Weather Service of the USA (US National Weather Service, 2019). 

However, implementing IBFWs presents benefits and challenges (see Hemingway and 

Robbins, 2020; Merz et al., 2020; Potter, Harrison and Kreft, 2021), which needs to be 

understood and solutions provided to ensure more countries can implement and benefit 

from IBFWs.  

More recently, the need to consider financial resources to ensure early warning 

information translates to early and anticipatory actions is becoming common globally. 

For example, Forecast-based Actions (FbA) and Forecast-based Financing (FbF) 

initiatives by the International Federation of Red Cross and Red Crescent (IFRC) ensure 

that dedicated funding is released within the window of opportunity between the issuance 

of the forecast warning and the occurrence of an extreme event. The available funds can 

then support the implementation of pre-agreed anticipatory actions (Coughlan De Perez 

et al., 2015, 2016; Costella et al., 2017). So far, several such initiatives have been 

designed and implemented worldwide and have helped reduce the impacts of extreme 

weather events (see Wilkinson et al., 2018; FAO, 2021; WFP, 2021). But are we ‘out of 

the woods yet’ in ensuring reduced risks and enhanced resilience for the most vulnerable 

communities? 

1.2 Technical approaches for disaster risk reduction in Uganda 
 

The integration of EWSs into institutional development and planning processes is 

required to improve risk reduction and preparedness (De Haen and Hemrich, 2007; 

UNISDR, 2015). In Uganda, all disaster management activities are guided by the 

National Policy on Disaster Preparedness and Management (NPDPM) ( hereby after 

referred to as “the disaster policy”), published in 2010 ( OPM, 2011). The policy provides 

a framework to ensure all disaster management activities are integrated into the relevant 

government development processes (OPM, 2011:2) and stipulates the key actors and their 

roles in disaster management (UNDP, 2015). The responsibility of coordinating all 

disaster preparedness and response activities lies with the Office of the Prime Minister 

(OPM), Department of Relief, Disaster Preparedness, and Management. In addition, the 

office coordinates all other relevant line ministries, humanitarian organisations, 

development partners, and the local communities on data, information, and activities for 
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disaster risk management (UNDP, 2015). Figure 2 shows the institutional structure for 

the management of disasters in Uganda.  

Integration of all disaster risk reduction and preparedness efforts requires a multi-sectoral 

and multi-skilled system of approach. Towards such advancements, the Department of 

Relief, Disaster Preparedness and Management with support from United Nations 

Development Programme (UNDP) established the National Emergency Coordination and 

Operations Centre (NECOC) in 2014 (Atyang, 2014). NECOC was established to oversee 

the implementation of the disaster policy primarily through coordinating the various 

emergency response institutions on response, early warning analysis, dissemination, 

capacity building and community resilience (OPM, 2011)(Figure 2).  

The implementation of the policy has not been effective because of the disconnect 

between the disaster policy anticipation and the reality on the ground. Thus, the process 

is hindered by various challenges. To begin with, the exclusion of especially the local 

communities in the policy implementation even though they are included in the 

institutional structure leads to lack of awareness and non-compliance at the local level 

(Ampaire et al., 2017). For example Ampaire et al., (2015) in their study on policy and 

adaptation in Rakai district, Uganda found out that local communities were not aware of 

who to report to in-case of the deteriorating water quality due to tree felling. Secondly, 

the financial allocations at all levels are not commensurate with the actual activities to be 

undertaken (Clar, Prutsch and Steurer, 2013; Winthrop, Kajumba and McIvor, 2018). 

Thirdly, the involved institutions have limited technical capacity on disaster risks and 

adaptations which inhibits the process of practical implementation (Bauer, Feichtinger 

and Steurer, 2012). And finally, weak research-policy linkages resulting to limited 

research evidence on the expected future trends of disaster impacts (Winthrop, Kajumba 

and McIvor, 2018). Other challenges noted in literature include uncoordinated roles in 

disaster response (Ampaire et al., 2017), communication barriers and weak legal 

framework to guide the in disaster risk reduction (Winthrop, Kajumba and McIvor, 2018). 

These policy implementation gaps can result to increase in vulnerability to disaster risks 

especially to the most at-risk communities.  
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Figure 2: National Disaster Preparedness and Management institutional structure; 

Source: Disaster policy for Uganda (OPM, 2011) 
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On the other hand, the disaster policy also advocates for producing and disseminating 

EWI to the public to enable undertaking preparedness actions to reduce the risk of 

disasters. However, Uganda does not have a national forecasting system for any hazard 

(Atyang, 2014). The lack of a forecasting and warning system means that, for example, 

in the context of floods, one of the frequent natural disasters in Uganda (Hebden, 2017) 

and the focus of this research, localised flood early warning information required to 

inform preparedness, is often unavailable. Flood monitoring is therefore based on 

meteorological forecasts conducted by Uganda National Meteorological Authority 

(UNMA) (Aber and Amuron, 2020) or situation analysis at river gauging stations (for 

rivers that have them). There is, however, limited evidence on how at-risk communities 

interpret and use such information for decision-making. Moreover, implementing an 

effective early warning system in Uganda is further hindered by several other barriers 

Lumbroso, (2018). More specifically, even the existing EWSs are fragmented (see Table 

1) and do not entirely address the needs of at-risk communities (Jennifer, 2018) or provide 

contextualised guidance on the required preparedness actions. 

Several challenges are noted. First, albeit informed by local and regional analysis and 

joint initiatives with local organisations in some cases, the World Food Program (WFP) 

rainfall monitoring system and the Famine Early Warning Systems NETwork 

(FEWSNET) food security early warning systems are developed from a global 

perspective, which could limit their applicability to preparedness and anticipatory actions 

at a local or sub-national level. Second, most of the existing systems, for instance, the 

Butaleja flood early warning and the Regional Centre for Mapping of Resources for 

Development (RCMRD) flood simulator, are based on a situational analysis of the water 

levels, which limits their applicability for informing preparedness actions. Third, the pilot 

FbA initiative in Eastern Uganda used the GloFAS (Global Flood Awareness System) 

flood forecast information to trigger early actions (Coughlan De Perez et al., 2016; 

Jjemba et al., 2018) but was faced with challenges in identifying the most vulnerable 

communities to help in prioritising the anticipatory actions (Stephens et al., 2016). Lastly, 

the current hazard-based systems being used to upscale the FbA initiative in the 15 flood-

prone districts in Uganda have not considered context-specific socio-economic 

characteristics at the community level, which may affect the design of targeted 

interventions (Aber and Amuron, 2020; URCS, 2021). 
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Table 1: Findings on the status of early warning systems in Uganda 

 

Name of EWS Description Scale  Source 

Famine Early  

Warning 

Systems 

NETwork 

(FEWS 

NET)  

A robust system of analysis based on 

livelihood approach that looks at the 

food security indicators such as markets 

and prices. Issues the information 

through bulletins with warning lead 

time of 6 months and monthly updates. 

Sent to various organizations (govt, 

NGO, Donors, Humanitarian, local) 

Global  https://fews.net/east-

africa/uganda-retrieved 
on 30th Sept 2019 

World Food 

Program (WFP) 

Monitoring of food security and 

nutrition based on rainfall. Developed to 

monitor how rainfall variability affects 

food availability. Information on 

markets issued quarterly through 

bulletins which are shared up to local 

level. 

Global (Atyang, 2014) 
https://dataviz.vam.wf

p.org/seasonal 

explorer/   

 

  

Flood early 

warning system 

(2014) 

A situational analysis project that was 

commissioned in 2014 to monitor flood 

water levels using sensors through 

collaborative efforts involving the local 

communities. The system however 

broke in 2016 and its therefore not 

functional. 

Butaleja 

district  

(Atyang, 2014) 
https://ugandaradionet

work.net/story/butaleja

-flood-warning-

system-breaks-down-

recorded on 9th June 

2019, retrieved 30th 

Sept 2019 

Flood Simulator A flood map simulator based on gauged 

water levels developed by Regional 

Centre for Mapping of Resources for 

Development (RCMRD) as a web-based 

tool. The system has been dormant. 

Manafwa 

and 

Malaba 

river 

basins 

http://crest.rcmrd.org/s

imulator/ 

Forecast-based 

Financing (FbF) 

pilot in Eastern 

Uganda 

Forecasts from GloFAS was used to 

trigger early actions before floods in 

Teso region. The Forecast-based Action 

(FbA) initiative was led by Red Cross 

Climate Centre and Joint Research 

Commission (JRC). Various actions 

were taken before floods of November 

2015.  

Piloted 

in 

Amuria 

and 

Katakwi 

districts 

(Coughlan De Perez 

et al., 2016; Jjemba 

et al., 2018) 

Up-scaling FbA 

mechanisms 

Initiative on FbA have been pioneered 

by IFRC where forecasts information 

from GloFAS is used to trigger the 

release of pre-arranged funding to 

support the pre-agreed early actions. 

Early Action Protocol (EAP) developed 

by Uganda Red-Cross Society to guide 

the implementation. 

15 flood 

prone 

districts 

in 

Uganda 

 

 

https://fews.net/east-africa/uganda-retrieved
https://fews.net/east-africa/uganda-retrieved
https://dataviz.vam.wfp.org/seasonal%20explorer/
https://dataviz.vam.wfp.org/seasonal%20explorer/
https://dataviz.vam.wfp.org/seasonal%20explorer/
https://ugandaradionetwork.net/story/butaleja-flood-warning-system-breaks-down-recorded%20on%209th%20june%202019
https://ugandaradionetwork.net/story/butaleja-flood-warning-system-breaks-down-recorded%20on%209th%20june%202019
https://ugandaradionetwork.net/story/butaleja-flood-warning-system-breaks-down-recorded%20on%209th%20june%202019
https://ugandaradionetwork.net/story/butaleja-flood-warning-system-breaks-down-recorded%20on%209th%20june%202019
https://ugandaradionetwork.net/story/butaleja-flood-warning-system-breaks-down-recorded%20on%209th%20june%202019
https://ugandaradionetwork.net/story/butaleja-flood-warning-system-breaks-down-recorded%20on%209th%20june%202019
http://crest.rcmrd.org/simulator/
http://crest.rcmrd.org/simulator/
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Among the recommendations from the study by United Nations Development Programme 

(UNDP) (Atyang, 2014) was the development of a roadmap to foster collaborations across the 

board, from the national to the district level to ensure coordination in disaster data collection 

and analysis. The second recommendation was on the development of a multi-hazard early 

warning system. A plan to actualise the development of the multi-hazard system was developed 

by NECOC which stipulates the key actors and relevant legislation for EWSs in Uganda 

(Lumbroso, 2016). Based on our interviews with disaster management institutions in October 

2020, the actual development is yet to commence.   

Studies in Africa shows that the implementation of EWSs is hindered by factors similar to 

Uganda. For example, in Namibia, the implementation of flood early warning system is 

hindered by various factors including undefined roles amongst institutions, unavailability of 

response plans at the local level and low forecasting capabilities among others (Moisès and 

Kunguma, 2023). Overall many countries in Sub-Saharan Africa are facing technical, financial, 

institutional and social challenges in the development of robust early warning systems (Perera 

et al., 2019). However, there are many opportunities that can be explored to improve the 

development of EWSs such as improving data availability and quality, taking advantage of 

technological advances in communication and dissemination and improving access to global 

forecasting system among others (Perera et al., 2019). 

Ultimately, each country should have an effective EWSs for major hazards in place to reduce 

the overall impacts of these hazards on the population. Such a system should issue credible 

hazard forecasts and warnings accompanied by targeted advisories on the likely impacts and 

the appropriate early actions to avert the significant effects (Cools, Innocenti and O’Brien, 

2016). This information should also be disseminated using suitable channels to enable access 

by all. Therefore, the system should inform the early action mechanisms and operational 

decisions among humanitarian organisations and communities while reducing the possibility of 

‘actions in vain’ (Lopez et al., 2020; Nidumolu et al., 2020). 

Climate variability is envisioned to result in more frequent and severe hydrometeorological 

events, with the highest impacts mainly directed to vulnerable households who depend on 

nature-based resources (CRED, 2021). In this context, it is essential to redefine the development 

of EWSs, shifting from top-down to more community-driven approaches that would ensure the 
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development of more sustainable and locally targeted EWSs. Community-led approaches are 

based on holistic engagements with at-risk communities and decision-makers. Therefore, they 

can be an effective way of ensuring that 1) barriers that hinder effective production, and use of 

EWI are identified across the user-provider landscapes and integrated within the development 

processes, and 2) data and information collected from the at-risk communities are used to 

develop local context information that can be integrated into EWSs to make them more locally 

targeted which then informs the design of tailored anticipatory actions. 

Throughout this thesis, the spotlight is on the local at-risk communities. These communities are 

recognised as key actors in disaster risk reduction under the Sendai Framework for DRR. Their 

needs and capabilities in dealing with disaster risks is therefore important. Scholarly literature 

shows that effects of climate variability such as extreme events (floods, drought, etc), high 

temperatures and rainfall variability are resulting to negative impacts on the lives and 

livelihoods of these communities (Apuuli et al., 2000; Hepworth and Goulden, 2008; Magrath, 

2008; Hussein, 2011; Sikhu and Jurgen, 2014; Berman, Quinn and Paavola, 2015 Cooper and 

Wheeler, 2017). For example, Kansiime, (2012) in a study on climate change adaptation in 

Eastern Uganda found that extreme events such as floods  affect both crops  and livestock yields. 

The resulting impacts from such events will, however, vary across communities and households 

due to the underlying social and economic factors that drive households to risks (Misselhorn, 

2005; Thornton et al., 2009; Frelat et al., 2016). 

These communities have their own ways of coping with such impacts. For example,  

communities may engage in various coping and adaptation strategies such as land and crop 

management (Mondal et al., 2015), off-farm activities (Shah and Dulal, 2015; Hussain et al., 

2016), improved access to information (John et al 2013) and improved extension services 

(Shisanya and Mafongoya, 2016; Wichern, van Wijk, et al., 2017) among others. These 

strategies are geared towards improving the resilience of the communities in dealing with the 

impacts of extreme events. In the next sub-section, the thesis sheds light on the communities in 

Katakwi District. These communities are the focus of this thesis; hence it is important to unpack 

their lived realities and how they deal with flood risks. 
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1.2.1 Local Communities in Katakwi District 
 

Katakwi district is in the North-eastern region of Uganda. The district covers an area of 

approximately 2500km2. The district landscape is generally a plateau with undulating slopes in 

specific areas. The population in Katakwi district based on the 2014 census was 165,928 out of 

which 57,401 (48.3%) are male and 61,527 (51.7%) are female (KDLG, 2017). Of the total 

district population, 2.38% are urban while 97.62% are rural dwellers. The main economic 

activities in Katakwi district are pastoralism, crop production and petty trade (KDLG, 2017). 

The highest percent of population (81.6%) in the district engage in subsistence farming. 

The district is prone to several hazards such as floods, drought, pest infestation, environmental 

degradation and cattle rustling among others (KDLG, 2014). Among these, floods are ranked 

number one based on its severity and areas affected. Seasonal floods and flash floods result to 

waterlogging across several sub-counties in the district (KDLG, 2014). According to the 

Katakwi District plan of 2017-2022, floods and waterlogging affects almost all sub-counties 

with the main ones being Ngariam, Ongongoja, Magoro, Usuk and Palam sub-counties. Some 

of the known effects of floods include school drop-out, food insecurity, health issues (outbreak 

of waterborne diseases), low income, loss of livestock, displacements of people and animals, 

damage to infrastructure among others (KDLG, 2017). Based on the 2014 population census, 

floods affect approximately 78% of the population. 

The communities in Katakwi district employ general coping mechanisms to deal with the effects 

of floods. Some of these strategies include laying logs to ensure access to flooded areas, digging 

ditches around their houses to prevent water getting inside, temporary relocation to upper areas 

and having improvised raised beds to store their harvests (KDLG, 2017). These strategies have 

been nurtured and passed on for generations, considering that the region has rich indigenous 

knowledge useful to guide appropriate coping strategies (Orlove et al., 2010; Egeru, 2012, 

2016). 

The research study in Katakwi district included respondents from the villages of Anyangabella, 

Kaikamosing and Agule across 3 sub-counties. The farmers discussions at the village sites were 

carried out using the Farmers Agri-Met Advisory Clinics (FAMVACs) approach, which was 

initially developed by UNMA to gather information from the communities on the use of weather 
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information (Ciampi et al., 2019). These discussions attracted community members with ages 

ranging from 18 to 60 years. The community members in the three villages have rich indigenous 

knowledge which helps them understand the changes in the weather patterns. During the study, 

various indicators of indigenous knowledge and their interpretation were noted (Table 2). An 

example use of indigenous knowledge to predict the weather and inform the coping activities 

is when the farmers know the rain is near when they site local birds’ species such as hornbill or 

if they site a greening local tree known as ‘ebule’ in Ateso language. The indigenous knowledge 

needs to be integrated with science to ensure informed decisions(Nkabane and Nzimakwe, 

2017). For example, although the farmers could be aware of the likelihood of rains, the exact 

start and end of the season as well as the expected amounts cannot be estimated using 

indigenous knowledge. Integration of indigenous and science can be achieved by ensuring 

communities are involved in the development of weather information and that feedback 

mechanisms are in place.  

Table 2: Indicators for Indigenous knowledge used by communities in Katakwi District: Source: 

Farmers discussions during the study.  

Indicators for Indigenous knowledge Interpretation 

Fogginess Dry season 

Concentration of clouds Rain season expected 

Drying of grass Arrival of dry season 

Winds blowing to West Dry season expected 

Winds blowing to East Arrival of rain season 

Tree leaves sprouting Rain season expected 

Appearance of birds locally known as 

arapaitelai/achobin birds flying in large  

numbers 

Rains are almost 

Hornbill bird (Esukusuk) making noise at 

dawn 

Rains have come 

Appearance of mushroom locally known as 

(Odilitaa) in bushes 

Rains are expected 
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1.3 Thesis objectives and structure 

The research is conducted in the context and as part of the NIMFRU (National scale IMpact- 

based Forecasting of flood Risk in Uganda) project. It aligns with the project's main aim of 

improving the targeting and communication of flood early warning information and response 

to support decision-making and enhance national resilience. 

The thesis guides the reader through the steps that would ensure the development of a locally 

targeted impact-based flood early warning system for Uganda. It presents some of the 

challenges experienced in Uganda in the provision and use of existing flood early warning 

information and opportunities for improving existing systems to address the needs of at-risk 

rural communities. Based on a case study in Eastern Uganda, the thesis employs a multi-

disciplinary approach to improve the different components of a people-centred EWS to ensure 

the most at-risk population is protected. First, information from the community and disaster 

management levels is used to understand the social science aspects of early warning information 

production and use. Second, non-traditional approaches for forecast verification using impact 

data show how data-scarce regions (regions that lack national flood forecasting systems and 

river gauge observations) can still enhance their early warning activities based on a skilful 

forecast from global systems. Lastly, livelihood information based on crop calendars and flood 

impacts is integrated within the existing EWS to make them more locally focused and ensure 

the design of variable trigger thresholds and targeted anticipatory actions. This thesis combines 

these perspectives to address the following research objectives:  

1. Identify the barriers and opportunities in the production/provision and use of flood early 

warning information for flood risk preparedness. 

2. Assess the usefulness of flood impact data relative to river gauge observations in 

verifying flood forecasts in data-scarce regions. 

3. Develop an impact-based flood early warning system for rural livelihoods using an 

impact-oriented approach. 

This thesis employs various methods to address the above objectives, including community 

engagements through a bottom-up approach initially developed by UNMA, interviews with 

disaster management practitioners, forecast verification, and information integration through an 
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impact-oriented method. An end-to-end process is used to investigate how flood early warning 

mechanisms being developed in Uganda can be improved to reduce the impacts on at-risk 

communities. The thesis is structured around three results chapters. 

Chapter 2 addresses the first objective of this research through a series of interviews and 

farmers' discussions.  The chapter proposes a more coordinated institutional response and flow 

of information that can identify barriers and opportunities in the production, provision, and use 

of flood early warning information (FEWI)1 across the provider-user landscapes. Using a 

bottom-up approach designed as Farmers Agri-Met village Advisory clinics (FAMVACs) 

(Ciampi et al., 2019), two use cases at the local smallholder community and the disaster 

management level were designed to identify these barriers, opportunities and solutions to ensure 

improved use of EWI to inform anticipatory actions. Further, a broader perspective of disaster 

management in Uganda is presented by looking at the actors (disaster data providers) and 

processes (DRR activities, data and information required, and data sharing modes). 

Chapter 3 addresses the second objective of this research. The chapter addresses the need to 

provide reliable forecasts to inform the development of early warning systems and support 

locally targeted anticipatory actions even in data-scarce regions. Building on findings from 

Chapter 2 (lack of a flood forecasting system and limited river gauge observations), the chapter 

investigates if flood impact data can be used in verifying global flood forecasts from GloFAS 

(Global Flood Awareness System) to build trust in their use in ensuring robust flood early 

warning mechanisms. The chapter also notes recommendations on how best these impact data 

can be improved and used to verify forecasts effectively across data-scarce regions and inform 

sector-specific anticipatory actions. 

Chapter 4 addresses the third objective through an impact-oriented approach. An impact-based 

trigger framework that integrates flood forecast information (usually used in hazard-based 

trigger systems) with local livelihood data is developed to improve the design of locally targeted 

early and anticipatory action mechanisms. Building on Chapters 2 and 3, the chapter 

demonstrates the framework's usefulness from a humanitarian perspective using the 

information on the crop calendar and historical flood timelines from Katakwi District to 

 
1 While we refer specifically to FEWI in this chapter, FEWI is a subset of weather and climate information (WCI) which 
would be required to inform flood risk management. In Chapter 2, we will however use WCI in the place of FEWI to help 
situate the work within the broader context of climate services. 
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improve the way flood danger thresholds and early actions are defined and targeted. Further, 

the broader applicability of the trigger system is explored by subjectively tweaking the trigger 

thresholds to inform various interventions from a livelihood perspective. 

Chapter 5 summarises the findings and the wider contribution of this research to existing 

literature in disaster management and flood impact-based early warning and highlights the 

scope for further work, including in the context of anticipatory action. 

The outputs presented in this thesis provide a holistic approach relevant to developing people 

centred EWSs. Figure 3 shows how the thesis results chapters contribute to the various 

components of an end-to-end EWS. First, the study contributes to the field of climate services 

by identifying the barriers in the provision and use of climate information using a more 

coordinated approach across the provider-user landscapes and providing solutions on how such 

barriers can be overcome to ensure effectiveness. Second, the study enhances hazard-based 

systems by defining an impact-based system that integrates forecasts with local information to 

provide locally targeted EWSs useful in prioritising early actions to protect lives and the 

livelihood sources of rural communities. Third, the study contributes to the forecast verification 

methods by introducing a new metric in the use of non-traditional approaches and less 

conventional verification data to verify flood forecasts which aligns with the current research 

by the WMO-Joint Working Group on Forecast Verification Research (JWGFVR). 

The work presented in Chapter 3 won the WMO award for the best new verification metric 

using non-traditional approaches (WMO, 2021a). The call for award was made by WMO 

through the JWGFVR. The author led the conceptualisation of the idea, data analysis and the 

development of the submission. Co-authors in the submission Andrea Ficchi and Elena 

Tarnavsky provided inputs for the submission. The first-place award was a fully paid trip for 

the author to attend the next forecast verification conference to present the work. The 

conference is yet to take place with delays attributed to Covid-19 travel restrictions. In addition, 

a blog post emanating from this work has also been produced and shared with a wide audience 

( see Mitheu, Tarnavsky and Ficchì, 2021). 
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Figure 3:  Flow diagram showing how the three result chapters contribute to the various 

components of an end-to-end EWS. 
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Chapter 2 

2 Barriers and opportunities in the production, provision, and use of Early 

Warning Information for Disaster Management across the provider-user 

landscapes 

 

In this chapter, data collected by other researchers has been used to inform the objective. 

Notably, the collection of qualitative data from the local communities was led by researchers 

from ECO-TRUST and UNMA. The author of the thesis contributions is on partial collection 

of data from local communities, design of the research at the national level, data collection at 

the national level, data analysis and writing.  

2.1 Background  

Disaster risk management is a sequence of actions undertaken to prevent or reduce the damages, 

loss of lives, and assets during a disaster and enable recovery after the disaster (Rawls and 

Turnquist, 2012). This process comprises four phases: mitigation, preparedness, response, and 

recovery (Khan, 2008). The heightened need to reduce the impacts of natural hazards on 

vulnerable communities has shifted more focus to pre-disaster actions such as mitigation and 

preparedness(WMO, 2021b). Mitigation actions are meant to reduce the long-term impacts of 

hazards and may include improving buildings and infrastructure and land-use planning. 

Preparedness activities are primarily short-term and may consist of prepositioning supplies 

(Rawls and Turnquist, 2012),  training communities on disaster risk reduction, awareness, and 

early warning so that people can take the necessary actions to save lives and protect assets. In 

addition, initial response activities have also become frequent, especially when there is no time 

to prepare before a disaster, including evacuation and relief services. 

Three main disaster actors are noted in the disaster risk management processes (Homberg and 

Neef, 2015). First, the professional responders are part of the professional community trained 

in disaster management. They include national and local government institutions, Non-

Governmental Organizations (NGOs), and national coordination and emergency centres. 

Second, the responding community consists of the local or an outside community who may 
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participate in the response though not trained to do so. Third, the affected communities are the 

people, households, or businesses who, in case of a disaster, may directly or indirectly be 

affected and would require immediate humanitarian assistance. These actors have a role to play 

in disaster management, and their holistic coordination is necessary to reduce the impacts of 

disasters on the population (UN, 2015). 

In this chapter, we present two use cases developed at the community and national disaster 

management institutions, respectively, as part of this PhD. The use cases apply a coordinated 

bottom-up approach to identify the barriers that hinder effective production, provision, and use 

of early warning information for effective disaster management and the opportunities to 

improve EWI provision and use across the provider-user landscapes. The first section (2.2) of 

this chapter presents findings from the community-level use case and part of the disaster 

management (DM) practitioners' use case (focusing on data and information preparedness) and 

forms our first paper. The second section (2.3) presents additional findings from the second use 

case, broadly focusing on the DM activities, data providers, data sharing methods, and 

challenges that hinder the effective implementation of the required disaster management 

activities. The main aim of this chapter is to identify the barriers that impede adequate provision 

and use of EWI and opportunities that can be explored to ensure useful EWI is available and 

accessible by the intended user.  

 

2.2 Identifying the barriers and opportunities in the provision and use of weather 

and climate information for flood risk preparedness: the case of Katakwi 

District, Uganda 

 

This section has been published in Frontiers in Climate- Climate Services with the following 

reference: 

Mitheu F, Petty C, Tarnavsky E, Stephens E, Ciampi L, Butsatsa J and Cornforth R (2022) 

Identifying the Barriers and Opportunities in the Provision and Use of Weather and Climate 

Information for Flood Risk Preparedness: The Case of Katakwi District, Uganda. Front. 

Clim. 4: 908662.doi: 10.3389/fclim.2022.908662. 
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The contributions of the authors of this paper are as follows; FM designed the research and 

collected the qualitative data at the national level, carried out the data analysis, and led the 

writing of the manuscript. CP led the community-level study and qualitative data collection 

design and assisted in writing the manuscript. RC, ES, and ET supported the research design 

and assisted in writing the manuscript. LC assisted in designing the qualitative research at the 

community level. JB assisted in collecting the qualitative data at the community level. All 

authors contributed to the article and approved the submitted version. 

 

The published article can be found in the thesis under Appendix A2.1. 

Abstract: The provision of weather and climate information (WCI) can help the most at-risk 

communities cope and adapt to the impacts of extreme events. While significant progress has 

been made in ensuring improved availability of WCI, obstacles hinder the accessibility and use 

of this information for adaptation planning. Attention has now focused on the ‘usability gap’ to 

ensure useful, and usable WCI informs practice. Less attention has, however, been directed to 

barriers to the active production and use of WCI. In this study, we combine two frameworks 

through a bottom-up approach to present a more coordinated institutional response that would 

be required to ensure a better flow of information from information providers to users at the 

community level and vice versa. The bottom-up approach was designed in the form of Farmers 

Agri-Met Village Advisory Clinics (FAMVACs) and Listening Groups (LG). Uganda 

Meteorological Authority (UNMA) initiated it to ensure connections between the information 

providers, the disseminators, and the communities. This approach is used to identify the barriers 

and opportunities in the production/provision and use of WCI for flood risk preparedness for a 

case study in Eastern Uganda. First, a use-case is developed for Katakwi District, where 

smallholder farming communities have recorded their coping practices and barriers to using 

WCI in practice. Second, online interviews with practitioners from disaster management 

institutions are used to identify barriers to the production and provision of WCI to local farming 

communities. Findings show that for providers, barriers such as accessibility and completeness 

of data hinder the production of useful WCI. In situations where useful information is available, 

the technical language used in the format and timeliness in dissemination hinder usability by 
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local farmers. Useful and usable WCI may not be acted on in practice due to costs or market 

availability, e.g., lack of access to improved seeds. 

Further, the study highlights possible solutions to bridge the identified gaps, including capacity 

building, fostering data collaborations across sectors, and data translation to simple advisories, 

among others. The study also presents the FAMVACs approach, which shows the importance 

of a more coordinated response with a shift of focus from the users of information only to a 

more inclusive understanding of the data and information gaps across the provider-user 

landscapes. We argue that this would contribute to more effective disaster management at both 

the national and local levels. 

2.2.1 Introduction  

Weather-driven shocks such as floods are becoming more extreme and frequent in many regions 

worldwide (IPCC, 2012). Rural at-risk communities suffer the worst impacts from these 

extreme events because of their dependence on natural-based livelihoods (Pricope et al., 2013). 

The provision of Weather and Climate Information (WCI) can help these communities cope 

and adapt to the impacts of these extreme events (Roudier et al., 2016; Amegnaglo et al., 2017; 

Hansen et al., 2019). This is because WCI can inform appropriate actions to improve 

preparedness and reduce impacts (Jones et al., 2015). For example, scholarly literature notes 

that farmers with access to timely WCI can plan their livelihoods activities, such as when and 

what to plant, and appropriate farm management activities that may result in reduced 

impacts(Coulibaly et al., 2015; Naab, Abubakari and Ahmed, 2019). 

Significant technological advancements have resulted in increased availability of WCI (Dinku 

et al., 2014; Hewitt et al., 2020). However, this has not translated to improved accessibility, 

especially across user groups (practitioners and communities) in Africa, where varied access to 

WCI is noted (Dinku, 2019; Vaughan et al., 2019). In addition, even if WCI is available and 

accessible, this does not necessarily mean the information is used to inform local decisions, as 

it may not address the information needs of specific users (Vaughan and Dessai, 2014; Naab, 

Abubakari and Ahmed, 2019). These obstacles, commonly termed as information ‘usability 

gap’ (Lemos, Kirchhoff and Ramprasad, 2012), have been identified as significant impediments 
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to the use of WCI to inform climate-related decisions at all levels (Flagg and Kirchhoff, 2018; 

Ouedraogo et al., 2018). 

 

In their study, Vincent et al. (2020) developed a framework that highlights three components 

that would close the information usability gap and promote the use of WCI for climate risk 

management. These components have been broadly categorized as ‘useful’ information, which 

requires an understanding of the specific users' needs and their decision-making contexts to 

guide in identifying what information is useful (Carr et al., 2019),  ‘usable’ information if it’s 

understandable by the intended user and is disseminated on time (Vincent et al., 2021) using 

appropriate communication channels (Barihaihi and Mwanzia, 2017) and an ‘enabling 

environment’ such as supportive institutions (Vaughan et al., 2017) to ensure that useful and 

usable information gets used in practice. 

The Vincent et al., (2020) framework builds on the climate services literature, including Lemos 

et al. (2012) framework on bridging the information usability gap. In addition, it builds on the 

understanding that climate information use broadly links the user and the producers by 

knowledge sharing and collaborations through avenues such as co-production (Vincent et al., 

2021). The three components, therefore, reflect both the supply and demand side of climate 

services towards ensuring more informed use of WCI for adaptation planning (Jones et al., 

2015).  

We, however note that to ensure more coordinated institutional responses (such as that which 

would be required pre- and post-disaster) (UN, 2015) and a better flow of information (i.e., 

from practitioner to community and vice versa), additional components are required. First, 

further, to having an enabling environment, additional support based on other underlying socio-

economic factors that influence how these communities cope may be necessary to ensure that 

the at-risk communities (‘users’ henceforth) actively use the information provided. For 

example, in a rural smallholder setting, having access to usable information may not necessarily 

translate to use in practice due to other individual or household social-economic factors such as 

income, education, and age  (Mittal and Hariharan, 2018; Shah et al., 2018, 2020; Petty et al., 
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2022).  Similarly, a bottom-up approach that links the information providers, the disseminators, 

and the communities would be required to ensure that the communities have a voice to interact 

and provide feedback on weather information use and their coping practices. 

Second, the production of useful information goes beyond data availability (Goddard, 2016). 

Other obstacles remain that could hinder the potential to produce and provide useful WCI, 

especially in the least developed countries. Essentially, decision-makers and information 

producers/providers (‘providers’ henceforth) require access to quality and credible ‘scientific’ 

data and information to fulfil the users' information needs and manage the potential risks 

(Hewitt et al., 2020). But the required data and information is often limited(Van Den Homberg, 

Visser and Van Der Veen, 2017) or inaccessible (Susha, Janssen and Verhulst, 2017; Dinku, 

2019).  In their framework, Van Den Homberg, et al., (2017) notes that being data-prepared can 

help reduce the impacts associated with extreme events if high-quality data that meets the 

providers' information needs are accessible before the disaster hits. The Van Den Homberg et 

al., (2017) framework focuses on five main components, which include; ‘datasets’ regarding 

data availability and accessibility, ‘data services’ regarding services offered and 

software/hardware required, ‘data literacy’ concerning the capability to transform the data to 

required information, ‘governance’ looking at legal and regulatory rules on data sharing and 

‘networking’ which involves having long-term data collaborations. These components 

collectively would ensure that the lead institution, for example, in disaster management, has all 

the required data and information to guide disaster-related decisions.   

In this study, we combine the two frameworks (Van Den Homberg, Visser and Van Der Veen, 

2017; Vincent et al., 2020) through a bottom-up approach to present a more coordinated 

institutional response and flow of information. The bottom-up approach was designed as 

Farmers Agri-Met Village Advisory Clinics (FAMVACS) and Listening Groups (LG) and was 

initiated by UNMA. The approach ensures communities have a voice in contrast to the top-

down approach (see Ciampi et al., 2019). This would allow better characterization of the 

barriers that hinder adequate provision and use of WCI across the provider-user landscapes and 

opportunities for improving the WCI use and uptake. In the context of this paper, we use WCI 

to refer to all information that would be required to prepare and respond to flood risks (including 
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but not limited to information on flood impacts, flood risks, hydrometeorology, socioeconomic, 

etc.). We have structured the study around three questions: 

1) What barriers hinder the production/provision of useful WCI in the context of the 

providers? How can we improve provision? 

2) What opportunities/barriers support/hinder the move from useful to usable information in 

the context of smallholder farmers? 

3) What barriers deter smallholder farmers from using useful and usable information in 

practice? What can be done to improve uptake? 

The study uses a bottom-up approach. Here, the bottom-up approach lets communities be 

involved from the beginning in all activities that support improved preparedness. In contrast to 

the traditional top-down approach in disaster management, this study allowed the flood-affected 

communities to record their accounts of how floods have affected them and their coping 

practices. Further, disaster management practitioners were also allowed to provide information 

on how they help at-risk communities prepare for disasters. At the local level, a case study in 

Katakwi district, Uganda, is used to give voice to the smallholder farming communities to 

record their coping practices, information needs, and the factors that hinder them from using 

the WCI to inform these coping practices. At the national level, online interviews with 

practitioners at disaster management agencies are used to understand how these agencies 

respond to the users' information needs and barriers to effectively providing the required WCI. 

2.2.2 Materials and Methods 

In this paper, we combine the two frameworks (Van Den Homberg, Visser, and Van Der 

Veen, 2017; Vincent et al., 2020) ( 

 

Figure 4) and use them to identify the barriers and opportunities in the production/provision and 

use of WCI through a case study in Uganda. Two use cases (more detailed below) are developed 

to help answer the research questions.  As noted in the literature, we recognize that one barrier 

to using WCI is a lack of an enabling environment (Vaughan et al., 2017). However, this paper's 
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detailed investigation of the institutional structures and disaster/climate policies that govern 

how disaster management activities are undertaken in Uganda was out of scope. This section 

provides an overview of the study area, the use cases, and data analysis methods. 

 

2.2.2.1 Study sites 

Katakwi District, the focus of this study, is in the Eastern region of Uganda and lies between 

longitudes 33° 48’ E - 34° 18’ E and latitudes 1° 38’ N – 2° 20’ N. Katakwi borders Napak 

District in the north, Nakapiripirit in the east, Amuria in the west and northwest, Soroti in the 

southwest, and Kumi and Ngora in the south (Figure 5). The landscape is a plateau with 

undulating slopes in specific areas and lies approximately between 1,036 and 1,127 m above 

sea level (KDLG, 2014). The district is characterized by two livelihood zones, i.e., crop-

livestock and fishing livestock. Agriculture is predominantly rain-fed, with two distinct rainfall 

seasons from March to May and September to November. The district experiences frequent 

heavy rains resulting in flooding, affecting crop yields (KDLG, 2014). Common crops in 

Katakwi include sweet potatoes, cassava, maize, peas, rice, groundnuts, and local vegetables.  

The district was selected in discussion with NIMFRU (National scale impact-based forecasting 

of Flood Risks in Uganda). NIMFRU is a project in Uganda to improve flood resilience through 

comprehensive flood impact assessments. The project is funded under the Science for 

Humanitarian Emergencies and Resilience (SHEAR, 2018) program. It complements the 

previous SHEAR project (Forecast for Anticipatory Humanitarian Action-FATHUM) by 

providing a new approach that incorporates various information required to deal with flooding 

effectively. The project aims to strengthen the capacity to interpret and use weather and climate 

information, livelihood and socio-economic information among others to inform flood 

preparedness at all levels, ensuring improved resilience to 

floods(https://walker.ac.uk/research/projects/nimfru-national-scale-impact-based-forecasting-

of-flood-risk-in-uganda/ ). 

The district suffers severe impacts from floods every rainy season. The vast majority (81%) of 

the population in the district earns their livelihoods through subsistence farming (KDLG, 2014). 

As a result, poverty levels are high, with 88% of the population living below the poverty line 

https://walker.ac.uk/research/projects/nimfru-national-scale-impact-based-forecasting-of-flood-risk-in-uganda/
https://walker.ac.uk/research/projects/nimfru-national-scale-impact-based-forecasting-of-flood-risk-in-uganda/
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(Kagugube et al., 2017). Project stakeholders include the Red Cross Climate Centre (RCCC), 

National Emergency Coordination and Operation Centre (NECOC), members of Parliament, 

local academic institutions, and civil organisations.  

 

 

Figure 4: Conceptual framework used to identify the barriers and opportunities in the 

production/provision and use of WCI across the provider-user landscapes. Source: adapted from 

Vincent et al. (2020) and Van Den Homberg, Visser and Van Der Veen (2017) and modified 

by authors. 
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2.2.2.2 Developing the Use-Cases 

This study was undertaken as part of the community preparedness to flood risks initiative within 

the NIMFRU project (NIMFRU, 2018). As part of the Science for Humanitarian Emergencies 

and Resilience (SHEAR, 2018) program, the NIMFRU project set out to improve the targeting 

and communication of flood warnings and response to communities in the Katakwi District. 

The project team developed the first use case targeting the flood-affected communities in three 

villages (Anyangabella, Agule, and Kaikamosing) in the Katakwi district (Figure 5). The use 

case was used to conduct field research to gain a deeper understanding of the livelihoods, coping 

capacities, and practices of groups within the study communities, barriers to coping, and their 

responses to flood hazards (a combination of quantitative and qualitative methodologies was 

used to inform this work, including quantitative livelihoods assessments, using the Household 

Economy Approach (HEA) (Seaman et al., 2014). 

Fieldwork was carried out between February 2019 to February 2020. Initial work ( data 

collected from February 2019 to August 2019) informed the creation and the representation of 

two interrelated communication platforms: The Farmer Voice Radio (FVR) Listening Groups 

and the Farmer Agri-Met Village Advisory Clinics (FAMVACs) (Ciampi et al., 2019). The 

well-established FVR approach complemented the new Uganda National Meteorological 

Authority (UNMA) led FAMVAC initiatives and led to the design of a novel methodology to 

ensure that both communication platforms provided a space for information needs and priorities 

to be identified locally. The platforms also facilitated open dialogues between community 

members and relevant district officials, providing a ‘vertical’ channel through which 

communities could feed their concerns and priorities directly into the Ugandan disaster response 

system. In addition, the methodology carefully ensured that there was relevant representation 

from both district and national authorities and that these initiatives were approved by NECOC 

and led by UNMA and the local non-governmental Organisation (NGO) Eco-Trust, to establish 

contextual validity, national ownership, and future sustainability. By the end of the fieldwork 

(February 2020), a total of 18 FAMVACs had taken place (6 in each target community) with 

an average participation of 200 local community members, and 20 individual episodes of the 

FVR programme were aired, reaching an estimated 67,000 people across rural Katakwi. 

Qualitative Field data collected from September 2019 to February 2020 using the developed 
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FAMVACs methodology have been used in this paper and are explained further in the following 

subsection. 

The second use case involved the DM agencies at the national level. The focus was to 

understand how these agencies respond to the users' information needs, as well as to identify 

any gaps that hinder the effective production and provision of useful WCI. The sampling of the 

respondents was done through Purposive sampling techniques (Mohsin, 2016), which allowed 

us to choose the respondents based on predefined criteria and intended purpose. For this case, 

we considered national institutions and NGOs participating in Uganda's preparedness and 

response to natural disasters2. A stakeholder mapping exercise allowed us to understand 

organisational roles and mandates before selecting them for interviews. This exercise showed 

that over 25 organisations (Appendix A2.2) are involved in disaster management in Uganda. 

However, due to Covid 19 restrictions and response responsibilities, only 14  of these 

organisations were available to participate in the interviews.  

 
2 Here, we refer to all national-level institutions who fall into any or all these recognized stakeholders’ categories 

(data collectors, data analysers, intermediaries, decision-makers) and are responsible one way or another in 

collection, analysis and production of disaster information. 
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Figure 5: Location of the study sites in Katakwi District, Uganda 

 

2.2.2.3 Data collection 

Data collection was undertaken separately for the affected communities and the DM agencies.  

At the community level, fieldwork, led by Eco-trust Uganda using the FAMVAC toolkit, took 

place over six months between September 2019 and February 2020. The fieldwork exercise 

gathered information from the flood-affected communities through farmer's discussions and 

semi-structured interviews (see Appendix A2.3 for sample interview questions). The data 

collection exercise occurred in three villages identified during the initial NIMFRU project 

fieldwork. In addition, we conducted 26 oral 1-on-1 semi-structured interviews with farmers in 

the three villages. 
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Additionally, we held 18 farmers’ discussions (6 from each village) involving a large group of 

farmers (each farmers’ group consisted of approximately 70 farmers). The interviews and 

discussions were done during the main rainy season. All interviews and discussions were 

carried out in the local language, ‘Ateso’, with an interpreter and were subsequently transcribed. 

At the DM level, data collection took place from October 2020 to December 2020 through 

online semi-structured interviews. A staged process was used where the first stakeholders 

mapping exercise was conducted based on the predefined criteria (see section 2.2.2.2). The 

second step involved sorting and identifying how many informants would be required from 

these institutions based on the number of departments and their roles. For example, an 

institution like Uganda National Meteorological Authority has both a forecasting and data 

centre; hence more than one informant would be ideal. The third step involved contacting the 

institutions to provide the key informants to participate in the interviews. In total, 14 institutions 

(see Table 3) took part in the interviews.  Interview questions were framed around key themes 

such as their disaster management activities, information required, and the barriers to fulfilling 

users' information needs (see Appendix A2.4 for sample interview questions). For anonymity, 

direct quotes from disaster management practitioners have been denoted with the 

pseudonym Disaster Respondent (DR). 

Table 3: Institutions that took part in the online semi-structured interviews. 

Name of the Institution/department Type 

1. Ministry of Water and Environment (MWE) Government 

2. UNMA- forecasting unit Government 

3. Katakwi District office Government 

4. Office of the Prime Minister (OPM)-Climate Change 

Department 

Government 

5. OPM-Disaster Risk Reduction Government 

6. MWE-Water Resources Department Government 

7. NECOC Government 

8. UNMA-Data Centre Government 

9. Uganda Red Cross Society NGO 

10. Humanitarian Open-Street Mapping Team (HOT) NGO 

11. World Vision _Uganda NGO 

12. RCCC NGO 

13. Makerere University Research 

14. Africa Disaster Reduction Research and Emergency 

Missions (ADRREM) 

Humanitarian indigenous NGO 
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2.2.2.4 Data Analysis 

The software package Nvivo 12 for MS Windows (QSRInternational, 2018) was used to analyse 

the data from the local communities and disaster management practitioners. The Nvivo 

programme, unlike manual methods of qualitative data analysis, offers the user an intricate, 

methodical, and iterative data interrogation process (Jackson and Bazeley, 2019). Data analysis 

in Nvivo is done through a content analysis approach where the mode of analysis can be either 

inductive or deductive (Elo and Kyngäs, 2008; Mayring, 2014). The inductive approach is used 

when the researcher has limited or no theory on the research outcome (Mayring, 2014) and 

entails letting the themes emerge from the raw data directed by existing study components 

(Harding, 2018). The deductive approach is based on a predetermined structure guided by 

previous findings, literature review, or an existing conceptual framework (Hsieh and Shannon, 

2005; Mayring, 2014). In this study, we base our analysis on a combination of existing literature 

and frameworks on climate services and data preparedness (Van Den Homberg, Visser and Van 

Der Veen, 2017; Vincent et al., 2020) (Figure 4) in a case study context hence the deductive 

content analysis approach is used to analyse our research data. 

Deductively, the following steps were followed. First, the categorization matrix based on 

themes from the framework presented in  

 

Figure 4 was developed. For this case, an unconstrained matrix was used to allow any other 

emerging concepts to be captured  (Elo and Kyngäs, 2008). Table 4 shows the themes used in 

the categorization matrix based on our research aim.  Second, the familiarisation phase was 

conducted. This involved reading through the transcripts to become aware of the ideas and 

words used by the respondents before coding. We then reviewed all the transcripts and coded 

them into the corresponding themes while allowing the inclusion of any other emerging 

categories (Elo and Kyngäs, 2008). For information that did not fall into any existing themes, 

coding was done using words and phrases that the respondents used in their transcripts, ensuring 

minimal misinterpretation. Coding was done separately for the community interviews and the 

disaster management interviews. However, the same themes were used.  
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The analysis process has been explicitly explained and the themes used are supported by 

existing literature. The data has also been explicitly linked to the results from the analysis. In 

addition, to ensure the validity of the coding process, two approaches have been used; visual 

representation (Siccama and Penna, 2008) and data scoping (Richards, 2004). For the visual 

representation, visual captures of the coding process have been done to authenticate the various 

steps used in coding (Appendix A2.5, A2.8). Scoping approaches using text query and matrix 

coding tools in Nvivo have been used to check coding validity (Richards, 2004). These tools 

allow the identification of the commonly used words in specific themes relevant to coding.  For 

example, through matrix coding, the word ‘accessibility’ was mentioned in 9 out of 14 

respondents (Appendix A2.6), with the majority coming from the government and NGOs 

(Appendix A2.7). In addition, direct phrases/words from the respondents (such as ‘improved 

seeds, early harvesting) were used as code sub-categories which reduces misinterpretation 

(Richards, 2014). Using the text query tool in Nvivo, we also verified if the phrase ‘improved 

seeds’ used as a sub-category was relevant for coding.  Results show that the exact phrase was 

mentioned in 8 out of 9 transcripts from farmers’ interviews (Appendix A2.9). Furthermore, the 

Phrase was mentioned more than once in five out of the nine transcripts. This shows that using 

the same phrase in coding is relevant to ensure validity. 

Table 4: Categorization matrix showing the themes used in the coding of data in Nvivo 

Themes Barriers to 

producing useful 

information 

Opportunities to 

produce usable 

information 

Barriers to 

moving useful 

to usable 

Barriers to use 

in practice 

To identify the barriers and 

opportunities in the 

production/provision and use 

of WCI 
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2.2.3 Results 

In this section, we present the outputs from the research data analysis based on broad themes 

identified during the coding and the research questions. 

2.2.3.1 What are the barriers to producing useful WCI? 

The DM practitioners expressed that most of the data required to prepare for a disaster are 

available. These datasets include weather and climate data (rainfall, temperature, river flow) 

and risk data (vulnerability, exposure, hazard). The weather data is provided by UNMA, while 

disaster risk data comes from various institutions, including NECOC and the Uganda Bureau 

of Statistics (UBOS). These data support the main activities carried out during preparedness 

and response to flood risk. The main disaster preparedness activities are disseminating weather 

and climate information and identifying flood risk areas. 

Although ‘scientific’ data is available, transforming these data into necessary and useful 

information is often hindered by various factors, as reported by DM practitioners. First, these 

data are not easily accessible since they are held by individual institutions that mandate data 

collection and production. Second, a memorandum of understanding is often required between 

these institutions to facilitate data sharing. Third, due to institutional rules and regulations, the 

data sharing process can take longer than expected, affecting the preparedness and response 

activities.  

“Data from most institutions is not readily accessible due to institutional rules and 

guidelines on data sharing. The institution often demands a memorandum of 

understanding between the two institutions before sharing, which can delay the process 

by up to 2 months.  [DR01, DR04]” 

Second, the data available lack the level of detail required for comprehensive risk assessment 

at the local level (most data do not cover the village level). For example, most of the risk 

indicators, such as those that would be required to understand the vulnerability of the 

communities to disasters, vary in spatial coverage; some go up to sub-county while others go 

up to county level, with none covering the village level. Weather data also does not fully 

represent the situation due to limited and scattered weather stations.  
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“There are gaps in the data available for example, the risk atlas covers up to district level 

and doesn’t cover parishes and villages” [DR03]. 

“Weather Information is generalised to a vast area, but the farmers need localised 

information.” [ DR014]. 

Third, not all the available data, especially on hazards and vulnerability, are complete. In 

addition, some of the risk indicators, such as the data on poverty levels, population density, and 

literacy levels, are not up to date, mainly if they depend on national census data. This affects 

the development of up-to-date risk layers. The lack of a national flood forecasting system also 

affects the quality of information produced for flood risk management.  If global flood forecast 

information is to be used to inform preparedness, it should be verified3 first for reliability. 

Although the development of the community Risk Assessment (CRA) framework is underway 

with support from the 510 group of the Netherlands Red Cross (NLRC) )(NLRC, 2022), it is 

still hampered by the limited data available. The DM practitioners reported that this is based on 

secondary data and does not include any data collected from the grassroots level.  

“Verified flood information is required to inform disaster management. Many global 

sources are available, but they need to be verified by the Ministry of Water and 

Environment before use” [DR02]. 

“Flood forecasting capacity is low in the country. Therefore, they forecast rain and not 

floods” [DR012]. 

Lastly, institutions that have a role in transforming data into the required information noted that 

they have the required skills to do that. However, frequent capacity building to keep up with 

evolving technology in climate science, such as forecasting and forecast evaluation skills, is 

required. Figure 6 shows the most common barriers to developing useful WCI. 

 
3 Verification here means that the flood forecasts information from global sources should be compared with 

ground-based river gauge observations or historical flood timelines to ensure that they capture the flood situation 

of the location 
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Figure 6: Barriers that hinder the production of useful WCI. 

 

2.2.3.2 What are the opportunities and barriers to ensuring useful information is usable? 

Understanding the users' information needs presents an opportunity to develop usable 

information. From our study, various information needs for the smallholder farmers have been 

identified based on the coping practices that the farmers undertake during flood preparedness. 

These information needs have been grouped into weather and climate, agricultural practices, 

and physical access to safe locations (Table 5). The information needs have also been grouped 

according to when it would be required. For example, the dynamic category includes 

information that would require an update every season. The second category captures situations 

where the dynamism of information would depend on the season. For instance, the location of 

safe areas may change depending on the magnitude of flooding experienced. What to plant and 

when to harvest will also depend on the rainfall factors such as duration, onset, etc.  

Useful information such as weather information is available and accessible to local farmers. 

However, the information does not meet farmers’ needs due to various factors. First, the weather 

information is packaged in a technical format and disseminated in English, making it hard for 

farmers to understand and use. For example, though the weather bulletins produced by UNMA 

are available through the district office, farmers cannot utilise them, especially if they do not 

have any advisories or are not interpreted in their local language. 
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Second, the timing of information dissemination is often unfavourable to local farmers. For 

example, the farmers and DM practitioners reported that information should reach the farmers 

1-2 months before the start of the season to help them prepare. In addition, since the information 

is issued quarterly, with frequent updates, sometimes the local farmers do not receive these 

updates to help them keep up to date with the changes in the weather patterns.  

Third, the DM practitioners working at the local level reported that communication and 

dissemination of WCI are often exclusively top-down. Therefore, communities cannot share 

any feedback with the producers and the decision-makers. Table 6 lists these challenges and 

quotes from farmers and DM practitioners. 

 

Table 5: Categorization of farmers' information needs based on when they are required. 

Dynamic Information 

(seasonally) 
Dynamic (depends on the season) 

Weather and climate 
● Rainfall magnitude, 

intensity, timing 
● Rainfall predictions 
● Flood duration 
● Flood timing 
● Inundated areas 
● Risk areas 
 

Agricultural practices 
● When to harvest 
● Types of seeds (improved, early 

maturing, water-tolerant, etc.)   
● Post-harvest handling methods 
● Land management practices 
● Livelihood diversity methods 

 
Safe locations & their accessibility 
● Shelter for animals 
● Shelter for people 
● Agrovet locations 
● Drinking water locations 
● Location of health facilities 
● Road’s accessibility 
● Market information 
● Market accessibility  
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Table 6: Barriers that hinder useful information from becoming usable in the context of 

smallholder farmers. 

Theme Frequency Meaning Evidence (DM 

practitioners) 

Evidence(farmers) 

Technical 

language 

6 The language used 

to produce and 

disseminate the 

weather 

information 

“The weather 

information is 

technical, and they 

don’t understand what 

normal and above 

normal means” [ 

DR014]. 

“We produce weather 

information but to help 

the communities 

understand, we need to 

translate the 

information into local 

languages” [ DR08]. 

 

“Climate and 

weather bulletins are 

available at sub-

county offices; 

however, these are 

not easily 

interpretable by the 

farmers” [ Farmers: 

3 villages]. 

Lead 

time(timely) 

5 The time between 

when the 

information is 

produced and when 

it's required 

“Farmers require 

weather information 

two months before the 

start of the season to 

help them plan the 

activities” [DR06] 

“We need weather 

information on time 

for proper planning 

and to help choose 

which crops to 

grow” [Farmer: 

Kaikamosing 

village] 

Top-down 

approach 

4 Communication 

and dissemination 

of information is 

from the producers 

to the users only 

“Communication is 

top-down, and 

communities do not 

share their 

information” [DR06]. 

 

 

 

2.2.3.3 What are the barriers to the use of WCI to inform coping practices? 

Smallholder farmers know the recommended coping practices for preparedness for floods. The 

most common is how to protect their crops before flooding, including early harvesting, post-

harvest handling, and planting improved seeds. This is followed by ensuring their safety 

through activities such as clearing bushes and draining water from their compound. Activities 

to protect livestock before floods include vaccination, improving animal shelters, and buying 

improved breeds. On the other hand, farmers in the study villages did not engage in many 
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activities to enhance financial security, such as belonging to saving societies. Figure 7 

highlights all the coping practices the farmers in Katakwi identified, while Table 7 shows the 

most common coping practices based on the frequency. 

Although the farmers were aware of the recommended coping practices, the actual 

implementation of these practices was hindered by various factors. These include agricultural-

related challenges such as the lack of improved seeds and other farm inputs. In addition, farmers 

in Katakwi do not have access to proper post-harvest handling kits to store their crops. Most of 

these challenges are associated with the social-economic capabilities of these communities, 

which we were unable to analyse further within the scope of this study. 

Second, environmental factors such as the invasion of desert locusts and strong winds were 

identified as challenges to implementing coping practices. Third, farmers noted that age and 

disease outbreaks also derail the necessary coping practices. Figure 8 shows the common 

challenges affecting the implementation of the coping practices. 

Figure 7: Coping practices used by flood-affected communities in the three villages 

(Anyangabella, Kaikamosing, and Agule) in Katakwi District, Uganda 
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Table 7: Common coping practices that farmers undertake and their meaning. 

Activity Frequency Meaning    Evidence 

Farm 

management 

practices 

     27 Practices such as 

contour ploughing, 

mulching pest control, 

crop rotation and 

making manure 

“My garden supported 

increased yields because I 

learned how to make manure” 

[ Farmer: Kaikamosing 

village]. 

Planting 

improved seeds 

     25 Planting crops that can 

survive forecasted 

rainfall, e.g., early 

maturing, water 

tolerant crops 

“I was able to decide which 

crops to plant based on the 

rainfall information 

provided” [ Farmer: 

Anyangabella Village] 

Securing houses       6 Building strong houses 

using materials such as 

bricks, damp proof 

course (DPC). 

“I used DPC for the 

foundation of the house to 

make it strong” [Farmer: 

Agule Village] 

 

 

 

Figure 8: Barriers to implementing coping practices across the three villages (Anyangabella, 

Kaikamosing, and Agule) in Katakwi District, Uganda.
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2.2.4 Discussion 

While the role of WCI in smallholder farmers’ decision-making is now common knowledge 

(Roudier et al., 2014; Coulibaly et al., 2015), the understanding and use of WCI by farmers 

have not been very effective, especially where it does not meet their specific information 

needs (Carr et al., 2019). In addition, developing useful information is not only contingent 

on data availability (Goddard, 2016) but can also be hindered by various factors from the 

providers’ side. Therefore, developing useful and usable WCI requires a more coordinated 

flow of information from the providers to the users and vice versa to understand the barriers 

that hinder the provision and use of WCI. In this research, we have combined two 

frameworks through a bottom-up approach (FAMVACs method) to identify the barriers and 

opportunities across the provider-user landscapes in the production and use of WCI for a 

case study in Uganda. The approach used in this study to identify the barriers has broader 

applicability across most natural disasters, where a more coordinated response and flow of 

information would be required to understand the gaps in the provision and use of WCI for 

disaster management. Here, we first discuss the common barriers that hinder the 

production/provision and use of useful and usable WCI at the local level and the potential 

ways to address these barriers. We then highlight any future work that would be required to 

improve the use of WCI at the rural level. Figure 9 shows the various components for a 

coordinated institutional response and flow of information towards ensuring; that 1) useful 

information is produced, 2) useful becomes usable, and 3) usable is used in practice based 

on the findings from Uganda. 

2.2.4.1 Ensuring the production/provision of useful WCI 

The development of useful information spans beyond the data available to include other 

factors. Our findings show that barriers such as accessibility, completeness, and granularity 

of the data may hinder the development of useful information from the providers’ side (see 

Figure 6). These dimensions are commonly used to check the quality of the available data. 

For example, they have been used to develop the data preparedness index (Van Den 

Homberg, Visser and Van Der Veen, 2017) and by other international organisations in data 

quality assessments to understand how prepared a country or an institution is in disaster 

management activities (WorldBank, 2012). These factors will, however, vary according to 

the context. For example, a study by Dinku (2019) found that the availability and 

completeness of climate data vary across Africa due to the scarcity of weather stations. In 

addition, the limited accessibility of available data has been attributed to the legal 
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regulations governing how institutions share data, and the high costs levied to access the 

data.  

Therefore, there is a need to understand the existing data gaps and how they can be addressed 

to ensure development of useful information. The data quality dimensions noted above, 

including recency and reliability, can be used to assess these gaps (Van Den Homberg, 

Visser and Van Der Veen, 2017). In Uganda, most of the required data to inform disaster 

preparedness is available. However, the accessibility of these data is hindered by a lack of 

coordination between the various institutions involved in disaster management, which 

means data is developed and managed by individual institutions (Atyang, 2014; Lumbroso, 

2018).  

 

Figure 9: Components that would be required to achieve a more coordinated institutional 

response and flow of information to ensure useful and usable information is 

produced/provided and used in practice: the component headings have been adopted from 

Vincent et al. (2020) and  Van Den Homberg, Visser and Van Der Veen, (2017)while their 

contents are based on findings from Uganda   
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Access to data that meets the required quality dimensions can help bridge the providers' 

information gap (Homberg, Monné and Spruit, 2018) and ensure that useful information is 

developed and made available for timely disaster preparedness and response. One way to 

ease data accessibility would be by embracing technology in data sharing, for example, 

through multi-sector platforms such as the one developed by Cornforth et al. (2018). 

Fostering data collaborations across sectors can also help ensure that the required data is 

easily accessible (Susha, Janssen and Verhulst, 2017). 

2.2.4.2 Ensuring useful WCI is usable. 

Useful WCI becomes usable if it meets the information needs of the users. User needs are 

context-specific and evolving and will vary depending on livelihood type (Carr and Owusu-

Daaku, 2016), geographical location, and gender, among others (Barihaihi and Mwanzia, 

2017; Carr and Onzere, 2018). This means that although useful climate information is 

becoming increasingly available (Hewitt et al., 2020), its usability will require a constant 

context-specific understanding of the climate information needs of the users to ensure that 

the information is tailored to their needs. For example, in the Katakwi district, farmers 

require information on weather, climate, and appropriate agricultural practices (see Table 5) 

to inform their coping practices. This is also consistent with findings across Sub-Saharan 

Africa on the use of WCI to inform agricultural practices (Amegnaglo et al., 2017; Nyadzi 

et al., 2019). Farmers with access to WCI tailored to their needs can benefit from the 

required coping and adaptation strategies (Singh et al., 2018; Vaughan et al., 2019).  

The WCI available and accessible by farmers in the Katakwi district are not timely (Vincent 

et al., 2021) and are too technical for them to understand and use(Barihaihi and Mwanzia, 

2017; Nkiaka et al., 2019). For example, farmers would require weather information with a 

lead time of 1 to 2 months before the season's onset to inform practices such as acquiring 

the required seed variety (Amegnaglo et al., 2017). In addition, the weather bulletins issued 

by UNMA come in English, and the farmers would need translation to make them usable. 

Efforts to help translate the weather information are already seen under the collaboration 

between UNMA and local NGOs which can have a positive impact (Ouedraogo et al., 2018). 

Furthermore, fostering communication between the users and providers can help understand 

the WCI needs of the users and barriers that make useful information unusable. Ways to 

make the information usable, including capacity building (Conway et al., 2017), 

interpretation of the information into simple advisories (Harvey et al., 2019), and co-
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production (Vincent et al., 2021) can then be explored based on the target user. Overall, 

engaging the users from the start in the production of WCI can help ensure the information 

is usable and trusted, boosting uptake (Nkiaka et al., 2019). However, the extent to which 

these solutions can be implemented will depend on other factors. Scholarly studies have 

shown that limited financial and human resources can limit the local institutions' 

preparedness. These factors should therefore be considered on top of the data preparedness 

factors to ensure that useful information is translated into usable information. 

2.2.4.3 Ensuring usable WCI is used in practice. 

Availability and accessibility of useful and usable WCI by the target user do not necessarily 

translate to the actual use to inform coping practices. Although smallholder farmers may be 

aware of the coping practices to undertake (Berman, Quinn and Paavola, 2015; Shah et al., 

2017; Wichern, Wijk, et al., 2017), studies have shown that one of the barriers to the use of 

WCI in practice is the lack of an enabling environment such as supportive institutions 

(Vaughan et al., 2017) to support adaptation planning. Other barriers, such as the users' 

social-economic capabilities (age, income, health, etc.), can also hinder use(Mittal and 

Hariharan, 2018; Shah et al., 2020). This means that even though useful and usable 

information that meets users' needs is provided, the actual uptake of this information to 

inform coping practices will be context specific. For example, in this study, farmers in the 

Katakwi district cannot afford the agricultural farm inputs required, such as improved seeds 

(Fisher et al., 2015), to enable them to undertake the recommended coping practices. Other 

factors noted include limited land and inadequate farm tools (Tall et al., 2014). These factors 

have also been linked to financial resources to enable the farmers to undertake these coping 

activities (Shah et al., 2017). 

Farmers can derive many benefits from using WCI (Tarchiani et al., 2017; McKune et al., 

2018; Ouedraogo et al., 2018). Hence, the barriers related to the socio-economic capabilities 

of the users and how they affect coping and adaptation should be identified so that the 

necessary support is provided (Petty et al., 2022). This could be done through existing 

institutions where interventions such as giving cash or subsidised farm inputs can be 

introduced (Assan et al., 2018). In addition, encouraging farmers to be part of farm-based 

organisations can help boost the uptake and use of WCI. These facilitate access to the 

required capital to support coping practices (Amegnaglo et al., 2017; Tarchiani et al., 2017). 
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2.2.4.4 Improving the uptake of WCI among local farmers 

Overall, the disconnect between the users and providers of WCI can result in ineffective use 

of WCI to inform local-level decision-making (Lemos, Kirchhoff and Ramprasad, 2012; 

Singh, Dorward and Osbahr, 2016). A first step towards ensuring effective use would be 

identifying barriers that hinder effective production/provision and use of WCI across the 

provider-user landscapes. By combining two frameworks (Van Den Homberg, Visser and 

Van Der Veen, 2017; Vincent et al., 2020),  through a bottom-up FAMVAC approach, this 

study provides a more coordinated institutional response that would ensure a shift of focus 

from only the users to a more inclusive approach where even the data and information needs 

of the providers are identified. This would make it easy to characterize the gaps from both 

levels more dynamically and ensure that the necessary support is provided. For example, 

findings from practitioners in Uganda indicate that the skills to work on ‘scientific’ data are 

available, but as technology in the production of WCI changes, continuously institutional 

capacity building will be necessary (Dinku, 2019; Mataya, Vincent and Dougill, 2020) to 

ensure that they can keep up with the demand for useful WCI. 

The field of disaster risk management is shifting towards impact-based forecasting and 

forecast-based actions (Coughlan De Perez et al., 2016; WMO, 2021b). Interventions that 

target the at-risk communities should therefore consider their information needs, coping 

practices, and social-economic capabilities to ensure the design of more tailored 

interventions. In addition, understanding the capabilities of the information providers and 

the gaps that may hinder effectiveness in producing the required useful information will be 

essential to ensure a more coordinated response to the user needs. As the impacts of weather-

driven shocks on rural smallholder communities increase, they will continue to demand 

relevant and timely information to support their coping practices (Hansen et al., 2019). The 

providers will also need to be supported to meet these information needs. The potential 

benefits of WCI can be realised by understanding the barriers to production and use of WCI 

at different levels and promoting required interventions to improve disaster preparedness 

and response activities. For example, through promoting coordination and collaborations 

among multiple providers to ease data accessibility (Susha, Janssen and Verhulst, 2017) as 

well as ensuring that the needs of the users and barriers that affect effective utilisation of 

WCI are understood and streamlined into the disaster management plans to support 

community preparedness (Nurye, 2016). 
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2.2.4.5 Future work 

Identifying barriers that hinder effective provision and use of WCI can inform the design of 

the required interventions. For example, a barrier such as data granularity (lack of data at 

the local level) can trigger support for frequent data collection at the local household level.  

Methods that are applicable based on context can then be assessed using criteria such as the 

one developed by Alkire & Samman (2014). In addition, calculating the data preparedness 

index (Van Den Homberg, Visser and Van Der Veen, 2017) based on the quantifiable data 

quality dimensions can also help shed light on the improvement required to ensure that a 

country is prepared to undertake timely preparedness and response activities. 

Barriers because of the social-economic capability of the users would also call for more in-

depth methods to quantify the capability of these communities to undertake the coping 

practices and understand the type of support that would be required. For example, further 

research could look at an in-depth quantitative analysis of the household social-economic 

characteristics (sources of income, expenditures, health, age, etc. ) such as that provided by 

HEA assessments (Seaman et al., 2014; Petty et al., 2022) and individual household surveys 

(Shah et al., 2020). Such an analysis can shed light on the household’s capacity to undertake 

the various coping practices, the level to which these households may require external 

support, and the type of support needed. In addition, categorising the different coping 

practices stratified by wealth groups would also be essential to safeguard poor households 

against high-cost practices that may compromise their ability to cope in the future (Heltberg, 

Jorgensen and Siegel, 2009; Gautam and Andersen, 2016). 

We did not get a chance to look at the disaster management structures and policies that 

govern how disaster-related activities are undertaken in Uganda. A thorough desktop study 

would therefore form part of future work to understand Uganda’s plans for disaster risk 

reduction (DRR), including how various institutions coordinate to ensure emerging issues 

on disaster management are streamlined into the development process. Uganda has a DRR 

policy approved in 2011(OPM, 2011) which stipulates the roles of various local and national 

institutions in addressing disasters. However, a study by Ampaire et al., (2017) notes that 

the district and local level actors are often not included in implementing various policies.  

With climate variability expected to result in more extreme events, ensuring that the existing 

policies can still inform the required interventions is important. In addition, as we shift 

towards more locally targeted interventions, coordination between local and national 
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institutions would be required to ensure that the needs of the most at-risk communities are 

centre in designing and implementing the DRR policies. 

2.2.5 Conclusion 

The study findings have shown that the provision of useful and usable WCI spans beyond 

understanding the users' needs -- for this case, the farmers -- to include the providers' data 

and information needs and the users' capabilities to use the information to inform practice. 

Ensuring that useful information is available, usable, and used in practice by the intended 

users is, therefore, an integral part of an effective disaster management plan. The barriers 

and opportunities to achieve positive impacts in using WCI should consequently be 

continuously assessed to ensure that developed WCI meets the needs of the potential users. 

This study has provided a more coordinated institutional response approach that integrates 

two frameworks (Van Den Homberg, Visser and Van Der Veen, 2017; Vincent et al., 2020) 

and applies a bottom-up approach through the FAMVACs method to help identify the 

barriers and opportunities in the provision and use of WCI across user/user groups. Such an 

approach would ensure these barriers are identified across the user-provider landscape and 

provide solutions to bridge the specific gaps. Our findings on the barriers to the provision 

and use of WCI are consistent with other scholarly findings in the literature and are evidence 

of the various gaps that broadly affect the provision of climate services. However, specific 

solutions would be required depending on the context (user, location, etc.). For example, the 

lead time at which WCI should be provided to the local farmer will depend on the seasonal 

timing, which varies across locations. In addition, designing solutions to improve data 

preparedness will require specific information on the gaps in the various data dimensions 

(access, availability, granularity, recency, etc.), which might also vary across contexts. The 

combined frameworks can therefore provide a coordinated way of ensuring that prior 

information required to inform the development of specific solutions for improving the 

provision of climate services are identified across the users and providers. This will also 

ensure that co-production takes centre stage in the design and dissemination of WCI. 

Increased availability of weather and climate data and information provides an opportunity 

to improve climate adaptation planning. However, actionable programmes are needed to 

ensure that this information is translated and disseminated appropriately according to the 

users' information needs. Weather information is fundamental in informing the coping and 

adaptation among, for example, farming communities. There is, therefore, an urgent need 
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to invest in strengthening the production, dissemination, and uptake of weather information 

for effective disaster management. This can be achieved by understanding the specific 

information gaps at the national and local levels, ensuring an improved dialogue between 

disaster management institutions and at-risk communities for resilience building. Such 

information can then be used to improve disaster management plans and activities, ensuring 

timely preparedness for floods. 
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2.3 Coordination and disaster management: Insights from disaster management 

practitioners in Uganda 

 

In Uganda, Disaster Management (DM) institutions work toward delivering credible 

information to the local communities to enable them to prepare for a hazard. To ensure 

coordination in preparedness and response (see section 2.2.4), information and data are 

required, and the capacity to ensure the information is disseminated on time. 
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This section presents additional findings from disaster management partitioners on the 

processes, data, and information required to ensure a more coordinated approach to disaster 

management. In this section, we highlight various aspects of disaster management in the 

Ugandan context based on findings from interviews with disaster practitioners in Uganda. 

Notably, we highlight the disaster information required, data available to fulfil the 

information needs, the standard data providers, and challenges that affect preparedness and 

response activities. These insights can ensure a better understanding of what would be 

required to provide adequate preparedness and response to disasters in Uganda. 

2.3.1 Disaster management activities and gaps that hinder the implementation.  
 

Discussions with the DM practitioners indicated several common activities undertaken 

during disaster preparedness and response. Preparedness activities include the production of 

weather forecasts information (includes updating weather systems, downscaling weather 

data, developing dissemination packages, monitoring, and getting feedback from the 

community on information use), dissemination of the required information to communities, 

capacity building of the district disaster committees and the communities on disaster risk 

reduction (DRR) and identification of disaster risks (safe areas, monitoring, and mapping). 

During initial response, activities include rapid risk assessments, search and rescue, and 

distribution of relief items. Most of these activities are undertaken through a process that 

often does not involve the local communities due to insufficient links between the local and 

national governments (Ampaire et al., 2015). This could be attributed to the fact that at-risk 

communities are often viewed as recipients of information rather than actors in disaster 

management. Table 8 below shows the activities during preparedness and response to flood 

risk. 

Table 8: Common activities during disaster preparedness and initial response 

 

 

 

 

 

 

Preparedness Source References 

Production of weather forecasts 5 10 

Information dissemination to the communities 7 8 

Identifying disaster risks in the communities 6 7 

Capacity building DMC and communities on 

DRR 

5 5 

   

Initial Response 
  

Rapid assessments 8 8 

Search and rescue 5 5 

Distribution of relief goods 4 4 
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The implementation of these activities presents various challenges. The practitioners 

indicated several challenges affecting their day-to-day work from the discussions. For 

example, 45% of the respondents noted limited financial resources as one of the significant 

obstacles to implementation (Shah et al., 2019). Challenges in disseminating the information 

were also highlighted, including lack of community trust, poor transmission networks, and 

uneven dissemination (which does not often reach all the communities depending on the 

means used). Lack of coordination also derails implementing the preparedness and response 

activities.  

“Getting all the stakeholders together is a problem. Some stakeholders go to the 

disaster sites before even informing the Office of the Prime Minister” [DR08] 

During the response, significant challenges include limited financial resources, 

inaccessibility of the affected areas, and limited information to inform the response activities 

(e.g., how many people are affected, roads to use, etc.). Figure 10 shows the significant 

challenges during preparedness and initial response. 

 

Figure 10: The most common challenges to implementing preparedness and response 

activities. 

 

The analysis also shows that most of the respondents who had indicated the three initial 

response activities (Table 8) also indicated limited resources as the main challenge to their 

implementation, followed by the inaccessibility of the affected areas. This means that even 
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though the disaster management practitioners know the activities to be implemented, the 

actual performance can be hindered by various factors, as shown in  

Table 9. 

 

Table 9:Matrix coding showing how the various response activities relate to the challenges 

noted by the respondents. 

 

 

2.3.2 Data and information required to support disaster preparedness and response 

activities. 

The most common data and information required for disaster management vary depending 

on the disaster management stage. During preparedness, data required include the weather 

data (rainfall, temperature), disaster risk information (areas to be affected, vulnerability 

profiles, hazard maps,) information on the lead agency, and flood forecast information. The 

DM practitioners could not differentiate between data and information; the same were used 

interchangeably while answering questions on data and information. During the response, 

data, and information on the impacts of the hazard and the needs of the affected communities 

are required. Figure 11 shows the most common data/information needed during 

preparedness and response to flood risks. 

Despite being required, the practitioners noted that most of this data/information is not 

readily available, which has been attributed to how individual institutions produce and 

manage their data and information (Atyang, 2014; Lumbroso, 2018). For example, 5 out of 

14 respondents noted that comprehensive and quantifiable impact information is not 

available, while 4 of the respondents pointed out that flood forecast information is 

unavailable. The lack of flood forecast information has been attributed to the absence of a 

national flood forecasting system (Atyang, 2014). 

Activities/Challenges
Scarce resources

 Inaccessibility of the 

affected areas
 Lack of coordination

 Lack of reliable 

information

Rapid assessments 4 3 2 3

 Search and rescue 4 3 2 0

Distribution of relief goods 4 2 2 0
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Figure 11: Data and information required by the DM practitioners. 

 

 

2.3.3 Data and information providers and data sharing methods 
 

Various institutions, including UNMA, Uganda Bureau of Statistics (UBOS) and other 

Ministries, provide the data and information required during preparedness and response to 

disasters. The respondents indicated that 57% of the data and information needed for disaster 

management is provided by UNMA, followed by URCS at 43%. This is because the most 

common data and information required, as indicated by the respondents, is weather 

information followed by disaster risk information (see Figure 11). The data available is also 

heterogenous since it comes from different institutions that regulate data production and 

formats (Hristidis et al., 2010). Therefore, such information should be tailored to the needs 

of the at-risk communities for effective use(Winthrop, Kajumba and McIvor, 2018). Some 

local NGOs are, however, helping tailor the information to local needs. Table 10 shows the 

primary data providers during preparedness and response. 

“We started translating weather information to four local languages in 2009 and then 

increased to ten and thirty-five in 2019 through funded projects. We are, however, 

continuing with the translation to the major ten languages” [DR06]. 
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Table 10: The primary disaster data and information providers in Uganda. The reference 

shows the number of times the data provider was mentioned during the interviews. 

 

 

 

 

 

 

 

The data and information that is available are shared using various means. For example, 

emails were highlighted as the most common mode of sharing disaster data between 

institutions by 11 out of 14 respondents (Table 11). Other means of sharing data and 

information include physical delivery, online platform, and bulletins.  

However, data sharing is not guaranteed, especially if the data is not freely accessible. The 

institution that requires the data must make a formal request before the information is shared. 

Other institutions require a memorandum of understanding between institutions to facilitate 

data sharing. 

 

Table 11: Common data sharing methods in Uganda. Reference refers to the number of 

respondents who mentioned the data sharing method. 

 

 

 

 

 

 

2.3.4 Discussion 

Communities at risk of disasters are among the critical actors in disaster risk reduction. 

Therefore, these communities need access to the required information and are sensitised on 

how to use it to inform their coping practices. Ensuring communities have the required 

information and can use it is the mandate of disaster management practitioners. However, 

Data providers Reference 

Uganda Red Cross Society 6 

Uganda National Meteorological 

Authority 

8 

Uganda Bureau of Statistics (UBOS) 4 

NECOC 4 

Ministry of Water and Environment  4 

Ministry of Agriculture 4 

Global systems (ECMWF _GloFAS) 3 

Data sharing modes Reference 

Emails 11 

Physical means 7 

online platforms 4 

Bulletins 4 

Media (Radio, TV) 2 

Institution websites 1 
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these disaster management practitioners face challenges that may derail the provision of the 

necessary information for timely preparedness. Our findings from Uganda indicate that the 

disaster management institutions are aware of the activities to implement during 

preparedness and response to disasters. Still, sometimes they may not have the financial 

resources to do them (Shah et al., 2019). Scarce or incomplete information is also a 

significant barrier to implementing the required activities at the community level (Šakić 

Trogrlić et al., 2022). 

The common data and information to inform disaster management activities is weather 

information which UNMA provides. However, the state of hydrometeorological networks 

in Uganda is limited (Dinku, 2019). The capacity of UNMA to install, collect and produce 

this information should therefore be strengthened through continuous capacity building 

(Mataya, Vincent and Dougill, 2020). Data collaborations between institutions should also 

be maintained to ensure accessibility (Susha, Janssen and Verhulst, 2017). This can promote 

the development of open access multi-sector platforms to ease data sharing and reduce data 

heterogeneity which might delay preparedness actions. 

 

In chapter 2, the barriers and opportunities in the production, provision, and use of EWI 

across the provider-user landscapes have been assessed using two use cases developed at 

the community and national institutional levels. 

Chapter 3 addresses forecasts verification in data-scarce regions. More specifically, building 

on Chapter 2 on the lack of a national flood forecasting system in Uganda, the chapter 

assesses how global flood forecast can be used with confidence to inform preparedness 

actions at the community level.  
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Chapter 3 

3 Flood Forecast verification using traditional and non-traditional approaches. 

 

 

 

3.1 Background  
 

 Forecast information plays a crucial role in supporting local decisions.  These forecasts should 

be verified using local observations to provide the required evidence. Forecast verification has 

evolved beyond conventional observations to include other less conventional data sources such 

as social media (de Bruijn et al., 2019), crowdsourcing, crop yield, and societal impact data, 

among others. Their use would ensure that there is greater confidence in the use of these 

forecasts for decision-making.  

Conventional observations from river gauge locations are commonly used to verify flood 

forecasts from global systems. However, these observations are usually sparse and insufficient 

for verifying spatial patterns of flood occurrence, magnitude, and severity across lower 

administrative levels. Further, the observations hinder impact-based modelling since they do 

not provide meaningful information on how the floods will affect the lives and livelihoods of 

at-risk communities. Therefore, non-traditional verification approaches that take into 

consideration less conventional observations (observations that are often not used in 

verification) have been encouraged to enable more direct verification of the physical event 

(Marsigli et al., 2021). Efforts to use non-traditional approaches in forecast verification are 

already seen through the WMO joint working Group on forecast Verification research(WMO, 

2021c).  

This chapter was entirely conceptualised and written by the author. The author collected the 

data, undertook the analysis, and wrote the chapter. Section 3.3 which is published in the 

Journal of Flood Risk Management had contributions as follows. FM developed the concept,

 collected the data, undertook the analysis, and led the writing of the manuscript. AF & LS 

developed the r-script that was used for forecasting verification and provided inputs in writing

 the manuscript. ET, RC, and CP provided inputs in the writing of the manuscript.  
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In this chapter, we present findings from flood forecast verification using non-traditional 

approaches and impact data in Kenya and Uganda. In addition, the chapter addresses the need 

for reliable forecasts by investigating if impact data can be used to evaluate forecasts, provide 

the evidence required to inform local sector-specific decisions, and further build confidence in 

flood forecasts. Section 3.2 presents the hydrological characteristics of the catchments 

considered in the study including their spatial location, hydrographs, and the bar-graphs for the 

available data.  Section 3.3 presents findings from forecasts verification comparative analysis 

using river-gauge observations from 6 locations in Kenya and Uganda and impact data from 

districts/counties affected by flooding from the gauge locations and forms our second paper. 

We further present a summary (section 3.4) on how varying the forecast verification features 

can influence the use of flood forecasts to inform sector-specific early actions in data-scarce 

regions. 

The work presented in section 3.3 won the WMO award for the best new verification metric 

using non-traditional approaches (WMO, 2021a). In addition, a blog post emanating from this 

work has also been produced and shared with a wide audience ( see Mitheu, Tarnavsky and 

Ficchì, 2021). 

3.2 Hydrological Characteristics of the Study Catchments 
 

Flooding characteristics are governed by various factors such as the amount of precipitation, 

topography, geology, catchment area, and land use activities. These factors define the amount 

of water that is measured at the river-gauging stations. Understanding these context- specific 

factors for each catchment is therefore important to ensure a prior understanding of the type of 

flooding. This chapter covers 6 catchments, three each in Kenya and Uganda. River flow data 

from these catchments is used in the comparative analysis and forecast verification. The 

catchments were selected due to the frequency of flood events and the resulting impacts. The 

catchments have varying characteristics (Table 12) which defines the magnitude of the 

measured quantities of streamflow at the outlet. Uganda mainly experiences a bimodal rainfall 

pattern in most areas expect the north where only one rain season is experienced. These seasons 

occur during the March to May period and the September to December. Similarly, Kenya has 

two rain seasons during the months of March to May and October to December.  

Both riverine and flash floods are experienced in all the catchments. For example, in Manafwa, 

the topography of the catchment influences flood occurrence where surface water from the 
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upstream areas results to abrupt flooding in the lower regions of Butaleja and Manafwa 

(Cecinati, 2013). Table 12 shows the various characteristics of the study catchments while 

Figure 12 and Figure 13 shows the spatial location of the catchments in Kenya and Uganda 

respectively.  

 

Table 12: Characteristics of the catchments considered. Annual discharge value was computed 

by the author based on the data available. Sources of other information (Onyutha et al., 2021; 

Erima et al., 2022; Tumusiime et al., 2022; Wanzala et al., 2022) 

River 

name 

Outlet 

name 

Lon Lat Drainag

e area 

(km2) 

Mean 

elevation 

(m.a.s.l) 

Mean 

annual 

rainfall 

(mm) 

Annual 

discharg

e (m3/s) 

Physical 

characteristics 

Length of 

records 

considered 

Tana Garissa 39.7 -0.45 32,695 870 868 182.24 Forests on 

highlands, semi-

arid plains on 

lowlands 

1999-2018 

Nzoia Ruambwa 34.09 0.12 12,643 1740 1488 160.68 Continuous 

vegetation on 

highlands, flat 

lowlands 

1999-2018 

Athi Kibwezi 38.05 -2.25 5860 1300 810 144.22 Forests on 

highlands, semi-

arid lowlands 

1999-2018 

Akok

orio 

Akokorio 33.85 1.75 13,356 914 1466 4.32 Semi-arid and 

flat lowlands 

1999-2018 

Man

afwa 

Butaleja 33.95 0.95 2280 1083 1500 6.93 Mountains, 

steep slopes 

towards the 

outlet 

1999-2018 

Maya

nja 

Mayanja 32.15 0.65 2473 1200 1181 9.42 Swampy and 

slow-moving 

rivers in a gentle 

terrain 

1999-2018 
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Figure 12: Study catchments in Kenya; a) Tana, b) Nzoia and c) Athi. Source (Adhikari and 

Hong, 2013; Leauthaud et al., 2013; Kithiia, 2022). Daily river discharge data from the gauging 

stations (marked in yellow circle) were used in this study. 

 

 

 

 

a 
b 

c 
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Figure 13: Study catchments in Uganda; a) Mayanja, b) Manafwa and c) Akokorio. Source 

(Onyutha et al., 2021; Osaliya, 2021; Erima et al., 2022). Daily river discharge data from the 

gauging stations (marked in green circle) was used in this study. 

 

In forecast verification, the amount of available reference data such as the river-gauge data can 

influence the resulting output. In this chapter, we used both river-gauge data and impact data 

as references to the verification of forecast. The daily data for the gauging stations was provided 

by Water Resource Authority for Kenya and Department of Water Resources Management for 

Uganda. The data was transformed into hydrographs to understand the availability of the data 

for the subsequent analysis. Corresponding bar-graphs showing the percent of available data 

each year were developed. Figure 14 to 19 shows the hydrographs of river discharge data for 

each of the gauging station considered and the corresponding percent data available for each 

a b 

c 
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year. The graphs shows that many of the years when records were obtained have missing data.  

for example, in the Tana River catchment, river-gauge data for 2017 and 2018 were not 

available. For the analysis in this chapter, continuous data series from 2007 to 2018 was used. 

The entire row with no data was therefore deleted across all the data columns used (i.e., impact 

data, forecast data and observed gauge data) for uniformity in the analysis. This means that for 

locations with a higher percent of missing data, only few records of available data were used 

in the analysis which may affect the resulting output.  

 

 

Figure 14: Hydrograph for the daily discharge data at Tana River at Garissa station and the 

percent available.  

 

 

Figure 15: Hydrograph for the daily discharge data at Nzoia River at Ruambwa station and the 

percent available.  
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Figure 16: Hydrograph for the daily discharge data at Athi River at Kibwezi station and the 

percent available.  

 

Figure 17: Hydrograph for the daily discharge data at Akokorio River at Akokorio station and 

the percent available.  

 

Figure 18: Hydrograph for the daily discharge data at Manafwa River at Butaleja station and 

the percent available.  
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Figure 19: Hydrograph for the daily discharge data at Mayanja River at Mayanja station and 

the percent available.  

 

 

3.3 The utility of impact data in flood forecast verification for anticipatory actions: 

Case studies from Uganda and Kenya. 
 

This section has been published in the Journal of Flood Risk Management- Wiley with the 

following reference: 

Mitheu F, Tarnavsky E, Ficchi A, Stephens E, Cornforth R, and Petty C:  The utility of impact 

data in flood forecast verification for anticipatory actions; Case studies from Uganda and 

Kenya. Journal of Flood Risk Management, e12911. https://doi.org/10.1111/ jfr3. 

 

The published article can be found in the thesis under Appendix A3.0. 

 

Abstract: Skilful flood forecasts have the potential to inform anticipatory actions across scales, 

from smallholder farmers through to humanitarian actors, but require verification first to ensure 

such early warning information is robust. However, verification efforts in data-scarce regions 

are limited to only a few sparse locations at pre-existing river gauges. Hence, alternative data 

sources are urgently needed to enhance flood forecast verification and guide preparedness 

actions. In this study, we assess the usefulness of less conventional data, such as flood impact 

data, for verifying flood forecasts compared to river gauge observations in Uganda and Kenya. 

The flood impact data contains semi-quantitative and qualitative information on the location 

https://doi.org/10.1111/
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and number of reported flood events derived from five different data repositories (EM-DAT, 

DesInventar, Dartmouth Flood Observatory, GHB, local) over the 2007-2018 period. In 

addition, river gauge observations from stations located within the affected districts and 

counties are used as a reference for verification of flood forecasts from the Global Flood 

Awareness System (GloFAS). Our results reveal both the potential and the challenges of using 

impact data to improve flood forecast verification in data-scarce regions. From these, we 

provide strategic recommendations for using impact data to support anticipatory action 

planning. 

3.3.1 Introduction 

Climate change, variability, and environmental changes are affecting Africa's agricultural and 

humanitarian sectors. In the agricultural sector, these changes could force smallholder farmers 

who depend on rain-fed crops or flood recession agriculture to significantly adjust their farm 

activities (Salack et al., 2015; Ochieng, Kirimi and Mathenge, 2016; Ficchì and Stephens, 

2019). For example, in Uganda, farmers need reliable and skilful information on the rainy 

season onset and amount of rainfall, as well as flood occurrence, duration, magnitude, and 

severity approximately 1-2 months before the season onset to inform their coping 

strategies(Mitheu et al., 2022). In addition, decision-makers and humanitarian actors aiming to 

reduce risks and protect livelihoods are also increasingly considering forecast information to 

inform the early action mechanisms and operational decisions (Coughlan De Perez et al., 2016; 

Hansen et al., 2019; Emerton et al., 2020; Lopez et al., 2020; Nidumolu et al., 2020). Given 

this, the skill of any forecast information provided needs to be transparent and well understood 

to inform preparedness actions appropriately. 

In the context of users’ needs, forecasts should be evaluated with regard to their potential to 

trigger early actions, which can, in turn, reduce expected losses if an extreme event occurs 

(Lopez et al., 2020) but also considering the consequences of ‘acting in vain’, which are 

particularly important in the context of disaster risk reduction and humanitarian actions 

(Coughlan De Perez et al., 2015). Indeed, several studies have shown that verified and skilful 

forecasts have the potential to improve preparedness actions for both the agricultural and 

humanitarian sectors (MacLeod et al., 2021; Nidumolu et al., 2020; Nyadzi et al., 2019; 

Paparrizos et al., 2020; Coughlan de Perez et al. 2016). But this verification is carried out only 

for regions that have long-term historical hydrometeorological observations typically from in-

situ stations such as river gauges.  In forecast verification, these observations are commonly 

known as conventional observations (Marsigli et al., 2021). 
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In data-scarce regions, where conventional observations are limited (Coughlan de Perez et al., 

2016; Ogutu et al., 2017), less conventional verification data can be derived from, e.g., social 

media reports, citizen volunteered information, impact/damage reports, and insurance data. The 

resulting information can be used to bridge the forecast verification gap through non-traditional 

approaches as they provide a more direct representation of the event (Marsigli et al., 2021).  

For example, information from insurance databases (Bernet, Prasuhn and Weingartner, 2017; 

Cortès et al., 2018), as well as online tools such as Google Trends and Twitter feeds (de Bruijn 

et al., 2019; Thompson et al., 2021) have been used as reference information to evaluate the 

occurrence of floods. Impact data have also been used with river-gauge observations to identify 

the magnitude of discharge associated with flooding (Coughlan De Perez et al., 2016). Notably, 

impact data offer an advantage in verifying forecast information because they can be derived 

from openly accessible data repositories containing quantitative and qualitative information 

across large spatial areas that enable a better and direct representation of the impacts of the 

extreme event. However, the use of impact data in forecast verification can be only possible in 

areas with exposure and vulnerability for the impact to be reported. 

Global data repositories such as the Emergency Events Database (EM-DAT) (EM-DAT, 2020) 

and the United Nations’ Disaster Inventory System (DesInventar) (UNISDR, 2018) are prone 

to biases due to known limitations (Gall, Borden and Cutter, 2009). These limitations include 

the under/over-reporting of the hazards, aggregated spatial coverage, over-representation of 

certain locations, and/or focus on the specific type(s) of impacts.  Furthermore, differences in 

the criteria for inclusion of events in the repositories may result in non-uniformity in the 

estimates of the impacts reported in each repository. In addition, if unverified, impact data 

collection methods  (e.g. from governments and media) may lead to errors in the resulting 

information (Guha-Sapir and Below, 2002). Despite these biases, the EM-DAT and 

DesInventar represent a potentially valuable source of less conventional data for monitoring 

and verification of hazards. For example, a study by  Kruczkiewicz et al., (2021) shows that 

impact data can be integrated with other geophysical parameters to sub-categorize flash floods 

from the primary corresponding disaster type. Therefore, if their limitations are adequately 

understood, guidance provided on the interpretation of their outputs and recommendations 

provided, impact data can be improved and applied in supporting anticipatory actions. 

In this study, we assess the usefulness of flood impact data to verify flood forecast information 

across Uganda and Kenya compared to river-gauge observations. We verify river flood 
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forecasts from the Global Flood Awareness System (GloFAS) of the Copernicus Emergency 

Management Service (EMS) (Harrigan et al., 2020) using two reference observations. The 

river-gauge observations and flood impact data were derived from several global and national 

data repositories.  

The study addresses two research questions:  

1. How adequate are the impact data for verifying flood forecasts compared to river gauge 

observations? 

2. Where river-gauge observations are limited or unavailable, how best can the impact 

data be used to verify flood forecasts and ensure anticipatory actions are informed? 

Through focussed case studies in two East African countries, we investigate the non-traditional 

approach of forecast verification using impact data relative to the traditional way of verification 

using river gauge observations.  Consequently, we provide recommendations on how best 

impact data can be used in areas with no or limited river-gauge observations to increase 

confidence in using forecast products in data-scarce regions. 

3.3.2 Context  

In this section, we describe the case study regions and the datasets used for the analysis, i.e., 

the GloFAS re-forecast discharge data, river gauge observations, and the impact data from 

several data repositories, including EM-DAT and DesInventar. 

3.3.2.1 Case Study Regions 

The Netherlands-based IKEA Foundation is supporting the Uganda and Kenya Red Cross 

Societies (URCS and KRCS, respectively) to develop early warning mechanisms to prepare 

for floods through the Innovative Approaches for Response Preparedness (IARP) project. In 

Uganda, several high-risk areas were identified using vulnerability and risk layers developed 

by the National Emergency Operations and Coordination Centre (NECOC), including 15 

districts, for the development of early action protocol (EAP). These regions are prone to 

flooding and waterlogging across the two rainy seasons between May and November (April-

May, Long Rains; September-November, Short Rains). In Kenya, flood-prone river basins, 

including Tana, Nzoia, and Athi, are considered for the implementation of early flood actions. 
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Examples of early actions include community awareness, distribution of cash and shelter kits, 

dissemination of early warning information among others (see KRCS, 2021; URCS, 2021) for 

all the early actions considered in the Kenya and Uganda EAPs.  

The case study regions in Uganda and Kenya were selected based on locations with available 

river gauge observations. In Uganda, the districts of Katakwi and Amuria on the Akokorio river 

(hereafter ‘Katakwi’), Tororo (Butaleja) and Mbale (Bududa and Manafwa) on Manafwa River 

(hereafter ‘Manafwa’), and Kiboga, Mubende, and Hoima on the Mayanja River (hereafter 

‘Mayanja’) are considered. In Kenya, the county of Tana-river and Garissa on Tana River 

(hereafter ‘Tana’), Busia and Siaya on Nzoia river (hereafter ‘Nzoia’), and Taita-taveta and 

Kilifi on Athi river (hereafter ‘Athi’) have been considered. Figure 20 shows the locations of 

the gauge stations and the affected counties/districts in Kenya and Uganda, respectively. 
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Figure 20: Flood occurrence maps for Kenya and Uganda show the study counties/districts and the river gauge locations. The map was created 

using impact data collated from four different data repositories from 2007 to 2018. The colour scheme represents the number of years out of the 

12 years considered when floods occurred, ranging from low (1-3 years), moderate (4-6 years), high (7-9 years), and very high (10-12 years)  
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3.3.2.2 GloFAS Flood Forecasts 

 

GloFAS is an operational global ensemble flood forecasting system developed jointly between 

the European Commission’s Joint Research Centre (JRC), the European Centre for Medium-

Range Weather Forecasts (ECMWF), and the University of Reading researchers (Alfieri et al., 

2013). The system provides probabilistic extended range discharge forecasts for up to 30-days 

and seasonal outlooks up to 4 months lead time (Emerton et al., 2018) over the entire globe at 

a resolution of 0.1o. From GloFAS v3.1 (current operational version), the LISFLOOD 

hydrological model (van der Knijff, Younis and de Roo, 2010) is forced by an ensemble of 

medium to extended range meteorological forecasts from the ECMWF Integrated Forecast 

System to produce 51 ensemble members of daily streamflow at various lead times up to 45 

days; LISFLOOD has been calibrated using daily streamflow data at over 1200 river basins 

worldwide (Hirpa et al., 2018).  

GloFAS v3.1 hydrological performance was evaluated for the period 1979-2019 for over 1500 

verification stations across the world using various verification metrics (Kling Gupta 

Efficiency, Bias, variance etc). Prudhomme and Zsoter (2021) provide details on the 

hydrological assessment methodology and further discussion on GloFAS performance 

evaluation. GloFAS provides daily discharge amounts [m3/s] from which probabilities of flood 

threshold exceedance can be derived. For flood detection, these forecasts time series are 

compared against a set of flood thresholds that are derived from the same model climatology 

(Zsoter et al., 2020) to avoid the impact of systematic biases in the GloFAS climatology on 

flood forecast probabilities. In this study, we use daily GloFAS v3.1 reforecast discharge data 

from 2007 to 2018 extracted for the gauge locations in Kenya and Uganda, respectively (Figure 

20). 

3.3.2.3 Flood Thresholds 

 

In the 30-day operational GloFAS forecast interface (https://www.globalfloods.eu/), four 

different flood return periods (2-, 5-, 10-, and 20-years) are provided and can be used as the 

thresholds for severe flood events. Zsoter et al. (2020) provide a detailed explanation of how 

these return periods are computed using GloFAS ensemble reforecasts. Furthermore, 

https://www.globalfloods.eu/
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thresholds computed as percentiles of the daily river flow time series  can also be used to define 

various hydrological conditions (e.g. high/low river flows) and have been used by several 

authors to evaluate forecasts from GloFAS or similar forecasting systems (see Alfieri et al., 

2013; Arnal et al., 2018; Emerton et al., 2018; MacLeod et al., 2021). For example, high 

percentiles (90th percentile or greater) have been used to show a high likelihood of floods when 

the river flow at a gauging station is above that percentile (MacLeod et al., 2021). In the broad 

hydrological literature, the notation for flow percentiles is not always consistent or clear, so 

when percentiles are used, the definition needs to be specified clearly.  

In this study, we adopt the traditional definition of percentiles used in statistics where a k-th 

percentile (with k in the range of 1-100) for a time series is the level below which (or at which) 

a k percentage of values in its distribution falls (the inclusive definition of percentile is 

adopted). For example, a 90th percentile is equal to or greater than 90% of the river discharge 

recorded during the specified period. In flood related studies, a percentile flow can also be 

referred to in terms of ‘percent exceedance’ to indicate the percentage of time that the discharge 

value is likely to be equalled or exceeded (see Derived Flow Statistics | National River Flow 

Archive, no date; Flow, Excedance and Percentiles, no date). Thus, in this study we use the 

90th, 95th and 99th percentile calculated from the re-forecast (all ensemble members) or 

observed time series of daily discharge, corresponding to high-flow levels exceeded only by a 

minor portion of the days in the data, i.e.,10%, 5% and 1% respectively.  

Due to data availability, we followed a percentile-based method to compute flood thresholds 

for forecast verification similar to previous authors (e.g. Alfieri et al., 2013; Arnal et al., 2018; 

Emerton et al., 2018; MacLeod et al., 2021). The choice of using these thresholds and not 

higher Return Periods (e.g., 5- or 20-year return periods computed from annual maxima) is 

motivated by the need for robust statistics, given the short data periods available (2007-2018). 

For the forecasts, these thresholds are lead-time dependent (Zsoter et al., 2020), i.e. calculated 

from the reforecast time series at each given lead time available.  

3.3.2.4 River Gauge Observations 

Observed point-based discharge time series for the river gauges considered here were provided 

by the Department of Water Resources Management (DWRM) in Uganda and by the Kenya 

Water Authority (WRA) for Kenya. The time series consists of daily river flow values over 

long periods, with all stations having at least five years of daily data over the study period. The 
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observed gauge data corresponding to the period of the impact data (2007-2018) has been used 

for the subsequent analysis. 

3.3.2.5 Flood impacts data 

Flood impact data has been used to extend our capability to verify GloFAS flood forecasts 

beyond conventional observations from sparse river gauge networks. The flood impact data 

contains semi-quantitative and qualitative information on the location and number of reported 

flood events derived from five different data repositories: (1) EM-DAT (EM-DAT, 2020), (2) 

DesInventar (DI; UNISDR, 2018), (3) Dartmouth  Flood Observatory (DFO) Archive 

(Brakenridge, 2015), (4) the Global Hazard Weekly Bulletin (GHWB; (PHE, no date), and (5) 

local sources (URCS, KRCS, media, etc.) for the 2007-2018 period. These data were collated 

for Kenya and Uganda for the study regions(counties/districts) for further analysis. The 

characteristics of these repositories are summarised in Table 13. 

In an ideal situation, an impact would be defined as a combination of the number of people 

affected and the quantitative estimate of any loss of property and livelihoods. However, the 

used repositories do not have enough quantitative loss and damage information disaggregated 

to sub-national administrative units to enable the quantification of impacts. We, therefore, 

consider the number of flood events reported as a proxy to the impact with an assumption that 

flood events that result in considerable impacts would be reflected in the data repositories used. 

The flood events are then classified as either 1 or 0 if the event was reported or not, respectively. 

The assessment of the number of flood events from the various sources, as well as the overlap 

(events that are common across the repositories used here), would help understand which data 

repository is used to identify the  highest number of flood events for each study location.  
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Table 13: Characteristics of the data repositories that were used to derive impact data used for the study. 

Database name 

(Reference)  

Temporal 

Coverage 

Criteria for inclusion Actors/collection methods Accessibility Spatial coverage Parameters 

DesInventar (DI) 

(UNISDR, 2018) 

1994-present • One or more human 

loss and/or 

Loss of 1 or more US 

dollars 

National governments and 

sectoral ministries 

 

Publicly available at 

www.desinventar.net 

Zoning level entry 

(country, districts, 

etc.) 

Reports as a flood. 

Reports various 

categories of loss and 

damage (see Appendix 

A3.1). Includes 

qualitative information  

Dartmouth Flood 

Observatory (DFO) 

(Brakenridge, 2015) 

1993- present • Large and extreme 

flood events. 

News reports, 

Governments, Flood lists, 

remote sensing sources 

Available upon 

request at 

https://floodobservato

ry.colorado.edu/ 

Country-level but 

provides the 

centroids for 

locations affected 

Reports the main cause 

of impacts and 

categories of loss (see 

Appendix A3.1)  

EM-DAT 

(EM-DAT, 2020) 

1995- present • Ten (10) or more 

people killed. 

• Hundred (100) or 

more people affected. 

• Declaration of a state 

of emergency 

UN agencies, 

National Governments, 

 International Federation of 

Red Cross and Red 

Crescent Societies (IFRC) 

and NGOs 

Publicly available at 

https://public.emdat.b

e/  

National and sub-

national level 

Subtypes of floods and 

origin, several 

categories of loss and 

damage (Appendix 

A3.1) 

Global hazards 

weekly bulletin 

(GHWB)  

(PHE, no date) 

2013- present • Selected news on 

floods 

Media reports (Flood list) Publicly available via 

email bulletins to 

subscribers and 

archived 

independently at 

http://www.met.readi

ng.ac.uk/~sgs02rpa/e

xtreme.html  

Provides 

information specific 

to the location 

affected 

Reports the location 

and categories 

depending on impacts 

(deaths or displaced) 

Local sources 

(URCS, KRCS) 

2000-2018 Depending on the main 

source 

Disaster Relief Emergency 

Fund (DREF) reports, 

relief web, flood list, 

districts offices 

Request sent to 

National societies to 

support this research 

Disaster prone areas All the above 

http://www.met.reading.ac.uk/~sgs02rpa/extreme.html
http://www.met.reading.ac.uk/~sgs02rpa/extreme.html
http://www.met.reading.ac.uk/~sgs02rpa/extreme.html
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3.3.3 Methodology 

Here, we outline the comparative analysis of river gauge observations and impact data and 

the verification of GloFAS flood forecasts using these two reference datasets using a set of 

skill scores. To assess the usefulness of flood impact data in verifying flood forecasts, firstly, 

the adequacy of the impact data in supplementing the river gauge is evaluated using Type I 

and Type II error indices. Secondly, the flood forecast data is verified using river discharge 

and impact data as a reference, and the verification outcomes are compared. 

3.3.3.1 Comparison of River Gauge Observations and Impact data 

 

In this part of the analysis, we compare the river gauge observations and impact data. River-

discharge value (Q) that has the potential to cause flooding is defined by using the 90th and 

95th percentile as the threshold, i.e., a flood event (binary) occurs when Q is above the 

threshold, and it does not occur if Q is below the threshold.  The total flood events from 

impact data consider the overlaps using the timestamp to avoid duplication in the total 

events. This means that an event occurring across all the data repositories for the same 

timestamp is considered one event.  The total flood events from impact data (binary) are 

then compared with river gauge observations (binary). Here, we assess the consistency of 

impact data false positive and false negative outcomes using a window of 7 days (from the 

day of the observed event up to 7 days ahead) against the flood events picked from the river 

gauge observations. Using a 2 x 2 contingency table, the false-positive outcome (hereafter 

‘Type I error’) is when the gauge observation signals flooding, but no impacts are captured 

within the specified window. While false negative outcome (hereafter ‘Type II error’) is 

when the gauge observations did not report any flooding, but impacts are reported.  We first 

compare the river gauge data (binary) with the impact data (binary) from the various sources 

across the locations. Next, we compare the river gauge observations against impact data 

from a single data repository to assess if some repositories are better than others in detecting 

flood events. Type I and II errors are calculated according to the equations in Table 14. 

 

 

 

 



71 
 

Chapter 3: Flood forecast verification using traditional and non-traditional approaches. 

Table 14: Type I and Type II error equations for the comparative analysis  

Index 

name 

                      Equation Score 

range 

Perfect 

score 

Type I 

error 

(TI) 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑓𝑙𝑜𝑜𝑑 𝑒𝑣𝑒𝑛𝑡𝑠 𝑤𝑖𝑡ℎ 𝑛𝑜 𝑖𝑚𝑝𝑎𝑐𝑡𝑠 𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑓𝑙𝑜𝑜𝑑 𝑒𝑣𝑒𝑛𝑡𝑠
 

0 to 1 0 

Type II 

error 

(TII) 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑚𝑝𝑎𝑐𝑡𝑠 𝑒𝑣𝑒𝑛𝑡𝑠 𝑤𝑖𝑡ℎ 𝑛𝑜 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑚𝑝𝑎𝑐𝑡 𝑒𝑣𝑒𝑛𝑡𝑠
 

0 to 1 0 

 

3.3.3.2 Flood Forecast Verification using River Gauge Observations and Impact data 

A set of skill scores were used to evaluate the occurrence of forecasted floods from the 

GloFAS system against river gauge observations and flood impact data. The ability of the 

forecast to discriminate between events and non-events is commonly measured using skill 

metrics calculated from a 2 x 2 contingency table. Two skill scores were used to quantify 

the occurrence of flood events (Wilks, 2006): (1) the Probability Of Detection (POD), or hit 

rate, which measures the fraction of observed events that were correctly predicted (perfect 

score of 1); and (2) the False Alarm Ratio (FAR), which indicates the fraction of the 

predicted events that did not occur (perfect score of 0). Table 15 shows the equations used 

to calculate the skill scores.  

 

Table 15: Skill scores used for forecast verification.  

 

 

 

 

Notes: H = Hits, M = Misses, FA = False Alarms 

 

 

Skill Score Equation Values range Perfect score 

Probability Of 

Detection (POD) 
𝑃𝑂𝐷 =

𝐻

𝐻 + 𝑀
 

0 to 1 1 

False Alarm Ratio 

(FAR) 
𝐹𝐴𝑅 =

𝐹𝐴

𝐻 + 𝐹𝐴
 

0 to 1 0 
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In this study, the verification of flood forecast events is based on the need to provide reliable 

flood forecast information to inform anticipatory actions taken by the communities and 

humanitarian actors. The preferred verification outcome will depend on the decision-making 

strategies the actors are willing to take. For example, humanitarian actors might need to 

decide if actions should be taken based on any forecast probability, which might be costly 

due to the number of events but would ensure reduced losses if the events materialise. The 

alternative would be if actions should be taken based on a forecast that shows a high 

likelihood of event occurrence to minimise the expenses incurred if the actions are in vain 

(see Lopez et al., 2020). 

Various factors identified from the EAPs developed by URCS and KRCS have been adopted 

in this study. Firstly, a flood forecast with a 60% chance of happening triggers early actions. 

Hence, we consider forecasts that indicate a forecast probability of 60% and above to 

correspond to a flood forecast event and below 60% to a ‘no-flood’ event. Secondly, in the 

calculations of events correctly forecasted, an action lifetime of 7 days is considered. 

‘Action lifetime’ is defined as the length of time during which action will remain effective 

in reducing impacts(Coughlan De Perez et al., 2016). In forecast verification, the action 

lifetime is commonly known as the ‘margin of error’, and it’s used to give more tolerance 

to the forecasts such that even if the forecast is late but materialises within the duration of 

the action lifetime, the actions will still be considered successful. For example, if an action 

is taken and a flood occurs up to 7 days after the forecasted date, this will still be considered 

a ‘hit’ if the action lifetime is greater than 7-days (see Figure 21 for a visual description of 

the action lifetime and margin of error). Depending on the type of action, the action lifetime 

can range from 7 to 90 days. This can also vary depending on the specific country's 

flexibility on the actions to take and the acceptable number of times the stakeholders are 

willing to ‘act in vain’.  For Uganda and Kenya, the stakeholders set the probability of 

‘action in vain’ to 50%, indicated using the FAR. From Figure 21, the margin of error can 

vary between 1-day to 10 days depending on the type of action. 
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Figure 21: Visual representation of the action lifetime and margin of error based on early 

warning and action triggers.  

  

Using distinct flood thresholds (i.e., 90th and 95th percentile) calculated from the GloFAS 

reforecast data and river-gauge observations, we verify flood forecasts using river-gauge 

observations and impacts data as a reference. This was done to assess the usefulness of 

impact data in verifying forecast information, especially in regions that may lack 

conventional observations, such as river-gauge data. This study was, therefore, not meant to 

evaluate the hydrological performance of GloFAS (calibration and validation of GloFAS 

time series).  Using a seven days-action lifetime and a 60% probability of flooding, we 

compute the differences in the skill scores (POD and FAR) for forecast-gauged and forecast-

impact data pairs, respectively. Here, if the difference between the ‘POD observed’ and 

‘POD impact’ is negative and the FAR difference is positive, impact data are more 

favourable in skill assessment than river gauge observations and vice versa. This analysis 

assumes that if either the river gauge observations or impact data (or both) report a flood 

event for the same days as in the GloFAS flood forecast (within the action lifetime of 7 days 

from the warning), the reference data (observed or impact) are favourable in skill 

assessments.  

3.3.4  Results 

3.3.4.1 Impact data from the data repositories 
 

In Uganda, in two districts (Katakwi and Manafwa), the reported impacts from the data 

repositories show a high number of flood events reported in 2007, 2010, 2011, 2012, and 

2018 from DI and DFO as compared to the other years. However, the flood events for 

Mayanja from all the data repositories across the years are low. Table 16 shows the events 

spread across Uganda and the 3 locations from 2007 to 2018. The number of flood events 

from each repository is independent (does not consider any overlap across the repositories).  
 

      Action lifetime 

Readiness 

triggers 

Actions 

triggered 

Margin of Error 

Event 

occurs 
Forecasted 

time  

-5days -4days -3days -2days -1day +1day +2days +3days +4days +5days +6days +7days +8days +9days +10days 

Forecast Lead time 
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The analysis of the number of flood events from multiple and single data repositories shows 

that in Katakwi, there are 434 flood events where DI recorded the highest number of events 

at 36%, followed by DFO at 19% (Table 17). Data collected across Katakwi by URCS also 

contribute substantially (14%) to the flood events in the area.  The overlap from multiple 

data repositories (EM-DAT, DI, and DFO) contributes to 11% of the total flood events. In 

Manafwa, from a total of 304 events, the highest number of events are from single source 

DI and overlap between EM-DAT and DFO, at 33% and 28%, respectively. EM-DAT alone 

contributes 14% of the total events. In Mayanja, only 2 data repositories contribute to the 

flood events. These are the DI at 23% and EM-DAT at 77%, totalling 102 events. 

 

In Kenya, many flood events were reported in 2007, 2010, 2011, 2013, 2015, and 2018 

across the country and the 3 study locations (see Table 16). EMDAT also records the highest 

number of flood events across the 3 locations, which contrasts with findings in Uganda, 

while DI reported the lowest. For example, in Nzoia, EM-DAT represents 69% of the total 

flood events, local sources contribute 12%, while DI covers 6%. The overlaps between the 

various sources contribute marginally across the locations. For example, EM-DAT and DI 

contribute less than 1% in Tana, 3% in Nzoia, and 1% in Athi ( Table 17).
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Table 16: Number of flood events from 2007 to 2018 for Uganda and Kenya locations derived from various data repositories. 

Year 

Kenya 

EMDAT 

Tana 

EMDAT 

Nzoia 

EMDAT 

Athi 

EMDAT 

Kenya 

DI Tana DI Nzoia DI Athi DI 

Kenya 

Local Tana Local Nzoia Local Athi Local 

2007 110 0 82 32 0 0 0 0 3 0 1 1 

2008 57 8 16 20 6 2 15 2 15 3 4 2 

2009 15 15 0 15 11 1 2 0 13 1 3 3 

2010 97 87 17 87 35 3 1 4 53 8 7 3 

2011 50 25 24 0 5 0 1 2 12 1 4 2 

2012 27 27 27 27 13 2 3 1 39 5 3 4 

2013 60 0 52 1 30 4 9 1 39 4 7 3 

2014 0 0 0 0 0 0 0 0 20 1 3 0 

2015 45 20 20 0 26 4 5 4 72 6 9 10 

2016 11 6 6 0 2 0 0 0 29 2 3 6 

2017 9 9 9 9 0 0 0 0 26 4 1 4 

2018 79 79 0 0 0 0 0 0 144 61 17 28 

Year Uganda 

EMDAT 

Katakwi 

EMDAT 

Manafwa 

EMDAT 

Mayanja 

EMDAT 

Uganda 

DI 

Katakwi 

DI 

Manafwa 

DI 

Mayanja 

DI 

Uganda 

DFO 

Katakwi 

DFO 

Manafwa 

DFO 

Mayanja 

DFO 

2007 82 78 78 77 91 62 41 0 82 78 78 0 

2008 1 1 0 1 12 1 1 0 0 0 0 0 

2009 0 0 0 0 16 0 3 2 0 5 5 0 

2010 5 5 5 0 109 48 40 2 11 5 5 0 

2011 21 0 20 0 83 45 47 2 41 30 29 0 

2012 1 0 1 0 49 37 3 1 29 2 0 0 

2013 5 0 0 0 50 28 4 8 2 0 0 0 

2014 0 0 0 0 33 1 2 1 5 0 0 0 

2015 0 0 0 0 25 0 1 1 0 0 0 0 

2016 7 0 0 0 16 0 2 3 7 0 0 0 

2017 8 0 0 0 32 1 11 1 8 3 3 0 

2018 1 0 1 0 32 28 10 2 17 8 8 0 
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Table 17: Percent of the total number of flood events from multiple (overlaps) and single 

source data repositories for the study locations in Uganda and Kenya. The first two sources 

that represent the highest percentage over each district/county are highlighted in bold. 

Uganda Katakwi Manafwa Mayanja 

Number of events 434 304 102 

Sources Percent from the total events in each location 

Single source 

contribution 

   

DI 36.41 32.57 22.55 

EM-DAT 1.38 13.82 77.45 

DFO 18.89 12.5 0 

Local sources (URCS) 13.59 0 0 

GWHB 0.00 2.30 0 

Multiple (with overlaps)    

EM-DAT, DI, DFO 11.06 4.28 0 

EM-DAT, DFO 6.91 28.29 0 

DI, DFO 8.29 5.59 0 

URCS, DI 3.46 0.00 0 

EM-DAT, GWHB 0.00 0.66 0 

Kenya Nzoia Tana Athi 

Number of events 316  359  251 

Sources    

Single source 

contribution 

   

EM-DAT 69.94 70.75 72.11 

DI 6.33 3.34 3.19 

Local sources 12.03 19.22 19.92 

Multiple (with overlaps)    

EM-DAT, DI  3.48 0.56 1.20 

EM-DAT, Local  6.01 5.85 3.19 

EM-DAT, DI, local 2.22 0.28 0.40 

 

3.3.4.2 How adequate are the impacts data in supplementing river-gauge observations in 

identifying flood events? 

The comparative analysis in the three locations in Uganda using combined impact data from 

the various data repositories and observed gauge data shows varied results across locations 

and gauged data thresholds. For example, in Katakwi (Figure 22a), using the 90th percentile 

from the gauged observations, the impact data captures 60% of all gauged flood events, but 

42% of the reported flood events from the impact data do not correspond to flows above the 

90th percentile threshold. 
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This could mean either the threshold is too high, with lower flows still causing impacts, or 

the impacts reported resulted from another form of flooding like flash floods or 

waterlogging from heavy rainfall. In Manafwa and Mayanja (Figure 22b and Figure 22c), 

Type I and Type II errors across the thresholds are high (above 0.5), which could mean that 

the quality and quantity of available impacts data for these locations were not adequate 

(Type I) and the impacts reported were not as a result of riverine flooding (Type II).  

Figure 22: Comparative analysis of the impacts (all sources) and observed data at three 

percentile thresholds (80th, 90th, and 95th) of daily river flows from the gauged stations in 

Uganda for a) Katakwi, b) Manafwa, and c) Mayanja. 

 

The comparative analysis shows a high Type I error across the 90th and 95th percentile in 

the Kenyan locations. This means that though the observations indicate flood events, no 

impact data corresponded to these events, or the quality of the available impacts data was 

not good enough. On the other hand, the Type II error is also high across the locations, 

suggesting that impacts reported resulted from different forms of flooding, such as flash 

floods. For example, in Tana, at the 90th percentile, impact data captures only 40% of all 

gauged flood events, but half of the reported flood events do not correspond to flows above 

the 90th percentile. Figure 23a-c shows the comparative analysis across the thresholds for 

Tana, Nzoia, and Athi, respectively. 
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Figure 23: Comparative analysis of the impacts and observed data at three percentile 

thresholds (80th, 90th, and 95th) of daily river flows from the gauged station in Kenya for a) 

Tana, b) Nzoia, and c) Athi. 

 

The analysis using a single data repository shows an increase in Type I error in all the 

locations in Kenya and Uganda (Figure 24a-b). For example, in Katakwi, using DI alone 

results in a Type I error (TI) of 0.59 compared to a TI of 0.39 while using four data 

repositories (DI, EM-DAT, local, DFO). In Tana, EM-DAT results in a TI of 0.79 compared 

to 0.61 while using data from all the repositories. Type II error fluctuates across the locations 

(Figure 24c-d). For example, at the 90th percentile, despite Nzoia having almost the same 

number of flood events from EM-DAT and local sources, Type II error is higher when using 

local sources than EM-DAT (Figure 24d). This shows that at the same (higher) threshold 

for example at the (90th percentile) more events are likely to be missed out (events falling 

below the threshold) from the local source which takes into consideration more localised 

events compared to high-impact data repository like EM-DAT In other words, a data 

repository that considers a low threshold for inclusion of the event in their database may 
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require a low threshold based on gauge observation to correctly identify the flood events as 

compared to a data repository that considers high threshold for inclusion.  

 

 

Figure 24: Type I and Type II error at 90th percentile resulting from using all impact sources 

(including overlaps) and single-source contributions for a) Type I in Uganda locations, b) 

Type I in Kenya locations, c) Type II Uganda locations, and d) Type II Kenya locations. 

 

3.3.4.3 Where river-gauge observations are limited or unavailable, how best can the 

impact data be used to verify flood forecasts and ensure anticipatory actions are 

informed? 

We plotted the difference between the forecast skill scores (POD and FAR) obtained using 

the river-gauge observations and impact data (i.e., 𝑃𝑂𝐷𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 − 𝑃𝑂𝐷𝑖𝑚𝑝𝑎𝑐𝑡 and 

𝐹𝐴𝑅𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 − 𝐹𝐴𝑅𝑖𝑚𝑝𝑎𝑐𝑡) as a reference for verifying flood forecasts across all the 

locations and two percentile thresholds to assess their potential in forecast verification 

(Figure 25). The results show that impact data gives a more favourable assessment of skill 

as compared to the observed data at the 90th and 95th percentile across lead times in Katakwi 

(i.e., 𝑃𝑂𝐷𝑖𝑚𝑝𝑎𝑐𝑡 > 𝑃𝑂𝐷𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 and 𝐹𝐴𝑅𝑖𝑚𝑝𝑎𝑐𝑡 < 𝐹𝐴𝑅𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑). For other locations at a 
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lead time of up to 15 days, the impact data underestimates the GloFAS skill both in terms 

of POD and FAR. At longer lead times (>15 days), Nzoia shows a good assessment of skill 

in terms of POD. These outcomes can be associated with the quantity, and quality of the 

impact reports available for most locations (except Katakwi and partly Nzoia) which also 

corresponds to the findings in Section 2.2.4.2. The highest difference in the POD of up to 

0.4 is seen in Mayanja at the 90th percentile, while other locations show a difference of 

below 0.2. The FAR is, however, spread out across locations with a change of about 0.5 in 

Mayanja and Athi.  POD and FAR graphs for the study locations at 90th and 95th percentile 

using gauged and impacts reports are provided in Appendix A3.2. 

Figure 25: Differences in POD and FAR for locations in Uganda (Katakwi, Manafwa, 

Mayanja) and Kenya (Tana, Nzoia, Athi-Kibwezi) across lead times at the 90th and 95th 

percentiles. 
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3.3.5 Discussion 

Using less conventional data such as impact data in forecast verification is gaining interest 

among researchers and practitioners. However, these data, like hydro-meteorological data, 

are subject to errors and biases (Wilby et al., 2017). Despite these shortcomings, the impact 

data have the potential to be used to ensure early warning systems are robust. In this section, 

we discuss the findings and implications of using impact data to verify flood forecasts and 

the assumptions that have been considered. Firstly, we discuss the available impact data 

from the various data repositories in the East African countries (Uganda and Kenya). 

Secondly, we highlight the adequacy of the impact data compared to river gauge 

observations and how that may influence the verification of forecasts. Lastly, we highlight 

the potential and challenges of using impact data to verify forecast information in data-

scarce regions and provide recommendations that can be useful in improving the impact 

data to ensure effective early actions.  

3.3.5.1 What does the available impact data from Uganda and Kenya tell us? 

 

Among the four main data repositories used in this study, DI had the highest number of 

flood events in Uganda (Katakwi and Manafwa districts) (Table 16). Across Kenya and the 

three counties, EM-DAT reports the highest number of flood events (Table 16). The 

differences can be associated with the criteria used to include impact data in these 

repositories and the country-specific regulations on the collection and systematic reporting 

of impact data (Osuteye, Johnson and Brown, 2017). Due to such differences, using only 

one repository can lead to a bias in the outputs generated (e.g., underestimation of event 

frequency).  

Although we disaggregated the impact data up to the district and county levels in Uganda 

and Kenya respectively, we only used the qualitative information classified as impact/no 

impact to guide the analysis. This is because there are no direct quantitative loss estimates 

available for these administrative levels useful in understanding the severity of each flood 

event. Quantitative estimates are usually reported as aggregated quantities across a region 

rather than disaggregated quantities for smaller geographical areas within the region (Gall, 

2015). For example, from EM-DAT, the 2007 flooding between August and October that 

impacted different parts of Uganda are combined as one record (Disaster number 2007-0408 

(EM-DAT, 2020) with the quantified impact on, for example, the ‘number of people 

affected’,  also aggregated.  The insufficient reporting of quantitative estimates in areas of 
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small spatial coverage can limit the analysis and affect the robustness of any conclusion, 

especially from a livelihood perspective (Osuteye, Johnson and Brown, 2017). In addition, 

these repositories have differences in the parameters used for reporting. For example, EM-

DAT reports only one parameter of ‘number of people affected’ while DI reports two 

parameters; ’directly affected and indirectly affected’. Below et al. (2010) also noted that 

this hinders the direct quantitative comparison between the two data repositories. 

3.3.5.2 How adequate are the impact data in identifying thresholds for impactful river 

flooding and in verifying flood forecasts? 
 

Setting up early warning mechanisms for floods often depends on the thresholds derived 

from river gauge data to identify the level at which the river discharge may result in 

impactful flooding. In data-scarce regions, impact data can help to determine such 

thresholds (Coughlan De Perez et al., 2016), but this requires a large number of good quality 

impact data to reduce the chances of over/under-representation of impacts(Ranger et al., 

2011).  We have found that even within the same country, impact data are not consistently 

available across all locations, as noted (Barabadi and Ayele, 2018), which may lead to bias 

in the outputs. Our analysis shows that using more than one source of impact data reduces 

the chances of a Type I error or situation where flooding occurs, but impact data are 

unavailable. For example, although EM-DAT contributes to over 69% of all impact reported 

in Tana, Nzoia, and Athi, respectively, using this repository alone results in an increase in 

Type I error (flood observed in gauged data but not reported) compared with using all three 

databases (EM-DAT, DI, Local) (Figure 24b). This can be associated the inclusion criteria 

for the various data repositories. For example, for a repository like EM-DAT, only high 

impacts flood events are represented leaving out low impact flood events.   

We have found that the consistency between impact data and river-gauge data varies 

markedly across the thresholds, but the variability is location-dependent. For example, in 

Katakwi, there is good correspondence between the river-gauge observations and impact 

data at the 90th percentile. This suggests impact data can be used to identify river discharge 

critical thresholds at which impactful flooding occurs. These findings are consistent with 

scientific literature where impact data has been successfully used to define flood thresholds. 

For example, Young et al. (2021) used impact reports to determine the rainfall thresholds 

that resulted in flooding in the urban city of Alexandria, Egypt.  
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Although we used the percentile-based method to identify flood events, we acknowledge 

that high impact events are generally higher than the 99th percentile (MacLeod et al., 2021), 

but to ensure robustness of the statistical analysis, we adopted the 90th and 95th percentile 

thresholds as several previous authors did (e.g. Arnal et al., 2018; MacLeod et al., 2021) 

.These percentiles may include low impact flood events that are likely to affect local limited 

areas (with relatively high frequency, e.g., 5% of days over a year for the 95th percentile) 

but are useful in cases where impact data is used in the verification due to the differences in 

the inclusion criteria of flood events in the various data repositories (see Table 1). In some 

previous studies, even lower thresholds are used because of data availability limitations, to 

ensure robustness in the verification. For example, Arnal et al. (2018) used terciles (33rd, 

66th percentiles) of the simulated streamflow for the verification of seasonal streamflow 

forecasts and discussed the need to consider high thresholds such as the 95th percentile if 

more data were available. We therefore recommend that further studies with possible longer 

data periods available, should look at the representativeness of results across flood 

thresholds, also higher than 99-th percentile.  

Other locations in Uganda and Kenya show an increase in Type I (and Type II) error as the 

river flow threshold decreases (increases). The increase in Type I error can be related to the 

inadequacy or the low quality of impact data used in this analysis, i.e., for both inadequate 

impact data (if the repository did not include an observed event) and low-quality data (if the 

timestamp of the impact data is incorrect) a false positive is produced. Type II error could 

have resulted if impacts reported were not because of riverine flooding but other subtypes 

of flooding, and this can also be influenced by the inclusion criteria which are specific to 

each data repository.  Although a repository like EM-DAT differentiates floods using 

subtypes such as riverine and flash flooding, DI does not include such subtypes. These 

subtypes would help ensure that flood events are further categorised before analysis to 

reduce the Type II error. In addition, such differentiation can help in designing appropriate 

preparedness and response interventions which vary based on the sub-type of flooding 

(Nauman et al., 2021; Paprotny, Kreibich and Morales, 2021). To further confirm the source 

of increase in Type II error, data derived from satellite imagery (e.g., Sentinel-1 and -2) 

could be used to identify if floods occurred as well as their spatial location (with respect to 

rivers), which can help discriminate riverine floods (Tarpanelli, Mondini and Camici, 2022). 
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The differences in POD and FAR vary across the study locations considered here. Except 

in Katakwi and partly in Nzoia (> 15 days lead time), where we get a more favourable 

assessment of skill while using impact data, other locations show that using impact data 

underestimates the GloFAS skill both in terms of POD and FAR. Though the differences 

are minimal in the majority of the locations, it still means that impact data cannot be 

adequately used to verify flood forecasts in most locations, as highlighted previously by 

Gall (2015). However, the available river-gauge observations and impact data could be used 

to train the hydrological model used in the GloFAS system through calibration and 

validation in specific locations that show poor detection of flood events. In other words, the 

available historical impact data and gauge observations can be used to assess the 

hydrological skill of the GloFAS using scores such as Nash-Sutcliffe efficiency which 

assesses temporal variability and agreement between the modelled and observed data (see 

Teule et al., 2020). Overall, being aware of uncertainties that can result in using the available 

impact data can help ensure the outputs are used appropriately in supporting anticipatory 

actions.   

 

3.3.5.3 How best can the impact data be used to verify flood forecasts in data-scarce 

regions? 

Our exploratory analysis has highlighted several factors that are affecting the efficacy of 

impact data for verifying flood forecasts in most of the study locations in Uganda and 

Kenya. These are inadequacy of events records, poor quality and spatial resolution/ 

granularity among others. Therefore, using impact data may result in underestimation of 

forecast skill, leading to reduced confidence in using the forecast to support anticipatory 

actions. In other words, if we use impact data to verify and it turns out to be unwittingly 

underestimating the forecast skill, we might discard a forecast that is good enough to support 

preparedness actions for vulnerable people. Nevertheless, positive results obtained for 

Katakwi in Uganda and Nzoia in Kenya show that with some improvements, the impact data 

could be used to determine critical thresholds for flooding and inform the design of early 

warning mechanisms in data-scarce regions. For such regions, the following improvements 

would increase the usability of impacts data. 
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a) Characterising the gaps/uncertainties 

The uncertainties in the impact data should be explicitly stated, as well as the implications 

for the outputs, especially if the outputs are intended to inform actions. The uncertainty 

around the estimate can be denoted using standard error, which indicates how far the 

estimate is from the mean. For example, from our analysis, the standard error in the FAR 

calculation varies between 0.02 to 0.05. Therefore, if the recommended forecast FAR to 

trigger humanitarian action is less than 0.5, using impact data will require a FAR of less 

than 0.4 to minimize actions taken in vain.  

b) Combining databases 

A combination of impact data from multiple data repositories should be explored, especially 

if the data is scarce (Barabadi and Ayele, 2018). This can help reduce the biases and 

possibility of missed events in the reference datasets for forecast verification because of the 

differences in the methods and criteria used to compile the various data repositories. For 

example, comparing river gauge observations with impact data from all repositories against 

EM-DAT in Tana improved the Type I error from 0.8 to 0.6 (Figure 24b). However, the 

combination should be carefully explored to avoid duplicate entries, especially from 

repositories fed from the same primary source or if there is a slight difference in the 

timestamp for the same event. Some of these replication challenges can be handled using a 

tolerance interval such that entries within a specific interval are considered one event. In 

this study, an interval of seven days was used.  

The combination should also consider the differences in the indicators used in each 

repository. For example, EM-DAT reports the ‘number of people affected’ as one indicator 

while DI reports in two separate indicators (i.e., ‘directly and indirectly affected’). In 

addition, EM-DAT makes clear differentiations of the disaster type and subtypes, such as 

riverine flood and flash flooding, while DI does not have such differentiation. Such 

differences make it challenging to combine and compare the data and disaggregate further, 

for instance, if you want to monitor only a subtype of the disaster. For example, in our 

analysis, most Type II errors could have resulted from impact data that were not necessarily 

from riverine flooding. Harmonising and differentiating these parameters and clarifying 

their meanings would help minimise these difficulties (Below, Vos and Guha-sapir, 2010). 

This can be done by ensuring that these subtypes are indicated during the data collection 
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process or by applying index-based approaches to differentiate between the various disaster 

sub-types ( see Kruczkiewicz et al., 2021).  

In addition, satellite data (e.g., from Sentinel-1 and -2) can be used alongside the impacts 

reports to identify the nature and extent of flooding as well as the spatial location which can 

help in complementing the impact reports for future applications in forecast verification. 

The usefulness of satellite images in assessing flood event types and extent has already been 

demonstrated in several recent studies, although also these datasets have their own current 

limitations that should be taken into account (see Notti et al., 2018; Landuyt et al., 2019; 

Tarpanelli, Mondini and Camici, 2022). 

c) Harmonising of the primary data collection and Information Management 

process: 

Primary data collection process: primary data collection in most countries is done through 

normal government procedures. This is mainly done using the damage and needs 

assessment (DNAs) approach (Roberto and Mohinder, 2010) at the local level and the 

collected data analysed at the national level. If the collected information shows that impacts 

are considerable, the country may decide to seek external support. In this case, the United 

Nations Office for Coordination of Humanitarian Affairs (UN-OCHA) may coordinate 

more rapid needs assessments to collect more information using approaches such as the 

Multi-sector Initial Rapid Assessment Framework (MIRA) (Inter-Agency Standing 

Committee, 2015). Countries can, however, use their guidelines for collecting the data. In 

Uganda, the Office of the Prime Minister is tasked with collecting and uploading impact 

data to the DesInventar repository. However, recent interviews in Uganda noted that rapid 

response assessments and collection of impact data are carried out by various institutions, 

including the Office of the Prime Minister, the Uganda Red Cross Society, the 

Humanitarian Open Street mapping team, local NGOs, and the district office, among others 

(personal communication, October 2020). There is a need to harmonise the data collection 

process through clear guidelines and dedicated institutions to avoid the probability of 

competing reports of unknown credibility (Guha-Sapir and Below, 2006). 

Furthermore, impact reporting can benefit from improved weather and river gauge 

networks. Improving gauge networks can be strategized such that it is done alongside the 

improvement on impact data collection (Baddour and Douris, 2018). This can ensure 
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improvement in the flood forecasting systems by providing key inputs for hydrological 

model calibration and forecast verification, as well as for further impact reports verification. 

Information management process: impact data collected through primary sources such as in-

country institutions are often uploaded to data repositories such as DI. Due to a lack of 

resources, most countries might not be able to upload the collected information regularly. 

Therefore, the impact data collected is held in internal disaster management systems and 

managed by the primary institutions. National data repositories could be explored to ensure 

that all impact data collected in-country is stored in a central in-country repository for ease 

of accessibility.  

d) Impact data outside the official public sources 

A broader and more accurate collection of temporal and geospatial data on disaster 

occurrence would ensure improved risk estimations (Bakkensen, Shi and Zurita, 2018). 

An extended search of impact data available at the in-country archives, e.g., in private 

institutions and insurance companies, but not yet available in the open repositories, would 

help improve the quantity and detail level (spatial-temporal data) of the available impact 

data. For example, a study by Smith and Katz, (2013) shows that a significant under-

reporting of disaster loss estimates can occur due to reliance on only public sources 

because of their ease of accessibility. 

e) Use of new technologies 

New technologies such as artificial intelligence can expand the impact data (Homberg, 

Monné and Spruit, 2018).  Initiatives to expand the impact data, for example, through web 

scraping, text mining (Margutti and Homberg, 2020), and application of earth observation 

data (Kruczkiewicz, McClain, et al., 2021; Nauman et al., 2021) and social media platforms 

should therefore be explored. For example, social media platforms like Google Trends and 

Twitter have shown promising results in detecting and reporting flood events (Rossi et al., 

2018; de Bruijn et al., 2019; Thompson et al., 2021). In addition, an ongoing study by 

Homberg and Margutti (2021) has shown that flood impact data generated from news 

articles can complement other known data repositories such as DI, both geographically and 

temporally, improving the usefulness of the data. However, ensuring that any new data is 

interoperable with data from these repositories will require clear technical guidelines and 
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protocols (Wirtz et al., 2014), such as the WMO data standardisation initiative (see Baddour 

and Douris, 2018). 

Overall, impact data represent an essential source of less conventional data for monitoring 

and improving early warning and preparedness actions. There is also great potential for 

improving these data quantity and quality through strengthening in-country disaster 

monitoring capabilities and ensuring standardized process of data collection that captures 

all the relevant data features such as flood extent, gauge level, contact information among 

others(Integrated Research on disaster risk, 2014).  

 

3.3.6 Conclusion 

As the world faces an uncertain future due to climate variability, environmental and climate 

change, and an increase in extreme hydrometeorological events, investing in early warning 

early action mechanisms can be an effective way to prepare and adapt to these extreme 

events. However, such an investment will require understanding how forecast information 

performs in detecting these extreme events to ensure that anticipatory actions are not taken 

in vain. While forecast verification has been successful in regions where long-term hydro-

meteorological observations are available, this is very challenging in data-scarce regions. 

Verification of forecasts using non-traditional approaches that use less conventional data 

would ensure the development of these mechanisms even in locations with scarce/no 

conventional observations. In this study, we investigated the usefulness of flood impact data 

to verify flood forecasts. Our findings show that although existing impact data have 

shortcomings, they also have the potential for flood event analysis and forecast verification 

and can be used in regions with no long-term hydro-meteorological observations. These 

impact data may, however, require improvement to enhance their utility and make the 

forecast verification more acceptable and reliable.  

Among the recommendations outlined above, supporting the national institutions to 

streamline impact data collection, and expanding impact data using new technologies is of 

critical importance. Addressing these issues will, however, require a recognition of the role 

that impact data can play in verifying hydrometeorological forecasts and identifying trends 

in extreme events to inform risk management. In addition, a collaborative effort among 

international humanitarian actors, disaster management institutions, the private sector, and 
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local communities is needed to ensure that quality impact data are collected consistently and 

made available in near real-time. 

Data availability statement: The GloFAS v3.1 reforecast are available from Copernicus 

Climate Change Service- Climate Data Store (https://cds.climate.copernicus.eu/). Impact 

reports from DesInventar and EM-DAT are freely available from their respective web pages 

(https://www.desinventar.net/ and https://www.emdat.be/database). DFO reports are 

available upon request from the University of Colorado. The R-scripts used in forecast 

verification are available upon request from the Authors. 
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3.4 Considering varying forecast features in forecast verification to inform sector-

specific anticipatory actions. 
 

In section 3.3, we have used forecast evaluation features as per the EAPs (forecast 

probability, lead time and margin of error/action lifetime) based on the stakeholders’ 

preferences to verify flood forecast information for several sites in Kenya and Uganda. 

These features were informed through stakeholders’ consultation during the development 

of the EAPs. The EAPs were developed within humanitarian actions targeting high-

magnitude flood events.  However, some of these features will vary depending on the 

specificity of the early actions (Bischiniotis et al., 2019).  For example, the acceptable 

margin of error (time allowed between the forecast date and actual event occurrence) might 

vary based on the time it takes to implement the action as well as the action lifetime. Actions 

https://cds.climate.copernicus.eu/
https://www.desinventar.net/
https://www.emdat.be/database
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such as evacuation might therefore require forecasts with an acceptable lead time that does 

not compromise the forecast skill, high probability, and low margin of error. In addition, 

actions that have a high implementation cost require a higher forecast probability and low 

margin of error to reduce the risk of acting in vain (Bazo et al., 2018) as well as to reduce 

the anxiety among the humanitarian actors as they wait for the event to occur (Tanner et al., 

2019). 

However, various actions can remain effective for more extended periods exceeding the 

duration of the flood event. For example, actions such as dissemination of EWI, training 

and awareness, distribution of flood-proof kits, and livestock vaccination can ensure that 

communities are prepared even if the flood event does not materialise. Some of these actions 

can contribute to improved resilience of the communities. Most of these actions reflect the 

priority actions selected across case studies in Africa, Southeast Asia, and South America 

(Bazo et al., 2018; KRCS, 2021; URCS, 2021). Forecast evaluation should therefore be 

based on a decision-led criterion where specific actions may require a particular set of 

features which can be decided upon through stakeholders’ consultations.  The evaluation of 

the forecasts should also consider these variations to ensure that skilful forecasts that would 

be useful in informing some specific early actions are not discarded.  

 In Kenya and Uganda, forecasts with a forecast probability between 60-85% lead time of 

5-7 days at five years return period have been used to define the flood EAPs. In section 3.2, 

these variables, and a margin of error of 7 days have been used to verify forecast information 

and assess flood impact data's usefulness. However, it is worth noting that the selection of 

early actions by the KRCS and URCS considered actions that will still have long-term 

benefits to the communities even if the flood event does not materialise. For example, the 

URCS suggested a 30days action lifetime for many of the selected early actions. At the same 

time, KRCS considered actions that, if implemented, will contribute to disaster risk 

reduction and resilient communities (Table 18). Notably, most of the early actions within 

the URCS and KRCS EAPs can benefit the communities up to the next rain season (up to 3 

months ahead).  For example, dug and desilted drainage systems/ trenches can last up to 90 

days before degrading (Coughlan De Perez et al., 2016). Therefore, using a fixed value of 

the margin of error, like in section 3.3, may limit the assessment of forecasts skill. 

In this section, we vary the action lifetime to 10 and 30 days (corresponding to the 

stakeholders’ preferences in the EAPs) in all six sites in Kenya and Uganda to assess how 
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these can inform different early actions. We then evaluate flood forecasts from GloFAS 

using river gauge observations and impact data to answer the following question. 

1. Does varying the action lifetime give more confidence in using forecasts to inform 

specific anticipatory actions in data-scarce regions? 

 

The terms action lifetime and margin of error have been differentiated in section 3.2. These 

terms can, however, be used interchangeably in forecast evaluation in the context of early 

actions. In this section, we use the term action lifetime to correspond to the EAPs.  

Although we only vary the action lifetime, forecast evaluation offers limitless ways of 

modifying the many features based on sector-specific decisions (including lead time and 

forecast probabilities) to optimize decisions, actions and costs (see Bischiniotis et al., 2019; 

Lala et al., 2021; Lopez et al., 2020). Here, the forecast probability and the forecast lead 

time preferences from stakeholders remain the same. 

Table 18: Early actions for floods showing the margin of error and the acceptable false alarm 

ratio (FAR). It is extracted from the EAPs for Kenya and Uganda. 

Uganda Early actions Action Lifetime 

(ActLT) 

Acceptable 

FAR  
Community awareness of anticipated risks 

and selected early actions 

30 0.5 

 
Distribution of water purification chemicals, 

water storage vessels and soap 

30 0.5 

 
Distribution of Cash and Voucher Assistance 

to facilitate evacuation and meet other basic 

needs  

30 0.5 

 
Distribution of customized shelter kits  30 0.5 

 
 Cleaning water sources/desilting drainage 

channels/dredging in Urban and rural areas 

30 0.5 

 
 Community mapping - (map out designated 

centres, evacuation roots and holding stores) 

30 0.5 

Kenya 
  

  
Placement of flood markers 30 0.5  
Dissemination of early warning messages for 

EA 

30 0.5 

 
Physical evacuation 

 
0.5  

Vaccination /treatment of livestock 30 0.5  
Prepositioning supplies 30 0.5 
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3.4.1 Does varying the action lifetime provide more confidence in using forecast to 

inform sector-specific anticipatory actions? 

 

The evaluation results while using impacts data show that varying the action lifetime to 10 

days results in a slight decrease in the POD in Mayanja at five days lead time and an increase 

in POD for Tana, Nzoia and Athi. However, varying the ActLT to 30 days resulted in an 

increase in POD across all the locations, with the highest increase noted in Tana and Athi 

(Table 19). This shows that increasing the ActLT to 30 days presents more locations with a 

more favourable assessment of skill as compared to our previous findings (see section 3.3), 

where only Katakwi showed a favourable evaluation of skill. 

A comparative analysis shows that in Tana and Athi, a more favourable assessment of skill 

is achieved using impact data compared to the river gauge observations.   

 

Table 19: POD while using impact and river gauge data at 90th percentile across varying 

action lifetime (ActLT) in the 6 locations. 

 

 

There is an improvement in the False alarm ratio (FAR) at 30 days of ActLT across several 

locations. For example, Katakwi, Tana, and Athi locations show an improvement in FAR 

where the FAR is below the acceptable threshold (0.5) at 0.43, 0.42 and 0.48, respectively, 

at the five days lead time (Table 20). Although the FAR using river gauge observations as 

reference are more favourable in Tana and Athi, using impacts data provides an opportunity 

to validate the outputs, while using river gauge observations which increases the confidence 

in using the forecast.  

Impact data

Lead time 7 10 30 7 10 30 7 10 30 7 10 30 7 10 30 7 10 30

5 0.51 0.51 0.73 0.26 0.30 0.45 0.25 0.21 0.50 0.53 0.56 0.68 0.43 0.46 0.52 0.32 0.43 0.74

7 0.55 0.52 0.76 0.19 0.30 0.45 0.23 0.27 0.38 0.53 0.61 0.64 0.49 0.47 0.62 0.32 0.40 0.58

Observed data

5 0.39 0.43 0.56 0.33 0.34 0.45 0.49 0.56 0.67 0.63 0.60 0.66 0.51 0.6 0.6 0.50 0.38 0.52

7 0.43 0.44 0.61 0.38 0.41 0.51 0.46 0.50 0.59 0.54 0.56 0.6 0.53 0.62 0.63 0.53 0.5 0.56

Athi_KKatakwi Manafwa Mayanja Tana Nzoia

Action lifetime/Margin of error
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Table 20: FAR while using impacts and gauge observations across ActLT at the 6 locations. 

 

Overall, using impacts data in forecast evaluations presents a favourable assessment of skill 

based on acceptable FAR and short lead times in 3 out of the 6 locations at longer ActLT.  

 

3.4.2 Discussion 

 

The developed EAPs consider various early actions that can be taken to reduce the risks of 

the impending event. These actions will vary based on multiple features such as the time 

required to implement, the cost, as well as the duration up to which the action will be 

effective (Bischiniotis et al., 2019). The choice of the forecasts to inform the early actions 

should therefore also take into consideration these features. In practical situations, the 

variables used in forecast evaluations are mostly decided upon through stakeholders’ 

consultations. The most common agreed-upon variables are the flood danger level at which 

action will be taken, the forecast probability and the forecast lead time, with little attention 

paid to the margin of error or the action lifetime.  

Our analysis shows that the assessment of forecast skills will vary across these factors. 

Therefore, there is a need to identify the optimal forecast features at which specific early 

actions can be effectively implemented while reducing the chances of acting in vain 

(Bischiniotis et al., 2019; Lopez et al., 2020). Using impact data does not result in a 

favourable skill assessment across all locations. However, the assessment provides a 

possible way to validate the forecast evaluations (using gauge observations as the reference) 

in these locations, which can help build confidence in using verified forecasts to inform 

early actions. For example, forecast evaluation in Katakwi using gauge observations as 

reference results in POD less than 0.5 and a FAR greater than 0.5. This means that the 

forecasts have less skill in this location. 

Impact data

Lead time 7 10 30 7 10 30 7 10 30 7 10 30 7 10 30 7 10 30

5 0.59 0.60 0.43 0.81 0.79 0.64 0.90 0.92 0.77 0.52 0.51 0.42 0.67 0.65 0.54 0.78 0.73 0.48

7 0.53 0.55 0.39 0.85 0.75 0.58 0.91 0.90 0.82 0.50 0.45 0.42 0.63 0.65 0.54 0.76 0.69 0.52

Observed data

5 0.59 0.56 0.53 0.53 0.50 0.36 0.49 0.44 0.35 0.37 0.39 0.32 0.42 0.33 0.28 0.45 0.50 0.33

7 0.54 0.54 0.49 0.55 0.48 0.29 0.49 0.43 0.36 0.30 0.28 0.25 0.36 0.27 0.24 0.38 0.38 0.25

Action lifetime/Margin of error

Katakwi Manafwa Mayanja Tana Nzoia Athi_K
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In contrast, using impact data on the exact location results in more favourable skills. In 

addition, using a longer action lifetime ensures that more locations are within the acceptable 

range of forecast features. Further work could focus on updating the early actions (Table 

18) through stakeholders’ consultations to develop decision-led criteria that identify the 

preferred forecast variables (lead time, ActLT, and forecast probability, among others) for 

sector-specific decisions to support flood forecast verification in Uganda and Kenya. 

Chapter 3 highlights the usefulness of flood impact data for forecast verification across 

several locations in Uganda and Kenya. More specifically, the variability in quantity and 

quality of the impact data and how that can affect forecast verification is noted, and 

recommendations for improving the data. Overall, the use of impact data for forecast 

verification has potential, especially in data-scarce regions, which provides an opportunity 

to enhance early warning mechanisms.  

In chapter 4, the local information on coping practices and flood impacts presented in 

chapters 2 and 3 are used to redefine the development of flood EWS to make them effective 

in informing local decisions. Notably, the chapter presents the development of an impact-

based trigger system that integrates flood forecasts with livelihood information to ensure 

more variable trigger thresholds and targeted anticipatory actions to ensure that smallholder 

farmers can protect their livelihoods during critical times when extreme events are expected. 
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Chapter 4 

4 Developing an impact-based flood early warning triggering system 

through an impact-oriented approach 
 

 

4.1 Background  
 

 Early warning systems have the potential to inform early actions and reduce the risks of 

extreme events. The potential for early warning systems can be achieved if the EWI is 

understandable, timely, and informs the users' needs (Baudoin et al., 2016). Technological 

advancement has ensured that skilful forecasts at longer lead times are available (Hallegatte, 

2012). However, the forecast information may not necessarily inform the required early 

actions, especially at the community level, due to their context-specific needs and priorities.  

The shift towards impact-based forecasts would ensure that hazard forecasts are integrated 

with the risks and vulnerabilities of the population to understand the locations and the likely 

impacts (Merz et al., 2020). Moreover, in data-scarce regions where impact-based 

modelling of risks is not possible, local contextual information collected through community 

engagements can be used to inform on the potential risks of extreme events to the at-risk 

communities. Such information can then be integrated into the EWS to redefine the 

development and implementation of locally targeted early warning mechanisms that contain 

clear information on the likely impacts and advisories on the actions to protect lives and 

livelihoods.  

This chapter presents an impact-based early warning triggering system for floods developed 

by integrating livelihood information with flood forecasts through an impact-oriented 

approach. In addition, the chapter addresses the value of local information in refining 

hazard-based trigger systems through variable thresholds and targeted anticipatory actions 

to ensure that the local at-risk communities are protected. The first section (4.2) presents 

This chapter was entirely conceptualised and written by the author. The author collected the 

data, undertook the analysis, and wrote the chapter. Section 4.2 which has been accepted 

for scientific publication had contributions as follows. FM developed the concept, collected

 the data, undertook the analysis, and led the writing of the manuscript. LS, AF, ET, RC, and

 CP provided inputs in the writing of the manuscript.  
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findings from a case study in the Katakwi district, where the impact-based flood early 

warning trigger system is refined for humanitarian actions using local information on crop 

cycles and flood impacts collected from three village sites in the district. Section 4.3 further 

presents a summary of the broad applicability of the impact-based trigger system and the 

need to consider sector-specific decisions in their design to influence the choice of the 

trigger thresholds based on early actions.  

 

 

Abstract: Anticipatory actions are increasingly being taken before an extreme flood event 

to reduce the impacts on lives and livelihoods. Local contextualised information is required 

to support real-time local decisions on where and when to act and what anticipatory actions 

to take. This study defines an impact-based early warning trigger system that integrates 

flood forecasts with contextual livelihood information, such as crop calendars, to target 

anticipatory actions better. We demonstrate the application of this trigger system using a 

flood case study from the Katakwi District in Uganda. First, we integrate information on the 

local crop cycles with the flood forecasts to define the impact-based trigger system. Second, 

we verify the impact-based system using historical flood impact information and then 

compare it with the existing hazard-based system in the context of humanitarian decisions. 

Study findings show that the impact-based trigger system has a slightly improved 

probability of flood detection compared to the hazard-based system.  The trigger dates are 

similar, but the hazard-based system has more missed events than the impact-based system. 

In a humanitarian context, the two systems trigger anticipatory actions at the same time. 

This section has been accepted for publication in the Journal of Weather, Climate and 

Society- American Meteorological Society with the following reference:  

4.2 Impact-based Flood Early Warning for Rural Livelihoods in Uganda  

FAITH Kinya MITHEU; Elisabeth Stephens; Celia Petty; Andrea Ficchi; Elena Tarnavsky;

 Rosalind Cornforth:

 Impact-based Flood Early Warning for Rural Livelihoods in Uganda-In production with 

DOI: 10.1175/WCAS-D-22-0089.1.  
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However, the impact-based trigger system can be further investigated in a different context 

(e.g., for livelihood protection) to assess the value of this contextual information. The 

impact-based system could also provide a valuable tool to validate the existing hazard-based 

system, which builds more confidence in its use in informing anticipatory actions. The study 

findings should therefore open avenues for further dialogue on what the impact-based 

trigger system could mean within the broader Forecast-based Action landscape towards 

building the resilience of at-risk communities. 

4.2.1 Introduction 

 

Disasters associated with weather extremes are affecting the lives and livelihoods of 

millions of people across the world. In 2020 floods were the most common type of disaster, 

with a 23% increase in events from 2000 to 2019. In 2020 in Africa, floods affected over 7 

million people – the highest since 2006 (CRED, 2021). In Uganda, floods affected 

approximately 800,000 people across 64 districts in 2020 (ECHO, 2020). Rural vulnerable 

communities are most at risk due to low coping capacity and lack of localised tailor-made 

early warning information Timely and actionable information should be available to rural 

at-risk communities and dialogue involving these communities around appropriate coping 

strategies improved. To support this, humanitarian actors and disaster management agencies 

require local, contextualized information about the hazard and likely impacts on at-risk 

communities to guide more targeted interventions.  

Early warning information (EWI) can therefore play a key role in risk reduction and 

management of flood risks (Thiemig, de Roo, and Gadain, 2011; Okonya and Kroschel, 

2013). Notably, frameworks such as the Sendai Framework for Disaster Risk Reduction 

highlight the need to disseminate EWI to support the shift from response to anticipatory 

actions and to mitigate the risks of extreme events for at-risk communities (UN, 2015). The 

development of flood early warning systems has advanced significantly over the last decade 

(Pappenberger et al., 2008; Cloke and Pappenberger, 2009; Hallegatte, 2012; Dale et al., 

2014). However,  a gap still exists in ensuring that EWIs are used effectively to activate 

early flood interventions, especially at the local level (Baudoin et al., 2016; Cools, Innocenti 

and O’Brien, 2016). This is because most hazard-based EWIs describe the physical features 

of the hazard with little or no information on the likely impacts of the expected extreme 

event, which can limit the design of the required interventions. if an hazard/damage curve 

is not previously established.  For example, in Uganda, there were difficulties in using the 
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forecast information to define the magnitude/danger thresholds that would result in 

significant impacts (Coughlan De Perez et al., 2016). 

Impact-based Forecasting (IbF) ensures that EWI is linked to the expected consequences 

(impacts) on the population and their livelihoods to understand where, when, and what 

specific anticipatory actions are needed(WMO, 2021b). In addition, the provision of impact-

based information can significantly influence risk perception among the users and decision 

makers (Potter et al., 2018; Weyrich et al., 2018; Potter, Harrison and Kreft, 2021). 

However, the development of impact-based forecast information requires a people-centred 

approach supported by multi-stakeholder collaborations and driven by at-risk communities 

(Baudoin et al., 2016; Sai et al., 2018; Klassen and Oxley, 2021). 

Several approaches can be used for impact-based forecasting (Wilkinson et al., 2018), with 

the common ones being impact-based modelling (Hemingway and Robbins, 2020) and 

impact-oriented approach (Kaltenberger, Schaffhauser and Staudinger, 2020). While 

impact-based modelling includes complex quantitative impact models overlaying hazard, 

vulnerability, and exposure, the impact-oriented approach can be based on qualitative, either 

subjective or objective criteria, e.g., by subjectively discussing the likely impacts of a flood 

event with stakeholders (Kaltenberger, Schaffhauser and Staudinger, 2020) or setting 

variable trigger thresholds and targeted early actions through stakeholders consultations. 

The method adopted will depend on the hazard context, available data, information to build 

the hazard risk knowledge (Potter et al., 2021; Wagenaar et al., 2017), and available 

historical impact information to set up danger thresholds (Harrison et al., 2022), and the 

validation of the impact models (Dottori et al., 2017), as well as the intended user or user-

groups of the impact-based information (WMO, 2021b).  

In the least developed countries, IbF based on a quantitative impact-based modelling 

approach has been hindered by scarce risk and impact information. Such information is 

required to build a link between hazard, vulnerability, exposure, and impacts (Wilkinson et 

al., 2018) and to validate the impacts of different levels of forecast (Mitheu et al., 2023). 

Nevertheless, each situation would require a specific approach that meets the remits of the 

users. For example, at-risk communities could benefit more from an impact-oriented 

approach (Kaltenberger, Schaffhauser and Staudinger, 2020), which uses available 

historical flood impact information to define the danger levels at which flooding occurs. For 
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example,  available impact information from data infrastructures such as DesInventar 

(UNISDR, 2018) and EM-DAT (EM-DAT, 2020) can be integrated with local information 

gathered from community engagement (Tarchiani et al., 2020) to provide more localized 

risk information. The local information is useful in ensuring IbF systems are more dynamic 

regarding the danger levels and valuable to trigger targeted anticipatory actions. Depending 

on the context, local information in addition to information about built-up area, 

infrastructure and inhabitants could include the seasonal crop calendar, livestock sale 

schedules, market functionalities, and household economy analysis (Seaman et al., 2014). 

For example, during the 2020 monsoon floods in Bangladesh, the seasonal rice calendar 

helped the UN Food and Agriculture Organisation (FAO) intervene just before the sowing 

season to protect rice seeds for the most vulnerable communities by providing watertight 

storage kits (FAO, 2021).  

‘Livelihood’ is defined as how people make a living, which comprises capabilities, assets, 

and activities required to secure life necessities, including food and non-food items 

(Chambers, 1995; Scoones, 1999; Boudreau et al., 2008). In East Africa, anticipatory 

actions toward livelihood protection and food insecurity crises, such as reduced crop yields 

and livestock losses, are often focused on slow-onset disasters such as drought (WFP, 2021). 

However, floods due to heavy rainfall and waterlogging also lead to devastating losses of 

crops and livestock. For example, in the Katakwi district of Uganda, over 65,000 acres of 

significant crops (beans, groundnuts, green grams, potatoes) were destroyed during the April 

to June 2018 rainy season (UNISDR, 2018). These agriculture-based livelihoods are mainly 

rain-fed and support approximately 80% of Uganda’s rural population. Therefore, there is a 

need to consider people’s livelihood sources and coping strategies in developing IbF 

systems so that at-risk rural communities can better protect their livelihoods and develop 

coping practices better adapted to changing weather patterns.  

In Uganda, due to the current lack of a local flood forecasting system (Atyang, 2014), 

forecast information from the Global Flood Awareness System (GloFAS) has been used to 

inform early warnings and anticipatory actions through the development of a hazard-based 

flood early warning trigger system (HbFEWtS) (URCS, 2021). GloFAS provides freely 

available flood hazard forecasts under the funding from European Commission’s 

Copernicus Emergency Management Service(Alfieri et al., 2013). Our study aims to refine 

the existing HbFEWtS by integrating crop cycles and flood impact information to explore 

variable triggering thresholds and targeted anticipatory actions. The objectives of the study 
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are to (1) gather the livelihood data from the local communities, (2) develop the impact-

based component and integrate it with the forecasts to define an impact-based flood early 

warning trigger system (IbFEWtS) using the impact-oriented approach proposed by 

(Kaltenberger, Schaffhauser and Staudinger, 2020), and (3) evaluate the two systems using 

historical flood impacts information in the context of humanitarian actions (actions that are 

triggered based on the likelihood of high magnitude floods and the available resources) by 

the Uganda Red Cross Society (URCS). In this study, we use the term ‘impact 

data/information’ to refer to quantitative and qualitative information reported on the type of 

impacts on lives, livelihoods, and infrastructure derived from global data repositories 

(DesInventar and EMDAT). 

In the following sub-sections, we describe the HbFEWtS already in use by URCS, highlight 

the data collection method at the local level, and define the IbFEWtS that integrates forecasts 

and crop impact information based on the Livelihoods Impact-Based Flood Forecasting 

(LIMB) framework (see Ciampi et al., 2021) developed under the SHEAR *4NIMFRU 

project.  The IbFEWtS and the HbFEWtS are then compared through a case study based in 

the Katakwi district, and the following research questions are addressed:  

1. How do the skill (as measured by statistical skill scores) and the thresholds of the 

two trigger systems compare for humanitarian actions? 

2. Does the impact-based flood early warning trigger system change how anticipatory 

actions are targeted? 

 

4.2.2 Materials and Methods 

4.2.2.1 Case Study 

 

The Uganda Red Cross Society (URCS) is currently implementing the Early Action Protocol 

(EAP) for floods in flood-prone districts under the IKEA Innovative Approaches for 

Response Preparedness (IARP) project. An EAP refers to a pre-agreed set of procedures and 

mechanisms that allow humanitarian organizations, governments, and other stakeholders to 

respond to disasters quickly and effectively to reduce the impact of the disaster and save 

lives. One of the floods prone districts include Katakwi, which the NIMFRU stakeholders 

 
4 NIMFRU: National-Scale Impact-Based Forecasting of Flood Risk in Uganda project, co-funded by the UK Foreign, Commonwealth, 
and Development Office (FCDO) and the UK Natural Research and Environment Council (NERC). See 
https://walker.ac.uk/research/projects/nimfru-national-scale-impact-based-forecasting-of-flood-risk-in-uganda/. 
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also selected. Katakwi suffers from waterlogging and seasonal flooding and is among the 

districts that have experienced the highest flood events from 2007 to 2018 (see Figure 26A). 

The district comprises two livelihood zones: crop and livestock and fishing and livestock. 

The crop and livestock zone covers Ongongoja, Ngariam, and parts of Magoro sub-counties, 

while the fishing and livestock zone covers areas around lake Opeta and Bisina in Opeta 

parish (Figure 26B). The Katakwi district is selected to develop the IbFEWtS as a proof-of-

concept by adding crop impact information collected from three purposively selected 

villages to flood forecast information from GloFAS.  

 

Figure 26: A) Map of Uganda showing flood occurrence where Katakwi is ranked among the priority 

district due to the high occurrence of floods. B) The zoomed inset shows the Akokorio river-gauge 

location and the study villages within the Katakwi district where local information on flood impacts 

and crop calendars were collected. 

 

4.2.2.2 The current hazard-based flood early warning trigger system for Uganda 

 

The current HbFEWtS uses a pre-defined trigger threshold derived from discharge 

probability to define the danger threshold when anticipatory action(s) should be taken 

(Coughlan De Perez et al., 2016; Wilkinson et al., 2018). These systems ensure that 

decisions on triggers, actions, and targeting are made well in advance and implemented 

A B 
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through an EAP whenever the set criteria are met(IFRC, 2020a). Anticipatory actions can 

be triggered if a pre-defined threshold representing an impactful flood is reached. This 

threshold is obtained from observational data, historical river flow forecasts or rainfall 

observations.  

Setting up a hazard-based early warning system for a particular hazard begins by identifying 

the areas at risk and the priority impacts that would require anticipatory actions. Forecast 

information that meets the preferences of the stakeholders is then chosen based on 

availability. A wide range of forecast information can be used. The forecast information 

should be evaluated before being used in the hazard-based system to minimize the chances 

of taking actions that are not followed by an extreme event. Forecast skill assessment is 

therefore important in designing these robust systems. Based on stakeholders’ preferences, 

the current HbFEWtS for Uganda uses forecast information from GloFAS v3.1. For 

example, when GloFAS indicates a 60-70% chance of a 5-year return period flood at a 5-

day lead time (LT), pre-agreed actions will be triggered through the EAP (URCS, 2021). 

This forecast information has been evaluated as skilful using river-gauge observations 

collected across Uganda (Ficchi et al., 2021; Mitheu et al., 2023). Mitheu et al. (2023) 

provides a full description of GloFAS v3.1. 

  

4.2.2.3 Data collection  

 

Data collection was organised as part of NIMFRU project and included researchers from 

both Uganda and international institutions. Data collection fieldwork took place from 

February 2019 to February 2020 where both qualitative and quantitative data was collected 

from three village sites in Katakwi District. The initial process started with the development 

of use cases targeting at-risk communities in the selected sites. Mitheu et al. (2022) provide 

a comprehensive description of the use cases. Quantitative data was collected using the 

Household Economic Assessment methods (Seaman et al., 2014) and included assessing the 

various livelihood components (e.g., livelihood type, source of income, assets owned, 

expenditure, off-farm activities among others) at household level. Qualitative data which 

included coping practices, barriers to coping, response to flood hazards as well as impacts 

on crops were collected through the Farmers' Agri-Met Village Advisory Clinics 

(FAMVACs), co-designed during the NIMFRU project with the Uganda National 
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Meteorological Authority (UNMA). The FAMVAC method was complemented by semi-

structured one- on- one interviews. Ciampi et al. (2019) and Mitheu et al. (2022) provide a 

comprehensive description of the FAMVACs approach and the qualitative data collection 

methods respectively.  

Among the qualitative data collected from village sites, data on the crop types and 

dates/months when various crops were affected by floods were used to inform this study. 

These data were integrated with crop calendars for Uganda retrieved from the Famine Early 

Warning System NETwork(FEWS NET, 2013) and combined with the NIMFRU crop 

calendars drawn up by the Household Economy Assessment (HEA) researchers as part of 

the NIMFRU baseline study (Petty C.;Acidri, 2021). This calendar reflects the timing for 

the different crop cycles in an agricultural year. The combined crops calendars and the 

timing of the impacts on the various crops were used to develop crop-impact matrices for 

the three villages to inform the impact-based trigger system. The historical flood impact 

information for Katakwi derived from DesInventar and EM-DAT from 2007 to 2018 was 

then used to evaluate the two systems using the Probability of Detection (POD) and false 

alarm ratio (FAR) skill scores (Wilks, 2006). Mitheu et al. (2023) provides a detailed 

description of these global data repositories for Uganda. Table 21 shows the type of flood 

impacts reported, their timing, and the magnitude of the flooding during that period. The 

flood magnitudes were extracted from the GloFAS v3.1 for the Akokorio river gauge 

station. All other data as described above that was not used in this paper will be published 

separately to inform the aim of the NIMFRU project.  
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Table 21: Flood timelines for Katakwi based on historical flood impact information from DesInventar 

and EM-DAT repositories. For the years between 2007 to 2018 that are omitted in this table, no 

impacts information was available. 

 

Flood timelines based on historical impact information (from DesInventar 

and EMDAT data repositories 

GloFAS v3.1 (5-days LT) 

Flood 

year 

Flood 

month/s 

Flood impacts Data 

collectors/provider 

Highest 

flood 

magnitude 

Description 

2007 July-

October 

Thousands of people were 

affected, homes were damaged, 

and crops were destroyed. A total 

of 29,000 households were 

affected in the six districts 

URCS, Office of 

Prime Minister 

(OPM) 

10yrs Return 

Period (RP) 

The highest 

magnitude of 

above 10yrs RP 

was reached in 

July, August 

(3yrs), and 

September(5yrs) 

2008 November About 6000 people were affected 

by floods 

News-Vision 95th 

percentile 

Flows were above 

the 95th percentile 

on 12th November 

2010 April, 

May, 

September 

In April, flooding -7000 People 

were affected in 4 sub-counties, 

and roads were affected. In May, 

water logging resulted in the 

rotting of crops like cassava, with 

about 240 gardens destroyed in 

various villages. In September, 

water from neighbouring districts 

affected infrastructure, crops, and 

grazing lands. Over 3500ha of 

crops lost 

 Chief 

administrative 

office (CAO)-

Katakwi, OPM 

News-vision 

1.5yrs RP The peak flow of 

above 1.5yrs RP in 

mid-May. In 

September, flows 

were above the 

90th percentile 

2011 September-

October-

November 

Thousands of people were 

affected, and crops were destroyed 

in Aketa and Obulengorok in 

Ongongoja 

URCS, New vision 3yrs RP The peak flow of 

3yrs in September 

2012 August-

September 

Crops such as cassava and 

sorghum were destroyed, roads 

unpassable, houses and latrines 

damaged, and crops rotting. Water 

sources were contaminated. Over 

10,000 acres of crops submerged 

CAO, OPM 10yrs RP Flows were above 

the 95th percentile, 

with a peak of 

above 10yrs at the 

end of July and 

3yrs in August  

2013 October  Crops planted started rotting in 

several villages of Acuru, 

Abwokodia, Otujai, and Adurukai. 

OPM 3yrs RP Flows with a peak 

of above 3 yrs. RP 

in August  

2014 October Crops in the sub-counties of 

Omodoi, Usuk, and Ongongoja 

were destroyed 

CAO-Katakwi 2yrs RP Flows above 2 yrs. 

RP in September 

2017 September Crops were destroyed, including 

210 acres of millet 

District files, CAO 2yrs RP Flows peaked at a 

2yrs RP in mid-

August 

2018 April-June Major crops (beans, groundnuts, 

potatoes, green grams) were 

destroyed, 65403 acres of crops 

were destroyed, and houses, 

schools, and latrines were 

damaged.  

District files, News 

vision, interviews 

10yrs RP Flows were above 

95th from April 

with a peak of 

above 10yrs in 

May. Late June 

2yrs flows 
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4.2.2.4 The Impact-based flood early warning trigger system 

 

For wider applicability in informing sectoral-based decisions (i.e., in agriculture, livestock, 

health, etc.), we define an impact-based trigger system that integrates forecasts with local 

information through an impact-oriented approach (Kaltenberger, Schaffhauser and Staudinger, 

2020).  We then refined the system with information on crop cycles and flood impacts from 

the Katakwi district. Here, we assess how the crop cycles help identify critical times when 

floods affect crops and how targeted interventions can be designed to ensure reduced risks. The 

components of the IbFEWtS are elaborated further below.  

 

Figure 27: The IbFEWtS that integrates local information developed based on concepts from Boult et 

al. (2022). Number 1 to 3: represents the existing components of the HbFEWtS. Number 4 to 6: new 

local dynamic IbF components. Grid boxes (matrices) represent spatially varying values (from dark 

brown: high values to light brown: low values) of vulnerability, exposure, risk, and impacts. Colours in 

component 2 represent varying trigger threshold values (dark brown: pre-defined trigger reached, light 

brown: not reached). Component 5 represents adjusted thresholds based on local information (dark 

brown: threshold adjusted upwards- no triggering, light brown: adjusted downwards to ensure 

triggering). 
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The components of the IbFEWtS are summarized in Figure 27. The principal components of 

existing HbFEWtS (e.g., the one followed for the Uganda EAP for floods) are retained 

(components 1-3). Within each component, the grid box represents spatial variability (e.g., 

different districts/counties in Uganda at a given time). The retained components are 

summarized below: 

1. A risk analysis combines flood hazard, exposure, and vulnerability layers to delineate areas 

at risk of flooding. Depending on the location and context, this component can also represent 

the risks and vulnerability of any other hazard such as drought and tropical cyclone.  

 

2. Hydrometeorological forecasts (considering forecast skill) derive trigger thresholds based 

on stakeholders’ preferences and consider the risk profiles.  The distribution of threshold 

exceedances shows areas likely to report a high risk of impacts (i.e., for this case, a high 

probability of flooding with significant exposure and vulnerability). 

 

3. The threshold exceedances show areas that will require triggering early actions. Conversely, 

no actions will be triggered if the forecast threshold is below the pre-defined threshold. 

 

The additional components needed for the IbFEWtS include: 

4. The integration of crop cycles with forecasts for each administrative area. Based on the 

context, this component can consist of other local information (livestock sale schedules, 

social-economic variables etc.). 

 

5. A variable trigger threshold can be adapted to ensure differential triggering that better 

reflects more critical times of the cropping year. For example, the trigger threshold is 

lowered (right-hand side squares) during the harvesting and the start of the second planting 

season. Historical flood impact information is used to evaluate the trigger systems (both 

hazard and impact-based) based on the set criteria and selected skill scores. 

 

6. A range of anticipatory actions is derived through stakeholders’ consultations reflecting 

agricultural management practice at specific times of the year. For example, actions during 

the harvesting season are likely to be different from those during the planting season. 
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4.2.3 Results 

In this section, we describe the crop impact information collected from the local 

communities in Katakwi and demonstrate how the IbFEWtS could be deployed in a local 

context based on flood forecasts and this local information.  

4.2.3.1 Local impact data from village sites in the Katakwi district 
 

The crop calendar developed by NIMFRU project (Petty C.;Acidri, 2021) in combination 

with the crop calendar developed be FEWSNET and flood impact on crops information 

collected from village sites in Katakwi was used to develop crop-impact matrices for 

each(Figure 28). These matrices show that most major crops are negatively affected by 

floods and waterlogging from July to November, with slight variations across the villages. 

For example, significant adverse impacts occurred from July-October in Anyangabella 

village, August-November in Kaikamosing, and August-October in Agule village. Major 

crops affected include cassava, sweet potatoes, groundnuts, sorghum, green grams, 

cowpeas, millet, and maize. On the other hand, positive impacts are noted during the same 

period, especially for fruit trees such as lemon, orange, mango, and jackfruit across all 

village sites (Appendix 4.1) and for bananas and rice in Kaikamosing and Agule villages, 

but not in Anyangabella in the north. Livestock is also negatively affected by floods across 

the three villages during the two rainy seasons. The negative impacts on crops are mostly 

experienced during the harvesting (June-August) and second planting season (September-

November), as seen from the crop (Figure 28). For this study, we have indicated distinct 

periods for the harvesting and planting seasons based on the generic calendar that combines 

all crops that was derived from FEWSNET. We however note that specific major crops may 

have overlaps between the harvesting and second planting season where for most crops the 

harvesting season may be extended up to December (FAO, no date). The information on 

crop impacts has been integrated with GloFAS v3.1 flood forecasts to define the IbFEWtS 

for Katakwi, as elaborated further in section 4.2.3.2.  
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Figure 28: Crops, crop calendar, and flood/waterlogging impacts matrices for the three 

village sites in the Katakwi district. Source: NIMFRU Household Economy Assessment 

(HEA) study, SHEAR NIMFRU project. 

 

4.2.3.2 The impact-based flood early warning trigger system applied to Katakwi.  

 

Forecast information from GloFAS v3.1 at the Akokorio gauging station is integrated with 

the crop cycles for Katakwi within the defined IbFEWtS (Figure 27) to develop the IbFEWtS 

for the Katakwi district. This system considers floods at five days LT at 60-70% forecast 

probability (FP) and a varied threshold based on the crop cycles. For this case, we have 

adopted different thresholds for the first planting season (March-May), second planting 

Months December January February March April May June July August September October November

Crops/calendar
H     H

Rainfall season

LAND PREP
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WEEDING
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season (September-November), and the harvesting season (June-August), respectively, 

based on initial reports on flood impacts on crops collected from the communities (Figure 

28) and the need to minimise the trigger frequency. Based on this information, a threshold 

of 10-year RP has been adopted for the first planting season, which is noted at a non-critical 

period when minimal impacts are likely to occur. On the other hand, the harvesting period 

has been noted as most critical where high impacts are likely to occur; hence a threshold of 

3-year RP has been assigned. While the second planting season has been noted as 

moderately critical since it overlaps with the harvesting period for most crops; hence, a 

threshold of 5-year RP has been assigned. The choice of the varied thresholds used here is 

based on one-year impact data from farmers (Figure 28); hence they can be subjective. In 

addition, actions cannot be re-triggered within a period equivalent to the action's lifetime. 

Here, the action lifetime is defined as the period up to which anticipatory action will still 

have positive impacts (see Coughlan De Perez et al., 2016). For this study, which is based 

on a crop calendar, we have considered an action lifetime of 30 days.  

The historical flood impacts information (Table 21) is then used to evaluate both the hazard-

based and the impact-based systems. The two systems are presented in Figure 29. Due to 

the lack of complete flood impact information for the Katakwi district before 2007, only 12 

years have been considered in this study. The exact dates when anticipatory actions could 

have been triggered for the two systems are shown in Table 22. The outputs from these 

systems have been used to address several important questions in the following sub-sections. 
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Figure 29:  A) The existing HbFEWtS. B) the IbFEWtS for the Katakwi District. The 

impact-based trigger system integrates local information on crop cycles with forecasts. 

Flood return periods (RP) have been extracted from GloFAS v3.1. The crop cycle reflects 

the actual stage of crops when floods occur. The triggers represent the time/month when 

actions are triggered. 

A 

B 

Harvesting [H]

Planting season 1-P(S1)

Planting season 2-P(S2)

Triggers

Year-yr

Months

Years March April May June July August September October November

Hazard-

based 

trigger 

model

2007 Yes Yes

2008

2009

2010

2011

2012 Yes

2013

2014

2015

2016

2017

2018 Yes

Impact-

based 

trigger 

model

Crop cycles

Threshold

2007 <1yr 10yr 3yr 5yr

2008

2009

2010 1.5yr

2011 <1yr 3yr

2012 1.5yr 10yr 3yr

2013 2yr 3yr/<60FP

2014 2yr

2015 1.5yr

2016

2017 2yr

2018 <1yr 2yr 10yr 2yr <1yr

<1yr

<1yr <1yr

<1yr <1yr <1yr

<1yr

<1yr <1yr <1yr

<1yr

<1yr

<1yr <1yr

<1yr <1yr <1yr

<1yr 1.5yr <1yr

10years 3years 5years

<1yr <1yr

<1yr <1yr <1yr

<1yr <1yr <1yr

<1yr

GloFAS reforecasts ENS v3.1 at 90th percentile-ref observed Q ( 60-70%  probability, 5days 

LT). Predfined threshold-5 Years RP

GloFAS reforecasts ENS v3.1 integrated with crop cycles. Magnitudes derived from 

GloFAS(60-70% FP),5days LT

P(S1) Harvesting P(S2)
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Table 22: Trigger dates for the Hazard-based and Impact-based systems 

Trigger dates for the hazard-based system, 60-70% Forecast Probability, 5yr RP, five days 
Lead time 

Hazard-based system 

Year Trigger dates 

2007 4th July 

2007 12th September 

2012 18th July 

2018 20th May 

Trigger dates for the impact-based system, 60-70% Forecast Probability, varied thresholds, 
five days Lead time 

Impact-based system 

2007 4th July 

2007 5th August 

2007 12th September 

2012 18th July 

2018 23rd May 

 

4.2.3.3 How do the skill and the trigger thresholds of the two systems compare? 

 

From Figure 29, we can assess the skill of the two trigger systems in detecting flood events 

using historical flood impact information (Table 21). A contingency table is developed for each 

system, as shown in Figure 30 below and is used to compute the POD and FAR for each system. 

 

 

Figure 30: Contingency tables for the two trigger systems and their computed POD and FAR 

 

The POD for the hazard-based trigger system using a predefined threshold was 0.33, while the 

impact-based trigger system using a varied threshold showed an improved POD of 0.42. 

Neither system had false alarms. The hazard-based system had 8 missed events that occurred 

Triggered, no impacts

Not triggered, with impacts

Not triggered, no impacts

Triggered, with impacts

Impacts No impacts

Forecast Hits (4) False alarm (0)

No forecast Miss (8) CN(3)

POD (0.33)

FAR (0)

Hazard-based model

hits/(hits+misses)

False alarm/(hits+ false alarm)

Impacts No impacts

Forecast Hits (5) False alarm (0)

No forecast Miss (7) CN(3)

POD (0.42)

FAR (0)

Impact-based model

hits/(hits+misses)

False alarm/(hits+ false alarm)
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in 2007 (1), 2008, 2010(2), 2011, 2013, 2014, and 2017 while the impact-based system had 7 

missed events during 2008, 2010(2), 2011, 2013, 2014 and 2017. This shows that the two 

trigger systems are comparable in detecting flood events and minimising ‘actions in vain’. 

Regarding the trigger dates, both systems trigger actions simultaneously for the common 

triggers (see Table 22). However, an additional trigger occurred for the impact-based system 

on 5th August 2007. Severe impacts were reported for some of the years that the forecast did 

not reach the required threshold in both systems (missed events). For example, in 2010, 

flooding affected over 7000 people in April across several sub-counties in Katakwi. In May 

and September, waterlogging resulted in crops rotting, with over 240 gardens destroyed 

(UNISDR, 2018). The highest flow magnitude reported in 2010 at five days LT was in May at 

1.5-year RP. The impacts could therefore be because of flash floods and not riverine flooding.  

Similarly, 2008, 2011, 2013, 2014, and 2017 reported impacts across several locations in 

Katakwi. 

Investigating the missed events further shows that, in 2010, the flow magnitude was at 3-year 

RP in May at ten days LT, but it was still below the set threshold; hence no triggering was 

required. In September 2011, though the magnitude was at 3-year RP at five days LT, a 

magnitude of 10-year RP was reached at ten days LT, which could have resulted in the reported 

impacts (Table 21). In 2013, the magnitude was 3-year RP in August but resulted in a missed 

event since the forecast probability was below 60%. Finally, in 2014 and 2017, the magnitudes 

were at 2-year RP at longer LT; hence no actions were triggered.  

For the case study in Katakwi, we note slight differences between the hazard-based and the 

impact-based trigger systems on the thresholds. For example, lowering the trigger threshold 

during the harvesting period to 3-year only results in one additional trigger. This can be 

associated with other variables, such as the forecast probability and the action lifetime, which 

also play a key role in trigger selection.  

4.2.3.4 Does the impact-based trigger system change how anticipatory actions are 

targeted? 

According to the EAP for Uganda, pre-agreed actions would be triggered through the Disaster 

Relief Emergency Fund (DREF)  if high magnitude flooding (above 5-yr RP) is expected 

(IFRC, 2020b). Based on these attributes, the trigger thresholds would have been reached 

within the hazard-based system in 2007, 2012, and 2018, and the pre-agreed actions according 

to the EAP guidelines would be implemented.  
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The defined IbFEWtS, which includes the crop cycles from the cropping calendar, shows that 

actions can be more targeted to correspond to the time of the agricultural season. For example, 

in 2007, the trigger dates would have occurred during harvesting (July, August) and the start 

of the second planting season (September), resulting in different actions each time. Actions 

during the harvesting season could include recommending early harvesting and provision of 

storage kits, while planting season actions would call for late planting, draining water from 

farms, and other farm management activities (Appendix A4.2). These actions have been 

derived from farmers' coping practices during the field interviews (see Mitheu et al., 2022). 

The crop cycles can therefore be used to tailor interventions with an improved chance of 

protecting livelihoods at the community level.  

4.2.4 Discussion  
 

Anticipatory actions are increasingly being taken before an extreme weather event (see 

Wilkinson et al., 2018), with humanitarian organizations using forecasts to inform 

interventions (FAO, 2021; WFP, 2021). Evidence suggests that taking preparedness actions 

before a hazard can result in significant benefits (Gros et al., 2019). However, hazard-based 

early warning systems based on predefined trigger thresholds and pre-agreed actions could 

result in the exclusion of low-magnitude flood events, which can still result in significant 

livelihood impacts to the most vulnerable communities at critical times of the agricultural year. 

The FbA approach focuses on extreme events that are not likely to occur every year (RCCC, 

2022), and most humanitarian organizations prefer pre-defined hazard-based systems due to 

various beneficial reasons such as avoiding delays associated with real-time decision-making 

(see Boult et al., 2022). However, decisions on where and when to act and what preparedness 

actions to take call for local information from at-risk communities (Klassen and Oxley, 2021).  

Drawing from the Katakwi case study, we discuss the overall benefit of an impact-based trigger 

system. More specifically, we discuss the value of local information in developing a trigger 

system and the need for more targeted anticipatory actions. Lastly, we provide insights into 

whether the existing hazard-based trigger system should be changed entirely based on local 

information or just the targeting of the interventions to ensure local at-risk communities are 

protected. 
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4.2.4.1 Would integrating local information into a trigger system improve the skill? 

 

A pre-defined trigger threshold ensures that actions can only be triggered if that threshold is 

reached. Such a criterion has known benefits (see Boult et al., 2022). For example, pre-defined 

thresholds reduce subjectivity which can result from varying the thresholds depending on the 

situation. However,  with the level of impacts changing across specific users/user groups 

(Stephens et al., 2016), a general pre-defined trigger based on a danger threshold could result 

in not enough warnings, leaving out events that could result in major local impacts (Potter, 

Harrison and Kreft, 2021). An alternative is using variable thresholds to define triggers at 

which actions should be taken—for example, designing flexible thresholds based on real-time 

expert judgement (Boult et al., 2022) or operationally integrating forecasts with local 

information to define the trigger thresholds as applied here.  

The choice of the trigger threshold at which actions should be taken can determine the system's 

skill. While the aim would be to have a trigger system that minimises false alarms and trigger 

frequency, decision-makers and humanitarian actors often face the dilemma of when early 

actions should be triggered. For example, if they should act based on any forecasts to prevent 

any damages/losses or only based on forecasts that show a high likelihood of event occurrence 

to minimise expenses. Lopez et al., (2020) provides a detailed explanation of the two decision 

criteria. The choice of the trigger threshold can therefore be subjective and will depend on the 

sector-specific decisions.  

Trigger thresholds can be determined using several methods, as noted in the scholarly literature 

(Coughlan De Perez et al., 2016; Lopez et al., 2020).  This study has shown that these 

thresholds can be further varied based on context-specific information such as crop calendars 

and livestock sale schedules to improve the targeting of anticipatory actions. For example, 

adjusting the threshold so that alerts for low-magnitude floods are triggered only during critical 

times of the years when low-cost interventions can be initiated through existing disaster 

management structures (MacLeod et al., 2020).  

In the Katakwi district, integrating the crop cycles with flood forecast information allowed us 

to subjectively vary the trigger threshold across the crop cycles to define an Impact-based 

trigger system. Evaluating the POD using historical flood impacts information showed an 

improvement in flood detection from the existing hazard-based trigger system ( 
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Figure 30). However, the number of missed events remained high, even for the IbFEWtS, 

which affects the overall skill. For example, in 2010, though severe impacts were reported in 

April, May, and September (see Table 21), the flow magnitude was at 3-year RP, even at longer 

lead times. Therefore, the flood impacts could have resulted from flash floods and not 

necessarily riverine flooding. In contrast, 2011 was reported as a missed event at 5-days LT 

since the flow magnitude was below 5-year RP, but the flow magnitude reached a 10-year RP 

at ten days LT. This means that the flood event may have occurred although not at the 

forecasted date which explains the impacts that were reported during that period (Table 21).  

Our findings show that other forecast features, such as the forecast probability and the forecast 

lead time, also play a crucial role in developing a trigger system.  Therefore, forecasts should 

be monitored beyond the set criteria and actions triggered if necessary. For Katakwi, floods 

that are likely to reach the 3-year RP during harvesting and 5-year RP during the second 

planting season can be monitored at longer lead times, and actions taken if they show a high 

probability of occurring. For example, in September 2011, high magnitude floods (10-year RP) 

were correctly forecasted at ten days LT, which can be used to trigger early actions.  

Overall, local information can be used to adjust trigger thresholds at which different actions 

should be taken (Stephens et al., 2016; Ciampi et al., 2021). However, the cost/benefits 

associated with varying the thresholds to trigger anticipatory actions should be investigated  

(Lala et al., 2021). In addition, the quality and quantity of impact information that varies across 

contexts and locations (Mitheu et al., 2023)  and the relevant forecast features (lead time, 

probability) will determine the overall skill of the resulting triggers. A combination of these 

variables should be co-designed with the stakeholders to ensure an optimal trigger system is 

developed.  

4.2.4.2 The need for more targeted early actions 
 

The existing hazard-based system triggers pre-agreed actions (Appendix A4.2) based on the 

set criteria within the EAP. However, these pre-agreed actions might not fully benefit at-risk 

communities due to the context-specific nature of their needs and coping practices.  For 

example, interventions such as cash transfers may not be appropriate in all locations if the 

market's functionalities (accessibility and availability of a required commodity) are likely to be 

affected (Bailey and Harvey, 2015; Wilkinson et al., 2018).  In contrast, targeted anticipatory 

actions can ensure that communities effectively implement the right coping practices during a 
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specific time in the agricultural season. Anticipatory actions should therefore be designed based 

on user-specific needs and practices (WMO, 2021b), which change across users and over time. 

 

In the case of the Katakwi district, most impacts of floods on crops occurred during the 

harvesting season based on the calendar that was used (Table 21, Figure 29). Therefore, 

information on the crop cycles can be used to design actions to help these communities protect 

their livelihoods during these critical times. Such local information can also ensure that 

interventions are better designed. For example, more frequent floods might only require no-

regret actions such as raising awareness of the likelihood of impactful flooding. Local farmers 

can then use such information to inform their coping practices and improve their resilience to 

floods. 

Although we have used a generic crop calendar derived from FEWSNET(FEWS NET, 2013) 

(see Figure 28), we note that specific major crops may have overlaps between the harvesting 

and second planting season where for most crops the harvesting season may be extended up to 

December. For example, a crop like sweet potato grown in Eastern Uganda has a harvesting 

period starting from July to December while a crop like groundnut has the harvesting season 

running from June to August (FAO, no date). The design of targeted actions for specific crops 

should therefore take into considerations such variations in the cropping calendar.  

 

4.2.4.3 Should the hazard-based trigger system be changed or just the targeting of the 

interventions? 
 

The appropriate danger thresholds used in the different EAPs are selected through a 

consultative process. The process involves disaster managers, alongside forecasters, to 1) select 

the hazard threshold that could lead to significant losses and 2) decide on the acceptable number 

of times that they may be willing to take actions ‘in vain’, i.e., actions that are not followed by 

an extreme event. In Uganda, this threshold was set for a flood magnitude of 5-year RP with 

an acceptable probability to ‘act in vain’ of 50%. In the FbA approach, this would mean 

targeting events that are unlikely (20% chance) to happen each year and leaving out low-

magnitude events, which might result in high impacts at specific times of the year, e.g., crop 

fruiting phase.  
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Given this and based on the LIMB framework  (Ciampi et al., 2021), the crop cycle information 

has been integrated with forecasts information to develop a trigger system for Forecast-based 

Action (FbA) that allows variable triggers and different interventions for communities at risk. 

The contextual information incorporated into the impact-based system will unavoidably change 

depending on the hazard and the area of interest. Therefore, deciding whether to change the 

entire system or just a specific part (such as the selected actions or the thresholds) is not 

straightforward. Here we highlight two possible recommendations:  

1. The existing hazard-based trigger system (Figure 29A) can be enhanced by integrating 

livelihood-based information, such as the crop cycles, to help better target the pre-agreed 

actions. For Katakwi, this would mean having four triggers (2007(2), 2012, 2018) with 

different interventions based on the crop cycles (Appendix A4.2). Crop calendars will vary 

across countries and districts and should be developed in consultation with the local 

communities (see NIMFRU, 2020). For example, Uganda has eleven crop calendars across 

different climate zones (FAO, no date). Co-designing pre-agreed actions with local 

stakeholders is crucial to properly reflect households' various coping strategies at different 

times of the year. The co-design of targeted activities should also consider the current 

practices per the disaster management plans to avoid replication (Stephens et al., 2016). For 

example, in Katakwi, some priority coping practices within the agricultural livelihood sector 

include post-harvest handling and seeds distribution (KDLG, 2017). 

2. An impact-based trigger system (Figure 29B) could be developed based on variable triggers 

and crop cycles. The choice of the trigger thresholds across the crop cycles must be co-

designed with stakeholders based on the decision-making context (e.g., livelihood coping 

strategies). Historical impact information can then be used to evaluate the trigger system in 

comparison to the existing system to assess if it is necessary to develop a new trigger system.  

The evaluation using historical impact information can, however, result in uncertainty. 

Notably, the quality and quantity of the impact data available for each location can vary 

greatly(Mitheu et al., 2023). In such circumstances, historical impact data should be used 

alongside other available and relevant data based on the location to evaluate the trigger 

system, for example, including rainfall for cases of flash floods (Yang et al., 2015). The 

available impact data should also be used with caution, and where possible local knowledge 

from the communities should be used to enhance them. In addition, the impact data can be 

disaggregated to the various sub-categories and the relevant information used 

(Kruczkiewicz, Bucherie, et al., 2021). For example, impacts because of flash floods may 
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not be useful in evaluating riverine flood forecasts. However, such information can ensure 

the design of appropriate interventions for each flood type (Paprotny, Kreibich and Morales, 

2021). 

 

For the Katakwi case study, an improved POD and reduced number of missed events is seen 

between the existing hazard and the defined impact-based trigger system. However, the false 

alarms, and the trigger dates are similar in the two systems. This could have resulted due to the 

length of the data records (12 years) used in the analysis and might be different if more flood 

events are considered. Based on these findings, the existing hazard-based trigger system could 

remain the same in a humanitarian context, but early actions could be further enhanced using 

crop cycles. The impact-based trigger system can then be further examined in a different 

context (e.g., for livelihood protection) to assess the value of this contextual information. 

Although a slight difference is noted between the two systems, the impact-based system is still 

relevant to show the use of local information to adapt global forecasting systems to local 

contexts and how anticipatory actions could be better targeted.  

Overall, we have provided recommendations on how local information can contextualise and 

enhance hazard-based trigger systems and ensure variable trigger thresholds and more locally 

targeted actions. We also acknowledge that a decision on whether to change a trigger system 

would require clarity in understanding the benefits and consequences of implementing the new 

method, which will vary across communities and locations. In addition, the decision to 

implement might not be straightforward and will depend on background issues shaping the 

implementing agencies' political and institutional environment. Our findings should, however, 

open avenues for further dialogue on what the impact-based trigger system could mean within 

the broader FbA landscape towards building the resilience of at-risk communities. 

 

4.2.5 Future work 

The shift from hazard-based to impact-based forecasting would ensure that users and 

communities have access to the forecasts and advisories on the likely impacts of any extreme 

threatening event. Therefore, to implement effective preparedness measures at the community 

level, locally customized EWI will be required due to the context-specific needs and priorities 

among communities (Bailey, Hassan and Dhungel, 2019). Therefore, local contextual 
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information plays a crucial role in improving the trigger models by ensuring that household-

level anticipatory actions are designed.  

In this study, data on crops and how they are affected by floods was used to redefine the trigger 

model. We note that local information will be context-specific and additional data collected 

from the communities can be used to provide the required personalization of the impact-based 

trigger model. Future work can therefore look at collection of additional information such as 

personal trigger preferences, anticipatory actions preferred by communities, flood impact 

perception and location specific impacts on other amenities such as roads and markets. Such 

data can then be used to develop impact-based trigger systems that are sector relevant.  

 

4.2.6 Conclusion  

 

The study findings have shown that contextualized livelihood information can be used to 

enhance the development of variable trigger thresholds and more targeted anticipatory actions. 

Hazard-based systems can therefore be adapted to the local context to ensure that even at-risk 

communities are protected. However, developing an impact-based trigger system requires 

sustained engagement with local communities to ensure their expert inputs can be included in 

the design and to facilitate the collection of HEA information to understand the livelihood 

systems of the local communities and the differential coping strategies. Further, to broaden the 

usefulness of the defined trigger system, future research could look at in-depth consultations 

with the relevant stakeholders under different sectors to develop the criteria required to tailor 

the impact-based trigger system to sector-specific decisions. 

Integrating the local contextual information with forecast information has shown that even 

data-scarce regions can benefit from impact-oriented approaches based on qualitative criteria. 

The approach can be tailored to ensure improved preparedness for flood risks at the community 

level. An impact-based system can also be very useful in validating the existing hazard-based 

systems to build more confidence in their use in informing anticipatory actions.  
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4.3 Wider applicability of the impact-based trigger system. 
 

In section 4.2, we defined an impact-based trigger system and demonstrated its application for 

floods in the Katakwi district within the context of humanitarian decisions. Here, the choice of 

the trigger thresholds was therefore pegged on the need to reduce frequent triggers; hence high, 

magnitude flood events were considered. The trigger threshold choice is context-specific and 

will depend on sector-specific decisions (Bazo et al., 2018). Impact-based information is 

therefore useful in designing trigger thresholds that are sector relevant to ensure the design of 

tailored early actions.  From a livelihood perspective, this would mean focusing on improving 

the resilience of the communities by ensuring that they are aware of the likely impacts and the 

appropriate coping practices to undertake (Mitheu et al., 2022).  

In this section, we demonstrate the wider applicability of the proposed impact-based trigger 

system by presenting three additional trigger models for Katakwi developed by varying the 

trigger thresholds at which actions should be taken.  Historical flood impact data show that 

even floods of magnitude above a 2-year return period can also severely impact lives and 

livelihoods (URCS, 2021).  Our models, therefore, consider floods with a magnitude of above 

two years. The four models have been evaluated using flood impact data described in section 

4.2.  

We have considered a varying threshold of between 2-3yrs for the harvesting period, 3-5yrs 

for the second planting season, and 10yrs the return period for the first planting season. Model 

3, which results in fewer triggers, has been adopted for the humanitarian decisions and further 

described in section 4.2 above. The other three models are presented in Figure 31 below and 

have been used to answer the below question:  

1. Should sector-specific decisions influence the design of trigger systems? 

 

4.3.1 Should sector-specific decisions influence the design of trigger systems? 

 

The three systems show that varying the magnitude can define the resulting number of triggers. 

From a livelihood perspective, a model that minimises the number of false alarms and missed 

flood events would be ideal. In this case, model 1 or 2 could be adopted since missed events 

(type 2 error) are minimal at 0.25 and 0.33, respectively (Figure 32) .Here we note that even 

floods that may not reach the predefined threshold but are likely to result in loss of crops or 
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livestock should be considered and low-cost actions designed. Notably, scholarly studies show 

that taking action during a low threshold flood event can result in high benefits of the early 

action as compared to waiting for high magnitude flood events to occur (Bischiniotis et al., 

2019; Lala et al., 2021). 

However, adapting the two impact-based models (model 1 or 2) would mean having frequent 

triggers at a trigger frequency of 0.75 and 0.67 times in a year, respectively (Table 23). 

Therefore, the influence of sector-specific variable triggers on the cost/benefits of taking early 

actions should be further investigated to understand the associated benefits of lowering the 

trigger thresholds and the avoided loss if the actions are taken (Bischiniotis et al., 2019; Lala 

et al., 2021). In addition, optimal trigger thresholds can be developed for specific actions at 

specific times of the year. The choice of the model is also highly subjective, and the choice 

should be discussed with the stakeholders depending on the decisions to be made. In-depth 

consultations with the stakeholders ensure that the required sector-specific criteria are 

developed and used to tailor the impact-based trigger systems (Bailey, Hassan and Dhungel, 

2019). 
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Figure 31: Impact-based trigger systems for Katakwi that could be applicable for sector-specific decisions
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Figure 32: Evaluation results for the three impact-based trigger systems 

 

 

Table 23: Trigger dates for the various impact-based models 

 

4.3.2 Discussion 

 

The new paradigm shift from hazard-based to impact-based forecasting would ensure that 

users and communities have access to the forecasts and advisories on the likely impacts of 

any extreme threatening event. Although the objective is to implement effective 

preparedness measures at the community level, locally customised EWI will be required due 

to the context-specific needs and priorities among communities (Bailey, Hassan and 

Dhungel, 2019). Therefore, local contextual information plays a crucial role in improving 

Model 1 Model 2

Impacts No impacts Impacts No impacts

Forecast Hits (9) False alarm (0) Forecast Hits (8) False alarm (0)

No forecast Miss (3) CN(3) No forecast Miss (4) CN(3)
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the trigger models by ensuring that household-level anticipatory actions are designed. In the 

three systems in Figure 31, we note that the POD improves when the trigger thresholds are 

lowest during the harvesting period. In addition, all the models have no false alarms, which 

means the forecast data has the skill of detecting flood events.  

Most countries, including Uganda, are already implementing the EAPs for floods. 

Therefore, to ensure that the existing FbA approach is maintained, the system could be 

implemented in a phased process within the current FbA initiatives.  First, the traditional 

trigger development framework could be followed by humanitarian agencies to develop the 

EAPs; next, adjusted thresholds and low-regret actions proposed based on the additional 

local information could be embedded into the developed EAPs. For example, lowered flood 

thresholds could be considered in a particular area and season to ensure minimised impacts 

even during periods when the pre-defined thresholds are not reached but impacts and 

vulnerabilities are high. For example, in Katakwi, forecasts that show a high likelihood of a 

2-year flood can be used to trigger low-cost anticipatory actions by local disaster managers 

in consultation with the Red Cross and other humanitarian organisations through 

institutional disaster management plans. The DREF funding can then be activated if there is 

a likelihood of the 5-year return period flood per the EAP guidelines. The system can also 

be applied across other disasters to test its applicability in informing the design of local 

actions. 
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5 Conclusions 
 

The aim of the research in the context and as part of the NIMFRU project was to improve 

the targeting and communication of flood early warning information and response to support 

decision-making and enhance national resilience. The advancement in science and 

technology has contributed to more improved forecasts information. The forecast 

information has, however, not been effective in informing local decisions, especially in the 

Global South countries. As the frequency and severity of hydrometeorological events 

increase, early warning systems that integrate local information are required to protect the 

most at-risk communities.  

This thesis has enhanced research and practice in redefining EWSs through community-led 

approaches that allow more sustainable and locally targeted EWSs. More specifically, the 

thesis employs a multi-disciplinary approach that focuses on improving the main 

components of a people-centred EWS through three main objectives: 

1. Identify the barriers and opportunities in the production/provision and use of flood 

early warning information for flood risk preparedness.  

2. Assess the usefulness of impact data relative to river gauge observations in verifying 

flood forecasts in data-scarce regions. 

3. Develop an impact-based flood early warning system for rural livelihoods using an 

impact-oriented approach. 

 

 

This thesis was structured around these objectives and explored through various methods, 

including community and disaster practitioners’ engagements, forecast evaluations, and an 

impact-oriented approach. The thesis presents three first-author papers, two are published, 

and the third one is accepted for publication and its under production, and a summary 

connecting sub-sections within each result chapter. 

This chapter outline the key conclusions from each objective, the wider contribution of the 

research in scholarly literature, sources of uncertainty and scope for the next steps. 
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5.1 Key conclusions 
 

5.1.1 Objective 1: Identify the barriers and opportunities in the production/provision and 

use of flood early warning information for flood risk preparedness. 

 

The first objective of this thesis was addressed in Chapter 2. The use of EWI among local 

communities has not been effective. Scholarly literature notes that this has been because of 

the information usability gap that affects the provision of useful and usable information. 

Developing useful and usable information depends on context-specific factors such as the 

information needs, coping practices, and the capability of both the information providers 

and the users. The first objective of this thesis was to identify such barriers that hinder the 

effective provision of EWI and the actual use of the provided information to inform coping 

at the community level as well as opportunities to improve usage. The objective is addressed 

through a bottom-up approach that ensures connections between the information 

providers and the communities for a better flow of information.  

Chapter 2 presents a more coordinated institutional response approach useful in 

identifying these barriers and opportunities in a context-specific setting across the 

provider-user landscapes. The barriers in the provision and use of EWI identified in the 

context of Uganda are consistent with other similar scholarly literature. However, context-

specific solutions will be required to bridge the gap. Our findings identified unique 

opportunities to improve EWI provision and use. These include the need to understand the 

data gaps by assessment of the various data dimensions, fostering data collaborations 

across institutions, assessing the information needs and use capability at the user level, 

and tailoring EWI to the local needs and coping strategies of the users.  

Increased availability of EWI does not necessarily translate to increased use. Improving the 

uptake of EWI, especially among local farmers, will require the development of actionable 

programmes that integrate information from these communities and are embedded in 

disaster management plans and processes. The local information can also be useful in 

improving three components of a people centred EWS. First, the information needs, and the 

coping practices identified provide knowledge on the farmers' risks due to flooding and 

what activities they undertake to avert the threats. Secondly, findings on the current 

format of weather information, dissemination language, and timing provide information that 
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can be used to improve EWI format, targeting, and communication channels. Thirdly, 

factors that affect the actual use of EWI by local farmers, such as lack of required farm 

inputs, financial difficulties, and the data gaps from the providers' context, provide 

information that is useful in informing the current disaster preparedness and response 

capabilities across the provider-user landscapes. In addition, ways to improve 

preparedness, such as providing subsidised farm inputs and pre-staging data required during 

the preparedness, are noted. 

 

5.1.2 Objective 2: Assess the usefulness of flood impact data relative to river gauge 

observations in verifying flood forecasts in data-scarce regions. 

 

The first objective (Chapter 2) shows that barriers to providing useful EWI are context 

specific. One of the barriers identified in the Ugandan context is the lack of a national flood 

forecasting and warning system. This means that the required EWI to inform local decisions 

is often not available. However, like many other data-scarce countries, Uganda still requires 

reliable forecasts to inform early actions and reduce the impacts of extreme events. 

Therefore, the second objective of this thesis was to assess if impact data can be used to 

verify flood forecasts from global systems to build confidence in their use in informing 

practical anticipatory actions. The objective is addressed through a forecast verification 

comparative analysis using flood impact data and river-gauge observations.  

The adequacy of flood impact data varies across locations. This chapter has provided 

information on the adequacy of flood impact data across several districts and counties in 

Uganda and Kenya. Findings show that the impact data (quantity and quality) are 

insufficient to verify flood forecasts in most locations where verification was done. 

Nevertheless, the data can be useful in defining the danger thresholds at which flooding 

might occur. However, there is the need to state the uncertainties while using the impact 

data to ensure that stakeholders know the likely implications of using the outputs to inform 

decisions.  

The role of less conventional data, such as impact data, in forecast verification has already 

been recognised through the WMO Joint Working Group on Forecast Verification Research 

program. Therefore, these data can potentially improve early warning mechanisms, 

especially in data-scarce regions. Based on our findings, various recommendations have 
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been made to improve the usefulness of impact data. For example, strengthening the 

collection of quality impact data at the country level, using new technology, and 

harmonising the existing impact data can ensure that the forecast verification outputs are 

more acceptable. In addition, these impact data provide local context information, which 

can be used as a baseline in impact-based forecasting.  

Forecast verification should take into consideration sector-specific early actions. 

Stakeholders in disaster management should therefore be allowed to develop a criterion that 

identifies the preferred forecast features across each early action. This will ensure that 

optimal forecast features (lead time, the margin of error, forecast probability, etc.) at which 

specific actions are effective are used in the verification to improve the skill of the forecasts. 

Although the outcome of the forecast verification using impact data is not favourable across 

all the locations, the assessment provides a possible way to validate forecast verification 

using river-gauge observations, especially in data-scarce regions. The findings 

contribute to two components of a people-centred EWS through the provision of flood 

impact data collected at the local level, which adds to risk knowledge, and through 

verification of forecasts from global systems, which builds on the forecasting and warning 

component. 

5.1.3 Objective 3: Develop an impact-based flood early warning system for rural 

livelihoods using an impact-oriented approach. 

 

The first objective of this thesis has shown that the information needs of local at-risk 

communities are context-specific, which would require tailored EWI to ensure adequate 

preparedness to flood risks. We have also gained perspectives from the second objective on 

the usefulness of local flood impact data to verify forecasts and inform the development of 

early warning and action mechanisms.  Objective 2 also shows that local impact data, though 

insufficient on their own, can be used to validate impact-based early warning systems. The 

need to provide EWSs tailored to the local context has motivated the third objective to 

develop a flood impact-based system for rural livelihoods. The objective is addressed by 

integrating flood forecasts with local information through an impact-oriented 

approach.  

Local context information can enhance hazard-based systems by providing information 

on the likely impacts of any upcoming event. Integrating the information with forecasts 

would allow a variable threshold across the different early actions and the design of 
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household-level anticipatory actions. The development of an impact-based early warning 

trigger system should consider sector-specific decisions as this will inform the choice of the 

thresholds. For example, from a humanitarian perspective, a system that reduces the number 

of actions triggered by only focusing on high-impact events is desired. In contrast, a 

livelihood perspective would require an impact-based system that reduces the number of 

missed events while considering the need to build resilient communities.  

The impact-oriented approach allows impact-based early warning systems to be 

developed through stakeholder consultations. Therefore, the approach benefits data-

scarce regions through robust early warning mechanisms. However, validation of an 

impact-based early warning system using impact data should be done with caution since the 

quality of these data varies greatly across locations, as found in Chapter 3. The findings 

should also open dialogues on how the outputs can be used effectively to inform actions 

at the local level. From our results, we further provide recommendations on if the local 

information should be integrated into the existing hazard-based system for Uganda. The 

findings also contribute to three components of the end-to-end EWS. First, the use of local 

impact information contributes to risk knowledge. Second, the developed impact-based 

system contributes to the forecasting and monitoring component, and last, the design of 

targeted anticipatory actions contributes to the response capability component.  

 

5.2 Contributions to Scientific Literature 
 

The recent recommendation from WMO to shift to impact-based forecasting calls for more 

focus on the consequences of extreme hydrometeorological events to the most at-risk 

communities. This means focusing on all four components of a people-centred EWS while 

considering context-specific needs and priorities (Figure 1). In undertaking this research, 

the three results chapters addresses various gaps in the development/ utilisation of 

EWS/EWI to inform local context decisions. Figure 33 provides a summary of how the three 

chapters are connected to each other into a more cohesive thesis and the key contributions 

both at the case study level and with relation to scientific literature. Notably, the thesis 

contributes to literature in three main areas; climate services, forecast verification and 

impact-based forecasting. These contributions are described below. 
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Figure 33: Diagram to illustrate the connection between the results chapters and key contributions to the case study and to the scientific literature. Source: developed by the author 
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5.2.1 Contributions to Climate Services (CS) 

 

In the last decade, a lot of advancement has been seen in the field of climate services where 

scholarly literature has focused on addressing various components of climate services such 

as benefits of CS (Amegnaglo et al., 2017; Hansen et al., 2019; Naab, Abubakari and 

Ahmed, 2019), the need to identify user needs(Coulibaly et al., 2015; Carr et al., 2019) , 

barriers to use (Flagg and Kirchhoff, 2018; Ouedraogo et al., 2018), the CS information 

usability gaps (Lemos, Kirchhoff and Ramprasad, 2012; Vincent et al., 2020) and co-

production (Lemos et al., 2018; Vincent et al., 2021). Despite such progress, effective use 

of climate services has not been realised. This has been attributed to various factors 

including the perceived needs of the users when developing such services as well as the 

nature of the information disseminated (technical formats and languages).  

The framework by Vincent et al. (2020) describes the various gaps that affect the use of 

climate services. This framework builds on the work by (Lemos, Kirchhoff and Ramprasad, 

2012) on the information usability gaps and provides guidelines for consideration to closing 

the gap. This thesis (Chapter 2) further builds on the work by Vincent et al. (2020) by 

combining their framework with the framework by Van Den Homberg, et al., (2017) to 

provide a holistic and coordinated approach applicable in ensuring gaps in CS are identified 

across not only the users (as seen in various literature) but also the providers of such 

information. By extending the framework to providers, the thesis shows that effective CS 

information use will also depend on the capabilities of the providers to develop useful 

information and tailor it to usable information based on the user-needs.  

The thesis also contributes to the literature on identifying specific users’ needs by giving 

voice to the local at-risk communities. Notably, the thesis findings on barriers to developing 

useful flood risk information are similar to Lumbroso. (2018) who found out that factors 

around limited financing, lack of coordination among institutions and limited accessibility 

of data and information among others affects the provision and use of flood early warning 

information. The study by Jennifer. (2018) however contradicts our fundings especially on 

the timeliness of early warning information disseminated to the local communities where in 

her study, the timeliness of information was rated as good while this study found out that 

information delivery is not timely which affects the undertaking of the coping practices. 
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5.2.2 Contributions to Forecast Verification. 

 

Traditionally, forecast verification is often based on conventional observations such as river-

gauge and rain-gauge data (for the case of floods) among others. This means that in data 

scarce areas, forecast verification efforts are limited. Scholarly literature on forecast 

verification has focused on the traditional verification methods and the benefits of forecast 

verification (Nidumolu et al., 2020; Paparrizos et al., 2020; MacLeod et al., 2021). By the 

time of writing this thesis, there was no scholarly literature that had been published on the 

application of non-traditional approaches in flood forecast verification.  

Efforts to use less conventional observations are being supported through the WMO joint 

working group on forecast verification. The working group supports research geared 

towards development of new verification metrics through the application of non-traditional 

approaches. This Thesis contributes to the scholarly literature on forecast verification by 

providing a novel approach in the verification of flood forecasts using impact data (Chapter 

3). The methodology developed would ensure that flood forecasts for any data scarce 

location can be verified and the outputs used to inform local decisions. In addition, the work 

won the WMO award on the best new metric for forecast verification which builds 

confidence in the replication of the methodology to support anticipatory actions.  

The thesis (Chapter 3) also contributes to the general knowledge on the factors that need to 

be considered in forecast verification to address sector specific decisions. The findings 

therefore contribute to the scholarly literature on the optimisation and sensitivity analysis of 

early action protocols (cost, time, quality of forecasts) on the forecast-based actions 

(Bischiniotis et al., 2019; Lala et al., 2021) by assessing the implication of varying the action 

lifetime in forecast verification to inform specific action.  

Consequently, the thesis provides broad recommendations to improve impact data that are 

applicable across context. The thesis collated impact data from various global repositories 

and analysed them to identify the gaps that affects the use of the data hence building on 

existing literature (Gall, 2015; Harrison et al., 2022). Therefore, although the analysis only 

focused on two countries, the recommendations provided are broadly useful in informing 

the improvement of impact data for subsequent verification or for impact-based modelling.  
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On a practical perspective, based on the Conference of Parties (COP) 27 outcome, credible 

impact data will be required to inform the allocation or compensation based on the damage 

and loss funds. These recommendations can therefore be used as a steppingstone towards 

ensuring countries are able to collect and manage impact data of required quality (Guha-

Sapir and Below, 2002).  

 

5.2.3 Contribution to Impact-based Forecasting and Forecast-based Action. 
 

Impact-based forecasting is often conceptualised and undertaken through quantitative 

approaches. Such approaches require quantified information on vulnerability, exposure and 

impacts to develop impact-based models. This means that data scarce regions are 

disadvantaged in the development and implementation of such systems.  

Scholarly literature on impact-based forecasting has advance in the recent past following 

the 2015 declaration by WMO on the need to provide impact-based warnings. However, 

most of the impact-based systems are being researched and implemented in the Global North 

countries (Dottori et al., 2017; UKMet Office, 2019; Hemingway and Robbins, 2020; Ritter 

et al., 2020). The development of IbF in the Global South countries has been hindered by 

data scarcity (risk and impact information). This thesis (Chapter 4) shows that these 

countries can still benefit from IbF systems developed through qualitative approaches. 

Scholarly literature has assessed the practical implementation of the IbF (Kaltenberger, 

Schaffhauser and Staudinger, 2020), gaps in data use for IbF (Harrison et al., 2022), as well 

as the perception of IbF among users and decision makers (Weyrich et al., 2018; Potter, 

Harrison and Kreft, 2021). Recently, a framework for drought that uses real time expert 

judgement to decide on triggers was developed (Boult et al., 2022). This thesis builds on the 

existing literature of IbF by developing a novel framework that qualitatively integrates flood 

forecasts with local risk information for operational triggering of anticipatory actions. 

Furthermore, the system can be replicated for any rapid onset hazard at any location.  

The development of trigger systems has been focused on predefined trigger threshold 

derived from forecasts and pre-agreed anticipatory actions (Coughlan De Perez et al., 2016; 

Wilkinson et al., 2018). This means that low magnitude flood events which can still result 

to significant impacts may be excluded (Potter, Harrison and Kreft, 2021). The thesis 

(Chapter 4) contributes to the existing literature on forecast-based actions in the 
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development of tailored impact-based trigger systems. The findings show the relevance of 

local information and how they can be integrated to adapt global hazard-based forecasts to 

local context to ensure that thresholds are flexible and anticipatory actions are better 

targeted. Ensuring that we move from ‘one size fits all’ warnings to impact-based warnings. 

In addition, the findings contribute to general knowledge on forecasts features and the 

importance of considering sector-specific actions and decisions in identifying optimal 

forecast features that can affect the design of a trigger system- building on anticipatory 

actions optimisation literature (Lopez et al., 2020; Lala et al., 2021). 

From a practical perspective, the findings in Chapter 4 are useful in informing the current 

development of the flood trigger system in Uganda. Notably, the findings can be embedded 

in the existing trigger system to ensure that floods that are at a lower magnitude are 

monitored, and low cost/ no regrets actions triggered only during critical time to reduce 

impacts on the crops.  

 

5.3 Sources of Uncertainty that may have affected the findings in the thesis.  
 

Uncertainty in research may arise because of limited accuracy in the data, observations, and 

methods in the research process. Acknowledging any uncertainty that may have affected the 

outputs is therefore important. Some of the known sources of uncertainty include, 

measurement errors, sampling error, bias, model error and external factors. Errors resulting 

from measurement of data can further be classified as missing information/data, conflicting 

information, unreliable information, or noisy information.  

This thesis acknowledges the various sources of uncertainty that may have resulted to the 

findings. In Chapter 2, the data collection process targeting the disaster management 

practitioners included only 14 institutions. The generalizability of the outputs based on only 

14 institutions could therefore be biased. More interviews with other players in disaster 

management could be undertaken to ensure that the findings can be further validated. 

Qualitative approaches of data analysis are subjective which can lead to biased outputs. To 

ensure reliability, the thesis employs various methods used in minimising bias such as visual 

representations and text query (section 2.2.2.3). In addition, the thesis in Chapter 2 used 

direct phrases/words from the respondents in the coding process to avoid misinterpretation.  
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In Chapter 3, data from various sources was used. First the river-gauge observations could 

have been subject to measurement error especially if the methods used by the data collectors 

was flawed. There was also a lot of missing information in the river-gauge data which could 

have introduced uncertainty in the analysis (comparative and verification). Although the 

research only used the available gauge data, the length of the time-series was short for most 

of the locations which could have affected the outputs. A way around this problem is the 

use of longer time-series of river-gauge observations in the comparative analysis and in 

forecast verification.  

Second, the impact data collated from various data repositories could have been subject to 

uncertainty due to the criteria used in the collection and management of these data. For 

example, DI data is collected and uploaded by national institutions. However, it was 

apparent that there are no clear in-country procedures or guidelines to guide the data 

collection process. The process could therefore result to poor quality data getting into the 

repositories and its use resulting to uncertainty in the findings. The variations in the criteria 

used can also result to uncertainty. For example, data from most of the repositories was 

aggregated and it was not possible to differentiate impacts from the various types of floods. 

Most of the study catchment experience both flash floods and riverine floods (section 3.2), 

the lack of differentiation in the impact data could therefore have resulted to high type II 

errors in the analysis (section 3.3.4.2). This thesis in Chapter 3 provides recommendations 

that can be adopted to improve the quantity and quality of the impact data and make them 

more reliable.  

Third, the flood forecasts data used in the verification could have been subject to model and 

measurement errors emanating from the hydrological and forecasting models used as well 

as the weather data used in the analysis. This means that, it is not possible to know how 

accurate the forecast was before using appropriate methods to assess the accuracy. Although 

this thesis did not assess the forecast accuracy, it would have been important to consider the 

accuracy of the forecasts before assessing the usefulness of the two reference datasets in 

forecast verification. That way, it would have been easy to ascertain the sources of error in 

the findings.  

In Chapter 4, uncertainty could have resulted from the qualitative approach used in 

developing the trigger system. The approach was subjective in the selection of varying 

trigger thresholds and probably could have resulted to a different set of findings if it was 
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done by a different researcher. The author however has acknowledged the subjectivity of 

the approach and recommended that the use of the findings should be subject to 

consultations with the relevant stakeholders.  

Uncertainty can also occur because of external factors. for example, climate variability can 

introduce changes in the various variables especially the hydrometeorological parameters 

used in forecasting. This means that there is need for continuous monitoring and verification 

of forecasts to ensure that the changes do not result to a major variation in the overall outputs 

being used for decision making. For example, in Chapter 3, the thesis looks at the usefulness 

of impact data in forecast verification. Climate variability may result to changes in the 

forecasts and the resulting impacts (e.g., same magnitude, more impacts due to climate 

variability). Continuous verification would therefore be required. Consequently, in Chapter 

4, the developed trigger model will require continuous monitoring and validation with in-

situ information to ensure that the model reflects the realities (impacts of the events based 

on changes in social vulnerability) and it’s still useful in informing local decisions.  

 

5.4 Next Steps 
 

The research findings in this thesis contribute toward developing an impact-based flood 

early warning system for Uganda based on local context-specific information. While 

significant progress has been made, including identifying the local WCI needs, verifying 

forecasts, and developing an impact-based system for Katakwi, the research also identified 

gaps that motivate further work to enhance the development of locally targeted flood EWSs. 

In addition, the identified gaps would ensure that the research can be replicated or extended 

across contexts. The following research gaps have been identified. 

• In the Katakwi district, our findings show that the extent to which FEWI is used to inform 

coping practices is further hindered by the socio-economic capabilities of at-risk 

communities. Future work could undertake a comprehensive analysis of these 

capabilities to provide information that can be used to prioritise support among the most 

vulnerable communities. The NIMFRU project has already developed methodologies 

that can be used to map out these social-economic capabilities across contexts (see Petty 

et al., 2022).  
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• The community information needs and gaps identified can only make a difference if they 

are mainstreamed in the development of disaster management plans. This is because 

disaster managers at all levels need to be aware of the current gaps and solutions to 

improve coping among the local communities. The next step could be a study of the 

existing disaster management plans at the national and district level and how findings 

from this thesis can be useful in shaping local interventions. 

• Forecast verification using impact data has been used for the first time in this thesis. 

Therefore, being a novel approach, it would be of interest to extend this method to other 

data-scarce regions in Africa to assess the applicability of these non-traditional 

approaches and less conventional data in forecast verification. 

• Some of the recommendations for improving flood impact data, such as strengthening 

in-country data collection, creating awareness, and capacity building, can be further 

pursued by identifying gaps in data collection. For example, the institutions that collect 

and populate the DesInventar database could be trained on the approved guidelines and 

methods. The UNDRR office has already developed methods to help national institutions 

improve the collection, access, and use of disaster loss and damage data (see Fernando 

et al., 2020). 

  

• The use of new technology to expand impact data, including text mining (Margutti and 

Homberg, 2020) and social media(Thompson et al., 2021), could be explored and 

considered for the data-scarce regions in Africa to improve the quantity and quality of 

the existing impacts data.  

• The choice of the forecast features to inform forecast verification and development of 

impact-based trigger systems are context-specific and will vary depending on various 

factors (early actions, type of sector, etc.). Future developments to improve the 

verification and development of these systems could include the prior development of a 

sector-specific decision-led criterion which can be undertaken through stakeholders’ 

consultations.  

• Investigation of the associated benefits of lowering the trigger thresholds and the losses 

avoided if the actions materialise could be undertaken to ascertain if it makes any 

economic sense to tailor EWS and anticipatory actions to the local context. 

• The impact-based flood early warning trigger system was developed using local 

information from Katakwi as a proof of concept. However, the system could be extended 
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to other locations/contexts to assess the value of contextual information in redefining the 

development of EWSs for more tailored anticipatory actions.   

• The development of such a trigger system for operational purposes can be explored 

through the existing FbA initiatives. For example, many countries in Africa and 

Southeast Asia are implementing EAP for different disasters such as cyclones, flood and 

drought. Local information collected from the at-risk communities can therefore be 

integrated into the EAPs such that every time there is a new forecasts, the necessity to 

trigger using the forecast is further checked by incorporating the available local 

information (such as the time of the year, livelihood activities, etc). The resulting 

information can then be used to inform decisions on varying the trigger threshold and the 

anticipatory actions.   

5.5 Closing Remarks 
 

This thesis presents research that has provided information on how to holistically improve 

the use of EWI at the local level and how context-specific information can be used to 

redefine the development of locally targeted EWSs. Significant improvements have been 

made in forecasting science. Still, effective use of EWI to inform early actions will require 

more information on how at-risk communities cope and respond to extreme events. As the 

field of disaster risk management moves toward impact-based forecasting, the need for more 

tailored EWI will increase as at-risk communities demand this to inform their coping 

practices. Due to the lack of comprehensive risk information, more challenges are also likely 

to be experienced in data-scarce regions. Approaches that can still benefit the at-risk 

communities by ensuring early warning mechanisms are in place are essential. Although 

these research findings provide the potential to inform decision-making in a range of sectors, 

including disaster management and agriculture, more work is still needed to make these 

outputs actionable in practice. Notably, effective communication and advocacy would be 

required to ensure decision-makers in these sectors can interpret and use the information to 

bridge the gap between science and practice. For operational purposes, more collaborations 

with at-risk communities will be required to ensure that the required local information is 

collected and integrated with forecast to inform context-specific anticipatory actions. The 

Disaster Management practitioners also need to see the value of such local information and 

how they can be used to redefine the development of EWSs to ensure all are protected. 
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The provision of weather and climate information (WCI) can help the most at-risk

communities cope and adapt to the impacts of extreme events. While significant progress

has been made in ensuring improved availability of WCI, there remain obstacles that

hinder the accessibility and use of this information for adaptation planning. Attention has

now focused on the “usability gap” to ensure useful and usable WCI informs practise.

Less attention has however been directed on barriers to the active production and use

of WCI. In this study, we combine two frameworks through a bottom-up approach to

present a more coordinated institutional response that would be required to ensure

a better flow of information from information providers to users at community level

and vice versa. The bottom-up approach was designed in form of Farmers Agri-Met

Village Advisory Clinics (FAMVACs) and Listening Groups (LG) and was initiated by

Uganda Meteorological Authority (UNMA) as a way of ensuring connections between the

information providers, the disseminators, and the communities to specifically give voice to

the communities to provide feedback on the use of WCI in coping with flood risks. This

approach is used to identify the barriers and opportunities in the production/provision

and use of WCI for flood risk preparedness for a case study in Eastern Uganda. First,

a use-case is developed for Katakwi District where smallholder farming communities

have recorded their coping practises and barriers to the use of WCI in practise. Second,

online interviews with practitioners from disaster management institutions are used to

identify barriers to the production and provision of WCI to local farming communities.

Findings show that for providers, barriers such as accessibility and completeness of

data hinder the production of useful WCI. In situations where useful information is

available, technical language used in the format and timeliness in dissemination hinder

usability by local farmers. Useful and usable WCI may not be acted on in practise due

to factors such as costs or market availability e.g., lack of access to improved seeds.
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Further, the study highlights possible solutions to bridge the identified gaps and they

include capacity building, fostering data collaborations across sectors, data translation to

simple advisories, among others. The study also presents the FAMVACs approach which

shows the importance of a more coordinated response with a shift of focus from the users

of information only, to a more inclusive understanding of the data and information gaps

across the wider provider-user landscapes. We argue that this would contribute to more

effective disaster management at both the national and local levels.

Keywords: community information needs, weather and climate information, smallholder farmers, information

providers, flood risk management

INTRODUCTION

Weather-driven shocks such as floods are becoming more
extreme and frequent in many regions across the world (IPCC,
2012). Rural at-risk communities suffer the worst impacts from
these extreme events because of their dependence on natural-
based livelihoods (Pricope et al., 2013). Provision ofWeather and
Climate Information (WCI) can help these communities cope
and adapt to the impacts of these extreme events (Roudier et al.,
2016; Amegnaglo et al., 2017; Hansen et al., 2019). This is because
WCI can inform appropriate actions to improve preparedness
and reduce impacts (Jones et al., 2015). For example, scholarly
literature notes that farmers who have access to timely WCI
can plan their livelihoods activities for example when and what
to plant, and appropriate farm management activities that may
result in reduced impacts (Coulibaly et al., 2015; Naab et al.,
2019).

Significant efforts and advancements in technology have
resulted in increased availability of WCI (Dinku et al., 2014;
Hewitt et al., 2020). However, this has not translated to improved
accessibility, especially across user groups (practitioners and
communities) in Africa where varied access to WCI is noted
(Dinku, 2019; Vaughan et al., 2019). In addition, even if
WCI is available and accessible, this does not necessarily
mean the information is used to inform local decisions
as it may not address the information needs of specific
users (Vaughan and Dessai, 2014; Naab et al., 2019). These
obstacles, commonly termed as information “usability gap”
(Lemos et al., 2012) have been identified as major impediments
to the use of WCI to inform climate-related decisions at
all levels (Flagg and Kirchhoff, 2018; Ouedraogo et al.,
2018).

In their study, Vincent et al. (2020) developed a framework
that highlights three components that would enable closing
the information usability gap and promote the use of WCI
for climate risk management. These components have been
broadly categorised as “useful” information which requires an
understanding of the specific users’ needs and their decision-
making contexts to guide in identifying what information
is useful (Carr et al., 2019), “usable” information if it’s
understandable by the intended user and is disseminated on time
(Tembo-Nhlema et al., 2021) using appropriate communication
channels (Barihaihi and Mwanzia, 2017) and an “enabling
environment” such as supportive institutions (Vaughan et al.,

2017) to ensure that useful and usable information gets used
in practise.

The Vincent et al. (2020) framework builds on the climate
services literature including Lemos et al. (2012) framework on
bridging the information usability gap. In addition, it builds on
the understanding that climate information use broadly links the
user and the producers by knowledge sharing and collaborations
through avenues such as co-production (Vincent et al., 2021). The
three components, therefore, reflect both the supply and demand
side of climate services towards ensuring more informed use of
WCI for adaptation planning (Jones et al., 2015).

We however note that to ensure more coordinated
institutional responses (such as that which would be required
pre- and post-disaster) (UN, 2015) and a better flow of
information (i.e., from practitioner to community and vice
versa), additional components are required. First, further, to
having an enabling environment, additional support based
on other underlying socio-economic factors that influence
how these communities cope may be required to ensure that
the at-risk communities (“users” henceforth) actively use the
information provided. For example, in a rural smallholder
setting, having access to usable information may not necessarily
translate to use in practise due to other individual or household
social-economic factors such as income, education and age
(Mittal and Hariharan, 2018; Shah et al., 2018, 2020; Petty
et al., 2022). Similarly, a bottom-up approach that links the
information providers, the disseminators and the communities
would be required to ensure that the communities have a voice
to interact and provide feedback on weather information use and
their coping practises.

Second, the production of useful information goes beyond
data availability (Goddard, 2016) and there remain other
obstacles that could hinder the potential to produce and
provide useful WCI, especially in the least developed
countries. Essentially, decision-makers and information
producers/providers (“providers” henceforth) require access
to quality and credible “scientific” data and information to be
able to fulfil the information needs of the users and manage
the potential risks (Hewitt et al., 2020). But the required data
and information is often limited (Van Den Homberg et al.,
2017) or inaccessible (Susha et al., 2017; Dinku, 2019). In their
framework, Van Den Homberg et al. (2017) notes that being
data-prepared can help reduce the impacts associated with
extreme events if high-quality data that meets the information
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needs of the providers are accessible before the disaster hits. The
Van Den Homberg et al. (2017) framework focuses on five main
components which include; “datasets” regarding data availability
and accessibility, “data services” regarding services offered
and software/hardware required, “data literacy” concerning
the capability to transform the data to required information,
“governance” looking at legal and regulatory rules on data
sharing and “networking” which involves having long-term data
collaborations. These components collectively would ensure
that the lead institution for example, in disaster management
has all the required data and information beforehand to guide
disaster-related decisions.

In this study, we combine the two frameworks (Van Den
Homberg et al., 2017; Vincent et al., 2020) through a bottom-
up approach to present a more coordinated institutional
response and flow of information. The bottom-up approach
was designed in form of Farmers Agri-Met Village Advisory
Clinics (FAMVACS) and Listening Groups (LG) and was initiated
by UNMA as a way of ensuring connections between the
information providers, and the communities to specifically give
voice to the communities in contrast to the top-down approach
(see Ciampi et al., 2019). This would allow better characterisation
of the barriers that hinder effective provision and use of WCI
across the provider-user landscapes as well as opportunities for
improving the WCI use and uptake. In the context of this paper,
we use WCI to refer to all information that would be required
to prepare and respond to flood risks (and they include but
are not limited to information on flood impacts, flood risks,
hydrometeorology, socioeconomic, etc.). We have structured the
study around three questions:

1) What barriers hinder the production/provision of useful
WCI in the context of the providers? How can we
improve provision?

2) What opportunities/barriers support/hinder the move
from useful to usable information in the context of
smallholder farmers?

3) What barriers deter useful and usable information from being
used in practise by smallholder farmers? What can be done to
improve uptake?

The study uses a bottom-up approach. Here, the bottom-up
approach allows communities to be involved from the beginning
in all activities that support improved preparedness. In contrast
to the traditional top-down approach in disaster management,
this study allowed the flood affected communities to record their
own accounts of how floods have affected them and their coping
practises. Further, disaster management practitioners were also
given an opportunity to provide information on how they help
the at-risk communities prepare for disasters. At the local level, a
case study in Katakwi district, Uganda in the context of flood risks
to livelihoods is used to give voice to the smallholder farming
communities to record their coping practises, information needs,
and the factors that hinder them from using the WCI to inform
these coping practises. At the national level, online interviews
with practitioners at disaster management agencies are used
to understand how these agencies respond to the information

needs of the users and barriers to effective provision of the
required WCI.

MATERIALS AND METHODS

In this paper, we combine the two frameworks (Van Den
Homberg et al., 2017; Vincent et al., 2020) (Figure 1) and
use them to identify the barriers and opportunities in the
production/provision and use of WCI through a case study in
Uganda. Two use-cases (more detailed below) are developed to
help answer the research questions. We recognize that one of the
barriers to the use of WCI as noted in literature is a lack of an
enabling environment (Vaughan et al., 2017). However, a detailed
investigation of the institutional structures and disaster/climate
policies that governs how disaster management activities are
undertaken in Uganda was out of scope in this paper. This section
provides an overview of the study area, the use-cases, and data
analysis methods.

Study Sites
Katakwi District, the focus of this study, is in the Eastern region
of Uganda and lies between longitudes 33◦48′E−34◦18′E and
latitudes 1◦38′N−2◦20′N. Katakwi borders Napak District in
the north, Nakapiripirit in the east, Amuria in the west and
northwest, Soroti in the southwest, and Kumi and Ngora in the
south (Figure 2). The landscape is a plateau with undulating
slopes in specific areas and lies approximately between 1,036
and 1,127m above sea level (KDLG, 2014). The district is
characterised by two livelihood zones, i.e., crop-livestock and
fishing-livestock zones. Agriculture is predominantly rain-fed
with two distinct rainfall seasons from March to May and
September to November. The district experiences frequent
heavy rains leading to flooding, which affects crop yields
(KDLG, 2014). Common crops grown in Katakwi include sweet
potatoes, cassava, maize, peas, rice, groundnuts, and a variety of
local vegetables.

The district was selected in discussion with NIMFRU
(National scale Impact-based forecasting of Flood Risks in
Uganda). NIMFRU is a project in Uganda to improve flood
resilience through comprehensive flood impact assessments.
The project is funded under Science for Humanitarian
Emergencies and Resilience (SHEAR, 2018) program and
it complements the previous SHEAR project (Forecast for
Anticipatory Humanitarian Action-FATHUM) by providing a
new approach that incorporates various types of information
required to effectively deal with flooding. The project aim is
to strengthen the capacity in interpreting and using weather
and climate information, livelihood and socio-economic
information among others to inform flood preparedness
at all levels which would ensure improved resilience
to floods (https://walker.ac.uk/research/projects/nimfru-
national-scale-impact-based-forecasting-of-flood-risk-in-
uganda/).

The district suffers severe impacts from floods every
rainy season. The vast majority (81%) of the population
in the district earn their livelihoods through subsistence
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FIGURE 1 | Conceptual framework used to identify the barriers and opportunities in the production/provision and use of WCI across the provider-user landscapes.

Source: adapted from Vincent et al. (2020) and Van Den Homberg et al. (2017) and modified by authors.

farming (KDLG, 2014). Poverty levels are high with
88% of the population living below the poverty line
(Kagugube et al., 2017). Project stakeholders include
the Red Cross Climate Centre (RCCC), National
Emergency Coordination and Operation Centre (NECOC),
members of Parliament, local academic institutions, and
civil organisations.

Developing the Use-Cases
This study was undertaken as part of the community
preparedness to flood risks initiative within the NIMFRU project
(NIMFRU, 2018). As part of the Science for Humanitarian
Emergencies and Resilience (SHEAR, 2018) program, the
NIMFRU project set out to improve the targeting and
communication of flood warnings and response to communities
in the Katakwi District. To do this, the first use case targeting
the flood-affected communities in three villages (Anyangabella,
Agule, and Kaikamosing) in Katakwi district (Figure 2) was
developed by the project team and used to conduct field research
to gain a deeper understanding of the livelihoods, coping
capacities, and practises of groups within the study communities,
barriers to coping as well as their responses to flood hazards.
A combination of quantitative and qualitative methodologies
was used to inform this work, including quantitative livelihoods
assessments, using the Household Economy Approach (HEA)
(Seaman et al., 2014).

Fieldwork was carried out during the period February 2019 to
February 2020. Initial work (data collected from February 2019
to August 2019) informed the creation and the representation
of two interrelated communication platforms: The Farmer Voice
Radio (FVR) Listening Groups, and the Farmer Agri-Met Village
Advisory Clinics (FAMVACs) (Ciampi et al., 2019). The well-
established FVR approach complemented the new Uganda
National Meteorological Authority (UNMA) led FAMVAC
initiatives, and a novel methodology was designed to ensure that
both communication platforms provided a space for information
needs and priorities to be identified locally. The platforms
also facilitated open dialogues between community members
and relevant district officials providing a “vertical” channel
through which communities were able to feed their concerns
and priorities directly into the Ugandan disaster response system.
The methodology carefully ensured that there was relevant
representation from both district and national authorities and
that these initiatives were approved by NECOC and led by
UNMA and the local non-governmental Organisation (NGO)
Eco-Trust, to establish contextual validity, national ownership,
and future sustainability. By the end of the fieldwork (February
2020), a total of 18 FAMVACs had taken place (six in each
target community) with an average participation of 200 local
community members, and 20 individual episodes of the FVR
programme were aired reaching an estimated 67,000 people
across rural Katakwi. Qualitative Field data collected from
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FIGURE 2 | Location of the study sites in Katakwi District, Uganda.

September 2019 to February 2020 using the developed FAMVACs
methodology have been used in this paper and are explained
further in the next subsection.

The second use case involved the disaster management (DM)
agencies at the national level. The focus was to understand
how these agencies respond to the information needs of the
users, as well as to identify any gaps that hinder the effective
production and provision of useful WCI. The sampling of the
respondents was done through Purposive sampling techniques
(Mohsin, 2016) which allowed us to choose the respondents
based on predefined criteria and intended purpose. For this
case, we considered national institutions and NGOs that
take part in preparedness and response to natural disasters
in Uganda1. A stakeholder mapping exercise allowed us to
understand organisational roles and mandates before selecting
them for interview. This exercise showed that more than 25
organisations (Supplementary Table 1) are involved in disaster

1Here, we refer to all national-level institutions who fall into any or all of these

recognized stakeholders’ categories (data collectors, data analysers, intermediaries,

decision-makers) and are responsible one way or another in collection, analysis

and production of disaster information.

management in Uganda. Due to Covid 19 restrictions and
response responsibilities, only 14 of these organisations were
available to take part in the interviews.

Data Collection
Data collection was undertaken separately for the affected
communities and the DM agencies. At the community level,
fieldwork, led by Eco-trust Uganda using the FAMVAC toolkit,
took place over 6 months between September 2019 and February
2020 to gather information from the flood-affected communities
through farmer’s discussions and semi-structured interviews (see
Supplementary Table 2 for sample interview questions). The
data collection exercise took place in three villages which had
been identified during the initial NIFMRU project fieldwork.
We conducted 26 oral 1-on-1 semi-structured interviews with
farmers in the three villages. Additionally, we held 18 farmers’
discussions (six from each village) involving a large group
of farmers (each farmers’ group discussion consisted of ≈70
farmers). The interviews and discussions were done during the
main rainy season. All interviews and discussions were carried
out in the local language “Ateso” with an interpreter and were
subsequently transcribed.
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TABLE 1 | Institutions that took part in the online semi-structured interviews.

Name of the

Institution/department

Type

1. Ministry of Water and Environment

(MWE)

Government

2. UNMA-forecasting unit Government

3. Katakwi District office Government

4. Office of the Prime Minister

(OPM)-Climate Change Department

Government

5. OPM-Disaster Risk Reduction Government

6. MWE-Water Resources

Department

Government

7. NECOC Government

8. UNMA-Data Centre Government

9. Uganda Red Cross Society NGO

10. Humanitarian Open-Street

Mapping Team (HOT)

NGO

11. World Vision _Uganda NGO

12. RCCC NGO

13. Makerere University Research

14. Africa Disaster Reduction

Research and Emergency Missions

(ADRREM)

Humanitarian

indigenous NGO

At the DM level, data collection took place fromOctober 2020
to December 2020 through online semi-structured interviews.
A staged process was used where first stakeholders mapping
exercise was conducted based on the predefined criteria (see
Section Developing the Use-cases). The second step involved
sorting and identifying how many informants would be required
from these institutions based on the number of departments
and their roles. For example, an institution like Uganda
National Meteorological Authority has both a forecasting and
data centre hence more than one informant would be ideal.
The third step involved contacting the institutions to provide
the key informants to take part in the interviews. In total
14 institutions (see Table 1) took part in the interviews.
Interview questions were framed around key themes such
as their disaster management activities, information required,
and the barriers to fulfilling the information needs of users
(see Supplementary Table 3 for sample interview questions).
For anonymity, the direct quotes from disaster management
practitioners have been denoted with the pseudonym Disaster
Respondent (DR).

Data Analysis
The software package Nvivo 12 for MS Windows
(QSRInternational, 2018) was used for the analysis of the
data from the local communities and the disaster management
practitioners. The Nvivo programme, unlike manual methods of
qualitative data analysis, offers the user an intricate, methodical,
and iterative data interrogation process (Jackson and Bazeley,
2019). Data analysis in Nvivo is done through a content analysis
approach where the mode of analysis can be either inductive
or deductive (Elo and Kyngäs, 2008; Mayring, 2014). The

inductive approach is used when the researcher has limited
or no theory on the research outcome (Mayring, 2014) and
entails letting the themes emerge from the raw data, while
directed by existing components of the study (Harding, 2018).
The deductive approach is based on a predetermined structure
guided by previous findings, literature review, or an existing
conceptual framework (Hsieh and Shannon, 2005; Mayring,
2014). In this study, we base our analysis on a combination of
existing literature and frameworks on climate services and data
preparedness (Van Den Homberg et al., 2017; Vincent et al.,
2020) (see Figure 1) in a case study context hence the deductive
content analysis approach is used to analyse our research data.

Deductively, the following steps were followed. First, the
categorisation matrix based on themes from the framework
presented in Figure 1 was developed. For this case, an
unconstrained matrix was used to allow any other emerging
concepts to be captured (Elo and Kyngäs, 2008). Table 2

shows the themes used in the categorisation matrix based
on our research aim. Second the familiarisation phase was
conducted. This involved reading through the transcripts to
become aware of the ideas and words used by the respondents
before coding. We then reviewed all the transcripts and coded
them into the corresponding themes while also allowing the
inclusion of any other emerging categories (Elo and Kyngäs,
2008). For information that did not fall into any of the
existing themes, coding was done using words and phrases
that the respondents used in their transcripts which ensured
minimal misinterpretation. Coding was done separately for the
community interviews and the disaster management interviews.
However, the same themes were used.

To ensure trustworthiness, the analysis process has been
explicitly explained and the themes used are supported by
existing literature. The data has also been explicitly linked
to the results from the analysis. In addition, to ensure
validity of the coding process, two approaches have been used;
visual representation (Siccama and Penna, 2008) and data
scoping (Richards, 2004). For the visual representation, visual
captures of the coding process have been done to authenticate
the various steps used in coding (Supplementary Figures S1,
S4). Scoping approaches using text query and matrix coding
tools in Nvivo have been used to check the validity of
coding (Richards, 2004). These tools allow identification of
the commonly used words in specific themes and that were
relevant in coding. For example, through matrix coding, the
word “accessibility” was mentioned in nine out of 14 respondents
(Supplementary Figure S2), with the majority coming from
government and NGOs (Supplementary Figure S3). In addition,
direct phrases/words from the respondents (such as “improved
seeds, early harvesting”) were used as code sub-categories which
reduces misinterpretation (Richards, 2014). Using the text query
tool in Nvivo, we also verified if the phrase “improved seeds”
used as a sub-category was relevant for coding. Results show that
the same phrase was mentioned in eight out of nine transcripts
from farmers’ interviews (Supplementary Figure 5). The Phrase
was mentioned more than once in five of the nine transcripts.
This shows that it is relevant to use the same phrase in coding to
ensure validity.
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TABLE 2 | Categorisation matrix showing the themes used in the coding of data in Nvivo.

Themes Barriers to

producing useful

information

Opportunities to

produce usable

information

Barriers to

moving useful to

usable

Barriers to use in

practise

To identify the barriers and

opportunities in the

production/provision and use of

WCI

RESULTS

In this section, we present the outputs from the analysis of the
research data based on broad themes identified during the coding
and the research questions.

What Are the Barriers to Producing Useful
WCI?
The DM practitioners expressed that most of the data that
would be required to prepare for a disaster are available.
These datasets include weather and climate data (rainfall,
temperature, and river flow) and risk data (vulnerability,
exposure, and hazard). The weather data is provided by UNMA,
while disaster risk data comes from various institutions with
the main ones being NECOC and the Uganda Bureau of
Statistics (UBOS). These data support the main activities carried
out during preparedness and response to flood risk. The
main disaster preparedness activities are the dissemination of
weather and climate information and the identification of flood
risk areas.

Although “scientific” data is available, transforming these
data into necessary and useful information is often hindered
by various factors, as reported by the DM practitioners. First,
these data are not easily accessible since they are held by
individual institutions that have a mandate in data collection
and production. A memorandum of understanding is often
required between these institutions to facilitate data sharing.
Due to institutional rules and regulations, the process of data
sharing can however take longer than expected which affects the
preparedness and response activities.

“Data from most of the institutions is not readily accessible
due to institutional rules and guidelines on data sharing. The
institution often demands a memorandum of understanding
between the 2 institutions before sharing which can delay the
process by up to 2 months. [DR01, DR04]”

Second, the data available lack the level of detail that would be
required for comprehensive risk assessment at the local level
(most data do not cover the village level). For example, most
of the risk indicators such as those that would be required to
understand the vulnerability of the communities to disasters vary
in spatial coverage where some go up to sub-county while others
up to county level, with none covering the village level. Weather
data also does not give a full representation of the situation due
to limited and scattered weather stations.

“There are gaps in the data available for example, the risk
atlas covers up to district level and doesn’t cover parishes
and villages” [DR03].
“Weather Information is generalised to a very big area, but the
farmers need localised information.” [DR014].

Third, not all the available data, especially the data on hazards
and vulnerability are complete. In addition, some of the risk
indicators such as the data on poverty levels, population density,
and literacy levels are not up to date especially if they depend on
national census data. This affects the development of up-to-date
risk layers. The lack of a national flood forecasting system also
affects the quality of information that is produced for flood risk
management. If global flood forecast information is to be used
to inform preparedness, it should be verified2 first for reliability.
Although the development of the community Risk Assessment
(CRA) framework is underway with support from the 510 group
of the Netherlands Red Cross (NLRC) (NLRC, 2022), it is still
hampered by the limited data available. The DM practitioners
reported that this is based on secondary data and does not include
any data collected from the grassroots level.

“Verified flood information is required to inform disaster
management. Many global sources are available, but they need
to be verified by the Ministry of Water and Environment
before use” [DR02].
“Flood forecasting capacity is low in the country. They forecast
rain and not floods” [DR012].

Last of all, institutions that have a role to transform data into the
required information noted that they do have the required skills
to do that. Frequent capacity building to keep up with evolving
technology in climate science such as skills in forecasting and
forecast evaluation is however required. Figure 3 shows the most
common barriers to developing useful WCI.

What Are the Opportunities and Barriers to
Ensuring Useful Information Is Usable?
Understanding the information needs of the users presents an
opportunity to develop usable information. From our study,
various information needs for the smallholder farmers have
been identified based on the coping practises that the farmers
undertake during flood preparedness. These information needs
have been grouped into three themes: weather and climate,

2Verification here means that the flood forecasts information from global sources

should be compared with ground-based river gauge observations or historical

flood timelines to ensure that they capture the flood situation of the location.
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FIGURE 3 | Barriers that hinder production of useful WCI.

TABLE 3 | Categorisation of farmers’ information needs based on when they are

required.

Dynamic Information (seasonally) Dynamic (depends on the season)

Weather and climate

• Rainfall magnitude, intensity, timing

• Rainfall predictions

• Flood duration

• Flood timing

• Inundated areas

• Risk areas

Agricultural practises

• When to harvest

• Types of seeds (improved, early

maturing, water-tolerant, etc.)

• Post-harvest handling methods

• Land management practises

• Livelihood diversity methods

Safe locations and their accessibility

• Shelter for animals

• Shelter for people

• Agrovet locations

• Drinking water locations

• Location of health facilities

• Road’s accessibility

• Market information

• Market accessibility

agricultural practises, and physical access to safe locations
(Table 3). The information needs have also been grouped
according to when it would be required. For example, the
dynamic category includes information that would require an
update every season. The second category captures situations
where the dynamism of information would depend on the season.
For instance, the location of safe areas may change depending
on the magnitude of flooding experienced. What to plant and
when to harvest will also depend on the rainfall factors such as
duration, onset, etc.

Useful information such as weather information is available
and accessible to local farmers. However, the information does
not meet farmers’ needs due to various factors. First, the weather
information is packaged in a technical format and disseminated
in English whichmakes it hard for farmers to understand and use.
For example, though the weather bulletins produced by UNMA
are available through the district office, farmers are not able to
utilise them especially if they do not have any advisories or if they
are not interpreted in their local language.

Second, the timing of information dissemination is often
unfavourable to local farmers. For example, both the farmers
and DM practitioners reported that information should reach the
farmers 1–2 months before the start of the season to help them

prepare. In addition, since the information is issued quarterly,
with frequent updates, sometimes the local farmers do not receive
these updates to help them keep up to date with the changes in the
weather patterns.

Third, the DM practitioners working at the local level
reported that communication and dissemination of WCI is often
exclusively top-down. Communities are therefore not able to
share any feedback with the producers and the decision-makers.
Table 4 lists these challenges together with quotes from both
farmers and DM practitioners.

What Are the Barriers to the Use of WCI to
Inform Coping Practises?
Smallholder farmers are aware of the recommended coping
practises to be undertaken in preparedness for floods. The most
common are on how to protect their crops before flooding, which
includes early harvesting, post-harvest handling, and planting
improved seeds. This is followed by ensuring their safety through
activities such as clearing bushes and draining water from their
compound. To protect livestock before floods, activities include
vaccination, improving animal shelters, and buying improved
breeds. Farmers in the study villages did not engage in many
activities to enhance financial security, such as belonging to
saving societies. Figure 4 highlights all the coping practises that
were identified by farmers in Katakwi while Table 5 shows the
most common coping practises based on the frequency.

Although the farmers were aware of the recommended coping
practises, the actual implementation of these practises was
hindered by various factors. These include agricultural-related
challenges such as lack of improved seeds and other farm inputs.
In addition, farmers in Katakwi do not have access to proper
post-harvest handling kits to store their crops. Most of these
challenges are associated with the social-economic capabilities of
these communities, which we were not able to analyse further
within the scope of this study.

Second, environmental factors such as invasion of desert
locusts and the presence of strong winds were identified as
challenges to implementing coping practises. Third, farmers
noted that age and outbreaks of disease also derail the necessary
coping practises. Figure 5 shows the common challenges that
affect the actual implementation of the coping practises.

DISCUSSION

While the role of WCI in smallholder farmers’ decision-making
is now common knowledge (Roudier et al., 2014; Coulibaly et al.,
2015), the understanding and use of WCI by farmers has not
been very effective, especially where it does not meet their specific
information needs (Carr et al., 2019). In addition, developing
useful information is not only contingent on the availability
of data (Goddard, 2016) but can also be hindered by various
factors from the providers’ side. The development of useful and
usable WCI, therefore, requires a more coordinated flow of
information from the providers to the users and vice versa to
understand the barriers that hinder the provision and use ofWCI.
In this research, we have combined two frameworks through a
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TABLE 4 | Barriers that hinder useful information becoming usable in the context of smallholder farmers.

Theme Frequency Meaning Evidence (DM practitioners) Evidence (farmers)

Technical

language

6 The language used to produce

and disseminate the weather

information

“The weather information is technical, and

they don’t understand what normal and

above normal means” [DR014].

“Climate and weather bulletins are

available at sub-county offices; however,

these are not easily interpretable by the

farmers” [Farmers: 3 villages].

“We produce weather information but to

help the communities understand we need

to translate the information into local

languages” [DR08].

Lead time (timely) 5 The time between when the

information is produced and

when its required

“Farmers require weather information 2

months prior to the start of the season to

help them plan the activities” [DR06]

“We need weather information on time for

proper planning and to help choose which

crops to grow” [Farmer: Kaikamosing

village]

Top-down

approach

4 Communication and

dissemination of information is

from the producers to the users

only

“Communication is somehow top down

and communities do not share their

information” [DR06].

FIGURE 4 | Coping practises used by flood-affected communities in the three villages (Anyangabella, Kaikamosing, and Agule) in Katakwi District, Uganda.

bottom-up approach (FAMVACsmethod) to identify the barriers
and opportunities across the provider-user landscapes on the
production and use of WCI for a case study in Uganda. The
approach used in this study to identify the barriers has a
wider applicability across most natural disasters where a more
coordinated response and flow of information would be required

to understand the gaps in the provision and use of WCI for

disaster management. Here, we first discuss the common barriers

that hinder the production/provision and use of useful and

usable WCI at the local level and the potential ways to address
these barriers. We then highlight any future work that would be
required to improve the use of WCI at the rural level. Figure 6

shows the various components for a coordinated institutional
response and flow of information towards ensuring; (1) useful
information is produced, (2) useful becomes usable, and (3)
usable is used in practise based on the findings from Uganda.

Ensuring the Production/Provision of
Useful WCI
Developing useful information spans beyond the available data
to include other factors. Our findings show that barriers such
as accessibility, completeness, and granularity of the data may
hinder the development of useful information from the providers’
side (see Figure 3). These dimensions are commonly used to
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TABLE 5 | Common coping practises undertaken by the farmers and their

meaning.

Activity Frequency Meaning Evidence

Farm management

practises

27 Practises such as

contour ploughing,

mulching pest

control, crop rotation

and making manure

“My garden

supported increased

yields because I

learned how to

make manure”

[Farmer:

Kaikamosing village].

Planting improved

seeds

25 Planting crops that

can survive

forecasted rainfall,

e.g., early maturing,

water tolerant crops

“I was able to decide

which crops to plant

based on the rainfall

information

provided” [Farmer:

Anyangabella

Village]

Securing houses 6 Building strong

houses using

materials such as

bricks, damp proof

course (DPC).

“I used DPC for the

foundation of the

house to make it

strong” [Farmer:

Agule Village]

FIGURE 5 | Barriers to implementing coping practises across the three

villages (Anyangabella, Kaikamosing, and Agule) in Katakwi District, Uganda.

check the quality of the available data and have been used to
develop the data preparedness index (Van Den Homberg et al.,
2017) as well as by other international organisations in data
quality assessments to understand how prepared a country or
an institution is in undertaking disaster management activities
(WorldBank, 2012). These factors will however vary according to
the context. For example, a study by Dinku (2019) found that the
availability and completeness of climate data vary across Africa
due to the scarcity of weather stations. In addition, the limited
accessibility of available data has been attributed to the legal
regulations that govern how institutions share data as well as the
high costs levied to access the data.

In developing useful information, there is, therefore, a need
to understand the data gaps that exist and how they can be
addressed. The data quality dimensions noted above including
others such as recency and reliability can be used to assess
these gaps (Van Den Homberg et al., 2017). In Uganda, most
of the required data to inform disaster preparedness is available.
The accessibility of these data is however hindered by a lack of

coordination between the various institutions involved in disaster
management which means data is developed and managed by
individual institutions (Atyang, 2014; Lumbroso, 2018). Having
access to the data that meets the required quality dimensions can
help bridge the providers’ information gap (van den Homberg
et al., 2018) and ensure that useful information is developed and
made available for timely disaster preparedness and response.
One way to ease data accessibility would be through embracing
technology in data sharing for example through the use of multi-
sector platforms such as the one developed by Cornforth et al.
(2018). Fostering data collaborations across sectors can also help
ensure that the required data is easily accessible (Susha et al.,
2017).

Ensuring Useful WCI Is Usable
Useful WCI becomes usable if it meets the information needs
of the users. User needs are context-specific and evolving and
will vary depending on livelihood type (Carr and Owusu-
Daaku, 2016), geographical location, and gender among others
(Barihaihi and Mwanzia, 2017; Carr and Onzere, 2018). This
means that although useful climate information is becoming
increasingly available (Hewitt et al., 2020), its usability will
require a constant context-specific understanding of the climate
information needs of the users to ensure that the information
is tailored to their needs. In Katakwi district, farmers require
information on weather and climate and appropriate agricultural
practises (see Table 3) to inform their coping practises. This is
also consistent with findings across Sub-Saharan Africa on the
use of WCI to inform agricultural practises (Amegnaglo et al.,
2017; Nyadzi et al., 2019). Farmers who have access to WCI
which has been tailored to their needs can therefore benefit from
undertaking the required coping and adaptation strategies (Singh
et al., 2018; Vaughan et al., 2019).

The WCI available and accessible by farmers in Katakwi
district are not timely (Tembo-Nhlema et al., 2021), and are
too technical for them to understand and use (Barihaihi and
Mwanzia, 2017; Nkiaka et al., 2019). For example, farmers would
require weather information with a lead time of 1–2 months
before the onset of the season to inform practises such as the
acquisition of the required seed variety (Amegnaglo et al., 2017).
In addition, the weather bulletins issued by UNMA come in
English and the farmers would require translation to make them
usable. Efforts to help translate the weather information are
already seen under the collaboration between UNMA and local
NGOs which can have a positive impact (Ouedraogo et al., 2018).
Fostering communication between the users and providers can
therefore help understand the WCI needs of the users as well as
barriers that make useful information unusable. Ways to make
the information usable including capacity building (Conway
et al., 2017), interpretation of the information into simple
advisories (Harvey et al., 2019), and co-production (Vincent
et al., 2021) can then be explored based on the target user.
Overall, engaging the users from the start in the production
of WCI can help ensure the information is usable as well and
trusted which then boosts uptake (Nkiaka et al., 2019). The
extent up to which these solutions can be implemented will
however depend on other factors. Scholarly studies have shown
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FIGURE 6 | Components that would be required to achieve a more coordinated institutional responses and flow of information to ensure useful and usable

information is produced/provided and used in practise: the component headings have been adopted from Vincent et al. (2020) and Van Den Homberg et al. (2017)

while their contents are based on findings from Uganda.

that limited financial and human resources can limit the level
of preparedness among the local institutions (Shah et al., 2019).
These factors should therefore be taken into consideration on top
of the data preparedness factors to ensure that useful information
is translated into usable information.

Ensuring Usable WCI Is Used in Practise
Availability and accessibility of useful and usable WCI by the
target user does not necessarily translate to the actual use to
inform coping practises. Although smallholder farmers may be
aware of the coping practises to undertake (Berman et al., 2015;
Shah et al., 2017; Wichern et al., 2017), studies have shown that
one of the barriers to the use of WCI in practise is the lack of an
enabling environment such as supportive institutions (Vaughan
et al., 2017) to support adaptation planning. Other barriers such
as the social-economic capabilities (age, income, health, etc.)
of the users can also hinder use (Mittal and Hariharan, 2018;
Shah et al., 2020). This means that even though useful and
usable information that meets the needs of users is provided,
the actual uptake of this information to inform coping practises
will be context specific. For example, in this study, farmers
in Katakwi district cannot afford the agricultural farm inputs
required such as improved seeds (Fisher et al., 2015) to enable
them to undertake the recommended coping practises. Other
factors noted include limited land and inadequate farm tools
(Tall et al., 2014). These factors have also been linked to financial

resources to enable the farmers undertake these coping activities
(Shah et al., 2017).

The benefits that farmers can derive from making use of
WCI are many (Tarchiani et al., 2017; McKune et al., 2018;
Ouedraogo et al., 2018). Hence, the barriers related to the socio-
economic capabilities of the users and how they affect coping
and adaptation should be identified so that the required support
is provided (Petty et al., 2022). This could be done through
existing institutions where interventions such as the provision of
cash or subsidised farm inputs can be introduced (Assan et al.,
2018). In addition, encouraging farmers to be part of farm-based
organisations can help boost the uptake and use of WCI where
these facilitate access to the required capital to support coping
practises (Amegnaglo et al., 2017; Tarchiani et al., 2017).

Improving the Uptake of WCI Among Local
Farmers
Overall, the disconnect between the users and providers of WCI
can result in ineffective use ofWCI to inform local level decision-
making (Lemos et al., 2012; Singh et al., 2016). A first step
towards ensuring effective use would therefore be to identify
barriers that hinder effective production/provision and use of
WCI across the provider-user landscapes. By combining two
frameworks (Van Den Homberg et al., 2017; Vincent et al., 2020),
through a bottom-up FAMVAC approach, this study provides
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a more coordinated institutional response that would ensure a
shift of focus from only the users to a more inclusive approach
where even the data and information needs of the providers are
identified. This would make it easy to characterize the gaps from
both levels in a more dynamic way and ensure that the required
support is provided. For example, findings from practitioners in
Uganda indicate that the skills to work on “scientific” data are
available, but as technology in the production of WCI changes,
continuously building the technical capacity of these institutions
will be important (Dinku, 2019;Mataya et al., 2020) to ensure that
they can keep up with the demand for useful WCI.

The field of disaster risk management is shifting towards
impact-based forecasting and forecast-based actions (Coughlan
De Perez et al., 2016; WMO, 2021). Interventions that target the
at-risk communities, should therefore consider their information
needs, coping practises, and social-economic capabilities to
ensure the design of more tailored interventions. In addition,
understanding the capabilities of the information providers
and the gaps that may hinder effectiveness in producing the
required useful information will be important to ensure a
more coordinated response to the user needs. As the impacts
of weather-driven shocks on rural smallholder communities
increase, these communities will continue to demand relevant
and timely information to support their coping practises (Hansen
et al., 2019). The providers will also need to be supported
to meet these information needs. The potential benefits of
WCI can therefore be realised through understanding the
barriers to production and use of WCI at different levels
and promoting required interventions to improve disaster
preparedness and response activities. For example, through
promoting coordination and collaborations among multiple
providers to ease data accessibility (Susha et al., 2017) as well
as ensuring that the needs of the users and barriers that affect
effective utilisation of WCI are understood and streamlined
into the disaster management plans to support community
preparedness (Nurye, 2016).

Future Work
Identifying barriers that hinder effective provision and use of
WCI can inform the design of the required interventions. For
example, a barrier such as data granularity (lack of data at the
local level) can trigger support for frequent data collection at
the local household level. Methods that are applicable based
on context can then be assessed using criteria such as the one
developed by Alkire and Samman (2014). Calculating the data
preparedness index (Van Den Homberg et al., 2017) based on the
quantifiable data quality dimensions can also help shed light on
the improvement required to ensure that a country is prepared to
undertake timely preparedness and response activities.

Barriers because of the social-economic capability of the users
would also call for more in-depth methods to quantify the
capability of these communities to undertake the coping practises
and understand the type of support that would be required.
Further research could look at an in-depth quantitative analysis
of the household social-economic characteristics (sources of
income, expenditures, health, age, etc.) such as that provided
by HEA assessments (Seaman et al., 2014; Petty et al., 2022)

and individual household surveys (Shah et al., 2020). Such an
analysis can shed light not only on the household’s capacity to
undertake the various coping practises but also on the level up
to which these households may require external support and the
type of support required. Categorisation of the various coping
practises stratified by wealth groups would also be essential to
safeguard poor households against high-cost practises whichmay
compromise their ability to cope in the future (Heltberg et al.,
2009; Gautam and Andersen, 2016).

We did not get a chance to look at the disaster management
structures and policies that govern how disaster-related activities
are undertaken in Uganda. A thorough desktop study would
therefore form part of future work to understand Uganda’s
plans for disaster risk reduction (DRR) including how various
institutions coordinate to ensure emerging issues on disaster
management are streamlined into the development process.
Uganda has a DRR policy that was approved in the year 2011
(OPM, 2011) which stipulates the roles of various local and
national institutions in addressing disasters. A study by Ampaire
et al. (2017) however notes that the district and local level
actors are often not included in the implementation of various
policies. With climate variability expected to result in more
extreme events, ensuring that the existing policies can still inform
the required interventions is important. In addition, as we
shift towards more locally targeted interventions, coordination
between local and national institutions would be required to
ensure that the needs of the most at-risk communities are centre
in the design and implementation of the DRR policies.

CONCLUSION

The study findings have shown that the provision of useful and
usableWCI spans beyond understanding the needs of the users—
for this case the farmers—to include the data and information
needs of the providers, and the capabilities of the users to use the
information to inform practise. Ensuring that useful information
is available, usable and is used in practise by the intended users
is, therefore, an integral part of an effective disaster management
plan. The barriers and opportunities to achieve positive impacts
in the use of WCI should therefore be continuously assessed
to ensure that developed WCI meets the needs of the
potential users.

This study has provided a more coordinated institutional
response approach that integrates two frameworks (Van Den
Homberg et al., 2017; Vincent et al., 2020) and applies a bottom-
up approach through the FAMVACs method to help identify
the barriers and opportunities in the provision and use of WCI
across user/user groups. Such an approach would ensure these
barriers are identified across the user-provider landscape and
solutions to bridge the specific gaps provided. Our findings on
the barriers to provision and use of WCI are consistent with
other scholarly findings in literature and are evidence of the
various gaps that broadly affect the provision of climate services.
However, specific solutions would be required depending on the
context (user, location, etc.). For example, the lead time at which
WCI should be provided to the local farmer will depend on
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the seasonal timing which varies across locations. In addition,
designing solutions to improve data preparedness will require
specific information on the gaps in the various data dimensions
(access, availability, granularity, recency, etc.) which might also
vary across contexts. The combined frameworks can therefore
provide a coordinated way of ensuring that prior information
required to inform development of specific solutions towards
improving the provision of climate services are identified across
the users and providers. This will also ensure that co-production
takes centre stage in the design and dissemination of WCI.

Increased availability of weather and climate data and
information provides an opportunity to improve climate
adaptation planning. However, actionable programmes are
needed to ensure that this information is translated and
disseminated appropriately according to the information needs
of the users. Weather information plays a fundamental role
in informing the coping and adaptation among, for example,
farming communities. There is therefore an urgent need to invest
in strengthening the production, dissemination, and uptake of
weather information for effective disaster management. This
can be achieved by understanding the specific information gaps
at the national and local levels which would also ensure that
an improved dialogue is fostered between disaster management
institutions and the at-risk communities for resilience building.
Such information can then be used to improve disaster
management plans and activities which would then ensure timely
preparedness to floods.
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Abstract

Skilful flood forecasts have the potential to inform preparedness actions across

scales, from smallholder farmers through to humanitarian actors, but require

verification first to ensure such early warning information is robust. However,

verification efforts in data-scarce regions are limited to only a few sparse loca-

tions at pre-existing river gauges. Hence, alternative data sources are urgently

needed to enhance flood forecast verification to better guide preparedness

actions. In this study, we assess the usefulness of less conventional data such

as flood impact data for verifying flood forecasts compared with river-gauge

observations in Uganda and Kenya. The flood impact data contains semi-

quantitative and qualitative information on the location and number of

reported flood events derived from five different data repositories (Dartmouth

Flood Observatory, DesInventar, Emergency Events Database, GHB, and local)

over the 2007–2018 period. In addition, river-gauge observations from stations

located within the affected districts and counties are used as a reference for

verification of flood forecasts from the Global Flood Awareness System. Our

results reveal both the potential and the challenges of using impact data to

improve flood forecast verification in data-scarce regions. From these, we pro-

vide a set of recommendations for using impact data to support anticipatory

action planning.

KEYWORD S

disaster risk reduction, floods, forecast verification, humanitarian early action, impacts, non-
traditional verification data

1 | INTRODUCTION

Climate change, variability, and environmental changes
disproportionately affect the agricultural sector in Africa
with important implications for anticipatory action as
part of humanitarian response. In the agricultural sector,

these changes could force smallholder farmers who
depend on rain-fed crops or flood-recession agriculture to
significantly adjust their farm activities (Ficchì &
Stephens, 2019; Ochieng et al., 2016; Salack et al., 2015).
In Uganda, farmers need reliable and skilful information
on the rainy season onset and amount of rainfall, as well
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as flood occurrence, duration, magnitude, and severity
�1–2 months before the season onset to inform their cop-
ing strategies (Mitheu et al., 2022). Decision-makers and
humanitarian actors aiming to reduce risks and protect
livelihoods are also increasingly considering forecast
information to inform the early action mechanisms and
operational decisions (Coughlan De Perez et al., 2016;
Emerton et al., 2020; Hansen et al., 2019; Lopez
et al., 2020; Nidumolu et al., 2020). Given this, the skill of
any forecast information provided needs to be transpar-
ent and well understood if it is to inform preparedness
actions appropriately.

In the context of users' needs, forecasts should be
evaluated based on their potential to trigger early actions,
which can reduce expected losses if an extreme event
occurs (Lopez et al., 2020). The evaluation should also
consider the consequences of ‘acting in vain’, which are
particularly important in disaster risk reduction and
humanitarian actions (Coughlan De Perez et al., 2015).
Indeed, several studies have shown that verified and skil-
ful forecasts have the potential to improve preparedness
actions for both the agricultural and humanitarian sec-
tors (Coughlan De Perez et al., 2016; MacLeod
et al., 2021; Nidumolu et al., 2020; Nyadzi et al., 2019;
Paparrizos et al., 2020). However, this verification is car-
ried out only for regions with long-term historical hydro-
meteorological observations, typically from in situ sta-
tions such as river gauges. In forecast verification, these
observations are commonly known as conventional
observations (Marsigli et al., 2021).

In data-scarce regions, where conventional observa-
tions are limited (Coughlan De Perez et al., 2016; Ogutu
et al., 2017), less conventional verification data can be
derived from, for example, social media reports, citizen
volunteered information, impact/damage reports, and
insurance data. The resulting information can be used to
bridge the forecast verification gap through non-
traditional approaches as they provide a more direct rep-
resentation of the event (Marsigli et al., 2021). For exam-
ple, information from insurance databases (Bernet
et al., 2017; Cortès et al., 2018), as well as online tools
such as Google Trends and Twitter feeds (de Bruijn
et al., 2019; Thompson et al., 2022) have been used as ref-
erence information to evaluate the occurrence of floods.
Impact data have also been used with river-gauge obser-
vations to identify the magnitude of discharge that is
associated with flooding (Coughlan De Perez et al., 2016).
Notably, impact data offer an advantage in the verifica-
tion of forecast information, because they can be derived
from openly accessible data repositories containing quan-
titative and qualitative information across large spatial
areas that enable a better and direct representation of the
impacts of the extreme event. The use of impact data in

forecast verification can only be possible in areas with
exposure and vulnerability for the impact to be reported.

It is worth noting that global data repositories such as
the Emergency Events Database (EM-EM-DAT, 2020)
and the United Nations Disaster Inventory System
(DesInventar [DI]; UNISDR, 2018) are prone to biases
due to known limitations (Gall et al., 2009). These limita-
tions include under-reporting/over-reporting of the haz-
ards, aggregated spatial coverage, over-representation of
certain locations, and/or focus on the specific type(s) of
impacts. Furthermore, differences in the criteria for the
inclusion of events in the repositories may result in non-
uniformity in the estimates of the impacts reported in
each repository. In addition, if unverified, impact data
collection methods (e.g., from governments and media)
may lead to errors in the resulting information (Guha-
Sapir & Below, 2002). Despite these caveats, these data
repositories represent a potentially valuable source of less
conventional data for monitoring and verifying hazards.
For example, impact data can be integrated with other
geophysical parameters to sub-categorise flash floods
from the primary corresponding disaster type
(Kruczkiewicz, Bucherie, et al., 2021). Therefore, if the
limitations of impact data are appropriately understood,
with guidance on their interpretation and relevant rec-
ommendations, impact data can be improved to effec-
tively support anticipatory actions.

In this study, we assess the usefulness of flood impact
data to verify flood forecast information across Uganda
and Kenya compared with river-gauge observations. We
verify the river flood forecast from the Global Flood
Awareness System (GloFAS) of the Copernicus Emer-
gency Management Service (Harrigan et al., 2023) using
two reference observations. The river-gauge observations
and flood impact data were derived from several global
and national data repositories.

The study addresses two research questions:

1. How suitable are impact data for verifying flood fore-
casts compared to river-gauge observations?

2. Where river-gauge observations are limited or una-
vailable, how best can impact data be used to verify
flood forecasts and ensure anticipatory actions are
informed?

Through focussed case studies in two East African
countries, we investigate the non-traditional approach of
forecast verification using impact data relative to the tra-
ditional way of verification using river-gauge observa-
tions. Consequently, we provide recommendations on
how best impact data can be used in areas with no or lim-
ited river-gauge observations to increase confidence in
the use of forecast products in data-scarce regions.
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2 | CONTEXT

In this section, we describe the case study regions and
the datasets used for the analysis, that is, the GloFAS re-
forecast discharge data, river-gauge observations, and the
impact data from several data repositories.

2.1 | Case study regions

The Netherlands-based IKEA Foundation is supporting
the Uganda and Kenya Red Cross Societies (URCS and
KRCS, respectively) to develop early warning mecha-
nisms to prepare for floods through the Innovative
Approaches for Response Preparedness (IARP) project.
In Uganda, several high-risk areas were identified using
vulnerability and risk layers developed by the National
Emergency Operations and Coordination Centre
(NECOC), including a total of 15 districts, for the early
action protocol (EAP) development. These regions are
prone to flooding and waterlogging across the two rainy
seasons between May and November (April–May, Long
Rains; September–November, Short Rains). In Kenya,
flood-prone river basins including Tana, Nzoia, and Athi
are considered for the implementation of flood early
actions. Examples of early actions include community
awareness, distribution of cash and shelter kits, dissemi-
nation of early warning information among others (see
KRCS, 2021; URCS, 2021).

The case study regions in Uganda and Kenya were
selected based on locations with available river-gauge
observations. In Uganda, the districts of Katakwi and
Amuria on the Akokorio river (hereafter ‘Katakwi’), Tor-
oro (Butaleja), and Mbale (Bududa and Manafwa) on
Manafwa River (hereafter ‘Manafwa’), and Kiboga,
Mubende, and Hoima on the Mayanja River (hereafter
‘Mayanja’) are considered. In Kenya, the county of Tana-
river and Garissa on Tana River (hereafter ‘Tana’), Busia
and Siaya on Nzoia river (hereafter ‘Nzoia’), and Taita-
taveta and Kilifi on Athi river (hereafter ‘Athi’) have
been considered. Figure 1 shows the locations of the
river-gauge stations and the affected counties/district in
Kenya and Uganda, respectively.

2.2 | GloFAS flood forecasts

GloFAS is an operational global ensemble flood forecast-
ing system developed jointly between the European Com-
mission's Joint Research Centre (JRC), the European
Centre for Medium-Range Weather Forecasts (ECMWF),
and the University of Reading researchers (Alfieri
et al., 2013). The system provides probabilistic extended
range discharge forecasts for up to 45 days and seasonal
outlooks up to 4 months lead time (Emerton et al., 2018)
over the entire globe at a resolution of 0.1�. From GloFAS
v3.1 (current operational version), the LISFLOOD hydro-
logical model (van der Knijff et al., 2010) is forced by an

FIGURE 1 Flood occurrence maps for Kenya and Uganda show the study counties/districts and the river gauge locations. The map was

created using impact data collated from four different data repositories from 2007 to 2018. The colour scheme represents the number of years

out of the 12 years considered when floods occurred ranging from low (1–3 years), moderate (4–6 years), high (7–9 years), and very high

(10–12 years).
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ensemble of medium to extended range meteorological
forecasts from the ECMWF Integrated Forecast System to
produce 51 ensemble members of daily streamflow at var-
ious lead times. LISFLOOD has been calibrated using
daily streamflow data at over 1200 river basins worldwide
(Hirpa et al., 2018).

GloFAS v3.1 hydrological performance was evaluated
for the period 1979–2019 for over 1500 verification sta-
tions across the world using various verification metrics
(Kling Gupta Efficiency, Bias, variance, etc). Prudhomme
and Zsoter (2021) provide details on the hydrological
assessment methodology and further discussion on Glo-
FAS performance evaluation. GloFAS provides daily dis-
charge amounts [m3/s] from which probabilities of flood
threshold exceedance can be derived. For flood detection,
these forecasts time series are compared against a set of
flood thresholds that are derived from the same model
climatology (Zsoter et al., 2020) to avoid the impact of
systematic biases in the GloFAS climatology on flood
forecast probabilities. In this study, we use daily GloFAS
v3.1 reforecast discharge data from 2007 to 2018 extracted
for the gauge locations in Kenya and Uganda, respec-
tively (Figure 1).

2.3 | Flood thresholds

In the 30-day operational GloFAS forecast interface
(https://www.globalfloods.eu/), four different flood
return periods (2, 5, 10, and 20 years) are provided and
can be used as the thresholds for severe flood events. Zso-
ter et al. (2020) provide a detailed explanation of how
these return periods are computed using GloFAS ensem-
ble reforecasts. Furthermore, thresholds computed as
percentiles of the daily river flow time series can also be
used to define various hydrological conditions (e.g., high/
low river flows) and have been used by several authors to
evaluate forecasts from GloFAS or similar forecasting sys-
tems (see Alfieri et al., 2013; Arnal et al., 2018; Emerton
et al., 2018; MacLeod et al., 2021). For example, high per-
centiles (90th percentile or greater) have been used to
show a high likelihood of floods when the river flow at a
gauging station is above that percentile (MacLeod
et al., 2021). In the broad hydrological literature, the
notation for flow percentiles is not always consistent or
clear, so when percentiles are used, the definition needs
to be specified clearly.

In this study, we adopt the traditional definition of
percentiles used in statistics where a kth percentile (with
k in the range of 1–100) for a time series is the level
below which (or at which) a k percentage of values in its
distribution falls (the inclusive definition of percentile is
adopted). For example, a 90th percentile is equal to or

>90% of the river discharge recorded during the specified
period. In flood-related studies, a percentile flow can also
be referred to in terms of ‘percent exceedance’ to indicate
the percentage of time that the discharge value is likely
to be equalled or exceeded (see; Flow, Excedance and
Percentiles, 2023; National River Flow Archive, 2023).
Thus, in this study we use the 90th, 95th, and 99th per-
centile calculated from the re-forecast (all ensemble
members) or observed time series of daily discharge, cor-
responding to high-flow levels exceeded only by a minor
portion of the days in the data, that is,10%, 5%, and 1%
respectively.

Due to data availability, we followed a percentile-
based method to compute flood thresholds for forecast
verification similar to previous authors (e.g., Alfieri
et al., 2013; Arnal et al., 2018; Emerton et al., 2018;
MacLeod et al., 2021). The choice of using these thresh-
olds and not higher Return Periods (e.g., 5-year or
20-year return periods computed from annual maxima) is
motivated by the need for robust statistics, given the
short data periods available (2007–2018). For the fore-
casts, these thresholds are lead-time dependent (Zsoter
et al., 2020), that is, calculated from the reforecast time
series at each given lead time available.

2.4 | River-gauge observations

Observed point-based discharge time series for the river
gauges considered here were provided by the Department
of Water Resources Management (DWRM) in Uganda
and by the Kenya Water Authority (WRA) for Kenya.
The time series consists of daily discharge values over
long periods with all stations having at least 5 years of
daily discharge data over the study period. The river-
gauge observations corresponding to the period of the
impact data (2007–2018) have been used for the subse-
quent analysis.

2.5 | Flood impact data

Flood impact data have been used to extend our capabil-
ity to verify GloFAS flood forecasts beyond conventional
observations from sparse gauge networks. The flood
impact data contain semi-quantitative and qualitative
information on the location and number of reported
flood events derived from five different data repositories:
(1) Dartmouth Flood Observatory (DFO) Archive
(Brakenridge, 2015), (2) DI (UNISDR, 2018), (3) EM-
DAT (EM-DAT, 2020), (4) the Global Hazard Weekly
Bulletin (PHE, 2015), and (5) local sources (URCS,
KRCS, media, etc.) for the 2007–2018 period. These data
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were collated for Uganda and Kenya for the study
regions (districts/counties) for further analysis. The char-
acteristics of these data repositories are summarised in
Table 1.

In an ideal situation, an impact would be defined as a
combination of the number of people affected and the
quantitative estimate of any loss of property and liveli-
hoods. However, the used repositories do not have
enough quantitative loss and damage information disag-
gregated to sub-national administrative units to enable
the quantification of impacts and the severity of the flood
events. We, therefore, consider the number of flood
events reported as a proxy to the impact with an assump-
tion that flood events that result in considerable impacts
would be reflected in the data repositories used. The
flood events are then classified as either 1 or 0 if the event
was reported or not, respectively. The assessment of the
number of flood events from the various sources, as well
as the overlap (events that are common across the reposi-
tories used here), would help understand which data
repository is used to identify the highest number of flood
events for each study location.

3 | METHODOLOGY

Here, we outline the comparative analysis of river-gauge
observations and impact data and the verification of Glo-
FAS flood forecasts using two reference data sets through
a set of skill scores. To assess the usefulness of flood
impact data in verifying flood forecasts, first, the ade-
quacy of the impact data in supplementing the river-
gauge observations is evaluated using Type I and Type II
error indices. Second, the flood forecast data are verified
using river discharge and impact data as reference, and
the verification outcomes based on the probability of
detection (POD) and false alarm ratio (FAR) are
compared.

3.1 | Comparison of river-gauge
observations and impact data

In this part of the analysis, we compare the river-gauge
observations and impact data. River-discharge value
(Q) that has the potential to cause flooding is defined
using the 90th and 95th percentile as the threshold, that
is, a flood event (binary) occurs when Q is above the
threshold, and it does not occur if Q is below the thresh-
old. The total flood events from impact data are derived
from the data repositories while considering the overlaps
using the timestamp to avoid duplication in the total
events. This means that an event that occurs across all

the data repositories for the same timestamp is consid-
ered one event. The total flood events from impact data
(binary) are then compared with river-gauge observations
(binary).

Here, we assess the consistency of impact data false
positive and false negative outcomes using a window of
7 days (from the day of the observed event up to 7 days
ahead) against the flood events picked from the river-
gauge observations. Using a 2 � 2 contingency table, the
false-positive outcome is used to compute the ‘Type I
error’ which represents the ratio of the flood events
detected by river-gauge observations with no impacts
divided by the total flood events (from gauge observa-
tions). Additionally, the false negative outcome is used to
compute ‘Type II error’ which represents the ratio of
flood events detected in the impact data and not by river-
gauge observations divided by the total number of flood
events (from impact data). We first compare the river-
gauge data (binary) with the impact data (binary) from
the various sources across the locations. Next, we com-
pare the river-gauge observations against impact data
from a single data repository to assess if impact data from
some repositories are better than others in detecting flood
events. Type I and II errors are calculated according to
the equations in Table 2.

3.2 | Flood forecast verification using
river-gauge observations and impact data

A set of skill scores were used to evaluate the occurrence
of forecasted floods from the GloFAS system against
river-gauge observations and impact data. The ability of
the forecast to discriminate between events and non-
events is commonly measured using skill metrics calcu-
lated from a 2 � 2 contingency table. Two skill scores
were used to quantify the occurrence of flood events
(Wilks, 2006): (1) POD or hit rate, which measures the
fraction of observed events that were correctly predicted
(perfect score of 1) and (2) FAR, which indicates the frac-
tion of the predicted events that did not occur (perfect
score of 0). Table 3 shows the equations used to calculate
the skill scores.

In this study, the verification of flood forecast events
is based on the need to provide reliable flood forecast
information to inform anticipatory actions taken by the
communities and humanitarian actors. The preferred ver-
ification outcome will therefore depend on the decision-
making strategies the actors are willing to take. For
example, humanitarian actors might need to decide if
actions should be taken based on any forecast probability
which might be costly due to the number of events but
would ensure reduced losses if the events materialise.
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The second alternative would be if actions should be
taken based on a forecast that shows a high likelihood of
event occurrence to minimise the expenses that would be
incurred if the actions turn out to be in vain (see Lopez
et al., 2020).

Various factors identified from the EAPs developed
by URCS and KRCS have been adopted in this study.
First, a flood forecast with a 60% chance of happening
triggers early actions. Hence, we consider forecasts that
indicate a forecast probability of 60% and above to corre-
spond to a flood forecast event, and below 60% to corre-
spond to a ‘no-flood’ event. Second, in the calculations
of events correctly forecasted, an action lifetime of
7 days, is considered. ‘Action lifetime’ is defined as the
length of time during which action will remain effective
in reducing impacts (Coughlan De Perez et al., 2016). In
forecast verification, the action lifetime is commonly
known as the ‘margin of error’ and it is used to give
more tolerance to the forecasts such that even if the fore-
cast is late but materialises within the duration of the
action lifetime, the actions will still be considered suc-
cessful. For example, if an action is taken and a flood
occurs up to 7 days after the forecasted date, this will
still be considered a ‘hit’ if the action lifetime is >7 days

(see Figure 2 for a visual description of the action life-
time and margin of error). Depending on the type of
action, the action lifetime can range from 7 to 90 days.
This can also vary depending on a specific country's flex-
ibility on the actions to take and the acceptable number
of times the stakeholders are willing to ‘act in vain’. For
Uganda and Kenya, the stakeholders set the probability
of ‘action in vain’ to 50%, indicated using the FAR.
From Figure 2, We have considered a margin of error of
5 days and action lifetime of 10 days. However, these
parameters can still vary depending on the type of
action.

Using distinct flood discharge thresholds (i.e., 90th
and 95th percentile) calculated from the GloFAS refore-
cast data and river-gauge observations, we verify flood
forecast using river-gauge observations and impact data
as a reference. This study was therefore not meant to
evaluate the hydrological performance of GloFAS (cali-
bration and validation of GloFAS time series) but to
assess the usefulness of the two reference datasets in fore-
casts verification. Using a 7 days-action lifetime and 60%
probability of flooding, we compute the differences in the
skill scores (POD and FAR) for forecast-observed data
and forecast-impact data pairs, respectively. Here, if the

TABLE 2 Type I and Type II error equations for the comparative analysis.

Index name Equation Score range Perfect score

Type I error (TI) Number of gauge observed flood events

withno impacts reported
Total number of flood events

from river gauge observations

0–1 0

Type II error (TII) Number of flood events detected by impact data,

with nogauge observations
Total number of flood events from impact data

0–1 0

TABLE 3 Skill scores used for the

verification of forecasts.
Skill score Equation Values range Perfect score

probability of detection (POD) POD¼ H
HþM

0–1 1

false alarm ratio (FAR) FAR¼ FA
HþFA

0–1 0

Abbreviations: FA, false alarms; H, Hits; M, Misses.

Ac�on life�me

Readiness
triggers

Ac�ons
triggered

Margin of Error
Event
occurs

Forecasted
�me

–5days –4days –3days –2days –1day +1day +2days +3days +4days +5days +6days +7days +8days +9days +10days

Forecast Lead �me

FIGURE 2 Visual representation of the action lifetime and margin of error based on early warning and action triggers.
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difference between the ‘POD observed’ and ‘POD
impact’ is negative and the FAR difference is positive,
impact data are more favourable in skill assessment than
river-gauge observations and vice versa. Additionally, if
the river- gauge observations or impact data (or both)
report a flood event for the same days as in the GloFAS
flood forecast (within the action lifetime of 7 days from
the warning), the reference data (observed or impact) are
favourable in skill assessments.

4 | RESULTS

4.1 | Impact data from the data
repositories

In Uganda, in two districts (Katakwi and Manafwa) the
reported impacts from the data repositories show a
higher number of events reported in 2007, 2010, 2011,
2012, and 2018 from DI and DFO as compared with other
years. However, the flood events for Mayanja from all the
data repositories across the years are low. Table 4 shows
the number of events across Uganda and the three loca-
tions from 2007 to 2018. The number of flood events from
each repository presented in Table 4 is independent, that
is, it does not consider any overlap across the
repositories.

The analysis of the number of flood events from mul-
tiple and single data repositories shows that in Katakwi
there are 434 flood events where DI recorded the highest
number of events at 36%, followed by DFO at 19%
(Table 5). Data collected across Katakwi by URCS also
provide a substantial contribution (14%) to the flood
events in the area. The overlap from multiple data reposi-
tories (EM-DAT, DI, and DFO) contributes to 11% of the
total flood events. In Manafwa from a total of 304 events,
the highest number of events are from single source DI
and overlap between EM-DAT and DFO, at 33% and 28%
respectively. EM-DAT alone contributes 14% of the total
events. In Mayanja, only two data repositories contribute
to the flood events. These are the DI at 23% and EM-DAT
at 77% totalling 102 events.

In Kenya, many flood events were reported in 2007,
2010, 2011, 2013, 2015, and 2018 across the country and
the three study locations (see Table 4). EM-DAT also
records the highest number of flood events across the
three locations contrasting with findings in Uganda,
whereas DI reported the lowest. For example, in Nzoia
EM-DAT represents 69% of the total flood events, local
sources contribute 12%, whereas DI covers 6%. The over-
laps between the various sources contribute marginally
across the locations. For example, EM-DAT and DI
together contribute <1% in Tana, 3% in Nzoia, and 1% in
Athi (Table 5).

4.2 | How adequate are the impact data
in supplementing river-gauge observations
in identifying flood events?

The comparative analysis in the three locations in Uganda
using combined impact data from the various data reposi-
tories and observed gauge data show varied results across
locations and thresholds. For example, in Katakwi
(Figure 3a) by using the 90th percentile from the river-
gauge observations, the impact data capture 60% of all
gauged flood events, but 42% of the reported flood events
from the impact data do not correspond to flows above
the 90th percentile threshold. This could mean that either
the threshold is too high, with lower flows still causing
impacts or the impacts reported were a result of another
form of flooding like flash floods or waterlogging from
heavy rainfall. In Manafwa and Mayanja (Figure 3b,c),
Type I and Type II errors across the thresholds are high
(above 0.5) which could mean that the quality and quan-
tity of available impact data for these locations were not
adequate (Type I), and the impacts reported were not as a
result of riverine flooding (Type II).

The comparative analysis shows a high Type I error
across the 90th and 95th percentile in the Kenyan loca-
tions. This means that though the observations indicate
flood events, there were no impact data to correspond to
these events or the quality of the available impact data
was not good enough. On the other hand, the Type II
error is also high across the locations, suggesting that
impacts reported resulted from different forms of flood-
ing, such as flash floods. For example, in Tana at the
90th percentile, impact data capture only 40% of all
gauged flood events, but half of the reported flood events
do not correspond to flows above the 90th percentile.
Figure 4a–c shows the comparative analysis across the
thresholds for Tana, Nzoia, and Athi respectively.

The analysis using a single data repository shows an
increase in Type I error in all the locations in Kenya and
Uganda (Figure 5a,b). For example, in Katakwi using DI
alone results in a Type I error of 0.59 as compared to a
Type I error of 0.39 while using four data repositories
(DI, EM-DAT, local, and DFO). In Tana, EM-DAT results
in a Type I error of 0.79 as compared to 0.61 while using
data from all the repositories. Type II error fluctuates
across the locations (Figure 5c,d). For example, at the
90th percentile, despite Nzoia having almost the same
number of flood events from EM-DAT and local sources,
Type II error is higher while using local sources as com-
pared to using EM-DAT (Figure 5d). This shows that at
the same (higher) threshold for example at (90th percen-
tile) more events are likely to be missed out (events fall-
ing below the threshold) from the local source which
takes into consideration more localised events as com-
pared to a high-impact data repository like EM-DAT. In
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other words, a data repository that considers a low
threshold for inclusion of the event in their database may
require a low threshold based on gauge observation to
correctly identify the flood events as compared to a data
repository that considers high threshold for inclusion.

4.3 | Where river-gauge observations are
limited or unavailable, how best can the
impact data be used to verify flood
forecasts and ensure anticipatory actions
are informed?

We plotted the difference between the forecast skill scores
(POD and FAR) obtained using the river-gauge observa-
tions and impact data (i.e., PODobserved�PODimpact and
FARobserved�FARimpact) as a reference for verifying flood

forecasts across all the locations and two percentile
thresholds to assess their potential in forecast verification
(Figure 6). The results show that impact data gives a
more favourable assessment of skill as compared to the
observed data at the 90th and 95th percentile across lead
times in Katakwi (i.e., PODimpact > PODobserved and
FARimpact < FARobserved). For other locations at a lead time
of up to 15 days, the impact data underestimate the Glo-
FAS skill in terms of POD and FAR. At longer lead times
(>15 days), Nzoia shows a good assessment of skill in
terms of POD. These outcomes can be associated with the
quantity and quality of the impact data that were avail-
able for most locations (except Katakwi and partly Nzoia)
which also corresponds to the findings in Section 4.2. The
highest difference in the POD of up to 0.4 is seen in May-
anja at the 90th percentile while other locations show a
difference of below 0.2. The FAR is however spread out

TABLE 5 Percent of the total number of flood events from multiple (overlaps) and single source data repositories for the study locations

in Uganda and Kenya.

Uganda Katakwi Manafwa Mayanja

Number of reports 434 304 102

Sources Percent of total events in each location

Single source contribution

DI 36.41 32.57 22.55

EM-DAT 1.38 13.82 77.45

DFO 18.89 12.5 0

Local sources (URCS) 13.59 0 0

GWHB 0.00 2.30 0

Overlaps

EM-DAT, DI, and DFO 11.06 4.28 0

EM-DAT and DFO 6.91 28.29 0

DI and DFO 8.29 5.59 0

URCS and DI 3.46 0.00 0

EM-DAT and GWHB 0.00 0.66 0

Kenya Nzoia Tana Athi

Number of reports
316 359 251

Sources

Single source contribution

EM-DAT 69.94 70.75 72.11

DI 6.33 3.34 3.19

Local sources 12.03 19.22 19.92

Overlaps

EM-DAT and DI 3.48 0.56 1.20

EM-DAT and local 6.01 5.85 3.19

EM-DAT, DI, and local 2.22 0.28 0.40

Note: The first two sources that represent the highest percentage over each district/county are highlighted in bold.
Abbreviations: DFO, Dartmouth Flood Observatory; DI, DesInventar; EM-DAT, Emergency Events Database.
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FIGURE 3 Comparative analysis of the impacts (all sources) and observed data at three percentile thresholds (80th, 90th, and 95th) of

daily river flows from the gauged stations for (a) Katakwi, (b) Manafwa, and (c) Mayanja in Uganda.

FIGURE 4 Comparative analysis of the impacts and observed data at three percentile thresholds (80th, 90th, and 95th) of daily river

flows from the gauged stations for (a) Tana, (b) Nzoia, and (c) Athi in Kenya.
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FIGURE 5 Type I and Type II error at 90th percentile for all data repositories (including overlaps) and single source data repositories

for (a) Type I in Uganda locations, (b) Type I in Kenya locations, (c) Type II Uganda locations, and (d) Type II Kenya locations. DI,

DesInventar; EM-DAT, Emergency Events Database.

FIGURE 6 Differences in POD and FAR for locations in Uganda (Katakwi, Manafwa, and Mayanja) and Kenya (Tana, Nzoia, and Athi)

across lead times at the 90th and 95th percentiles. FAR, false alarm ratio; POD, probability of detection.
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across locations with a change of about 0.5 in Mayanja
and Athi. POD and FAR graphs for the study locations at
90th and 95th percentile using river-gauge observations
and impact data are provided in Figure S1.

5 | DISCUSSION

Using less conventional data such as impact data in fore-
cast verification are gaining interest among researchers
and practitioners. However, these data sources, just like
hydro-meteorological data, are subject to errors and biases
(Wilby et al., 2017). Despite these shortcomings, the impact
data have the potential to ensure early warning systems are
robust. In this section, we discuss the findings and implica-
tions of using impact data to verify flood forecasts and the
assumptions that have been considered. First, we discuss
the available impact data in the East African countries
(Uganda and Kenya). Second, we highlight the adequacy of
the impact data compared with river-gauge observations
and how that may influence forecast verification. Last, we
highlight the potential and challenges of using impact data
to verify forecast information in data-scarce regions and
provide recommendations that can be useful in improving
the impact data to ensure effective early actions.

5.1 | What does the available impact
data from Uganda and Kenya tell us?

Among the four main data repositories used in this study,
DI had the highest number of flood events in Uganda
(Katakwi and Manafwa districts), whereas across Kenya
and the three counties, EM-DAT reports the highest num-
ber of flood events (Table 4). The differences can be asso-
ciated with the criteria used for the inclusion of impact
data in these repositories as well as the country-specific
regulations on the collection and systematic reporting of
impact data (Osuteye et al., 2017). For example, in
Katakwi, if we consider a specific period from 1 August
2007 to 31 October 2007, EM-DAT reported a total of
11 flood events while DI reported 9 flood events (all con-
sidering the 7-day window, Section 3.1). Among the
events, seven flood events overlap across the repositories
while EM-DAT has four distinct events and DI has two
distinct events. Therefore, using DI alone will result in
fewer (�4) flood events while using EM-DAT alone will
result in fewer (�2) flood events. This is just one example
and the differences in flood events across data repositories
might increase or decrease. Due to such differences, using
only one repository can lead to a bias in the outputs gen-
erated (e.g., underestimation of event frequency).

Although we disaggregated the impact data into dis-
tricts and counties, we only used the qualitative

information classified as impact/no impact to guide the
analysis. This is because there are no direct quantitative
loss estimates available for these locations useful in
understanding the severity of each flood event. Quantita-
tive estimates are usually reported as aggregated quanti-
ties across a region, rather than disaggregated quantities
for smaller geographical areas within the region
(Gall, 2015). For example, in EM-DAT, the 2007 flooding
between August and October that impacted different
parts of Uganda are combined as one record (Disaster
number 2007-0408; EM-DAT, 2020) with the quantified
impact on, for example, the ‘number of people affected’,
also aggregated. The insufficient reporting of quantitative
estimates in areas of small spatial coverage can limit the
analysis and affect the robustness of any conclusion, espe-
cially from a livelihood perspective (Osuteye et al., 2017).
In addition, these repositories have differences in the
parameters used for reporting. For example, EM-DAT
reports only one parameter of ‘number of people
affected’, whereas DI reports the same using two parame-
ters; ‘directly affected and indirectly affected’. As also
noted in Below et al. (2010), this hinders the direct quan-
titative comparison between the two data repositories.

5.2 | How adequate are the impact data
in identifying thresholds for impactful
river flooding and in verifying flood
forecasts?

Setting up early warning mechanisms for floods often
depends on the thresholds derived from river-gauge data
to identify the level at which the river discharge may
result in impactful flooding. In data-scarce regions,
impact data can help to determine such thresholds
(Coughlan De Perez et al., 2016) but this requires a large
number of good quality impact data to reduce the chances
of over-representation/under-representation of impacts
(Ranger et al., 2011). We have found that even within the
same country impact data are not consistently available
across all locations (Barabadi & Ayele, 2018), which may
lead to bias in the outputs. Our analysis shows that using
more than one source of impact data reduces the chances
of a Type I error or situation where flooding occurs but
impact data are not available. For example, although EM-
DAT contributes to over 69% of all impact reported in
Tana, Nzoia, and Athi respectively, using this repository
alone results in an increase in Type I error (flood
observed in gauged data but not reported) compared with
using all three repositories (EM-DAT, DI, Local;
Figure 5b). This can be associated with the inclusion cri-
teria for the various data repositories. For example, for a
repository like EM-DAT, only high-impact flood events
are represented leaving out low-impact flood events.
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We have found that the consistency between impact
data and river-gauge data varies markedly across the
thresholds, but the variability is location-dependent. For
example, in Katakwi, there is good correspondence
between the river-gauge observations and impact data at
the 90th percentile. This suggests impact data can be used
to identify river discharge critical thresholds at which
impactful flooding occurs. These findings are consistent
with scientific literature where impact data have been
successfully used to define flood thresholds. For example,
Young et al. (2021) used impact reports to determine the
rainfall thresholds that resulted in flooding in the urban
city of Alexandria, Egypt.

Although we used the percentile-based method to
identify flood events, we acknowledge that high-impact
events are generally higher than the 99th percentile
(MacLeod et al., 2021), but to ensure robustness of the
statistical analysis, we adopted the 90th and 95th percen-
tile thresholds as several previous authors did (e.g., Arnal
et al., 2018; MacLeod et al., 2021). These percentiles may
include low-impact flood events that are likely to affect
local limited areas (with relatively high frequency,
e.g., 5% of days over a year for the 95th percentile) but
are useful in cases where impact data is used in the verifi-
cation due to the differences in the inclusion criteria of
flood events in the various data repositories (see Table 1).
In some previous studies, even lower thresholds are used
because of data availability limitations, to ensure robust-
ness in the verification. For example, Arnal et al. (2018)
used terciles (33rd and 66th percentiles) of the simulated
streamflow for the verification of seasonal streamflow
forecasts and discussed the need to consider high thresh-
olds such as the 95th percentile if more data were avail-
able. We therefore recommend that further studies with
possible longer data periods available, should look at the
representativeness of results across flood thresholds
higher than the 99th percentile.

Other locations in Uganda and Kenya show an
increase in Type I (and Type II) error as the river flow
threshold decreases (increases). The increase in Type I
error can be related to the inadequacy or the low quality
of impact data used in this analysis, i.e. for both inade-
quate impact data (if the repository did not include an
observed event) and low-quality data (if the timestamp of
the impact data is incorrect) a false positive is produced.
Type II error could have resulted if impacts reported were
not because of riverine flooding but other subtypes of
flooding, and this can also be influenced by the inclusion
criteria which are specific to each data repository.
Although a repository like EM-DAT differentiates floods
using subtypes such as riverine and flash flooding, DI
does not include such subtypes. These subtypes would
help ensure that flood events are further categorised
before analysis to reduce the Type II error. In addition,

such differentiation can help in designing appropriate
preparedness and response interventions which vary
based on the sub-type of flooding (Nauman et al., 2021;
Paprotny et al., 2021). To further confirm the source of
increase in Type II error, data derived from satellite
imagery (e.g., Sentinel-1 and Sentinel-2) could be used to
identify if floods occurred as well as their spatial location
(with respect to rivers), which can help discriminate riv-
erine floods (Tarpanelli et al., 2022).

The differences in POD and FAR vary across the
study locations considered here. Except in Katakwi and
partly in Nzoia (>15 days lead time), where we get a
more favourable assessment of skill while using impact
data, other locations show that using impact data under-
estimate the GloFAS skill both in terms of POD and
FAR. Though the differences are minimal in the majority
of the locations, it still means that impact data cannot be
adequately used to verify flood forecasts in most loca-
tions, as highlighted previously by Gall (2015). However,
the available river-gauge observations and impact data
could be used to train the hydrological model used in the
GloFAS system through calibration and validation in spe-
cific locations that show poor detection of flood events.
In other words, the available historical impact data and
gauge observations can be used to assess the hydrological
skill of the GloFAS using scores such as Nash-Sutcliffe
efficiency which assesses temporal variability and agree-
ment between the modelled and observed data (see Teule
et al., 2020). Overall, being aware of uncertainties that
can result in using the available impact data can help
ensure the outputs are used appropriately in supporting
anticipatory actions.

5.3 | How best can the impact data be
used to verify flood forecasts in data-scarce
regions?

Our exploratory analysis has highlighted several factors
that are affecting the efficacy of impact data for verifying
flood forecasts in most of the study locations in Uganda
and Kenya. These are inadequacy of events records, poor
quality, and spatial resolution/granularity among others.
Therefore, using impact data may result in underestima-
tion of forecast skill, leading to reduced confidence in
using the forecast to support anticipatory actions. In
other words, if we use impact data to verify and it turns
out to be unwittingly underestimating the forecast skill,
we might discard a forecast that is good enough to sup-
port preparedness actions for vulnerable people. Never-
theless, positive results obtained for Katakwi in Uganda
and Nzoia in Kenya show that with some improvements,
the impact data could be used to determine critical
thresholds for flooding and inform the design of early
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warning mechanisms in data-scarce regions. For such
regions, the following improvements would increase the
usability of impact data.

5.3.1 | Characterising the gaps/uncertainties

The uncertainties in the impact data should be explicitly
stated, as well as the implications for the outputs, espe-
cially if the outputs are intended to inform actions. The
uncertainty around the estimate can be denoted using
standard error, which indicates how far the estimate is
from the mean. The standard error can be calculated by
dividing the standard deviation by the square root of the
sample size (Walker, 2018). From our analysis, the stan-
dard error in the FAR calculation varies from 0.02 to 0.05.
Therefore, if the recommended forecast FAR to trigger
humanitarian action is <0.5, using impact data will require
a FAR of <0.4 to minimise actions taken in vain. Continu-
ous operational evaluation of the forecasts is also required
in situations where real-time reference data are available.

5.3.2 | Combining databases

A combination of impact data from multiple data reposito-
ries should be explored especially if the data is scarce
(Barabadi & Ayele, 2018). This can help reduce the biases
and possibility of missed events in the reference datasets
for forecast verification, because of the differences in the
methods and criteria used in the compilation of the various
data repositories. For example, comparing river-gauge
observations with impact data from all repositories against
EM-DAT in Tana resulted in an improvement of the Type I
error from 0.8 to 0.6 (Figure 5b). However, the combination
should be carefully explored to avoid duplication of entries,
especially from repositories fed from the same primary
source or if there is a slight difference in the timestamp for
the same event. Some of these challenges of replication can
be handled by using a tolerance interval such that entries
that are within a certain interval are considered one event.
In this study, an interval of 7 days was used.

The combination should also consider the differences
in the indicators used in each repository. For example,
EM-DAT reports the ‘number of people affected’ as one
indicator while DI reports the same in two separate indi-
cators (i.e., ‘directly and indirectly affected’). In addition,
EM-DAT makes clear differentiations of the disaster type
and subtypes, such as riverine flood and flash flooding,
whereas DI does not have such differentiation. Such dif-
ferences make it challenging to combine and compare
the data and disaggregate further, for instance, if you
want to monitor only a subtype of the disaster. For exam-
ple, in our analysis, most Type II errors could have

resulted from impact data that were not necessarily from
riverine flooding.

Harmonising and differentiating these parameters and
clarifying their meanings would help minimise these diffi-
culties (Below et al., 2010). This can be done by ensuring
that these subtypes are indicated during the data collec-
tion process or by applying index-based approaches to dif-
ferentiate between the various disaster sub-types (see
Kruczkiewicz, Bucherie, et al., 2021). In addition, satellite
data (e.g., from Sentinel-1 and Sentinel-2) can be used
alongside the impacts reports to identify the nature and
extent of flooding as well as the spatial location which
can help in complementing the impact reports for future
applications in forecast verification. The usefulness of sat-
ellite images in assessing flood event types and extent has
already been demonstrated in several recent studies,
although also these datasets have their own current limi-
tations that should be taken into account (see Landuyt
et al., 2019; Notti et al., 2018; Tarpanelli et al., 2022).

5.3.3 | Harmonising primary data collection
and information management processes

Primary data collection process
primary data collection in most countries is done through
normal government procedures. This is mainly done
using the damage and needs assessment approach at the
local level and the collected data analysed at the national
level (see The International Bank for Reconstruction and
Development & The World Bank, 2010). If the collected
information show that impacts are considerable, the
country may decide to seek external support. In this case,
the United Nations Office for Coordination of Humani-
tarian Affairs (UN-OCHA) may coordinate more rapid
needs assessments to collect more information using
approaches such as the Multi-sector Initial Rapid Assess-
ment (MIRA) framework (Inter-Agency Standing
Committee, 2015). Countries can, however, use their own
guidelines for collecting the data. In Uganda, the Office
of the Prime Minister is tasked with the collection and
uploading of impact data in the DI. However, recent
interviews in Uganda noted that rapid response assess-
ments and collection of impact data are carried out by
various institutions, including the Office of the Prime
Minister, the Uganda Red Cross Society, the Humanitar-
ian Open Street mapping team, local NGOs, and the dis-
trict office, among others (personal communication,
October 2020). There is a need to harmonise the data col-
lection process through clear guidelines and dedicated
institutions to avoid the probability of competing reports
of unknown credibility (Guha-Sapir & Below, 2006).

Furthermore, impact reporting can benefit from
improved weather and river-gauge networks. Improving
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gauge networks can be strategized such that it is done
alongside the improvement on impact data collection
(Baddour & Douris, 2018). This can ensure improvement
in the flood forecasting systems by providing key inputs
for hydrological model calibration and forecast verifica-
tion, as well as for further impact reports verification.

Information management process
impact data collected through primary sources such as
in-country institutions are often uploaded to data reposi-
tories such as DI. Due to a lack of resources, most coun-
tries might not be uploading the collected information
regularly. Therefore, the impact data collected are held in
internal disaster management systems and managed by
the primary institutions. National data repositories could
be explored to ensure that all impact data collected in-
country is stored in a central in-country repository for
ease of accessibility.

5.3.4 | Impact data outside the official public
sources

A broader and more accurate collection of temporal and
geospatial data on disaster occurrence would ensure
improved risk estimations (Bakkensen et al., 2018). An
extended search of impact data available at the in-
country archives, for example, in private institutions, and
insurance companies, but not yet available in the open
repositories would therefore help improve the quantity
and detail level (spatial–temporal data) of the available
impact data. For example, a study by Smith and Katz
(2013) shows that a significant under-reporting of disaster
loss estimates can occur due to reliance on only public
sources because of their ease of accessibility.

5.3.5 | Use of new technologies

New technologies such as artificial intelligence can be
used to expand impact data (van den Homberg
et al., 2018). Initiatives to expand the impact data, for
example, through web scraping, text mining (Margutti &
van den Homberg, 2020), and application of earth obser-
vation data (Kruczkiewicz, McClain, et al., 2021; Nauman
et al., 2021) and social media platforms should be
explored. For example, social media platforms like Goo-
gle Trends and Twitter have shown promising results in
the detection and reporting of flood events (de Bruijn
et al., 2019; Rossi et al., 2018; Thompson et al., 2022). In
addition, an ongoing study by van den Homberg et al.
(2022) has shown that flood impact data generated from
news articles can complement data from global reposito-
ries such as DI both geographically and temporally,

improving the usefulness of the data. Ensuring that any
new data are interoperable with data from these reposito-
ries will require clear technical guidelines and protocols
(Wirtz et al., 2014) such as the WMO data standardisa-
tion initiative (see Baddour & Douris, 2018).

Overall, impact data represent an important source of
less conventional data for monitoring and improving early
warning and preparedness actions. There is also great
potential for improving these data quantity and quality
through strengthening in-country disaster monitoring
capabilities and ensuring standardised process of data col-
lection that captures all the relevant data features such as
flood extent, gauge level, contact information among others
are in place(Integrated Research on disaster risk, 2014).

6 | CONCLUSION

As the world faces an uncertain future due to climate var-
iability, environmental, and climate change, and an
increase in extreme hydrometeorological events, invest-
ing in early warning early action mechanisms can be an
effective way to prepare and adapt to these extreme
events. However, such an investment will require under-
standing how forecast information performs in detecting
these extreme events to ensure that anticipatory actions
are not taken in vain. While forecast verification has been
successful in regions where long-term hydro-
meteorological observations are available, this is very
challenging in data-scarce regions.

Verification of forecasts using non-traditional
approaches that use less conventional data would ensure
the development of these mechanisms even in locations
with scarce/no conventional observations. In this study,
we investigated the usefulness of flood impact data to ver-
ify flood forecasts. Our findings show that although exist-
ing impact data have shortcomings, they also have the
potential for flood event analysis and forecast verification
and can be used in regions with no long-term hydro-
meteorological observations. These impact data may, how-
ever, require improvement to enhance their utility and
make the forecast verification more acceptable and reli-
able. Among the recommendations outlined above, sup-
porting the national institutions to streamline impact data
collection, and expanding impact data using new technol-
ogies are of critical importance. Addressing these issues
will, however, require a recognition of the role that impact
data can play in verifying hydrometeorological forecasts
and in identifying trends in extreme events to inform risk
management. In addition, a collaborative effort among
international humanitarian actors, disaster management
institutions, the private sector, and local communities is
needed to ensure that quality impact data are collected
consistently and made available in near real-time.
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Appendix A3.1: Common parameters included in various data repositories. 

Data 

repository  

Parameters included 

 Identifiers Spatial 

and 

temporal 

Quantitative Qualitative  

DesInventar Serial number, 

district code, event 

type, cause of the 

impact, primary 

source of the data, 

magnitude,  

location 

(district, 

sub-

county, 

location), 

date 

(YMD) 

Number of 

deaths, injured, 

missing, 

affected 

(directly and 

indirectly), 

evacuated, 

losses, damages 

in crops, houses 

damaged 

Comment 

column that 

contains both 

quantitative 

and qualitative 

information on 

the impacts 

EM-DAT Dis no, origin 

(cause of impact), 

associated disaster 

Names of 

districts 

affected, 

year, start 

date and 

month, 

end date 

and 

month, 

Number of 

deaths, injured, 

affected, 

insured, 

homeless 

No qualitative 

information 

Dartmouth 

Flood 

Observatory 

(DFO) 

ID, Glide number, 

severity, main cause 

Country 

and other 

country, 

latitude 

and 

longitude 

of affected 

area, area, 

begin 

YMD and 

end YMD 

Number dead, 

displaced,  

No qualitative 

information  
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Appendix A3.2: Graphs of POD and FAR at (90th and 95th percentiles) using gauge-

observations and impact data. 

a) Gauge observations (POD and FAR at 90th and 95th percentile) 

 

b) Impact data (POD and FAR at 90th and 95th percentile) 
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Appendix A4: Supplementary materials for Chapter 4 
 

Appendix A4.1: Positive impacts of floods on fruit trees in the three villages in Katakwi District 

 

 

 

Appendix A4.2: pre-agreed early actions (from Uganda EAP) and the targeted early actions for 

Katakwi District 

 

Time of Year
December January February March April May June July August September October November

Rainfall Season                             

Fruit_trees/calendar
H H

Lemon

Oranges

Mango

Papaya

Jack fruit

LAND PREP PLANTING & WEEDING HARVESTING [H] PLANTING

 

Pre-agreed Early actions (Drawn from EAP) 

Community awareness on anticipated risks and selected early actions 

Distribution of water purification chemicals, water storage vessels and soap 

Distribution of Cash and Voucher Assistance to facilitate evacuation and meet other basic needs  

Distribution of customized shelter kits  

 Cleaning water sources/desilting drainage channels/dredging in Urban and rural areas 

 Community mapping - (map out designated centres, evacuation roots and holding stores) 

Early actions based on the crop calendar (derived from interviews with farmers.) 

Months March April May June July August September October November 

Contextuali

zed Early 

actions 

 

Late planting of 

early maturing crops 

 

Draining water from 

farms to protect 

crops 

 

Farm management 

practices to improve 

soil drainage 

 

Early harvesting of 

major crops such as 

cassava, sweet 

potatoes etc. 

 

Provide kits to ensure 

storage of harvests in 

a dry place 

 

 

Late planting of early maturing 

crops 

 

Draining water from farms to 

protect crops 
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