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Abstract. An ensemble of forecast flood inundation maps
has the potential to represent the uncertainty in the flood
forecast and provide a location-specific likelihood of flood-
ing. Ensemble flood map forecasts provide probabilistic in-
formation to flood forecasters, flood risk managers and insur-
ers and will ultimately benefit people living in flood-prone
areas. Spatial verification of the ensemble flood map fore-
cast against remotely observed flooding is important to un-
derstand both the skill of the ensemble forecast and the un-
certainty represented in the variation or spread of the in-
dividual ensemble-member flood maps. In atmospheric sci-
ences, a scale-selective approach has been used to evaluate a
convective precipitation ensemble forecast. This determines
a skilful scale (agreement scale) of ensemble performance
by locally computing a skill metric across a range of length
scales. By extending this approach through a new applica-
tion, we evaluate the spatial predictability and the spatial
spread–skill of an ensemble flood forecast across a domain of
interest. The spatial spread–skill method computes an agree-
ment scale at every grid cell between each unique pair of
ensemble flood maps (ensemble spatial spread) and between
each ensemble flood map with a SAR-derived flood map (en-
semble spatial skill; SAR: synthetic aperture radar). These
two are compared to produce the final spatial spread–skill
performance. These methods are applied to the August 2017
flood event on the Brahmaputra River in the Assam region of
India. Both the spatial skill and spread–skill relationship vary
with location and can be linked to the physical characteristics
of the flooding event such as the location of heavy precipita-

tion. During monitoring of flood inundation accuracy in op-
erational forecasting systems, validation and mapping of the
spatial spread–skill relationship would allow better quantifi-
cation of forecast systematic biases and uncertainties. This
would be particularly useful for ungauged catchments where
forecast streamflows are uncalibrated and would enable tar-
geted model improvements to be made across different parts
of the forecast chain.

1 Introduction

Forecast flood maps indicating the extent and depth of fluvial
flooding within an actionable lead time are a useful tool for
flood risk managers and emergency response teams prior to
and during a flood event. Typically, forecast flood maps are
presented as deterministic forecasts showing precisely where
flooding will occur. This can lead to incidents of false alarms
or missed warnings and subsequent recriminations, causing
mistrust in the system (Arnal et al., 2020; Savage et al.,
2016). A timely prediction of exactly where and when fluvial
flooding caused by intense or prolonged rainfall will occur is
virtually impossible due to the chaotic nature of the atmo-
sphere (Lorenz, 1969). The ensemble forecasting approach
aims to address the sensitivity of the atmospheric dynamics
to initial conditions, and through multiple model runs these
initial condition uncertainties can be quantified (Leutbecher
and Palmer, 2008). The ensemble forecast results in a prob-
abilistic weather forecast that indicates the predictability of
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the atmosphere at a given space and time. State-of-the-art op-
erational ensemble flood forecasting systems link together a
chain of forecast models to produce probabilistic streamflow
and flood inundation forecasts at national and global scales
(Cloke and Pappenberger, 2009; Emerton et al., 2016; Wu
et al., 2020). Ensemble numerical weather prediction models
provide meteorological inputs into land surface, hydrologi-
cal and hydraulic models, cascading the atmospheric uncer-
tainty through to the flood forecast. Throughout this chain of
models, multiple sources of uncertainty exist that have been
investigated in numerous studies (Beven, 2016; Matthews
et al., 2022; Pappenberger et al., 2005; Zappa et al., 2011). As
discussed by Boelee et al. (2019), these uncertainties include
those arising from meteorological inputs, measurements and
observations, initial conditions, unresolved physics within
the models and parameter estimates. A probabilistic flood
inundation forecast should present a meaningful prediction
of the likelihood of flooding so that there is confidence in
the forecast, given the uncertainties represented in the sys-
tem (Alfonso et al., 2016).

The accuracy of the location of flooding, predicted in ad-
vance, is defined as spatial predictability. The spatial pre-
dictability of ensemble forecasts of flood inundation could
be verified by comparisons with a remote observation of the
flood from sensors based on satellites or uncrewed aerial
vehicles (UAVs). Satellite-based optical and synthetic aper-
ture radar (SAR) sensors are well-known for their flood-
detection capability (e.g. Horritt et al., 2001; Mason et al.,
2012). SAR sensors are active, which enables them to scan
the Earth through weather and clouds and at night. The SAR
backscatter intensity detected depends on the roughness of
the surface, with unobstructed flooded areas and other sur-
face water bodies appearing relatively smooth and returning
low backscatter values. Dasgupta et al. (2018a) detail some
of the challenges along with approaches to solutions of flood
detection using SAR. Examples of these challenges include
the following: roughening of the water surface by heavy rain
and strong wind, emergent or partially submerged vegetation,
and flood detection in urban areas. Accurate flood detection
in urban areas, particularly due to surface water flooding,
has become increasingly important (Speight and Krupska,
2021), and recent techniques have led to improved flood de-
tection (Mason et al., 2018, 2021a, b). Optical instruments
rely on solar energy and cannot penetrate clouds, making
them less useful during a flooding situation. Recent studies
have investigated the flood-detection benefits from combin-
ing both optical and SAR imagery (Konapala et al., 2021;
Tavus et al., 2020). Improvements in the spatial–temporal
resolution of SAR images and their open-source availability
mean that they are an increasingly valuable tool for hydraulic
and hydrodynamic model improvements through calibration,
validation and data assimilation (e.g. García-Pintado et al.,
2015; Grimaldi et al., 2016; Cooper et al., 2018, 2019;
Di Mauro et al., 2021; Dasgupta et al., 2018b, 2021a, b).
The Global Flood Monitoring (GFM) product (EU Science

Hub, 2021; GFM, 2021; Hostache, R., 2021) of the Coper-
nicus Emergency Management Service (CEMS) (Coperni-
cus Programme, 2021) produces SAR-derived flood inunda-
tion maps for every Sentinel-1 image that detects flooding.
Three flood-detection algorithms provide uncertainty estima-
tion and population-affected estimates within 8 h of the im-
age acquisition. The European Space Agency (ESA) Coper-
nicus Programme has recently included the ICEYE constel-
lation of small satellites into the fleet of missions contribut-
ing to Europe’s Copernicus environmental monitoring pro-
gramme (ESA, 2021). ICEYE captures very-high-resolution
(spot mode ground range resolution of 1 m) SAR images,
which brings the potential for increased accuracy of flood
detection, particularly in urban areas.

To evaluate the accuracy of an ensemble forecast, a num-
ber of verification measures have been proposed. Anderson
et al. (2019) developed a joint verification framework for
end-to-end assessment of the England and Wales Flood Fore-
casting Centre (FFC) ensemble flood forecasting system. An-
derson et al. (2019) describe verification metrics such as the
continuous rank probability score (CRPS), rank histograms,
Brier skill score (BSS) and the relative operative character-
istics (ROC) diagrams that are commonly applied to assess
the main ensemble attributes desirable in both precipitation
and streamflow ensemble forecasts (e.g. Renner et al., 2009).
These metrics refer to flooding events as part of a time se-
ries evaluated against a reference benchmark, such as clima-
tology, to produce an average skill score. In contrast, here
we consider ensemble spatial verification at a single time
point. The verification of ensemble forecasts usually involves
comparing the RMSE (root mean square error) of the ensem-
ble mean against an observed quantity to assess the skill of
the forecast with the ensemble standard deviation used as a
measure of spread. A perfect ensemble should encompass
forecast uncertainties such that the ensemble spread is cor-
related with the RMSE of the forecast (Hopson, 2014). This
spread–skill relationship was assessed by Buizza (1997) to
investigate the predictability limits of the European Centre
for Medium-Range Weather Forecasts (ECMWF) Ensemble
Prediction System (EPS). This approach to ensemble veri-
fication is based on point values and makes the assumption
that the ensemble mean is the forecast state with the high-
est probability and that the forecast distribution is Gaussian.
Significant flooding events are, in their nature, a rare occur-
rence, and in certain circumstances a few ensemble members
can indicate a low probability of an extreme flood. Also, in
particular atmospheric scenarios the ensemble forecast may
result in a multi-modal forecast where two clusters of ensem-
ble members are each equally likely (Galmiche et al., 2021).
For example, both clusters may indicate flooding events but
at different magnitudes. In both of these instances the in-
dividual ensemble-member details are important, and eval-
uation of the ensemble mean alone would not be meaning-
ful. When mapping the flood extent prediction, the ensem-
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ble mean field alone does not retain the spatial detail of the
individual-member forecasts.

The spatial spread–skill of the ensemble forecast is deter-
mined by evaluating the full ensemble against observations
of flooding. For a flood map ensemble to be considered spa-
tially well-spread, the spread or variation between ensem-
ble members should equal the spatial predictability or skill
of the ensemble members (Dey et al. (2014); see Sect. 2).
Presently, to the best of our knowledge, quantitative evalua-
tion methods assessing the spatial spread–skill of ensemble
forecast flood maps do not exist. However, previous work in
numerical weather prediction by Ben Bouallègue and Theis
(2014) investigated the application of spatial techniques to
ensemble precipitation forecasts using a neighbourhood or
fuzzy approach that allowed comparisons at scales larger
than grid level (native resolution). A location-dependent ap-
proach to the spatial spread–skill evaluation of a convec-
tive precipitation ensemble forecast was developed by Dey
et al. (2016b). This method compares every ensemble mem-
ber across a range of scales on a spatial field against an ob-
servation field to assess whether the ensemble forecast is spa-
tially over-spread, under-spread or well-spread on average
across a domain of interest (Chen et al., 2018). In a recent
study, a scale-selective approach was developed and applied
to evaluate a deterministic flood map forecast where com-
parisons were made against conventional binary performance
measures (Hooker et al., 2022a). A scale-selective approach
to flood map evaluation was found to have several benefits
over conventional binary performance measures. These in-
clude overcoming the double-penalty impact problem when
validating at higher spatial resolutions and accounting for
the impact of the flood magnitude on the skill score. The
work described here extends and applies this scale-selective
approach to assess the spatial predictability and the spatial
spread–skill of an ensemble flood map forecast.

In this paper we aim to address the following questions:

– How can we summarize the spatial predictability infor-
mation in ensemble flood map forecasts?

– How can we evaluate and visualize the spatial spread–
skill of an ensemble flood map forecast?

– How does the spatial spread–skill vary with location and
how can this be presented?

In Sect. 2 we present a new approach to the evaluation of
spatial predictability and the spatial spread–skill of an en-
semble flood map forecast by comparing against a remotely
observed flooding extent. We illustrate the features of the
methods through an example case study of an extreme flood-
ing event of the Brahmaputra River, which impacted India
and Bangladesh in August 2017, with a focus on the As-
sam region of India. The flood event details are described
in Sect. 3.1. The international ensemble version of the JBA
Consulting Flood Foresight system provides forecast flood

maps for the study and is described in Sect. 3.2. Observa-
tions of the flood are derived from satellite-based SAR sen-
sors, and the method is explained in Sect. 3.3. The results
including the spatial spread–skill (SSS) map are discussed in
Sect. 4. Our results show that individual ensemble-member
spatial predictions of flooding are meaningful and that the
full ensemble spatial detail should be evaluated. We conclude
in Sect. 5 that the spatial spread–skill of the ensemble fore-
cast varies with location across the domain and can be linked
to physical characteristics of the flooding event.

2 Ensemble flood map spatial predictability evaluation
methods

In this section we present new methods for evaluating and
visualizing the spatial spread–skill of an ensemble flood map
forecast. Hooker et al. (2022a) described and applied a new
scale-selective approach to evaluate the spatial skill of a de-
terministic flood map forecast relative to an observed SAR-
derived flood map. Here, we apply this same measure to eval-
uate different aspects of an ensemble forecast. The scale-
selective fraction skill score (FSS) method is outlined in
Sect. 2.1. Agreement-scale maps indicating forecast accu-
racy are defined for location-specific comparisons between
forecast and observed flood maps in Sect. 2.2. These are used
to assess the spatial relationship between each unique pair
of ensemble-member flood maps (member–member) and be-
tween every ensemble-member flood map and the observed
SAR-derived flood map (member–SAR; Sect. 2.3). Visual-
ization methods of the spatial spread–skill relationship in-
cluding our new spatial spread–skill (SSS) map are presented
in Sect. 2.4.

2.1 Fraction skill score

The FSS is a scale-selective verification measure that can
determine the skilful scale of a modelled flood map, when
compared against a remotely sensed observation of flooding
(Roberts and Lean, 2008; Hooker et al., 2022a). We will call
these flood maps the model array and the observed array, re-
spectively. For an ensemble forecast, the model array could
be an individual ensemble member or a summarized flood
estimate derived from a combination of ensemble members
such as a combined ensemble or the ensemble median (see
Sect. 3.4). Both the model and observed arrays are converted
into binary fields using a situation-dependent threshold (e.g.
depths greater than 0.2 m are labelled flooded). For this en-
semble application of the FSS we evaluate the entire flood
extent across the domain. Each grid cell is labelled as inun-
dated (1) or dry (0). All grid cells are numbered according
to their spatial locations (i,j), i = 1. . .Nx and j = 1. . .Ny ,
where Nx is the number of columns and Ny is the number of
rows. Surrounding each grid cell, a square of length n cre-
ates an n× n neighbourhood. The fraction of 1s (inundated
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cells) in the square neighbourhood area is calculated for ev-
ery grid cell. This creates two arrays of fractions across the
domain for both the observed Onij and modelled Mnij data.
The mean squared error (MSE) for the fraction arrays is cal-
culated for the domain and a given neighborhood size, n, as
follows:

MSEn =
1

NxNy

Nx∑
i=1

Ny∑
j=1

[
Onij −Mnij

]2
. (1)

A potential maximum MSEn(ref) depends on the fraction of
flooding in the domain for the modelled and observed fields
and is calculated as

MSEn(ref) =
1

NxNy

Nx∑
i=1

Ny∑
j=1

[
O2
nij +M

2
nij

]
. (2)

Finally, the FSS is

FSSn = 1−
MSEn

MSEn(ref)
. (3)

The FSS is initially calculated at grid level (n= 1) fol-
lowed by the smallest neighbourhood size (n= 3) before in-
creasingly larger neighbourhood sizes (n= 5, n= 7. . .) are
considered. The FSS ranges between 0 (no skill) and 1 (per-
fect skill). Increasing the neighbourhood size typically leads
to an improved FSS as the fractions are calculated over a
larger area. Plotting FSS against the neighbourhood size can
indicate a range of scales where the model is deemed to
be the most skilful. A target FSS score (FSST) can be de-
termined from the fraction of observed flooding across the
whole domain (f0):

FSST ≥ 0.5+
f0

2
. (4)

The point where the FSSn exceeds FSST can be viewed
as being equidistant between the skill of a random forecast
and perfect skill (Roberts and Lean, 2008). A recent study
by Skok and Roberts (2018) investigated the sensitivity of the
calculated skilful scale to the constant value (0.5) in Eq. (4)
and found that 0.5 gave meaningful results compared with
the measured displacement. The magnitude of the observed
flood, relative to the domain area, determines the value of
FSST. This allows the comparison of the skilful scale (neigh-
bourhood size) where FSST is reached across different do-
main sizes and floods of different magnitudes.

2.2 Location-dependent agreement scales

The FSS (Sect. 2.1) gives a domain average measure of fore-
cast performance and a minimum spatial scale at which the
forecast is deemed skilful. To enable the spatial spread–skill
of the full ensemble to be evaluated at specific locations, we
first define an agreement scale (see Dey et al., 2014, 2016b;

Hooker et al., 2022a, for full methodology). The agreement
scale is calculated and mapped for every grid cell in the do-
main and shows a measure of similarity between two arrays
of data. In contrast to the FSS method the arrays are not re-
quired to be thresholded. The agreement-scale method can
be applied to both binary flood extent maps and flood depth
fields. These could both be ensemble-member flood maps or
an ensemble-member flood map and an observed flood map.
Two data arrays are compared, F1ij and F2ij , and the aim
is to find a minimum neighbourhood size (or spatial scale)
for every grid cell such that there is a predetermined accept-
able minimum level of agreement between F1ij and F2ij .
This is known as the agreement-scale SA(F1F2)

ij . (Note that
the relationship between the agreement scale and the neigh-
bourhood size described previously in Sect. 2.1 is given by
S
A(F1F2)
ij = (n− 1)/2.) The agreement scale (now defined as
S for simplicity in the following equations) is determined in-
dividually for every grid cell by testing and meeting a chosen
criterion.

A relative MSE, DSij , is calculated for all grid cells, ini-
tially at grid level S = 0 (n= 1),

DSij =

(
F S1ij −F

S
2ij

)2

(
F S1ij

)2
+

(
F S2ij

)2 . (5)

If F1ij = 0 and F2ij = 0 (both dry), then DSij = 0 (correct
at grid level). The value of DSij ranges between 0 and 1. The
arrays are deemed to be in agreement at the scale being tested
if

DSij ≤D
S
crit,ij where DScrit,ij = α+ (1−α)

S

Slim
. (6)

The parameter value α indicates an acceptable bias at grid
level such that 0≤ α ≤ 1. Additional historical forecast data
of flood events are not available for the region in this study;
so we assume there is no background bias between the fore-
cast and the observations and set α = 0. A fixed maximum
scale Slim is predetermined using human judgement consider-
ing the physical characteristics of the flood event. The value
chosen for Slim depends on the magnitude of the flood extent
relative to the size of the sub-catchment. For the case study
presented here, we set Slim = 80 (2400 m), which is approx-
imately 1

4 to 1
2 of the sub-catchment widths in the domain.

If DSij ≥D
S
crit,ij , then the next neighbourhood size up is con-

sidered (S = 1, n= 3, a 3 by 3 square), where F 1
1ij and F 1

2ij
are arrays containing the average value of each neighbour-
hood surrounding the grid cell at position (i,j) for each ar-
ray. The process continues by comparing increasingly larger
neighbourhoods (e.g. S = 2, n= 5, a 5 by 5 square) until the
agreement criterion

S
A(F1F2)
ij or Slim at DSij ≤D

S
crit,ij (7)

is met for every cell in the domain. The agreement scale at
which the agreement criterion is met will usually vary from
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grid cell to grid cell, and these values (S = 0, S = 1, S = 2
and so on up to Slim), each specific to each grid cell loca-
tion, can be mapped onto the domain of interest to provide
a location-specific measure of agreement between the two
data arrays that are compared. A small value for the agree-
ment scale means that the two arrays being compared are
very similar (spatially) at a specific location, whereas a large
value for the agreement scale means that the two arrays be-
ing compared are dissimilar. Note that the skilful scale deter-
mined by the FSS (Sect. 2.1) differs from the agreement scale
defined here. The former is directly linked to the spatial dif-
ferences between objects – e.g. Skok and Roberts (2018) –
whereas the latter reflects a pre-defined “acceptable” bias at
different scales.

Validation of forecast flood maps against remotely ob-
served flooding extent is typically carried out by labelling
each grid cell using a contingency table with categories: cor-
rectly predicted flooded, underprediction (miss), overpredic-
tion (false alarm) and correctly predicted unflooded. In the
contingency table underpredicted cells are set to +1, over-
predicted cells are set to−1, correctly predicted flooded cells
are assigned NaN and correctly predicted unflooded cells are
set to 0. Mapping these categories creates a conventional
contingency map, which, when combined (by an element-
wise array product) with an agreement-scale map (Eq. 7),
creates a categorical-scale map made by plotting the abso-
lute agreement-scale values coloured according to the contin-
gency class. A categorical-scale map shows a measure of spa-
tial accuracy between two data arrays (Hooker et al., 2022a).
Categorical-scale maps may be used as a basis for compari-
son between ensemble members and observations, as we il-
lustrate with our case study in Sect. 4.3.

2.3 Ensemble spatial spread–skill evaluation

We assume that each ensemble forecast flood map represents
an equally likely future scenario and the evaluation of the full
ensemble is needed to quantify the uncertainty and to evalu-
ate the spatial spread–skill relationship. The ensemble flood
map’s spatial characteristics vary with location, and in order
to preserve the location-dependent information we utilize a
method developed to evaluate a convective ensemble precip-
itation forecast (Dey et al., 2016b, a). Here we outline the
method and describe a new application to evaluate an ensem-
ble forecast flood map.

A neighbourhood approach (Sect. 2.2) is used to assess
the spatial agreement-scale SA(F1F2)

ij or measure of similarity
at each grid cell location (i,j) between each unique pair of
ensemble flood maps. For an ensemble of M members, there
are

Mp =
M(M − 1)

2
(8)

unique pairs (e.g. 1275 pairs for a 51-member ensemble). For
an ensemble, the skilful scale can be renamed as a believable

scale, which is the scale where ensemble members become
sufficiently similar to observations such that they are a useful
prediction. Every paired ensemble agreement-scale field is
averaged at each grid cell to produce a mean field, from the
agreement-scale field defined in Eq. (7),

S
A(mm)
ij =

1
Mp

M−1∑
F1=1

M∑
F2=F1+1

S
A(F1F2)
ij , (9)

indicating the location-specific believable scales of the fore-
cast flood map ensemble. Maps of SA(mm)

ij summarize the
spatial spread of the full ensemble. Each of the agreement-
scale fields between the ensemble members and the observa-
tions are also averaged at each grid cell to give

S
A(mo)
ij =

1
M

M∑
f=1

S
A(F0)
ij . (10)

A measure of the spatial spread–skill of the ensemble can
be found by comparing the average agreement scale between
the ensemble members SA(mm)

ij representing the ensemble
spread with the average agreement scale between the ensem-
ble members and the observed flood field SA(mo)

ij represent-
ing the ensemble skill.

2.4 Spatial spread–skill visualization methods

To evaluate the spatial spread–skill relationship, SA(mm)
ij (rep-

resenting the ensemble spread) must be compared in the
same location as SA(mo)

ij (representing the ensemble skill).
Data arrays can be visually compared using a binned scatter
plot that averages across a selected bin of cells at the same
location within the domain. Dey et al. (2016b) demonstrated
for an idealized example that by plotting S

A(mm)
ij against

S
A(mo)
ij as a binned scatter plot in order to preserve the spa-

tial location of the comparison (Fig. 1), the ensemble can be
classified as over-spread, under-spread or well-spread. The
ensemble is deemed to be well-spread at a specific location
in the domain of interest when the spread of the individual
members represented at each grid cell by SA(mm)

ij equals the

skill of the ensemble represented at each grid cell by SA(mo)
ij ,

i.e. SA(mm)
ij − S

A(mo)
ij = 0. The result would lie on a 1 : 1 line

on the binned scatter plot. Where the spread between the
ensemble members exceeds the skill of the ensemble fore-
cast, i.e. SA(mm)

ij > S
A(mo)
ij , the ensemble is considered to be

over-spread and the binned scatter plot will lie beneath the
1 : 1 line. The converse is true for an under-spread ensemble
forecast where the agreement between members, the spread,
is less than the agreement between the ensemble and the ob-
servations, the skill. Here SA(mm)

ij < S
A(mo)
ij and the binned

scatter plot would lie above the 1 : 1 line.
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Figure 1. Figure reproduced with permission from Dey et al.
(2016b) showing results on a binned scatter plot from an idealized
experiment indicating the spatial spread–skill relationship between
an ensemble forecast and the observation.

To summarize the spread–skill relationship we develop
this visualization further by plotting a hexagonal binned
2D histogram plot (an example hexbin plot is presented in
Sect. 4.3). The domain is divided into a (pre-determined)
number of hexagons. Hexagons minimize the perimeter-
to-area ratio and therefore minimize the edge effects. The
hexbin histogram plot colour shade represents the number of
data points within each bin.

Whilst the hexbin plot is useful for gaining an under-
standing of the general spread–skill relationship of the en-
semble flood map forecast, it does not tell us specifically
where in the domain the ensemble spatial predictability is
better or worse. Our new spatial spread–skill (SSS) map plots
S
A(mm)
ij −S

A(mo)
ij at every grid cell location so that the spread–

skill is mapped across the domain and can be linked directly
to different sub-catchments and surface features such as trib-
utaries, embankments, bridges and importantly the underly-
ing topography or digital terrain model (DTM), which influ-
ence the derivation of the ensemble flood maps. Regions on
the SSS map where the ensemble is over-spread are positive
with negative areas indicating where the ensemble is under-
spread, and zero values show a well-spread ensemble. Note
that this does not necessarily mean that the entire ensemble
is in agreement with observations at grid level but that the
agreement scales between SA(mm)

ij and SA(mo)
ij are equal. (An

example SSS map is presented in Sect. 4.3.)

3 Ensemble forecasting flood event case study

In this section we describe an example flooding event used
to demonstrate the application of the spatial spread–skill
evaluation approach. We evaluate a 1 d flood inundation 51
ensemble-member forecast from the Flood Foresight sys-

tem (Sect. 3.2) for the domain area against a satellite SAR-
derived flood map (Sect. 3.3).

3.1 Brahmaputra flood, Assam India, August 2017

The origin of the Brahmaputra River (also known as the
Yarlung Tsangpo in Tibetan, the Siang and/or Dihang River
in Arunachali, Luit in Assamese, and the Jamuna River in
Bangladesh) lies in the Himalayan Kailas Range of south-
western Tibet, China. Draining an area of 543 000 km2, the
Brahmaputra flows for 2000 km across the Tibetan Plateau
and a further 1000 km parallel to the Himalayan foothills
through the Assam Valley, India, before entering Bangladesh
where the Brahmaputra joins the Ganges River (Palash
et al., 2020). The Brahmaputra baseflow originates from the
upstream glacial snowmelt; however the streamflow rates
are dominated by the summer monsoon precipitation. The
basin receives up to 95 % of its annual rainfall during
the pre-monsoon and monsoon season, which usually runs
from April to September and causes annual flooding of the
Brahmaputra. The Assam region typically records on aver-
age 2300 mm of annual rainfall and up to 5000 mm in the
Himalayan foothills (Dhar and Nandargi, 2000, 2003).

For this example case we focus on the third wave of flood-
ing that occurred during the monsoon season in August 2017,
peaking around 12 August. Figure 2 shows the location of the
Brahmaputra and of a chosen domain centred upon some of
the worst flooding that occurred. This area includes a conflu-
ence zone where the Subansiri River meets the Brahmapu-
tra. The monsoon flooding impacted an estimated 40 million
people across India and Bangladesh. Locally in the Assam
region, the flooding in August affected over 3.3 million peo-
ple and approximately 3200 villages, and river embankments
were damaged in 11 districts. Over 14 000 people were evac-
uated to 1 of around 700 relief camps that were also needed
to house over 180 000 people relocated (Floodlist, 2017).
The local Assam State Disaster Management Authority (AS-
DMA, 2017) flood early warning system issued a low warn-
ing alert (disasters that can be managed at the district level)
on 10 August for the district.

In 2017, the south-west monsoon season rainfalls were
predicted to be normal by the South Asian Climate Out-
look Forum (WMO, 2017). However, the pre-monsoon sea-
son began early in the year with heavy thunderstorms affect-
ing the region from March onwards. In the Assam region,
June and July were 60 % wetter than the previous 3 years,
and during August more locally intense rainfall was recorded
compared with historical observations (Palash et al., 2020).
In higher-latitude areas, 30 km to the north of the domain
at North Lakhimpur, 215.8 mm rainfall was recorded in the
3 d prior to the flood peak (Floodlist, 2017; Hossain et al.,
2021). An above-normal flood situation is declared in India
where the river water level exceeds the warning level, a se-
vere flood occurs where the water level exceeds the danger
level and an extreme flood occurs where the previous highest
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Figure 2. Left panel: domain location on the Brahmaputra River in the Assam region of India. Domain size is 57.5 km by 39.3 km. Right
panel: Sentinel-1 SAR-derived flood map and permanent water bodies from the JRC Global Surface Water database for the domain of interest
(DOI). Base map from © Google Maps.

flood level is exceeded (Central Water Commission, 2023).
The peak water level recorded downstream at Tezpur (dan-
ger level of 65.23 m) on 14 August was 66.12 m. There are
regional variations in maximum water levels reported, with
upland regions to the north of the Assam Valley recording
water levels that exceed the previous highest flood level, in-
dicating an extreme flood level (Floodlist, 2017).

3.2 Ensemble flood forecasting system

The Flood Foresight system (Fig. 3), developed and oper-
ationally run by JBA Consulting, is a fluvial flood inunda-
tion mapping system that can be implemented at any river
basin around the world. Flood Foresight utilizes a simu-
lation library approach to generate real-time and forecast
flood inundation and water depth maps. The simulation li-
brary approach saves valuable computing time and allows
the application of Flood Foresight in near-continuous real
time at national and international scales. A pre-computed
library of flood maps for a river basin or country is cre-
ated using JFlow® (where a DTM is available) (Bradbrook,
2006) and RFlow (where a DTM is unavailable). JFlow uses
a raster-based approach with a detailed underlying digital
terrain model (DTM) and a diffusion wave approximation
of the full 2D hydrodynamic shallow water flow equations.
RFlow combines a 1D model based upon normal depth calcu-
lations, optimized for use on a digital surface model (DSM;
NEXTmap, 2016) with rapid 2D flood spreading (created

by spreading normal depth from upstream to downstream)
and is calibrated against JFlow. These equations capture the
main controls of the flood routing for shallow, topographi-
cally driven flow. Six flood maps at 30 m resolution are cre-
ated for 20-, 50-, 100-, 200-, 500- and 1500-year return pe-
riod flood events (corresponding to annual exceedance prob-
abilities (AEPs) of 5 %, 2.5 %, 1 %, 0.5 %, 0.2 % and 0.07 %,
respectively). Between each adjacent pair of modelled return
period maps, five additional intermediate flood maps are cre-
ated by linear interpolation of both flood depth and extent.
An additional five flood maps are also created beneath the
lowest return period flood map. This gives, in total, a library
of 36 flood maps. Note that these flood maps are undefended,
and local, temporary flood defences are not included. Flood
Foresight is set up for a region by dividing the river basin into
sub-catchments using the HydroBASINS dataset (level 12)
(Lehner, 2014). Flood Foresight takes gridded inputs of en-
semble forecast streamflow and uses these to select the most
appropriate flood map for each sub-catchment. These are mo-
saicked together, and forecasts of ensemble flood maps are
produced daily, out to 10 d ahead.

The global (non-UK and Ireland) configuration of Flood
Foresight uses ensemble streamflow forecast data from the
Global Flood Awareness System (GloFAS) (Alfieri et al.,
2013; GloFAS, 2021). GloFAS was jointly developed by
the European Commission and the European Centre for
Medium-range Weather Forecasts (ECMWF) and is com-
posed of an integrated hydro-meteorological forecasting
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Figure 3. The Flood Foresight ensemble forecast flood inundation and impact mapping work flow. Prepared by JBA Consulting.

chain that couples state-of-the-art weather forecasts with a
land surface and hydrological model. With its continental-
scale set-up, GloFAS provides downstream countries with
forecasts of upstream river conditions up to 1 month ahead,
as well as continental and global overviews for large
world river basins. Meteorological forecast data are pro-
vided by the ECMWF Ensemble (IFS) model, the operational
(51-member) ensemble weather forecasting product of the
ECMWF. The meteorological forecast data provide inputs
to the land surface module, HTESSEL (Hydrological Tiled
ECMWF Scheme for Surface Exchange over Land). HTES-
SEL simulates the land surface response to the meteorologi-
cal data, based on simulated interactions with soil conditions,
idealized vegetation cover and land cover. From these simu-
lations, HTESSEL outputs forecast global surface and sub-
surface flows per grid cell. These simulated flows are then
used by a simplified version of the hydrological model LIS-
FLOOD, a 1D routing model that simulates the movement of
the surface and sub-surface flows. The runoff data produced
are routed through a representation of the river network using
a double kinematic wave approach, which includes bankfull
and over-bankfull routing. The river network used is taken
from the HydroSHEDS dataset (Lehner and Grill, 2013).

GloFAS outputs a gridded (approximately 10 km spatial
resolution) ensemble forecast of river streamflow (Fig. 4).
Each of the GloFAS grid cells are linked to the sub-
catchments in the Flood Foresight system. The simulation
library flood maps are selected when the forecast stream-
flow exceeds a return period (RP) threshold level within
each sub-catchment. The RP threshold levels are calculated
using ERA5 reanalysis data (Harrigan et al., 2020). Each
ensemble-member flood map forecast is created by aggregat-

ing the individual sub-catchment maps. In summary, the me-
teorological IFS 51-member ensemble input to the flood fore-
casting chain allows atmospheric evolution uncertainties to
be represented within the ensemble streamflow forecast and
the ensemble of inundation flood maps, thus creating a proba-
bilistic flood map forecast, indicating the likelihood of flood-
ing. Flood Foresight produces daily ensemble flood depth
and extent forecasts at 30 m spatial resolution out to 10 d.

3.3 SAR-derived flood map

A Sentinel-1 (S1A) image was acquired in interferometric
wide swath mode (swath width of 250 km) around the time
of the flood peak at 17:18 (IST) on 12 August 2017. The ESA
Grid Processing on Demand (GPOD) HASARD service (ser-
vice terminated June 2021) was utilized to map the flooding.
The flood-mapping algorithm (Chini et al., 2017) uses an au-
tomated, statistical, hierarchical split-based approach to dis-
tinguish between two classes (background and flood) using
a pre-flood and flood image. A pre-flood image (February
2017) from the same satellite sensor and track was used to
derive the flood map (Fig. 2). Original SAR images (VV po-
larization) were pre-processed, which involved precise orbit
correction, radiometric calibration, thermal noise removal,
terrain correction, speckle reduction and re-projection to the
WGS84 coordinate system. The HASARD mapping algo-
rithm removes permanent water bodies that are detected on
the pre-flood image, such as the unflooded river water, lakes
and reservoirs, by applying a thresholding approach. Flooded
areas beneath vegetation, under bridges and near buildings
will not be detected using this method. Flood Foresight fore-
cast flood maps include the river channel and exclude sur-
face features such as vegetation and buildings. To smooth
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Figure 4. GloFAS grid, permanent water bodies and Flood Foresight sub-catchments for the domain of interest (DOI).

the HASARD flood maps and allow a fairer comparison we
apply a morphological closing operation (without impact-
ing the location of the flood extent) to flood-fill vegetation
and buildings. The wide and braided Brahmaputra River in
the Assam region covers a significant area of the selected
domain. In order to evaluate the flood prediction accuracy
alone, the pre-flood occurrence of surface water using the
JRC Global Surface Water database (Pekel et al., 2016) has
been removed from the Flood Foresight forecast inundation
maps. The observed flood extent derived from satellite-based
SAR data at 20 m grid size is re-scaled to match the forecast
flood map grid size (30 m) using average aggregation. The
closest available (cloud-free) optical image available was a
Sentinel-2 image on the 17 August 2017, 5 d after the SAR
image acquisition. During this time the flood waters had re-
ceded from their peak, which makes this unsuitable for com-
parison with the SAR-derived flood map. Since no other val-
idation sources are available, for the purposes of this study
we have assumed that the SAR-derived observation of flood-
ing represents the true flooding extent. Since October 2021,
Sentinel-1 SAR images have been processed by CEMS GFM
(GFM, 2021) to derive flooding extent and provide an un-
certainty estimate of the grid cell classification. This means
uncertainty information in the SAR-derived flood map could
be accounted for in future evaluation studies by verification
across different levels of observation uncertainty. Addition-
ally, a flood mask, indicating areas where flood detection us-
ing SAR data is not currently possible (at the Sentinel-1 spa-
tial resolution), could be used to exclude areas from the eval-
uation process (note that this was not possible for this case
study, since this information was not available in 2017).

3.4 Forecast data

Flood Foresight was set up for the Brahmaputra basin in In-
dia and Bangladesh using the simulation library approach to
flood mapping described in Sect. 3.2. Flood maps were pre-
computed for the domain of interest (Fig. 2) using a DSM
and RFlow. The forecast data for the Brahmaputra flood

event contain a 51-member ensemble of flood maps indi-
cating flooding extent, produced at a 1 d lead time. Verti-
cally stacking each individual ensemble-member flood map
and adding vertically across every grid cell combines all en-
semble members into a single flood map (all flooded grid
cells are set to 1) showing where flooding is possible across
all members (ensall). A spatial median flood map is created
(ensmedian) where 26 members or more predict flooding at a
particular grid cell location. Each of the ensemble-member
flood maps for the domain is plotted in Fig. 5 along with
ensall, ensmedian and the SAR-derived flood map.

Figure 6 shows the amalgamated probabilistic ensemble
forecast indicating the probability of flooding at each grid
cell location. This was produced by vertically stacking each
ensemble-member flood map and vertically adding the num-
ber of flooded cells at each grid cell location across all en-
semble members. The total is divided by 51 to calculate the
probability. The dark blue colours near the central river chan-
nel indicate agreement between all ensemble members and
100 % forecast probability of flooding, and lighter colours to
the north of the river indicate a low probability of flooding.

4 Results and discussion

To demonstrate an application of the spatial-scale approach
to both ensemble forecast flood map evaluation of forecast
skill and the spatial spread–skill relationship, we apply the
methods outlined in Sect. 2 to the flooding case described in
Sect. 3.1. First, in Sect. 4.1 we verify the full ensemble using
a spatial-scale approach to calculate a skilful scale of agree-
ment between each ensemble member and the SAR-derived
flood map (Fig. 2) along with the combined ensemble (ensall)
and the ensemble spatial median (ensmedian). We evaluate the
location-specific spatial skill of the ensemble by calculating
categorical-scale maps (Sect. 4.2) for ensall, ensmedian and
a best and worst case ensemble member determined by the
skilful scale calculated in Sect. 4.1. In Sect. 4.3 we evalu-
ate the spatial predictability of the full ensemble and show
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Figure 5. Brahmaputra River, Assam region, August 2017. 51 ensemble-member forecast flood maps (labelled 0 to 50), ensmedian and ensall
all at 1 d lead time and the Sentinel-1 SAR-derived flood map.

Figure 6. Brahmaputra River, Assam region, August 2017. Colour shading from white (low) to dark blue (high) indicates the forecast
probability of flooding based on a 1 d lead time, 51 ensemble-member flood map forecast for the Brahmaputra River in the Assam region,
August 2017 (note that the map background is grey).

this on our new spatial spread–skill (SSS) map, indicating
regions where the ensemble is over-spread, under-spread or
well-spread.

4.1 Ensemble spatial-scale evaluation

Here we investigate how a scale-selective approach can be
useful for extracting meaningful information from a flood
map ensemble forecast where multiple forecast flood maps
represent equally likely flooding scenarios (Fig. 5). A mini-
mum skilful scale (where FSS>FSST) has been calculated

for each individual-member flood map, ensall and ensmedian.
The results in Fig. 7 show that individual ensemble-member
spatial skill varies considerably with FSS at grid level rang-
ing from 0.35 to 0.59. One member ens1, which would
usually be disregarded as an outlier due to its low prob-
ability, outperformed all other members significantly with
a skilful scale achieved at a neighbourhood size of n= 3.
The combined ensall showed more skill at grid level (n= 1)
and smaller neighbourhood sizes compared with ensmedian;
both however exceeded FSST at n= 41 or 600 m. At neigh-
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Figure 7. The spatial skill of each individual ensemble-member forecast flood extent is evaluated along with the ensmedian (a spatial median
where 26 or more members predict flooding at a grid cell location) and ensall (flooded grid cells from all ensemble members are combined).
The FSS is calculated at increasing neighbourhood sizes to determine the scale at which the forecast becomes skilful at capturing the observed
flood (FSST).

bourhood sizes greater than n= 41, ensmedian outperformed
ensall. There is a cluster of members showing similar skill to
ensmedian and ensall and a second cluster, with more ensem-
ble variation but indicating lower skill than the first cluster.
The ensmedian and ensall flood maps outperform the second
cluster; however there are individual members with a higher
spatial skill score compared to ensmedian and ensall. These re-
sults show that all ensemble-member flood maps, including
outliers, should be considered individually as possible future
flooding scenarios. Spatial variations across individual en-
semble members (see Fig. 5 ens1 compared to ensmedian) in-
dicate that it is not meaningful to consider only the ensemble
median flood map to represent the information within the full
ensemble.

4.2 Ensemble spatial predictability

The scale-selective skill scores calculated for different as-
pects of the ensemble forecast give a domain-averaged
score and skilful scale. To understand location-specific spa-
tial predictability of the ensemble forecast, categorical-scale
maps are calculated and presented in Fig. 8. These show
how the agreement scale (Sect. 2.2) varies with location
for Fig. 8a, ensall; Fig. 8b, ensmedian; Fig. 8c, ens1, the
“best”-performing ensemble member; and Fig. 8d, ens21, the
“worst”-performing ensemble member. The ensemble sum-
mary map ensall (Fig. 8a) captures most of the observed
flooding (in grey) with small regions of underprediction
(red). However, as you might expect to see by including every
potential flooding realization there are significant regions of
overprediction (blue) or false alarm. The region of overpre-

diction to the south of the river is less evident in the ensmedian
categorical-scale map (Fig. 8b), which performs worse to the
north by underpredicting flooding here. This flooding is cap-
tured well by ens1 (Fig. 8c) and in particular close to a con-
fluence zone where the Subansiri River joins the Brahmapu-
tra (grid cell location (1100, 250)). This ties in with the high
rainfall totals accumulated just to the north of this region as-
sociated with localized very heavy rainfall (Floodlist, 2017).
A region of underprediction at grid cell location (750, 750)
is missed by all members. In future work, a closer inspection
of the DTM or surface features included and/or excluded in
the hydraulic modelling, such as embankment heights, may
indicate how this modelling could be improved. The worst-
performing ensemble member ens21 (Fig. 8d) accurately pre-
dicts flooding closer to the river channel; however underpre-
diction to the north along with overprediction to the south
show where the forecast was inaccurate. Categorical-scale
maps enable different ensemble flood map presentations to
be evaluated so that the most useful presentation method can
be determined for a particular flooding situation.

4.3 Ensemble spatial spread–skill

To evaluate the location-specific skill of the full ensemble,
one option would be to calculate 51 categorical-scale maps
from each individual-member flood map (Fig. 5). Although
this approach maintains the spatial detail held within each
of the ensemble-member flood maps, it does require multi-
ple visual comparisons to be made by the flood forecaster
or modeller, which takes time and effort. Making compar-
isons across the different ensemble-member flood maps in
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Figure 8. Brahmaputra River, Assam region, August 2017. Categorical-scale maps for (a) ensall (flooded grid cells from all ensemble
members are combined), (b) ensmedian (a spatial median where 26 or more members predict flooding at a grid cell location), (c) individual
ensemble member 1 and (d) individual ensemble member 21. Red areas indicate where the forecast is underpredicted and blue regions
represent overprediction. The colour shading indicates the scale of agreement (Eq. 7) between the forecast and the observed flooding, with
lighter shading indicating that a smaller agreement scale is required to reach the agreement criterion (Eq. 6). A fixed maximum-scale Slim is
drawn to scale (c). For georeferencing, see Fig. 6; each grid cell is 30 m× 30 m.

Fig. 5 provides a demonstration of these forecasting difficul-
ties. Further, the categorical-scale maps do not evaluate the
ensemble spatial spread. To address this, we develop a spa-
tial spread–skill (SSS) map (derived from Fig. 9, presented in
Fig. 10) showing the spread–skill of the full ensemble fore-
cast and keeping the location-specific detail. All ensemble
members are included in this analysis which evaluates both
the spatial skill and the ensemble spatial spread of the fore-
cast against the remotely observed flooding extent.

Figure 9 shows how the average ensemble–ensemble
agreement scale in Fig. 9a SA(mm)

ij calculated at each grid
cell (representing ensemble spread) compares with the aver-
age ensemble–observed scale in Fig. 9b SA(mo)

ij (representing
ensemble skill) along with the hexbin scatter plot in Fig. 9c,
which compares Fig. 9a and b to indicate the spatial spread–
skill of the forecast. The hexagonal tessellation is used so that
the distances along the hexbin diagonal are on the same scale
as those along the x and y axis. For a perfect ensemble fore-

cast the average agreement scale between ensemble mem-
bers should match the agreement scale between the ensemble
forecast and observed flood map; i.e. they should align along
the 1 : 1 line. The SSS map plots the difference between
the ensemble–ensemble and the ensemble–observed average
agreement scales at each grid cell (Fig. 10) and indicates
where the spatial spread–skill is over-spread, under-spread,
or well-spread. Three numbered areas (Fig. 9a) identify three
different ensemble spread–skill relationships. Area 1 shows
that the agreement between ensemble members is close but
that they disagree with the observed flooding extent. This is
displayed in orange shades as an under-spread or missed re-
gion on the SSS map in Fig. 10. This is the region close to
the confluence area described in Sect. 4.2. Recall that in this
region most ensemble members did not predict the flooding
that occurred with the exception of one ensemble member
(ens1). In area 2 in Fig. 9, both Fig. 9a and Fig. 9b are in
agreement at the grid level, which indicates the ensemble is
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Figure 9. Brahmaputra River, Assam region, August 2017. (a) The average agreement-scale map of each unique pair of forecast ensemble
flood maps and (b) between each ensemble member compared against the observed SAR-derived flood map. (c) A binned histogram scatter
plot compares (a) and (b) to indicate the spatial spread–skill of the forecast ensemble. Panel (d) indicates the corresponding sub-catchment
locations. Areas labelled 1, 2 and 3 are discussed in Sect. 4.3. A fixed maximum-scale Slim (Eq. 6) is drawn to scale (a). Note that PWB
means permanent water bodies.

Figure 10. Brahmaputra River, Assam region, August 2017. (a) The spatial spread–skill (SSS) map shows the difference between the
ensemble–ensemble and the ensemble–observed average agreement scales at each grid cell. Negative values (orange) indicate where the
ensemble is under-spread and positive values (purple) indicate where the ensemble is over-spread. White areas indicate where the average
agreement scales match and indicate good spatial spread–skill. Panel (d) indicates the corresponding sub-catchment locations. The labelled
areas (1, 2 and 3) are discussed in Sect. 4.3. A fixed maximum-scale Slim (Eq. 6) is drawn to scale (a). Note that PWB means permanent
water bodies.
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well-spread: these are shown in white in Fig. 10. Apart from
the missed and well-spread regions in Fig. 9, the overall vi-
sual impression is that the ensemble spread–skill lies below
the 1 : 1 line and is over-spread, indicated by area 3. This
corresponds to the purple shading on the SSS map (Fig. 10).
Overall Fig. 9 tells us that the spread–skill relationship for
this example case study is not uniform across the domain but
is in fact location specific. The areas identified (1, 2 and 3) lie
within different sub-catchments, which are linked to different
GloFAS grid cells, driving the ensemble flood map selection
for each sub-catchment. Inferences can be made about the
spread–skill of the driving discharge data at sub-catchment
level across the domain. Using the spatial spread–skill rela-
tionship shown on the ensemble SSS map we can infer how
well the ensemble forecasting system encompasses the mul-
tiple sources of uncertainty and how meaningful the proba-
bilistic ensemble forecast of flood inundation actually is. An
ensemble flood map forecast that is well-spread suggests that
the probabilistic forecast is meaningful. The SSS map is a
useful evaluation tool for validating flood forecasts in un-
gauged or partially gauged rivers. A simulation library ap-
proach, like the Flood Foresight maps used here, relies on
the accuracy of the return period thresholds set, the (ensem-
ble) forecast streamflow and the accuracy of the flood inun-
dation map for a given streamflow. The forecast evaluation
approaches presented here enable these system attributes to
be evaluated even where observed streamflow is limited or
erroneous. The SSS map summarizes the whole ensemble,
which makes it useful for forecasters attempting to convey
uncertainty information to decision makers, highlighting re-
gions where there is high or low confidence in the forecast.

5 Conclusions

Differences between ensemble members in ensemble fore-
cast flood map systems are mostly driven by initial con-
dition perturbations at the top of the hydro-meteorological
forecast chain within the numerical weather prediction sys-
tem. Presently, there is limited understanding or evaluation of
how these meteorological uncertainties link to mapped flood-
ing predictability, which involves additional sources of un-
certainty. An evaluation of the spatial predictability and the
spread–skill relationship of the ensemble flood map forecast
provides an improved understanding of the performance of
the forecast system. Uncertainties in other parts of the fore-
cast chain are not truly represented by the ensemble flood
maps, and evaluating the spatial spread–skill of the flood
maps is important for understanding the likelihood of flood-
ing that the ensemble flood maps capture. In this paper, we
present a new scale-selective approach to assess the spatial
predictability and spread–skill of an ensemble flood map
forecast by comparing this against a satellite SAR-derived
observation of flooding extent. By calculating a skilful scale
at each grid cell for every unique ensemble-member pair we

can determine the ensemble spatial spread, and between ev-
ery ensemble member and the SAR-derived flood map we
can determine the ensemble spatial skill. The hexbin scatter
plot summarizes the spread–skill relationship so that a trend
across the whole domain can be assessed. The difference be-
tween these skilful scales can be mapped onto the spatial
spread–skill (SSS) map, which shows, for each specific lo-
cation in the domain, whether the ensemble is over-spread,
under-spread or well-spread. The methods are applied to an
example flooding event of the Brahmaputra River in the As-
sam region of India in August 2017.

In operational practice there are multiple options of en-
semble flood map presentation type such as presenting the
ensemble median or another exceedance probability for de-
livery to end users and decision makers. An important as-
pect of developing an inundation flood forecasting system
is to determine the most useful way to present a spatial en-
semble forecast. Using a scale-selective approach we have
evaluated the performance of individual ensemble members,
a combined total ensemble and the spatial ensemble me-
dian compared to a SAR-derived observation of flooding ex-
tent. Other options could be to exclude ensemble-member
outliers, to spatially cluster similar ensemble members into
groups of flooding extent or to present a most likely, best
and worst case ensemble flood map. Whichever presentation
method is chosen, this should be fully explored using the spa-
tial spread–skill methods described here to evaluate the en-
semble performance of historical flooding events. We found
for this example flooding event that one ensemble member
significantly outperformed the combined and median flood
maps and that potentially in some flood forecasting scenar-
ios this member would have been excluded as an outlier. The
categorical-scale maps show that the ensemble spatial me-
dian could miss vital flooding information and that all mem-
bers should be considered potential future flooding scenarios.

Through mapping the spatial spread–skill relationship,
which varies with location, links can be made between the
spatial variations in spread–skill and the physical charac-
teristics of the flooding event. We found that one ensemble
member outperformed all others in a region close to a con-
fluence zone and nearby observed heavy rainfall. The region
correlates with an area of under-spread ensemble members,
indicating that not enough members were predicting flood-
ing here. Future studies could investigate the physical pro-
cesses further using the methods presented here. The ensem-
ble flood map spatial spread–skill could be investigated in
the context of a particular physical process (such as rainfall
intensity and/or location or an improved aspect of the hy-
drological model such as antecedent soil moisture) and how
these uncertainties translate to the probabilistic flood map
forecast. An understanding of the spatial predictability is par-
ticularly important for un-gauged catchments where the cali-
bration of both forecast streamflow and return period thresh-
olds (used to select the simulation library flood map) is rarely
practised routinely. Ideally, in operational practice, these spa-
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tial verification approaches including the categorical-scale
and SSS maps could be calculated and stored routinely as
flooding events coincide with SAR-derived or other remotely
observed flood maps to build up a verification catalogue or
database. This database could then be used to investigate the
spatial spread–skill model performance under different sce-
narios such as forecast lead time, month or season, or flood
type. More locally, the impact of an improved DTM or the
inclusion of a digital surface model (DSM) or other surface
features in the hydraulic model such as embankments could
be considered. Over time, such a database would improve
our understanding of the spatial predictability of an ensem-
ble flood map system and how well the uncertainties present
are represented by the ensemble forecast.

Code and data availability. The functions used to evaluate the en-
semble forecast flood maps using a scale-selective approach along
with the SAR-derived flood maps are available on the follow-
ing Zenodo page: https://doi.org/10.5281/zenodo.6603101 (Hooker
et al., 2022b). The forecast flood maps from the JBA Flood Fore-
sight system are commercial data used under license for this study.
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