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1 Models used
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Table S1: The CMIP6 models used in this study, the number of ensemble members used, and their ASR HD value
(computed as the change over 1850–1985 - see methodology for details). Models with an ASR HD greater than
1.5 W m−2 are classified as ‘strong’ models, and are shown in bold text. Also shown is the mean AMOC strength
at 26◦N, computed as the ensemble mean for each model over the time period 1850–1879.

Centre Model Members ASR HD [W m−2] AMOC at 26◦N (Sv) Data reference Model reference

CSIRO ACCESS-ESM1-5 9 1.93 19.7 Ziehn et al. (2019) Ziehn et al. (2020)

BCC BCC-CSM2-MR 3 0.60 20.8 Wu et al. (2018) Wu et al. (2019)

NCAR CESM2 9 2.51 18.1 Danabasoglu (2019a) Danabasoglu et al.
(2020)

NCAR CESM2-WACCM 3 2.74 17.5 Danabasoglu
(2019b)

Danabasoglu et al.
(2020)

CNRM-
CERFACS

CNRM-CM6-1 9 1.04 15.1 Voldoire (2018) Voldoire et al. (2019)

NASA-
GISS

GISS-E2-1-G (p1) 9 1.67 23.9 for Space Stud-
ies (NASA/GISS)

Kelley et al. (2020),
Miller et al. (2021)

MOHC HadGEM3-GC31-LL 4 2.47 14.7 Ridley et al. (2019a) Andrews et al.
(2020), Kuhlbrodt
et al. (2018)

MOHC HadGEM3-GC31-MM 4 2.64 16.8 Ridley et al. (2019b) Andrews et al. (2020)

INM INM-CM5-0 5 0.52 16.0 Volodin et al. (2019) Volodin et al.
(2017), Volodin
and Kostrykin (2016)

IPSL IPSL-CM6A-LR 9 0.34 10.6 Boucher et al. (2021) Boucher et al. (2020)

MIROC MIROC6 9 0.81 14.6 Tatebe and Watanabe
(2018)

Tatebe et al. (2019)

MPI-M MPI-ESM1-2-HR 9 0.33 19.0 Jungclaus et al. (2019) Mauritsen et al.
(2019), Stevens et al.
(2013)

MPI-M MPI-ESM1-2-LR 9 0.01 21.8 Wieners et al. (2019) Mauritsen et al.
(2019), Stevens et al.
(2013)

MRI MRI-ESM2-0 5 2.36 21.2 Yukimoto et al.
(2019)

YUKIMOTO et al.
(2019)

NUIST NESM3 5 1.28 7.3 Cao and Wang (2019) Cao et al. (2018)

NCC NorESM2-LM 3 2.64 22.2 Seland et al. (2019) Seland et al. (2020)

MOHC UKESM1-0-LL 14.7 2.94 13.7 Tang et al. (2019) Sellar et al. (2019)
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2 Additional figures
Figure S1 shows the comparison of the variability of iAMV (e.g., computed as the residual to the externally-forced,
ensemble mean, component), compared to the internal variability of AMV found in piControls (cAMV) for the
models. Overall, we find that the iAMV method successfully isolates the magnitude of internal variability found
in the piControl simulations. In particular, the standard deviation of the linearly detrended basin-mean AMV (e.g.,
AMV BM), the basin-mean sea surface temperatures (SSTs, blue dots) and the Trenberth and Shea, (2006) AMV
index (AMV TS, Trenberth and Shea (2006)) all lie broadly on the 1-to-1 line, at least broadly within sampling
uncertainties. This is also largely the case when using the AMV-Glob. However, we do find that the iAMV
variance is substantially larger than cAMV for models which have the largest AMV variability. We interpret this
as being related to the fact that the models that have the largest AMV variability also have a large projection on
global-mean temperatures. Therefore, when we regress the changes in global-mean temperatures out, then we
effectively suppress the AMV variability when using the AMV-Glob index. Visual inspection of the regression
patterns appears to support this interpretation (not shown). This is also particularly a problem for the AMV-Glob
index in the way we have applied it. For example, in the historical we computed the impact of global-mean forced
changes by regressing onto the ensemble-mean time-series. However, this is not possible in the piControl, and we
simply regress global SSTs onto the global-mean temperatures. Thus, in the absence of large secular trends, such
a method will remove the variability associated with AMV itself. Thus, this further underlines the sensitivity of
the analysis to choices made in the definition of the AMV index.
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Figure S1: Shows the comparison of variance for AMV indices computed using the residual method (e.g., iAMV),
and that from the piControl (cAMV), which we assume represents internal variability. a) shows the comparison
for the AMV BM index, b) for the AMV-Glob, and c) for the AMV index based on Trenberth and Shea, 2006
(AMV TS). Black dots show the mean value of variance computed from historical or equal length chunks of the
piControl. Error bars show the spread of variance computed from each member or piControl chunk individually.
Blue dots on b) show the values for basin mean Atlantic temperatures, e.g., where no attempt to remove long-term
signals have been attempted.
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b) fAMV-NetSW 
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Figure S2: Shows the relationship between the fAMV BM and surface heat fluxes. a) shows the MMM fAMV BM
SST pattern. Contours show the MMM regression pattern of SST on fAMV BM and hatching shows where 80%
of models agree on the sign of the regression slope coefficient. b) shows the same as a) but now for net surface
shortwave (NetSW). c) shows the difference in the SST fAMV pattern between strong and weak models (e.g.,
strong minus weak), and stippling now shows where the difference is significant at the 𝑝 ≤ 0.1. d) shows the same
as c) but for the NetSW. Note this is the same for figure 4 in the main paper, but now for AMV BM rather than
AMV-Glob.
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a) iAMV-AMOC: AMV_BM
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-60 -40 -20 0 20 40 60

Lag [years]

-1.0

-0.5

0.0

0.5

1.0

AMOC leads AMOC lags

Figure S3: Shows the relationship between AMOC and internal and external components of AMV (e.g., iAMV
and fAMV respectively). a) shows the cross-correlation between AMOC and iAMV-Glob for each model. Note
that the correlations are based on the average of the lagged correlation computed across ensemble members of
each model). Negative lags show where AMOC leads iAMV BM, and positive lags show where AMOC lags
iAMV BM. dotted lines show the 5-95 % confidence interval based on a Monty Carlo re-sampling of AMV
variability. b) shows the same, but for correlating each models ensemble-mean AMOC with fAMV-Glob for the
strong (red) and weak (blue) models. Note this is the same for figure 5 in the main paper, but now for AMV BM
rather than AMV-Glob.
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b) fAMV-THF: MMMa) iAMV-THF: MMM c) iAMV-THF - fAMV-THF: MMM 
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Figure S4: Shows the relationship between AMV and turbulent heat flux (AMV-THF) across internal and external
components of AMV. a) the multi-model mean regression between the iAMV BM index and turbulent heat flux at
lag 0 (computed separately for each member and then averaged). Negative values shows increased turbulent heat
flux out of the ocean. Hatching indicates where at least 80% of the models agree on the sign of the regression
slope. b) shows the same as a) but for the fAMV BM index. c) shows the difference, i.e., iAMV minus fAMV.
Stippling shows where the differences in regression slopes are significantly different at the p≤0.05 level. d) and e)
shows the same as b) but now for only models with strong or weak response to anthropogenic aerosols respectively
(see text). f) shows the same as c) but now for the strong minus weak models. Note this is the same as figure 6 in
the main paper, but now for AMV BM rather than AMV-Glob.
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b) fAMV-SSS: MMMa) iAMV-SSS: MMM c) iAMV-SSS - fAMV-SSS: MMM 
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Figure S5: Shows the same as figure S4 but now for the relationship between AMV and sea surface salinity
(AMV-SSS) across the internal and external components of AMV. Note this is the same as figure 7 in the main
paper, but now for AMV BM rather than AMV-Glob.
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Figure S6: Shows the comparison of cross correlations between AMV and AMOC computed from the piControl
(black) and using the residual method (e.g., iAMV and iAMOC, grey) for a selection of models using the
AMV-Glob index. To compute the value from the control we used the first 500 years for each model, and split
the time-series into overlapping chunks 165 years long to match the historical simulations. Resulting cross-
correlations are averaged over all chunks. Note we do not expect the cross-correlations to be exactly the same due
to sampling issues (e.g., limited members causes errors in the estimation of fAMV and fAMOC and subsequently
iAMV and iAMOC), and we only use limited years. Furthermore, as shown in figure S1 the AMV-Glob does
not reproduce AMV variance in models with large AMV variability and a large projection on global SSTs (in
particular CNRM-CM6-1). Therefore, we expect some differences due to the method of computing AMV in the
piControls.
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