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Abstract
Low-pressure systems (LPSs) are the primary rainbringers of the South Asian mon-
soon. Yet, their interactions with the large-scale monsoon circulation, as well as the
highly variable land and sea surfaces they pass over, are complex and generally not well
understood. In this article, we present a novel, top-down approach to investigate these
relationships and quantify their importance in describing LPS behaviour. We also show
that, if the approach is sufficiently well posed, it is productive at hypothesis generation.
For each of five predictands (i.e., LPS intensification rate, propagation speed/direc-
tion, post-landfall survival, peak intensity, and precipitation rate) we train an additive
decision-tree ensemble model using the XGBoost algorithm. Shapley value analysis is
then applied to the models to determine which variables are important predictors and
to establish their relationship with the predictand, with additional analysis following
cases of interest. Novel relationships established using this technique include that LPS
vorticity intensifies preferentially in the early morning at the same time as the peak in
the diurnal cycle of their convection occurs, that vertical wind shear suppresses con-
tinued growth of strong LPSs, that large-scale barotropic instability plays an important
role in both the inland penetration and peak intensity of LPSs, and that LPS propa-
gation depends on the depth of its vortex with shallower LPSs advected by low-level
winds and taller LPSs advected by mid-level winds. We also use this framework to
identify and discuss potential new avenues of research for monsoon LPSs.

K E Y W O R D S

depressions, low-pressure systems, machine learning, monsoon, Shapley values, XGBoost

1 INTRODUCTION

1.1 Monsoon low-pressure systems

Low-pressure systems (LPSs) are the predominant source
of synoptic-scale variability within the South Asian sum-
mer monsoon, bringing the majority of its total (Hunt
and Fletcher, 2019) and extreme (Thomas et al., 2021)
precipitation (Figure 1a). LPSs vary considerably in

frequency, occurring 10–20 times per monsoon season
(Sikka, 2006; Vishnu et al., 2020), although they typically
spin up over the comparatively warm waters of the Bay
of Bengal before making landfall over east India and
tracking westward or northwestward, eventually dissipat-
ing over the subcontinent where they are bound by the
Himalayas to the north and dry surface conditions to
the west (Figure 1b). The India Meteorological
Department has historically classified monsoon LPSs as
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F I G U R E 1 Climatological characteristics of the South Asian summer monsoon: (a) mean precipitation and smoothed (using a 1◦

filter) mean-sea-level pressure; (b) mean soil moisture content between 0 and 7 cm, and mean sea-surface temperature; (c) tracks of the 242
low-pressure systems (LPSs) used in this study, their genesis locations, and the orography of the subcontinent. Computed over June to
September 1979–2021 using the fifth-generation European Centre for Medium-Range Weather Forecasts reanalysis.

either low-pressure areas (or simply lows) or monsoon
depressions, based on the arbitrary threshold of surface
winds exceeding 8.5 m⋅s−1 if over the ocean or two or
more closed 2 hPa isobars within 3◦ of the centre if over
land (IMD, 2003). We do not make that distinction in this
study since there is no evidence that low-pressure areas
and monsoon depressions have fundamentally different
responses to environmental stimuli. Instead, where nec-
essary, we present these responses as functions of relative
vorticity—a proxy for LPS intensity—giving us a more
complete view of the relationship between LPSs and their
environment.

Earlier studies that have used LPS tracks to cre-
ate storm-centred composite fields have revealed a
great deal about LPS structure and thermodynamics
(Godbole, 1977; Stano et al., 2002; Hurley and Boos, 2015;
Hunt et al., 2016a; Hunt et al., 2016b). A warm core aloft is
supported by latent heating from both synoptic-scale and
convective-scale moist updrafts. This supports a broad,
deep, and dense cloud structure as well as heavy precip-
itation, both of which contribute to a cold core in the
boundary layer.

Such a picture is useful but incomplete, as it does
not tell us how LPSs interact with their environment; for
example, the sea and land surfaces, broader monsoon
circulation, and orography. This has led to a number

of long-standing open questions, most importantly:
Through what processes do LPSs grow and decay, and
what explains their westward propagation? The ques-
tion of LPS intensification has been long debated, with
early studies arguing that either barotropic (Goswami
et al., 1980; Nitta and Masuda, 1981; Subrahmanyam
et al., 1981; Rajamani and Sikdar, 1989) or moist baro-
clinic (Moorthi and Arakawa, 1985; Salvekar et al., 1986;
Krishnakumar et al., 1992) instabilities were responsible.
Baroclinic intensification was recently ruled out (Cohen
and Boos, 2016), but newer theories have emerged,
such as the “moisture-vortex” instability (Adames and
Ming, 2018; Adames, 2021), where vortex growth is sup-
ported directly by convection. In parallel, a series of
idealised model experiments have continued to provide
evidence in support of moist barotropic instability, where
vortex growth derives from a coupling between moist
processes and the meridional shear of the zonal winds
(Diaz and Boos, 2019a; Diaz and Boos, 2019b; Diaz and
Boos, 2021; Suhas and Boos, 2023). Not only do these the-
ories compete, but they are invariably explained through
idealised models, neglecting potentially important factors
such as surface fluxes and radiative heating/cooling. In
contrast, relatively little research has focused on processes
governing LPS decay, despite this being an important
control on the time LPSs spend over land, and therefore
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HUNT and TURNER 3

how much precipitation they contribute to the monsoon.
Those studies that have explored LPS decay and inland
penetration stress the importance of land surface con-
ditions, either directly through soil moisture (Kishtawal
et al., 2013; Hunt and Turner, 2017a) or indirectly through
surface flux considerations (Chang et al., 2009).

Similarly, competing theories have emerged about
what controls LPS propagation direction and speed. These
include downshear vortex stretching through either fric-
tional convergence (Goswami, 1987) or quasi-geostrophic
lifting (Sanders, 1984; Chen et al., 2005), interaction
with the Himalayas through an image-vortex mechanism
(Hunt and Parker, 2016), or beta drift of their midtropo-
spheric potential vorticity (PV) maxima (Boos et al., 2015).
The beta drift mechanism is now generally accepted for
monsoon depressions, and it has recently been shown that
it can be additionally modified by frictional vortex stretch-
ing (Hunt and Turner, 2022). However, many weaker LPSs
do not possess a secondary PV maximum in the midtro-
posphere (Deoras et al., 2022), and thus their propagation
may not be well explained through advection by mid-level
winds.

These are two examples of diagnostic problems (i.e.,
diagnosing characteristics of an LPS from conditions
present at the time), but there are also many prognostic
problems, which are usually left for forecast models to
address. However, without dedicated experiments, which
can be expensive, forecast models do not give us an under-
standing of the processes involved, which in turn makes
diagnosing model biases difficult. In some cases, there are
already known issues in the representation of underly-
ing processes in models. One example, as we have already
seen, is inland penetration, where land surface processes
(in particular, latent heat flux) are important; yet these
fluxes are not well represented, even in high-resolution
models (Turner et al., 2020). Similarly, forecasts of peak
LPS intensity and precipitation are not only affected by the
misrepresentation of these land surface processes, but also
land–sea interactions (e.g., coastal breezes) and errors aris-
ing from convective parametrisation (Mamgain et al., 2018;
Podeti et al., 2020).

1.2 Decision-tree ensemble learning

In our study, we will employ decision tree ensemble mod-
els, specifically using a framework known as XGBoost
(eXtreme Gradient Boosting; Chen and Guestrin, 2016).
Decision-tree models, in their simplest form, are machine
learning algorithms that make predictions based on a
series of binary questions, the answers leading to further
questions, ultimately creating a ‘tree’ of decisions. Each
node of the tree represents a question, with the end points

or leaves signifying the final predicted outcomes (Quin-
lan, 1986; Kotsiantis, 2013; Breiman et al., 2017). These
can be used for both classification and regression problems
(Loh, 2011).

As trees are binary, they are thus defined only by their
depth – the maximum number of nodes a path can pass
through in the tree. Most algorithms for training deci-
sion trees are greedy (Friedman, 2001), that is, they are
built top down, with the algorithm seeking to choose
the predictor and threshold that minimises some loss
function – typically a root-mean-square error – at each
node split. However, to model complex functions with-
out resorting to a single, highly complex decision tree,
which is prone to overfitting and instability to minor input
variations, we employ an ensemble approach known as
“boosting” (Friedman, 2001). The principle of boosting
involves the iterative creation of an additive decision-tree
ensemble, where each subsequent tree is trained to
enhance the collective performance of the previous trees,
either up to a defined limit or until the loss reduction
saturates (Chen and Guestrin, 2016).

The idea behind this approach is that by aggregat-
ing the outputs of multiple “weak” learners (individual
trees that perform slightly better than random chance),
the model can construct a ’strong’ learner that signifi-
cantly outperforms any of its individual components. The
ensemble approach aids in overcoming the problems of
overfitting and improving prediction accuracy, which are
often associated with single decision-tree models.

XGBoost is an advanced implementation of gradient
boosting, a method that constructs the aforementioned
ensemble of weak learners in a stage-wise manner. Start-
ing with a simple model, XGBoost iteratively adds new
trees that aim to correct the errors made by the existing
ensemble. The new trees are fitted to the residual errors
of the current ensemble rather than the original targets,
a process known as “boosting”. By doing so, XGBoost
gradually reduces the prediction error, leading to a robust
model with extremely strong (often competition-winning)
performance metrics (Vidhya, 2016; Dataaspirant, 2020;
C-SharpCorner, 2021). While this might appear to be
a complex process, a key strength of XGBoost, and
decision-tree ensemble models in general, is their inter-
pretability. The decision-making process can be visualised
as a series of “if–then” rules, making the model’s workings
transparent and understandable, even to non-specialists.
As we will see, there are various tools to measure the
importance of each feature in the model, which provide
insights into the factors driving the predictions.

These ensemble models, especially when built using
XGBoost, offer a transparent, interpretable model that is
robust against overfitting. In the following sections, we
will detail the specifics of our approach, explaining how
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4 HUNT and TURNER

we have built and interpreted our decision-tree ensemble
models.

1.3 Study outline

In this study, we propose a framework of interpretable, or
explainable, decision-tree ensemble models to investigate
and answer well-posed questions about LPS behaviour
using observational data, rather than idealised model
experiments. We then demonstrate that framework
through five case studies. To ensure a relatively consis-
tent large-scale environment, and because they are the
major LPS in terms of their impacts and rainfall contri-
bution over peninsular India (Hunt and Fletcher, 2019),
we focus only on LPSs arising over the Bay of Bengal
that subsequently make landfall over the Indian subcon-
tinent. The paper is structured as follows. We discuss
the data sources used in Section 2. This is followed by
an extended methods section (Section 3) in which we
discuss how we choose the model inputs (Section 3.1),
how we construct our decision-tree ensemble models
(Section 3.2), how we tune the models (Section 3.3), how
we interpret the results (Section 3.4), and how we make
sure these interpretations are safe from cross-correlated
inputs (Section 3.5). Our results section is separated into
diagnostic models (Section 4.1), in which we investigate
models for LPS intensification (Section 4.1.1) and propa-
gation (Section 4.1.2), and forecast models (Section 4.2),
in which we investigate models for post-landfall LPS life-
time (Section 4.2.1), peak LPS intensity (Section 4.2.2)
and precipitation (Section 4.2.3). Finally, we conclude in
Section 5, where we outline key results (Section 5.1) and
summarise new research questions revealed by our results
(Section 5.2).

2 DATA

2.1 ERA5 reanalysis

ERA5 is the fifth generation atmospheric reanalysis
of global climate produced by the Copernicus Climate
Change Service at the European Centre for Medium-Range
Weather Forecasts (Hersbach et al., 2020). Data from
ERA5 (available from https://cds.climate.copernicus.eu/
cdsapp#!/home) cover the entire globe on a 30 km grid
and resolve the atmosphere on 137 levels from the ground
up to 80 km in altitude. It covers from January 1950
until the present at hourly frequency. At reduced spatial
and temporal resolutions, ERA5 also includes uncertainty
information for all variables. We use both single-level and
pressure-level variables from ERA5, for both LPS tracking

(see Section 2.2) and to compute the predictors and predic-
tands used in training the models (see Section 3.1). For LPS
tracking, we use the data at its native hourly frequency, as
track fidelity is a high priority. For training and validating
the models, we reduce this to six-hourly frequency in order
to save disk space.

2.2 LPS track data

In this study, we apply the LPS tracking algorithm
described in (Hunt and Fletcher, 2019) to ERA5 data. We
track LPSs by computing the mean relative vorticity in
the 900–800 hPa layer, then performing a spectral trunca-
tion at T63 to filter out short-wavelength noise. We then
identified regions of positive relative vorticity within this
field and determined the centroid location for each one.
These centroids were then linked in time, subject to con-
straints in distance (LPS points will not be linked if the
implied propagation speed is greater than 100 km⋅hr−1), to
form candidate LPS tracks. This algorithm has been used
for monsoon LPSs by a number of researchers (e.g., Dong
et al., 2020; Martin et al., 2020; Roy and Rao, 2022). These
ERA5 LPS track data are available at https://doi.org/10.
5281/zenodo.7568990.

For this study, we want a reasonably consistent set
of LPS tracks to ensure our research questions remain
well-posed. To this end, we include only tracks whose gen-
esis points are over the Bay of Bengal, which terminate
over the land of the Indian subcontinent, and which spend
a majority of their lifetime between June 1 and Septem-
ber 30. This leaves us with 242 LPSs (Figure 1c) between
1979 and 2021, giving a total of 5,337 observations. These
filtered ERA5 LPS track data, including the additional
environmental data described in Section 3.1, are available
at https://doi.org/10.5281/zenodo.7569057.

3 METHODS

3.1 Choice of variables

Table 1 describes the 46 variables used in this study (43 as
predictors; six as predictands, given in bold; zonal_speed,
merid_speed, and dvo850_dt used as both). The choice
of many of these variables is self-explanatory (e.g., we
include hour to investigate the importance of the diurnal
cycle), but we now include a brief explanation for those
that are not. Throughout, those prefixed with “mean_” are
taken as an average within 400 km of the LPS centre, and
those prefixed with “mcz_” are averaged over (75–85◦ E,
18.5–27◦ N). The rationale behind the 400 km radius lies
in mitigating uncertainties linked to LPS track location,
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HUNT and TURNER 5

T A B L E 1 Definitions of variables used in this study.

Variable name Description Units

year Time step year

month Time step month

hour Time step hour of day UTC

x Longitude of LPS centre ◦ E

y Latitude of LPS centre ◦ N

over_land Flag for LPS centre Boolean

orography_height Elevation of land surface under centre m

acc_land_time Accumulated time where over_land = True hr

total_land_time Final value of acc_land_time for a given LPS hr

mean_land_frac Fraction of area within 400 km that is over land

mean_skt Surface temperature K

mean_land_skt Land surface temperature (NaN over ocean) K

mean_sst Sea surface temperature (NaN over land) K

mean_swvl1 Soil moisture in the top layer (<7 cm; NaN over ocean) m3⋅m−3

mean_swvl2 Soil moisture in the second layer (7–28 cm; NaN over ocean) m3⋅m−3

mean_swvl1_grad Mean absolute gradient of swvl1 (|∇swvl1|) m3⋅m−4

mean_swvl2_grad Mean absolute gradient of swvl2 m3⋅m−4

mean_u850 850 hPa zonal wind m⋅s−1

mean_u500 500 hPa zonal wind m⋅s−1

mean_u200 200 hPa zonal wind m⋅s−1

mean_v850 850 hPa meridional wind m⋅s−1

mean_v500 500 hPa meridional wind m⋅s−1

mean_v200 200 hPa meridional wind m⋅s−1

zonal_speed x-component of LPS propagation vector km⋅hr−1

meridional_speed y-component of LPS propagation vector km⋅hr−1

mcz_tcwv Mean total column water vapour over monsoon trough kg⋅m−2

mean_q_850 850 hPa specific humidity m3⋅m−3

mean_cape CAPE J⋅kg−1

mcz_cape Mean CAPE over the monsoon trough J⋅kg−1

mean_dthetae_dp_900_750 d(theta_e)∕dp between 900 and 750 hPa K⋅hPa−1

mean_dthetae_dp_750_500 d(theta_e)∕dp between 750 and 500 hPa K⋅hPa−1

olr_90 90th percentile of negative OLR (i.e., ∼90th percentile of cloud top height) W⋅m−2

olr_75 75th percentile of negative OLR within 400 km W⋅m−2

olr_50 50th percentile of negative OLR within 400 km W⋅m−2

mean_prcp_400 Mean precipitation within 400 km over the next 6 hr mm⋅hr−1

qshear_850 Meridional shear of 850 hPa specific humidity over India m3⋅m−3⋅deg−1

ushear_850 Meridional shear of 850 hPa zonal wind over India m⋅s−1⋅deg−1

qshear_850_background qshear_850 averaged over the previous 10 days m3⋅m−3⋅deg−1

ushear_850_background ushear_850 averaged over the previous 10 days m⋅s−1⋅deg−1
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6 HUNT and TURNER

T A B L E 1 (Continued)

Variable name Description Units

mean_vort_850 Relative vorticity in 850 hPa layer 10−5 s−1

mean_vort_700 Relative vorticity in 700 hPa layer 10−5 s−1

mean_vort_500 Relative vorticity in 500 hPa layer 10−5 s−1

vortex_depth (mean_vort_500 ×mean_vort_700)∕(mean_vort_850)2

dvo850_dt Rate of change of mean_vort_850 10−5 s−1 ⋅day−1

reached_peak False if peak_vorticity has not been reached yet, else True Boolean

peak_vorticity Largest value of mean_vort_850 attained by a given LPS 10−5 s−1

Note: All variables prefixed with “mean_” are taken as an average within 400 km of the LPS centre. mcz_cape and mcz_tcwv are averaged over the monsoon core
zone (75–85◦ E, 18.5–27◦ N). qshear_850, ushear_850, and their backgrounds are averaged over 5◦ longitude either side of the LPS centre, with the gradient
computed between 10◦ N and 27◦ N. Variables marked in bold are predictands.
Abbreviations: CAPE, convective available potential energy; LPS, low-pressure system; NaN, not a number; OLR, outgoing long-wave radiation.

and in accounting for the spatial heterogeneity of vari-
ous variables across the LPS. For instance, variables such
as precipitation and outgoing long-wave radiation (OLR)
demonstrate significant spatial variability and their most
extreme values may not necessarily be located at the LPS
centre, but rather towards its southwest. The choice of a
400 km radius thus provides a representative spatial scale
that captures most of the variable variance within the LPS,
smoothing out the extreme values, and thereby offering a
more balanced picture of the LPS dynamics (Hurley and
Boos, 2015; Hunt et al., 2016a).

The soil moisture gradient terms (mean_swvl1_grad
and mean_swvl2_grad) are included following work by
Barton et al. (2020), which suggested that regions of
high soil moisture gradient support low-level conver-
gence within the monsoon, and hence are associated
with convective initiation—which may in turn support
LPS growth and precipitation. In a similar vein, we
also include several terms that measure moist thermo-
dynamic instability within the LPS itself (mean_cape,
mean_dthetae_dp_900_750, mean_dthetae_dp_750_500,
mean_q_850), as well as the monsoon in general (mcz_tcwv
and mcz_cape). The use of convective available poten-
tial energy (CAPE) from a reanalysis must be justified,
since tropical lapse rates in models are prone to biases
(Gillett et al., 2000). However, recent studies have found
that ERA5 captures CAPE well except for extreme val-
ues (Taszarek et al., 2021; Wang et al., 2021). As we
average CAPE over large regions, the potential underes-
timation of the right tail is unlikely to be problematic.
Therefore, for the sake of dataset consistency, we
use ERA5 CAPE.

These variables only quantify the potential for con-
vective initiation and growth, so we also include several
OLR terms (olr_90, olr_75, olr_50) that quantify the depth
and spread of established convection, as these may also

be useful for models predicting precipitation and whether
the LPS is near its peak intensity. The use of precipita-
tion from a reanalysis must also be justified, since earlier
reanalyses have substantial biases in tropical precipitation
(Bosilovich et al., 2008; Ma et al., 2009). Fortunately, these
are much improved in ERA5 to the point where the errors
are, in some regions, comparable to those from satellite
estimates (Xu et al., 2022). Given we also average precip-
itation over large areas, we are confident in using ERA5
precipitation for our analysis. This gives the additional
advantage of a long and continuous dataset. However, for
the interested reader, the dataset released with this arti-
cle (see Section 2.2) also includes Integrated Multi-satellite
Retrievals for Global Precipitation Measurement satellite
precipitation.

Finally, we include four terms that measure the large-
scale meridional shear in lower-tropospheric zonal wind
and specific humidity (qshear_850, ushear_850) and their
respective background values (qshear_850_background,
ushear_850_background). This follows Suhas and
Boos (2023), who used these terms to describe the insta-
bility available for moist barotropic growth (Diaz and
Boos, 2019b) and moisture-vortex instability (Adames
and Ming, 2018). As we will show in Section 3.5, not
all variables are used or needed in all decision-tree
models.

3.2 Setting up and running
the decision-tree ensemble

As the five predictands in this study are continuous vari-
ables, we utilise regression trees, which are designed to
predict continuous targets, as opposed to classification
trees that predict discrete targets (such as labels). For a
full discussion of the differences, the reader should follow
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HUNT and TURNER 7

F I G U R E 2 Schematic demonstrating the structure of an example additive decision-tree ensemble, trained by XGBoost to predict
mean_prcp_400, but with maximum tree depth limited to 3 for clarity. Grey boxes represent the binary decisions being made based on
meteorological thresholds; for example, an olr_50 below −199 W⋅m−2. The green boxes, representing the leaves of the tree (after which no
further decisions can be made along that pathway), contain the estimated value of mean_prcp_400. The predicted mean_prcp_400 for a given
time step is then computed by parsing each decision tree and summing the n obtained leaf values.

Loh (2011). Figure 2illustrates an example of a simple addi-
tive decision-tree ensemble created by our implementation
of XGBoost.

During model training, we impose two commonly
applied constraints. First, we use an 80–20 train–test split,
where 20% of randomly chosen data is withheld from the
training process for validation, thus preventing overfitting.
Second, an early stopping criterion is applied, where if the
training root-mean-square error (RMSE) does not improve
after the addition of 10 more trees then the model is consid-
ered to have reached its optimal complexity and training is
terminated.

3.3 Hyperparameters and Bayesian
optimisation

As with many machine-learning algorithms, XGBoost is
controlled by a set of hyperparameters that affect the learn-
ing rate and complexity of the model. We have already
discussed two: maximum tree depth and total number
of trees in the ensemble. Three more are of interest: the
learning rate, proportional to the step size used by the gra-
dient descent solver; and two regularisation terms, one
penalising the addition of unnecessary nodes (𝛾) and one
penalising both highly asymmetric nodes (i.e., splitting off

only a handful of cases) and the addition of new predictors
to the model (𝛼).

A grid search over five hyperparameters is slow, so we
turn to a Bayesian approach to seek an optimal tuning
configuration (Mockus, 1994; Jones et al., 1998; Brochu
et al., 2010; Wang et al., 2020). Bayesian optimisation first
reduces the problem to the minimisation of a single mul-
tivariate objective function, RMSE = F(d,n, 𝜖, 𝛼, 𝛾), where
d is the maximum tree depth, n is the number of trees in
the model, and 𝜖 is the learning rate. It then selectively
samples F by iteratively computing new sampling points
using so-called “acquisition functions” which compromise
between regions where F is already known to be small
and regions where there is low certainty in the predicted
value of F. In this study, we use the Python implemen-
tation described at http://krasserm.github.io/2018/03/21/
bayesian-optimization/. There are several more hyperpa-
rameters associated with XGBoost training, but results
are not typically sensitive to these except in edge cases
(Wang and Chen, 2019). For these hyperparameters,
we retain the Python implementation defaults (https://
xgboost.readthedocs.io/en/stable/parameter.html 1).

1Archived at https://web.archive.org/web/20230124160343/https://
xgboost.readthedocs.io/en/stable/parameter.html.
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8 HUNT and TURNER

T A B L E 2 Iterative improvements to the total_land_time model root-mean-square error (RMSE) using Bayesian hyperparameter tuning.

Iteration RMSE 𝜶 𝜸 Learning rate Tree depth n (trees)

1 40.02 13.2 3.95 0.029 4 89

2 36.14 14.3 3.37 0.61 3 157

3 34.36 16.2 0.69 0.17 4 143

6 32.53 17.1 2.83 0.14 5 180

24 31.91 9.25 0.010 0.42 7 91

34 31.37 2.55 0.045 0.059 7 145

54 30.63 9.41 4.75 0.27 6 127

97 30.56 17.4 1.76 0.14 6 102

99 30.53 9.17 4.79 0.27 6 127

Note: 𝛼 is an L1-regularisation term (higher values penalise the model for adding new predictors) and 𝛾 is the minimum loss reduction required to make a
further partition on a leaf node. Higher values of 𝛼 and 𝛾 correspond to more conservative training but a reduced vulnerability to overfitting. Learning rate is
proportional to the step size used in the solver when iterating weights during learning. Lower values of learning rate mean the model converges more slowly
during training but is more likely to converge on a global minimum. The target is minimisation of RMSE, which is computed here using a fivefold
cross-validation. The Bayesian optimisation algorithm was run for 100 iterations, but we show only those iterations that reduce RMSE.

We must also choose the search domains for each of
the hyperparameters. The lower bounds are trivially 0 or 1,
as 𝛼, 𝛾 , and 𝜖 are positive definite and, by definition, trees
must have a depth of at least 1 and ensemble models must
have at least one member. The upper bounds are not triv-
ial, so are either guided by computational cost (fixing an
upper limit of 1,000 trees, with a maximum depth of 10) or
values where model performance is significantly degraded
(fixing an upper limit of 𝛼 = 20, 𝛾 = 20, 𝜖 = 1). Each itera-
tion of the Bayesian optimisation is then run with fivefold
cross-validation to ensure robust computation of the objec-
tive function. Table 2 shows example improvements in
tuning over 100 iterations for the total_land_time model.

3.4 Shapley values and interpretability

To make our decision-tree ensemble models interpretable,
and hence explainable, we use Shapley value theory
(Shapley, 1953; Roth, 1988; Lundberg and Lee, 2017).
Originating in cooperative game theory, Shapley values
were originally devised as a way to assign payouts to play-
ers depending on their contribution towards the total pay-
out by considering how different permutations of players
perturb the outcome. In black- or grey-box model,s such
as our decision-tree ensemble, Shapley values estimate the
marginal contribution from a given predictor in forcing a
prediction away from the distribution mean. The sum of all
the Shapley values for all predictors for a given prediction
Ŷ , therefore, is equal to the difference between the pre-
dicted value and the predictand mean; that is, Ŷ − E(Y ).

In this study, we use the “shap” Python pack-
age (https://github.com/slundberg/shap), which contains

TreeSHAP (Lundberg et al., 2020), a highly optimised
algorithm for computing Shapley values for decision-tree
ensembles.

3.5 Pruning redundant variables
(feature selection)

When training our models, we must first take care to
remove, or prune, highly correlated predictors. This is
important for interpretability: as the correlation between
two predictors increases, they become increasingly degen-
erate (i.e., interchangeable) within the model. Shapley
values are additive, and are therefore shared between
highly interchangeable predictors. This can be misleading
(leading to underestimates) when it comes to interpreting
their impact on model predictions. We use two methods to
mitigate this problem. Furthermore, careful pruning has
been shown to drastically improve model performance
(Sorscher et al., 2022).

First, we compute the linear correlation coefficient
between all variables (for which a large subset is given
in Figure 3). We identify variables in pairs or groups that
share at least 50% of explained variance (i.e., r2

> 0.5).
Variables within these groups are removed as predictors
in all models until only one per group remains. Using
this method, we removed six variables: vo_700, owing to
high correlation with vo_850 and higher correlation with
vo_500 than vo_850; olr_70, due to high correlation with
olr_90 and olr_50; qshear_850 and ushear_850, owing to
their high correlations with qshear_850_background and
ushear_850_background respectively, choosing to retain
the background terms because they better describe
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HUNT and TURNER 9

F I G U R E 3 Correlation coefficients between selected predictor and predictand variables, loosely grouped by type (geographical,
circulation, thermodynamical, vortical). Predictand variables are labelled in bold. Definitions of all variables are given in Table 1.

the underlying processes we want to include; and
acc_land_time and over_land, owing to their high corre-
lation with x, y, and mean_land_frac, which are clearer
descriptors of the underlying geography. We retain
mean_land_frac (despite its high correlation with y) and
olr_90 and olr_50 (despite their high correlation with
each other) because these pairs describe fundamentally
different properties about the land surface and convec-
tion respectively, which may be important to distinguish
between later. This leaves us with a maximum of 37 pre-
dictors for each model.

Second, we use hierarchical clustering to prune redun-
dant predictors on a predictand-by-predictand basis. For
each predictand, the process is as follows. We start by train-
ing a full model (37 predictors), computing and storing
the respective sets of Shapley values for each predictor.

Then, we train 37 univariate models, one for each pre-
dictor. Each of these models is then run again 36 times,
with the original predictor sequentially replaced by the
other predictors. If the replaced-predictor model explains
at least 50% of the variance of the original-predictor
model, we consider the pair of predictors redundant and
remove the one with the lowest mean absolute Shap-
ley value from the initial full model run. All predictors
must be normalised by their standard deviations before-
hand. We obtain very similar results for all six predic-
tands, removing year due to similarities with mean_skt and
mean_q_850; removing either mean_swvl1 at the expense
of mean_swvl2 or vice versa (and the same with their gradi-
ents), and removing zonal_speed and merid_speed owing
to respective similarities with mean_u850/mean_u500 and
mean_v850/mean_v500.
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10 HUNT and TURNER

4 RESULTS

In this section we discuss the performance, predictor
importance, and implications of each of the five models in
turn. The models are grouped into diagnostic (dvo850_dt
and zonal_speed/meridional_speed) and forecast models
(total_land_time, peak_vorticity, and mean_prcp_400). Diag-
nostic models are trained to predict LPS characteristics
simultaneous with the predictors, whereas forecast mod-
els are trained to predict some LPS characteristic ahead of
time.

4.1 Diagnostic models

4.1.1 Growth and decay

We start with a brief overview on how LPSs behave over
their lifetime (Figure 4). The intensification rate starts
high, falling throughout the LPS lifetime, leading to an
intensity maximum a little after halfway between their

genesis and lysis. This intensity peak coincides with the
period of heaviest LPS rainfall and occurs at about the
same time that most members of the LPS composite make
landfall.

The first decision-tree ensemble model is trained to
predict LPS intensification and weakening, which we
measure through the rate of change of low-level rel-
ative vorticity (dvo850_dt). Figure 5a shows that the
model generally performs well over the training data,
except for underestimating cases of rapid intensification
(observed dvo850_dt ≳ 2 × 10−5 s−1⋅day−1). The distribu-
tions of Shapley values for each predictor are shown in
Figure 5b, sorted by their relative impact (i.e., the mean
magnitude of their Shapley values). For clarity, we only
show the 12 predictors with the highest impact. We also
colour each Shapley value distribution according to the
standardised value of the underlying predictor variable.

Several important forcings emerge. First, the location
of the LPS is clearly important: systems over land or near
orography tend to weaken (i.e., low mean_land_frac, high
latitude (y), low longitude (x), and high orography_height),

·

·

(a) (b) (c)

(d)

F I G U R E 4 Selected features of monsoon low-pressure systems (LPSs) as a function of their standardised age (i.e., genesis at 0, lysis at 1):
(a) 850 hPa relative vorticity, (b) the rate of change of 850 hPa relative vorticity, and (c) the land fraction, all computed as means within 400 km
of the LPS centre. Each grey dot represents a single LPS time point, with a lowess smoothing given by a dashed black line. The coloured bands
represent the 99% confidence intervals of the smoothing lines. (d) Mean LPS-centred precipitation as a function of standardised age pentile.
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HUNT and TURNER 11
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·

·

·

C

F I G U R E 5 Verification and interpretation of the decision-tree model predicting dvo850_dt (the rate of change of mean 850 hPa
relative vorticity within 400 km of the low-pressure system centre). (a) Model predictions are plotted against observed values, with the grey
dashed line denoting a 1:1 relationship and the black dashed line showing a cubic best fit. The linear regression coefficient between the
actual and predicted values is given in the top left. (b) Interpretation of the relative importance of predictors in the model is shown through
their Shapley value distributions. The predictor variables are sorted by the mean of their absolute Shapley values, with the distributions
coloured according to the underlying value of the variable. This model converged after 64 rounds.

whereas those over the ocean tend to intensify. This is
also reflected in the importance of mean_v500: high values
push LPSs over land and towards the Himalayan orogra-
phy, resulting in their weakening. Second, active convec-
tion (large mean_cape and olr_50) supports LPS intensifi-
cation, presumably through increased latent heat release
in the midtroposphere. Neither of these results are sur-
prising or novel, but they show the feasibility of using
explainable decision trees to understand process drivers.
The third important forcing—the diurnal cycle (repre-
sented by hour)—is more surprising and, therefore, merits
further exploration.

In Figure 6 we plot the diurnal cycle of dvo850_dt for
all LPSs as a function of location, separating them into
land (at least 75% of surface within 400 km is land), ocean
(at least 75% of surface within 400 km is ocean), and coast
(otherwise). LPSs in all three locations show a maximum
in intensification at about 0600 h local time. LPSs over
land have a another, slightly stronger maximum at about
1800 h local time. The early morning peak is also present
in the diurnal cycle of both tropical cyclone (Bowman and
Fowler, 2015) and monsoon depression (Hunt et al., 2016b)
precipitation, where it is attributed to increased instabil-
ity caused by radiative cooling of upper level clouds during
night-time.

For LPSs over the ocean, this peak in the growth rate of
lower-tropospheric vorticity is aligned with the climatolog-
ical peak in diurnal convection and precipitation over trop-
ical oceans (Yang and Slingo, 2001; Liu and Zipser, 2008).
For LPSs over land, when convection typically occurs in
the late afternoon, these peaks are not aligned. This means
that LPSs over land do not benefit from a potential posi-
tive feedback between the two processes (diurnal heating
of the surface and radiative cooling aloft), which may con-
tribute to their weakening post-landfall by damping deep
convection near the centre. Further investigation of this
relationship is a topic we leave for future research.

Finally, we note that the predictors representing
large-scale barotropic instability, ushear_850_background,
and moisture-vortex instability, qshear_850_background,
are not considered important by the model. This may be
because they are related to the development of, and there-
fore partially correlated with, other features important to
LPS growth and decay, such as OLR. However, as these
variables were not sifted out during our preliminary cor-
relation analysis, nor during the subsequent hierarchical
clustering, we can be fairly sure this is a robust result. The
implication, therefore, is that idealised models may not be
sufficiently complete tools to diagnose modes of LPS inten-
sification in the context of their complex environment.
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12 HUNT and TURNER

·
Land

Coast

Ocean

0000 h 0600 h 1200 h 1800 h 2400 h
Local �me

F I G U R E 6 Mean diurnal cycle of low-pressure system (LPS)
𝜕𝜁850∕𝜕t (the rate of change of 850 hPa relative vorticity averaged
within 400 km of the LPS centre). Partitioned according to LPS
location: (a) land—at least 75% of the surface within 400 km of the
centre is land; (b) coast—between 25% and 75% of the surface
within 400 km of the centre is land; (c) less than 25% of the surface
within 400 km of the centre is land. Inner and outer filled bands
indicate the interquartile and 10th–90th percentile ranges
respectively. Data for 0900 UTC and 2100 UTC (0300 h and 1500 h
local time respectively) have been linearly interpolated from
neighbouring points to account for discontinuities introduced by
the data assimilation window edges in the fifth generation
European Centre for Medium-Range Weather Forecasts
reanalysis.

4.1.2 Propagation speed and heading

We now move on to our second and third diagnostic mod-
els, which we treat together: predicting the zonal and
meridional components of LPS propagation vectors. These
models do not perform as well as that for dvo850_dt, with
correlation coefficients of 0.59 and 0.57 between predicted
and observed speeds respectively (Figure 7). Even so, they

perform well enough to support an initial investigation
into the drivers of LPS propagation speed.

Both models select steering winds at 850 hPa and
500 hPa as the two most important predictors, with both
assigning roughly equal importance to each. However, if
we were to take the results of Boos et al. (2015) at face
value, we would expect a much stronger contribution from
the 500 hPa winds than the 850 hPa winds. The resolu-
tion lies in the secondary contributions from vortex_depth,
the ratio of mid-level to low-level vorticity, and x, the lon-
gitude. To show why, we separate LPSs into the top and
bottom quartiles of (a) mean_u500 and (b) vortex_depth,
bin them onto a 1.5◦ × 1.5◦ grid, and then plot their mean
propagation vectors as a function of location (Figure 8).
Despite the fact that mean_u500 and vortex_depth are
uncorrelated (see Figure 3), LPSs in the tails of their distri-
butions behave remarkably similarly. In other words, LPSs
with a small vortex depth (blue arrows)—that is, those
with relatively weak vorticity at 500 hPa—propagate very
similarly to LPSs present when the mid-level easterlies are
weak (red arrows), even though the two populations do not
significantly overlap. Therefore, we hypothesise that the
propagation theory developed by Boos et al. (2015)—that
LPSs (specifically depressions, which make up roughly the
strongest quartile of LPSs) propagate through advection
of their midtropospheric PV maximum by 500 hPa winds
and beta drift—only holds for LPSs with substantial vor-
tex depth; that is, LPSs whose 500 hPa relative vorticity
is not substantially smaller than their lower-tropospheric
maximum.

We can test this hypothesis directly using the Shapley
values from the zonal_speed model (Figure 9). We show,
for reference, the storm-centred composite vertical struc-
ture of PV for the LPSs used in this study (Figure 9a).
This structure is morphologically very similar (show-
ing a midtropospheric maximum about 500 hPa and
lower-tropospheric maximum at about 750 hPa) to that
presented for stronger monsoon LPSs and monsoon
depressions in Hurley and Boos et al. (2015) and Hunt
et al. (2016a) respectively, but the magnitude is about 20%
weaker. The difference in PV structure between LPSs with
large and small vortex depth is associated almost entirely
with the 500 hPa maximum. This is in contrast to the
difference between LPSs in the top and bottom quartiles
of 500 hPa (not shown), where the signal extends into
the lower troposphere, and thus demonstrates that vortex
depth is a useful variable to isolate the effects of the midtro-
pospheric PV maximum. We leave the follow-up question
regarding why some LPSs develop a strong 500 hPa maxi-
mum but others do not for future research.

We leverage this in Figure 9c, which shows the grid-
wise correlation coefficients of PV with the Shapley
values of both vortex_depth and mean_vort_850. Recall
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HUNT and TURNER 13

· ·

Z M

F I G U R E 7 Interpretation of the relative importance of predictors in the (a) zonal_speed (westward component of low-pressure system
propagation vector) and (b) meridional_speed (northward component of low-pressure system propagation vector) models, shown using their
respective Shapley value distributions. Linear correlation coefficients between the actual and predicted values are given in the subfigure
titles. The two models converged after 62 and 148 rounds respectively.

V

· · · ·

F I G U R E 8 Mean low-pressure system (LPS) propagation as a function of (a) mean 500 hPa zonal wind within 400 km of the LPS
centre and (b) LPS vortex depth. LPSs in the top and bottom quartile of each variable are binned onto a 1.5◦ × 1.5◦ grid. The mean
propagation vector for LPSs at each grid point is then plotted, so long as at least five LPSs are present.

that as the majority of LPSs propagate westwards they
have a negative zonal_speed, and so predictors that
increase zonal propagation speed will have negative Shap-
ley values (and hence negative correlation coefficients).

The vortex_depth Shapley values are significantly cor-
related with midtropospheric PV (peaking at about
450 hPa), whereas mean_vort_850 Shapley values are
significantly correlated with lower-tropospheric PV
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14 HUNT and TURNER

A
T

· · · · · ·

F I G U R E 9 The relationship between the vertical structure of low-pressure system (LPS) potential vorticity (PV) and zonal
propagation speed. (a) Zonal cross-section of storm-centered PV for all LPSs; (b) difference in composite PV between LPSs in the top and
bottom quartiles of the vortex depth distribution; (c) correlation coefficient between PV and the Shapley values for mean_vort_850 (filled
contours) and vortex_depth (line contours) in the zonal_speed model.

(peaking at about 700 hPa). This supports our hypothesis
that LPS propagation is driven by advection of the midtro-
pospheric PV maximum only if that maximum is not small
compared with the lower-tropospheric maximum; other-
wise, propagation is more likely to be driven by advection
of the lower-tropospheric maximum.

This discussion covers many of the predictor terms
in Figure 7, but there are a few others that merit atten-
tion. In particular, the relatively high impact of olr_50
(with deeper convection linked to faster propagation)
hints at the secondary role played by off-centre vor-
tex stretching in supporting LPS movement. This was
linked to monsoon intraseasonal variability by Hunt and
Turner (2022), but has also previously been mooted as the
primary propagation mechanism (Sanders, 1984; Chen
et al., 2005). In the zonal_speed model, the high impacts
of mean_dthetae_dp_750_500 (mid-level instability) and
mean_swvl1 (local moisture source) suggest that such
convection is supported by large-scale conditions. We
will discuss this further when we come to analyse the
precipitation model later.

Finally, we note the caveat that the two propagation
models have the weakest performance among all models
presented in this article, each explaining about one-third
of the variance in propagation speed. More work is needed
to assess whether this is due to a particular variable (or set
of variables) missing from the predictors (e.g., background
wind speeds—as we have used for the shear variables),
or whether existing predictors should be used at different
pressure levels.

4.2 Forecast models

4.2.1 Inland penetration

The first of our predictive models is trained to predict the
total amount of time an LPS will spend over land. As with
the diagnostic models in the previous section, this model
is trained on single time points, meaning that multiple
predictions are made for a given LPS (analogous to fore-
casts at different lead times). The model performs well,
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HUNT and TURNER 15
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F I G U R E 10 Verification and interpretation of the decision-tree model predicting total_land_time (the total time spent over land by a
low-pressure system). (a) Model predictions are plotted against observed values, with the grey dashed line denoting a 1:1 relationship and the
black dashed line showing a cubic best fit. The linear correlation coefficient between the actual and predicted values is given in the top left.
(b) Interpretation of the relative importance of predictors in the model is shown through their Shapley value distributions. The predictor
variables are sorted by the mean of their absolute Shapley values, with the distributions coloured according to the underlying value of the
variable. This model converged after 317 rounds.

explaining over half the variance (Figure10a), although it
tends to underestimate large values of total_land_time. The
most important predictors, sorted by their Shapley values,
are given in Figure 10b. Many of these entries are quite
intuitive. High values of y support longer total_land_time
because there is more land at higher latitudes and because
LPSs typically have a small northward component to their
propagation, meaning that systems located further north
tend to have already spent some time over land. High
values of mean_v500 and mean_v850 tend to push LPSs
towards the Himalayas, where they rapidly dissipate, lead-
ing to smaller values of total_land_time. Higher values of
mean_vort_850 also support greater inland penetration, as
stronger systems can survive for longer once their energy
source is removed. This is supported to a large extent by
available barotropic instability (ushear_850_background)
and to a lesser extent by midtropospheric thermodynamic
instability (mean_dthetae_dp_750_500).

There is one relationship here that is, however,
quite counter-intuitive. The total time LPSs spend over
land is inversely proportional to the total column water
vapour (TCWV) averaged over the monsoon core zone
(mcz_tcwv); however, we would naively expect that a
moister troposphere would provide a better environment
for longer-lasting LPSs by supporting deeper and more
widespread convection. We investigate this relationship
further by plotting actual values of mcz_tcwv against their

corresponding Shapley values in Figure 11a. Each point is
coloured by the simultaneous value of mean_u200, which
is a good proxy for vertical wind shear.

The response is non-monotonic and com-
prises three distinct components. For low values of
mcz_tcwv(<50 kg⋅m−2), there are two regimes: high shear
(i.e., large negative values of mean_u200) and low shear.
The high-shear regime is more than an order of magnitude
less common, since strong vertical wind shear supports
organised convection (Weisman and Klemp, 1982), even
up to the smaller side of the synoptic scale of interest
in our study (Baidu et al., 2022). Points in the low-shear
regime have a weak positive correlation with their respec-
tive Shapley values, implying that (when mcz_tcwv is
low) increasing it generally supports longer LPS life-
time. For intermediate values of mcz_tcwv (between 50
and 65 kg⋅m−2), which comprise the majority of cases,
there is no longer a split between high- and low-shear
cases. Instead, there is a transition, with increasing val-
ues of mcz_tcwv becoming increasingly associated with
cases of strong vertical wind shear. In this intermediate
regime, there is a negative correlation between mcz_tcwv
and its Shapley values, meaning that increasing TCWV
is associated with shorter LPS lifetime. This is the rela-
tionship brought out in Figure 10. Very high values of
mcz_tcwv(> 65 kg ⋅m−2) are dominated by large vertical
wind shear. Here, the correlation between TCWV and its

 1477870x, 0, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/qj.4582 by T
est, W

iley O
nline L

ibrary on [18/12/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



16 HUNT and TURNER

·

F I G U R E 11 Relationship between (a) mcz_tcwv (total column water vapour [TCWV] over the monsoon core zone) and (b)
mean_vort_850 (mean 850 hPa relative vorticity within 400 km of the low-pressure system centre) and their respective Shapley values in the
total_land_time model. Each point in the bivariate distributions is coloured according to the simultaneous value of mean_u200 (mean 200 hPa
zonal wind within 400 km of the low-pressure system centre).

Shapley values switches sign again—the effect of wind
shear is essentially saturated, and so adding more mois-
ture at this point helps the LPS survive for longer in a
hostile environment.

Similar analysis with mean_vort_850 (Figure 11b) con-
firms the detrimental role that strong vertical wind shear
plays in inland penetration of LPSs. Almost all cases of
large vertical wind shear are associated with weaker LPSs,
whereas LPSs occurring during weak shear conditions
may be either weak or strong. We also note that pre-
dicted total_land_time is relatively insensitive to changes
in mean_vort_850 for weak LPSs but grows quickly with
increasing vorticity past about 6×10−5 s−1.

Previous studies have suggested an important role for
antecedent soil moisture in supporting post-landfall LPS
durations (Baisya et al., 2017; Hunt and Turner, 2017a).
Following a similar analysis method as for the relationship
between mcz_tcwv and mean_u200 (not shown), we find
that for relatively dry columns (mcz_tcwv < 55 mm) that
Shapley values of mcz_tcwv are positively correlated with
soil moisture, indicating that soil moisture may indeed
play an important role if the atmosphere above the trough
is insufficiently humid. This relationship is not as strong
as for vertical wind shear but indicates that land-surface
feedbacks should not be neglected.

In summary, the surprising negative correlation
between mcz_tcwv and total_land_time occurs because
large vertical wind shear is required to support the organ-
ised convection that drives high values of TCWV over the
monsoon core zone; but at the same time, for the majority
of cases, such shear prevents strong LPSs from forming.

4.2.2 Peak intensity

During our analysis of the previous model, we touched
on what predictors affect LPS intensity. We expand on
that in this section, where we predict the maximum inten-
sity an LPS will reach during its lifetime, defined as the
maximum value of mean_vort_850 it achieves. The model
performs very well (Figure 12a), explaining two-thirds of
the variance; but, as with the other models, it tends to
underestimate high values and overestimate low values of
the predictand.

Both lower tropospheric (mean_vort_850) and midtro-
pospheric (mean_vort_500) vorticity are key predictors in
the model. This is reasonably intuitive in a Bayesian frame-
work: LPSs that attain a greater peak_vorticity have lifetime
vorticity distributions that contains a greater fraction of
high vorticity values than LPSs that only achieve a low
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F I G U R E 12 Verification and interpretation of the decision-tree model predicting peak_vorticity (the maximum value of mean_vort_850

reached during the LPS lifetime). (a) model predictions are plotted against observed values with the grey dashed line denoting a 1:1
relationship and the black dashed line showing a cubic best fit. The linear correlation coefficient between the actual and predicted values is
given in the top left. (b) interpretation of the relative importance of predictors in the model is shown through their Shapley value
distributions. The predictor variables are sorted by the mean of their absolute Shapley values with the distributions coloured according to the
underlying value of the variable. This model converged after 111 rounds.

peak_vorticity. Therefore, a given LPS with high vortic-
ity is more likely to attain a higher peak_vorticity than
an LPS with low vorticity. It is interesting that, even
though we measure peak_vorticity at 850 hPa, the model
considers mean_vort_500 a more important predictor than
mean_vort_850. This is probably because mean_vort_850 is
a noisier field, being more vulnerable to feedbacks from
the land surface and boundary layer and, as we saw in
Section 4.1.1, the diurnal cycle.

The inclusion of x, y, and indeed mean_land_frac are
also quite intuitive. For example, LPSs weaken consider-
ably as they move further inland (decreasing x); so, for
two LPSs of given vorticity, the one situated further west is
likely to have had the greater peak_vorticity. We note, how-
ever, that the Shapley values are not particularly sensitive
to changes in x for LPSs situated in the east (i.e., over the
Bay of Bengal). This implies that LPSs do not necessarily
intensify further by spending more time over the ocean.

The presence of ushear_850_background as the pre-
dictor with the second highest impact in the model
supports the Diaz and Boos (2019a) theory of barotropic
growth (noting that, like mean_u200, we expect the effect
to be large for highly negative values, which here indi-
cate a strong monsoon trough). So, whereas we saw in
Section 4.1.1 that ushear_850_background was not a use-
ful predictor of instantaneous LPS intensification (which
responded more strongly to vertical wind shear, the land

surface, and the diurnal cycle of convection), it is clearly
useful in determining the maximum intensity LPSs are
likely to reach.

We can investigate the relative impact of
mean_vort_500 and ushear_850_background on model
predictions as a function of x and y by plotting the
mean Shapley value magnitudes on maps (Figure 13).
We see that the model sensitivity to these parameters
changes significantly as a function of LPS location, with
mean_vort_500 typically having a higher impact over land
and ushear_850_background over the ocean. In fact, the
line that describes the mean longitude at which LPSs
reach their maximum intensity partitions the two regions
well. We infer from this that ushear_850_background is
a useful predictor of potential LPS intensity, whereas
mean_vort_500 is more useful in determining whether
peak intensity has occurred and what its value was for
decaying LPSs. We can confirm this by retraining the
model only using points from LPSs that have not yet
reached maximum intensity (not shown). That model per-
forms equally well (r = 0.83) and has a similar order for
predictor importance, except that ushear_850_background
and mean_vort_500 swap places, with the former hav-
ing a much greater impact than in the full model, and
mean_land_frac moves up into third place. Combined,
these results support our initial analysis in the second and
third paragraphs of this subsection.
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M

F I G U R E 13 Map of mean Shapley value magnitudes for (a) mean_vort_500 (the mean value of 500 hPa vorticity within 400 km of the
low-pressure system [LPS] centre) and (b) ushear_850_background (the mean value of large-scale meridional shear in 850 hPa zonal wind
over the previous 10 days) in the peak_vorticity model. Data are binned onto a 1◦ × 1◦ grid according to the location of the LPS centre. Grid
squares with fewer than five LPSs are not displayed. The dotted black line marks the approximate longitude where LPSs reach their peak
vorticity, as a function of latitude, computed using lowess regression.

There are a few more predictors with reasonably high
impact in Figure 12 that are worth discussing briefly. First,
we note that mean_u200 is present with the same sign as
in the total_land_time model, confirming the results there
that large vertical wind shear ultimately suppresses the
formation of strong LPSs. Second, sea-surface temperature
(SST) only plays a role in some edge cases. This is surpris-
ing given that high SSTs have long been known to be an
important precursor for LPS genesis (Sikka, 1977) and so
presumably play some role in their early intensification.
This is further confounded by the model relationship hav-
ing the wrong sign (with stronger LPSs generally being
associated with cooler SSTs). This may be explained by
considering the behaviour of the monsoon trough. As we
have seen, a strong trough supports sustained LPS inten-
sification; however, such a trough is also associated with
cooler SSTs over the Bay of Bengal due to increased sur-
face runoff (Spiro Jaeger and Mahadevan, 2018) and due to
increased upwelling forced by enhanced westerlies (Shetye
et al., 1991). This is clearly an area where more research
is needed. Finally, we note another counter-intuitive rela-
tionship: predicted peak_vorticity tends to decrease with
increasing mean_cape. It may be that LPSs with very
high CAPE are already near their peak, as this insta-
bility is driven by strong quasi-geostrophic forcing and

increased moisture content—this is supported by a similar
but weaker relationship with olr_90—and therefore LPSs
associated with low CAPE have more time to grow. Testing
this hypothesis is left for future work.

4.2.3 Precipitation

Our final model is trained to predict the mean precipita-
tion falling within 400 km of the LPS centre over the next
6 hr. This model does not directly account for movement
of the LPS, meaning that the area over which the aver-
age is computed is fixed for each training/testing point.
This model performs very well (Figure 14a), accounting for
almost three-quarters of the variance in near-term precip-
itation. This means that we can be particularly confident
in having chosen a useful set of predictors and, therefore,
in the results of the Shapley value analysis (Figure 14b).

The two mean vorticity terms (mean_vort_850 and
mean_vort_500) have a high impact in the model, as
expected. High values of either (or both) denote a
more intense LPS and hence stronger quasi-geostrophic
ascent, the primary forcing for large-scale precipita-
tion associated with LPSs (Rajamani and Rao, 1981).
Large mean_vort_850 also implies stronger surface winds,
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F I G U R E 14 Verification and interpretation of the decision-tree model predicting mean_prcp_400 (the mean precipitation rate within
400 km of the low-pressure system centre over the following 6 hr). (a) Model predictions are plotted against observed values, with the grey
dashed line denoting a 1:1 relationship and the black dashed line showing a cubic best fit. The linear correlation coefficient between the
actual and predicted values is given in the top left. (b) Interpretation of the relative importance of predictors in the model is shown through
their Shapley value distributions. The predictor variables are sorted by the mean of their absolute Shapley values, with the distributions
coloured according to the underlying value of the variable. This model converged after 112 rounds.

increasing evaporation, and, thus, precipitation. This is
corroborated to some extent by the relatively high impacts
of mean_u850 and mean_sst. mean_vort_500 may also be
more directly linked to deep convective rainfall through
latent-heating-driven mid-level convergence. However,
since this would be precipitation-driven vortex stretch-
ing (and hence larger vorticity), the causality would be
in the wrong direction for rainfall prediction. High values
of mean_vort_500 would indicate that the LPS is currently
producing heavy rainfall. Similarly, the high impact of
olr_50 shows that near-term rainfall is largely produced by
existing deep convection, established over the large scale.

However, dvo850_dt has the highest impact of any
predictor, indicating that an intensifying LPS is likely to
rain more than a weakening one. This is not because
stronger LPSs rain more (this relationship is picked out
by mean_vort_850), but because the two are directly
linked through vortex stretching. This would be a form of
the moisture-vortex instability described by Adames and
Ming (2018) and suggests that parametrising this process
as we do in qshear_850_background (following Suhas and
Boos, 2023) may not be appropriate.

The second highest impact comes from hour, again
highlighting the importance of the diurnal cycle in the
internal moist thermodynamics of LPSs, as we saw in

Section 4.1.1. The large-scale afternoon minimum was
also reported in Hunt et al. (2016b) and Hunt and
Turner (2017b). Likewise, as in both the peak_vorticity
and dvo850_dt models, strong vertical shear (seen here as
highly negative mean_u200) inhibits LPS activity.

The absence of CAPE or stability terms in this model
is notable. If we were measuring CAPE and precipitation
simultaneously we might expect no relationship, or even
a weakly negative correlation, since the convective pre-
cipitation associated with LPSs rapidly depletes CAPE.
However, since we use the mean precipitation over the
following 6 hr we would naively expect a positive correla-
tion with CAPE, which leads precipitation by 2–4 hr in the
Indian summer monsoon (Subrahmanyam et al., 2015). In
fact, of any such stability terms, predicted precipitation is
only really dependent on readily available boundary-layer
moisture (mean_q_850), and even then only weakly so.
We therefore conclude that rainfall depends more on
LPS dynamics than the suitability of the environment for
convection.

Let us investigate those dynamics now, by exploring
the relationship between LPS vortex intensity, LPS growth/
decay, and precipitation in Figure 15. Here, each LPS
time point is positioned according to its mean_vort500 and
dvo850_dt and coloured according to its mean_prcp_400.
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20 HUNT and TURNER

F I G U R E 15 Scatter plot of dvo850_dt (the rate of change of mean 850 hPa relative vorticity within 400 km of the ow-pressure system
[LPS] centre) against mean_vort_500 (the mean value of 500 hPa vorticity within 400 km of the LPS centre), for all LPS time points used in this
study. Points are coloured according to mean_prcp_400 (the mean precipitation rate within 400 km of the LPS centre over the following 6 hr),
and their radius is proportional to max_prcp_400 (as mean_prcp_400, using the mean precipitation over the next 6 hr, but instead taking the
spatial maximum). Thick lines denote the mean trajectory in this phase space of (light blue) all LPSs and (darker blue) LPSs whose peak
vorticity exceeds the 90th percentile. The vertical dotted line denotes the median value of mean_vort_500.

In addition, the size of the points scales with the maximum
six-hourly precipitation rate within 400 km of the LPS cen-
tre. The mean LPS trajectory in this phase space starts in
the top-left quadrant, moves clockwise, and finishes in the
bottom-left quadrant. We see that weak and decaying LPSs
(bottom-left quadrant, mostly over land) are very rarely
associated with heavy rainfall. In contrast, if an LPS is
both strong and intensifying (upper right quadrant) it is
very likely to be associated with widespread heavy rain-
fall. However, individual extreme rainfall events are much
less dependent on whether the LPS is growing or decaying
and are in fact approximately equally likely to occur in any
intense LPS.

5 CONCLUSIONS

LPSs are the primary mode of synoptic-scale variability
in the South Asian monsoon and bring the majority of its
seasonal (Hunt and Fletcher, 2019) and extreme (Thomas
et al., 2021) precipitation. Although much research has
been done on LPSs, especially on their stronger variety,
known as monsoon depressions, important questions
about their development and interaction with the envi-
ronment and land and sea surface remained hitherto
essentially unsolved. For example: What causes immature
LPSs to intensify? Is it moist barotropic instability (Diaz
and Boos, 2019b), convection-driven vortex stretching
(Adames and Ming, 2018), or even CISK (Shukla, 1978)?
What causes the average LPS to propagate northwestward

when the low-level monsoon circulation is largely west-
erly over their domain? Is it beta drift of their mid-level
PV maxima (Boos et al., 2015), or off-centre vortex stretch-
ing (Goswami, 1987; Chen et al., 2005), or even through
interaction with the Himalayas (Hunt and Parker, 2016)?
Is strong vertical wind shear detrimental to or supportive
of LPS growth? There is weak evidence that LPSs are less
likely to form in regions of vertical wind shear (Ditchek
et al., 2016), and such shear is well known to suppress
tropical cyclone activity (DeMaria and Kaplan, 1994),
but is vital for the development of organised convection
within the monsoon (Weisman and Klemp, 1982). Given
their hydrological, and hence societal, importance, how
can we improve forecasts of LPS activity of, for example,
their precipitation, peak intensity, and post-landfall
behaviour?

In this article, we interrogated these dilemmata by
posing them as parts of large statistical models known
as additive decision-tree ensembles. We trained six such
models, one each for LPS intensification rate, LPS zonal
propagation speed, LPS meridional propagation speed,
total time spent over land, peak LPS intensity, and
near-term precipitation. Each model was trained using
the XGBoost algorithm over about 40 predictor vari-
ables, which were drawn from earlier studies and pruned
down using both correlation and clustering analysis
to avoid cross-contamination during subsequent impact
analysis. For each trained model, we then used Shap-
ley value analysis to compute the relative impact of
each predictor on the model predictions. We partition
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HUNT and TURNER 21

the subsequent discussion into new results and new
research ideas.

5.1 Summary of novel results

• Vertical wind shear exerts a weak control on LPS inten-
sification. However, it has a considerably larger impact
on peak LPS intensity and time spent over land, with
our results indicating that strong vertical wind shear
strongly inhibits further growth beyond a given LPS
intensity.

• LPS intensification rate has a pronounced diurnal cycle,
which varies depending on whether the system is over
land or ocean. This invariably includes a strong early
morning peak in growth, similar to that seen for precip-
itation in tropical cyclones and monsoon depressions. If
the mechanism responsible is the same as for the pre-
cipitation peak, then it is because overnight radiative
cooling of the upper level clouds causes atmospheric
instability. Further research is needed to confirm this.
LPS intensification is also sensitive to interaction with
the land surface.

• The processes supporting (or suppressing) intensifica-
tion differ from those supporting (or suppressing) over-
all peak intensity. The former is supported by processes
acting over short time-scales (e.g., convection), whereas
the latter is supported by processes acting over long
time-scales (e.g., barotropic growth). This contrast is
something that future modelling studies should take
into account.

• Following Boos et al. (2015), we show that 500 hPa
winds are a good predictor of LPS propagation speed
and direction. However, this only holds so long as
the LPSs are reasonably deep; that is, they possess
a mid-level PV maximum that is comparable to or
stronger than the low-level maximum. If this is not
the case, and the LPS vorticity is largely confined to
the lower troposphere, then LPS propagation is more
strongly governed by low-level winds. We also found
that both OLR and mid-level thermodynamic insta-
bility terms were important, suggesting a secondary
role for vortex stretching, as proposed by Hunt and
Turner (2022).

• More intense LPSs survive for longer over land, with
post-landfall longevity increased by both mid-level ther-
modynamic instability and large-scale barotropic insta-
bility. However, TCWV over the monsoon core zone
is, counter-intuitively, detrimental to LPS survival. This
is because the vertical wind shear typically needed to
maintain widespread organised convection within the
monsoon tends to prevent strong LPSs from forming.

• Large-scale barotropic instability is a very good pre-
dictor of peak intensity (quantified using 850 hPa rel-
ative vorticity at the system centre) for LPSs currently
over the ocean; however, mid-level vorticity (averaged
within 400 km of the centre) is more useful for LPSs
over land.

• Widespread short-term precipitation requires an LPS
that is both intense and intensifying. However, individ-
ual extreme rainfall events only need an intense LPS
and are not sensitive to its growth rate. Heavier rainfall
is more likely in LPSs with well-established widespread
convection.

5.2 Summary of new research
questions

Aside from testing existing hypotheses about LPS
behaviour, our methodology also allows us to quickly
investigate the relative importance of a large number of
variables for LPS processes. From this, we can generate
hypotheses and research questions. These are listed in the
following.

• The diurnal cycle of LPS intensification is aligned with
the diurnal cycle of convection over the ocean but not
over land. Does this play a role in hastening LPS demise
post-landfall?

• LPS peak intensity is not sensitive to the time spent over
the ocean, nor particularly to underlying SSTs. How-
ever, it has been known for a long time that SSTs play an
important role in LPS genesis (Sikka, 1977). So, what is
the relationship between early LPS growth and the sea
surface? Are SST gradients important? Is there a nega-
tive feedback between a strong monsoon trough (good
for growth through barotropic instability) and cooling of
SSTs due to westerly induced coastal upwelling off the
east coast of India (bad for growth through surface heat
exchange mechanisms such as wind-induced surface
heat exchange)?

• Similarly, low-level wind speed is a good predictor
of short-term LPS precipitation; however, the associ-
ated convection also intensifies the LPS through vor-
tex stretching. Is this evidence that LPSs can intensify
through wind-induced surface heat exchange?

• Why is there an inverse relationship between CAPE
(and OLR) and predicted peak LPS intensity? Is it sim-
ply because LPSs associated with high CAPE or low
OLR are already near their peak, or is a more complex
interaction at play?

• Increased deep convection leads to more mid-level
latent heating. This, in turn, strengthens the negative
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22 HUNT and TURNER

anomaly in midtropospheric geopotential. How impor-
tant is this feedback for LPSs?
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