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ABSTRACT
Synthetic aperture radar (SAR) image change detection (CD) focuses on identifying changes between two
images at different times for the same geographical region. Recently, several deep learning methods have
been proposed for performing SAR based CD. However, speckle noise remains a major challenge for these
methods. To address this, we propose a despeckling model (DM) that effectively suppresses speckle noise
and enhances the performance of the existing CD methods. The proposed despeckling architecture is not
only resilient to multi-temporal SAR acquired from one SAR imaging process (i.e., the same number of
SAR images looks before and after the change) but also deals with any combination of single or multi-look
images acquired prior and after the change. Moreover, as a second contribution, we have also proposed a loss
function that effectively suppresses speckle noise, thereby improving the change detection accuracy. Both
the despeckling model and the proposed tolerant noise loss function are evaluated extensively on three public
real SAR datasets, achieving superior performance compared to existing state-of-the-art SAR CD methods
in all datasets.

INDEX TERMS Change Detection, Convolutional Neural Network, Despeckling Noise, Synthetic Aperture
Radar, Unsupervised Learning.

I. INTRODUCTION

REMOTE sensing (RS) change detection (CD) aims
to identify the change between two multi-temporal

images for the same geographical region at different
times [1] [2] [3] [4]. It offers valuable information for nu-
merous applications, including deforestation monitoring [2],
target detection [5], and agriculture investigation [6]. More-
over, the CD algorithms help to extract vital information to
assess the change, especially in case of natural disasters (e.g.,
earthquakes, floods, droughts, and hurricanes [7] [8]), which
in turn supports the local governments to make an effective
and timely decision to prevent or mitigate material losses and
lives.

In remote sensing, change detection endeavours to distin-
guish the changed and unchanged pixels of multi-temporal
remote sensing images, this is Earth Observation (EO) images
acquired for the same geographical region, but at different
times [9] [10]. Typically, these multi-temporal images are co-
registered (i.e., transformed into the same coordinate system)
to obtain consistent radiometric characteristics such as bright-
ness and contrast [11]. This enhances the change detection

performance by aligning the correct position for each pixel in
both multi-temporal images prior to feeding them as input to
the subsequent change detection process [12] [13] [14] [15].
Most image registration algorithms rely on robust extraction
of key points either using shallow extraction methods such
as Scale-Invariant Feature Transform (SIFT) [16], Speeded-
Up Robust Features (SURF) [17] or deep methods including
convolutional neural networks (CNNs) [18], Siamese net-
works [19], and spatial transformer networks [20].
Once co-registered, the change map (a result of the change

detection algorithm) can be easily obtained using classical
change detection methods by computing a difference image
(DI), simply the intensity difference between the two images.
However, change detection in EO is nontrivial owing to inher-
ent challenges such as errors in co-registration, variations in
illumination, viewpoint, shadows, atmospheric effects (e.g.,
presence of clouds, fog, etc.), and varying sensor character-
istics. Moreover, surface reflectance from incoherent objects
(such as vegetation) can adversely affect the performance of
optical CD algorithms.
Synthetic aperture radar (SAR) offers distinct advantages
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over optical sensors for CD in EO because it is not affected
by weather conditions, provides penetration through clouds
and vegetation, and offers sensitivity to small changes, mak-
ing it capable of detecting changes that may be missed by
optical CD methods. This technique allows us to remotely
map the reflectivity of objects or environments with high
spatial resolution through the emission and reception of elec-
tromagnetic signals in the microwave spectrum, which en-
ables ease of penetration through clouds and provides all-
weather day/night sensing capability, making it suitable for
applications related to disaster assessment (such as flooding
and earthquake) [21].

Typically, optical CD methods rely mainly on supervised
machine learning approaches [22] [23] [24]. However, ow-
ing to the lack of annotated SAR datasets, the majority of
SAR CD approaches primarily rely on unsupervised learn-
ing [25] [26] [27]. Several methods for unsupervised SAR
CD have been proposed in literature. For instance, Celik [28]
proposed a simple unsupervised CD method using principal
component analysis and k-means where change detection was
achieved by partitioning the feature vector space into two
clusters. Krinidis et al. [29] proposed fuzzy local information
C-means (FLICM) to improve the clustering quality and aim
to be robust to noise and preserve the image details. Gong et
al. [30] also proposed fuzzy c-means (FCM), a reformulated
FLICM to cluster image pixels into changed and unchanged.
The aforementioned methods are performed under speckle-
free images. These approaches perform fairly well. However,
SAR data suffer from speckle noise, which arises owing to the
coherent nature of SAR imaging, which causes interference
patterns in the received signals. This speckle noise makes
information extraction from SAR images challenging and,
consequently, adversely affects change detection accuracy
[31] [32] [33].

Several approaches have been proposed to address speckle
noise. For instance, pioneering work in the despeckling of
SAR images was proposed by Lee et al. [34]. Later, Lee [35]
refined [36] to remove noisy edge boundaries in SAR images
by enhancing the edge representation using local statistics
(average and variance) within a 7x7 window. However, a
drawback of this approach is its reliance on a fixed mask
size [21]. Kuan et al. [37] proposed an adaptive speckle-
noise smoothing filter that can handle different noise types
without prior knowledge of the original statistics of the image.
However, it tends to over smooth image details and has high
computational complexity. Lope et al. [38] then proposed
an Enhanced Lee filter and comprehensively analysed well-
known filters by experimenting with varying the local coef-
ficients of despeckled SAR images. Their approach allows
the preservation of fine details, such as texture and edge
information, in the heterogeneous regions of the observed
SAR image. Zhu et al. [39] further improved despeckling
performance by combining an enhanced Lee filter with a
median filter.

In the context of change detection, several recent ap-
proaches have tackled the despeckling problem using deep

neural networks. For instance, Zhang et al. [40] proposed
unsupervised change detection using deep learning methods
that employ multi-scale superpixel reconstruction method to
suppress the speckle noise and generate a difference image.
Subsequently, two-stage centre-constrained fuzzy c-means
clustering algorithm is executed to classify the DI pixel into
changed, unchanged and intermediate classes. Image patches
belonging to changed and unchanged pixels are used as
pseudo-label training samples, whereas the image patches
belonging to the intermediate class are utilised as testing
samples. The final stage is to train a convolutional wavelet
neural network on the image patches belonging to changed
and unchanged pixels to classify the intermediate classes.
Wang et al. [41] introduced a sparse model that exploits
structural features of changed regions in noisy DIs gener-
ated from multi-temporal SAR images. Wenhua et al. [42]
introduced a multi-objective sparse feature learning mode.
In this model, the sparsity of representation is dynamically
learned to enhance robustness against various noise levels.
The network is further fine-tuned using correctly labelled
samples chosen from coarse results, allowing for learning
semantic information related to changed and unchanged pix-
els. Liu et al. [43] presented a local restricted CNN for SAR
change detection in which the original CNN was improved
by incorporating a local spatial constraint. Qu et al. [44] also
presented a dual domain neural network (DDNet) to obtain
features from spatial and frequency domains to minimise the
speckle noise. Gao et al. [3] proposed a Siamese adaptive
fusion network for SAR image change detection to extract
high-level semantic features from multi-temporal SAR im-
ages and suppress speckle noise. Meng et al. [45] proposed a
robust loss function and a layer attention-based noise-tolerant
network (LANTNet) that benefits from feature correlations
among multi-convolutional layers and suppresses the impact
of noisy labels.

Although these state-of-the-art deep learning-based ap-
proaches provide some robustness against different noise
types, they still fail to fully suppress speckle noise, which
hinders their effective change detection ability. Moreover, the
amount of speckle noise varies between single-look or multi-
look SAR imaging processes [6]. This is considered at differ-
ent times (e.g., single-look at time instance t1 and multi-look
at time instance t2) and consequently further degrades the
performance of various change detection algorithms. To this
end, in this paper, we propose a robust despeckling architec-
ture that is not only resilient to multi-temporal SAR acquired
from one SAR imaging process (i.e., the same number of SAR
images looks before and after the change) but also deals with
any combination of single ormulti-look images acquired prior
and after the change. To achieve this, the following are the
significant contributions of this study:

• We propose a deep convolutional neural network-based
Despeckling Model (DM) that can suppress speckle
noise and improve the performance of state-of-the-art
SAR CD methods.
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• We develop a new speckle noise tolerant loss function,
inspired by the works of [45], that is more resistant
to speckle noise and significantly improves the baseline
change detection accuracy.

• Both the despeckling model and the proposed tolerant
noise loss function are evaluated on three public real
SAR datasets and achieved superior performance com-
pared with existing state-of-the-art SAR CD methods.

II. RELATED WORK
SAR change detection has been widely used in many ap-
plications such as urban extension [46], agricultural mon-
itoring [47], target detection [48] disaster monitoring [49]
and assessment [50]. Typically owing to the lack of anno-
tated SAR datasets, most researchers rely on unsupervised
methods [3] [51] [52] [53] to address SAR CD. However,
the problem is highly challenging owing to the presence of
speckle noise, which negatively impacts SAR images and
reduces the change detection accuracy [31] [32] [54]. For
this purpose, many researchers have formulated SAR CD
in three sequential steps image pre-processing, difference
image (DI) generation, and classification [55]. The image
pre-processing stage includes despeckling (denoising) and
image registration. Image despeckling aims to reduce the
impact of speckle noise and enhance SAR image quality.
However, oversmoothing usually occurs in doing so, which
may result in the loss of geometric details. After despeckling,
the latter image registration aids in aligning multi-temporal
images in the same reference coordinate system, enabling
accurate change detection [12] [13]. To generate difference
image, various methods have been proposed in the literature,
including image differencing (also known as subtracting) [2],
log ratio [56], neighbourhood-based ratio [57], Gauss-ratio
operator [58] andmean- and log-ratio difference [59]. Finally,
the classification of DI typically includes thresholding and
clustering [60].

Some approaches use the clustered DI image (preclassi-
fication result) to subsequently train a classifier model and
then combine the information from the preclassification and
classifier results to generate a change map. For instance, Gao
et al. [61] computed the preclassification result by computing
a DI via log-ratio and fuzzy c-means clustering and later
trained the PCANet model (classifier) to obtain the initial
classification, which was fused with the preclassification re-
sults to obtain the final change map. Similarly, Gao et al.
[62] proposed an approach that employs a neighbourhood-
based ratio to generate the difference image and then adopts
an extreme learning machine (ELM) to model the high proba-
bility pixel based on the difference image, which is later used
with the initial change map to yield the final change map.
Wang et al. [63] employed a semi-supervised Laplacian sup-
port vector machine (SVM) to differentiate between changed
and unchanged regions. To initialise the SVM, a pseudo-
training set is generated using saliency similarity detection.
This pseudo-training set consists of labelled changed and
unchanged pixels. The Laplacian SVM effectively utilises

the prior information from the available labelled samples and
incorporates unlabelled samples to improve its discriminatory
capabilities. Lv et al. [64] presented feature learning utilising
a stacked contractive autoencoder to extract temporal change
features from superpixels while effectively suppressing noise.
Li et al. [65] proposed a Gamma correction and fuzzy local
information c-means clustering model to reduce the impact
of speckle noise and improve the performance. Liu et al. [43]
introduced a locally restricted CNN for SAR change detec-
tion. They enhanced the original CNN architecture by in-
corporating a local spatial constraint, thereby improving CD
performance.

Recently, a few approaches have aimed to explicitly sup-
press the inherent speckle noise to improve the SAR CD
performance. For example, Qu et al. [44] proposed DDNet, a
method that leverages features extracted from both the spatial
and frequency domains to mitigate the impact of speckle
noise. Gao et al. [3] also presented a Siamese adaptive fusion
network for SAR image change detection, which focused on
extracting high-level semantic features from multi-temporal
SAR images while effectively suppressing speckle noise.
Meng et al. [45] introduced a layer attention module that
leverages the correlation amongmultiple convolutional layers
and designed a loss function that minimises the influence of
speckle noise, thereby enhancing the change detection per-
formance. A limitation of these approaches is their inability
to effectively tackle different speckle noises in images prior
and after the change, for example, single-look prior image and
multi-look post-change image, which makes it difficult for
SAR CD methods to perform well due to varying speckle-
noise characteristics [6]. In the following, we present a de-
noising framework that enables us to effectively tackle the
SAR CD problem for both the same or different numbers of
looks in the pre- and post-change images.

III. METHODOLOGY

The proposed methodology consists of two modules where
the first despeckling modules where the first despeckling
module passes the input SAR image through a series of
convolutional layers to suppress speckle noise and later feeds
the resulting noise-reduced image to the subsequent change
detection module. For change detection, we adapt [45], which
first performs a preclassification step and then employs a
layer attention module that exploits the correlations among
the multi-layer convolutions and produces robust cascaded
feature representations learned by the network. Furthermore,
we propose a noise-tolerant loss function that is resilient to
speckle noise and significantly improves baseline change de-
tection accuracy. In the following, we discuss them in detail,
where we first present the proposed despeckling architecture,
despeckling loss function, and adaptations that we have made
to the baseline change detection approach by proposing a
noise-resilient loss function.
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FIGURE 1: Proposed method for despeckling of SAR images for improved change detection task.

A. PROPOSED DESPECKLING ARCHITECTURE

The proposed despeckling architecture aims to learn a map-
ping from the input SAR image through a series of convo-
lutional layers to yield a residual image [66] that contains
speckle noise only. The learned residual (i.e., speckle-only
in our case) image can then be passed along with the original
image through either a subtraction [67] or division [68] op-
eration to produce the resulting despeckled image. However,
the division operation is preferable [68] because it avoids an
additional logarithmic transformation step and enables end-
to-end learning.

Practically, training such a network design requires ground
truth or reference despeckled images, which is usually not the
case for SAR images. To cope with this, several researchers
synthetically generate reference noise-free SAR images using
multiplicative noise models [69]. For our purpose, we also
rely on synthetically generated SAR reference images and use
them to train our proposed despeckling network architecture
as depicted in Figure 1. It consists of ten convolutional layers,
each incorporating batch normalisation and ReLU activation
functions. Each layer has 64 filters with a stride of one, and
zero padding is used to ensure that the output of each layer
has the same dimensions as the input image, except for the
last one, which has only one filter. At the end of the network,
a hyperbolic tangent is employed as a nonlinear function [68].
For clarity, we also provide the architecture details of the
proposed model along with the hyperparameter details in
Table 1.

TABLE 1: Proposed Despeckling Model Configuration. where L1 and L10 refer to a
series of Conv-ReLU layers, while the layers between L2 and L9 consist Conv-BN and
ReLU layers as illustrated in Figure 1.

- layer Filter Size Filters Output size
L1 Conv + ReLU 3*3*1 64 256*256*64

L2-L9 Conv + BN + ReLU 3*3*64 64 256 *256* 64
L10 Conv + ReLU 3*3*64 1 256 *256*1

B. DESPECKLING LOSS FUNCTION
Let us assume that F ∈ RW×H denotes the observed SAR
image intensity with speckle, X ∈ RW×H represent the noise-
free SAR image, andN ∈ RW×H represents themultiplicative
speckle noise. Then we can describe the relation between the
observed and noise-free SAR images as

F = N ⊙ X (1)

Where⊙ denotes the Hadamard product (i.e., the element-
wise multiplication) between N and X. As mentioned earlier,
X is synthetically generated by multiplicative noise using the
procedure explained in [69] [70] [71].
One straightforward approach to train the despeckling net-

work with learning parameters θ is to simply use the predicted
despeckled image and noise-free SAR image to compute the
per-pixel Euclidean loss function LE as follows:

LE(θ) =
1

W · H

W∑
w=1

H∑
h=1

∥X (w,h) − X̂ (w,h)∥2 (2)

Where X is the reference image, and X̂ is the despeckled
image. W and H represent the width and height of an image.
Although this simple Euclidean loss LE has been effective
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in solving numerous image restoration problems such as
super-resolution [72], semantic segmentation [73], change
detection [74], and style transfer [75], it usually produces
several artifacts (e.g., unwanted distortions such as irregular
patterns, pixelation, blurring, or other visual abnormalities) in
the resulting estimated image [76]. To address this problem,
Wang et al. [68] integrated a supplementary total variation
(TV) loss into LE , which somewhat removes the artifacts
but oversmoothes the images, causing loss of information
and consequently degrading the performance of change de-
tection [41]. To overcome these issues, we utilised a struc-
tural similarity index (SSIM), originally proposed for image
quality assessment [77], as an auxiliary to LE to achieve
a better trade-off performance by removing artifacts while
maintaining the necessary information, which improves the
change detection performance.

SSIM(X , X̂) =
(2µXµX̂ + C1) · (2σXX̂ + C2)

(µ2
X + µ2

X̂
+ C1) · (σ2

X + σ2
X̂
+ C2)

(3)

Where X and X̂ are the reference (noise-free) and despeck-
led images, respectively, µX and µX̂ are the mean values of X
and X̂ respectively. Similarly, σX and σX̂ are the standard de-
viations of X and X̂ respectively. While σXX̂ is the covariance
between X and X̂ . Finally, C1 and C2 are constants set to be
0.01 and 0.03 respectively [77].

The total loss is thus calculated as follows:

LT = LE(θ) + λSSIM · SSIM (4)

Where LT is the total loss and λSSIM represents the weight-
ing of the auxiliary SSIM in the loss.

C. PROPOSED CHANGE DETECTION LOSS FUNCTION
Existing unsupervised change detection methods utilise clus-
tering algorithms such as hierarchical Fuzzy C-Means [78]
and Fuzzy C-Means (FCM) [79] to generate pseudo-labels
with a high probability for network training. While this
method solves the need for label data, errors commonly af-
fect network performance. In addition to this, the attention
mechanism is utilised to emphasise the essential parts of the
input while disregarding irrelevant information, but it often
neglects the correlations among multiple convolution layers.
To address this limitation, Meng et al. [45] proposed a layer
attentionmodule toweigh features from different layers based
on the learned correlation matrix. This module effectively
combines spatial information from low-level layers with se-
mantic information from high-level layers, emphasising in-
formative layers and suppressing redundant ones. The process
involves matrix multiplication to assign adaptive weights to
the input feature groups, followed by calculating the atten-
tion matrix using a softmax operation. The weighted feature
matrix is then multiplied by the attention matrix, reshaped,
and combined with the original input to produce the final
output. The change map is generated through a series of
convolution and fully connected layers. The trained network

can classify all pixels from the multitemporal SAR images to
obtain the final change map. We adapt the training strategy
and propose a loss function that is more noise resistant to
speckle noise. However, this loss function does not provide
satisfactory performance. To this end, we designed a robust
loss function that is more resistant to speckle noise. The loss
function combines MSE and Kullback-Leibler Divergence
(KL). The loss function is expressed as follows:

LMSE(X , X̂) = ∥X − X̂∥2 (5)

LKL(X , X̂) = X̂ · (log X̂ − X) (6)

LT = αLMSE + βLKL (7)

where α and β are two weighting hyperparameters.
In our empirical study, α and β were set to 0.9 and 0.1

to trade off noise robustness and convergence efficiency. The
KL acts similarly to CE with the difference that CE penalises
the network based on its predictions, whereas KL mainly
evaluates the disparity between the probability distribution
predicted by the network and the distribution of the reference
ground truth. Therefore, we argue that combining MSE and
KL can provide a better change detection performance and
suppress speckle noise (see Section IV-C2). In the following
section, we present the results of our proposed methodology
along with the training details.

IV. EXPERIMENTAL RESULTS & EVALUATION
In this section, we first introduced the datasets and employed
evaluation metrics. Subsequently, we investigated the effec-
tiveness of the proposed despeckling model coupled with the
CD loss function to improve the change detection accuracy.
Finally, the results were presented and evaluated by compar-
ing them with those of state-of-the-art methods.

A. DATASETS
Two types of datasets were used in this paper. The first is
the Berkeley Segmentation Dataset 500, widely employed
to generate synthetic SAR images. In addition, real SAR
images (for the purpose of change detection purpose) were
employed to assess the model’s performance. Both datasets
are described in detail In the following subsections:

1) Synthetic SAR Images
The Berkeley Segmentation Dataset 500 (BSD-500) was
originally developed to evaluate the segmentation of natural
edges, including object contours, object interior and back-
ground boundaries [80]. It included 500 natural images with
carefully manually annotated boundaries and edges of natural
objects collected from multiple users. This dataset has been
widely used to generate synthetic SAR images for the purpose
of despeckling [69] [70] [71]. Inspired by these studies, we
have used it to train our despeckling model.
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2) Real SAR Images
For the purpose of change detection, we employed three real
SAR image datasets that are multi-temporal and have been
co-registered and corrected geometrically.

• Farmland and Yellow River Datasets: The images for
both datasets were captured by RADARSAT-2 in the
region of the YellowRiver Estuary in China on 18th June
2008 (pre-change) and 19th June 2009 (post-change).
The pre-change images are single-look, whereas the
post-change images have been acquired via a multi-
looks (four) imaging process. The single-look pre-
change image is significantly influenced by speckle
noise compared to the four-look post-change image [3].
The disparity between the single and four looks in
these two SAR datasets poses a significant challenge for
change detection methods.

• Ottawa Dataset: The images for this dataset were also
captured by RADARSAT-2 in May 1997 (pre-change)
and August 1997 (post-change) in the areas affected by
floods [44] [53] [81]. Because of the single imaging
process, both the pre- and post-change images are less
affected by noise in this dataset.

As mentioned above, synthetic SAR images were utilised
to train the proposed DM, as depicted in Figure 1. While the
real SAR images were despeckled for the purpose of change
detection.

B. EVALUATION METRICS
Quantitative evaluation indices, including precision (P), recall
(R), overall accuracy (OA) and F1 score (F1) [82] [83] [84]
were used in this study to evaluate the change detection
process. These metrics were computed as follows:

R =
TP

(TP+ FN )
(8)

P =
TP

(TP+ FP)
(9)

OA =
(TP+ TN )

(TP+ FP+ FN + TN )
(10)

F1 =
(2 · P · R)
(P+ R)

(11)

Here TP, FP, TN , and FN represent the true positives, false
positives, true negatives, and false negatives, respectively.

A higher P value indicates a decrease in the occurrence
of false alarms, while a greater R value indicates a reduced
rate of incorrect detections. OA measures the proportion of
accurately detected pixels in the image. However, relying
solely on these three metrics can lead to overestimating the
outcomewhen the number of altered pixels is only a small part
of the entire image. The F1 score is used to address this, which
considers the limitations of P and R, providing a more com-
prehensive evaluation of performance. It is important to note
that larger F1 values indicate better overall performance [85].

C. ABLATION STUDY

In this section, we initially investigate the performance of
the proposed DM on F1 score using three real SAR CD
datasets that are discussed in Section IV-A2. We then feed
the despeckled SAR images by the proposed DM to five
change detection methods PCA-k-means (PCAK) [28], NR-
ELM [62], DDNet [44], LANTNet [45] and the proposed
CD method where the DDNet and LANTNet are the current
state-of-the-art CD methods. Furthermore, we investigate the
performance of the proposed CD loss function on F1 score
by comparing it with different loss functions.

1) Performance Investigation of Despeckling Model

To validate the effectiveness of the despeckling model, we
compared the results of change detection methods with and
without the despeckling model using three real SAR datasets.
Figure 2, 3 and 4 demonstrates that the proposed despeck-
ling model considerably enhanced the F1 score for exist-
ing (including state-of-the-art) change detection methods. In
all these experiments, we empirically set the λSSIM to be
5 in the loss objective (4) as a tradeoff between despeck-
ling and change detection performance. It is evident that the
performance of the CD methods improves once we passed
them through the proposed despeckling model in three SAR
datasets. However, in Figure 4, the NR-ELM algorithm with
DM obtained a lower F1 because Ottawa dataset is less af-
fected by the speckle noise. This is why we see a higher F1
score even with all other methods without DM. Secondly,
Compared to other methods, the NR-ELM is more resistant
to speckle noise because of the inherent despeckling process
encoded within its architecture. Therefore, the decline in the
F1 score when we include the DM module, is due to the fact
that an additional despeckling process oversmooths the input
image, which subsequently decreases the F1 score. These
results will be explained in more detail in section IV-D.

FIGURE 2: Relationship between DM and F1 score for Farmland
dataset
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FIGURE 3: Relationship betweenDM and F1 score for YellowRiver
dataset

FIGURE 4: Relationship between DM and F1 score for Ottawa
dataset

2) Performance Investigation of Proposed CD Loss Function
Furthermore, we compared various loss functions and anal-
ysed their performance over the baseline change detection
methods. Table 2 shows that the loss function combiningMSE
and KL delivers the best performance, indicating its greater
resilience to speckle noise.

TABLE 2: Relationship between loss functions and F1-Score.

Loss
function

F1-Score

Farmland Yellow River Ottawa
MAE 89.1 87.24 94.24
MAE+CE [45] 88.69 87.16 94.46
MSE 86.91 86.22 94.75
MSE+CE(our) 89.60 88.23 94.54
MSE+KL(our) 89.91 88.44 95.35

D. EXPERIMENTAL RESULTS & DISCUSSION
To evaluate the impact of the proposed despeckling model
on change detection purpose, we compare the effectiveness
of the proposed DM with other existing despeckling methods
such as Lee [34], Enhanced Lee [38], SAR2SAR [86] and ID-
CNN [68] on three real SAR datasets. Subsequently, we feed
the despeckled SAR images to four aforementioned change
detection methods, namely PCA-k-means (PCAK) [28], NR-
ELM [62], DDNet [44] and LANTNet [45]. PCAK em-
ploys principle component analysis for feature extraction and
utilises the k-means clustering algorithm for classification.

NR-ELM incorporates the neighbourhood ratio for feature ex-
traction using the difference image, followed by classification
using an extreme learning machine. DDNet is a dual-domain
network that exploits spatial and frequency domain features
to mitigate speckle noise. LANTNet is a layer attention-
based noise-tolerant network that leverages the correlation
between convolutional layers. Both DDNet and LANTNet are
currently state-of-the-art change detection methods.
Figures 5, 6 and 7 present the visual results of the change

maps obtained from the aforementioned change detection
methods using various despeckling filters on Farmland, Yel-
low River and Ottawa datasets respectively. The correspond-
ing quantitative evaluations are provided in Tables 3, 4, and 5.
In the tables, the w/o means it is the original method without
despeckling. The DM is our proposed despeckling model,
while the Proposed in Methods column refers to the baseline
CD with the proposed objective loss function. Figures 5, 6
and 7 are organised as following; the first two columns repre-
sent Farmland dataset at time T1 and time T2, while column
three represents the reference change detection images used
as ground truth (GT). Columns four to eight display the results
of PCAK, NR-ELM, DDNet, LANTNet and the proposed
method, respectively. The row one presents the results of the
above-mentioned methods without despeckling, while rows
two to six represent the despeckling method results with
Lee [34], Enhanced Lee [38], SAR2SAR [86], IDCNN [68]
and DM (our) respectively. In the following section, we dis-
cuss the details of the achieved results for individual datasets.

1) Results of Farmland dataset
From Figure 5, it can be observed that the change map gen-
erated by PCAK misclassifies many unchanged pixels com-
pared to GT. The Enhanced Lee filter significantly improves
the results for PCAK, increasing the accuracy from 47.44%
to 79.44%, while the proposed DM achieves 65.90%. It is
worthmentioning that, Farmland dataset is heavily influenced
by speckle noise, and change detection algorithms usually
perform poorly compared to Ottawa dataset, which is less
affected by speckle noise. Simply applying PCAK, which is
a simple CD method, without despeckling, results in poor
performance, as shown in Table 3. Another reason for this
poor performance, in addition to the speckle noise, is be-
cause the pre- and post-change images in Farmland dataset
are different looks, i.e., single and multi-looks before and
after the change with varying noise levels. Using despeck-
ling process somewhat takes this into account and improves
the performance, as seen in Table 3, where all despeckling
methods consistently improve the results with PCAK. Specif-
ically, the Enhanced Lee performs the best here because it
is well suited for stronger speckle noise and helps PCAK
to significantly smooth the image, while DM is designed to
support and generically enhance the overall CD performance.
NR-ELM produces better results with less noise but misses
some changed pixels. The DM filter improves NR-ELM’s
performance from 78.28% to 84.96%.
Furthermore, DDNet performed better than PCAK and
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(a) Farm T1 (b) Farm T2 (c) GT (d) PCAK (e) NR-ELM (f) DDNet (g) LANTNet (h) Proposed

FIGURE 5: Visualised results of Farmland dataset with different despeckling methods. Rows: (1st row) Farmland without despeckling (w/o), (2nd row) Farmland despeckled
with lee, (3rd row) Farmland despeckled with enhanced lee, (4th row) Farmland despeckled with SAR2SAR, (5th row) Farmland despeckled with IDCNN, (6th row) Farmland

despeckled with proposed DM. Columns: Farmland image captured at (a) t1 and (b) t2. (c) refers to the ground truth (GT) image. Results obtained by methods (d) PCAK [28], (e)
NR-ELM [62], (f) DDNet [44], (g) LANTNet [45], and (h) Proposed loss objective function.

NR-ELMdid. TheDMenhances the F1 score for DDNet from
86.67% to 89.70%, i.e., it demonstrates higher accuracy than
PCAK and NR-ELM, although slightly lower than DDNet,
while DM improves the accuracy of LANTNet from 88.69%
to 89.20%. The proposed method improved performance af-
ter incorporating the DM module, increasing accuracy from
89.91% to 91.28%. Notably, the despeckled data using the
SAR2SAR filter performed poorly and yielded lower results
than the original methods without the despeckling model. It is
evident that the DM outperforms other despeckling methods
in terms of the F1 score for the purpose of change detection.
Moreover, it consistently outperforms other change detection
methods without a DM. It is primarily due to the fact that the
proposed loss function is more resistant to speckle noise. In
other words, the DM suppresses speckle noise even when two
Farmland image pairs have different looks, such as single-
look (pre-change) and four-look (post-change). This type of
suppression is reflected positively in the performance of the
change detection methods as shown in Table 3.

2) Results of the Yellow River dataset

In Figure 6, it is noticeable that the change map generated by
PCAK misclassifies many unchanged pixels as changed ones
compared with the GT. The Lee filter reduces speckle noise
and improves the CM. The DM performs as the best filter,
effectively suppressing noise and significantly improving the
F1 score from 72.66% to 87.7% for the PCAK method. NR-
ELM produces better results with less noise but misses some
changed pixels, whereas the DM filter enhances NR-ELM’s
performance from 81.59% to 87.04%.

Furthermore, DDNet outperformed PCAK and NR-ELM
results. The DM considerably enhance the F1 score from
DDNet from 86.65% to 90.79%. LANTNet achieves higher
accuracy than PCAK and NR-ELM. DM has enhanced the
F1-score for LANTNet from 88.44% to 91.1%. After apply-
ing the proposed DM, the proposed method’s performance
has improved from 88.44% to 91.83%. Finally, the proposed
method consistently outperforms all other change detection
methods even without despeckling. With DM filtering, the
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TABLE 3: Quantitative evaluation on Farmland change detection based on different despeckling filters.
Here w/o means it is the original method without despeckling, DM is our proposed despeckling model while the Proposed in Methods column refers to the baseline CD with the

proposed objective loss function.

Methods Metrics w/o Lee [34] Enhanced Lee [38] SAR2SAR [86] ID-CNN [68] DM

Recall
x 90.04 90.87 67.32 95.69 85.45 90.76

PCAK [28] Precision
x 32.27 57.73 96.89 66.51 54.35 51.74

OA
x 88.22 95.53 97.94 96.89 94.89 94.44

F1-Score
x 47.52 70.60 79.44 78.48 66.44 65.90

Recall
x 65.20 68.82 66.52 97.50 66.64 75.39

NR-ELM [62] Precision
x 97.92 99.13 98.51 57.17 97.23 97.33

OA
x 97.86 98.12 97.96 95.52 97.91 98.42

F1-Score
x 78.28 81.24 79.42 72.08 79.08 84.96

Recall
x 82.26 86.58 78.25 99.26 81.52 82.81

DDNet [44] Precision
x 91.59 92.76 98.21 48.66 97.57 97.85

OA
x 98.50 98.81 98.63 93.76 98.79 98.87

F1-Score
x 86.67 89.57 87.11 65.30 88.82 89.70

Recall
x 81.35 80.51 81.76 98.46 79.87 81.18

LANTNet [45] Precision
x 97.50 96.14 96.27 52.74 96.98 98.98

OA
x 98.77 98.66 98.73 94.69 98.66 98.84

F1-Score
x 88.69 87.64 88.42 68.69 87.60 89.20

Recall
x 84.08 85.48 79.09 97.59 97.59 86.45

Proposed Precision
x 97.50 93.78 97.22 53.08 53.08 96.67

OA
x 98.89 98.81 98.63 94.75 94.75 99.02

F1-Score
x 89.91 89.44 87.22 68.76 68.76 91.28

results even further improve.
It is worth mentioning that the despeckled data using the

SAR2SAR filter does not perform well and yields lower re-
sults compared to the original methods without despeckling,
such as DDNet and LANTNet. It is evident that DM achieves
a superior F1 score for change detection methods compared
to other despeckling methods due to the ability to efficiently
cope with the single-look pre-change and multi-look post-
change SAR images via robust loss function.

3) Results of the Ottawa dataset
Compared to previous datasets, the Ottawa dataset is less
affected by speckle noise. This is evident from the achieved
better change detection results of 91.93% using the PCAK
method without any despeckling process on Ottawa dataset
compared to the previous two datasets. Including the pro-
posed DM further improves the F1 score value from 91.93%
to 94.47%. NR-ELM provides better results compared to
PCAK, Lee slightly improves the F1 score from 94.15% to
94.77%, whereas DM reduces the performance to 84.84% as
shown in Figure 7 and Table 5. The proposed DM with the
NR-ELM degrades the performance because of oversmooth-
ing. This is because NR-ELM has an inherent despeckling
process encoded within its architecture. Moreover, this is
also the case for other despeckling methods except the Lee
method, which does not degrade (but slightly improve) the
performance. A possible reason for this could be because, in
comparison, Lee [34] is the least strong despeckling method
and therefore does not result in much oversmoothing, which
degrades the performance.

DDNet performed better than PCAK and NR-ELM, and
the proposed DM improves the F1 score for DDNet from
93.90% to 94.87%. LANTNet produces better accuracy than

PCAK, NR-ELM and DDNet. Its accuracy has further im-
proved by the proposedDM from 94.46% to 94.88%.With the
proposed loss objective, the performance slightly improves
from 94.46% to 94.50%, which is further enhanced from
94.50% to 95.79% when used in conjunction with the DM
as shown in Figure 7 and Table 3. It can be observed from the
Ottawa dataset results that the CD methods without despeck-
ling already perform well because the data is less affected by
noise. Nevertheless, with DM, the performance of these CD
methods was further improved.

E. TRAINING SETUP
All the experiments were conducted on three data sets detailed
in section IV-A where Python 3.7 with OpenCV version
3.4.2.17 was used. The hardware specifications include a
Tesla GPU P100-PCIE-16 GB RAM 147.15 GB Disk.

V. CONCLUSION & OUTLOOK
In recent years, many deep-learning architectures have been
employed for SAR change detection problems, leading to en-
hancements in the change detection performance. However,
speckle noise remains a major challenge for these methods.
To address this, we propose which are two-fold: 1) First,
we have proposed a despeckling model which effectively
suppresses the speckle noise and enhances the performance
of existing CD methods; 2) Secondly, we have proposed
a robust loss function that is able to take the performance
of CD methods even further. The proposed solutions have
been extensively examined and compared to the state-of-art
SAR change detection methods. The achieved results with
the proposed despeckling model and the noise tolerant loss
function demonstrate superior performance compared to the
current change detection methods. The proposed approach
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(a) Yellow T1 (b) Yellow T2 (c) GT (d) PCAK (e) NR-ELM (f) DDNet (g) LANTNet (h) Proposed

FIGURE 6: Visualised results of Yellow River dataset with different despeckling methods. Rows: (1st row) Farmland without despeckling (w/o), (2nd row) Farmland despeckled
with lee, (3rd row) Farmland despeckled with enhanced lee, (4th row) Farmland despeckled with SAR2SAR, (5th row) Farmland despeckled with IDCNN, (6th row) Farmland

despeckled with proposed DM. Columns: Farmland image captured at (a) t1 and (b) t2. (c) refers to the ground truth (GT) image. Results obtained by methods (d) PCAK [28], (e)
NR-ELM [62], (f) DDNet [44], (g) LANTNet [45], and (h) Proposed loss objective function.

TABLE 4: Quantitative evaluation on Yellow River change detection based on different despeckling filters.

Methods Metrics w/o Lee [34] Enhanced Lee [38] SAR2SAR [86] ID-CNN [68] DM

Recall
x 74.96 78.40 74.52 81.80 81.37 82.59

PCAK [28] Precision
x 70.50 87.80 82.75 83.31 92.79 93.53

OA
x 89.80 94.12 92.58 93.74 95.49 95.82

F1-Score
x 72.66 82.84 78.42 82.55 86.70 87.72

Recall
x 72.18 48.35 70.19 78.30 79.76 79.32

NR-ELM [62] Precision
x 93.83 99.72 92.22 85.53 95.08 96.42

OA
x 94.11 90.63 93.54 93.68 95.59 95.73

F1-Score
x 81.59 65.13 79.71 81.76 86.75 87.04

Recall
x 83.46 86.32 82.86 80.46 64.06 86.58

DDNet [44] Precision
x 90.09 91.41 81.89 85.00 90.40 95.44

OA
x 95.35 96.06 93.59 93.90 93.43 96.83

F1-Score
x 86.65 88.79 82.37 82.67 77.91 90.79

Recall
x 82.44 84.00 83.03 79.84 65.93 87.51

LANTNet [45] Precision
x 92.45 91.18 71.49 87.83 99.04 94.99

OA
x 95.61 95.64 90.94 94.35 93.72 96.91

F1-Score
x 87.16 87.44 76.83 83.64 79.16 91.1

Recall
x 84.08 85.93 81.51 79.08 61.89 89.53

Proposed Precision
x 93.28 87.05 82.01 86.44 97.75 94.25

OA
x 96.03 95.14 93.42 93.97 92.85 97.12

F1-Score
x 88.44 86.49 81.76 82.59 75.79 91.83
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(a) Ottawa T1 (b) Ottawa T2 (c) GT (d) PCAK (e) NR-ELM (f) DDNet (g) LANTNet (h) Proposed

FIGURE 7: Visualised results of Ottawa dataset with different despeckling methods. Rows: (1st row) Farmland without despeckling (w/o), (2nd row) Farmland despeckled with
lee, (3rd row) Farmland despeckled with enhanced lee, (4th row) Farmland despeckled with SAR2SAR, (5th row) Farmland despeckled with IDCNN, (6th row) Farmland

despeckled with proposed DM. Columns: Farmland image captured at (a) t1 and (b) t2. (c) refers to the ground truth (GT) image. Results obtained by methods (d) PCAK [28], (e)
NR-ELM [62], (f) DDNet [44], (g) LANTNet [45], and (h) Proposed loss objective function.

TABLE 5: Quantitative evaluation on Ottawa change detection based on different despeckling filters

Methods Metrics w/o Lee [34] Enhanced Lee [38] SAR2SAR [86] ID-CNN [68] DM

Recall
x 88.16 91.58 88.74 88.85 92.01 91.00

PCAK [28] Precision
x 96.05 96.28 97.74 82.14 96.85 98.20

OA
x 97.55 98.11 97.89 95.18 98.26 98.31

F1-Score
x 91.93 93.87 93.02 85.36 94.37 94.47

Recall
x 93.14 94.79 87.67 88.68 92.07 73.92

NR-ELM [62] Precision
x 95.19 94.74 94.59 80.56 92.65 99.53

OA
x 98.17 98.34 97.25 94.82 97.59 95.82

F1-Score
x 94.15 94.77 91.00 84.42 92.36 84.84

Recall
x 92.70 93.66 93.66 90.78 94.51 91.71

DDNet [44] Precision
x 95.12 96.06 96.06 82.91 94.73 98.26

OA
x 98.09 98.39 98.39 95.58 98.30 98.43

F1-Score
x 93.90 94.84 94.85 86.67 94.62 94.87

Recall
x 91.8 94.67 90.73 89.91 92.62 91.66

LANTNet [45] Precision
x 97.30 94.48 95.11 82.49 95.23 98.33

OA
x 98.3 98.28 97.80 95.39 98.1 98.44

F1-Score
x 94.46 94.57 92.87 86.04 93.90 94.88

Recall
x 91.70 92.74 88.80 91.88 93.11 93.73

Proposed Precision
x 97.47 97.47 95.96 87.06 95.35 97.96

OA
x 98.31 98.47 97.64 98.07 98.19 96.56

F1-Score
x 94.50 95.04 92.24 89.41 94.22 95.79
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so far only focuses on single-imaging modality. In future, an
extension of the work could be in the domain of multi-modal
(optical and SAR) change detection.
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