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Abstract

The perovskite structure is common to a wide range of materials which exhibit a rich vari-

ety of physical properties, such as ferroelectricity, antiferromagnetism, piezoelectricity, gi-

ant magnetoresistance, etc. along with different types of phase transition (metal-insulator,

magnetic, ferroelectric and structural transitions). The control of the physical properties

of perovskites by varying temperature, pressure, composition, and external fields give

rise to novel phases. With continued advances in computational power, algorithms and

simulation techniques, computational research has become increasingly effective in under-

standing and complementing experiments. In particular, density functional theory (DFT)

based simulations provide fundamental insights into structural stability and properties of

a material under the influence of external stimuli. On the other hand, classical and quan-

tum atomistic modelling of materials helps in the study of their properties at long length

and time scales by using molecular dynamics. In this thesis, I use DFT and ab initio

molecular dynamics (AIMD) to model functional perovskites. This thesis deals with var-

ious types of perovskites based on the kind of atomic/molecular species constituting the

perovskite structure and explains the complex interplay between structure and properties

in these materials. Starting with an inorganic multiferroic perovskite, BiFeO3, the effect

of cobalt doping in BiFeO3 on its structural, electronic, ferroelectric and thermodynamic

properties is explored, in the context of potential photocatalytic applications. I present

an AIMD investigation of the structural, electronic, vibrational and thermodynamic prop-

erties of mixed-cation mixed-anion perovskite solid solution of FAPbI3 and MAPbBr3 for

photovoltaic applications. Finally, I study molecular perovskites and the phase transi-

tions observed in them, which can be employed for solid-state refrigeration applications

based on the barocaloric effect. The effect of different metal cations on the mechanical

properties is calculated, which provides a starting point for rational design of molecular

perovskites with strong barocaloric behaviour. This work illustrates the rich diversity

in behaviour of perovskite-based materials and how first principles simulations can make

substantial contributions to understanding and controlling their functional properties.
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Chapter 1

Introduction

The discovery of functional materials that exhibit exotic properties and can be grown

easily is one of the driving forces to accelerate technological growth. With the increasing

energy demand, environmental degradation and climate change associated with the usage

of non-renewable resources, there is an utmost need to develop new materials which allow

harvesting clean affordable alternative energies. Developments in computing resources

and algorithms based on quantum mechanics, allows us to predict new materials with de-

sired functionalities, as well as their response to external stimuli. First-principles density

functional theory (DFT) [1,2] (see Chapter 2) has evolved as a powerful tool that is widely

used in condensed matter theory and materials science for the calculation of structural,

electronic, vibrational and magnetic properties of solids with reliable accuracy. DFT pro-

vides fundamental insights into the structural stability and properties of a material under

the influence of an external stimuli. To study the properties of materials at long length

and time scales (temperature-dependent transition properties, phase transitions), classical

or quantum atomistic modelling through use of Monte Carlo simulations [3] (with a first-

principles based effective Hamiltonian) or ab initio molecular dynamics (AIMD) [4] can

be used. The objective of this thesis is to study various functionalities of perovskite ma-

terials and engineer their properties using first-principles DFT and molecular dynamics.

The impressive range of structure and property interplay of perovskite materials makes

2
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them an excellent research field for materials science, physics and solid state chemistry.

This chapter begins with a brief introduction to perovskite materials.

The discovery of calcium titanate (CaTiO3) in 1839 by the Russian mineralogist L.

A. Perovski marked the origin of perovskite materials. In a conventional perovskite oxide

structure with the chemical formula ABO3, A is divalent (A2+) cation, B is tetravalent

(B4+) cation and O is oxide (O2−). Other combinations of oxidation states are possible

for perovskite oxides, as long as the sum of the oxidation states of the cations is six:

e.g. III-III in most ferrite perovskites like BiFeO3, or solid-solution II-(V,II) perovskites

like PbMg1/3Nb2/3O3. In this thesis, I will meet these inorganic oxides, as well as other

perovskites with different cations and anions. The BO6 octahedra form a corner-sharing

network and A cation sits in the cuboctahedral cavity (Figure 1.1). The ideal symmetry of

a perovskite is cubic with space group Pm3m as shown in Figure 1.1. The high-symmetry

cubic perovskite structure is inherently unstable and typically appears as a dynamical

average structure at high temperatures.

Figure 1.1: Unit cell of a CaTiO3 perovskite in cubic phase (Pm3m). The crystal
coordinates are taken from Ref. [5]. Colour scheme: Ca: Grey, Ti: Blue, and O: Red.

At low temperatures, perovskites are prone to distortion, and the nature of the lower-

symmetry crystal structure can be predicted on the basis of a tolerance factor (Eq. 1.1).

Goldschmidt’s tolerance factor (t) is an indicator for the stability and distortion of crystal
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structures [6]. It is a dimensionless number that is calculated from the ratio of the ionic

radii:

t =
rA + rO√
2(rB + rO)

(1.1)

where rA is the radius of A cation, rB is the radius of the B cation and rO is the radius of

the anion. The ideal cubic perovskite is observed at room temperature in perovskites with

t ≈ 1, e.g. SrTiO3 [7]. Table 1.1 shows various perovskite symmetries possible depending

on the tolerance factor. The distortions from the ideal cubic structure can be attributed

to the following mechanisms:

• Distortions of the octahedra

• Displacements of the cations within the octahedra

• Octahedral tilting

The first two mechanisms are driven by electronic instabilities of the octahedral metal

ion (B cation). For instance, the Jahn-Teller distortion observed in KCuF3 [8] is an

example of an electronic instability that leads to octahedral distortions. The ferroelectric

perovskite BaTiO3 [9, 10] is an example of an electronic instability (pseudo Jahn-Teller

effect [11]) that leads to cation displacement (displacement of Ti atoms). There has been

significant research on understanding the distortion in perovskites, whereby they have

been classified based on the polyhedral volumes of the A and B cation [12, 13], which is

useful when both cation displacement and octahedral tilting occur simultaneously. The

most common distortion mechanism is the octahedral tilting, which is a tilting of the BO6

octahedra keeping the corner-sharing connectivity. When an octahedron in the perovskite

structure is tilted in a particular direction, it causes tilting of the neighbouring octahedra.

This type of distortion is observed at lower t values when the A cation is too small for

the cubic BO3 corner-sharing octahedral network.
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Table 1.1: Perovskite structure and the corresponding tolerance factor [14, 15].

t Structure Explanation Example

>1
Hexagonal/
Tetragonal

A ion too big or B ion
too small

BaNiO3, BaTiO3 (t =1.0617)

0.9-1 Cubic
A and B ions have
ideal relative sizes

SrTiO3

0.71-0.9
Orthorhombic/
Rhombohedral

A ions is too small or
B ion is too big

GdFeO3(Orthorhombic),
CaTiO3(Orthorhombic)

∼0.71
Different struc-
tures

A and B have similar
ionic radii

Ilmenite, FeTiO3 (Trigonal)

The work by Glazer [16] contains a complete description of all possible octahedral

tilt systems existing in perovskite materials. The tilts are indicated symbolically by a

set of three letters referring to the axes in the order [100], [010], [001], which in general

case of unequal tilts is denoted as abc. Equality of tilts is denoted by repeating the same

letter, e.g. aac means equal tilts about [100] and [010] with a different tilt about [001].

A superscript is used to indicate zero-tilt (0), in-phase tilt (+) or anti-phase tilt (-) of

subsequent layers of octahedra. For instance, the cubic structure is represented as a0a0a0,

tetragonal as a0a0c+ or a0a0c− and orthorhombic as a+b−b− or a+a−a− or a0b−b−. The

octahedral tilting in [100] direction leads to orthorhombic symmetry in CaTiO3 [5, 17]

and trifold tilting of octahedra leads to hexagonal symmetry. There are 23 possible tilt

systems leading to different symmetry space groups, a complete list of these can be found

in Ref. [16].

These structural distortions, cation displacements and octahedral tilts are of inter-

ests because they have important effects on the physical properties of perovskite com-

pounds, particularly their electronic, ferroelectric and magnetic properties. The diversity

in perovskite compositions and structures leads to various functional properties such as

(anti)ferroelectricity [10, 18], (anti)ferromagnetism [19], piezoelectricty [20, 21], colossal

magnetoresistance [22], charge and orbital ordering [23].

Based on the kind of A, B and X ions, perovskites can be primarily divided into three

classes:

• Inorganic perovskites
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• Hybrid organic-inorganic perovskites

• Molecular perovskites

A brief introduction to each of them is given below.

1.1 Inorganic perovskites

In inorganic perovskites, A and B are inorganic metal ions and X is a charge balanc-

ing anion. The area of inorganic perovskites is a broad and growing field due to their

technologically-relevant properties such as ferroelectricity (as observed in BaTiO3 [9,10]),

piezoelectricity (as observed in PbZrxTi1−xO3 [18]), colossal magnetoresistance [22], non-

linear optics (as observed in LiNbO3 [24, 25]). The coupling between orbital, lattice and

spin degrees of freedom in these perovskites makes them interesting, both at fundamental

and applied perspectives. In this context, perovskite multiferroics, which exhibit coupled

electric, magnetic and/or structural order parameters in the same structural phase are of

fundamental interest. A brief description of ferroelectricity and ferromagnetism is given

below.

Ferromagnetic materials undergo a phase transition from a high-temperature para-

magnetic phase (where the magnetic dipole moments of atoms are randomly aligned)

to a low-temperature ferromagnetic phase (which exhibits a non-zero spontaneous mag-

netisation in the absence of magnetic field). These magnetic dipole moments are aligned

parallel to each other for a ferromagnet, but can also be aligned anti-parallel to each other

in what is called an antiferromagnet. A ferroelectric material exhibits a phase transition

from a high-temperature paraelectric phase (an ordinary dielectric) to a low-temperature

ferroelectric phase that has a spontaneous polarisation whose direction can be switched

by an applied electric field. In perovskite ferroelectrics, there is a structural distortion

to a lower-symmetry phase accompanied by the off-centre shifting of the A cation (as

in BiFeO3 [19]) or the B cation (as in BaTiO3 [9]), below the Curie temperature. The

spontaneous polarisation derives largely from this shift.
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A multiferroic material exhibits two or more “ferro” properties (ferroelectricity, ferro-

magnetism, and/or ferroelasticity) in the same phase. The coupling between the magnetic

and ferroelectric order parameter gives rise to magnetoelectric effects, where the magneti-

sation can be tuned by applied electric field and vice versa. These materials present oppor-

tunities for potential applications in information storage, spintronics, and sensors. There

has been very active recent research on multiferroic perovskites, for instance, YMnO3

(antiferromagnetic ferroelectric in hexagonal phase [26, 27] used in non-volatile memory

devices [28]), BiMnO3 (ferromagnetic ferroelectric in monoclinic phase [29–31] used in data

storage [32] and spintronics [33]) and BiFeO3 (antiferromagnetic ferroelectric in rhombo-

hedral phase [19]). In the present thesis, I focus on bismuth ferrite perovskite which is

the most widely studied multiferroic as it exhibits a ferroelectric Curie temperature Tc

of 1103 K, and an AFM Néel temperature TN of 643 K, making it a promising room-

temperature multiferroic [19], with potential applications in data storage, spin valves,

spintronics and sensors [34]. The ferroelectric property of BiFeO3 can be exploited for ef-

fective separation of oppositely charged photogenerated charge carriers, making it suitable

for photovoltaic and photocatalytic applications. A brief introduction to the principles of

photocatalysis is given later in the chapter. The band gap of BiFeO3 in its rhombohedral

ground state is a bit too wide for visible-light photocatalysis. In Chapter 3, I discuss

routes to engineer this band gap via BiCoxFe1−xO3 solid solutions whilst conserving the

ferroelectric properties.

In the same context, piezoelectric materials, which can generate electric field/charges

by subjecting to a mechanical force (direct piezoelectric effect), or exhibit a mechani-

cal strain under an applied electric field (converse piezoelectric effect) are important for

numerous applications, e.g., ultrasonic medical imaging, underwater acoustics and ac-

tuators etc. Relaxor ferroelectrics such as Pb(Mg1/3Nb2/3O3)-xPbTiO3 (PMN-PT), a

solid-solution of relaxor Pb(Mg1/3Nb2/3O3) (PMN) and ferroelectric PbTiO3 (PT), shows

a giant piezoelectric response across the morphotropic phase boundary and thus has po-

tential applications in capacitors and piezoelectric devices [35,36]. The term morphotropic
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phase boundary refers to the phase transition between the tetragonal and the rhombohe-

dral ferroelectric phases as a result of changing the composition or by applying mechanical

pressure. In this thesis (end of chapter 3), I will attempt to explain the tetragonal to

monoclinic phase transition in PMN-PT, which is accompanied by a giant piezoelectric

response. This part of my work was in collaboration with Dr. Gareth Nisbet (at Diamond

Light Source, Didcot) who performed the experiments.

1.2 Hybrid organic-inorganic perovskites

Hybrid organic-inorganic perovskites (HOIP) includes an organic cation such as CH3NH+
3

(MA+, methylammonium cation), HC(NH2)+
2 (FA+, formamidinium cation) at the A site,

an inorganic metal at the B site (Pb2+, Sn2+) and a halogen (F−1, Cl−1, Br−1, or I−1) or

an organic anion (CHOO)−1, (C2N3)−1 at the X site. Since the organic cation must fit

into the cuboctahdedral cage formed by the BX6, the selection of organic molecules for

the A site is limited. An estimate based on the tolerance factor for a cubic perovskite

(t = 1) with B cation as Pb2+ (rPb = 1.19 Å) and X anion as I−1 (rI = 2.20 Å) [37],

gives that the radius of the A cation should be ∼ 2.6 Å. Given that C-C or C-N bond

lengths are of order 1.4 Å, the organic molecules consisting of two or three atoms will

fit into the perovskite structure, making the MA+ cation an appropriate choice for the

HOIP structure. In fact, the most widely studied HOIP is methylammonium lead iodide

(MAPI) due to its high power conversion (photon to current) efficiency of ∼19.3% [38].

MAPI exhibits useful optoelectronic properties such as high carrier mobility, long carrier

diffusion lengths [39,40], high absorption coefficients and widely tunable band gap (from

1.5 to 2.3 eV) [41,42]. HOIPs are easy to synthesise from solution based methods enabling

cost-effective and scalable production with remarkable optoelectronic properties [43].

However, a limitation on large-scale commercialization of these HOIP in photovoltaic

industry is imposed by the inherent material instability. MAPbI3 films are known to be

quite sensitive to moisture causing decompositon into lead iodide and methylamine iodide,
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leading to fast device degradation [44, 45]. The mixed-cation HOIP, where the A-site is

randomly occupied by a combination of different cations, e.g. MA+, FA+ or the inorganic

Cs+, show improvement in stability whilst maintaining the power conversion efficiency

[46]. In Chapter 4, an initio molecular dynamics study of the mixed-cation mixed-halide

perovskite (FAPbI3)0.875(MAPbBr3)0.125 is presented. The structural, thermodynamic and

vibrational properties are calculated and compared with the pure compounds FAPbI3 and

MAPbBr3.

1.3 Molecular perovskites

The use of molecular ions at both the A and X sites leads to new geometric and structural

degrees of freedom. The use of molecular X-site anions increases the size of the BX6

octahedra, such that molecular A-site cations with varying compositions and sizes can be

used to form these molecular perovskites. The use of molecular moieties has important

ramifications for the perovskite properties. For instance, molecular A-site cations enable

the temperature and pressure dependent order-disorder phase transitions related to the

disorder of the molecular A cation [47, 48]. In Chapter 4, I study the structural and

thermodynamic properties of molecular perovskite series [(nPr)3(CH3N)]M(C2N3)3 with

M = Mn, Co, Ni, nPr = n-propyl and (C2N3)− = dicyanamide ion, and connect my results

to the experiments performed by Dr. Gregor Kieslich’s group (at Technical University of

Munich, Germany). Using this molecular perovskite series (with M = Mn, Co, Fe, Ni,

Zn, Cd, Ba, Sr, Ca, Hg, or Mg) as a model system, I study the effect of the M2+ metal

species on the mechanical properties via lattice dynamics calculations. A relationship

between geometric factors and mechanical properties that agree with chemical intuition

is observed which allows us to contribute to the long-term goal, the rational design of

materials with targeted macroscopic properties.
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1.4 Applications of perovskites

In this section, I briefly discuss some of the applications of perovskites studied in this

thesis. I focus on photocatalytic, photovoltaic, and barocaloric applications, which are

relevant to the work presented in chapters 3, 4 and 5, respectively.

1.4.1 Perovskite materials for photocatalysis

The solar water splitting is an uphill and nonspontaneous reaction because the Gibbs free

energy is positive, 237.3 kJ/mol under standard temperature and pressure [49]. Photo-

catalytic water splitting reaction involves excitement of electrons from the valence band

(VB) to conduction band (CB) by absorption of a photon of energy greater than the band

gap (Eg) of the material. The generated electrons and holes migrate to the surface. The

water molecules get oxidised by holes to give oxygen gas (oxygen evolution reaction, OER)

and protons. The protons then get reduced by electrons to give hydrogen gas (hydrogen

evolution reaction, HER).

H2O←→2H+
(aq) +

1

2
O2(g) + 2e− (OER)

2H+
(aq) + 2e− ←→ H2(g) (HER)

(1.2)

The overall water splitting reaction is shown schematically in Figure 1.2. When using a

single-semiconductor photocatalyst for the water splitting reaction, the conduction band

minimum (CBM) should be more negative than the redox potential of H+/H2 (0 V vs. nor-

mal hydrogen electrode (NHE)) and the valence band maximum should be more positive

than the redox potential of O2/H2O (1.23 eV vs. NHE). Thus, the minimum band gap to

drive water splitting is 1.23 eV. However, the band gap and band alignment requirements

are different for other photocatalytic set ups, like Z-schemes, tandem photolectrochemical

cells, etc. A more detailed discussion of these requirements will be given in Chapter 3,

in the context of our study on BiFeO3. In addition to the appropriate band alignment, a

good photocatalyst material should be:
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• a good absorber of light to generate electron-hole pairs;

• capable of carrier separation;

• stable in water;

• inexpensive and non-toxic.

Figure 1.2: Schematic representation of overall water splitting reaction on a
semiconductor. Reproduced with permission from Ref. [50].

Perovskite materials can be used as photocataysts for water splitting as some of the

perovskites have suitable band structure that are favourable for either half reaction or the

overall water splitting reaction. The flexible compositions and constituent elements in A

or B site offer electronic structure and band gap engineering. The electronic structure of a

perovskite photocatalyst can be engineered by substitution and doping. For instance, Rh-

doped SrTiO3 can be used for visible light photocatalysis [51]. The band gap of SrTiO3

(3.2 eV) is reduced by doping Rh at the Ti site, resulting in H2 evolution under visible

light irradiation. Some of the perovksites have ferroelectric and/or piezoelectric properties

which can further enhance their photocatalytic abilities by promoting effective charge

separation [52,53]. For instance, introducing a ferroelectric perovskite material (BaTiO3)

in TiO2/BaTiO3 heterojunctions is a potential strategy to improve photoelectrochemical

cell performance [54].
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1.4.2 Perovskite materials for photovoltaic solar cells

The rapid increase in the power conversion efficiency (PCE) of perovskite solar cells

(PSC) has made them a rising star in the photovoltaic industry. Figure 1.3 (taken from

the national renewable energy laboratory (NREL) solar cell efficiency chart) demonstrates

the efficiencies achieved with perovskite-based devices over recent years, in comparison to

various other photovoltaic technologies. The graph shows a spectacular rise for perovskites

based solar cells compared to other photovoltaic technologies over a relatively short period

of time. In 2020, perovskite based solar cells reached PCE of 25.5 %, which is comparable

to silicon-based solar cells.

Figure 1.3: PCE of solar cells over years for a range of photovoltaic technologies. This
figure is taken from Ref. [55].

Typically, a PSC consists of five parts and can be classified into two types depending

upon the arrangement of the electron transport layer (ETL) and hole transport layer

(HTL), where the electrons and holes are injected into: n−i−p (conventional) or p−i−n

(inverted) structure (Figure 1.4). The function of ETL is to enable efficient electron

collection and transportation from the perovskite layer to its respective electrodes. The

most commonly used ETL is TiO2 as it has a band alignment that favours transfer of

electrons. Perovskites are used as the light-absorbing layer that creates excitons or free
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carriers. Lastly, there is a counter electrode (gold, silver or carbon) to ensure an ohmic

contact.

Figure 1.4: Schematic representation of a) conventional, and b) inverted perovskite
based solar cells

The first use of a HOIP as a light absorber for solar cell dates back to 2009 by

Kojima et al. [56]. HOIPs feature low-cost solution-based processability and excellent

optoelectronic properties. They exhibit a high absorption coefficient of 105 cm−1 in the

visible wavelength range [57], low exciton binding energy (∼20 meV) [58], and a finely

tunable bandgap [59]. In order to enhance the device performance and structural stability,

cation and halide substitution are a convincing approach. A variety of possible HOIPs

employed for photovoltaic applications and their corresponding PCE parameters is nicely

tabulated in Ref. [60].

1.4.3 Perovskite materials for barocalorics

Materials with large solid-state caloric effects induced by external field (mechanical, elec-

tric or magnetic field) are needed for the development of eco-friendly solid-state refrigera-

tion technologies [61,62]. The refrigeration capacity is associated with a large isothermal

entropy change or with a large temperature change induced by external stimuli, such as

mechanical stress-namely, uniaxial strain (elastocaloric effect) [63] or hydrostatic pressure

(barocaloric effect) [64] or electric field (electrocaloric effect) [65, 66] or magnetic field

(magnetocaloric effect [67]), effects that are enhanced near to phase transitions [61,68].
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The presence of organic moieties in molecular perovskites enhance their chemical di-

versity, structural richness and flexibility, giving rise to novel multi-functional proper-

ties. Molecular perovskite [TPrA][Mn(dca)3] (TPrA = tetrapropylammonium cation,

(CH3CH2CH2)4N+; dca = dicyanamide anion, [N(CN)2]−) exhibits a giant barocaloric

effect (i.e. a large isothermal entropy change driven by applied pressure) near room tem-

perature and under easily accessible pressure (P<70 bar) [68]. [TPrA][Mn(dca)3] shows

a phase transition from polymorph I to polymorph II at Tt ∼ 330 K, accompanied by a

large entropy change (∆S), see Figure 1.4 taken from Ref. [68].

Figure 1.5: Isobaric entropy change as a function of temperature in the low pressure
range, related to the first-order phase transition from polymorph I or II. Reproduced

with permission from Ref. [68]

The phase transition temperature (Tt) gets progressively displaced towards higher tem-

perature when increasing pressure. This variation of Tt with pressure gives the barocaloric

coefficient (δTt/δP ). The entropy curves shift towards higher temperatures as pressure

increases. The associated barocaloric effect for this material can then be defined as the

isothermal entropy change induced by hydrostatic pressure. A similar giant reversible

barocaloric effect in [(CH3)4N]Mn[N3]3 near its cubic-monoclinic structure transition has
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also been reported [69]. Thus, molecular perovskites offer new interesting opportunities

for the solid-state cooling applications due to promising barocaloric effects.

1.5 Overview of the thesis

The overall objective of this thesis is to understand the functional behaviour of a range

of perovskites from a knowledge of their crystal and electronic structures, via quantum

mechanical calculations. The perovskites studied here are of fundamental importance and

exhibit various technological applications. The chapters of the thesis are organised based

on the kind of perovskites explored for various technological applications and we connect

our results to experiments wherever possible. After a brief introduction to the work here,

I give an overview of methods and formalism used in this thesis in Chapter 2.

In Chapter 3, I present a detailed analysis on electronic, ferroelectric and thermo-

dynamic properties BiCoxFe1−xO3 solid solutions, with 0 < x < 0.13, using density

functional theory. I also discuss the potential of this perovskite solid solution in visible-

light photocatalysis by computing the band alignment and comparing it with the redox

potentials for water-splitting. The later sections of this chapter focuses on the phase tran-

sitions observed in relaxor ferroelectric PMN-PT accompanied with a giant piezoelectric

response.

In Chapter 4 and 5, I focus on HOIPs and molecular perovskites respectively. In Chap-

ter 4, I present an AIMD investigation of the structural, thermodynamic and vibrational

properties of the mixed-cation mixed-anion perovskite (FAPbI3)0.875(MAPbBr3)0.125. In

Chapter 5, I focus on a new series of molecular perovskite and study its structural, ther-

modynamic and mechanical properties.

Finally, I summarise this thesis in Chapter 6 and present an outlook to opportunities

for future work.





Chapter 2

Methods and Formalism

The interactions between electrons, between nuclei, and between electrons and nuclei,

determine the ground state and excited state properties of atoms, molecules, thin-films,

surfaces and bulk materials. Most physical properties can be determined by calculating

the first and second derivatives of total energy, which is the sum of many-electron quantum

ground state energy and classical electrostatic nuclear interaction energy. For example,

first derivatives of energy with respect to atom positions, strain and magnetic field gives

forces, stress and magnetisation, and their second derivatives gives inter-atomic force con-

stants, elastic constants and magnetic susceptibility, respectively. The main problem lies

in determination of the quantum mechanical ground state of the many-electron system.

In this context, the development of DFT proposed by Walter Kohn [1,2], which maps an

interacting electron system to a system of independent electrons within an effective po-

tential, has lead to significant advances in the theoretical study of the material properties

with remarkably good agreement with experiment.

In this chapter, I briefly discuss the theoretical background and the computational

methods employed in this thesis. Section 2.1-2.6 gives a formal description for calculat-

ing the total energy as prescribed within the DFT. The linear response theory used to

determine the response of a system to external perturbation is described in Section 2.7.

It further describes the frozen phonon method to calculate vibrational frequencies. For

16
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real physical systems, atoms are in constant motion and their trajectories are of practical

interest. Therefore, the time and temperature dependence (T > 0 K) of atomic motion

needs to be taken into account to calculate dynamic properties of the system. We briefly

discuss AIMD methods at the end of this chapter (Section 2.9).

2.1 First-principles methods

The Hamiltonian of a system of interacting electrons and nuclei is given by:

Ĥ = − ~2

2me

∑
i

∇2
i −
∑
i,I

ZIe
2

|ri −RI |
+

1

2

∑
i 6=j

e2

|ri − rj|
−
∑
I

~2

2MI

∇2
I +

1

2

∑
I 6=J

ZIZJe2

|RI −RJ |
(2.1)

where ~ is Planck’s constant, me and MI are the masses of electron and the Ith nucleus

respectively, e is electronic charge, and ZI is the atomic number of the Ith nucleus. ri

and RI are the position vectors of the ith electron and Ith nucleus respectively. The first

and the third term of Equation 2.1 represent the kinetic (Te) and potential energies (Vee)

of electrons respectively, fourth and fifth terms are the kinetic and potential energies

of nuclei respectively. The Coulomb interaction energy between nuclei and electrons is

included in the second term, which acts like an external potential (Vext) to the electronic

system. Thus, one can determine the ground state properties of a system by solving a

time-independent Schrödinger equation:

Ĥψ(R, r) = εψ(R, r) (2.2)

where ε and ψ(R,r) are the eigenvalue and the corresponding eigenfunction of the sys-

tem. Since, the mass of the nuclei (MI) is significantly larger than the mass of electron

(MI

me
' 1836), the kinetic energies of the nuclei are small and can be ignored. Thus, the

time scales associated with the motion of the nuclei are much slower than those associ-

ated with the electrons. The electrons and nuclei are decoupled within this approximation,

called as the Born-Oppenheimer approximation. The many-body wavefunction can now
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be written as a product of electronic and nuclear wavefunction.

ψ(R, r) = χ(R)φ(R, r) (2.3)

Substituting Eq. 2.1 and Eq. 2.3 in Eq. 2.2,

[−~2

2me

∑
i

∇2
i −

∑
i,I

ZIe
2

|ri −RI |
+

1

2

∑
i 6=j

e2

|ri − rj|
+

1

2

∑
I 6=J

ZIZJe2

|RI −RJ |

]
φ(R, r) = E(R)φ(R, r)

(2.4)

and [
−
∑
I

~2

2MI

∇2
I + E(R)

]
χ(R) = εχ(R) (2.5)

E[φ] =

〈
φ
∣∣∣Ĥe

∣∣∣φ〉〈
φ|φ
〉

Ĥe = T̂ + V̂ee + V̂ext

(2.6)

The ground state wavefunction or the lowest energy state φ0(r) is determined by finding

the minimum of total energy (Eq. 2.6) with all the parameters defining φ(r), with the

constraint that φ must obey the particle anti-symmetry and conservation laws. The

Born-Oppenheimer approximation hence reduces the problem to solving for the electronic

ground state (Eq. 2.4) for a given set of nuclei positions. However, for a system with

Ne number of electrons, φ(R, r) is a many body wavefunction which cannot be solved

exactly, and hence further approximations have to be employed to solve the many body

Hamiltonian.

2.2 Hohenberg and Kohn theorems

The work of Hohenberg-Kohn in 1964 [1], and Kohn-Sham in 1965 [2] led to the for-

mulation of the DFT, a theory of correlated many-body systems. Hohenberg and Kohn

proposed two theorems to formulate the DFT as an exact theory for ground state of

many-body fermionic systems.
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Theorem I

For any system of interacting particles in an external potential Vext(r), the potential Vext

is determined uniquely, except for a constant, by the ground state particle density n0(r).

Therefore all properties of the system are completely determined if n0(r) is known.

Theorem II

A universal functional for the energy E[n] in terms of the density can be defined for any

external potential Vext(r). For any particular Vext(r), the exact ground state energy of the

system is the global minimum value of this functional, and the density n(r) that minimises

the functional is the ground state density n0(r).

These two theorems reduce the number of variables of a function from 3N to 3 variables

(in n(r)). As the total energy is a functional of ground state electron density, the theory

is known as density functional theory. The total energy functional is given by,

EHK[n] = T [n] + Eee +

∫
drVext(r)n(r) (2.7)

where, T [n] and Eee[n] are the kinetic and potential energies of interacting electron sys-

tem. These theorems by Hohenberg and Kohn make a significant contribution towards

calculating the ground state energy by reducing the minimization problem from 3N to 3

dimension. However, these theorems do not provide a practical scheme for determining

the ground state electron density or energy of an interacting electron system. Kohn and

Sham proposed an ansatz to determine the ground state energy density n0(r).

2.3 Kohn-Sham ansatz

In Kohn-Sham formalism [2], an interacting many-body system is mapped onto a fictitious

non-interacting system with same ground state energy density. The ground state density
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of electrons in the Kohn-Sham formalism is given as:

n(r) =
∑
σ

n(r, σ) =
∑
σ

Nσ∑
i=1

φσi
∗(r)φσi (r) (2.8)

The total energy can be written as,

EKS = Ts[n] +
1

2

∫
drdr′

n(r)n(r′)

|r − r′|
+

∫
drVext(r)n(r) + Exc[n]

= Ts[n] + EHartree[n] +

∫
drVext(r)n(r) + Exc[n]

(2.9)

where EHartree and Exc are the Hartree and exchange-correlation energies. Ts is the non-

interacting kinetic energy of electrons. The Kohn-Sham non-interacting single particle

Hamiltonian is,

ĤKS = − ~2

2me

∇2 + VKS(r),where

VKS(r) = VHartree(r) + Vext(r) + Vxc[n(r)]

(2.10)

The Kohn-Sham equation:

ĤKSφi = εiφi (2.11)

can be solved to self-consistency as illustrated in Figure 2.1.

The exchange-correlation interaction (Exc) is defined as the difference between the

exact energy and the energy from the Hartree model, i.e. it contains all non-classical

contributions to the electron-electron interaction.

Exc[n(r)] = T [n(r)]− Ts[n] + Eee[n]− EHartree (2.12)

The exact form of the exchange-correlation energy functional is not known and is approx-

imated as a local or non-local functional of energy density. These approximations are

discussed below.
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Initial guess
n(r)

n(r) = nold

Calculate effective potential
VKS = Vext(r)+VHartree(n)+Vxc(n)

Solve Kohn-Sham equations
[−1/2∇2 +VKS(r)]φi(r) = εiφi(r)]

Calculate electron density
n(r) =

∑
i |φi(r)|2 = nnew

Self- consistent?

|nnew − nold| < δtot

Output quantities
Energy, forces, stresses, eigenvalues,...

Yes

No

nnew = xnnew +

(1− x)nold

Figure 2.1: Flow chart showing self-consistency loop for the iterative solution of
Kohn-Sham equations.

Local density approximation (LDA): In this approximation, the exchange-correlation

energy density at each point is the same as that of a homogeneous electron gas of the

same density

ELDA
xc =

∫
drn(r)εhomo

xc (n(r)) (2.13)

where εhomo
xc (n(r)) is the exchange-correlation energy per particle of a homogeneous elec-

tron gas of density n(r) [2]. However, the corrections to the exchange-correlation energy

arising from inhomogeneities in the electron density about r are ignored, LDA describe
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many of the properties of weakly correlated systems like semiconductors and homoge-

neous electron gas fairly well. It fails when charge density changes very abruptly (e.g. for

molecules).

For inhomogeneous charge densities, the Generalized gradient approximation (GGA) is

used [70], which includes the information on the spatial variation in the electron density. It

overcomes the limitations of LDA by considering the dependence of εxc on charge density

as well as its gradient.

EGGA
XC =

∫
drn(r)εXC(n(r),∇n(r)) (2.14)

The GGA functional by Perdew, Burke and Ernzerhof (PBE) [70] is the most widely used

functional to simulate periodic materials with DFT as it features no empirical fitting

parameters. A modification of PBE is the PBEsol [71] functional, which is often used

to calculate equilibrium properties of bulk solids and their surfaces. The revised PBE

(revPBE) [72] functional is an extension of the PBE functional with some extra fitting

parameters and is typically used to simulate liquids, i.e. water. Most DFT calculations

reported in the present thesis were performed using the PBE functional.

Hybrid functionals : It includes a portion of exact exchange from Hartree-Fock (HF)

theory with exchange and correlation of DFT, where the exact exchange energy functional

is expressed in terms of the Kohn-Sham orbitals rather than density. Hybrid functionals

have further improved results than the GGA functionals. In the present thesis, I have

used Heyd-Scuseria-Ernzerhof (HSE) functional [73] to determine electronic structures

and band gaps. The HSE functional uses an error function screened Coulomb potential

to calculate the exchange portion of the energy.

EHSE
XC = aEHF

X (ω) + (1− a)EPBE,SR
X (ω) + EPBE,LR

X (ω) + EPBE
C (2.15)

where a is the mixing parameter, ω is an adjustable parameter controlling the extent

of short-range interactions, EHF,SR
X (ω) is the short-range Hartree-Fock exact exchange
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functional, EPBE,SR
X (ω) and EPBE,LR

X (ω) are the short and long range components of the

PBE exchange functional, and EPBE
C (ω) is the PBE correlation functional. For ω = 0 the

HSE exchange-correlation functional reduces to the PBE0 hybrid functional. For most

systems, a = 1
4

and ω = 0.2 (referred to as HSE06), gives accurate results.

2.4 DFT with periodic boundary conditions

In the preceding sections, the many-body Hamiltonian is mapped onto an effective single-

particle Hamiltonian, making approximations to the electron-electron interaction terms.

However, for a solid material, there are effectively an infinite number of electrons in

the static potential of an infinite number of nuclei. The translation periodicity of the

crystalline solid reduces this to the consideration of one unit cell with periodic boundary

conditions, which is explained in the following subsections.

2.4.1 Bloch theorem

F. Bloch [74] proved that the solutions of Schrödinger equation for a periodic potential is

of the form:

ψk(r) = uk(r)e
ik.r (2.16)

where uk(r) has the period of the crystal lattice with uk(r) = uk(r + T ). Here T is the

translation vector of the lattice. The wavefunction of a free electron has the form of a

plane wave ψ ∼ eik.r. The eigenfunctions of the wave equation for a periodic potential

are the product of a plane wave eik.r times a function uk(r) with the periodicity of the

crystal lattice. A monoelectronic wavefunction of the form (Eq. 2.16) is called a Bloch

wavefunction. This function can be expanded as any function that is periodic in three

dimensions, as a Fourier series in the form:

uk(r) =
∑
G

ck,G eiG.r (2.17)
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where the G vectors represent the points in the reciprocal lattice, defined by the condition

eiG.T = 1. Thus, the wavefunction with index k+G is identical to one wavefunction with

index k. Therefore, our problem reduces to finding solutions only for the values of k in

one unit cell in the reciprocal space, i.e., within the first Brillouin zone.

2.4.2 Basis sets

To solve Kohn-Sham equations, a basis set is needed to expand the Kohn-Sham wave-

functions. The most commonly used basis sets are plane waves, atomic orbitals or a

combination of both (plane waves + atomic orbitals). In this thesis, I used plane wave

basis set. Due to the simplicity and absence of Pulay forces, plane wave basis is widely

used for the description of single particle wavefunctions (φi) in metals or semiconductors.

The Kohn-Sham wavefunction in the plane wave basis is expanded as follows:

φi(r) =
∑

|G|<Gcut

Ci,(k+G)e
i(k+G).r (2.18)

where G is the reciprocal lattice vector and k is the Bloch wavevector. This expansion is

infinite in principle and hence needs to be truncated to make it computationally feasible.

A kinetic energy cutoff is used to truncate the set of G vectors. Thus, the reciprocal

vectors satisfy the condition:

~2

2me

|k +G|2 ≤ Ecut =
~2G2

cut

2me

(2.19)

The value of Ecut is determined by converging total energy with Ecut.

2.5 Pseudopotentials

The electrons that are tightly bound to the nucleus are called core electrons and have

highly localized wavefunctions that oscillate rapidly in space. The core electrons do not

take part in chemical bonding. Valence and semi-core electrons are not tightly bound to
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nuclei and actively take part in chemical bonding. For an all-electron DFT calculation,

one would require a very large number of plane waves for an accurate description of the

core states, making it computationally expensive. A pseudopotential is thus used, which

replaces the potential of core electrons and nucleus of an atom with a hypothetical poten-

tial to avoid the explicit treatment of core electrons. Pseudopotentials are constructed by

considering a cutoff radius (rc) beyond which the pseudo-wavefunction matches exactly

with the true wavefunction [Figure 2.2].

Figure 2.2: Schematic representation of an all electron potential (dotted line) and
pseudopotential (solid line) along with corresponsing wavefunctions [75].

If the charge of each pseudo-wavefunction is equal to the charge of actual wavefunc-

tion in the region r < rc, the pseudopotential is known as norm-conserving pseudopo-

tential [76]. Outside the core, the pseudo-wavefunction and all electron wavefunction are

identical. Ultrasoft pseudopotential includes an augmented charge inside the core region

to conserve the total charge while making the potential smooth [77]. Ultrasoft pseudopo-

tentials are computationally more efficient, and maintains the accuracy and transferability.

The information about the core electrons is lost in the pseudopotential method which

can be probed by several experimental techniques. The projector augmented wave (PAW)

method combines ideas from the pseudopotential method and from the all-electron linear

augmented plane-wave (LAPW) method. In the PAW method [78,79], the rapidly oscillat-

ing wavefunctions are transformed into smooth wavefunctions providing a way to calculate
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all-electron properties from the smooth wavefunctions. It is an all electron method which

provides the full wavefunctions, and the potential is determined from the full charge den-

sities. This method is used in performing first-principles molecular dynamics simulations.

2.6 Dispersion corrections

Dispersion forces, also referred to as van der Waals (vdW) forces, can be classically

visualised as the instantaneous interaction between dipoles induced by charge fluctua-

tions [80,81]. The vdW interactions between atoms and molecules decay rapidly with the

distance between interacting particles (as −1/R6) and play an important role in many

chemical systems. These interactions are missing in the standard exchange-correlation

functional used in DFT and are important to properly describe weakly bonded materials

or the adsorption of molecules on surfaces. In recent years, several methods have been

developed to include these dispersive interactions in DFT calculations. These interactions

are divided into two classes, (1) adding the dispersion interaction as semi-empirical correc-

tions on top of existing local functionals, and (2) to develop non-local exchange-correlation

energy functionals that can incorporate vdW interactions [82, 83]. In this thesis, I have

used the parametrised DFT-D2 scheme of Grimme [84,85] for accurate treatment of dis-

persion interactions at relatively low computational cost. Here, the Edisp is simply added

to EKS−DFT as explained in the first class. The total energy with dispersion correction is

given as:

EDFT−D2 = EKS−DFT + Edisp (2.20)

where EKS−DFT being the self-consistent Kohn-Sham energy and Edisp is the empirical

dispersion correction given as,

Edisp = −s6

Nat−1∑
i=1

Nat∑
j=i+1

Cij
6

R6
ij

fdamp(Rij) (2.21)

where Nat are the number of atoms in the system, C6 denotes the dispersion coefficient
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for atom pair (i, j), s6 is a global scaling factor that depends only on the approximate

functional used in KS-DFT, and Rij is the interatomic distance. To avoid double counting

for small Rij (dispersion interactions are already included in the DFT result at very small

distances), a damping function (fdamp) is used, given as,

fdamp =
1

1 + e−d(Rij/Rr−1)
(2.22)

where Rr is the sum of atomic van der Waals radii and the parameter d determines the

dispersion corrections to the total energy and is fixed to 20 by Grimme to give accurate

dispersion energies, but still maintaining negligible energies for typical covalent bonding

situations. The dispersion coefficient Cij
6 for a given pair of atoms i and j, is the geometric

mean of the individual coefficient.

Cij
6 =

√
Ci

6C
j
6 (2.23)

2.7 Phonons

Phonons are collective vibrations of atoms/ions in a crystal. Within the Born-Oppenheimer

approximation, the electrons remain in their ground state, and hence the total energy is

a function of ionic positions, E({RI}). To determine phonons from first-principles, the

most-common approaches are: (1) the frozen-phonon method, and (2) density functional

perturbation theory.

2.7.1 Frozen phonon approach

In the frozen phonon approach, the total energy and/or forces are calculated by displacing

the atoms (i.e., freezing the atomic displacements). The potential energy of the system
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on Taylor expansion in u is given by,

V = V0 +
∑
I,α

∂E

∂RI,α

∣∣∣
u=0

uIα +
1

2

∑
I,J,α,β

∂2E

∂RI,α∂RJ,β

∣∣∣
u=0

uIαuJβ +O(u3) (2.24)

where, uI is the displacement of the Ith atom from its equilibrium position (R0
I). At the

equilibrium position, forces acting on the atoms are zero, thus, the second term of the

Eq. 2.24 is zero. Ignoring the constant terms V0 and O(u3), force constant matrix KIJ,α β

is given as:

V =
1

2

∑
I,J,α,β

∂2E

∂RI,α∂RJ,β

∣∣∣
u=0

uI αuJ β

=
1

2

∑
I,J,α,β

KIα,Jβ uIαuJβ

(2.25)

Solving the equation of motion for harmonic oscillator,

MI
∂2uIα
∂t2

= −
∑
J,β

KIα,JβuJβ (2.26)

assuming the time dependence of uIα to be,

uI(t) = uIe
iωt (2.27)

ω2MI ûIα =
∑
J,β

KIα,JβûJβ (2.28)

Solving the above eigenvalue equation, gives phonon frequencies (ω) and eigenvectors (û).

For a given N atom system, the force constant matrix is 3N×3N dimensional and there

will be 3N normal mode frequencies. The structural stability of a crystal is determined

by the value of the phonon frequencies.

(1) ω2 > 0, the system is stable, the excitation of any phonon mode with frequency ω

increases the energy of the system.

(2) ω2 < 0, system is unstable, a finite amplitude of unstable phonon mode results in
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lowering of the total energy of the structure.

To determine phonons at q 6= 0 (q being phonon wavevector) using the frozen phonon

method, we have to consider large supercells commensurate with the q-vector and obtain

the full phonon dispersion. Thus, it is computationally expensive to compute phonons

at q 6= 0 with the frozen phonon method. Density functional perturbation theory is a

technique which overcomes this drawback of the frozen phonon method.

2.7.2 Density functional perturbation theory

Density functional perturbation theory (DFPT) is a linear response theory to compute

response functions (physical properties such as force, stress, phonons, dielectric constant

and Born effective charges) as the second derivative of total energy with respect to external

perturbation (λi). The first and second derivatives of energy are:

∂E

∂λi
=
∂Eion−ion

∂λi
+

∫
dr
∂Vext(r)

∂λi
n(r)

∂2E

∂λi∂λj
=
∂2Eion−ion

∂λi∂λj
+

∫
dr
∂2Vext(r)

∂λi∂λj
n(r) +

∫
dr
∂n(r)

∂λi

∂Vext(r)

∂λj

(2.29)

To obtain ∂n(r)/∂λi, we linearize Eq. 2.8

∆n(r) = 2Re

Ne/2∑
i=1

φ∗i (r)∆φi(r) (2.30)

Variation in Kohn-Sham wavefunction can be evaluated by solving first-order perturbation

theory:

(HKS − εi)|∆φi
〉

= −(∆VKS −∆εi)|φi
〉

(2.31)

where ∆εi =
〈
φi|∆VKS|φi

〉
is the first-order variation in Kohn-Sham eigenvalues. The

change in Kohn-Sham effective potential is given as:

∆VKS(r) = ∆Vext(r) + e2

∫
dr′

∆n(r′)

|r − r′|
+

∫
dr′

∂2Vxc(r)

∂n(r)∂n(r′)
∆n(r′) (2.32)
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The response of the electron density to external perturbation depends on the coupling

between occupied and empty electronic states, Eq. 2.31 can thus be defined in terms of

empty states as,

(HKS − εi)|∆φi
〉

= −P̂empty∆VKS|φi
〉

(2.33)

where P̂empty is the projection onto the empty states manifold and is defined as,

P̂empty = 1− P̂occ; P̂occ =
Ne∑
i=1

|φi
〉〈
φi| (2.34)

By solving the set of linear equations (Eq. 2.31 and 2.33), one can calculate relevant

response properties of the system efficiently and with reasonable accuracy. KIα,Jβ can be

evaluated using DFPT by calculating the second derivative of total energy with respect

to atomic displacements. The calculations of phonon frequencies at arbitrary q-vectors

can be performed using DFPT without introducing supercells.

2.8 Polarisation

A ferroelectric material is characterised by a spontaneous polarisation whose direction

can be switched by an applied electric field. For finite systems such as molecules, the

polarisation is determined from the dipole moment d, provided that the molecule carries

no net charge. The dipole moment, d, of a collection of charges, qi, at positions ri is

defined as:

d =
∑
i

qiri (2.35)

However, calculation of the spontaneous polarisation in a periodic solid is not straight-

forward. Even for the simplest case of one-dimensional chain of alternating cations and

anions ±q (Figure 2.3), the direction of polarisation depends on the choice of unit cell.

The multi-valued polarisation is a consequence of the periodicity of the solid. Within

the modern theory of polarisation [86], the multivaluedness of polarisation is solved by

considering the change in polarization between the polar and non-polar phases which is
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uniquely defined for the system. While the absolute value of polarisation in a periodic

solid is multi-valued, the change in polarisation is single-valued and well defined. The

change in polarisation can be described as:

∆P = P (1)− P (0) =

∫ 1

0

dλ
dP

dλ
(2.36)

where λ is a parameter that describes adiabatic change in the structure [87]. For polar

materials λ = 1, and λ = 0 for the non-polar phase. Thus, the spontaneous polarisation

is the difference in polarisation between the final (polarised) and initial (unpolarised)

states. For a given crystal system, the total polarisation can be calculated as a sum of

ionic and electronic contributions. The ionic contribution is obtained by summing the

product of the position of each ion in the unit cell (with a given choice of basis vectors)

with the nominal charge of the ionic core. The electronic contribution to the polarisation

is calculated as a geometric phase or Berry phase of the electronic Bloch wavefunctions.

A complete description on the Berry phase method can be found in Ref. [88].

Figure 2.3: One dimensional chain of alternating cation and anion. The dashed lines
show two representative unit cells.

The amount of charge that effectively contributes to the polarisation of the system

during the displacement of ions, called the Born effective charge (BEC), is calculated

as change in polarisation divided by the amount that ion is displaced. BEC is a tensor

quantity and its diagonal elements are typically larger than the formal charge of the ion.

The BEC tensor for atom j, (Z∗j,αβ) is defined as the derivative of the polarisation P with

respect to the atom coordinates (at zero electric field):

Z∗j,αβ =
∂Pα
∂uj,β

∣∣∣∣
ε=0

(2.37)
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where α and β are Cartesian indices.

2.9 Molecular dynamics

For real systems, the natural motion of atoms at finite temperature, and their trajectories

are of practical interest. Studying the dynamics of atoms is useful in various fields of

science, i.e. materials science, condensed matter physics, biophysics, chemical physics,

statistical mechanics, etc. In this section, I provide a brief introduction to molecular

dynamics theory used to compute equilibrium and thermodynamic properties of system

at finite temperature.

The dynamics of the system, characterised by the wave function Ψ(R, r; t) is deter-

mined by solving the time-dependent Schrödinger equation:

i~
∂

∂t
Ψ(r, R; t) = H(r, R)Ψ(r, R; t) (2.38)

where i =
√
−1. The time-independent solution to the Schrödinger equation gives sta-

tionary states, with energy ε(R) associated with the electronic wavefunction ψk(r, R) and

k is a quantum number associated with the eigenstates and eigenvalues.

He(r, R)ψk(r, R) = ε(R)ψk(r, R) (2.39)

The total wave function can thus be written as a product of time-dependent nuclear wave

function χk(R; t) and stationary electronic wave function ψk(r, R).

Ψ(r, R; t) =
∞∑
k=0

χk(R; t)ψk(r, R) (2.40)

This expansion is exact and does not involve any approximations, which makes it too

complex to solve directly. However, using the Born−Oppenheimer approximation, the

motion of electrons and nuclei can be decoupled because of the huge mass difference
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between them, and the adiabatic approximation which assumes that the electronic wave-

functions adapt quasi-instantaneously to the variation of the nuclear configuration. The

electronic solution is obtained from the DFT (quantum mechanical solution) and nuclei

being heavier are approximated using classical Newtonian mechanics. This method is

termed as ab initio molecular dynamics (AIMD) since the ground-state electronic energy

is computed using DFT for each nuclear configuration. Thus, one has to solve the set of

Newton equations of motion with the forces derived from ab initio DFT.

MIR̈I = − ∂φ

∂RI

(2.41)

where MI are the nuclear masses and the dots indicate the time derivative. In an AIMD

trajectory, several nuclear configurations are explored and performing a self consistent

calculations on each of the configurations is computationally expensive even for small

system sizes.

2.9.1 Car-Parrinello molecular dynamics

Car-Parrinello molecular dynamics (CPMD), proposed by Roberto Car and Michele Par-

rinello [89], was the first method to combine molecular dynamics simulations of atomic and

molecular systems with electronic structure calculations. The electronic structure prob-

lem and the dynamics of atoms are solved simultaneously by Newton’s equations. This

method introduces the electronic degrees of freedom as (fictitious) dynamical variables,

thereby, replacing the single-particle Kohn-Sham orbitals with fictitious time-dependent

classical fields. Therefore, an explicit electronic minimization at each timestep is not re-

quired after an initial electronic minimization is performed. The fictitious dynamics of

electrons keeps them on the electronic ground state corresponding to each new ionic posi-

tions traversed along the dynamics, giving accurate ionic forces. This fictitious dynamics

is used to keep the electrons close to the ground state, preventing the computationally

expensive self-iterative minimization at each time-step.
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2.9.2 Born-Oppenheimer molecular dynamics

The Born-Oppenheimer molecular dynamics (BOMD) method is based on the self-consistent

field (SCF) methods, based on the Born-Oppenheimer approximation [90]. The nuclear

and electronic degrees of freedom are well separated and the forces acting on atoms are

calculated at the self-consistent ground state. In BOMD, a full SCF calculation of the

wavefunction is therefore conducted at each timestep. The forces acting on each atom

are calculated at every timestep, t, based on the wavefunction and ionic positions. The

geometry at the next timestep, t+ ∆t is determined using Newton’s equation of motion,

using the Velocity Verlet algorithm. The electron wavefunction is minimised via matrix

diagonalization at each step of the trajectory. This procedure requires more computation

time than the Car-Parrinello scheme.

In the present thesis, I used CP2K package [91], which is an open source electronic

structure and molecular dynamics package to perform AIMD simulation on mixed-cation

mixed-anion perovskite (FAPbI3)0.875(MAPbBr3)0.125 (Chapter 4). For all first-principles

DFT simulations, I used Vienna ab initio simulation package (VASP) [92, 93], to calcu-

late the structural and electronic properties of Co-substituted BiFeO3 (Chapter 3) and

structural and lattice dynamics in molecular perovskites (Chapter 5).





Chapter 3

Electric polarisation effects in

inorganic perovskites

3.1 Introduction

In this chapter, I focus on inorganic ferroelectric perovskites. Here, I present a de-

tailed analysis on electronic, ferroelectric and thermodynamic properties of pure and

Co-substituted BiFeO3, using DFT. At the end of the chapter, there is a short section

focusing on relaxor ferroelectric, PMN-PT. Our results on Co-substituted BiFeO3 were

written in the form of an article and submitted to Advanced Theory and Simulations. Our

results on relaxor ferroelectric, PMN-PT were published in an article in Physical Review

Materials.

Multiferroic materials, which simultaneously exhibit two or more ferroic properties

(ferromagnetism or anti-ferromagnetism, ferroelectricity, and ferroelasticity), are promis-

ing for a range of functional applications [94]. Bismuth ferrite (BiFeO3) is among the

few attractive multiferroic materials with both ferroelectric and (anti)ferromagnetic be-

haviour at room temperature. It has a high ferroelectric-to-paraelectric transition point

(Curie temperature TC = 1103 K) and an antiferromagnetic-to-paramagnetic transition

35
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point also well above ambient temperature (Néel temperature TN =643 K) [34]. The crys-

tal structure (Figure 3.1) of BiFeO3 at ambient conditions is rhombohedral (space group

R3c), with lattice parameter a = 5.64 Å and rhombohedral angle α = 59.4◦ [88, 95, 96].

The off-centre displacements of the Fe and O atoms with respect to the Bi sub-lattice re-

sult in a large spontaneous polarisation along the pseudo-cubic [111] direction, primarily

due to Bi translation along this direction [30,97]. The structure is also piezoelectric at all

temperatures below TC [19]. Its magnetic structure below TN is, in a first approximation,

G-type antiferromagnetic, which means that each Fe3+ spin is surrounded by antiparallel

spins on nearest-neighbour Fe sites, leading to zero net moment. But there is actually

a weak net magnetic moment per unit cell, which results from spin canting due to the

symmetry breaking induced by the ferroelectric polarisation [98]. These properties make

BiFeO3 a promising room-temperature single-phase multiferroic material, with potential

applications in data storage, spin valves, spintronics and sensors [34].

Figure 3.1: Crystal structure of BiFeO3 in a) hexagonal representation, and b)
rhombohedral representation (primitive cell). Colour scheme: Bi atoms are purple, Fe

atoms are brown and O atoms are red.

Recently, there has also been increasing interest in using BiFeO3 for photovoltaic

[99–104] and photocatalytic [105–115] applications. This attention is motivated by the

ferroelectric character of this oxide, because its internal electric field can be exploited to

aid the separation of oppositely charged photogenerated carriers and/or to engineer the

band alignment. Furthermore, BiFeO3 has a relatively narrow band gap (most commonly
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reported values for thin films range between 2.6 and 2.8 eV [116]), compared to most

other ferroelectric oxides, which makes it especially attractive for optical applications.

Since this band gap is still somewhat too wide for optimal visible light absorption, there

have been efforts to use chemical substitutions to make it narrower, while retaining or

improving the ferroelectric properties of the oxide. Peng et al. [117] showed that Co/Fe

substitution led to narrower band gaps (e.g. from 2.66 eV in pure BiFeO3 to 2.53 eV in

BiCo0.1Fe0.9O3). Recent experimental work by Machado et al. [102, 103] has shown that,

in addition to decreasing the band gap, Co/Fe substitutions can increase the spontaneous

polarisation of BiFeO3, which is a bonus for photovoltaic and photocatalytic applications.

We are particularly interested in the applications of BiFeO3 and BiCoxFe1−xO3 in pho-

tocatalysis. Despite having an adequate band gap, pure BiFeO3 does not seem to have the

right band alignment and therefore is inactive as a single-semiconductor photocatalyst for

the full water splitting reaction [114], but it can still be used for water photo-oxidation

biased by sacrificial agents (which are then reduced instead of the protons) [118]. BiFeO3

also shows promising behaviour when used as part of heterojunctions for water splitting

photocatalysis. For example, CdS/BiFeO3 heterojunctions forming a Z-scheme have been

found to be active as particulate photocatalysts for water splitting without using any

sacrificial agents [114]. Khoomortezaei et al. have demonstrated that photoanodes made

of WO3/BiVO4/BiFeO3 [111] or WO3/BiFeO3 [113] heterojunctions are efficient in photo-

electrochemical water splitting. BiFeO3 can also be useful as photocatalyst (or part of

them) for other reactions, such as the degradation of organic pollutants (see Ref. [108] for

a review). For example, studies involving both pure [106] and doped [112] BiFeO3, as well

as BiFeO3–containing heterojunctions (e.g. with C3N4 [109]) have shown that BiFeO3 is

an active photocatalyst for degrading rhodamine B, an organic dye that is widely used

as a colorant in the textile industry, and can be toxic to humans and animals if not re-

moved from wastewaters. Mushtaq et al. have shown that the photocatalytic activity of

BiFeO3 in the degradation of rhodamine B can be enhanced under mechanical vibrations
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thanks to piezo-photocatalytic effects [110]. In these applications, the ferroelectric char-

acter of BiFeO3 is beneficial to the photocatalytic process by aiding the separation of

photogenerated carriers. Recent work by Huang et al. [115] has shown that the effect can

be enhanced by electrically poling (via the application of an external electric field) the

BiFeO3 nanoparticles to align the ferroelectric domains, which accelerated the photocat-

alytic process by a factor of two compared with unpoled BiFeO3. There is also evidence

that the orientation of the ferroelectric polarisation can be used to engineer photocatalytic

response [107, 119]. The interplay between ferroelectric and photocatalytic properties in

this material clearly deserves further research attention at the theoretical level to improve

our fundamental understanding of these phenomena, which will help rationalising the

design of better BiFeO3−based photocatalysts.

In this chapter, we investigate the incorporation of cobalt in BiFeO3, as a route to

engineer its band gap, band alignment, and ferroelectric polarisation. We discuss the

thermodynamic aspects of the Co/Fe substitutions, in particular the stability of the solid

solution with respect to phase separation. We examine the impact of cobalt substitution

on the magnitude of the BiFeO3 spontaneous polarisation, which can improve charge

separation and can potentially be used to engineer the band alignment for photocatalysis.

We calculate the depolarisation field in a BiFeO3 thin film with surface parallel to the

polarisation direction, and discuss the interplay between polarisation and band alignment.

In the light of our simulation results, we also discuss conflicting experimental results in

the literature about the band gap, band alignment, and polarisation of these materials.

3.2 Methodology

The calculations are based on the density functional theory (DFT) as implemented in

the Vienna ab initio simulation package (VASP) [92, 93]. For relaxations, substitution

thermodynamics, and for the electronic structure calculations, we used a screened hybrid

functional, based on the functional by Heyd, Scuseria and Ernzerhof (HSE06) [73] which
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admixes the exact non-local exchange from the Hartree-Fock theory, screened at long-

range with a screening parameter 0.2 Å−1, into the local Perdew-Burke-Ernzerhof func-

tional [70] of the generalized gradient approximation (GGA). In our case, 20% Hartree-

Fock exchange (instead of the 25% proposed in the original HSE06 functional) was chosen,

following Shimada et al. [95], who showed that these settings led to good agreement with

experiment in terms of both structural parameters and band gap. In what follows we

refer to the screened hybrid functional used here simply as HSE. For the calculation of

Born effective charges and polarisations, which is computationally demanding, we used

the less expensive GGA+U approach, where Hubbard effective parameters (Ueff) of 4 eV

and 3.3 eV are applied to the 3d orbitals of Fe and Co, respectively; these values were

originally fitted to reproduce the oxidation energies of the corresponding binary transi-

tion metal oxides [120], and are found to transfer well to describe the properties of more

complex oxides of these metallic elements (e.g. Ref. [121,122]).

The projector augmented wave (PAW) method [78, 79] was used in all calculations

to describe the interactions between the valence electrons and frozen cores, by explicitly

treating 15 valence electrons for Bi, 8 for Fe, 9 for Co, and 6 for oxygen (these are

the VASP-recommended PAW pseudopotentials). We used an energy cutoff of 520 eV

to truncate the plane wave expansion of the Kohn-Sham wavefunctions, which is 30%

above the default cutoff for the employed PAW potentials, to minimise Pulay errors.

Brillouin zone (BZ) integrations were performed by sampling the reciprocal space using

a Γ-centred mesh of 4× 4× 4 k-points with reference to the rhombohedral unit cell, and

commensurate grids for supercells. The only exception were the structural relaxations,

using the HSE functional, of the different Co-substitution configurations in the 2× 2× 2

supercell, which were performed using Γ-only calculations as they are computationally

expensive to perform on a k-mesh. In all cases, the cell parameters were allowed to relax,

and the ions were moved towards equilibrium until the Hellmann-Feynman forces were

less than 0.01 eV/Å.
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The DFT calculations were all spin-polarised, and the G-type antiferromagnetic or-

dering was assumed, as well as collinear spin arrangements, i.e. the small effect of spin

canting in BiFeO3 was ignored. Both Fe(III) and Co(III) cations were initialised in high-

spin (HS) configurations, which the calculations conserved after convergence. Iron in

BiFeO3 is well known to be in HS Fe(III) configuration, unless high pressures are applied,

in which case a transition to low-spin (LS) takes place [34,123]. The spin state of Co (III)

(a d6 cation) in BiCoxFe1−xO3 is more disputed in the literature. In the pure-Co end-

member, BiCoO3, Co(III) is in HS state at ambient pressure and low temperatures [124].

But Ray et al. concluded, from magnetisation measurements, that dilute Co in BiFeO3

at low temperature (below 150 K) and low external magnetic field, was LS [125]. On the

other hand, from a combination of magnetic measurements and DFT calculations, Fan

et al. concluded that at ambient temperature the LS state of Co(III) in this system is

unfavoured, and their GGA+U calculations indicated that HS Co(III) was more stable

than LS Co(III) in BiFeO3 [126]. Our own test calculations using the HSE functional in

the supercell with one Co substitution showed that HS Co(III) is more stable than LS

Co(III) in BiFeO3, by ∼0.2 eV. Therefore, we have used HS Co(III) in all our calculations.

The symmetrically distinct Co substitution configurations were found using the SOD

(Site Occupancy Disorder) program [127,128]. Two configurations are considered equiva-

lent if they are related by a symmetry operator, and the group of symmetry operators of

the supercell consists of the original symmetries of the unit cell and their combinations

with supercell translations. The DFT energies of the symmetrically independent configu-

rations were used to fit an effective Hamiltonian, to then perform Monte Carlo simulations

in a large (10 × 10 × 10) supercell with the same composition, BiCo0.125Fe0.875O3, using

the GULP code [129, 130]. At each step of Monte Carlo simulation, a configuration is

created by randomly swapping a pair of atoms, which corresponds to an energy difference

∆E. The new configuration is accepted, following the Metropolis algorithm [131], with

probability p = min(1, exp(−∆E/kBT )), where kB is Boltzmann’s constant and T is the

temperature. Forty million steps were used to achieve equilibrium, and the simulations
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were performed at T =500 K, 1000 K and 2000 K.

For the alignment of the band edges of BiFeO3 with respect to vacuum, we built

periodic slab models with different terminations, separated by a vacuum gap of 15 Å in

the periodic supercell. We use the Macrodensity code [132] for calculating the planar

averages of the electrostatic potential in planes parallel to the slab surface, to determine

the potential difference between the bulk (average in the middle of the slab) and the

vacuum level (in the middle of the vacuum gap). For the alignment of the band edges of

BiCo0.06Fe0.94O3 we did not create slabs with Co/Fe substitutions, but simply aligned the

core levels of bulk Fe atoms far from Co substitutions.

3.3 Results and discussion

3.3.1 Structural and electronic properties

Calculated structural and electronic parameters of pure BiFeO3 are shown in Table 3.1

in comparison to experimental values. As noted before in Ref. [95], the screened hybrid

functional HSE leads to good agreement with experiment in terms of both crystal structure

and band gaps. The GGA+U predictions are also reasonable, albeit with a band gap below

the most accepted experimental range of 2.6-2.8 eV measured at ambient conditions [116].

Our HSE band gap is slightly above that range. However, it should be noted that there

is still a lot of uncertainty about the band gap of BiFeO3, with values as low as ∼2 eV or

as high as ∼3 eV reported in the experimental literature for this compound, depending

on synthesis conditions, resulting morphology or particle size, and measurement method

[116,133]. Smaller nanoparticles tend to have narrower band gaps [134]. The band gap of

BiFeO3 also decreases substantially with temperature, e.g. from about 2.5 eV at ambient

temperature to about 1.5 eV at 550◦C in Ref. [135]. The value of 2.9 eV obtained here for

bulk BiFeO3 from HSE calculations seems therefore to be a more reasonable zero-Kelvin

prediction than the GGA+U value of 2.3 eV.

The band structure (Figure 3.2a) and density of states (DOS) (Figure 3.2b) show
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that the contribution of O 2p orbitals dominate the valence band (VB) edge and the

contribution of Fe 3d orbitals dominate the conduction band (CB) edge. The bottom

of the CB is located at the Z point of the Brillouin zone. The VB has two maxima at

roughly the same energy, one between Γ and F, and the other at the Z point (the difference

between the two is less than 10 meV). Both spin channels exhibit the same total density

of states due to the antiferromagnetic arrangements of the magnetic moments (Fe 3d

contributions with opposite spins at the same energy level come from different atoms).

There is a large exchange splitting of ∼9 eV between the occupied and empty 3d orbitals

of a given Fe atom, therefore the occupied Fe 3d orbitals are not shown in the DOS plot

(Figure 3.2b, c).

Table 3.1: Calculated lattice parameters, a and α, and band gap Eg for BiFeO3 (R3c
phase). Experimental values (obtained at ambient temperature) for the cell

parameters [96] and for the band gap [116] are listed for comparison.

Parameter Expt. GGA+U HSE06

a/Å 5.64 5.69 5.68

α/deg 59.42 59.0 58.8

Eg/eV 2.6-2.8 2.3 2.9

Figure 3.2: a) Band structure and b) projected density of states of pure BiFeO3; and c)
projected density of states of BiCo0.06Fe0.94O3.

We then considered the substitution of one or two Fe atoms in the 2× 2× 2 supercell

by Co, in such a way that the stoichiometry of the solid solution is BiCo0.062Fe0.938O3 or

BiCo0.125Fe0.785O3. These compositions are within the range of stability (0 < x < 0.2) of

the rhombohedral structure for the BiCoxFe1−xO3 solid solution (upon increasing x, the
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solid solution transitions to the tetragonal structure of pure BiCoO3, via an intermediate

monoclinic structure [136]). The DOS plot for BiCo0.062Fe0.938O3 (Figure 3.2c) shows the

presence of an empty impurity level of Co 3d character that reduces the band gap from 2.9

to 2.1 eV. The supercell with composition BiCo0.125Fe0.875O3 (two Co substitutions in the

supercell) has only five symmetry inequivalent configurations. The DOS plots for those

configurations (Figure 3.3) are very similar to the DOS plots for lower Co concentration,

but with larger peaks in the Co 3d gap state, whose energy position do not change

appreciably with the relative position of the Co atoms in the structure.

Figure 3.3: Co positions and projected density of states for the five symmetrically
distinct configurations of BiCo0.06Fe0.94O3 studied in this chapter. Colour scheme:

Bi = purple, Fe = brown, Co = blue, O = red.
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In these calculations, the magnetic moments of the Co ions were given the same

orientation of the magnetic moments of the Fe ions they replace, thus keeping the G-type

antiferromagnetic pattern; this accounts for the different relative orientations of the Co

magnetic moments over the configurations (i.e. they are parallel in the configurations

shown in Figure 3.3a, 3.3b, 3.3c, but antiparallel in 3.3d and 3.3e). In the next section

we use the relative energies of these configurations to create a model to investigate the

equilibrium distribution of Co substitutions.

3.3.2 Thermodynamics of cation distribution

For the thermodynamic analysis of the Co distribution, the DFT total energies of the five

distinct configurations of double substitutions were mapped into an Ising-like Hamilto-

nian:

E = E0 +
∑
〈i,j〉

JijSiSj (3.1)

where the “spin” variable Si=1 if site i is occupied by Co, and Si = 0 if it is occupied by

Fe, and the Jij values characterise the strength of Co-Co interactions. Note that the spin

variables and the Hamiltonian itself are unrelated to the magnetism of the system but

simply describe the interactions between Co impurities. Four J constants, corresponding

to four different Co-Co distances, plus the E0 values, are then obtained from the five DFT

energies, by solving the system of five linear equations with five variables.

The interaction parameters J as a function of Co-Co distance (d) are shown in Fig-

ure 3.4a. Clearly, the interaction between impurities is more attractive when the distance

between them is shorter. To study the effect of these interactions on the equilibrium cation

distribution at specific temperatures, we performed Monte Carlo simulations in a larger

(10×10×10) supercell with the same composition, BiCo0.125Fe0.875O3. At T = 500 K, Co

impurities aggregate as one pure-Co spherical cluster per simulation cell (Figure 3.4b).

The formation of such small separate Co clusters is, of course, an artifact from the sim-

ulation cell size; using a larger simulation cell would lead to larger and more separated
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Co clusters. The result from the Monte Carlo simulation simply indicates that there

is a thermodynamic preference for Co aggregation, which would lead to complete phase

separation at that temperature. Our simulations at T = 1000 K and 2000 K still led to

Co impurity aggregation. Only at unrealistically high temperatures does the equilibrium

cation distribution becomes more homogeneous.

Figure 3.4: a) Interaction parameter (J) as a function of Co-Co distance (d) for 12.5%
Co concentration. The grey line is a guide to the eye. b) Equilibrated distribution of

impurities after Monte Carlo simulations at T =500 K. Only Co atoms (in blue) and Fe
atoms (in brown) are shown.

While these simulations show that there is a strong thermodynamic drive towards

phase separation, they implicitly force the BiCoO3 clusters to remain in the rhombohedral

structure of BiFeO3. In reality, it would be thermodynamically favourable for BiCoO3 to

separate forming its preferred crystal structure, which is tetragonal [136]. To quantify the

thermodynamic stability of the BiCoxFe1−xO3 solid solution against phase separation to

rhombohedral BiFeO3 and tetragonal BiCoO3 phases, we have calculated the enthalpy of

mixing per formula unit of BiFe1−xCoxO3 with respect to the pure compounds using the

equation:

∆Hmix = E[BiFe1−xCoxO3]− (1− x)E[BiFeO3]− xE[BiCoO3], (3.2)

where the E values are the DFT energies per formula unit for the corresponding composi-

tions, at their ground-state structures. For x = 0.0625, we obtain ∆Hmix = 0.027 eV per
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formula unit. As is common in the description of very dilute solid solutions (e.g. [137,138]),

we can write that for small values of x:

∆Hmix = Wx (3.3)

where W = 0.43 eV is the solution energy. From this value we can estimate the thermo-

dynamic solubility limit xs of Co in BiFeO3, as the minimum of the free energy of mixing

(including ∆Hmix(x) and the configurational entropy contribution) at a given tempera-

ture, which is:

xs ≈ e
− W
kBT (3.4)

For example, at T = 600 K, xs = 0.00026 = 260 ppm. Therefore, Co substitution in

BiFeO3 can be expected to be thermodynamically stable against phase separation only at

trace amounts.

However, even when phase separation is thermodynamically preferred, homogeneous

solid solutions can still exist, protected by the very slow kinetics of cation diffusion. Cation

exchange barriers are well known to be very high, typically ∼2 eV or above for ionic solid

solutions. For example, values of 193 kJ/mol, 200 kJ/mol, and 230 kJ/mol have been esti-

mated from experimental measurements of cation exchange kinetics in (Fe0.5Mn0.5)2SiO4

olivines [139], (Fe3O4)x(MgAl2O4)1−x magnetite-spinel solid solutions [140], and disor-

dered MgAl2O4 spinels [141], respectively. These high activation barriers mean that

cation exchange typically only starts, at any measurable rate, if samples are heated above

∼700 K, and full equilibrium (involving either ex-solution or ordering) is only reached

at much higher temperatures. For Co-substituted BiFeO3, we have not calculated cation

exchange activation barriers (such calculations are not trivial, because the mechanism for

cation exchange may involve the collective movements of many atoms and/or be mediated

by vacancies or other defects), but it can be safely expected that they would be similarly

high. Therefore, while there is clearly a thermodynamic driving force for ex-solution in

Co-substituted BiFeO3, such separation process would only be observable if samples are
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treated at high temperatures. When a homogeneous solid solution is prepared it should

remain stable (or more precisely, metastable) if kept at ambient or only moderately high

temperatures. An example of such metastable oxide solid solution used as a functional

material is Ce1−xZrxO2 [142], which is thermodynamically unstable with respect to phase

separation into Ce-rich and Zr-rich oxides at most compositions, but still can be syn-

thesised as a homogeneous solid solution that is widely used in catalysis at moderate

temperatures [143,144].

3.3.3 Ferroelectric properties

To study the effect of cobalt substitution on ferroelectric properties of BiFeO3, we calculate

the spontaneous polarisation P from first principles. The Born effective charge (BEC)

tensor for atom j, (Z∗j,αβ) is defined as the derivative of the polarisation P with respect

to the atom coordinates (at zero electric field):

Z∗j,αβ =
∂Pα
∂uj,β

∣∣∣∣
ε=0

(3.5)

where α and β are Cartesian indices, and can be obtained in VASP using density functional

perturbation theory [145]. Then, to estimate spontaneous polarisation we compute the

Cartesian components of the polarisation Pα as:

Pα =
e

V

∑
jβ

Z̄∗jαβ∆ujβ (3.6)

where

Z̄∗jαβ =

∫ 1

0

Z∗jαβ(ξ)dξ (3.7)

is the average of the BEC tensor over the values of the distortion parameter ξ that connects

the ferroelectric R3c phase (ξ=1) and the reference, centrosymmetric R3c phase (ξ=0);

∆ujβ is the displacement of ion j in the Cartesian direction β. These calculations are

performed using the less computationally expensive GGA+U theory and not HSE which
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is computationally too demanding to calculate BEC at each distortion parameter. The

polarisation calculated at different distortion points is shown in Figure 3.5.

Figure 3.5: Change in polarisation [111] component along a path from the
centrosymmetric R3c structure to polar R3c phase for BiFeO3 and BiCo0.06Fe0.94O3.

For pure BiFeO3, we obtained 109 µC/cm2, and it increases to 143 µC/cm2 for

BiCo0.06Fe0.94O3 (there is only one Co atom per supercell at this composition, and there

is only one symmetrically distinct Fe site, so the result does not depend on the substi-

tution site). Let us first discuss the value for the pure compound. It is well known that

experimental measurements of polarisation in this material have led to a very wide spread

of results (e.g. Table I in Ref. [97] lists experimental values from different sources ranging

from 2.2 to 158 µC/cm2). There are several causes for this spread of polarisation values

measured in experiment. Polarisation measurements are often affected by leakage current

problems, which might account for some of the very small values reported for BiFeO3.

Poor sample quality, or the presence of structural modifications, can also affect the result.

Furthermore, the spread of polarization values may also be related to the multi-valued

nature of that property, which is well explained by the modern theory of polarisation [86]:

polarisation in solids is in fact a “lattice” of values, rather than a single vector. Very

different values can then be obtained if the ferroelectric switching behaviour in samples is

substantially different. In Ref. [97] it was concluded that the most “natural” value of the

polarisation of pure BiFeO3 along the <111> direction should be 90-100 µC/cm2, which
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was consistent with the most recent thin film measurements. A value of 100 µC/cm2 is

also quoted in the review by Catalan and Scott, as a sensible value [34]. Our theoretical

result of 109 µC/cm2 for pure BiFeO3, is close to these best estimations.

To compare the predicted effect of Co substitution on the BiFeO3 polarisation, we

turn to the experimental results presented by Machado et al. in Ref. [103]. In that work,

pure BiFeO3 was measured to have a polarisation of only 26.1 µC/cm2, which is low com-

pared to currently accepted values. Therefore, we cannot directly compare our calculated

absolute values with their experiments. However, the qualitative effect of Co substitu-

tion can be compared: they observed an increase in the polarisation to 60 µC/cm2 for

Co0.1Bi0.9FeO3, in comparison with the pure compound. In our calculations, the behaviour

is the same: the incorporation of Co to BiFeO3 significantly enhances its ferroelectric po-

larisation. The greater BEC of Co compared to Fe (Table 3.2) is consistent with the

enhanced polarisation in the substituted system. Interestingly, in Ref. [102], a GGA+U

calculation with a higher value of the Hubbard parameter for Co 3d orbitals, Ueff = 6 eV,

compared to the value used in this work, Ueff = 3.3 eV, did not lead to much difference in

polarisation between pure and Co-substituted BiFeO3. We have not been able to repro-

duce their results exactly (there are other differences in methodology), but we do observe a

much smaller enhancement (∼50% of ours) of the polarisation upon Co substitution when

using their Ueff value. The effect of Ueff and other calculation settings on the estimated

polarisation deserve further study.

Table 3.2: Born Effective Charges (BECs) (average of diagonal elements for each atom),
and polarisation P , for BiFeO3 and BiCo0.06Fe0.94O3 in R3c phase.

BEC/e P/µCcm−2

Bi Fe Co O

BiFeO3 4.64 3.97 -2.87 109

BiCo0.06Fe0.94O3 4.97 4.02 5.24 -2.91 143
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3.3.4 Band alignment and applications in photocatalysis

To explore the activity of these compounds in photocatalytic applications, it is important

to estimate the positions of the VB maximum and the CB minimum on an absolute scale,

for example, relative to the vacuum level. This is necessary to obtain the relative energies

of these band edges with respect to half-reaction potentials for the redox reactions of

interest, e.g. water splitting. However, energy levels obtained from the bulk calculation

are given relative to the average electron potential in the solid. To align the electronic

structure with reference to the vacuum level, we determine the potential difference ∆V

between the vacuum potential and the pseudo-bulk average using an auxiliary slab cal-

culation. In the first instance, to ignore the effect of ferroelectric polarisation, we have

used a symmetric and stoichiometric slab terminated by the non-polar (110) surface, for

which the vacuum level is the same at both sides of the slab (Figure 3.6).

Figure 3.6: (a) BiFeO3 slab along with (110) surface termination and (b) planar average
electrostatic potential for that slab.

The calculated positions of the band edges of BiFeO3 and BiCo0.06Fe0.94O3 with respect
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to vacuum potential are shown in Figure 3.7. We can compare these with the half-reaction

potentials for water splitting, corresponding to the hydrogen evolution reaction (HER)

and the oxygen evolution reaction (OER):

H2O←→2H+
(aq) +

1

2
O2(g) + 2e− (OER)

2H+
(aq) + 2e− ←→ H2(g) (HER)

(3.8)

and other water splitting reactions involving generation of ȮH radicals:

2H2O←→2H+ + 2ȮH + 2e−

O2 + 2e− + 2H+ ←→ 2ȮH

(3.9)

In the vacuum scale and at pH = 0, the HER level is located at -4.44 eV, and the OER

level is located at -5.67 eV. At temperature T and pH>0, these energy levels are shifted

up by kBT × pH × ln10. For pH = 7 and room temperature, the HER level is then

located at −4.03 eV and OER level is located at −5.25 eV, respectively. For a water

splitting photocatalyst made of a single semiconductor, the positions of the CB minimum

and the VB maximum should straddle those half-reaction potentials. The band edges

of BiFeO3 and BiCo0.06Fe0.94O3 and the water redox potentials are shown in Figure 3.7.

The calculated band edges are not well aligned with the half-reaction potentials for water

splitting, because the CB edges are too negative with respect to the HER level, suggesting

that these materials are not suitable as single-semiconductor photocatalysts for the full

water splitting reaction.

When comparing our band alignment with experiment, we must recall that to build

band alignment diagrams, experimentalists measure or estimate at least two out of four

properties: the ionization potential (IP), the electron affinity (EA), the band gap (Eg)

and/or the electronegativity (here χ= IP+EA
2

). The relation between these quantities and
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the band edges ECB and EVB is given by the equations:

ECB = −EA = −χ+
1

2
Eg (3.10)

EVB = −IP = −χ− 1

2
Eg (3.11)

Usually, the optical band gap is measured, and one of the other three properties is

also obtained, to complete the band diagram. Given that there are wide differences

in measured band gaps, and that there are various ways to measure or estimate the

other properties, strong discrepancies in the band alignments reported for BiFeO3 in the

experimental literature are not surprising. For example, Ji et al. [107] calculated the IP

of BiFeO3 from the ultraviolet photoelectron spectrum (by subtracting the width of the

spectrum from the exciting photon energy). Combined with a band gap of 2.74 eV, that

measurement led to a CB edge at −3.56 eV and a VB edge at −6.30 eV in the vacuum

scale, which do straddle the water splitting redox potentials. A similar band alignment

for BiFeO3 band edges with vacuum had been proposed before by Wu and Wang [146].

These authors measured an optical band gap of 2.73 eV, and estimated the EA at 3.33 eV

following Clark and Robertson [147], who had given that value from a simple comparison

with SrBi2Ta2O9. That leads to a CB edge at −3.33 eV and a VB edge at −6.06 eV

in the vacuum scale, also straddling the water splitting redox potentials. However, the

EA of BiFeO3 seems to be significantly underestimated in those studies. A more direct

measurement was made by Moniz et al. [118] using electrical impedance spectroscopy

and a Mott-Schottky plot [148], from where an EA of 4.62 eV was obtained. A CB edge

at −4.62 eV in the vacuum scale means that the band edges of BiFeO3 do not straddle

the water splitting redox potentials, the CB edge being too negative. This result also

agrees with the simpler estimation of band positions made by Li et al. [105], using the

electronegativity χ of the oxide calculated as the geometric mean of the electronegativities

of the constituent atoms, and a measured band gap of 2.19 eV, from where they arrive at an

EA of 4.94 eV. The same method has been applied by other authors, using slightly different
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band gaps [106,114]. Kolivand and Sharifnia [114] confirmed the value determined by this

method (EA = 4.84 eV) with their own Mott-Schottky plot analysis. Interestingly, if we

use our HSE band gap, the average electronegativity method leads to almost the same

band positions that we obtain from the DFT calculation in the auxiliary slab.

Figure 3.7: CB and VB edges calculated with the HSE functional for BiFeO3 and
BiCo0.06Fe0.94O3. The half-reaction potentials for water splitting are represented by

dotted red lines, and those for the generation of ȮH radicals are represented by dashed
black lines.

Table 3.3 summarises EA estimations from the literature in comparison with our

theoretical results. Our results support the higher EA estimations in the literature from

Mott-Schottky measurements (albeit with a small overestimation). Thus our findings

confirm the conclusion that unmodified BiFeO3 cannot be used as a single-semiconductor

photocatalyst for water splitting, because the EA is too high (the CB is too negative) to

drive the hydrogen evolution half-reaction. Cobalt substitution does not help on this issue,

because the low-lying empty Co 3d levels increase the EA and lower the CB further, as seen

in figure 3.7. However, BiFeO3 can also be used for water splitting in heterojunctions with

other semiconductors like CdS, as demonstrated by Kolivand and Sharifnia [114]. They

showed that pure BiFeO3 was not photocatalytically active for the full water splitting

reaction, which is also consistent with our theoretical band alignment. When BiFeO3 is

in a heterojunction with CdS, which has a lower EA (they estimate ∼4 eV), a direct Z-

scheme [149] band alignment forms, which allows unassisted water splitting without using
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any sacrificial agents. For such heterojunctions, Co substitution in BiFeO3 might be

advantageous, because the band gap narrowing with respect to the pure compound would

allow more efficient visible light absorption at the BiFeO3 end of the heterojunction, while

the more negative CB would reduce the losses associated to the interfacial electron-hole

recombination.

Table 3.3: Estimations of the electron affinity (EA) of BiFeO3 reported in the literature,
in comparison with the values obtained in this work. In some of the original papers,
values are reported with respect to the normal hydrogen electrode (NHE), and have

been converted here to the vacuum scale for easy comparison.

Source EA (eV) Method

Clark & Robertson (2007) [147] 3.33 Comparison with SrBi2Ta2O9

Wu & Wang (2010) [146]

Li et al. (2009) [105] 4.94
Band gap measured and electronegativity esti-
mated from elements

Ji et al. (2013) [107] 3.56
Band gap measured and ionization potential
from ultraviolet photoelectron spectrum

He et al. (2013) [106] 5.01
Band gap measured and electronegativity esti-
mated from elements

Moniz et al. (2014) [118] 4.62
Electrical impedance spectroscopy and Mott-
Schottky plot

Kolivand & Sharifnia (2020) [114] 4.84
Band gap measured and electronegativity esti-
mated from elements; Mott-Schottky plot

This work 5.13 DFT calculations in bulk and auxiliary slab

Without help from a heterojunction, BiFeO3 and BiFe1−xCoxO3 could also be used as

photocatalysts for other reactions. For example, the production of hydroxyl radicals from

water for oxidation of organic pollutants might be a more suitable reaction [150]. These

ȮH radicals can be useful for the degradation of effluents from textile and pharmaceutical

industries. The relevant redox pairs and the energy levels of the half reactions are also

shown in figure 3.7. Our calculated band edges for BiFeO3 do not quite straddle the

half-reaction potentials, but because our EA value is likely to be a bit overestimated (as

shown by the comparison with a range of experiments), the position of the band edges

should be about right for this reaction.

Finally, we discuss the effect of the ferroelectric polarisation on the band alignment,

in a very simplified picture. The above band alignment calculation, based on a symmetric
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non-polar slab along the [110] direction, ignores any interplay between the band alignment

and ferroelectric polarisation effects. We therefore construct another slab, now along the

polarisation ([111]) direction. The surface termination of the slab is such that the only

dipolar moment comes from the ferroelectric distortion: the slab with equivalent surface

termination for the centrosymmetric phase (R-3c) is non-polar (Figure 3.8a). In the slab

for the ferroelectric R3c phase (Figure 3.8b), the macroscopic average potential exhibits

a gradient dV /dz = 0.064 V/Å, which represents the depolarisation field that arises to

compensate for the surface dipole. Such depolarisation field creates a drive to separate

photogenerated charge carriers. Furthermore, it leads to a shift in the band positions

in an isolated thin film, which is proportional to the magnitude of the field and to the

thickness of the film.

Figure 3.8: BiFeO3 slabs with (111) surface terminations and the planar average
electrostatic potential for (a) centrosymmetric (R-3c) phase and (b) polar (R3c) phase.

Given the calculated field intensity of ∼64 mV/Å, a film that is, for example, ∼2 nm

thick in the polarisation direction would exhibit a band shift of ∼1.3 eV between its two

surfaces. Such shift is more that the misalignment of the CB of BiFeO3 for the HER.

In the Co-substituted film, where the polarisation is stronger, the depolarisation field

intensity will also be higher, and this effect will be even stronger. In practice, such a film

may attract free carriers from the surroundings that would partially or totally compensate
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the electric field or surface reconstructions may happen. The present model constitutes an

initial approximation to the theoretical modelling of what is undoubtedly a very complex

phenomenon.

3.4 Polarisation calculations on a relaxor ferroelec-

tric: PMN-PT

I present here another application of the same type of polarisation calculations described

earlier in this chapter. The theoretical work presented below was performed to support

an experimental study by Dr Gareth Nisbet (Diamond Light Source) [151]. Because our

contribution in this case does not represent a full theoretical study, I have added this

work as a final section of this chapter, rather than devoting a full thesis chapter to it.

Relaxor ferroelectrics such as Pb(Mg1/3Nb2/3O3)-xPbTiO3 (PMN-PT) exhibits a gi-

ant piezoelectric (electromechanical) response near the morphotropic phase boundary

and thus has been extensively studied due to their use in capacitors and piezoelectric

devices [35, 36]. Unlike normal ferroelectrics, which exhibit a very sharp ferroelectric-to-

paraelectric phase transition and no frequency dependence for their dielectric response,

relaxor ferroelectrics exbihit a diffused phase transition, the ferroelectric-to-paraelectric

phase transition proceeds gradually rather than sharply, and frequency dependence of the

dielectric constant (i.e. dielectric relaxation).

Pb(Mg1/3Nb2/3O3)-xPbTiO3 is a solid solution of relaxor Pb(Mg1/3Nb2/3O3) (PMN)

and ferroelectric PbTiO3 (PT). The phase diagram of the solid solution is shown in Fig-

ure 3.9. PMN-PT exists in rhombohedral phase at low temperatures up to some PT

content. At higher PT concentrations, it undergoes a morphotropic phase transition and

becomes tetragonal. A giant piezoelectric response is observed near this transition. The

system becomes cubic for all PT concentrations at high temperatures (Figure 3.9).

In the present chapter, the experiments performed by Dr Gareth Nisbet (at Diamond

Light Source, Didcot) show a tetragonal to monoclinic phase accompanied by a giant
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piezoelectric response. Here, I use density functional theory calculations to relate ex-

perimental results to possible microscopic mechanisms to explain the phase transitions

involved.

Figure 3.9: Phase diagram of Pb(Mg1/3Nb2/3O3)-xPbTiO3 solid solution system.
Reproduced with permission from Ref. [152]. R, O and M refer to rhombohedral,

orthorhombic and monoclinic phase, respectively.

We used DFT as implemented in the VASP package [92, 93], to create a preliminary

model for the phase transitions observed. We built structural models that match the

observed tetragonal and monoclinic phases, albeit with composition Pb8Nb4Mg2Ti2O24,

which corresponds to eight Pb(Nb2/3Mg1/3)1−xTixO3 formula units, with x = 0.25. This is

close, but not exactly identical, to the experimental composition, and it has the advantage

of allowing the representation of the cation distribution with integer occupancies in a

computationally affordable supercell size, as proposed by Tan et al. [153]. The exchange-

correlation energy of electrons is treated within the generalized gradient approximation

(GGA) with the functional by Perdew, Burke and Ernzerhof (PBE) [70]. The projector

augmented wave (PAW) method [78,79] was used to describe the interactions between the

valence electrons and the frozen cores. We used an energy cutoff of 520 eV to truncate the

planewave expansion of the Kohn-Sham wavefunctions. Brillouin zone (BZ) integrations

were performed by sampling the reciprocal space using a Γ-centred mesh of 4×4×4 k-

points.

We construct models that match the observed tetragonal and monoclinic phases. Using

the ISODISTORT package [154] we identify a continuous displacive transition connecting
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the monoclinic and tetragonal phases. The tetragonal phase is an average of two mono-

clinic phases where the distorted angle flips from α > 90◦ to α < 90◦ via the tetragonal

structure, the energy of the system as a function of this flipping motion is plotted in Fig-

ure 3.10(a). The distortion parameter η is an interpolation parameter between the two

monoclinic structures (η = ±1) and the tetragonal structure (η = 0). In the absence of

an external field the monoclinic phase is ∼25 meV/atom more stable than the tetragonal

phase. However, factors such as domain wall energies (pinning) can serve to hold the

metastable phase in place.

Figure 3.10: (a) Total energy as a function of distortion parameter at different electric
field intensities (all energies are given relative to the energy of the monoclinic phase in

the absence of field); (b) ionic contribution to total polarisation (relative to the
polarisation in the tetragonal phase) as a function of distortion parameter.

When the system is poled by an external electric field, the symmetry between the

energies of the monoclinic phases is broken and one phase becomes favoured over the

other. We estimate the relative polarization of the phases using calculations based on

the modern theory of polarization [86]. The total polarisation for a given crystal system

can be calculated as a sum of ionic and electronic contributions. The ionic contribution

is obtained by summing the product of the position of each ion in the unit cell (with a

given choice of basis vectors) with the nominal charge of the ionic core. The electronic

contribution to the polarization is calculated as a Berry phase of the Bloch wavefunctions

using the method first developed by King-Smith and Vanderbilt [155]. The dominant

contribution to the spontaneous polarization is from the ions; the electronic contribution is
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found to be negligible. The polarisation vector of the system as a function of the distortion

parameter is plotted in Figure 3.10(b). By adding the dot product of the polarisation

vector and the experimentally applied electric field (Edipole = −~P . ~E) to the ground state

DFT energy, we can calculate the total energy of the polarised systems in the presence of

the external field. One of the monoclinic phases now becomes significantly more favourable

compared to the tetragonal phase (> 70 meV/atom). When this change in energy is large

enough to overcome the effect of domain wall pinning, then the system would at this

point transform from tetragonal to monoclinic phase, with the concomitant large volume

changes. The new monoclinic phase gradually switches to the same orientation as the

persistent monoclinic phase and the system cannot be reverted to the energetically less

stable monoclinic + tetragonal mixture of the original system.

The calculations show that (i) the two phases are relatively close in energy and thus

coexistence of both phases (particularly when considering possible domain wall pinning)

is thermodynamically reasonable; (ii) there is a continuous displacive path between the

phases and no bond breaking is required for the transition; (iii) an external electric field

in the right direction will stabilise one of the monoclinic distortions significantly over

the other and over the tetragonal phase. While the composition of the model system

differs from the experimental setup (due to restrictions in size of simulation), the general

trends observed and proposed mechanism should not be affected significantly by changing

composition.

3.5 Conclusions

I have discussed here the response of the multiferroic material BiFeO3 to Co substitution

in Fe positions, considering electronic, magnetic and thermodynamic aspects. Co/Fe

substitutions is an interesting strategy to modify the functional behaviour of BiFeO3. The

band gap of the system is significantly reduced, from 2.9 eV to around 2.1 eV, as a result

of Co substitution, and there is a simultaneous enhancing of the spontaneous polarisation.
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This large enhancement of ferroelectricity in this system would further promote effective

carrier separation in applications such as photovoltaics or photocatalysis. Our Monte

Carlo simulations show that Co3+ ions would tend to aggregate at the concentrations

studied here if an equilibrium distribution can be reached, although this phase separation

is likely to be kinetically limited by cation diffusion barriers at most temperatures of

interest for applications. Our calculations confirm that a high electron affinity of BiFeO3

that makes the conduction band too negative in comparison with the level for the hydrogen

evolution reaction. Therefore, unmodified BiFeO3 cannot photocatalyse the full water

splitting reaction. However, direct Z-schemes with semiconductors with lower electron

affinity could be used for this reaction, and we argue that Co/Fe substitutions would

improve the performance of BiFeO3 in such composite photocatalyst. We demonstrate

how large electric fields form in these materials, associated with the ferroelectric distortion,

and how these fields can affect the electronic level positions. BiCoxFe1−xO3 solid solutions

deserve further theoretical and experimental investigation in terms of its photocatalytic

applications.





Chapter 4

Mixed-cation mixed-anion perovskite

(FAPbI3)0.875(MAPbBr3)0.125: an

ab initio molecular dynamics study

4.1 Introduction

Hybrid organic-inorganic perovskite (HOIP) solar cells have attracted great attention

due to their extraordinary optoelectronic properties such as large absorption coefficient,

high electron-hole diffusion length, and high charge-carrier mobility. CH3NH3PbI3 were

the first perovskites to be used as a light absorber with a photo-conversion efficiency of

15% by 2013 [156]. In this material, the A, B, and X sites of the perovskite structure

ABX3 are occupied by the ions MA+, Pb2+, and I−, respectively. Other members of

the HOIP family are obtained when replacing iodide by other halides, replacing lead by

another group IV cation, or replacing MA+ by another organic cation or caesium. The

full family includes random alloys of the pure compounds. However, MAPbI3 is barely

stable against decomposition into lead iodide and methylamine iodide, causing fast de-

vice degradation. There have been significant achievements in the stability by means

of interface engineering, [157–159] and by alloying the cations and halides [46]. In the
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so-called mixed-cation HOIP, the perovskite A-site is randomly occupied by a combina-

tion of different cations, e.g., MA+, HC(NH2)+ (formamidinium, FA+) or the inorganic

cation Cs+. These mixed compounds show remarkable improvement in their stability and

are related with the evolution of record PCE [158]. Some of the recent perovskite solar

cell (PSC) record efficiencies have been obtained using light absorber perovskites with

composition (FAPbI3)1−x(MAPbBr3)x, with x ∼ 0.15 [160, 161] or with MAPbBr3 as a

trace [162]. This composition was introduced by Jeon et al., [163] showing that incorpora-

tion of MAPbBr3 into FAPbI3 stabilises the perovskite phase of FAPbI3 and improves the

PCE, particularly for composition (FAPbI3)0.85(MAPbBr3)0.15. The understanding of this

material, and eventually the PSC development, will benefit from atomic scale simulations

of the bulk materials and the interfaces. The first obstacle is the lack of models for the

randomly mixed compounds. Models of several binary alloys, with either a cation or lead

substituted, have been published recently [164, 165]. In fact, some recent experimental

studies of mixed-cation mixed-halide perovskites have been complemented with simula-

tions with one element substituted [166]. In this chapter, I study an atomic scale model

of the mixed-cation mixed-halide (FAPbI3)1−x(MAPbBr3)x. The mixing ratio x = 0.125

is considered for the model, which is computationally convenient and close to the compo-

sition used in optimised PSC. The model is based on pseudo-random substitutions of FA

and I in FAPbI3, by MA and Br, respectively. I then study the structural and vibrational

properties by means of AIMD. The alloy properties are compared with those of the pure

compounds FAPbI3 and MAPbBr3. The results presented in this chapter were published

in an article in the Journal of Materials Chemistry A [167]. The article contains more

results than those presented here, because it was a collaborative work with Dr Eduardo

Menendez-Proupin’s research group in Chile, I have only presented here the results to

which I contributed directly.
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4.2 Computational details

AIMD calculations were performed to investigate the structural, dynamical, and elec-

tronic properties of (FAPbI3)0.875(MAPbBr3)0.125, FAPbI3 and MAPbBr3 using the CP2K

package [91]. The simulations were conducted under NVT conditions at temperature

T = 350 K. The ionic forces were calculated using first-principles DFT. The hybrid

Gaussian and plane wave method (GPW), as implemented in the QUICKSTEP mod-

ule of the CP2K package, [168] has been used. The forces for the molecular dynamics

were calculated using the PBE functional [70] with the Grimme correction scheme DFT-

D3 [84] to account for the dispersion interactions. The Kohn–Sham orbitals of valence

electrons are expanded in a Gaussian basis set (DZVP-MOLOPT for Pb, I, Br, C, N,

H) [169]. The effect of core electrons was included by means of dual-space GTH pseu-

dopotentials [170–172]. The functional minimisations were performed using the orbital

transformation method [173, 174]. The timestep was set to 1 fs. A Nosé–Hoover chain

thermostat of length 3 was used, with a time constant of 10 fs during the initial 2000

steps, and 100 fs for the rest of equilibration and sampling stages. During the initial

2000 steps, each atom had one individual thermostat applied to; this is called a mas-

sive thermostat and facilitates a fast thermalisation of systems with too different atomic

masses, such as H and Pb. The simulations were extended up to 28, 26, and 23 ps for

FAPbI3, MAPbBr3, and (FAPbI3)0.875(MAPbBr3)0.125, respectively. These systems were

considered equilibrated (i.e. the average energy over 4 ps was constant within 0.01 eV)

after the initial 8, 6, and 5 ps, respectively, while sampling took place for the subsequent

time ranges. The full set of atomic coordinates along the MD simulations are available in

a public repository [175].
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4.3 Results and discussion

4.3.1 Model generation

Using the structure from ref. [164] for FAPbI3, the 384−atom tetragonal supercell was

transformed into a 768−atom 4× 4× 4 cubic supercell by means of the lattice transfor-

mation ~A′ = ~A + ~B, ~B′ = ~B − ~A, where ~A, ~B ( ~A′, ~B′) are the initial (final) supercell

lattice vectors. The conventional cubic lattice parameter was set at the experimental value

a = 6.3620 Å [176]. For MAPbBr3, I started from the structure of ref. [177] with lattice

parameter a = 5.9328 Å. For the 768-atom supercell, the vector lengths are A′ = B′ = 4a.

The initial orientation of the MA cations was taken from the MAPbI3 polymorphic model

of ref. [178].

The solid solution (FAPbI3)0.875(MAPbBr3)0.125 was modelled by means of a special

quasi-random structure (SQS) [179] which was generated as follows. First, the set of

all symmetrically different configurations within a 2 × 2 × 2 perovskite supercell with

composition FA7MAPb8Br3I21, was obtained using the site occupation disorder method

(SOD) [127]. For this purpose, cubic crystal symmetry (space group 221) of the parent

lattice was assumed, considering FA and MA as point atoms. For each of the 62 inequiva-

lent configurations, the number of Br atoms (out of eight halides) in the first coordination

sphere around MA, is 0, 1, 2 or 3. Eight of these 2 × 2 × 2 supercells were then com-

bined to form a 4 × 4 × 4 supercell configuration that satisfies two conditions: (i) The

halide–halide pair correlation function (the average of the products of Si and Sj, where

Si = 1 or −1, depending on the cation occupying the site) is as close as possible to the

expected one for the random distribution, i.e. 〈SiSj〉 = (2x−1)2= 0.5625 [179], consider-

ing the fraction of halide sites occupied by Br, x = 3/24. For the best SQS configuration,

the obtained pair correlation functions are 0.5625, 0.5070, and 0.3958 for the first, second

and third coordination spheres, respectively. (ii) The distribution of MA−Br pairs is

as close as possible to the binomial distribution expected for the random solution. The

probability of finding n Br ions as nearest neighbours to the MA (out of N = 12 halides)
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is P (n) = C(N, n)xn(1−x)N−n. These numbers must be approximated to fractions m/8,

as we combine eight 2× 2× 2 supercells to form the 4× 4× 4 supercell. This condition

translates in the requirement of including two 2× 2× 2 configurations with n = 0, three

with n = 1, two with n = 2, and one with n = 3, in the composition of the 4 × 4 × 4

supercell, as shown in Table 4.1. The supercell generated in this way is shown in Figure

4.1a.

Figure 4.1: Model supercell of (FAPbI3)0.875(MAPbBr3)0.125 with MA and FA cations
represented as point pseudo-atoms, and Br and I anions distributed following the

quasi-ransom approach described in the text (all atoms at cubic perovskite symmetric
positions). (b) Snapshot of MD simulation at 350 K, with explicit atoms of MA and FA.

Finally, the point-like MA and FA cations were replaced in the obtained 4×4×4 super-

cell by the full molecular cations, giving them random initial orientation, and the structure

was then thermalised by MD. Figure 4.1b shows the full structure, drawn with the same

perspective as Figure 4.1a. The supercell size was set as A = 4a, with a = 6.3115 Å,

that results from linear interpolation of the experimental densities of the end compounds

FAPbI3 and MAPbBr3. A theoretical (equilibrium) lattice parameter could have been

determined, but this would have needed expensive variable cell MD. Instead, some de-

gree of validation was pursued by means of static variable cell optimisation, enforcing

the cubic shape of the supercell, and taking the initial atom coordinates from a random

configuration of the MD. With this procedure, the optimised lattice parameter was found
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as 6.3125 Å, which is very close to the interpolated value used in the subsequent MD sim-

ulations with the NVT ensemble. Applying the same procedure to the end compounds,

values 6.37253 Å, and 5.9312 Å, were obtained for FAPbI3 and MAPbBr3, respectively,

which are also close to the experimental values mentioned above, used in our subsequent

simulations.

Table 4.1: Probability of finding n Br ions as nearest neighbours to the MA (out of
N = 12 halides in the first coordination sphere around MA). The ideal probability, as

given by the binomial distribution P (n) = C(N, n)xn(1− x)N−n, corresponds to random
occupation. The model probabilities are limited to fractions of 8, as the 2× 2× 2

supercell contains 8 MA cations.

n Ideal P (n) Model P(n)

0 0.201 2/8 = 0.250

1 0.345 3/8 = 0.375

2 0.271 2/8 = 0.250

3 0.129 1/8 = 0.125

4 0.042 0

5 0.009 0

6 0.002 0

7 0.0002 0

8 0.0001 0

9 0.0 0

10 0.0 0

11 0.0 0

12 0.0 0

4.3.2 Structural analysis

I now discuss the structural information derived from the MD simulations. The descriptors

of the local structure include pair distribution function, angle distribution functions, and

cation orientation, with special attention given to variation induced by the cation and

halide substitutions. Figure 4.2 shows the partial pair distribution functions (PDFs) for

the solid solution and the end members. The partial pair distribution functions [180] are

defined as

gij(r) =
V

NiNj

Ni∑
k

Nj∑
l

〈δ(r − rkl)〉 (4.1)
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where Ni and Nj are the number of atoms of the species i and j per volume V, containing

N atoms of all species. The brakets 〈...〉 indicate the statistical average over the MD

configurations. The total PDF is given as:

g(r) =
∑
i,j

cicjgij(r) (4.2)

where the species fractional concentrations are ci = Ni/N .

Figure 4.2: Partial pair distribution functions for species Pb-I and Pb-Br (left panel)
and H-halide (right panel), differentiating the cases where H is bound to N or C for a)

(FAPbI3)0.875(MAPbBr3)0.125, b) FAPbI3 and c) MAPbBr3
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All the simulation supercells considered in this chapter contain 64 A sites (occupied

by MA or FA), 64 B sites (occupied by Pb), and 192 X sites (occupied by I or Br). In the

simulation cell of (FAPbI3)0.875(MAPbBr3)0.125 there are 24 Br anions and 8 MA cations.

As seen in Figure 4.2a, the Pb-Br PDF at the range of the first coordination shell in

the solid solution has the maximum at a similar distance (3.06 Å bond length) to the

corresponding in MAPbBr3 (3.01 Å, Figure 4.2c), whereas the Pb-I bond length is the

same (3.20 Å) in FAPbI3 and in the solid solution. The shorter Pb-Br bond distance

compared with Pb-I bond length implies that Pb-Br-Pb trios are compressed, and the Br

moves less freely in the solid solution than in pure MAPbBr3. Figure 4.3 supports this

conclusion, showing that the Pb-Br-Pb angles are closer to 180◦ in the mixture than in

pure MAPbBr3, while the Pb-I-Pb angles in the mixture tend to be lower than in FAPbI3.
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Figure 4.3: Distribution of Pb-X-Pb (X= Br, I) angles in the three compounds. Solid
lines correspond to (FAPbI3)0.875(MAPbBr3)0.125, while dashed lines correspond to

FAPbI3 and MAPbBr3.

The heterogeneous distribution of the Pb-X-Pb angles of the solid solution must gen-

erate deformations in halogen cages that surround the organic cations, together with

disparate Pb-Br and Pb-I bond lengths within each octahedra. Since the generated SQS

supercell has a relatively homogeneous distribution of Br atoms, it is expected that these

deformations should be present throughout the solid solution. These deformations are

expected to disturb in some way the dynamics of the rotations of the organic cations in
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the mixture, because the well-known coupling between rotations and the vibrations of the

inorganic framework. Also, the rotation of organic cations is guided by their hydrogen

bonds interactions with their environment.

In Figure 4.2, the X−H (X = Br, I) PDF marks the difference between the H bonded

to N or C. First, there is the double peak structure of the Br−H(N) PDF (Br with the H

of the NH3 group in MA) in pure MAPbBr3. The maximum at 2.53 Å signals hydrogen

bonds, while the maximum at 3.79 Å indicate non-bonding distances. For FAPbI3, the

PDF of I−H(N) (with the H of NH2 end groups in FA) presents a single broad peak.

This difference between Br−H(N) and I−H(N) is kept in the solid solution, regardless of

the cation to which the N−H species belongs to. The X−H(C) PDFs presents one single

maximum at ∼ 3 Å. The maximum of the I−H(C) PDF occurs at the same distance in

FAPbI3 and the solution. In contrast, the maximum of the Br−H(C) PDF occurs at a

slightly higher distance (compared with Br−H(C) PDF) in MAPbBr3, but at a smaller

distance in the solution. The Pb−Br PDF first peak in the solid solution is broader than

in pure MAPbBr3. For higher coordination shells, the Pb−X PDF attain maxima at the

same distance for both X = Br, I, although there are differences in the broadening and

height of the PDFs. The Pb−halide distances for the second higher coordination shells

are determined by the lattice parameter. The decreased broadening of the Pb−Br PDF

compared with Pb−I and with Pb−Br in MAPbBr3 is difficult to interpret, but it may

be related with the Pb−Br−Pb angles being closer to 180◦, as shown in Figure 4.3. The

molecular dynamics shows that MA makes precession and rotations around its axis, with

the NH3 always pointing to the central Br (for 8 ps), although at the same time the CH3

group points to other Br atoms. This can be seen in the video Br-1MA.mpg, provided

in the dataset [175], which shows a local environment with 3 Br close to one MA. The

Br atom at the centre is surrounded by 3 FA and 1 MA. The geometrical parameters are

4.0 Å in distance cutoff, and 30◦ in angle cutoff. The hydrogen bonds are not permanent

but form and break dynamically at this temperature. Thus, the MA cations in the solid

solution have the rotation affected by two causes: the deformations of the halogen cage
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that surrounds them, and the favourable hydrogen bond interactions (identified from the

interatomic distance) towards the Br atoms.

4.3.3 Dynamic properties

The orientation dynamics of organic cations is one of the fingerprints of HOIP, modify-

ing the dielectric response, carrier conductivity, and thermodynamic properties, among

others. In MD, this information can be obtained from the vector autocorrelation func-

tion [181] defined as:

c(τ) =
1

N

N∑
n=1

〈n̂(tn).n̂(tn + τ)〉 (4.3)

where N is the number of different time origins averaged, the unit vector n̂ = ~u
|~u| , and ~u is

the relative position vector of pairs of atoms that define molecular orientation. Figure 4.4

shows the c(τ) functions for the three characteristic vectors: (i) vector C−N in MA+

parallel to molecule dipole (black arrow), (ii) vector C−H in FA+ (red arrow), also parallel

to molecule dipole and to the short molecule axis, and vector N−N in FA+ (blue arrow),

associated to the so-called tumbling motion that rotates along the long molecule axis [182].

Figure 4.4: Vector autocorrelation of organic cations (rotation). The insets indicate the
vectors in MA+ (C–N), and FA+ (C–H and N–N), using the same colours as in the

corresponding curves.
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In the three cases, the curves decay more slowly in the solid solution (solid lines)

than in the pure compounds (dashed lines), indicating that mixing slows down the cation

reorientation dynamics of both the MA and the FA cations (although the effect seems

stronger for the former than for the latter). The slowing down of FA orientation dynamics

after cation mixing has previously been observed in MD simulations of FA0.9Cs0.1PbI0.3

in ref. [182].

4.3.4 Vibrational properties

Figure 4.5 shows the partial vibrational densities of states (VDOS), determined from the

Fourier transform of the velocity autocorrelation function, of (FAPbI3)0.875(MAPbI3)0.125,

FAPbI3 and MAPbI3. The vibrations of the inorganic backbone are in a band in the

range 0−200 cm−1. This band also contains important contributions from FA and MA.

The band in the range 500−800 cm−1 is due to FA vibrations only, while the band in the

range 1000−1800 cm−1 is due to both MA and FA vibrations. The band for frequencies

larger than 3000 cm−1 is due to the stretching of C−H and N−H bonds in the organic

cations [183]. As can be appreciated from Figure 4.5a and 4.5b, the VDOS and the

partial VDOS of the solid solution is almost identical to the weighted sum of the DOS of

the pure compounds. This observation suggests a possible method for quantification of

the composition x in the solution. In particular, the amount of FA+ can be determined

from isolated modes in range 1675−1800 cm−1, which are associated to the stretching of

the double resonant C=N bond of FA+. The out-of-plane N−H bending modes of FA+,

in the range 400−800 cm−1 could also be used. The band of stretching modes should

be more effective in practice, because there are no more modes at this high frequency.

MA+ modes display isolated bands or peaks in the ranges 900−980 cm−1, 1235 cm−1 and

1400−1500 cm−1. The intensity ratios of some of these bands in IR spectra may allow

a quantification of the MA/FA content. On the other hand, Br content cannot be easily

determined because the VDOS of Br and I overlap in the same spectral region.
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Figure 4.5: Vibrational density of states (VDOS) and contribution of each crystal site to
the total VDOS for (a) the solid solution (FAPbI3)0.875(MAPbBr3)0.125, (b) the linear

combination of 0.875 FAPbI3 + 0.125 MAPbBr3, (c) FAPbI3, and (d) MAPbBr3.

The fact that the VDOS of the solid solution is well approximated by the weighted

VDOS of the compounds, suggests that the contribution of vibrations to the free energy of

mixing is relatively small and can be neglected in a first approximation. This is important

because it allows us to analyse the stability of the solid solution considering only energies

and configurational entropic effects, as we do in the next section.

4.3.5 Thermodynamics of mixing

We have calculated the enthalpy of mixing per formula unit of (FAPbI3)0.875(MAPbBr3)0.125

with respect to the pure compounds FAPbI3 and MAPbBr3 using the equation:

∆Hmix =
1

64

{
E[(FAPbI3)1−x(MAPbBr3)x]− (1− x)E[FAPbI3]− xE[MAPbI3]

}
(4.4)
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where the E values are the average energies for the corresponding supercells from the

AIMD, and x = 0.125 is the MAPbBr3 molar fraction. We obtain ∆Hmix = 1.39 kJmol−1,

which means that the mixing is endothermic. However, the configurational entropy

Sconf = −4kB(x ln(x) + (1− x)ln(1− x)) (4.5)

is large (12.5 Jmol−1K−1 for x = 0.125) due to the factor of 4, which appears because there

are four mixed sites (1 MA/FA and 3 Br/I) per formula unit. Assuming that the enthalpy

of mixing and the configurational entropy contribution are the dominant effects on the

stability, the free energy of mixing is predicted to be negative (∆G = -3.00 kJmol−1).

To assess whether the mixed perovskite can be expected to be stable with respect to

phase separation into MAPbBr3-rich and FAPbI3-rich compounds, it is not enough to

obtain the mixing free energy at the given composition (which quantifies the stability

with respect to the pure phases). We also need to calculate the free energy at the whole

range of compositions to assess if the given composition lies within a miscibility gap.

AIMD are too computationally expensive to perform for the whole range of compositions,

but we can extrapolate our one-point result using the widely used regular solid solution

model, [142,184–186] where the enthalpy of mixing is given by:

∆Hmix = W0x(1− x) (4.6)

for which we obtain W0 = 12.7 kJmol−1. With this enthalpy parameter, the mixing

free energy in the regular solution model is convex for the full range of compositions at

350 K, implying that there is no miscibility gap: with 4 mixed sites per formula unit,

the enthalpy parameter W0 would need to be greater than the critical value of 8kBT, or

∼25 kJmol−1 at 350 K, for a miscibility gap to exist. The above analysis suggests that the

mixed perovskite is indeed thermodynamically stable against phase separation. Although

we have ignored other possible contributions to the thermodynamics of mixing (including

vibrational and rotational contributions to the entropy of mixing), the low enthalpy of
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mixing in the regular model, well below the critical value for miscibility gaps, suggests

that our prediction is not likely to change by including such contributions. Still, this

is a point that deserves further investigation. A precise evaluation of vibrational and

rotational contributions to the thermodynamics of mixing from MD simulations might

become more affordable soon, thanks to progress in accurate machine-learned potentials,

including on-the-fly learning schemes for MD [187,188].

The stability of this solid solution results from the simultaneous mixing in the cation

and halide sites. Both substitutions impact the thermodynamic stability (free energy of

mixing) through enthalpic and entropic contributions. In terms of the entropy (Equation

4.5), clearly the halide mixing has the strongest effect, because it contributes 3 mixed sites

per formula unit, whereas the cation mixing only contributes 1 mixed site per formula unit.

But the thermodynamic stability of mixed-cation mixed-halide perovskites is not only due

to entropy effects, but also to enthalpy contributions. There are known instabilities in

the mixed-halide perovskites MAPb(IxBr1−x)3 and FAPb(IxBr1−x)3, especially segregation

into Br-rich and I-rich phases upon exposure to light [46]. In fact, the strategy of two-

cation and three-cation mixing was devised as an alternative to improve the stability

[163, 189]. Furthermore, cation substitution (e.g. of caesium or lighter alkaline dopants)

enhances perovskite nucleation and growth, crystal quality, and suppresses ion migration.

These parameters are relevant for solar cell durability, although they are not directly

linked with thermodynamical stability [190].

4.4 Conclusions

An atomic scale model of the random solution (FAPbI3)0.875(MAPbBr3)0.125 has been pro-

posed. Several computed properties have been shown to reproduce available experimental

measurements, such as lattice constant, cation orientation dynamics, and thermodynamic

stability. Other physical properties are reported, including distance and angle distribution

functions, vibrational and dynamical properties. All these properties of the solid solution
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(FAPbI3)0.875(MAPbBr3)0.125 are compared with those of the end compounds MAPbBr3

and FAPbI3. Our MD simulations of (FAPbI3)0.875(MAPbBr3)0.125 at 350 K, show a cer-

tain locking effect on the organic cations, leading to slower cation orientation dynamics

in this solid solution compared with the pure compounds. Thermodynamic calculations

suggest there is no miscibility gap for the random alloying of MAPbBr3 and FAPbI3.

Our model is therefore useful for the detailed understanding of the physical behavior of

this important material, accounting for both disorder and dynamic effects, and will allow

future investigation of other bulk properties as well as of the behavior of its surfaces and

interfaces.





Chapter 5

First-principles modelling of

dicyanamide-based molecular

perovskites

5.1 Introduction

ABX3 molecular perovskites, where A and/or X are molecular moieties, have attracted

increased attention in recent years. They show a 3D [BX3]− network with the monovalent

A-site cation sitting in the void of the [BX3]− network for charge balance. The use of

molecular anions at the X site increases the size of the pseudocubic [BX3]− network, allow-

ing molecular A-site cations with varying chemistries and sizes to be used. Molecular per-

ovskites such as [(NH2)3C]M(HCOO)3, [(CH3)2NH2]M(N3)3, [(C2H5)3(C7H7)N]M(C2N3)3

and [(Ph3P)2N]M[Au(CN)2]3 with M2+ typically being Mn2+, Co2+, Ni2+ and Zn2+ [191–

196], can then be formed. The use of molecular A and X-site species enhances the struc-

tural and chemical diversity in these perovskites, leading to new opportunities for tun-

ing macroscopic material properties. Examples are tilt and shift engineering to impart

ferroelectric properties [197, 198], tunability of hydrogen bonding interactions [199] be-

tween the A-site cation and the 3D [BX3]− network with ramifications on the mechanical

76
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response [200, 201], adjustable phase transition thermodynamics [202, 203] and varying

structural complexities [204] amongst others.

An important ramification of using molecular building units to form network ma-

terials is the introduction of weak chemical interactions such as dispersion interactions

and hydrogen bonds. There are a number of research examples such as glass-type be-

haviour in [(CH3)2NH2]Zn(HCOO)3 [205], (defect-dependent) mechanical properties in

[(NH2)3C]Mn(HCOO)3 [206], temperature- and pressure-induced reversible

([(CH3)2NH2]M(HCOO)3) [207] and irreversible ([(nPr)4N]Cd(C2N3)3) [208] phase tran-

sitions, and more generally, structural distortions that can be activated by tempera-

ture and pressure, that all together point at relatively shallow free energy landscapes

[209]. The recent discovery of irreversible phase transitions in the perovskite materials

[(NH2)3C]Mn(H2POO)3, [(C5H10)2N]Cd(C2N3)3 and [(C4H9)3(CH3)N]Mn(C2N3) is in full

agreement with this perspective [210–212]. For instance, crystal structure analysis for

[(NH2)3C]Mn(H2POO)3 has shown that the different polymorphs are related to different

tilt systems, i.e. the detailed distortion arrangement within the [Mn(H2POO)3] network,

reminiscent of conformational polymorphism as observed for molecular crystals [70,213].

The mechanical properties of molecular perovskites have been demonstrated to be

tuneable through different components of the material [214]. For instance, the larger elas-

tic moduli and hardness of [C(NH2)3]Mn(HCOO)3, compared to [(CH2)3NH2]Mn(HCOO)3,

have been attributed to the larger number of hydrogen bonding interactions [215], and

similar conclusion can be drawn for the elastic moduli across the A-site solid solution

series [NH3NH2]1−x[NH3OH]Zn(HCOO)3 [216]. Looking at the impact of the metal ion,

a linear correlation between the elastic moduli and ligand field stabilisation energy has

been observed for the series [(CH3)2NH2]M(HCOO)3 with M2+ = Mn2+, Co2+, Ni2+

and Zn2+ [217]. The impact of B-site metal defects has been studied by comparing

[C(NH2)3]Mn(HCOO)3 with its defective analogue [C(NH2)3]Fe2/3�1/3(HCOO)3, (� = va-

cancy), which exhibits a bulk modulus that is nearly 30% lower [206]. This body of work

demonstrates the potential for tailoring mechanical properties in hybrid and molecular
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perovskites, depending on a clear understanding of the chemical and physical principles

that affect them. More recently, molecular perovskites such as [(C4H9)4N]Mn(C2N3)3

and [(C4H9)4N]Cd(C2N3)3 have emerged as model systems in barocalorics, where their

modular building principle enables to search for crystal chemistry factors that determine

a materials’ performance in solid-state cooling [203, 204]. A relation between the com-

pressibility and the barocaloric performance has recently been implied [218], an intuitive

link when considering the barocaloric coefficient dTC/dp as a proxy. A softer material

is expected to exhibit a larger barocaloric coefficient, an important guideline to manip-

ulate the barocaloric performance in the future. Therefore, the identification of crystal

chemistry principles that determine a molecular perovskite’s mechanical response, i.e. its

structural response to pressure such as compressibility or similarly the bulk modulus, is

an important step forward in the search for intuitive material design guidelines.

This chapter focuses on the molecular perovskite series [(nPr)3(CH3)N]M(C2N3)3 with

M = Mn, Co, Ni, nPr = n−propyl and C2N−3 = dicyanamide anion (figure 5.1a and 5.1b),

which exhibits an irreversible perovskite-to-perovskite phase transition above room tem-

perature.

Figure 5.1: Structure of A and X site of perovskite [(nPr)3(CH3)N]Ni(C2N3)3,
a) (nPr)3(CH3)N and b) (C2N3)3. Colour scheme: C atoms are brown, N atoms are blue

and H atoms are pink.
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The first two sections of the results section focuses on the structural and thermody-

namic nature of these phase transitions. In the latter sections, I focus on the thermo-

dynamically stable rhombohedral phase and calculate the mechanical properties of the

molecular perovskite series [(nPr)3(CH3)N]M(C2N3)3, M = Mn, Co, Fe, Ni, Zn, Cd, Ba,

Sr, Ca, Hg, or Mg) using DFT. We find a clear inverse relationship between the bulk mod-

ulus and B site Shannon radius, and the B-X bond length, with higher order perturbations

to this dominant trend from ligand field stabilisation energy.

5.2 Computational details

The calculations are based on DFT as implemented in the VASP package [92, 93]. The

exchange-correlation energy of electrons is treated within the generalized gradient ap-

proximation (GGA) with the functional by Perdew, Burke and Ernzerhof (PBE) [70]. In

order to account for the limitations of the GGA to describe the d-orbitals of transition

metals, we included Hubbard corrections for these orbitals (GGA+U), following the for-

malism introduced by Dudarev et al. [213]. Like in Chapter 3, the Ueff parameters for Mn

(4.0 eV), Co (3.3 eV), Fe (4.0 eV) and Ni (6.4 eV) were taken from the work by Wang

et al. [120], where they were fitted so that GGA+U could reproduce the experimental

oxidation energies in transition metal oxides. We also included dispersion corrections fol-

lowing Grimme’s D3 scheme [84]. The projector augmented wave (PAW) method [78,79]

was used to describe the interactions between the valence electrons and the frozen cores,

which consisted of orbitals up to 2p for C and N, and up to 3d for the transition metals.

We used an energy cut-off of 520 eV to truncate the planewave expansion of the Kohn-

Sham wavefunctions, which was 30% above the default cut-off for the employed PAW

potentials, to minimise Pulay errors. Brillouin zone (BZ) integrations were performed by

sampling the reciprocal space using Γ− centred meshes of 4×3×2 k-points with reference

to orthorhombic unit cell and of 4 × 4 × 4 k-points with reference to rhombohedral unit

cell, which give similarly dense grids. Spin polarisation was allowed in all calculations to
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properly describe the magnetic transition metal cations. Given the large size of the crys-

tallographic unit cells, phonon dispersion and vibrational density of states were obtained

from force constants calculated by systematic displacements of ionic positions only within

the unit cell, via the Phonopy code [219].

5.3 Results and discussion

5.3.1 Experimental observations

The experiments in this work were performed by Dr. Gregor Kieslich’s group at Techni-

cal University of Munich, Germany. They are summarised here to provide a reference for

my computational work. [N(C3H7)3CH3]Ni(C2N3)3 crystallises in the orthorhombic space

group (Pnma) and is referred to as P(Ni)-I. The material crystallises in a perovskite

structure where the metal centres are in an octahedral coordination with [Ni(C2N3)3]−

anions and the molecular A-site cation [(C3H7)3(CH3)N]+ sits in the void of the pseu-

docubic [Ni(C2N3)3]− network for charge balance. Positional disorder is observed for the

A-site cation [N(C3H7)3CH3]Ni(C2N3)3, with each propyl and methyl group disordered

over two sites.

Subsequently, differential scanning calorimetry (DSC) was performed to screen for

phase transitions (Figure 5.2). An irreversible crystalline-to-crystalline phase transi-

tion was observed from polymorph P(Ni)-I into a material referred to as P(Ni)-IIb at

T = 365 K. An isostructural behavior was found along the series [N(C3H7)3CH3]M(C2N3)3

with increasing transition temperature from manganese to nickel. Such an irreversible

phase transition was observed for [(NH2)3C]Mn(H2POO)3, ((C4H9)3(CH3)N)Mn(C2N3)3

and [(C5H10)2N]Cd(C2N3)3 [210]. For [(NH2)3C]Mn(H2POO)3, a single-crystal-to-single-

crystal phase transition allowed for structure solution, showing an irreversible rearrange-

ment of X-site molecules within the 3D [Mn(H2POO)3]− network as the underlying pro-

cess [210]. Single crystals of P(Ni)-I break into a polycrystalline powder during the phase
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transition. A high temperature crystallisation method at 370 K inspired by existing high-

entropy nucleation routes [220] was applied to obtain single crystals of P(Ni)-IIb. P(Ni)-

IIb adopts the perovskite structure in the rhombohedral space group R3̄c. In P(Ni)-IIb,

the A-site cation shows positional disorder, with all carbon atoms of the three propyl

groups disordered over four positions and the methyl group disordered over two positions.

The phase transition from P(Ni)-I to P(Ni)-IIb represents an irreversible perovskite-to-

perovskite phase transition. The two polymorphs P(Ni)-I and P(Ni)-IIb differ in the

disorder of the A-site cation.

Figure 5.2: DSC traces of [(nPr)3(CH3)N]Ni(C2N3)3. Shown are the heating step (top)
and subsequent reversible cooling/heating cycle (bottom), highlighting the temperature

range for the low-temperature and high-temperature phases with colour bars,
respectively.

Following the traces of the DSC experiment, the irreversible heat event is followed

by heat events that show existence of a reversible phase transition. Therefore, P(Ni)-IIb

represents a high-temperature phase of [[N(C3H7)3CH3]Ni(C2N3)3] with a reversible phase
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transition to a low-temperature phase assigned here as P(Ni)-IIa. P(Ni)-IIa crystallises in

the polar space group R3c, with a completely ordered A-site, showing that the reversible

phase transition, P(Ni)-IIa to P(Ni)-IIb is an order-disorder phase transition related to

A-site cation. Such polar-to-nonpolar phase transitions, where A-site disorder introduces

inversion symmetry, are well known for molecular perovskites [16, 221]. A complete de-

scription of the structural differences between the polymorphs and their tilt and shift

patterns can be found in the article published [222]. In the next section of the chapter, I

use first-principles simulations to underpin these experimental observations.

5.3.2 Relative phase stabilities

To explain the experimental observations, DFT calculations combined with lattice dy-

namic (LD) calculations were performed, probing the relative stabilities of the different

perovskite polymorphs. At 0 K, i.e. in the absence of any entropic contributions, a

comparison of relative stabilities between rhombohedral and orthorhombic phases shows

that the rhombohedral polymorph P(M)-IIa is the thermodynamically stable phase when

compared to P(M)-I (Figure 5.3a).

Adding zero-point vibrational contributions to the energy differences reinforces the

stability of the rhombohedral vs. the orthorhombic phase. Since vibrational entropy can

reverse thermodynamic stabilities at finite temperature [202, 209, 223], we calculate the

vibrational free energy in the temperature range T = 0−400 K for all P(M)-I and P(M)-IIa

phases. The phonon dispersion curves (Figure 5.4) show some imaginary frequencies which

are normally associated with dynamic instabilities; however, a more in-depth analysis

reveals that these imaginary frequencies are a numerical artefact from cell size effects for

the LD simulations. The use of a single unit cell in the simulations, together with the

softness of the low-frequency modes, led to numerical noise which translated into artificial

imaginary modes in the phonon dispersion curves, away from the Brillouin centre.
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Figure 5.3: (a) Energy differences between orthorhombic and rhombohedral phases for
each composition, with and without zero-point energy (ZPE) corrections. (b)

Vibrational free energy differences between the phases vs. temperature. The width of
the ZPE-corrected lines in (a) and the two types of line in (b) reflect the different results
from two ways of dealing with the (spurious) imaginary modes: ignoring the imaginary

contributions (solid lines), or counting them as real contributions (dashed lines).

Figure 5.4: Phonon dispersion curves and partial density of states in the low-frequency
region for the Mn-containing materials in a) the rhombohedral and b) the orthorhombic

phase, calculated using a unit cell.

These imaginary frequencies could not be resolved by following the imaginary modes

with ionic displacement in larger supercells (using the ModeMap code by Skelton et al.

[224]). For example, the potential energy surfaces obtained by displacing the ions in the
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direction of eigenvectors for lowest-frequency bands at the F point for the rhombohe-

dral phase, or for the U point for the orthorhombic phase, using appropriate supercells,

showed normal convexity with a minimum at the optimised structures for both phases

(Figure 5.5). Tests performed on other high symmetry points gave similar results. We

therefore conclude that both structures are dynamically stable, representing local minima

of the potential energy surface, and phase transitions between these phases are required

to go through a high-energy intermediate rather than occurring via a simple displacive

mechanism.

Figure 5.5: Potential energy surfaces in the direction of eigenvectors for lowest-frequency
bands at the F point for the rhombohedral phase, and U point for the orthorhombic

phase, using appropriate supercells.

Due to the spurious imaginary modes, which could not be renormalised, we make two

approximations for obtaining vibrational entropies: one to ignore the modes in the ex-

pression for free energy, the other to treat the negative modes as their positive inverse.

Figure 5.3b shows unequivocally that the rhombohedral phase is more stable across the

range of temperature of interest here, regardless of how we consider the contribution from

the artificial imaginary modes. Therefore, P(M)-II is the thermodynamically stable poly-

morph over the temperature range studied here, in excellent agreement with experimental

observation, i.e. with the observation of crystallisation of this polymorph at higher tem-

perature. Therefore, P(M)-I is the kinetic polymorph and its crystallisation seems to be
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kinetically favoured at ambient temperatures. In the subsequent sections of this chapter, I

focus on the thermodynamically stable rhombohedral phase (Figure 5.6). The comparison

of DFT optimised lattice parameters of P(M)-II phase with those from experiments are

shown in Table 5.1. The lattice parameters are in reasonable agreement with the exper-

imental values, with the inclusion of the Hubbard U correction improving the outcomes

to errors below 2%.

Figure 5.6: Crystal structure of [N(C3H7)3CH3]M(C2N3)3 perovskite in rhombohedral
phase (pseudocubic representation shown here), where M = Mn, Co or Ni, A site:

[N(C3H7)3CH3] and X: (C2N3). Colour scheme: C atoms are black, N atoms are blue, H
atoms are grey and M atoms are purple.

Table 5.1: Comparison of experimental and DFT geometries for the rhombohedral
structure. Experimental values were measured at 100 K whereas the calculations ignore

vibrational effects and therefore are formally at 0 K.

M = Mn M = Co M = Ni

Parameter Exp. Theory Error Exp. Theory Error Exp. Theory Error

a/Å 10.36 10.28 -0.77% 10.26 10.19 -0.68% 10.22 10.16 -0.58%

α/deg 76.47 77.24 -1.0% 76.28 77.13 -1.11% 76.01 76.76 0.98%

V /Å
3

1033.54 1017.39 -1.56% 1001.57 988.71 -1.28% 986.49 976.46 -1.02%

5.3.3 Mechanical properties

To calculate bulk modulus of the series [(nPr)3(CH3)N]M(C2N3)3 with M= Mn, Co and

Ni in rhombohedral R3c phase, we use a third-order Birch-Murnaghan equation of state
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model [225,226], with the pressure (P ) and (E) variations as functions of volume (V ):
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where V0 is the equilibrium volume, B is the bulk modulus, B′ is the derivative of the

bulk modulus with respect to pressure, and E0 is the energy at the equilibrium volume.

The bulk moduli was computed by fitting the DFT energy (E) and volume (V ). The

fitting of energy vs. volume points for Mn, Co and Ni containing system is shown in

figure 5.7. For each point the structure was relaxed by optimising cell parameters and

ionic coordinates at fixed volume. The fitting was largely insensitive to the value of

pressure derivative, which was then fixed to B′ = 4.0 for all compositions. The bulk

moduli obtained at each composition are listed in Table 5.2. The calculations capture the

experimental trend with slightly increasing value monotonically with atomic number from

Mn to Ni. The difference between experimental and theoretical values of bulk modulus

might be due to the underestimation of lattice parameters within the GGA+U theory,

with the more tightly packed structures showing slightly greater moduli. The experimental

lattice parameters are taken from structures at 100 K, while lattice parameters from DFT

are formally at 0 K, ignoring any zero-point vibrational effects. Thus, the overestimation

of bulk modulus is likely to be a consequence of the inverse relationship between total

energy and volume.

Table 5.2: Bulk modulus (B) from theory and experiment. The experimental values
(T = 100 K) were obtained by Kieslich’s group.

B/GPa M = Mn M = Co M = Ni

Theory 11.01±0.1 12.5±0.1 13.4±0.1

Expt. 6.00±0.27 8.02±0.38 10.31±0.55
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Figure 5.7: Fitted energy-volume curves from DFT calculations for
[N(C3H7)3CH3]M(C2N3)3 perovskites (M=Mn, Co and Ni).

5.3.4 Vibrational properties

The phonon density of states were calculated to get a deeper insight to the structural

and chemical origins of the macroscopic trends in the bulk moduli. Figure 5.8a shows

the phonon density of states (pDOS) for the three compositions, where the pDOS is

decomposed into contributions from each of the A-site cation, the B-site metal and X-site

linker anion. The three materials have qualitatively similar DOS, with the metal centre

contribution only observed at low frequencies (up to 300 cm−1) which is related to higher

atomic mass of the M compared to the other species in the material. From the zone-

centre vibrational frequencies, a clear hardening of the soft optical modes ν < 100 cm−1

is observed from Mn to Co and Ni (Figure 5.8b).

Figure 5.8c examines the contributions to the pDOS of the framework and A-site cation

in order to better understand the origin of the differences. The soft modes are dominated

by the M+X framework and not the A cations. Figure 5.8c clearly shows that the Mn-

based material has the greatest pDOS at low frequency, followed by Co and then Ni.

This trend in the low-frequency pDOS matches well with the trend in bulk modulus and

supports the assertion that altering the framework by metal cation substitution provides

a precise handle for tuning mechanical properties. This finding agrees with previous
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work on the effects of B-X bonding on the mechanical properties of hybrid and molecular

perovskites. It has previously been shown that stiffer B-X bonds achieved through greater

ligand-field stabilisation [217, 227] or through greater electronegativity differences [201,

228,229] result in stiffer materials. The direct effect of B-X bonding on the bulk modulus

means that it is now interesting to establish how crystal chemistry can be used to alter

the mechanical properties across a range different chemical environment.

Figure 5.8: Vibrational properties of [N(C3H7)3CH3]M(C2N3)3 perovskites (M = Mn, Co
and Ni). (a) Phonon density of states, (b) zone-centre vibrational frequency of the soft

modes for the three compositions, (c) ∆DOS of the Co(C2N3)3 and Ni(C2N3)3

framework with Mn(C2N3)3 framework as reference and ∆DOS from the A site of Co
and Ni substituted system with respect to Mn containing system.



5.3 Results and discussion 89

Having established the importance of the nature of the metal cation in determining

the mechanical and vibrational properties in these molecular perovskite systems, the

next question is whether this trend extends to other metal species and if examining

more systems can allow us to draw stronger inferences about the origin of the effect.

We have explored a range of hypothetical materials where the mechanical properties

can be modified by cation substitution at the M site. We extend our study to systems

containing other metals: Fe, Zn, Cd, Ba, Sr, Ca, Hg, or Mg, and determine their bulk

modulus using DFT calculations. This is possible computationally as we can constrain

the symmetry of the system so that the metal forms an octahedral complex with the

C2N3 linker anion. Figure 5.9 shows the variation in bulk modulus for various metal

systems. The Ba containing system has the lowest bulk modulus (8.27 GPa) with highest

value of 13.39 GPa for Ni containing system among the systems of interest considered

here. To examine the geometric factors determining the mechanical behavior in this

molecular perovskite series, we see the variation in bulk modulus as a function of M-

N bond length (metal-linker bond distance), d. This shows that larger the M-N bond

distance, smaller the bulk modulus (Figure 5.9a). We further look at the variation in

bulk modulus as a function of Shannon radius (r) of the M cation (Figure 5.9b). Aside

from the very direct relation between cation Shannon radius and mechanical properties,

we also see some secondary effects as perturbations in the major trend. For example,

the bulk modulus of the Co material is significantly greater (5.4%) than that of the Zn

material, despite their comparable Shannon radii. This observation can be linked to

ligand field stabilisation energy (LFSE) − in d10 Zn(II) the LFSE is zero, but in d5 Co

(II) it is 71.5 kJ/mol [200] and is also reflected in a shortened Co-X bond. This finding is

similar to the situation in double perovskites where M-X bonding is directly proportional

to the Young’s modulus [228]. However, it is different to what is observed in pure halide

perovskites where the Young’s modulus is inversely related to the Pb-X bond distance,

but is more affected by electronegativity differences [228].
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Figure 5.9: Bulk modulus, B, as a function of (a) equilibrium metal-linker bond
distance, d, and (b) Shannon radius, r, of M cations for [N(C3H7)3CH3]M(C2N3)3

perovskites.

5.4 Conclusion

In this chapter, I explored the molecular perovskite series [(nPr)3(CH3)N]M(C2N3)3 with

M = Mn, Co, Ni. Depending on the synthetic conditions, different perovskite polymorphs

can be obtained, and thermal treatment of the metastable polymorph P(M)-I leads to an

irreversible perovskite-to-perovskite phase transition to P(M)-II. The P(M)-II polymorph

exhibits a reversible order–disorder phase transition (PIIa–PIIb), which shows promising

characteristics in terms of barocaloric properties. Density functional theory calculations

show that for the whole stability temperature range the rhombohedral polymorph P(M)-

II represents the thermodynamically more stable phase. The absence of actual imaginary

modes further suggests that the transformation goes through a high-energy transition

state as underlying mechanism of the irreversible phase transition.

The mechanical and vibrational properties of the molecular perovskite series are cal-

culated, which are of importance for the potential application of these materials for

barocaloric applications. The bulk modulus depends on the phonon density of states

of the M+X framework and specially the metal-linker bond. Our analysis shows that the

material with softest phonon modes corresponds to the material with lowest bulk modulus.

Given the importance of the metal cation in determining the vibrational and mechanical

properties we extend our study to a series of hypothetical materials with other metals in

oxidation state II: Fe, Zn, Cd, Ba, Sr, Ca, Hg, and Mg. These calculations reveal clear



5.4 Conclusion 91

relationship between the metal-linker bond length and the bulk modulus. Furthermore,

we show that the Shannon radius of a metal, which can be known a priori, without cal-

culations or experiments, is a good descriptor for how the bulk modulus will depend on

composition, with some modifications possible from ligand-field stabilisation energy for

example.

The results presented in figure 5.9b provide a starting for rational materials design

of molecular perovskites with tailored mechanical properties. Other factors such as the

preferred crystal structure, presence of defects, microstructure and vibrational properties

will also contribute to the overall mechanical properties of the systems. However, to a

first order it should be possible to carefully change the mechanical properties by metal

substitution. We also emphasise that metal does not need to be substituted completely;

solid solutions are a powerful approach to continuously tailoring material properties and

we expect that in these systems solid solutions could be a promising materials design

strategy.





Chapter 6

Conclusions and Future work

6.1 Conclusions from previous chapters

In this thesis, I have presented a first-principles modelling study of several functional

perovskites. The perovskites studied here are not only of technological importance, but

also fundamentally interesting as they exhibit unusual phenomena involving fascinating

physics. I explore and develop a thorough understanding of inorganic (BiCoxFe1−xO3 and

PMN-PT), HOIP ((FAPbI3)0.875(MAPbBr3)0.125) and molecular ([(nPr)3(CH3N)]M(C2N3)3

with nPr= n-propyl) perovskites. I have modelled a wide range of properties, including

band structure and alignment, phonon dispersion, ferroelectric polarisation, cation disor-

der, and bulk moduli. To achieve this, I have employed a combination of first-principles

calculations based on DFT and AIMD.

This thesis illustrates the amazing chemical versatility of the perovskite ABX3 struc-

ture, which is able to accommodate wildly different species in the cation (A, B) and anion

(X) sites. The species can be just atomic like in the inorganic perovskites BiFeO3 or

PbMg1/3Nb2/3O3 (Chapter 3), molecular like in the [(nPr)3(CH3)N]M(C2N3)3 materials

explored in Chapter 5, or hybrid like the MAPbBr3 and FAPbI3 compounds considered

in Chapter 4. In Chapter 3, the response of the multiferroic perovskite BiFeO3 to Co

92
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substitution was discussed in detail considering the structural, electronic, magnetic, fer-

roelectric and thermodynamic aspects using DFT. Co substitution in BiFeO3 significantly

reduces the band gap of the system, from 2.9 eV to ∼2.1 eV simultaneously enhancing

the spontaneous polarisation. This large enhancement of ferroelectricity would further

promote effective charge carrier separation in applications such as photocatalysis or pho-

tovoltaics. The potential of Co-substituted BiFeO3 in photocatalytic applications is briefly

discussed by calculating the band alignment. The final section of this chapter focused on

the ferroelectric properties of a relaxor ferroelectric perovskite, PMN-PT which exhibits

a tetragonal-monoclinic phase transition accompanied by a giant piezoelectric response.

Following this, I focused on the HOIPs which have gained attention over the past

decades for the high power conversion efficiency of the perovskite solar cells. Chapter 4 em-

ploys methods of AIMD to calculate the structural, electronic, thermodynamic and vibra-

tional properties of mixed-cation mixed-anion perovskite, (FAPbI3)0.875(MAPbBr3)0.125.

An atomic scale model of the solid solution is proposed and all the properties are com-

pared to the end compounds MAPbBr3 and FAPbI3. The computed properties have

been shown to reproduce the available experimental measurements, such as bandgaps,

lattice constant, cation orientation dynamics, and thermodynamic stability. A detailed

understanding of (FAPbI3)0.875(MAPbBr3)0.125 perovskite solid solution is thus obtained.

In Chapter 5, I explored the molecular perovskite series [(nPr)3(CH3)N]M(C2N3)3 with

M = Mn, Co, Ni which shows promising characteristics in terms of barocaloric properties.

Using DFT, the phase stability is computed at the temperatures of interest and it is

established that the rhombohedral phase is the thermodynamically stable phase. The

mechanical and vibrational properties of the molecular perovskite series are calculated

which shows the dependence of bulk modulus on the phonon density of states of M+X

framework and especially the metal-linker bond. The material with the softest phonon

modes corresponds to the material with lowest bulk modulus. A clear relationship between

between the metal-linker bond length and the bulk modulus is established using a series

of hypothetical materials with different metal (M2+) centres. The relationship between
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bulk modulus and Shannon radius provides a starting point for rational material design

with tailored mechanical properties.

While the materials examined in the chapters of this thesis are different in chemical

properties, they all exhibit a rich interplay between structure, symmetry, and dynamics.

The compositional ratios and the 3D topology of corner-sharing octahedra are common,

but the distortions from the high-symmetry cubic perovskite structure are often crucial

to the functional properties. In BiFeO3 and PMN-PT, the non-centrosymmetric space

groups are essential for the ferroelectric behaviour. Although I did not discuss electric

polarisation in the hybrid organic-inorganic halide perovskites of Chapter 4, it is known

that polarisation may play an important role in the high performance of those perovskites

in photovoltaic cells [230]. Similarly, the pressure-induced symmetry transitions in the

molecular perovskites of Chapter 5 are key to their barocaloric applications. Our results

also show how the vibrational and dynamic behaviour are important to understand the

properties of perovskites. In the work presented in Chapter 4, for example, we showed

that the rotation of the organic cations is more strongly hindered in the mixed structure

in comparison with the pure compounds, a phenomenon that might affect the stability of

these important solid solutions. In Chapter 5, careful consideration of the vibrational dy-

namics of the perovskites was essential to understand the relationship between the phases.

The study of BiFeO3, (FAPbI3)0.875(MAPbBr3)0.125, and PbMg1/3Nb2/3O3−PbTiO3 solid

solutions have illustrated an additional degree of freedom (the composition x) to tune

the properties of these materials. If the configurational thermodynamics is important,

like in the case of investigating phase separation in Co-substituted BiFeO3, one must ex-

plicitly evaluate configurational energies in an ensemble, and in this case the vibrational

contributions must be ignored to keep the computational cost manageable. If dynamic

aspects must be taken into account, the computational study of such solid solutions has

to be simplified by using representative structures, for example the SQS used to model

(FAPbI3)0.875(MAPbBr3)0.125. The simultaneous consideration of different dimensions of

complexity is perhaps the greatest challenge in the computer simulation of functional
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perovskites.

6.2 Future work

In the study of Co-substituted BiFeO3, one aspect that remained pending for future in-

vestigation is how the Ueff correction applied in the GGA+U method affects the predicted

ferroelectric polarisation. The polarisation calculations using hybrid functionals for this

system were computationally expensive. Hence, the effect of different Ueff parameters

on the polarisation of the system needs to be explored. This is important to reconcile

different theoretical studies. Using the same approach, the ferroelectric properties of the

(FAPbI3)0.875(MAPbBr3)0.125 solid solution can be explored as the ferroelectric properties

of these hybrid perovskites are important for photovoltaic applications.

Having established the efficacy of DFT calculations in predicting the bulk modulus of

molecular perovskites with different M2+ cation, I plan to extend this idea to predict the

bulk modulus of perovskite materials using machine learning (ML). ML has emerged as a

powerful tool in material science [231, 232] as it accelerates the search for materials with

desired targeted properties. Although we are initially interested in the prediction of bulk

moduli, ML techniques can be also used to accelerate the prediction of other properties of

relevance for this thesis, for example, bandgaps or phonon related properties, as illustrated

by recent work in our research group [233–235]. The high computational cost incurred

by DFT-based simulations requires access to high-performance computers. ML based

methods has the potential to reduce computational cost by several orders of magnitude

compared to the DFT based methods [236–238]. I have done some preliminary work,

which I would like to extend in the future, using MatErials Graph Network (MEGNet)

developed by Chen et al. [239] for accurate prediction of bulk modulus of perovskite

materials. MEGNet can be trained by using the crystal structure of materials alone. I

used the available data of bulk modulus of materials from JARVIS database [240]. The

dataset comprises a collection of compounds with their structural parameters and bulk
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moduli (19441 compounds whose bulk modulus is known). The dataset is divided into

three parts, training, validation and test. For initial calculations, 60% of the dataset was

used for training and the remaining were equally divided into validation and test dataset.

The MEGNet model was trained on the training set and the validation loss is monitored

during training. The training is stopped when the validation loss does not improve for

150 consecutive epochs (Figure 6.1(a)). The convergence was achieved within 500 epochs.

The trained model is used to predict the bulk modulus of the test set. Figure 6.1(b) shows

the plot of predicted vs. true data for the test set (3987 structures). The materials with

small bulk modulus had larger error. These are preliminary results and require further

investigation which I plan to do in future. A complete plan of the future work on this

project is given below:

• Use unlockGNN with the trained MEGNet model to obtain learned representations

of the perovskite materials.

• Split the perovskite dataset into a training set and a exploration set.

• Train a Gaussian process (GP) model using the learned representations to predict

the bulk moduli (on the training set of perovskite materials).

• Using the trained GP, do Bayesian optimisation of the exploration set.

Figure 6.1: (a) Validation loss vs. epochs for the training set, (b) Predicted vs. true
value of bulk modulus for the test set. The values are in log10(GPa) scale.
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As mentioned above, there is large computational cost barrier in the simulation of the

complexity of perovskites materials. I believe that ML will be an essential ingredient to

overcome that barrier in future computational studies of these fascinating materials.





Bibliography

[1] P. Hohenberg and W. Kohn, “Inhomogeneous electron gas”, Phys. Rev. 136, pp.

B864–B871 (1964).

[2] W. Kohn and L. J. Sham, “Self-consistent equations including exchange and corre-

lation effects”, Phys. Rev. 140, pp. A1133–A1138 (1965).

[3] David P. Landau and K. Binder, A Guide to Monte Carlo Simulations in Statistical

Physics, Cambridge University Press Cambridge (2014).

[4] R. Iftimie, P. Minary, and M. E. Tuckerman, “Ab initio molecular dynamics:

Concepts, recent developments, and future trends”, Proceedings of the National

Academy of Sciences 102, pp. 6654–6659 (2005).

[5] R. Ali and M. Yashima, “Space group and crystal structure of the perovskite CaTiO3

from 296 to 1720 K”, Journal of Solid State Chemistry 178, pp. 2867–2872 (2005).

[6] V. M. Goldschmidt, “Die gesetze der krystallochemie”, Naturwissenschaften 14,

pp. 477–485 (1926).

[7] Y. A. Abramov, V. G. Tsirelson, V. E. Zavodnik, S. A. Ivanov, and Brown I. D.,

“The chemical bond and atomic displacements in SrTiO3 from X-ray diffraction

analysis”, Acta Crystallographica Section B 51, pp. 942–951 (1995).

[8] A. Okazaki and Y. Suemune, “The crystal structure of KCuF3”, Journal of the

Physical Society of Japan 16, pp. 176–183 (1961).

[9] B. C. Frazer, H. R. Danner, and R. Pepinsky, “Single-crystal neutron analysis of

tetragonal BaTiO3”, Phys. Rev. 100, pp. 745–746 (1955).

[10] H. D. Megaw and J. D. Bernal, “Temperature changes in the crystal structure

of barium titanium oxide”, Proceedings of the Royal Society of London. Series A.

Mathematical and Physical Sciences 189, pp. 261–283 (1947).

98



Bibliography 99

[11] I. B. Bersuker, “Pseudo Jahn-Teller origin of perovskite multiferroics, magnetic-

ferroelectric crossover, and magnetoelectric effects: The d0−d10 problem”, Phys.

Rev. Lett. 108, pp. 137202 (2012).

[12] N. W. Thomas, “Crystal structure–physical property relationships in perovskites”,

Acta Crystallographica Section B 45, pp. 337–344 (1989).

[13] N. W. Thomas, “A new global parameterization of perovskite structures”, Acta

Crystallographica Section B 54, pp. 585–599 (1998).

[14] M. Johnsson and P. Lemmens, Crystallography and Chemistry of Perovskites, John

Wiley & Sons, Ltd (2007).

[15] X. Liu, R. Hong, and C. Tian, “Tolerance factor and the stability discussion of

ABO3-type ilmenite”, Journal of Materials Science-materials in Electronics 20, pp.

323–327 (2009).

[16] A. M. Glazer, “The classification of tilted octahedra in perovskites”, Acta Crystal-

lographica Section B 28, pp. 3384–3392 (1972).

[17] S. Sasaki, C. T. Prewitt, J. D. Bass, and W. A. Schulze, “Orthorhombic perovskite

CaTiO3 and CdTiO3: structure and space group”, Acta Crystallographica Section

C 43, pp. 1668–1674 (1987).

[18] T. Asada and Y. Koyama, “Coexistence of ferroelectricity and antiferroelectricity

in lead zirconate titanate”, Phys. Rev. B 70, pp. 104105 (2004).

[19] J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland,

V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe,

M. Wuttig, and R. Ramesh, “Epitaxial BiFeO3 multiferroic thin film heterostruc-

tures”, Science 299, pp. 1719–1722 (2003).

[20] H. Jaffe, “Titanate ceramics for electromechanical purposes”, Industrial & Engi-

neering Chemistry 42, pp. 264–268 (1950).

[21] J. Rouquette, J. Haines, V. Bornand, M. Pintard, Ph. Papet, C. Bousquet, L. Kon-

czewicz, F. A. Gorelli, and S. Hull, “Pressure tuning of the morphotropic phase

boundary in piezoelectric lead zirconate titanate”, Phys. Rev. B 70, pp. 014108

(2004).

[22] Y. Moritomo, A. Asamitsu, H. Kuwahara, and Y. Tokura, “Giant magnetoresistance

of manganese oxides with a layered perovskite structure”, Nature 380, pp. 141–144

(1996).



100 Bibliography

[23] J. Loudon, N. Mathur, and P. Midgley, “Charge-ordered ferromagnetic phase in

La0.5Ca0.5MnO3”, Nature 420, pp. 797–800 (2002).

[24] D. Sun, Y. Zhang, D. Wang, W. Song, X. Liu, J. Pang, D. Geng, Y. Sang, and

H. Liu, “Microstructure and domain engineering of lithium niobate crystal films for

integrated photonic applications”, Light: Science Applications 9, pp. 197 (2020).

[25] E.L. Wooten, K.M. Kissa, A. Yi-Yan, E.J. Murphy, D.A. Lafaw, P.F. Hallemeier,

D. Maack, D.V. Attanasio, D.J. Fritz, G.J. McBrien, and D.E. Bossi, “A review of

lithium niobate modulators for fiber-optic communications systems”, IEEE Journal

of Selected Topics in Quantum Electronics 6, pp. 69–82 (2000).

[26] A. Filippetti and N. A. Hill, “First principles study of structural, electronic and

magnetic interplay in ferroelectromagnetic yttrium manganite”, Journal of Mag-

netism and Magnetic Materials 236, pp. 176–189 (2001).
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and J. M. Bermúdez-Garćia, “Near-room-temperature reversible giant barocaloric

effects in [(CH3)4N]Mn[N3]3 hybrid perovskite”, Mater. Adv. 1, pp. 3167–3170

(2020).

[70] J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation

made simple”, Phys. Rev. Lett. 77, pp. 3865–3868 (1996).

[71] J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A.

Constantin, X. Zhou, and K. Burke, “Restoring the density-gradient expansion for

exchange in solids and surfaces”, Phys. Rev. Lett. 100, pp. 136406 (2008).

[72] B. Hammer, L. B. Hansen, and J. K. Nørskov, “Improved adsorption energetics

within density-functional theory using revised perdew-burke-ernzerhof functionals”,

Phys. Rev. B 59, pp. 7413–7421 (1999).

[73] J. Heyd, G. E. Scuseria, and M. Ernzerhof, “Hybrid functionals based on a screened

coulomb potential”, J. Chem. Phys. 118, pp. 8207–8215 (2003).
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[166] H. Grüninger, M. Bokdam, N. Leupold, P. Tinnemans, R. Moos, G. A. De Wijs,

F. Panzer, and A. P. M. Kentgens, “Microscopic (dis)order and dynamics of cations

in mixed FA/MA lead halide perovskites”, The Journal of Physical Chemistry C

125, pp. 1742–1753 (2021).

[167] E. Menéndez-Proupin, S. Grover, A. L. Montero-Alejo, S. D. Midgley,

K. T. Butler, and R. Grau-Crespo, “Mixed-anion mixed-cation perovskite

(FAPbI3)0.875(MAPbBr3)0.125: an ab initio molecular dynamics study”, J. Mater.

Chem. A 10, pp. 9592–9603 (2022).

[168] J. VandeVondele, M. Krack, F. Mohamed, M. Parrinello, T. Chassaing, and J. Hut-

ter, “Quickstep: Fast and accurate density functional calculations using a mixed

gaussian and plane waves approach”, Computer Physics Communications 167, pp.

103–128 (2005).

[169] J. VandeVondele and J. Hutter, “Gaussian basis sets for accurate calculations on

molecular systems in gas and condensed phases”, The Journal of Chemical Physics

127, pp. 114105 (2007).

[170] S. Goedecker, M. Teter, and J. Hutter, “Separable dual-space gaussian pseudopo-

tentials”, Phys. Rev. B 54, pp. 1703–1710 (1996).

[171] C. Hartwigsen, S. Goedecker, and J. Hutter, “Relativistic separable dual-space

gaussian pseudopotentials from h to rn”, Phys. Rev. B 58, pp. 3641–3662 (1998).

[172] M. Krack, “Pseudopotentials for H to Kr optimized for gradient-corrected exchange-

correlation functionals”, Theoretical Chemistry Accounts 114, pp. 145–152 (2005).



114 Bibliography

[173] J. VandeVondele and J. Hutter, “An efficient orbital transformation method for

electronic structure calculations”, The Journal of Chemical Physics 118, pp. 4365–

4369 (2003).

[174] V. Weber, J. VandeVondele, J. Hutter, and A. M. N. Niklasson, “Direct energy

functional minimization under orthogonality constraints”, The Journal of Chemical

Physics 128, pp. 084113 (2008).

[175] E. Menéndez-Proupin, S. Grover, A. L. Montero-Alejo, S. D. Midgley, K. T. But-

ler, and R. Grau-Crespo, “Data supporting mixed-anion mixed-cation perovskite

(FAPbI3)0.875(MAPbBr3)0.125: an ab initio molecular dynamics study”, Repositorio

de datos de investigación de la Universidad de Chile (2021).

[176] M. T. Weller, O. J. Weber, J. M. Frost, and A. Walsh, “Cubic perovskite structure

of black formamidinium lead iodide, α-[HC(NH2)2]PbI3, at 298 K”, The Journal of

Physical Chemistry Letters 6, pp. 3209–3212 (2015).

[177] A. Jaffe, Y. Lin, C. M. Beavers, J. Voss, W. L. Mao, and H. I. Karunadasa, “High-

pressure single-crystal structures of 3D lead-halide hybrid perovskites and pressure

effects on their electronic and optical properties”, ACS Central Science 2, pp.

201–209 (2016).

[178] X.-G. Zhao, G. M. Dalpian, Z. Wang, and A. Zunger, “Polymorphous nature of

cubic halide perovskites”, Phys. Rev. B 101, pp. 155137 (2020).

[179] A. Zunger, S.-H. Wei, L. G. Ferreira, and James E. Bernard, “Special quasirandom

structures”, Phys. Rev. Lett. 65, pp. 353–356 (1990).

[180] N. E. Cusack, The physics of structurally disordered matter: an introduction, Hilger

Bristol (1988).

[181] M. Brehm, M. Thomas, S. Gehrke, and B. Kirchner, “TRAVIS—a free analyzer for

trajectories from molecular simulation”, The Journal of Chemical Physics 152, pp.

164105 (2020).

[182] D Ghosh, P. Walsh Atkins, M. S. Islam, A. B. Walker, and C. Eames, “Good

vibrations: Locking of octahedral tilting in mixed-cation iodide perovskites for solar

cells”, ACS Energy Letters 2, pp. 2424–2429 (2017).

[183] A Mattoni, A. Filippetti, and C. Caddeo, “Modeling hybrid perovskites by molec-

ular dynamics”, Journal of Physics: Condensed Matter 29, pp. 043001 (2016).



Bibliography 115

[184] J. Ganguly, Thermodynamics in Earth and Planetary Sciences, Springer Berlin,

Heidelberg (2008).

[185] M. Prieto, “Thermodynamics of solid solution-aqueous solution systems”, Reviews

in Mineralogy and Geochemistry 70, pp. 47–85 (2009).

[186] R. F. Moran, D. McKay, P. C. Tornstrom, A. Aziz, A. Fernandes, R. Grau-Crespo,

and S. E. Ashbrook, “Ensemble-based modeling of the nmr spectra of solid solutions:

Cation disorder in Y2(Sn,Ti)2O7”, Journal of the American Chemical Society 141,

pp. 17838–17846 (2019).

[187] R. Jinnouchi, F. Karsai, and G. Kresse, “On-the-fly machine learning force field

generation: Application to melting points”, Phys. Rev. B 100, pp. 014105 (2019).

[188] R. Jinnouchi, F. Karsai, C. Verdi, R. Asahi, and G. Kresse, “Descriptors represent-

ing two- and three-body atomic distributions and their effects on the accuracy of

machine-learned inter-atomic potentials”, The Journal of Chemical Physics 152,

pp. 234102 (2020).

[189] M. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena, M. K. Nazeerud-

din, S. M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, and M. Grätzel, “Cesium-

containing triple cation perovskite solar cells: improved stability, reproducibility and

high efficiency”, Energy Environ. Sci. 9, pp. 1989–1997 (2016).

[190] C. Zhang, Y. Wang, X. Lin, T. Wu, Q. Han, Y. Zhang, and L. Han, “Effects of a

site doping on the crystallization of perovskite films”, J. Mater. Chem. A 9, pp.

1372–1394 (2021).

[191] K.-L. Hu, M. Kurmoo, Z. Wang, and S. Gao, “Metal–organic perovskites: Synthesis,

structures, and magnetic properties of [C(NH2)3][MII(HCOO)3] (M=Mn, Fe, Co, Ni,

Cu, and Zn; C(NH2)3= Guanidinium)”, Chemistry – A European Journal 15(44),

pp. 12050–12064 (2009).

[192] X.-H. Zhao, X.-C. Huang, S.-L. Zhang, D. Shao, H.-Y. Wei, and X.-Y. Wang,

“Cation-dependent magnetic ordering and room-temperature bistability in Azido-

Bridged perovskite-type compounds”, Journal of the American Chemical Society

135, pp. 16006–16009 (2013).

[193] M.-L. Tong, J. Ru, Y.-M. Wu, X.-M. Chen, H.-C. Chang, K. Mochizuki,

and S. Kitagawa, “Cation-templated construction of three-dimensional α-Po

cubic-type [M(dca)3] networks. syntheses, structures and magnetic properties of

A[M(dca)3] (dca=dicyanamide; for a=benzyltributylammonium, M=Mn2+, Co2+;



116 Bibliography

for a=benzyltriethylammonium, M=Mn2+, Fe2+)”, New J. Chem. 27, pp. 779–782

(2003).

[194] J. Lefebvre, D. Chartrand, and D. B. Leznoff, “Synthesis, structure and magnetic

properties of 2-D and 3-D [cation]M[Au(CN)2]3 (M=Ni,Co) coordination polymers”,

Polyhedron 26, pp. 2189–2199 (2007).

[195] J. A. Hill, A. L. Thompson, and A. L. Goodwin, “Dicyanometallates as model

extended frameworks”, Journal of the American Chemical Society 138, pp. 5886–

5896 (2016).

[196] Z.-Y. Du, T.-T. Xu, B. Huang, Y.-J. Su, W. Xue, C.-T. He, W.-X. Zhang, and

X.-M. Chen, “Switchable guest molecular dynamics in a perovskite-like coordina-

tion polymer toward sensitive thermoresponsive dielectric materials”, Angewandte

Chemie International Edition 54, pp. 914–918 (2015).

[197] H. Boström, M. Senn, and A. Goodwin, “Recipes for improper ferroelectricity in

molecular perovskites”, Nature Communications 9, pp. 2380 (2018).

[198] H. L. B. Boström, “Tilts and shifts in molecular perovskites”, CrystEngComm 22,

pp. 961–968 (2020).

[199] K. L. Svane, A. C. Forse, C. P. Grey, G. Kieslich, A. K. Cheetham, A. Walsh, and

K. T. Butler, “How strong is the hydrogen bond in hybrid perovskites?”, The

Journal of Physical Chemistry Letters 8, pp. 6154–6159 (2017).

[200] L.-J. Ji, S. Sun, Y. Qin, K. Li, and W. Li, “Mechanical properties of hybrid organic-

inorganic perovskites”, Coordination Chemistry Reviews 391, pp. 15–29 (2019).

[201] J. Feng, “Mechanical properties of hybrid organic-inorganic CH3NH3BX3 (B = Sn,

Pb; X = Br, I) perovskites for solar cell absorbers”, APL Materials 2, pp. 081801

(2014).

[202] K. T. Butler, K. Svane, G. Kieslich, A. K. Cheetham, and A. Walsh, “Microscopic

origin of entropy-driven polymorphism in hybrid organic-inorganic perovskite ma-

terials”, Phys. Rev. B 94, pp. 180103 (2016).

[203] G. Kieslich, J. M. Skelton, J. Armstrong, Y. Wu, F. Wei, K. L. Svane, A. Walsh, and

K. T. Butler, “Hydrogen bonding versus entropy: Revealing the underlying thermo-

dynamics of the hybrid organic–inorganic perovskite [CH3NH3]PbBr3”, Chemistry

of Materials 30, pp. 8782–8788 (2018).



Bibliography 117

[204] S. A. Hallweger, C. Kaußler, and G. Kieslich, “The structural complexity of per-

ovskites”, Phys. Chem. Chem. Phys. 24, pp. 9196–9202 (2022).

[205] T. Besara, P. Jain, N. S. Dalal, P. L. Kuhns, A. P. Reyes, H. W. Kroto, and

A. K. Cheetham, “Mechanism of the order-disorder phase transition, and glassy

behavior in the metal-organic framework [(CH3)2NH2]Zn(HCOO)3”, Proceedings of

the National Academy of Sciences 108, pp. 6828–6832 (2011).

[206] H. L. B. Boström and G. Kieslich, “Influence of metal defects on the mechanical

properties of ABX3 perovskite-type metal-formate frameworks”, The Journal of

Physical Chemistry C 125, pp. 1467–1471 (2021).

[207] I. E. Collings, M. Bykov, E. Bykova, M. Hanfland, S. van Smaalen, L. Dubrovinsky,

and N. Dubrovinskaia, “Disorder–order transitions in the perovskite metal–organic

frameworks [(CH3)2NH2][M(HCOO)3] at high pressure”, CrystEngComm 20, pp.

3512–3521 (2018).

[208] M. Maczka, Anna Gagor, M. Ptak, D. Stefańska, and A. Sieradzki, “Temperature-
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