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ABSTRACT: The importance of the convective life cycle in tropical large-scale dynamics has

long been emphasized, but without explicit analysis. The present work provides it by coupling

the convective energy cycle under the framework of Arakawa and Schubert’s (1974) convection

parameterization with a shallow-water analogue atmosphere. The square frequency of linear

convectively–coupled waves is given by a squared sum of the dry gravity-wave and the convective

energy-cycle frequencies, shortening the period of the convective cycle through the large-scale

coupling. In a weakly nonlinear regime, the system follows an equation analogous to the Kortweg–

de Vries equation, which exhibits a solitary–wave solution, with behavior reminiscent of observed

tropical westerly–wind bursts.
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Significance Statement: The present work suggests that a nonlinear description of a large–scale16

tropical system with an explicit convective life cycle may provide a simple model of tropical17

westerly–wind bursts. At the same time, an important lesson to learn is that, if the focus of18

a study is on the global scale of the atmosphere, it is wise not to try to include a convective19

life cycle explicitly into the model. Such a configuration will simply be dominated by the short20

convective–scale variabilities, that one would wish to filter out.21

1. Introduction22

It is commonly accepted that tropical atmospheric dynamics is essentially described by the23

interactions between large-scale equatorial waves and small-scale convection: 𝑐 𝑓 ., critical reviews24

in introductions of Yano and Tribbia (2017), Yano and Wedi (2021), and further references therein.25

A standard approach has been to introduce parameterized convection to the large–scale dynamics26

under a general framework of convective quasi-equilibrium (𝑐 𝑓 ., Yano and Plant 2012a), which27

assumes that small–scale convection is in equilibrium with the large-scale dynamics in a certain28

manner. This general conceptual framework can cover a wide range of formulations, including29

the original one by Arakawa and Schubert (1974), but also a more straightforward assumption30

of convective neutrality of the large scale, originally suggested by Betts (1986), observationally31

supported by Xu and Emanuel (1989), and applied to theoretical studies by Emanuel (1987) and32

Neelin et al. (1987). More classical approaches of wave–CISK (Hayashi 1970, Lindzen 1974) can33

also be included in this category in the present context. All of these approaches have in common34

that they do not introduce an explicit process characterized by a convective time scale.35

At the same time, there has been a persistent feeling in the tropical community that a finite time36

scale for the life cycle of small-scale convection plays a critical role in the tropical large-scale37

dynamics. This feeling may be, for example, reflected upon through brief, albeit rather obscure38

discussions on the convective life cycle leading to his Eqs. (2.2) and (3.6) in Kuo (1974), the39

emphasis on mesoscale processes for convection parameterizations in the review by Houze and40

Betts (1981), and probably most succinctly summarized by an argument of activation-control by41

Mapes (1997).42
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The most straightforward way to include a convective time scale within a parameterization is43

to introduce it as a finite-time adjustment process towards an equilibrium. A parameterization by44

Betts (1986) follows this approach, although his main focus in the formulation is in defining an45

equilibrium profile. Neelin and Yu (1994) and Yu and Neelin (1994) introduced this finite-time46

convective adjustment in the context of large-scale dynamic studies. Similar approaches are adopted47

by 𝑒.𝑔., Frierson et al. (2004), Stechmann and Majda (2006), Bouchut et al. (2009), Lambaerts48

et al. (2011). However, these convective adjustment approaches are still short of introducing a49

life-cycle of convection: adjustment only describes a monotonic approach towards an equilibrium,50

without going through anything like a cycle. A simple model for the convective life cycle was51

introduced by Yano and Plant (2012b).52

Yano and Plant (2012b) showed that a basic behavior of atmospheric deep convection, especially53

its tendency for following a cycle of discharge and recharge (𝑐 𝑓 ., Blade and Hartmann 1993),54

can be described by an energy cycle, as originally introduced by Arakawa and Schubert (1974)55

as their Eqs. (132) and (140), but by adding simple closures to this system (𝑐 𝑓 ., Eq. 2.5 below).56

A key simplification in the formulation of Yano and Plant (2012b) is to consider only a single,57

deep convection mode so that the integral kernel, defined by Eqs. (B36) and (B37) in Arakawa and58

Schubert (1974), reduces to a single scalar parameter.59

The purpose of the present study is to couple this convective energy cycle system with a simple60

large-scale dynamics described by a shallow-water analogue, and to present its basic behavior.61

The most fascinating finding from this study is the existence of a solitary wave solution under62

weak nonlinearity, whose behavior is reminiscent of observed tropical westerly–wind bursts (𝑐 𝑓 .,63

Hartten 1996, Yano et al. 2004).64

The convective energy-cycle system introduced by Yano and Plant (2012b) is reviewed in the next65

section. As a first step for investigating the coupled dynamics of this system, we adopt a simple66

horizontally one-dimensional shallow-water analogue for the large-scale dynamics, as introduced67

in Sec. 3. A complete formulation of the system is presented in Sec. 4 in a nondimensional form.68

The derived system is analyzed over Secs. 5–7 in three steps: steady solutions (Sec. 5), linear69

waves (Sec. 6), and a weakly nonlinear analysis (Sec. 7). The paper is concluded by Sec. 9 after70

further discussions in Sec. 8.71
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2. Convective Energy-Cycle System (Dimensional)72

Following Yano and Plant (2012b), the convective energy-cycle system is given by:73

𝑑𝐾

𝑑𝑡
= 𝐴𝑀𝐵 −𝐷, (2.1a)

𝑑𝐴

𝑑𝑡
= −𝛾𝑀𝐵 +𝐹 (2.1b)

with the convective kinetic energy, 𝐾 , and the cloud work function, 𝐴, as prognostic variables.74

These are defined by75

𝐾 =

∫ 𝑧𝑇

𝑧𝐵

𝜎
𝜌

2
𝑤2
𝑐𝑑𝑧, (2.2a)

𝐴 =

∫ 𝑧𝑇

𝑧𝐵

𝜂𝑏𝑑𝑧. (2.2b)

Here, notably, 𝜎 is the fractional area occupied by convection, 𝜂 is a normalized vertical profile76

of convective mass flux, and 𝑀𝐵 is the convective mass flux at the convection base. The other77

variables introduced in Eqs. (2.2a, b) are: 𝜌 the air density, 𝑤𝑐 the convective vertical velocity, 𝑧78

the vertical coordinate, and 𝑏 the buoyancy.79

Arakawa and Schubert (1974) assumed an entraining plume profile in defining the cloud work80

function, 𝐴. In this case, the profile, 𝜂, is normalized by the value at the convective base. However,81

Yano et al. (2005) show that the concept of the cloud work function can be applied to any vertical82

convective profile, 𝜂, as a measure of the potential energy convertibility (PEC), as seen on the first83

term in the right-hand of Eq. (2.1a). Note further that if we set 𝜂 = 1, the cloud work function84

(PEC) reduces to a form of convective available potential energy (CAPE). It fully reduces to CAPE85

if the buoyancy, 𝑏, is defined as that of a lifting parcel. However, the definition of the buoyancy86

is kept open in Eq. (2.2b): for example, it could be taken as the buoyancy as defined in explicit87

convection simulations, averaged over the convective area.88

We assume that the convective damping, 𝐷, is expressed by a Rayleigh damping:89

𝐷 =
𝐾

𝜏𝐷
(2.2c)
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with the damping time scale, 𝜏𝐷 ∼ 103 sec. 𝛾 measures the efficiency with which convection90

consumes the cloud work function (PEC), 𝐴, with time, corresponding to the kernel, K, introduced91

by Arakawa and Schubert (1974), but reducing it to a scalar by only considering a single convective92

mode here.93

The large-scale forcing, 𝐹, was taken to be a prescribed constant in Yano and Plant (2012b) in94

order to consider the convection dynamics in a stand alone manner. For the present purpose of95

considering a coupling of this energy-cycle system with the large-scale dynamics, the large-scale96

forcing must evolve following the evolution of the large-scale state. Thus, we define it by97

𝐹 ≃
∫ 𝑧𝑇

𝑧𝐵

𝑔𝜂

𝑇

(
𝑤̄
𝜕𝜃

𝜕𝑧
−𝑄𝑅

)
𝑑𝑧, (2.2d)

where 𝑔 is the acceleration due to gravity, 𝑇 the large-scale temperature, 𝑤̄ the large-scale velocity,98

𝜃 the large-scale potential temperature, and𝑄𝑅 the radiative heating rate. It is important to note that99

we neglect a contribution of boundary-layer processes to the large-scale forcing in the definition100

(2.2d). This simplification is consistent with that which Arakawa and Schubert (1974) adopted101

in their quasi-equilibrium diagnosis, as well as the observationally–proposed approximation of102

parcel–environment quasi–equilibrium (Zhang 2002, 2003, Donner and Phillips 2003).103

Finally, the vertical integrals in Eqs. (2.2a, b, d) are, in principle, performed from the convection104

base, 𝑧𝐵, to its top, 𝑧𝑇 . However, for the sake of simplifying the coupling with the large-scale105

dynamics, we re-set them to be the surface, 𝑧𝐵 = 0, and the top of the atmosphere, 𝑧𝑇 . By adopting106

an equivalent vertical coordinate in the large-scale dynamics (𝑐 𝑓 ., Sec. 3), 𝑧𝑇 , can easily be107

re-interpreted as the top of the troposphere.108

For achieving the simplest possible coupling, we still assume that the radiative heating rate, 𝑄𝑅,109

is prescribed, but modify the first term in the definition (2.2d) above, by following the evolution of110

the large-scale vertical velocity, 𝑤̄. We assume a normalized vertical profile of the vertical velocity,111

𝑤̄, to be𝑊 so that112

𝑤̄ = 𝑤̃(𝑥, 𝑡)𝑊 (𝑧). (2.3a)

Here, 𝑤̃(𝑥, 𝑡) designates the horizontal dependence of the large-scale vertical velocity, and 𝑥 is the113

only horizontal coordinate. Throughout the paper, vertical profiles are designated by upper–case114

letters, and keep in mind that all of the vertical profiles are defined to be nondimensional, and also115
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normalized to 𝑂 (1). Furthermore, the tilde sign is added to distinguish the horizontal components116

until the end of Sec. 3.117

As a result, the large-scale forcing may be re-written as:118

𝐹 = 𝜇𝑤̃ +𝐹𝑅, (2.3b)

where119

𝜇 =

∫ 𝑧𝑇

𝑧𝐵

𝑔𝜂

𝑇
𝑊
𝑑𝜃

𝑑𝑧
𝑑𝑧

∼ 𝑔𝐻

𝑇0

𝑑𝜃

𝑑𝑧
∼ 10m/s2 ×30K

300K

∼ 1m/s2 (2.4a)

measures the efficiency with which large-scale ascent generates the cloud work function (PEC), 𝐴.120

The second term in Eq. (2.3b),121

𝐹𝑅 = −
∫ 𝑧𝑇

𝑧𝐵

𝑔𝜂

𝑇
𝑄𝑅𝑑𝑧, (2.4b)

measures the rate at which the cloud work function (PEC) is generated by radiative cooling.122

Finally, for closing the system, as in Yano and Plant (2012b), we assume a relation123

𝐾 = 𝛽𝑀𝐵, (2.5)

where 𝛽 is a constant estimated to be 𝛽 ∼ 104 m2/s.124

3. Large-Scale System125

As a first step in constructing a large-scale system to be coupled with the convective energy cycle126

system introduced in the last section, we consider the large-scale heat equation in Sec. 3.a, because127

it is the key equation to achieve a coupling of the two scales. The formulation is completed more128

formally by introducing the normal mode decomposition of the linear primitive equation system in129

Sec. 3.b. The presentation is rather backwards, because the first subsection has to quote some of130

the results to be obtained in the following subsection. Nevertheless, we present in this order for the131

sake of making the physical motivations clear before a more complete mathematical formulation132
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is provided. The system is assumed linear throughout this section. Nonlinear advection terms will133

be considered later in Sec. 4.e.134

a. Large-Scale Heat Equation135

A major feedback of convection to the large-scale state is found in the heat equation, which may136

be written as137

𝜕𝜃

𝜕𝑡
+𝑤𝑑𝜃

𝑑𝑧
=𝑄𝑐 +𝑄𝑅 . (3.1)

Here, 𝑄𝑐 is the convective heating rate, approximately given by:138

𝑄𝑐 = 𝜎𝑤𝑐
𝑑𝜃

𝑑𝑧
(3.2)

neglecting the effect of detrainment for simplicity (𝑐 𝑓 ., Yano and Plant, 2020). Recall that 𝑄𝑅 is139

the radiative heating.140

Because the convective dynamics is described in terms of a single vertical mode, it is appropriate141

to reduce the large-scale dynamics similarly. For this reason, we have already assumed only a142

single vertical mode for the large-scale dynamics by writing the vertical velocity in the form of143

Eq. (2.3a) in Sec. 2, and equivalently, the potential temperature is represented by:144

𝜃 = 𝜃 (𝑥, 𝑡)Θ(𝑧). (3.3)

Here,Θ is a nondimensional, normalized vertical profile and 𝜃 describes the horizontal dependence.145

We also set146

𝜎𝑤𝑐 =
𝜂

𝜌0
𝑀𝐵 = 𝜂𝑤̃𝑐,

where 𝜌0 is the surface density.147

As a standard procedure for projecting an equation onto a given vertical mode, we multiply148

Eq. (3.1) by Θ, and integrate it vertically. As a result, we obtain149

𝜕𝜃

𝜕𝑡
+ 𝜃

∗

𝑧𝑇
𝑤̃ = 𝜂𝑤̃𝑐 − 𝑄̂∗

𝑅𝑤𝑅, (3.4)
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where150

𝜃∗

𝑧𝑇
=

〈
𝑊Θ

𝑑𝜃

𝑑𝑧

〉
=
𝜃0ℎ𝐸

𝑧2
𝑇

, (3.5a)

𝜂 =

〈
𝜂Θ

𝑑𝜃

𝑑𝑧

〉
, (3.5b)

𝑄̂∗
𝑅 = −⟨Θ𝑄𝑅⟩. (3.5c)

Here, we define the angled brackets as an integral operator151

⟨∗⟩ = 1
𝑧𝑇

∫ 𝑧𝑇

0
∗𝑑𝑧,

setting 𝑧𝐵 = 0 in previous vertical integrals, as already discussed. We have also assumed that Θ is152

normalized by153

⟨Θ2⟩ = 1.

We further introduce 𝜃∗ as a characteristic scale for 𝜃. An alternative representation is also given154

in Eq. (3.5a) in terms of a reference value of potential temperature, 𝜃0 and an equivalent depth, ℎ𝐸 :155

this form will prove convenient later.156

It will be shown in next subsection that the vertical–wind profile, 𝑊 , is related to the potential–157

temperature profile, Θ, by:158

𝑊 =
𝜃∗

𝑧𝑇

(
𝑑𝜃

𝑑𝑧

)−1
Θ. (3.5d)

from Eq. (3.11b) to be derived below.159

Additionally, the nondimensional radiative vertical velocity, 𝑤𝑅, has been introduced in Eq. (3.4),160

in order to represent a possible horizontal distribution of radiation. This study assumes the radiation161

to be horizontally homogeneous and thus we will simply set it to unity in the following, but explicitly162

re-introduce it whenever important to indicate the role of radiation in a given equation.163

With the final goal of reducing the system to a shallow-water analogue in mind, it is convenient164

to replace the potential temperature, 𝜃, in the heat equation (3.4) by the height field, ℎ̃. These two165

variables are linked together through hydrostatic balance, as will be obtained in Eq. (3.12b) below:166

ℎ̃ = −ℎ𝐸
𝜃∗
𝜃 = − 𝑧𝑇

𝜃0
𝜃. (3.6)
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As a result, the heat equation reduces to:167

𝜕ℎ̃

𝜕𝑡
− 𝑆(𝑤̃−𝛼𝑤̃𝑐) = 𝑄̂𝑅 . (3.7)

Here, the introduced nondimensional parameters are estimated as:168

𝑆 =
ℎ𝐸

𝑧𝑇
∼ 10−2, (3.8a)

𝛼 =
𝑧𝑇

𝜃∗
𝜂 =

𝑧2
𝑇

𝜃0ℎ𝐸
𝜂 ∼ 1, (3.8b)

𝑄̂𝑅 =
ℎ𝐸

𝜃∗
𝑄̂∗
𝑅 =

𝑧𝑇

𝜃0
𝑄̂∗
𝑅 . (3.8c)

Recall that 𝜂 has already been defined by Eq. (3.5b). The orders of magnitude estimates in (3.8a,169

b) are based on ℎ𝐸 ∼ 102 m, 𝑧𝑇 ∼ 10 km, 𝜃0 ≃ 300 K, and 𝜃∗ ∼ 3 K.170

b. Normal–Mode Decomposition of the Linear Primitive Equation System171

A thermodynamic formulation for a shallow-water analogue atmosphere has been introduced in172

the last subsection, in which the large–scale heat equation reduces to a height equation for shallow173

water. To complete the construction of a shallow–water analogue of the tropical atmosphere large-174

scale dynamics, we now consider a full, linear primitive equation system to see how the vertical175

profiles of the variables may be defined consistently. These profiles are usually called normal176

modes (𝑐 𝑓 ., Kasahara and Puri 1981).177

We consider a linear horizontally one-dimensional system with the Boussinesq approximation:178

𝜕𝑢

𝜕𝑡
= −𝜕𝜙

𝜕𝑥
, (3.9a)

𝜕𝜙

𝜕𝑧
= 𝑔

𝜃

𝜃0
, (3.9b)

𝜕𝜃

𝜕𝑡
+𝑤𝑑𝜃

𝑑𝑧
=𝑄, (3.9c)

𝜕𝑢

𝜕𝑥
+ 𝜕𝑤
𝜕𝑧

= 0. (3.9d)

Here, 𝜃0 is a constant reference potential temperature, 𝑢 is the horizontal velocity, and 𝜙 is the179

geopotential. The total diabatic heating has been set to 𝑄 =𝑄𝑐 +𝑄𝑅 as in the last subsection.180

10



To apply the above system to a realistic atmosphere, the system is best re-interpreted as a181

consequence of transforming the pressure coordinate, 𝑝, into an equivalent geometrical coordinate,182

𝑧, by the relation 𝑑𝑝 = −𝜌0𝑔𝑑𝑧 with 𝜌0 a reference density, but with a minor modification to the183

hydrostatic balance (3.9b) of multiplying by an additional factor, 𝜌0𝜃0/𝜌𝜃 on the right-hand side.184

Keep in mind that all of the vertical integrals considered in the convective energy cycle formulation185

must also be re-interpreted accordingly.186

We introduce a separation of variables by Eqs. (2.3a) and (3.3), as well as:187

𝑢 = Φ𝑢̃, 𝜙 = Φ𝜙, 𝑄 = Θ𝑄̃. (3.10a, b)

By substituting Eqs. (2.3a), (3.3), and (3.10a, b) into Eqs. (3.9a, b, c, d), we find that the vertical188

profiles must mutually satisfy the relations:189

𝑧𝑇
𝑑Φ

𝑑𝑧
= −Θ, (3.11a)

Θ =
𝑧𝑇

𝜃∗
𝑑𝜃

𝑑𝑧
𝑊, (3.11b)

Φ = 𝑧𝑇
𝑑𝑊

𝑑𝑧
. (3.11c)

The two scales, 𝑧𝑇 and 𝜃∗, have been introduced so that all the vertical profiles consistently remain190

nondimensional, and also of the order unity.191

By further substituting (3.11a, c) into (3.11b), we find:192 [
𝑑2

𝑑𝑧2 +
1
𝑧𝑇

(
1
𝜃∗
𝑑𝜃

𝑑𝑧

)]
𝑊 = 0.

Here, 𝑧𝑇𝜃∗ constitutes an eigenvalue in this equation. A more commonly accepted form is obtained193

by re–writing the above into:194 [
𝑑2

𝑑𝑧2 +
1
ℎ𝐸

(
1
𝜃0

𝑑𝜃

𝑑𝑧

)]
𝑊 = 0

with the equivalent depth,195

ℎ𝐸 =
𝜃∗

𝜃0
𝑧𝑇 ,
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constituting the standard engivenvalue of this problem (cf. Eq. 3.5a). It can be seen that the196

equivalent depth is the scaled–down version of the vertical scale by the relative fluctuation of the197

buoyancy with respect to the reference state.198

Consequently, the equations for the horizontal components are given by:199

𝜕𝑢̃

𝜕𝑡
= −𝜕𝜙

𝜕𝑥
, (3.12a)

𝜙 = −𝑔ℎ
𝜃0
𝜃 = −𝑔ℎ𝐸

𝜃∗
𝜃, (3.12b)

𝜕𝜃

𝜕𝑡
+ 𝜃

∗

𝑧𝑇
𝑤̃ = 𝑄̃, (3.12c)

𝜕𝑢̃

𝜕𝑥
+ 𝑤̃
𝑧𝑇

= 0. (3.12d)

By further setting, 𝜙 = 𝑔ℎ̃, re-writing Eq. (3.12c) in terms of ℎ̃, we recover Eq. (3.7) already200

introduced. By eliminating the vertical velocity with the help of the mass continuity (3.12d), we201

find that the governing equation set for the horizontal components constitute an analogue of the202

shallow–water system with the equivalent depth, ℎ𝐸 playing the role of the depth.203

4. Nondimensionalization204

For ease of further analyses, we now nondimensionalize the system derived over Secs. 2–3.205

a. Convective Energy-Cycle System206

To nondimensionalize the convective energy cycle, we first note that the equilibrium state is207

given at the convective scale by:208

𝐴 = 𝐴0 ≡ 𝛽/𝜏𝐷 ∼ 10J/kg, (4.1a)

𝑀𝐵 = 𝑀0 ≡ 𝐹𝑅/𝛾 ∼ 10−2 kg/m2/𝑠, (4.1b)

where 𝐹𝑅 is the radiative contribution to convective forcing. Estimates are based on the values of209

𝛽 ∼ 104 m2/s, 𝜏𝐷 ∼ 103 sec, 𝐹𝑅 ∼ 10−2 m2/s3, 𝛾 ∼ 1 m4/s2kg by following Yano and Plant (2012b).210

Setting, for now, the large-scale equilibrium to be simply quiescent, 𝑤̃ = ℎ̃ = 0, we find that the211
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convection-base mass flux is further constrained to satisfy212

𝑀𝐵 =
𝜌0𝑄̂𝑅

𝛼𝑆
(4.1c)

from Eq. (3.7). Recall that 𝑄̂𝑅 is a measure of the radiative cooling rate, as defined by Eq. (3.8c).213

Obviously, this value must also agree with 𝐹𝑅/𝛾 given by Eq. (4.1b).214

We nondimensionalize the large-scale vertical velocity by:215

𝑤̃ = 𝑤0𝑤̃∗.

where the subscript ∗ suggests a nondimensionalized horizontal dependence, and 𝑤0 is the scale216

of the vertical velocity. Keep in mind that the subscript ∗ will be tentative, and it will be removed217

as soon as the nondimensionalization is accomplished.218

The appropriatetime scale, 𝜏𝑐, and vertical-velocity scale, 𝑤0 for nondimensionalization are219

given by220

𝜏𝑐 = (𝛽/𝐹𝑅)1/2 ∼ 103 sec, (4.2a)

𝑤0 = 𝐹𝑅/𝜇 ∼ 10−2m/s. (4.2b)

The convective-scale variables are nondimensionalized into 𝑘𝑐 and 𝑎 by setting221

𝑀𝐵 = 𝑀0𝑘𝑐, (4.3a)

𝐴 =
𝜏𝐷

𝜏𝑐
𝐴0𝑎, (4.3b)

such that the resulting nondimensionalized equations are:222

𝜕𝑘𝑐

𝜕𝑡′
= 𝑎𝑘𝑐 −

𝑘𝑐

𝜏∗
𝐷

, (4.4a)

𝜕𝑎

𝜕𝑡′
= −𝑘𝑐 +𝑤 +𝑤𝑅, (4.4b)

where the dependent variables are defined by:223

• 𝑘𝑐 = 𝑤𝑐 : convective kinetic energy (or the convective mass flux)224
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• 𝑎 : the cloud work function (which may conceptually be interpreted as a convective potential225

energy) .226

𝜏∗
𝐷
= 𝜏𝐷/𝜏𝑐 is a nondimensional damping time scale, and 𝑤𝑅 (= 1) is a normalized radiative vertical227

velocity. In Eqs. (4.4a, b) the subscript ∗ indicating nondimensional variables has already been228

removed.229

As required, we use the following notations in an interchangeable manner230

𝑘𝑐 = 𝑤𝑐 (4.5)

depending on the context. Note further that a prime sign is added to the nondimensional time, 𝑡′,231

because a different nondimensionalization of time will be introduced for the large-scale dynamics232

in the next subsection.233

b. Large-Scale System234

We nondimensionalize the large-scale system by introducing the scales 𝑢0, ℎ0, 𝜏𝐿 , and 𝐿, marking235

the nondimensional variables with the subscript ∗ for now, thus, 𝑒.𝑔.,236

𝜕

𝜕𝑥
=

1
𝐿

𝜕

𝜕𝑥∗
.

By substituting into Eqs. (3.12a, b, c), we find that convenient nondimensionalization scales are:237

ℎ0 = ℎ𝐸 , 𝑢0 = 𝑐𝑔, 𝜏𝐿 = 𝐿/𝑐𝑔, (4.6a, b, c)

where 𝑐𝑔 = (𝑔ℎ𝐸 )1/2 is the gravity-wave speed, and the characteristic horizontal scale, 𝐿, is left to238

be determined. We set 𝐿 = 3×103 km provisionally, for the purpose of some numerical estimates.239
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After removing the tilde signs, and removing the subscripts ∗ from nondimensional variables,240

the resulting nondimensional set of equations are:241

𝜕𝑢

𝜕𝑡
= −𝜕ℎ

𝜕𝑥
, (4.7a)

𝜕ℎ

𝜕𝑡
+ 𝜕𝑢
𝜕𝑥

= −𝑄, (4.7b)

𝑤 = −𝑟𝐿
𝜕𝑢

𝜕𝑥
. (4.7c)

Here,242

𝑄 = 𝛼̂(𝑤𝑐 −𝑤𝑅) = 𝛼̂𝑤𝑐 − 𝑄̂𝑅, (4.8a)

𝑟𝐿 =
𝑐𝑔𝑧𝑇

𝑤0𝐿
∼ 10, (4.8b)

𝛼̂ = 𝛼/𝑟𝐿 , (4.8c)

and 𝑟𝐿 may be considered an effective aspect ratio of the system. Alternatively, it can be interpreted243

as a ratio of two characteristic horizontal scales:244

𝑟𝐿 = 𝐿𝐷/𝐿,

where245

𝐿𝐷 =
𝑐𝑔𝑧𝑇

𝑤0
∼ 3×104km.

Also keep in mind that the total depth of the shallow water is: ℎ𝑇 = 1+ ℎ.246

Recall from Eq. (3.7) that 𝛼 controls the relative contributions of large-scale and convective-247

scale velocities to the stratification. The parameter, 𝛼̂ introduced by Eq. (4.8c) thus measures248

the efficiency of convection in modifying the stratification of the atmosphere, while 1−𝛼 may249

be considered a nondimensional measure of the effective stratification (or gross moist stability:250

Neelin and Held 1987). In particular, when 𝛼 = 1, the convective atmosphere is effectively251

neutrally stratified. Here, 𝑤0 is a characteristic scale of the large–scale vertical velocity and, by252

nondimensionalization, the radiatively–driven vertical velocity is 𝑤𝑅 = 1.253
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c. Two Time Scales254

To couple together the two systems for convection and the large scale, we need to take care of255

the two different time scales adopted for the systems in nondimensionalization, 𝜏𝑐 (Eq. 4.2a) and256

𝜏𝐿 = 𝐿/𝑐𝑔 (Eq. 4.6c). The ratio of the two is257

𝑟𝑐 = 𝜏𝑐/𝜏𝐿 ∼ 10−2. (4.9c)

We will henceforth use 𝜏𝐿 for both systems for consistency. As a result, Eqs. (4.4a, b) are expressed258

as:259

𝑟𝑐
𝜕𝑘𝑐

𝜕𝑡
= 𝑎𝑘𝑐 −

𝑘𝑐

𝜏∗
𝐷

, (4.9a)

𝑟𝑐
𝜕𝑎

𝜕𝑡
= −𝑘𝑐 +𝑤 +𝑤𝑅 . (4.9b)

Note that for a large-scale horizontal scale of 𝐿 ≃ 30 km, 𝑟𝑐 ≃ 1, and the two time scales match.260

d. Coupling Problem261

Through the considerations over the last subsections, we have arrived at a complete nondimen-262

sional set of equations given by (4.7a, b, c) and (4.9a, b). However, there remains one more issue263

to be addressed: the large–scale height, ℎ, which is also related to the potential temperature, 𝜃 by264

Eq. (3.6), is effectively equivalent to the convective–scale cloud work function (PEC), 𝑎, because265

by neglecting contributions from the boundary layer, the buoyancy integral that defines 𝑎 is deter-266

mined exclusively by contributions of the environmental potential temperature, also neglecting the267

virtual effect for the present purpose. Thus, 𝑎 is nothing other than an alternative measure of the268

tropospheric potential temperature, in addition to ℎ. Here, strictly speaking, we can still distinguish269

them by taking different vertical profiles in the definitions. However, retaining two measures of the270

potential temperature in a single–layer shallow–water analogue model would be rather redundant.271

Thus, we now reduce them to a single equation by establishing the equivalence of the two.272

16



This is accomplished in the following manner, by introducing two additional constraints. By273

comparing between the right–hand side of Eq. (4.9b) and the definition (4.8a), we find that274

𝑟𝑐𝛼̂
𝜕𝑎

𝜕𝑡
− 𝛼̂𝑤 = −𝑄, (4.10a)

also recalling that 𝑘𝑐 = 𝑤𝑐. For comparison, the height equation (4.7b) is re-written with the help275

of Eq. (4.7c) as:276

𝜕ℎ

𝜕𝑡
− 𝑤

𝑟𝐿
= −𝑄. (4.10b)

These two expressions suggest that the two variables become equivalent by setting:277

ℎ = 𝑟𝑐𝛼̂𝑎. (4.11a)

Furthermore, for consistency of the large-scale vertical advection term (2nd on the left-hand side)278

in both equations (4.10a, b), a further constraint is required to establish the equivalence:279

𝛼̂ = 1/𝑟𝐿 . (4.11b)

By further referring to the definition of 𝛼̂ in Eq. (4.8c), this condition simply reduces to280

𝛼 = 1. (4.11c)

Recall from Sec. 4.b that the parameter 𝛼 measures the efficiency of convection in modifying the281

stratification of the atmosphere.282

The equivalence between CAPE (PEC) and the height in the shallow–water analogue atmosphere283

has been pointed out by Mapes (1998). We just establish this connection in a more formal manner.284

As a result, there is no longer a need to consider the time evolution of PEC, 𝑎, separately.285

Consequently Eq. (4.9a) describes the convective–scale process, alongside the equation set (4.7a,286

b, c) for the large scale. With the help of Eq. (4.11a), the PEC can be eliminated from Eq. (4.9a)287

which becomes:288

𝜖
𝜕𝑘𝑐

𝜕𝑡
= 𝛼̂ℎ𝑘𝑐 −

𝑘𝑐

𝜏𝐷
, (4.12a)
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where289

𝜏𝐷 = 𝜏∗𝐷/𝑟𝑐𝛼̂2 = 𝜏𝐷/𝑟𝑐𝛼̂2𝜏𝑐 ∼ 104, (4.12b)

𝜖 = 𝑟2
𝑐 𝛼̂

2 ∼ 10−6. (4.12c)

Large and small values for these two parameters suggest shorter time scales involved with convection290

compared to those of the large scale.291

e. Full System with Nonlinearity292

It remains to add nonlinearity to the linear version of the large–scale system derived so far,293

Eqs. (4.7a, b, c). This final step turns out be rather involved, and the details are presented in the294

Appendix. Therein, we examine the physical consistency of the included nonlinear terms with the295

energy cycle of the system. Based on those examinations, we adopt the final large–scale equation296

set to be:297

𝜕𝑢

𝜕𝑡
+𝑢 𝜕𝑢

𝜕𝑥
= −𝜕ℎ

𝜕𝑥
, (4.13a)

𝜕ℎ

𝜕𝑡
+ 𝜕𝑢
𝜕𝑥

= −𝑄, (4.13b)

𝑤 = −𝑟𝐿
𝜕𝑢

𝜕𝑥
. (4.13c)

Thus, the nonlinear advection term has been added only to the momentum equation (4.13a), but298

not to the continuity (heat) equation (4.13b).299

In summary, the full nonlinear system consists of Eqs. (4.13a, b, c) and (4.12a).300

5. Steady Solutions301

We first examine the steady solutions. This serves two purposes: i) to define a basic state of the302

system, as a first step for performing perturbation analyses; and ii) to seek for the possibility of a303

solution with a steady circulation, as an idealized analogue of the Hadley–Walker circulation.304

The steady heat budget of the system is obtained by substituting Eqs. (4.13c) and (4.8a) into305

Eq. (4.13b):306

𝑤̄−𝛼𝑤̄𝑐 + 𝑟𝐿𝑄̂𝑅 = 0
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or307

𝑤̄−𝛼𝑘̄𝑐 +𝛼𝑤𝑅 = 0 (5.1)

Here, the overbars are added to denote a steady state. Also keep in mind that we retain two notations308

with 𝑘𝑐 = 𝑤𝑐.309

The equilibrium state of convection is obtained from (4.12a) as:310

𝑘̄𝑐 = 𝑤̄𝑐 = 0 or ℎ̄ = 1/𝛼̂𝜏𝐷 ∼ 10−3. (5.2a, b)

In the following, we take the second choice (5.2b), which is only a matter of adding a constant311

height on perturbations. The first choice (5.2a) is less interesting with no possibility of convection312

in the basic state.313

From the heat balance (5.1), we see that 𝑤̄ and 𝑤̄𝑐 can be chosen freely so long they are consistent314

with the dynamics. To seek a more specific solution, we set:315

𝑢̄ = 𝑢̄0 sin 𝑘𝑥 (5.3a)

with 𝑢̄0 a constant. Its substitution into the continuity equation (4.13c) leads to:316

𝑤̄ = −𝑤̄0 cos 𝑘𝑥 (5.3b)

with 𝑤̄0 = 𝑟𝐿𝑘𝑢0. Furthermore, from Eq. (5.1),317

𝑤̄𝑐 = 𝑤𝑅 −
𝑤̄0
𝛼

cos 𝑘𝑥. (5.3c)

To maintain the convective vertical velocity to be always positive definite, 𝑖.𝑒., 𝑤̄𝑐 ≥ 0, we require318

𝑤𝑅 ≥ 𝑤̄0/𝛼. If we further assume the minimum convective velocity to be zero, we obtain 𝑤̄0 = 𝛼𝑤𝑅.319

Finally, the steady nonlinear momentum equation,320

𝜕

𝜕𝑥

𝑢̄2

2
= −𝜕ℎ̄

𝜕𝑥
,
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must be satisfied. However, here we face a problem: by the convective equilibrium condition, we321

have already set ℎ̄ to be constant by Eq. (5.2b), and thus the right–hand side vanishes from the322

above, and there is no term to balance with the nonlinear advection on the left–hand side. We323

circumvent this difficulty by noting that the nonlinear advection term arising from a baroclinic324

circulation, actually projects onto a barotropic mode, and thus the height perturbation required to325

balance the right–hand side is also of a barotropic mode:326

𝜕

𝜕𝑥

𝑢̄2

2
= −𝜕ℎ̄𝑏

𝜕𝑥
,

with the subscript 𝑏 standing for the barotropic mode, but also suggesting that this mode arises327

directly from the surface–boundary effect, 𝑒.𝑔., the SST distribution, partially reminiscent of the328

idea of Lindzen and Nigam (1987). The barotropic height field which balances with the nonlinear329

term is given by:330

ℎ𝑏 =
𝑢2

0
4
(cos2𝑘𝑥−1).

The short analysis of this section outlines very crudely how a consistent theory for steady tropical331

circulations can be developed in the context of a shallow-water analogue formulations: for further332

analyses we rewfer to 𝑒.𝑔., Gill (1980), Lindzen and Nigam (1987), Neelin and Held (1987), Yano333

(2023).334

6. Linear Analysis335

For performing perturbation analyses in the following two sections, we assume a homogeneous336

basic state with no large–scale circulation, 𝑖.𝑒., 𝑢̄ = 𝑤̄ = 0. The basic–state height is defined by337

Eq. (5.2b), and from Eq. (5.1), 𝑤̄𝑐 = 𝑤𝑅 = 1, also recalling 𝛼 = 1 (𝑐 𝑓 ., Eq. 4.11c).338

The resulting set of linear perturbation equations is:339

𝜕𝑢′

𝜕𝑡
= −𝜕ℎ

′

𝜕𝑥
(6.1a)

𝜕ℎ′

𝜕𝑡
+ 𝜕𝑢

′

𝜕𝑥
+ 𝛼̂𝑤′

𝑐 = 0 (6.1b)

𝜖
𝜕𝑤′

𝑐

𝜕𝑡
= 𝛼̂ℎ′ (6.1c)
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with the prime sign, ′, denoting perturbation variables, and 𝑤′
𝑐 = 𝑘

′
𝑐.340

We further assume a solution of the form, ∼ 𝑒𝑖(𝑘𝑥+𝜔𝑡) . Then, the linear frequency is given by:341

𝜔2 = 𝑘2 + 𝛼̂2/𝜖

or342

𝜔2 = 𝑘2 + 1
𝑟2
𝑐

. (6.2)

Note that only a neutral wave solution is available, and the standard gravity–wave solution is343

recovered by setting 𝑟𝑐 → ∞. Since 𝑟𝑐 = 𝜏𝑐/𝜏𝐿 this limit corresponds to setting the convective344

time scale much longer than that of the large scale. Rather unintuitively, the presence of finite345

convective time scale (𝑖.𝑒., 𝜏𝑐 finite) increases the frequency of the mode to be larger than that of346

the dry gravity wave: by further decreasing 𝜏𝑐, the waves propagate faster. Note that in absence of a347

large–scale circulation, the system reduces to a linear version of the convective discharge–recharge348

system (𝑐 𝑓 ., Yano and Plant 2012b);349

𝜕ℎ′

𝜕𝑡
+ 𝛼̂𝑤′

𝑐 = 0,

𝜖
𝜕𝑤′

𝑐

𝜕𝑡
= 𝛼̂ℎ′.

This leads to an oscillating solution with 𝜔 = 𝛼̂/𝜖1/2 = 1/𝑟𝑐 = 𝜏𝐿/𝜏𝑐. Effectively, the dispersion350

(6.2) is comprised of the square sum of the dry and convective frequencies.351

7. Weakly Nonlinear Analysis352

As an extension to the analysis of the last section, we now take into account a weak nonlinearity.353

For the purpose of developing a weakly–nonlinear formulation in a formal manner, we introduce an354

explicit perturbation parameter, which we choose to be 𝜖 , bearing in mind the numerical estimate355

of (4.12c). We also focus on the situation in which the system satisfies the free–ride balance356

𝜕𝑢′

𝜕𝑥
+ 𝛼̂𝑤′

𝑐 = 0 (7.1)
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(𝑐 𝑓 ., Fraedrich and McBride 1989) to the leading order of Eq. (4.13b). This state, alternatively357

called the weak-temperature gradient approximation (Sobel et al. 2001), can also be considered to358

be a quasi–equilibrium closure under the given shallow–water formulation.359

To obtain (7.1) to the leading order, the variables must be be re–scaled. It is found that appropriate360

re–scalings are:361

ℎ = ℎ̄+ 𝜖3ℎ′, (7.2a)

𝑤𝑐 = 𝑤̄𝑐 + 𝜖𝑤′
𝑐, (7.2b)

𝑢 = 𝜖3/2𝑢′, (7.2c)

and362

𝜕/𝜕𝑡 = 𝜖𝜕/𝜕𝜏 (7.2d)

𝜕/𝜕𝑥 = 𝜖−1/2𝜕/𝜕𝜉 (7.2e)

Thus, a longer time and shorter horizontal scales are introduced compared to the original nondi-363

mensionalization scales. Recall that ℎ̄ is defined by Eq. (5.2b).364

After substituting these re–scalings into the full set of equations, we obtain to the leading order365

of Eqs. (4.12a) and (4.13a):366

𝜕𝑢′

𝜕𝜏
+𝑢′𝜕𝑢

′

𝜕𝜉
= −𝜕ℎ

′

𝜕𝜉
, (7.3a)

𝜕𝑤′
𝑐

𝜕𝜏
= 𝛼̂ℎ′. (7.3b)

From Eqs. (7.1) and Eqs. (7.3b), we find:367

𝑤′
𝑐 = − 1

𝛼̂

𝜕𝑢′

𝜕𝜉
, (7.4a)

ℎ′ =
1
𝛼̂

𝜕𝑤′
𝑐

𝜕𝜏
. (7.4b)
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Substituting those expressions into Eq. (7.3a), we obtain a single equation for 𝑢′:368

𝜕𝑢′

𝜕𝜏
+𝑢′𝜕𝑢

′

𝜕𝜉
− 𝛼̂−2 𝜕3𝑢′

𝜕𝜉2𝜕𝜏
= 0. (7.5)

Let us examine the linearized equation briefly:369

𝜕

𝜕𝜏

(
1− 𝛼̂−2 𝜕

𝜕𝜉2

)
𝑢′ = 0,

which has the dispersion relation:370

𝜔(𝑘2 + 𝛼̂2) = 0. (7.6)

Thus, possible solutions are 𝜔 = 0 and 𝑘2 = −𝛼̂2. Keep in mind that the horizontal wavenumber, 𝑘 ,371

is defined in terms of the re–scaled horizontal scale. Thus, only evanescent waves are available in372

the linear limit with the frequency left undetermined. As argued in 𝑒.𝑔., Yano and Flierl (1994), and373

Yano and Tribbia (2017), linear evanescent waves can be consistent solutions only if nonlinearity374

becomes important at a certain part of the system.375

To solve the nonlinear equation (7.5), it is worthwhile to note that it has a similar form to the376

Kortewig–de Vries equation (𝑐 𝑓 ., Secs. 13.11 and 13.12 of Whitham 1974, Part 2, Epilogue of377

Lighthill 1978):378

𝜕𝑢

𝜕𝑡
+𝑢 𝜕𝑢

𝜕𝑥
+ 𝜕

3𝑢

𝜕𝑥3 = 0.

The latter is known to have a soliton solution:379

𝑢 = 12𝑘2sech2 [𝑘 (𝑥− 𝑥0 −4𝑘2𝑡)]

Here, recall that sech𝑥 = cosh−1 𝑥, and 𝑘 and 𝑥0 are arbitrary constants, which adjust the solution380

form. Thus, we anticipate that a solution with a similar form may also be available with Eq. (7.5).381

To seek this possibility, we set382

𝑢′ = 𝑢0sech2 [𝑘 (𝜉 − 𝜉0) −𝜔𝜏]
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with 𝑢0, 𝑘 , 𝜔 the parameters to be determined. Its substitution into Eq. (7.5) yields:383

𝑢0 = 6𝜔/𝛼̂, (7.7a)

𝑘 = 𝛼̂/2, (7.7b)

while 𝜔 remains an arbitrary constant. The final solutions are:384

𝑢′ =
6𝜔
𝛼̂

sech2𝜑, (7.8a)

𝑤′
𝑐 =

6𝜔
𝛼̂

sech3𝜑 sinh𝜑, (7.8b)

ℎ′ =
6𝜔2

𝛼̂2 (−3sech4𝜑+2sech2𝜑) (7.8c)

with385

𝜑 =
𝛼̂

2
(𝜉 − 𝜉0) −𝜔𝜏. (7.9)

Note that the wavenumber, 𝑘 , of the solitary–wave solution is controlled by 𝛼̂, which is proportional386

to the ratio of the two horizontal scales, 𝑖.𝑒., 𝛼̂ = 𝛼/𝑟𝐿 = 𝛼𝐿/𝐿𝐷 . Also recall the stretching factor,387

𝜖−1/2, applied to the horizontal coordinate. Thus, a characteristic horizontal scale of this solitary388

wave is inferred by writing:389

𝛼̂𝜉 = 𝛼̂𝜖−1/2𝑥

From Eq. (4.12b), 𝜖 = 𝑟2
𝑐 𝛼̂

2, so that390

𝛼̂𝜉 =
𝑥

𝑟𝑐
= 𝑥

𝜏𝐿

𝜏𝑐
=
𝐿𝑥

𝑐𝑔𝜏𝑐
,

also recalling the definitions (4.9c) and (4.6c). Bearing in mind that 𝐿𝑥 is the dimensional length of391

the system, a characteristic wavelength of the solitary wave solution is identified as: 𝑐𝑔𝜏𝑐 ∼ 50 km.392

Thus, this wave is typically localized to the mesoscale.393

Also note that the velocity and the height, respectively, are scaled by the factors, 𝜔/𝛼̂ and394

𝜔2/𝛼̂2. Thus, the wave amplitude increases with its frequency, 𝜔, and in a more acerbated395

manner for the height than the velocities. More significantly, the westerly and easterly–wind396

bursts propagate eastwards and westwards, respectively. In particular, the overall behavior of the397
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Fig. 1. Examples of the solitary–wave solutions (7.8a, b, c) with 𝛼̂ = 1: (a) eastward propagating with 𝜔 = 1,

and (b) westward propagating with𝜔 = −1: the horizontal coordinate is 𝛼̂𝜉 = 𝛼̂𝜖−1/2𝑥 with the unit scale of about

50 km.

403

404

405

eastward–propagating solution is consistent with that of observed tropical westerly–wind bursts398

(𝑒.𝑔., Hartten 1996, Yano et al. 2004).399

Examples of the solutions with (a) 𝜔 = 1 and (b) 𝜔 = −1 are shown in Fig. 1. Here, curves are400

for the zonal wind, 𝑢′ (solid), convection anomaly, 𝑤′
𝑐 (long dash), and the height, ℎ′ (short dash)401

with the horizontal coordinate given by 𝛼̂𝜉 = 𝛼̂𝜖−1/2𝑥.402

8. Further Discussions406

Atmospheric precipitating convection goes through a distinguished life cycle from a genesis407

to decay, and thus it is natural to expect that the convective life cycle may play an important408

role in its coupling to large-scale dynamics, especially over the tropics. From this perspective,409

the basic assumption of convective quasi-equilibrium adopted in convection parameterizations is410
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unsatisfactory, because this approximation totally neglects life cycles associated with parameterized411

convection.412

The present work shows what happens when a life cycle of convection is explicitly taken into413

account as a part of the large-scale dynamics. A qualitative consequence, even without performing414

any calculations, can even be intuitively expected: the short periodicity of convective life cycles415

dominate aspects of the coupled dynamics. This expected tendency is more explicitly demonstrated416

by a linear analysis, which shows that the squared frequency of a linear wave is obtained by a squared417

sum of the characteristic frequency of the convective life cycle and a dry gravity-wave frequency,418

under an analysis assuming no Coriolis force.419

The convective life cycle used in the present study is based on the convective energy cycle420

originally introduced by Arakawa and Schubert (1974), in seeking a basis for a closure of their421

mass-flux parameterization. The energy cycle is closed by following Yano and Plant (2012b). The422

large-scale dynamics adopted is a shallow-water analogue.423

The high-frequency characteristic of convectively-coupled waves obtained with explicit convec-424

tive life cycles is in marked contrast to the typical characteristic under standard formulations with a425

convective quasi-equilibrium assumption. In the latter case, convection is found to slow down the426

dry large-scale waves by decreasing the effective stratification of the atmosphere. This behavior427

arises because any explicit periodicities associated with convection are effectively eliminated by428

averaging them out through the convective quasi-equilibrium assumption. The approach of the429

present paper explicitly retains such a high convective-scale frequency, and thus this frequency is430

added to a full spectrum of the whole system. An explicit emergence of the convective-scale high431

frequencies into the large-scale dynamics is obviously an unfavorable feature if the focus of an432

analysis is on the long timescale phenomena.433

A more attractive feature emerges when the system is scaled down to a mesoscale regime, also434

introducing a weak nonlinearity. This re-scaling is performed in such a manner that the free-ride435

balance (Fraedrich and McBride 1989: see also Sobel et al. 2001) is obtained to the leading order.436

The analysis leads to a nonlinear equation analogous to the Kortweg-de Vries equation, and like437

the latter, it contains a solitary-wave solution. The obtained mesoscale solution is reminiscent of438

tropical westerly–wind bursts.439
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Although an analysis with the rotation effect is still to be performed, it is evident that the440

eastward–propagating solitary gravity wave solution obtained can be re-interpreted as a Kelvin441

wave in the presence of rotation so long as we can assume that the equatorial deformation radius442

is much larger than the longitudinal wavelength. Nevertheless, a full analysis of this system with443

the rotation effect will be worthwhile to explore rich possibilities of nonlinear interactions between444

convective life cycles and the equatorial waves. This investigation may also be considered a natural445

extension of dry solitary equatorial waves as investigated by Boyd (1980, 1983, 1984, 1985).446

9. Conclusions447

The most important lesson to learn from the present study is that if the focus is solely on the448

global scale of the atmosphere, then one should not try to include a convective life cycle explicitly449

into a model, how attractive this approach might appear to be at first sight.450

On the other hand, for those who wish to investigate tropical atmospheric dynamics in its full451

spectrum, the convective energy-cycle system coupled with large-scale dynamics provides an452

attractive option to pursue. Although only a preliminary investigation has been performed, an453

identified solitary-wave solution, reminiscent of tropical westerly–wind bursts, already suggests a454

rich behavior of this system under full nonlinearity. However, we should also keep in mind that455

convection is still parameterized, using a mass-flux-based formulation.456

Data Availability457

No data is used in the present study.458

Appendix: Energy Cycle Analysis459

The purpose of this Appendix is identify the physically most consistent form of nonlinearity for460

the shallow–water analogue system from the point of view of the energy–cycle of the system. The461

most straightforward way to add nonlinearity to the linear large–scale system (4.7a, b, c) would be462
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in the identical form as that which appears in the actual shallow-water system:463

𝜕𝑢

𝜕𝑡
+𝑢 𝜕𝑢

𝜕𝑥
= −𝜕ℎ

𝜕𝑥
, (A.1a)

𝜕ℎ

𝜕𝑡
+ 𝜕

𝜕𝑥
𝑢(1+ ℎ) = −𝑄, (A.1b)

𝑤 = −𝑟𝐿
𝜕𝑢

𝜕𝑥
. (A.1c)

Here, we are going to show that this form leads to a physically unacceptable interpretation from464

the point of view of the energy cycle. We show further that the problem arises with the postulated465

nonlinear contribution to Eq. (A.1b) but that the nonlinear advection term in Eq. (A.1a) may be466

retained.467

a. Kinetic Energy468

To derive the kinetic–energy budget, we first re-write the momentum equation (A.1a) in a flux469

form by multiplying it by ℎ𝑇 = 1+ ℎ, and adding by Eq. (A.1b) multiplied by 𝑢:470

𝜕𝑢ℎ𝑇

𝜕𝑡
+ 𝜕

𝜕𝑥
𝑢2ℎ𝑇 = − 𝜕

𝜕𝑥
𝑦ℎ2

𝑇2−𝑢𝑄. (A.2)

Multiplying Eq. (A.1a) by 𝑢ℎ𝑇 and Eq. (A.2) by 𝑢, we obtain the budget:471

𝜕

𝜕𝑡

ℎ𝑇

2
𝑢2 + 𝜕

𝜕𝑥

ℎ𝑇𝑢
3

2
= −𝑢 𝜕

𝜕𝑥

ℎ2
𝑇

2
− 𝑢

2

2
𝑄. (A.3)

Here is the first key point to note: from a physical consideration, we expect that the large–scale472

kinetic energy would not directly be modified by a convective process or by diabatic heating. Thus,473

Eq. (A.3) is not physically consistent by containing a source term due to diabatic heating.474

We can trace this physical inconsistency to the fact that the kinetic energy is defined by ℎ𝑇𝑢2/2475

above. Although this is a physically consistent definition of kinetic energy in the original shallow–476

water system, that is no longer the case for this shallow–water analogue atmosphere. This con-477

clusion stems from the fact that in the shallow–water analogue atmosphere, the height is better478

interpreted as a representation of the potential-temperature anomaly rather than a representation of479

a fluid depth, as in the original definition of the shallow–water system.480
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Based on this consideration, we conclude that the kinetic energy is better defined as 𝑢2/2. With481

this definition, the kinetic–energy budget is obtained by multiplying Eq. (A.1a) by 𝑢:482

𝜕

𝜕𝑡

𝑢2

2
+ 𝜕

𝜕𝑥

𝑢3

3
= −𝑢 𝜕ℎ

𝜕𝑥
. (A.4)

Here, the form of the divergence term is rather unfortunate, and a minor negative consequence483

from the redefinition.484

b. Potential Energy485

A similar consideration also applies when defining the potential energy of this shallow–water486

analogue system. As already suggested above, the total depth, ℎ𝑇 , of the system does not have487

much physical significance: it is better to take the height perturbation, ℎ, as a measure of the488

potential temperature perturbation, 𝜃, under the relation (3.12b). Thus, it also follows that the489

potential energy is better defined by ℎ2/2 rather than ℎ2
𝑇
/2. Its budget is obtained by multiplying490

Eq. (A.1b) by ℎ, so that:491

𝜕

𝜕𝑡

ℎ2

2
+ ℎ 𝜕

𝜕𝑥
𝑢ℎ𝑇 = −ℎ𝑄. (A.5)

We may note above that the advection term does not turn into a flux form as expected.492

c. Total Energy Budget493

Finally, by taking sum of Eqs. (A.4) and (A.5), we obtain the conservation law of the total energy494

as:495

𝜕

𝜕𝑡

(
𝑢2 + ℎ2

2

)
+ 𝜕

𝜕𝑥

𝑢3

3
+ ℎ 𝜕

𝜕𝑥
𝑢ℎ𝑇 +𝑢

𝜕ℎ

𝜕𝑥
= −ℎ𝑄.

To express the last two terms on the left–hand side closer to a flux form, recall that ℎ𝑇 = 1+ ℎ, thus496

ℎ
𝜕

𝜕𝑥
𝑢ℎ𝑇 +𝑢

𝜕ℎ

𝜕𝑥
=
𝜕

𝜕𝑥
𝑢ℎ+ ℎ 𝜕

𝜕𝑥
𝑢ℎ.

We can recognize that the remaining non–flux term on the left–hand side arises from the nonlinear497

term in the height equation (A.1b). This result suggests that it is unphysical to add a nonlinear498

advection term to the height (heat) equation under the present shallow–water analogue formulation.499

Thus, the choice of the form (4.13b) follows. After this modification, the total–energy conservation500
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law reduces to:501

𝜕

𝜕𝑡

(
𝑢2 + ℎ2

2

)
+ 𝜕

𝜕𝑥

(
𝑢3

3
+𝑢ℎ

)
= −ℎ𝑄. (A.6)

d. Coupling with Convection502

The final step is to add the convective kinetic energy to the energy budget (A.6) just obtained.503

Towards this goal, note first that the term ℎ𝑄 on the right–hand side of the potential energy budget504

(A.5) can be re–written with the help of Eq. (4.8a) as:505

ℎ𝑄 = 𝛼̂ℎ𝑘𝑐 − ℎ𝑄̂𝑅 . (A.7)

Hence, convective kinetic energy is generated (i.e., 𝛼̂ℎ𝑘𝑐 > 0 on the right hand side of Eq. 4.12a)506

by consuming the potential energy (i.e., ℎ𝑄 > 0 through the same process: the right–hand side of507

Eq. A.5). By substituting the expression (A.7) into the right–hand side of Eq. (A.6), we obtain:508

𝜕

𝜕𝑡

(
𝑢2 + ℎ2

2

)
+ 𝜕

𝜕𝑥

(
𝑢3

3
+𝑢ℎ

)
= −𝛼̂ℎ𝑘𝑐 + ℎ𝑄̂𝑅 . (A.8)

Taking the sum of Eqs. (A.8) and (4.12a), the total–energy budget including the contribution of509

the convective scale is:510

𝜕

𝜕𝑡

(
𝑢2 + ℎ2

2
+ 𝜖 𝑘𝑐

)
+ 𝜕

𝜕𝑥

(
𝑢3

3
+𝑢ℎ

)
= ℎ𝑄̂𝑅 −

𝑘𝑐

𝜏𝐷
. (A.9)

Thus, as a whole the radiation, 𝑄̂𝑅, is the only ultimate source of the energy to the system, and511

the only sink is the dissipative loss, 𝑘𝑐/𝜏𝐷 , of convective kinetic energy. Note that the large–scale512

dynamics has been assumed to be dissipationless for simplicity.513
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