

Interaction of the convective energy cycle and large-scale dynamics

Article

Accepted Version

Yano, J.-I. and Plant, R. S. ORCID: https://orcid.org/0000- 0001-8808-0022 (2023) Interaction of the convective energy cycle and large-scale dynamics. Journal of the Atmospheric Sciences, 80 (11). pp. 2685-2699. ISSN 1520-0469 doi: https://doi.org/10.1175/JAS-D-23-0066.1 Available at https://centaur.reading.ac.uk/113199/

It is advisable to refer to the publisher's version if you intend to cite from the work. See [Guidance on citing.](http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf)

To link to this article DOI: http://dx.doi.org/10.1175/JAS-D-23-0066.1

Publisher: American Meteorological Society

All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the [End User Agreement.](http://centaur.reading.ac.uk/licence)

www.reading.ac.uk/centaur

CentAUR

Central Archive at the University of Reading

Reading's research outputs online

Journal of the Atmospheric Sciences Interaction of the Convective Energy Cycle and Large-Scale Dynamics --Manuscript Draft--

Cost Estimation and Agreement Worksheet

Click here to access/download [Cost Estimation and Agreement Worksheet](https://www.editorialmanager.com/amsjas/download.aspx?id=422869&guid=c16ba6b2-aec9-4fa0-9422-c1760cc875e8&scheme=1) estimation.pdf

Generated using the official AMS LATEX template v6.1

¹ **Interaction of the Convective Energy Cycle and Large-Scale Dynamics**

Jun-Ichi Yano,^a Robert S. Plant, ^b

^a CNRM, UMR 3589 (CNRS), Météo-France, 31057 Toulouse Cedex, France b ⁴ *Department of Meteorology, University of Reading, UK*

⁵ *Corresponding author*: jun-ichi.yano@cnrs.fr

2

ABSTRACT: The importance of the convective life cycle in tropical large-scale dynamics has long been emphasized, but without explicit analysis. The present work provides it by coupling the convective energy cycle under the framework of Arakawa and Schubert's (1974) convection parameterization with a shallow-water analogue atmosphere. The square frequency of linear convectively–coupled waves is given by a squared sum of the dry gravity-wave and the convective energy-cycle frequencies, shortening the period of the convective cycle through the large-scale coupling. In a weakly nonlinear regime, the system follows an equation analogous to the Kortweg– de Vries equation, which exhibits a solitary–wave solution, with behavior reminiscent of observed tropical westerly–wind bursts. 6 7 8 9 10 11 12 13 14

¹⁵ DOC/CQE/energy-cycle/1D-LS/ms.tex, 7 April 2023

 Significance Statement: The present work suggests that a nonlinear description of a large–scale tropical system with an explicit convective life cycle may provide a simple model of tropical westerly–wind bursts. At the same time, an important lesson to learn is that, if the focus of a study is on the global scale of the atmosphere, it is wise not to try to include a convective life cycle explicitly into the model. Such a configuration will simply be dominated by the short convective–scale variabilities, that one would wish to filter out.

²² **1. Introduction**

²³ It is commonly accepted that tropical atmospheric dynamics is essentially described by the ²⁴ interactions between large-scale equatorial waves and small-scale convection: $cf.$, critical reviews $_{25}$ in introductions of Yano and Tribbia (2017), Yano and Wedi (2021), and further references therein. ²⁶ A standard approach has been to introduce parameterized convection to the large–scale dynamics 27 under a general framework of convective quasi-equilibrium ($cf.$, Yano and Plant 2012a), which ²⁸ assumes that small–scale convection is in equilibrium with the large-scale dynamics in a certain ²⁹ manner. This general conceptual framework can cover a wide range of formulations, including ³⁰ the original one by Arakawa and Schubert (1974), but also a more straightforward assumption 31 of convective neutrality of the large scale, originally suggested by Betts (1986), observationally ³² supported by Xu and Emanuel (1989), and applied to theoretical studies by Emanuel (1987) and ³³ Neelin *et al.* (1987). More classical approaches of wave–CISK (Hayashi 1970, Lindzen 1974) can ³⁴ also be included in this category in the present context. All of these approaches have in common ³⁵ that they *do not* introduce an explicit process characterized by a convective time scale.

³⁶ At the same time, there has been a persistent feeling in the tropical community that a finite time ³⁷ scale for the life cycle of small-scale convection plays a critical role in the tropical large-scale ³⁸ dynamics. This feeling may be, for example, reflected upon through brief, albeit rather obscure ω discussions on the convective life cycle leading to his Eqs. (2.2) and (3.6) in Kuo (1974), the ⁴⁰ emphasis on mesoscale processes for convection parameterizations in the review by Houze and ⁴¹ Betts (1981), and probably most succinctly summarized by an argument of activation-control by ⁴² Mapes (1997).

⁴³ The most straightforward way to include a convective time scale within a parameterization is ⁴⁴ to introduce it as a finite-time adjustment process towards an equilibrium. A parameterization by ⁴⁵ Betts (1986) follows this approach, although his main focus in the formulation is in defining an ⁴⁶ equilibrium profile. Neelin and Yu (1994) and Yu and Neelin (1994) introduced this finite-time ⁴⁷ convective adjustment in the context of large-scale dynamic studies. Similar approaches are adopted 48 by e.g., Frierson et al. (2004), Stechmann and Majda (2006), Bouchut et al. (2009), Lambaerts ⁴⁹ *et al.* (2011). However, these convective adjustment approaches are still short of introducing a 50 life-cycle of convection: adjustment only describes a monotonic approach towards an equilibrium, 51 without going through anything like a cycle. A simple model for the convective life cycle was ⁵² introduced by Yano and Plant (2012b).

₅₃ Yano and Plant (2012b) showed that a basic behavior of atmospheric deep convection, especially $\frac{54}{15}$ its tendency for following a cycle of discharge and recharge ($cf.$, Blade and Hartmann 1993), ⁵⁵ can be described by an energy cycle, as originally introduced by Arakawa and Schubert (1974) ϵ as their Eqs. (132) and (140), but by adding simple closures to this system ($cf.$, Eq. 2.5 below). ⁵⁷ A key simplification in the formulation of Yano and Plant (2012b) is to consider only a single, ⁵⁸ deep convection mode so that the integral kernel, defined by Eqs. (B36) and (B37) in Arakawa and ⁵⁹ Schubert (1974), reduces to a single scalar parameter.

⁶⁰ The purpose of the present study is to couple this convective energy cycle system with a simple 61 large-scale dynamics described by a shallow-water analogue, and to present its basic behavior. ⁶² The most fascinating finding from this study is the existence of a solitary wave solution under $\epsilon_{\rm s}$ weak nonlinearity, whose behavior is reminiscent of observed tropical westerly–wind bursts ($cf.$ ⁶⁴ Hartten 1996, Yano *et al.* 2004).

 ϵ ₆₅ The convective energy-cycle system introduced by Yano and Plant (2012b) is reviewed in the next ⁶⁶ section. As a first step for investigating the coupled dynamics of this system, we adopt a simple ⁶⁷ horizontally one-dimensional shallow-water analogue for the large-scale dynamics, as introduced ⁶⁸ in Sec. 3. A complete formulation of the system is presented in Sec. 4 in a nondimensional form. ⁶⁹ The derived system is analyzed over Secs. 5–7 in three steps: steady solutions (Sec. 5), linear π waves (Sec. 6), and a weakly nonlinear analysis (Sec. 7). The paper is concluded by Sec. 9 after 71 further discussions in Sec. 8.

⁷² **2. Convective Energy-Cycle System (Dimensional)**

 τ_3 Following Yano and Plant (2012b), the convective energy-cycle system is given by:

$$
\frac{dK}{dt} = AM_B - D,\tag{2.1a}
$$

$$
\frac{dA}{dt} = -\gamma M_B + F \tag{2.1b}
$$

 74 with the convective kinetic energy, K, and the cloud work function, A, as prognostic variables. ⁷⁵ These are defined by

$$
K = \int_{z_B}^{z_T} \sigma \frac{\rho}{2} w_c^2 dz,
$$
 (2.2a)

$$
A = \int_{z_B}^{z_T} \eta b dz.
$$
 (2.2b)

⁷⁶ Here, notably, σ is the fractional area occupied by convection, η is a normalized vertical profile π of convective mass flux, and M_B is the convective mass flux at the convection base. The other ⁷⁸ variables introduced in Eqs. (2.2a, b) are: ρ the air density, w_c the convective vertical velocity, z τ ⁹ the vertical coordinate, and *b* the buoyancy.

⁸⁰ Arakawa and Schubert (1974) assumed an entraining plume profile in defining the cloud work \mathbf{B}_1 function, A. In this case, the profile, η , is normalized by the value at the convective base. However, ⁸² Yano *et al.* (2005) show that the concept of the cloud work function can be applied to any vertical α convective profile, η , as a measure of the potential energy convertibility (PEC), as seen on the first ⁸⁴ term in the right-hand of Eq. (2.1a). Note further that if we set $\eta = 1$, the cloud work function ⁸⁵ (PEC) reduces to a form of convective available potential energy (CAPE). It fully reduces to CAPE δ ⁸⁶ if the buoyancy, b, is defined as that of a lifting parcel. However, the definition of the buoyancy $\frac{1}{87}$ is kept open in Eq. (2.2b): for example, it could be taken as the buoyancy as defined in explicit ⁸⁸ convection simulations, averaged over the convective area.

 89 We assume that the convective damping, D, is expressed by a Rayleigh damping:

$$
D = \frac{K}{\tau_D} \tag{2.2c}
$$

⁹⁰ with the damping time scale, $τ_D \sim 10^3$ sec. γ measures the efficiency with which convection 91 consumes the cloud work function (PEC), A, with time, corresponding to the kernel, K , introduced ⁹² by Arakawa and Schubert (1974), but reducing it to a scalar by only considering a single convective 93 mode here.

⁹⁴ The large-scale forcing, F, was taken to be a prescribed constant in Yano and Plant (2012b) in ⁹⁵ order to consider the convection dynamics in a stand alone manner. For the present purpose of ⁹⁶ considering a coupling of this energy-cycle system with the large-scale dynamics, the large-scale ⁹⁷ forcing must evolve following the evolution of the large-scale state. Thus, we define it by

$$
F \simeq \int_{z_B}^{z_T} \frac{g\eta}{\bar{T}} \left(\bar{w} \frac{\partial \bar{\theta}}{\partial z} - Q_R \right) dz, \tag{2.2d}
$$

where g is the acceleration due to gravity, \bar{T} the large-scale temperature, \bar{w} the large-scale velocity, $\overline{\theta}$ the large-scale potential temperature, and Q_R the radiative heating rate. It is important to note that we neglect a contribution of boundary-layer processes to the large-scale forcing in the definition (2.2d). This simplification is consistent with that which Arakawa and Schubert (1974) adopted in their quasi-equilibrium diagnosis, as well as the observationally–proposed approximation of parcel–environment quasi–equilibrium (Zhang 2002, 2003, Donner and Phillips 2003).

 $_{104}$ Finally, the vertical integrals in Eqs. (2.2a, b, d) are, in principle, performed from the convection 105 base, z_B , to its top, z_T . However, for the sake of simplifying the coupling with the large-scale ¹⁰⁶ dynamics, we re-set them to be the surface, $z_B = 0$, and the top of the atmosphere, z_T . By adopting 107 an equivalent vertical coordinate in the large-scale dynamics ($cf.$, Sec. 3), z_T , can easily be ¹⁰⁸ re-interpreted as the top of the troposphere.

¹⁰⁹ For achieving the simplest possible coupling, we still assume that the radiative heating rate, Q_R , ¹¹⁰ is prescribed, but modify the first term in the definition (2.2d) above, by following the evolution of 111 the large-scale vertical velocity, \bar{w} . We assume a normalized vertical profile of the vertical velocity, \overline{w} , to be W so that

$$
\bar{w} = \tilde{w}(x, t)W(z). \tag{2.3a}
$$

113 Here, $\tilde{w}(x,t)$ designates the horizontal dependence of the large-scale vertical velocity, and x is the ¹¹⁴ only horizontal coordinate. Throughout the paper, vertical profiles are designated by upper–case ¹¹⁵ letters, and keep in mind that all of the vertical profiles are defined to be nondimensional, and also

- 116 normalized to $O(1)$. Furthermore, the tilde sign is added to distinguish the horizontal components
- $_{117}$ until the end of Sec. 3.
- 118 As a result, the large-scale forcing may be re-written as:

$$
F = \mu \tilde{w} + F_R, \tag{2.3b}
$$

₁₁₉ where

$$
\mu = \int_{z_B}^{z_T} \frac{g \eta}{\bar{T}} W \frac{d\bar{\theta}}{dz} dz
$$

$$
\sim \frac{gH}{T_0} \frac{d\bar{\theta}}{dz} \sim \frac{10 \text{ m/s}^2 \times 30 \text{ K}}{300 \text{ K}}
$$

$$
\sim 1 \text{ m/s}^2 \tag{2.4a}
$$

 120 measures the efficiency with which large-scale ascent generates the cloud work function (PEC), A. 121 The second term in Eq. $(2.3b)$,

$$
F_R = -\int_{z_B}^{z_T} \frac{g\eta}{\bar{T}} Q_R dz,
$$
\n(2.4b)

 122 measures the rate at which the cloud work function (PEC) is generated by radiative cooling.

 123 Finally, for closing the system, as in Yano and Plant (2012b), we assume a relation

$$
K = \beta M_B,\tag{2.5}
$$

where β is a constant estimated to be $\beta \sim 10^4$ m²/s.

¹²⁵ **3. Large-Scale System**

 As a first step in constructing a large-scale system to be coupled with the convective energy cycle system introduced in the last section, we consider the large-scale heat equation in Sec. 3.a, because it is the key equation to achieve a coupling of the two scales. The formulation is completed more 129 formally by introducing the normal mode decomposition of the linear primitive equation system in Sec. 3.b. The presentation is rather backwards, because the first subsection has to quote some of ¹³¹ the results to be obtained in the following subsection. Nevertheless, we present in this order for the sake of making the physical motivations clear before a more complete mathematical formulation

¹³³ is provided. The system is assumed linear throughout this section. Nonlinear advection terms will ¹³⁴ be considered later in Sec. 4.e.

¹³⁵ *a. Large-Scale Heat Equation*

¹³⁶ A major feedback of convection to the large-scale state is found in the heat equation, which may 137 be written as

$$
\frac{\partial \theta}{\partial t} + w \frac{d\bar{\theta}}{dz} = Q_c + Q_R.
$$
\n(3.1)

 $_{138}$ Here, Q_c is the convective heating rate, approximately given by:

$$
Q_c = \sigma w_c \frac{d\bar{\theta}}{dz}
$$
 (3.2)

139 neglecting the effect of detrainment for simplicity ($cf.$, Yano and Plant, 2020). Recall that Q_R is ¹⁴⁰ the radiative heating.

141 Because the convective dynamics is described in terms of a single vertical mode, it is appropriate ¹⁴² to reduce the large-scale dynamics similarly. For this reason, we have already assumed only a ¹⁴³ single vertical mode for the large-scale dynamics by writing the vertical velocity in the form of $_{144}$ Eq. (2.3a) in Sec. 2, and equivalently, the potential temperature is represented by:

$$
\theta = \tilde{\theta}(x, t)\Theta(z). \tag{3.3}
$$

145 Here, Θ is a nondimensional, normalized vertical profile and $\tilde{\theta}$ describes the horizontal dependence. ¹⁴⁶ We also set

$$
\sigma w_c = \frac{\eta}{\rho_0} M_B = \eta \tilde{w}_c,
$$

¹⁴⁷ where ρ_0 is the surface density.

148 As a standard procedure for projecting an equation onto a given vertical mode, we multiply 149 Eq. (3.1) by Θ , and integrate it vertically. As a result, we obtain

$$
\frac{\partial \tilde{\theta}}{\partial t} + \frac{\theta^*}{z_T} \tilde{w} = \hat{\eta} \tilde{w}_c - \hat{Q}_R^* w_R,
$$
\n(3.4)

¹⁵⁰ where

$$
\frac{\theta^*}{z_T} = \left\langle W\Theta \frac{d\bar{\theta}}{dz} \right\rangle = \frac{\theta_0 h_E}{z_T^2},\tag{3.5a}
$$

$$
\hat{\eta} = \left\langle \eta \Theta \frac{d\bar{\theta}}{dz} \right\rangle,\tag{3.5b}
$$

$$
\hat{Q}_R^* = -\langle \Theta Q_R \rangle. \tag{3.5c}
$$

¹⁵¹ Here, we define the angled brackets as an integral operator

$$
\langle * \rangle = \frac{1}{z_T} \int_0^{z_T} * dz,
$$

152 setting $z_B = 0$ in previous vertical integrals, as already discussed. We have also assumed that Θ is ¹⁵³ normalized by

$$
\langle \Theta^2 \rangle = 1.
$$

¹⁵⁴ We further introduce θ^* as a characteristic scale for θ . An alternative representation is also given 155 in Eq. (3.5a) in terms of a reference value of potential temperature, θ_0 and an equivalent depth, h_E : ¹⁵⁶ this form will prove convenient later.

 157 It will be shown in next subsection that the vertical–wind profile, W, is related to the potential– ¹⁵⁸ temperature profile, Θ, by:

$$
W = \frac{\theta^*}{z_T} \left(\frac{d\bar{\theta}}{dz}\right)^{-1} \Theta.
$$
 (3.5d)

 $_{159}$ from Eq. (3.11b) to be derived below.

160 Additionally, the nondimensional radiative vertical velocity, w_R , has been introduced in Eq. (3.4), ¹⁶¹ in order to represent a possible horizontal distribution of radiation. This study assumes the radiation 162 to be horizontally homogeneous and thus we will simply set it to unity in the following, but explicitly 163 re-introduce it whenever important to indicate the role of radiation in a given equation.

¹⁶⁴ With the final goal of reducing the system to a shallow-water analogue in mind, it is convenient to replace the potential temperature, $\tilde{\theta}$, in the heat equation (3.4) by the height field, \tilde{h} . These two 166 variables are linked together through hydrostatic balance, as will be obtained in Eq. (3.12b) below:

$$
\tilde{h} = -\frac{h_E}{\theta^*} \tilde{\theta} = -\frac{z_T}{\theta_0} \tilde{\theta}.
$$
\n(3.6)

¹⁶⁷ As a result, the heat equation reduces to:

$$
\frac{\partial \tilde{h}}{\partial t} - \hat{S}(\tilde{w} - \alpha \tilde{w}_c) = \hat{Q}_R.
$$
\n(3.7)

168 Here, the introduced nondimensional parameters are estimated as:

$$
\hat{S} = \frac{h_E}{z_T} \sim 10^{-2},\tag{3.8a}
$$

$$
\alpha = \frac{z_T}{\theta^*} \hat{\eta} = \frac{z_T^2}{\theta_0 h_E} \hat{\eta} \sim 1,
$$
\n(3.8b)

$$
\hat{Q}_R = \frac{h_E}{\theta^*} \hat{Q}_R^* = \frac{z_T}{\theta_0} \hat{Q}_R^*.
$$
\n(3.8c)

169 Recall that $\hat{\eta}$ has already been defined by Eq. (3.5b). The orders of magnitude estimates in (3.8a, ¹⁷⁰ b) are based on $h_E \sim 10^2$ m, $z_T \sim 10$ km, $\theta_0 \approx 300$ K, and $\theta^* \sim 3$ K.

¹⁷¹ *b. Normal–Mode Decomposition of the Linear Primitive Equation System*

¹⁷² A thermodynamic formulation for a shallow-water analogue atmosphere has been introduced in ¹⁷³ the last subsection, in which the large–scale heat equation reduces to a height equation for shallow ¹⁷⁴ water. To complete the construction of a shallow–water analogue of the tropical atmosphere large-175 scale dynamics, we now consider a full, linear primitive equation system to see how the vertical 176 profiles of the variables may be defined consistently. These profiles are usually called normal $177 \text{ modes } (cf., Kasahara and Puri 1981).$

¹⁷⁸ We consider a linear horizontally one-dimensional system with the Boussinesq approximation:

$$
\frac{\partial u}{\partial t} = -\frac{\partial \phi}{\partial x},\tag{3.9a}
$$

$$
\frac{\partial \phi}{\partial z} = g \frac{\theta}{\theta_0},\tag{3.9b}
$$

$$
\frac{\partial \theta}{\partial t} + w \frac{d\bar{\theta}}{dz} = Q, \tag{3.9c}
$$

$$
\frac{\partial u}{\partial x} + \frac{\partial w}{\partial z} = 0.
$$
 (3.9d)

¹⁷⁹ Here, θ_0 is a constant reference potential temperature, *u* is the horizontal velocity, and ϕ is the 180 geopotential. The total diabatic heating has been set to $Q = Q_c + Q_R$ as in the last subsection.

¹⁸¹ To apply the above system to a realistic atmosphere, the system is best re-interpreted as a consequence of transforming the pressure coordinate, p , into an equivalent geometrical coordinate, *z*, by the relation $dp = -\rho_0 g dz$ with ρ_0 a reference density, but with a minor modification to the ¹⁸⁴ hydrostatic balance (3.9b) of multiplying by an additional factor, $\rho_0\theta_0/\rho\bar{\theta}$ on the right-hand side. Keep in mind that all of the vertical integrals considered in the convective energy cycle formulation must also be re-interpreted accordingly.

¹⁸⁷ We introduce a separation of variables by Eqs. $(2.3a)$ and (3.3) , as well as:

$$
u = \Phi \tilde{u}, \ \phi = \Phi \tilde{\phi}, \ Q = \Theta \tilde{Q}.
$$
 (3.10a, b)

¹⁸⁸ By substituting Eqs. (2.3a), (3.3), and (3.10a, b) into Eqs. (3.9a, b, c, d), we find that the vertical 189 profiles must mutually satisfy the relations:

$$
z_T \frac{d\Phi}{dz} = -\Theta,\tag{3.11a}
$$

$$
\Theta = \frac{z_T}{\theta^*} \frac{d\bar{\theta}}{dz} W,
$$
\n(3.11b)

$$
\Phi = z_T \frac{dW}{dz}.
$$
\n(3.11c)

¹⁹⁰ The two scales, z_T and θ^* , have been introduced so that all the vertical profiles consistently remain 191 nondimensional, and also of the order unity.

 $_{192}$ By further substituting (3.11a, c) into (3.11b), we find:

$$
\left[\frac{d^2}{dz^2} + \frac{1}{z_T} \left(\frac{1}{\theta^*} \frac{d\bar{\theta}}{dz}\right)\right] W = 0.
$$

Here, $z_T \theta^*$ constitutes an eigenvalue in this equation. A more commonly accepted form is obtained ¹⁹⁴ by re–writing the above into:

$$
\left[\frac{d^2}{dz^2} + \frac{1}{h_E} \left(\frac{1}{\theta_0} \frac{d\bar{\theta}}{dz}\right)\right] W = 0
$$

¹⁹⁵ with the equivalent depth,

$$
h_E = \frac{\theta^*}{\theta_0} z_T,
$$

¹⁹⁶ constituting the standard engivenvalue of this problem (cf. Eq. 3.5a). It can be seen that the 197 equivalent depth is the scaled–down version of the vertical scale by the relative fluctuation of the 198 buoyancy with respect to the reference state.

¹⁹⁹ Consequently, the equations for the horizontal components are given by:

$$
\frac{\partial \tilde{u}}{\partial t} = -\frac{\partial \tilde{\phi}}{\partial x},\tag{3.12a}
$$

$$
\tilde{\phi} = -\frac{gh}{\theta_0}\tilde{\theta} = -\frac{gh_E}{\theta^*}\tilde{\theta},\tag{3.12b}
$$

$$
\frac{\partial \tilde{\theta}}{\partial t} + \frac{\theta^*}{z_T} \tilde{w} = \tilde{Q},\tag{3.12c}
$$

$$
\frac{\partial \tilde{u}}{\partial x} + \frac{\tilde{w}}{z_T} = 0.
$$
\n(3.12d)

²⁰⁰ By further setting, $\tilde{\phi} = g\tilde{h}$, re-writing Eq. (3.12c) in terms of \tilde{h} , we recover Eq. (3.7) already introduced. By eliminating the vertical velocity with the help of the mass continuity (3.12d), we find that the governing equation set for the horizontal components constitute an analogue of the shallow–water system with the equivalent depth, h_E playing the role of the depth.

²⁰⁴ **4. Nondimensionalization**

²⁰⁵ For ease of further analyses, we now nondimensionalize the system derived over Secs. 2–3.

²⁰⁶ *a. Convective Energy-Cycle System*

₂₀₇ To nondimensionalize the convective energy cycle, we first note that the equilibrium state is ²⁰⁸ given at the convective scale by:

$$
A = A_0 \equiv \beta/\tau_D \sim 10 \text{ J/kg},\tag{4.1a}
$$

$$
M_B = M_0 \equiv F_R / \gamma \sim 10^{-2} \,\text{kg/m}^2 / s,\tag{4.1b}
$$

²⁰⁹ where F_R is the radiative contribution to convective forcing. Estimates are based on the values of $\mu_{\rm 210}$ $\beta \sim 10^4$ m²/s, $\tau_D \sim 10^3$ sec, $F_R \sim 10^{-2}$ m²/s³, $\gamma \sim 1$ m⁴/s²kg by following Yano and Plant (2012b). Setting, for now, the large-scale equilibrium to be simply quiescent, $\tilde{w} = \tilde{h} = 0$, we find that the

²¹² convection-base mass flux is further constrained to satisfy

$$
M_B = \frac{\rho_0 \hat{Q}_R}{\alpha \hat{S}}
$$
(4.1c)

²¹³ from Eq. (3.7). Recall that \hat{Q}_R is a measure of the radiative cooling rate, as defined by Eq. (3.8c).

214 Obviously, this value must also agree with F_R/γ given by Eq. (4.1b).

²¹⁵ We nondimensionalize the large-scale vertical velocity by:

$$
\tilde{w}=w_0\tilde{w}_*.
$$

216 where the subscript $*$ suggests a nondimensionalized horizontal dependence, and w_0 is the scale ²¹⁷ of the vertical velocity. Keep in mind that the subscript ∗ will be tentative, and it will be removed ²¹⁸ as soon as the nondimensionalization is accomplished.

²¹⁹ The appropriatetime scale, τ_c , and vertical-velocity scale, w_0 for nondimensionalization are ²²⁰ given by

$$
\tau_c = (\beta / F_R)^{1/2} \sim 10^3 \,\text{sec},\tag{4.2a}
$$

$$
w_0 = F_R / \mu \sim 10^{-2} \text{m/s}.
$$
 (4.2b)

²²¹ The convective-scale variables are nondimensionalized into k_c and a by setting

$$
M_B = M_0 k_c, \tag{4.3a}
$$

$$
A = \frac{\tau_D}{\tau_c} A_0 a,\tag{4.3b}
$$

²²² such that the resulting nondimensionalized equations are:

$$
\frac{\partial k_c}{\partial t'} = ak_c - \frac{k_c}{\tau_D^*},\tag{4.4a}
$$

$$
\frac{\partial a}{\partial t'} = -k_c + w + w_R,\tag{4.4b}
$$

²²³ where the dependent variables are defined by:

• $k_c = w_c$: convective kinetic energy (or the convective mass flux)

 \bullet a: the cloud work function (which may conceptually be interpreted as a convective potential 226 energy).

²²⁷ $\tau_D^* = \tau_D/\tau_c$ is a nondimensional damping time scale, and $w_R (= 1)$ is a normalized radiative vertical ²²⁸ velocity. In Eqs. (4.4a, b) the subscript ∗ indicating nondimensional variables has already been ²²⁹ removed.

²³⁰ As required, we use the following notations in an interchangeable manner

$$
k_c = w_c \tag{4.5}
$$

depending on the context. Note further that a prime sign is added to the nondimensional time, t' , ²³² because a different nondimensionalization of time will be introduced for the large-scale dynamics ²³³ in the next subsection.

²³⁴ *b. Large-Scale System*

²³⁵ We nondimensionalize the large-scale system by introducing the scales u_0 , h_0 , τ_L , and L, marking 236 the nondimensional variables with the subscript $*$ for now, thus, e.g.,

$$
\frac{\partial}{\partial x} = \frac{1}{L} \frac{\partial}{\partial x_*}.
$$

 237 By substituting into Eqs. (3.12a, b, c), we find that convenient nondimensionalization scales are:

$$
h_0 = h_E, \ u_0 = c_g, \ \tau_L = L/c_g,
$$
 (4.6a, b, c)

where $c_g = (gh_E)^{1/2}$ is the gravity-wave speed, and the characteristic horizontal scale, L, is left to be determined. We set $L = 3 \times 10^3$ km provisionally, for the purpose of some numerical estimates. ²⁴⁰ After removing the tilde signs, and removing the subscripts ∗ from nondimensional variables, ²⁴¹ the resulting nondimensional set of equations are:

 \sim 1

$$
\frac{\partial u}{\partial t} = -\frac{\partial h}{\partial x},\tag{4.7a}
$$

$$
\frac{\partial h}{\partial t} + \frac{\partial u}{\partial x} = -Q,\tag{4.7b}
$$

$$
w = -\hat{r}_L \frac{\partial u}{\partial x}.\tag{4.7c}
$$

²⁴² Here,

$$
Q = \hat{\alpha}(w_c - w_R) = \hat{\alpha}w_c - \hat{Q}_R,
$$
\n(4.8a)

$$
\hat{r}_L = \frac{c_g z_T}{w_0 L} \sim 10,\tag{4.8b}
$$

$$
\hat{\alpha} = \alpha / \hat{r}_L,\tag{4.8c}
$$

243 and \hat{r}_L may be considered an effective aspect ratio of the system. Alternatively, it can be interpreted ²⁴⁴ as a ratio of two characteristic horizontal scales:

$$
\hat{r}_L = L_D/L,
$$

²⁴⁵ where

$$
L_D = \frac{c_g z_T}{w_0} \sim 3 \times 10^4 \text{km}.
$$

²⁴⁶ Also keep in mind that the total depth of the shallow water is: $h_T = 1 + h$.

247 Recall from Eq. (3.7) that α controls the relative contributions of large-scale and convective-²⁴⁸ scale velocities to the stratification. The parameter, $\hat{\alpha}$ introduced by Eq. (4.8c) thus measures ²⁴⁹ the efficiency of convection in modifying the stratification of the atmosphere, while $1 - \alpha$ may ²⁵⁰ be considered a nondimensional measure of the effective stratification (or gross moist stability: ²⁵¹ Neelin and Held 1987). In particular, when $\alpha = 1$, the convective atmosphere is effectively 252 neutrally stratified. Here, w_0 is a characteristic scale of the large–scale vertical velocity and, by ²⁵³ nondimensionalization, the radiatively–driven vertical velocity is $w_R = 1$.

²⁵⁴ *c. Two Time Scales*

²⁵⁵ To couple together the two systems for convection and the large scale, we need to take care of ²⁵⁶ the two different time scales adopted for the systems in nondimensionalization, τ_c (Eq. 4.2a) and ²⁵⁷ $\tau_L = L/c_g$ (Eq. 4.6c). The ratio of the two is

$$
\hat{r}_c = \tau_c / \tau_L \sim 10^{-2}.\tag{4.9c}
$$

²⁵⁸ We will henceforth use τ_L for both systems for consistency. As a result, Eqs. (4.4a, b) are expressed ²⁵⁹ as:

$$
\hat{r}_c \frac{\partial k_c}{\partial t} = ak_c - \frac{k_c}{\tau_D^*},\tag{4.9a}
$$

$$
\hat{r}_c \frac{\partial a}{\partial t} = -k_c + w + w_R. \tag{4.9b}
$$

260 Note that for a large-scale horizontal scale of $L \approx 30$ km, $\hat{r}_c \approx 1$, and the two time scales match.

²⁶¹ *d. Coupling Problem*

²⁶² Through the considerations over the last subsections, we have arrived at a complete nondimen- 288 sional set of equations given by (4.7a, b, c) and (4.9a, b). However, there remains one more issue 264 to be addressed: the large–scale height, h, which is also related to the potential temperature, θ by ²⁶⁵ Eq. (3.6), is effectively equivalent to the convective–scale cloud work function (PEC), a, because ²⁶⁶ by neglecting contributions from the boundary layer, the buoyancy integral that defines α is deter-²⁶⁷ mined exclusively by contributions of the environmental potential temperature, also neglecting the 268 virtual effect for the present purpose. Thus, α is nothing other than an alternative measure of the 269 tropospheric potential temperature, in addition to h. Here, strictly speaking, we can still distinguish ₂₇₀ them by taking different vertical profiles in the definitions. However, retaining two measures of the 271 potential temperature in a single–layer shallow–water analogue model would be rather redundant. ₂₇₂ Thus, we now reduce them to a single equation by establishing the equivalence of the two.

₂₇₃ This is accomplished in the following manner, by introducing two additional constraints. By $_{274}$ comparing between the right–hand side of Eq. (4.9b) and the definition (4.8a), we find that

$$
\hat{r}_c \hat{\alpha} \frac{\partial a}{\partial t} - \hat{\alpha} w = -Q,\tag{4.10a}
$$

²⁷⁵ also recalling that $k_c = w_c$. For comparison, the height equation (4.7b) is re-written with the help 276 of Eq. (4.7c) as:

$$
\frac{\partial h}{\partial t} - \frac{w}{\hat{r}_L} = -Q. \tag{4.10b}
$$

²⁷⁷ These two expressions suggest that the two variables become equivalent by setting:

$$
h = \hat{r}_c \hat{\alpha} a. \tag{4.11a}
$$

²⁷⁸ Furthermore, for consistency of the large-scale vertical advection term (2nd on the left-hand side)

 279 in both equations (4.10a, b), a further constraint is required to establish the equivalence:

$$
\hat{\alpha} = 1/\hat{r}_L. \tag{4.11b}
$$

280 By further referring to the definition of $\hat{\alpha}$ in Eq. (4.8c), this condition simply reduces to

$$
\alpha = 1. \tag{4.11c}
$$

281 Recall from Sec. 4.b that the parameter α measures the efficiency of convection in modifying the ²⁸² stratification of the atmosphere.

²⁸³ The equivalence between CAPE (PEC) and the height in the shallow–water analogue atmosphere ²⁸⁴ has been pointed out by Mapes (1998). We just establish this connection in a more formal manner. 285 As a result, there is no longer a need to consider the time evolution of PEC, a , separately.

²⁸⁶ Consequently Eq. (4.9a) describes the convective–scale process, alongside the equation set (4.7a, $_{287}$ b, c) for the large scale. With the help of Eq. (4.11a), the PEC can be eliminated from Eq. (4.9a) ²⁸⁸ which becomes:

$$
\hat{\epsilon}\frac{\partial k_c}{\partial t} = \hat{\alpha}hk_c - \frac{k_c}{\tilde{\tau}_D},\tag{4.12a}
$$

²⁸⁹ where

$$
\tilde{\tau}_D = \tau_D^* / \hat{r}_c \hat{\alpha}^2 = \tau_D / \hat{r}_c \hat{\alpha}^2 \tau_c \sim 10^4,
$$
\n(4.12b)

$$
\hat{\epsilon} = \hat{r}_c^2 \hat{\alpha}^2 \sim 10^{-6}.
$$
\n(4.12c)

²⁹⁰ Large and small values for these two parameters suggest shorter time scales involved with convection ²⁹¹ compared to those of the large scale.

²⁹² *e. Full System with Nonlinearity*

 It remains to add nonlinearity to the linear version of the large–scale system derived so far, $_{294}$ Eqs. (4.7a, b, c). This final step turns out be rather involved, and the details are presented in the Appendix. Therein, we examine the physical consistency of the included nonlinear terms with the energy cycle of the system. Based on those examinations, we adopt the final large–scale equation set to be:

$$
\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = -\frac{\partial h}{\partial x},\tag{4.13a}
$$

$$
\frac{\partial h}{\partial t} + \frac{\partial u}{\partial x} = -Q,\tag{4.13b}
$$

$$
w = -\hat{r}_L \frac{\partial u}{\partial x}.
$$
\n(4.13c)

 298 Thus, the nonlinear advection term has been added only to the momentum equation (4.13a), but 299 not to the continuity (heat) equation $(4.13b)$.

 $\frac{300}{200}$ In summary, the full nonlinear system consists of Eqs. (4.13a, b, c) and (4.12a).

³⁰¹ **5. Steady Solutions**

³⁰² We first examine the steady solutions. This serves two purposes: i) to define a basic state of the ³⁰³ system, as a first step for performing perturbation analyses; and ii) to seek for the possibility of a ³⁰⁴ solution with a steady circulation, as an idealized analogue of the Hadley–Walker circulation.

₃₀₅ The steady heat budget of the system is obtained by substituting Eqs. (4.13c) and (4.8a) into ³⁰⁶ Eq. (4.13b):

$$
\bar{w} - \alpha \bar{w}_c + \hat{r}_L \hat{Q}_R = 0
$$

³⁰⁷ or

$$
\bar{w} - \alpha \bar{k}_c + \alpha w_R = 0 \tag{5.1}
$$

³⁰⁸ Here, the overbars are added to denote a steady state. Also keep in mind that we retain two notations 309 with $k_c = w_c$.

310 The equilibrium state of convection is obtained from $(4.12a)$ as:

$$
\bar{k}_c = \bar{w}_c = 0
$$
 or $\bar{h} = 1/\hat{\alpha}\tilde{\tau}_D \sim 10^{-3}$. (5.2a, b)

311 In the following, we take the second choice (5.2b), which is only a matter of adding a constant 312 height on perturbations. The first choice (5.2a) is less interesting with no possibility of convection 313 in the basic state.

314 From the heat balance (5.1), we see that \bar{w} and \bar{w}_c can be chosen freely so long they are consistent 315 with the dynamics. To seek a more specific solution, we set:

$$
\bar{u} = \bar{u}_0 \sin kx \tag{5.3a}
$$

316 with \bar{u}_0 a constant. Its substitution into the continuity equation (4.13c) leads to:

$$
\bar{w} = -\bar{w}_0 \cos kx \tag{5.3b}
$$

317 with $\bar{w}_0 = \hat{r}_L k u_0$. Furthermore, from Eq. (5.1),

$$
\bar{w}_c = w_R - \frac{\bar{w}_0}{\alpha} \cos kx.
$$
\n(5.3c)

318 To maintain the convective vertical velocity to be always positive definite, *i.e.*, $\bar{w}_c \ge 0$, we require 319 $w_R \ge \bar{w}_0/\alpha$. If we further assume the minimum convective velocity to be zero, we obtain $\bar{w}_0 = \alpha w_R$. ³²⁰ Finally, the steady nonlinear momentum equation,

$$
\frac{\partial}{\partial x}\frac{\bar{u}^2}{2} = -\frac{\partial \bar{h}}{\partial x},
$$

 321 must be satisfied. However, here we face a problem: by the convective equilibrium condition, we have already set \bar{h} to be constant by Eq. (5.2b), and thus the right–hand side vanishes from the ³²³ above, and there is no term to balance with the nonlinear advection on the left–hand side. We ³²⁴ circumvent this difficulty by noting that the nonlinear advection term arising from a baroclinic ³²⁵ circulation, actually projects onto a barotropic mode, and thus the height perturbation required to ³²⁶ balance the right–hand side is also of a barotropic mode:

$$
\frac{\partial}{\partial x}\frac{\bar{u}^2}{2} = -\frac{\partial \bar{h}_b}{\partial x},
$$

 with the subscript *b* standing for the barotropic mode, but also suggesting that this mode arises directly from the surface–boundary effect, e.g., the SST distribution, partially reminiscent of the ₃₂₉ idea of Lindzen and Nigam (1987). The barotropic height field which balances with the nonlinear term is given by:

$$
h_b = \frac{u_0^2}{4} (\cos 2kx - 1).
$$

³³¹ The short analysis of this section outlines very crudely how a consistent theory for steady tropical ³³² circulations can be developed in the context of a shallow-water analogue formulations: for further 333 analyses we rewfer to $e.g.,$ Gill (1980), Lindzen and Nigam (1987), Neelin and Held (1987), Yano $334 \quad (2023)$.

³³⁵ **6. Linear Analysis**

³³⁶ For performing perturbation analyses in the following two sections, we assume a homogeneous 337 basic state with no large–scale circulation, *i.e.*, $\bar{u} = \bar{w} = 0$. The basic–state height is defined by 338 Eq. (5.2b), and from Eq. (5.1), $\bar{w}_c = w_R = 1$, also recalling $\alpha = 1$ (*cf*., Eq. 4.11c).

339 The resulting set of linear perturbation equations is:

$$
\frac{\partial u'}{\partial t} = -\frac{\partial h'}{\partial x} \tag{6.1a}
$$

$$
\frac{\partial h'}{\partial t} + \frac{\partial u'}{\partial x} + \hat{\alpha} w'_c = 0
$$
\n(6.1b)

$$
\hat{\epsilon} \frac{\partial w'_c}{\partial t} = \hat{\alpha} h' \tag{6.1c}
$$

with the prime sign, *i*, denoting perturbation variables, and $w'_c = k'_c$.

³⁴¹ We further assume a solution of the form, $\sim e^{i(kx+\omega t)}$. Then, the linear frequency is given by:

$$
\omega^2 = k^2 + \hat{\alpha}^2 / \hat{\epsilon}
$$

³⁴² or

$$
\omega^2 = k^2 + \frac{1}{\hat{r}_c^2}.
$$
\n(6.2)

³⁴³ Note that only a neutral wave solution is available, and the standard gravity–wave solution is 344 recovered by setting $\hat{r}_c \to \infty$. Since $\hat{r}_c = \tau_c/\tau_L$ this limit corresponds to setting the convective ³⁴⁵ time scale much longer than that of the large scale. Rather unintuitively, the presence of finite 346 convective time scale (*i.e.*, τ_c finite) increases the frequency of the mode to be larger than that of ³⁴⁷ the dry gravity wave: by further decreasing τ_c , the waves propagate faster. Note that in absence of a ³⁴⁸ large–scale circulation, the system reduces to a linear version of the convective discharge–recharge 349 system $(cf.$, Yano and Plant 2012b);

$$
\frac{\partial h'}{\partial t} + \hat{\alpha} w'_c = 0,
$$

$$
\hat{\epsilon} \frac{\partial w'_c}{\partial t} = \hat{\alpha} h'.
$$

³⁵⁰ This leads to an oscillating solution with $\omega = \hat{\alpha}/\hat{\epsilon}^{1/2} = 1/\hat{r}_c = \tau_L/\tau_c$. Effectively, the dispersion 351 (6.2) is comprised of the square sum of the dry and convective frequencies.

³⁵² **7. Weakly Nonlinear Analysis**

³⁵³ As an extension to the analysis of the last section, we now take into account a weak nonlinearity. ³⁵⁴ For the purpose of developing a weakly–nonlinear formulation in a formal manner, we introduce an ³⁵⁵ explicit perturbation parameter, which we choose to be $\hat{\epsilon}$, bearing in mind the numerical estimate 356 of (4.12c). We also focus on the situation in which the system satisfies the free–ride balance

$$
\frac{\partial u'}{\partial x} + \hat{\alpha} w'_c = 0 \tag{7.1}
$$

 357 (c f., Fraedrich and McBride 1989) to the leading order of Eq. (4.13b). This state, alternatively ³⁵⁸ called the weak-temperature gradient approximation (Sobel *et al.* 2001), can also be considered to ³⁵⁹ be a quasi–equilibrium closure under the given shallow–water formulation.

³⁶⁰ To obtain (7.1) to the leading order, the variables must be be re–scaled. It is found that appropriate ³⁶¹ re–scalings are:

$$
h = \bar{h} + \hat{\epsilon}^3 h',\tag{7.2a}
$$

$$
w_c = \bar{w}_c + \hat{\epsilon} w'_c,\tag{7.2b}
$$

$$
u = \hat{\epsilon}^{3/2} u',\tag{7.2c}
$$

 362 and

$$
\partial/\partial t = \hat{\epsilon}\partial/\partial\tau\tag{7.2d}
$$

$$
\partial/\partial x = \hat{\epsilon}^{-1/2} \partial/\partial \xi \tag{7.2e}
$$

363 Thus, a longer time and shorter horizontal scales are introduced compared to the original nondimensionalization scales. Recall that \bar{h} is defined by Eq. (5.2b).

³⁶⁵ After substituting these re–scalings into the full set of equations, we obtain to the leading order $_{366}$ of Eqs. (4.12a) and (4.13a):

$$
\frac{\partial u'}{\partial \tau} + u' \frac{\partial u'}{\partial \xi} = -\frac{\partial h'}{\partial \xi},\tag{7.3a}
$$

$$
\frac{\partial w'_c}{\partial \tau} = \hat{\alpha} h'.\tag{7.3b}
$$

 367 From Eqs. (7.1) and Eqs. $(7.3b)$, we find:

$$
w'_{c} = -\frac{1}{\hat{\alpha}} \frac{\partial u'}{\partial \xi},\tag{7.4a}
$$

$$
h' = \frac{1}{\hat{\alpha}} \frac{\partial w'_c}{\partial \tau}.
$$
 (7.4b)

Substituting those expressions into Eq. (7.3a), we obtain a single equation for u' :

$$
\frac{\partial u'}{\partial \tau} + u' \frac{\partial u'}{\partial \xi} - \hat{\alpha}^{-2} \frac{\partial^3 u'}{\partial \xi^2 \partial \tau} = 0.
$$
 (7.5)

³⁶⁹ Let us examine the linearized equation briefly:

$$
\frac{\partial}{\partial \tau} \left(1 - \hat{\alpha}^{-2} \frac{\partial}{\partial \xi^2} \right) u' = 0,
$$

370 which has the dispersion relation:

$$
\omega(k^2 + \hat{\alpha}^2) = 0. \tag{7.6}
$$

Thus, possible solutions are $\omega = 0$ and $k^2 = -\hat{\alpha}^2$. Keep in mind that the horizontal wavenumber, k, 372 is defined in terms of the re–scaled horizontal scale. Thus, only evanescent waves are available in 373 the linear limit with the frequency left undetermined. As argued in $e.g.,$ Yano and Flierl (1994), and ³⁷⁴ Yano and Tribbia (2017), linear evanescent waves can be consistent solutions only if nonlinearity 375 becomes important at a certain part of the system.

376 To solve the nonlinear equation (7.5), it is worthwhile to note that it has a similar form to the 377 Kortewig–de Vries equation ($cf.$, Secs. 13.11 and 13.12 of Whitham 1974, Part 2, Epilogue of 378 Lighthill 1978):

$$
\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + \frac{\partial^3 u}{\partial x^3} = 0.
$$

³⁷⁹ The latter is known to have a soliton solution:

$$
u = 12k^2 \text{sech}^2 [k(x - x_0 - 4k^2 t)]
$$

Here, recall that sech $x = \cosh^{-1} x$, and k and x_0 are arbitrary constants, which adjust the solution

 381 form. Thus, we anticipate that a solution with a similar form may also be available with Eq. (7.5).

³⁸² To seek this possibility, we set

$$
u' = u_0 \operatorname{sech}^2[k(\xi - \xi_0) - \omega \tau]
$$

383 with u_0 , k , ω the parameters to be determined. Its substitution into Eq. (7.5) yields:

$$
u_0 = 6\omega/\hat{\alpha},\tag{7.7a}
$$

$$
k = \hat{\alpha}/2,\tag{7.7b}
$$

while ω remains an arbitrary constant. The final solutions are:

$$
u' = \frac{6\omega}{\hat{\alpha}} \mathrm{sech}^2 \varphi,\tag{7.8a}
$$

$$
w'_{c} = \frac{6\omega}{\hat{\alpha}} \operatorname{sech}^{3} \varphi \sinh \varphi, \tag{7.8b}
$$

$$
h' = \frac{6\omega^2}{\hat{\alpha}^2} (-3\text{sech}^4 \varphi + 2\text{sech}^2 \varphi)
$$
 (7.8c)

³⁸⁵ with

$$
\varphi = \frac{\hat{\alpha}}{2} (\xi - \xi_0) - \omega \tau.
$$
\n(7.9)

386 Note that the wavenumber, k, of the solitary–wave solution is controlled by $\hat{\alpha}$, which is proportional 387 to the ratio of the two horizontal scales, *i.e.*, $\hat{\alpha} = \alpha / \hat{r}_L = \alpha L / L_D$. Also recall the stretching factor, ³⁸⁸ $\hat{\epsilon}^{-1/2}$, applied to the horizontal coordinate. Thus, a characteristic horizontal scale of this solitary ³⁸⁹ wave is inferred by writing:

$$
\hat{\alpha}\xi = \hat{\alpha}\hat{\epsilon}^{-1/2}x
$$

³⁹⁰ From Eq. (4.12b), $\hat{\epsilon} = \hat{r}_c^2 \hat{\alpha}^2$, so that

$$
\hat{\alpha}\xi = \frac{x}{\hat{r}_c} = x\frac{\tau_L}{\tau_c} = \frac{Lx}{c_g\tau_c},
$$

also recalling the definitions (4.9c) and (4.6c). Bearing in mind that Lx is the dimensional length of 392 the system, a characteristic wavelength of the solitary wave solution is identified as: $c_g \tau_c \sim 50$ km. 393 Thus, this wave is typically localized to the mesoscale.

394 Also note that the velocity and the height, respectively, are scaled by the factors, $\omega/\hat{\alpha}$ and ³⁹⁵ $\omega^2/\hat{\alpha}^2$. Thus, the wave amplitude increases with its frequency, ω , and in a more acerbated ³⁹⁶ manner for the height than the velocities. More significantly, the westerly and easterly–wind ³⁹⁷ bursts propagate eastwards and westwards, respectively. In particular, the overall behavior of the

Fig. 1. Examples of the solitary–wave solutions (7.8a, b, c) with $\hat{\alpha} = 1$: (a) eastward propagating with $\omega = 1$, and (b) westward propagating with $\omega = -1$: the horizontal coordinate is $\hat{\alpha}\xi = \hat{\alpha}\hat{\epsilon}^{-1/2}x$ with the unit scale of about 50 km. 403 404 405

³⁹⁸ eastward–propagating solution is consistent with that of observed tropical westerly–wind bursts 399 (*e.g.*, Hartten 1996, Yano *et al.* 2004).

400 Examples of the solutions with (a) $\omega = 1$ and (b) $\omega = -1$ are shown in Fig. 1. Here, curves are 401 for the zonal wind, u' (solid), convection anomaly, w'_c (long dash), and the height, h' (short dash) ⁴⁰² with the horizontal coordinate given by $\hat{\alpha}\xi = \hat{\alpha}\hat{\epsilon}^{-1/2}x$.

⁴⁰⁶ **8. Further Discussions**

 Atmospheric precipitating convection goes through a distinguished life cycle from a genesis to decay, and thus it is natural to expect that the convective life cycle may play an important role in its coupling to large-scale dynamics, especially over the tropics. From this perspective, the basic assumption of convective quasi-equilibrium adopted in convection parameterizations is

411 unsatisfactory, because this approximation totally neglects life cycles associated with parameterized convection.

⁴¹³ The present work shows what happens when a life cycle of convection is explicitly taken into account as a *part* of the large-scale dynamics. A qualitative consequence, even without performing any calculations, can even be intuitively expected: the short periodicity of convective life cycles 416 dominate aspects of the coupled dynamics. This expected tendency is more explicitly demonstrated ⁴¹⁷ by a linear analysis, which shows that the squared frequency of a linear wave is obtained by a squared sum of the characteristic frequency of the convective life cycle and a dry gravity-wave frequency, under an analysis assuming no Coriolis force.

⁴²⁰ The convective life cycle used in the present study is based on the convective energy cycle originally introduced by Arakawa and Schubert (1974), in seeking a basis for a closure of their mass-flux parameterization. The energy cycle is closed by following Yano and Plant (2012b). The large-scale dynamics adopted is a shallow-water analogue.

⁴²⁴ The high-frequency characteristic of convectively-coupled waves obtained with explicit convec-425 tive life cycles is in marked contrast to the typical characteristic under standard formulations with a convective quasi-equilibrium assumption. In the latter case, convection is found to slow down the dry large-scale waves by decreasing the effective stratification of the atmosphere. This behavior arises because any explicit periodicities associated with convection are effectively eliminated by 429 averaging them out through the convective quasi-equilibrium assumption. The approach of the present paper explicitly retains such a high convective-scale frequency, and thus this frequency is ⁴³¹ added to a full spectrum of the whole system. An explicit emergence of the convective-scale high frequencies into the large-scale dynamics is obviously an unfavorable feature if the focus of an analysis is on the long timescale phenomena.

⁴³⁴ A more attractive feature emerges when the system is scaled down to a mesoscale regime, also introducing a weak nonlinearity. This re-scaling is performed in such a manner that the free-ride balance (Fraedrich and McBride 1989: see also Sobel *et al.* 2001) is obtained to the leading order. The analysis leads to a nonlinear equation analogous to the Kortweg-de Vries equation, and like the latter, it contains a solitary-wave solution. The obtained mesoscale solution is reminiscent of tropical westerly–wind bursts.

 Although an analysis with the rotation effect is still to be performed, it is evident that the eastward–propagating solitary gravity wave solution obtained can be re-interpreted as a Kelvin wave in the presence of rotation so long as we can assume that the equatorial deformation radius is much larger than the longitudinal wavelength. Nevertheless, a full analysis of this system with ⁴⁴⁴ the rotation effect will be worthwhile to explore rich possibilities of nonlinear interactions between convective life cycles and the equatorial waves. This investigation may also be considered a natural extension of dry solitary equatorial waves as investigated by Boyd (1980, 1983, 1984, 1985).

9. Conclusions

⁴⁴⁸ The most important lesson to learn from the present study is that if the focus is solely on the 449 global scale of the atmosphere, then one should not try to include a convective life cycle explicitly into a model, how attractive this approach might appear to be at first sight.

⁴⁵¹ On the other hand, for those who wish to investigate tropical atmospheric dynamics in its full spectrum, the convective energy-cycle system coupled with large-scale dynamics provides an 453 attractive option to pursue. Although only a preliminary investigation has been performed, an identified solitary-wave solution, reminiscent of tropical westerly–wind bursts, already suggests a rich behavior of this system under full nonlinearity. However, we should also keep in mind that convection is still parameterized, using a mass-flux-based formulation.

Data Availability

No data is used in the present study.

Appendix: Energy Cycle Analysis

 The purpose of this Appendix is identify the physically most consistent form of nonlinearity for the shallow–water analogue system from the point of view of the energy–cycle of the system. The most straightforward way to add nonlinearity to the linear large–scale system (4.7a, b, c) would be

⁴⁶³ in the identical form as that which appears in the actual shallow-water system:

$$
\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = -\frac{\partial h}{\partial x},\tag{A.1a}
$$

$$
\frac{\partial h}{\partial t} + \frac{\partial}{\partial x} u(1+h) = -Q,\tag{A.1b}
$$

$$
w = -\hat{r}_L \frac{\partial u}{\partial x}.
$$
 (A.1c)

 Here, we are going to show that this form leads to a physically unacceptable interpretation from the point of view of the energy cycle. We show further that the problem arises with the postulated 466 nonlinear contribution to Eq. $(A.1b)$ but that the nonlinear advection term in Eq. $(A.1a)$ may be retained.

⁴⁶⁸ *a. Kinetic Energy*

⁴⁶⁹ To derive the kinetic–energy budget, we first re-write the momentum equation (A.1a) in a flux ⁴⁷⁰ form by multiplying it by $h_T = 1 + h$, and adding by Eq. (A.1b) multiplied by u:

$$
\frac{\partial u h_T}{\partial t} + \frac{\partial}{\partial x} u^2 h_T = -\frac{\partial}{\partial x} y h_T^2 2 - uQ. \tag{A.2}
$$

Multiplying Eq. (A.1a) by uh_T and Eq. (A.2) by u, we obtain the budget:

$$
\frac{\partial}{\partial t}\frac{h_T}{2}u^2 + \frac{\partial}{\partial x}\frac{h_T u^3}{2} = -u\frac{\partial}{\partial x}\frac{h_T^2}{2} - \frac{u^2}{2}Q.
$$
 (A.3)

⁴⁷² Here is the first key point to note: from a physical consideration, we expect that the large–scale ⁴⁷³ kinetic energy would *not directly* be modified by a convective process or by diabatic heating. Thus, $_{474}$ Eq. (A.3) is not physically consistent by containing a source term due to diabatic heating.

We can trace this physical inconsistency to the fact that the kinetic energy is defined by $h_T u^2/2$ 476 above. Although this is a physically consistent definition of kinetic energy in the original shallow– ⁴⁷⁷ water system, that is no longer the case for this shallow–water analogue atmosphere. This con-⁴⁷⁸ clusion stems from the fact that in the shallow–water analogue atmosphere, the height is better ⁴⁷⁹ interpreted as a representation of the potential-temperature anomaly rather than a representation of ⁴⁸⁰ a fluid depth, as in the original definition of the shallow–water system.

⁴⁸¹ Based on this consideration, we conclude that the kinetic energy is better defined as $u^2/2$. With 482 this definition, the kinetic–energy budget is obtained by multiplying Eq. (A.1a) by u :

$$
\frac{\partial}{\partial t} \frac{u^2}{2} + \frac{\partial}{\partial x} \frac{u^3}{3} = -u \frac{\partial h}{\partial x}.
$$
 (A.4)

⁴⁸³ Here, the form of the divergence term is rather unfortunate, and a minor negative consequence 484 from the redefinition.

⁴⁸⁵ *b. Potential Energy*

⁴⁸⁶ A similar consideration also applies when defining the potential energy of this shallow–water 487 analogue system. As already suggested above, the total depth, h_T , of the system does not have 488 much physical significance: it is better to take the height perturbation, h , as a measure of the 489 potential temperature perturbation, θ , under the relation (3.12b). Thus, it also follows that the potential energy is better defined by $h^2/2$ rather than h^2 490 potential energy is better defined by $h^2/2$ rather than $h_T^2/2$. Its budget is obtained by multiplying $_{491}$ Eq. (A.1b) by h , so that:

$$
\frac{\partial}{\partial t} \frac{h^2}{2} + h \frac{\partial}{\partial x} u h_T = -hQ. \tag{A.5}
$$

⁴⁹² We may note above that the advection term does not turn into a flux form as expected.

⁴⁹³ *c. Total Energy Budget*

 $_{494}$ Finally, by taking sum of Eqs. (A.4) and (A.5), we obtain the conservation law of the total energy ⁴⁹⁵ as:

$$
\frac{\partial}{\partial t}\left(\frac{u^2+h^2}{2}\right) + \frac{\partial}{\partial x}\frac{u^3}{3} + h\frac{\partial}{\partial x}uh_T + u\frac{\partial h}{\partial x} = -hQ.
$$

496 To express the last two terms on the left–hand side closer to a flux form, recall that $h_T = 1 + h$, thus

$$
h\frac{\partial}{\partial x}uh_T + u\frac{\partial h}{\partial x} = \frac{\partial}{\partial x}uh + h\frac{\partial}{\partial x}uh.
$$

 We can recognize that the remaining non–flux term on the left–hand side arises from the nonlinear term in the height equation (A.1b). This result suggests that it is unphysical to add a nonlinear advection term to the height (heat) equation under the present shallow–water analogue formulation. ₅₀₀ Thus, the choice of the form (4.13b) follows. After this modification, the total–energy conservation ₅₀₁ law reduces to:

$$
\frac{\partial}{\partial t} \left(\frac{u^2 + h^2}{2} \right) + \frac{\partial}{\partial x} \left(\frac{u^3}{3} + uh \right) = -hQ. \tag{A.6}
$$

⁵⁰² *d. Coupling with Convection*

₅₀₃ The final step is to add the convective kinetic energy to the energy budget (A.6) just obtained. 504 Towards this goal, note first that the term hQ on the right–hand side of the potential energy budget 505 (A.5) can be re–written with the help of Eq. (4.8a) as:

$$
hQ = \hat{\alpha}hk_c - h\hat{Q}_R. \tag{A.7}
$$

506 Hence, convective kinetic energy is generated (i.e., $\hat{\alpha} h k_c > 0$ on the right hand side of Eq. 4.12a) 507 by consuming the potential energy (i.e., $hQ > 0$ through the same process: the right–hand side of ⁵⁰⁸ Eq. A.5). By substituting the expression (A.7) into the right–hand side of Eq. (A.6), we obtain:

$$
\frac{\partial}{\partial t} \left(\frac{u^2 + h^2}{2} \right) + \frac{\partial}{\partial x} \left(\frac{u^3}{3} + uh \right) = -\hat{\alpha} h k_c + h \hat{Q}_R.
$$
 (A.8)

⁵⁰⁹ Taking the sum of Eqs. (A.8) and (4.12a), the total–energy budget including the contribution of ⁵¹⁰ the convective scale is:

$$
\frac{\partial}{\partial t} \left(\frac{u^2 + h^2}{2} + \hat{\epsilon} k_c \right) + \frac{\partial}{\partial x} \left(\frac{u^3}{3} + uh \right) = h \hat{Q}_R - \frac{k_c}{\tilde{\tau}_D}.
$$
\n(A.9)

 ϵ ₅₁₁ Thus, as a whole the radiation, \hat{Q}_R , is the only ultimate source of the energy to the system, and 512 the only sink is the dissipative loss, $k_c/\tilde{\tau}_D$, of convective kinetic energy. Note that the large–scale ⁵¹³ dynamics has been assumed to be dissipationless for simplicity.

⁵¹⁴ **References**

- 515 Arakawa, A., and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the ⁵¹⁶ large-scale environment, Part I. *J. Atmos. Sci.*, **31**, 674–701.
- 517 Betts, A. K., 1986: A new convective adjustment scheme. Part I: Observational and theoretical
- ⁵¹⁸ basis. *Quart. J. Roy. Meteor. Soc.*, **112**, 677–691.
- 519 Blade, I., and D. L. Hartmann, 1993: Tropical intraseasonal oscillations in a simple nonlinear
- ⁵²⁰ model. *J. Atmos. Sci.*, **50**, 2922-2939.
- Bouchut, F., J. Lambaerts, G. Lapeyre, and V. Zeitlin, 2009: Fronts and nonlinear waves in a simplified shallow–water model of the atmosphere with moisture and convection. *Phys.*
- *Fluids*, **21**, 116604.
- Boyd, J. P., 1980: Equatorial solitary waves. Part I: Rossby solitons. *J. Phys. Oceanogr.*, **10**, 1699-1717.
- Boyd, J. P., 1983a: Equatorial solitary waves. Part 2: Envelope solitons. *J. Phys. Oceanogr.*, **13**, 428–449.
- Boyd, J. P., 1984: Equatorial solitary waves. Part 4: Kelvin solitons in a shear flow. *Dyn. Atmos. Ocean*, **8**, 173–184.
- Boyd, J. P., 1985: Equatorial solitary waves. Part 3: Modons. *J. Phys. Oceanogr.*, **15**, 46–54.
- Donner, L. J., and V. T. Phillips, 2003: Boundary layer control on convective available potential energy: Implications for cumulus parameterization. *J. Geophys. Res.*, **108**, doi:10.1029/2003JD003773.
- Fraedrich, K., and J. L. McBride, 1989: The physical mechanism of CISK and the free-ride balance. *J. Atmos. Sci.*, **46**, 2642–2648.
- Frierson, D.M. W., A. J. Majda, O. M. Pauluis, 2004: Large scale dynamics of precipitation fronts in the tropical atmosphere: A novel relaxation limit. *Comm. Math. Sci.*, **2**, 591-626.
- Hartten, L. M., 1996: Synoptic settings of westerly wind bursts. *J. Geophys. Res.*, **101**, 16997–17019.
- Hayashi, Y., 1970: A theory of large–scale equatorial waves generated by condensation heat and accelerating the zonal wind. *J. Met. Soc. Japan*, **48**, 140–160.
- Houze, R. A., Jr., and A. K. Betts, 1981: Convection in GATE, *Rev. Geophys. Space Phys.*, **19**, 541-576.
- Kasahara, A., and K. Puri, 1981: Spectral representation of three–dimensional global data by
- expansion in normal mode functions. *Mon. Wea. Rev.*, **109**, 37–51.
- Kuo, H. L., 1974: Further studies of the parameterization of the influence of cumulus convec-tion on the large-scale flow. *J. Atmos. Sci.*, **31**, 1232–1240.
- Lambaerts, J., G. Lapeyre, V. Zeitlin, and F. Bouchut, 2011: Simplified two–layer models of
- precipitating atmosphere and their properties. *Phys. Fluids*, **23**, 046603.
- Lighthill, J., 1978: *Waves in Fluids*. Cambridge University Press, Cambridge, 504pp.
- Lindzen, R. S., 1974: Wave-CSIK in the tropics. *J. Atmos. Sci.*, **31**, 156-179.
- Mapes, B. E., 1997: Equilibrium vs. activation controls on large–scale variations of tropical
- deep convection. In: *The Physics and Parameterization of Moist Atmospheric Convection*, R.
- K. Smith, Ed., NATO ASI, Kloster Seeon, Kluwer Academic Publishers, Dordrecht, 321–358.
- 555 Mapes, B. E., 1998: The large–scale part of tropical mesoscale convective system circulations:
- a linear vertical spectral band model. *J. Met. Soc. Japan*, **76**, 29–55.
- Neelin, J. D., and I. M. Held, 1987: Modeling tropical convergence based on the moist static energy budget. *Mon. Wea. Rev.*, **115**, 3-12.
- 559 Neelin, J. D., and J.-Y. Yu, 1994: Modes of tropical variability under convective adjustment
- and the Madden-Julian oscillation. Part I: Analytical theory. *J. Atmos. Sci.*, **51**, 1876-1894.
- Neelin, J. D., I. M. Held and K. H. Cook, 1987: Evaporation-wind feedback and low-frequency variability in the tropical atmosphere. *J. Atmos. Sci.*, **44**, 2341–2348.
- Paulius, O., D. M. W. Frierson, and A. J. Majda, 2008: Precipitation fronts and the reflection and transmission of tropical disturbances. *Quart. J. Roy. Meteor. Soc.*, **134**, 913-930.
- 565 Sobel, A. H., J. Nilssson, and L. M. Polvani, 2001: The weak temperature gradient approxi-mation and balanced moisture waves. *J. Atmos. Sci.*, **58**, 3650-3665.
- Stechmann, S. N., and A. J. Majda, 2006: The structure of precipitation fronts for finite relaxation time. *Theor. Comp. Fluid Dyn.*, **20**, 477—404.
- Xu, K.-M., and K. A. Emanuel, 1989: Is the tropical atmosphere conditionally unstable? *Mon. Wea. Rev.*, **117**, 1471–1479.
- Whitham, G. B., 1974: *Linear and Nonlinear Waves*. Wiley, New York, 636pp.
- 572 Yano, J.-I., 2023: Reduction of the Tropical Atmospheric Dynamics into Shallow-Water
- Analogues: A Formulation Analysis. To Be Submitted to *J. Adv. Model. Earth Syst.*
- Yano, J-I., and G. R. Flierl, 1994: Jupiter's Great Red Spot: compacting conditions, stabilities.
- *Ann. Geophysicae*, **12**, 1–18.
- Yano, J.-I., and R. S. Plant, 2012a: Convective quasi–equilibrium. *Rev. Geophys.*, **50**, RG4004, doi:10.1029/2011RG000378.
- 578 Yano, J.-I., and R. S. Plant, 2012b: Finite Departure from Convective Quasi-Equilibrium:
- Periodic Cycle and Discharge-Recharge Mechanism. *Quart. J. Roy. Meteor. Soc.*, **, 138**,
- 626–637.
- Yano, J.-I., and R. S. Plant, 2020: Why Does Arakawa and Schubert's Convective Quasi- Equilibrium Closure Not Work? Mathematical Analysis and Implications. *J. Atmos. Sci.*, **77**, 1371–1385.
- Yano, J.-I., and J. J. Tribbia, 2017: Tropical atmospheric Madden–Julian oscillation: Strongly– nonlinear free solitary Rossby wave? *J. Atmos. Sci.*, **74**, 3473–3489 doi.org/10.1175/JAS-D-586 16-0319.1
- Yano, J.-I., and N. P. Wedi, 2021: Sensitivities of the Madden–Julian oscillation forecasts to configurations of physics in the ECMWF global model, *Atmos. Chem. Phys.*, **21**, 4759–4778, doi.org/10.5194/acp-21-4759-2021.
- Yano, J.-I., R. Blender, Chidon Zhang, and K. Fraedrich, 2004: 1/f Noise and Pulse–like Events in the Tropical Atmospheric Surface Variabilities. *Quart. J. Roy. Meteor. Soc.*, **, 300**,
- $_{592}$ 1697-1721.
- 593 Yano, J.-I., J.-P. Chaboureau, and F. Guichard, 2005: A generalization of CAPE into potential-energy convertibility. *Quart. J. Roy. Meteor. Soc.*, **, 131**, 861–875.
- Yu, J.—Y., and J. D. Neelin, 1994: Modes of tropical variability under convective adjustment
- and the Madden-Julian oscillation. Part II: Numerical Results. *J. Atmos. Sci.*, **51**, 1895–1914.
- Zhang, G. J., 2002: Convective quasi-equilibrium in midlatitude continental environ- ment and its effect on convective parameterization, *J. Geophys. Res.*, **107**, 4220, doi:10.1029/2001JD001005.
- Zhang, G. J., 2003: Convective quasi-equilibrium in the tropical western Pacific: Comparison with midlatitude continental environment, *J. Geophys. Res.*, **108**, 4592, doi:10.1029/2003JD003520.