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a high-resolution daily global 
dataset of statistically downscaled 
CMIP6 models for climate impact 
analyses
Solomon Gebrechorkos  1,2 ✉, Julian Leyland1, Louise Slater  2, Michel Wortmann2, 
Philip J. ashworth3, Georgina L. Bennett  4, Richard Boothroyd  5, Hannah Cloke6, 
Pauline Delorme  7, Helen Griffith6, Richard Hardy8, Laurence Hawker  9, Stuart McLelland7, 
Jeffrey Neal  9, Andrew Nicholas4, Andrew J. Tatem  1, Ellie Vahidi4, Daniel R. Parsons  7 & 
Stephen E. Darby  1

A large number of historical simulations and future climate projections are available from Global Climate 
Models, but these are typically of coarse resolution, which limits their effectiveness for assessing local 
scale changes in climate and attendant impacts. Here, we use a novel statistical downscaling model 
capable of replicating extreme events, the Bias Correction Constructed Analogues with Quantile 
mapping reordering (BCCAQ), to downscale daily precipitation, air-temperature, maximum and 
minimum temperature, wind speed, air pressure, and relative humidity from 18 GCMs from the Coupled 
Model Intercomparison Project Phase 6 (CMIP6). BCCAQ is calibrated using high-resolution reference 
datasets and showed a good performance in removing bias from GCMs and reproducing extreme 
events. The globally downscaled data are available at the Centre for Environmental Data Analysis 
(https://doi.org/10.5285/c107618f1db34801bb88a1e927b82317) for the historical (1981–2014) and 
future (2015–2100) periods at 0.25° resolution and at daily time step across three Shared Socioeconomic 
Pathways (SSP2-4.5, SSP5-3.4-OS and SSP5-8.5). This new climate dataset will be useful for assessing 
future changes and variability in climate and for driving high-resolution impact assessment models.

Background & Summary
A large number of climate projections are available from Global Climate Models (GCMs), but these projections 
are typically of relatively coarse spatial resolution (~1–3°) and with large biases and uncertainties. These GCM 
data are used to understand and assess potential changes and variability in climate and climate extremes at a 
global scale1–3, but their coarse resolution means that they are not suitable for direct use in impact assessment 
studies or for decision-making processes at a local scale4–7. In addition, GCMs are known to have large biases 
and uncertainties in representing the historical and future climate, especially for extreme events, and these biases 
and uncertainties increase from the global to the local scale8–10. Overall, the coarse spatial resolution and large 
bias and uncertainty in GCMs currently limit their applicability for local-scale climate studies which are most 
meaningful for impact assessments4,5,10. Therefore, robust climate data with a high spatial and temporal reso-
lution are urgently needed to assess the impacts of climate change on critical sectors such as agriculture, water 
resources and energy4,5,11.

1School of Geography and Environmental Science, University of Southampton, Southampton, SO17 1BJ, UK. 
2School of Geography and the Environment, University of Oxford, Oxford, UK. 3School of Applied Sciences, 
University of Brighton, Sussex, BN2 4AT, Brighton, UK. 4Department of Geography, faculty of environment, Science 
and Economy, University of Exeter, Exeter, EX4 4RJ, UK. 5School of Geographical & earth Sciences, University of 
Glasgow, Glasgow, UK. 6Geography and Environmental Science, University of Reading, Reading, UK. 7energy and 
Environment Institute, University of Hull, Hull, UK. 8Department of Geography, Durham University, Lower Mountjoy, 
South Road, Durham, DH1 3LE, UK. 9School of Geographical Sciences, University of Bristol, Bristol, BS8 1SS, UK. 
✉e-mail: S.H.Gebrechorkos@soton.ac.uk

DATA DESCRIPTOR

OPEN

https://doi.org/10.1038/s41597-023-02528-x
http://orcid.org/0000-0001-7498-0695
http://orcid.org/0000-0001-9416-488X
http://orcid.org/0000-0002-4812-8180
http://orcid.org/0000-0001-9742-4229
http://orcid.org/0000-0002-5865-714X
http://orcid.org/0000-0002-8317-7084
http://orcid.org/0000-0001-5793-9594
http://orcid.org/0000-0002-7270-941X
http://orcid.org/0000-0002-5142-4466
http://orcid.org/0000-0001-8778-4394
https://doi.org/10.5285/c107618f1db34801bb88a1e927b82317
mailto:S.H.Gebrechorkos@soton.ac.uk
http://crossmark.crossref.org/dialog/?doi=10.1038/s41597-023-02528-x&domain=pdf


2Scientific Data |          (2023) 10:611  | https://doi.org/10.1038/s41597-023-02528-x

www.nature.com/scientificdatawww.nature.com/scientificdata/

To develop high-resolution climate data from GCMs and to reduce biases, a number of statistical and dynam-
ical downscaling techniques have been developed12,13. Regional Climate Models (RCMs) are dynamical models 
which use local information such as topography to produce high-resolution (e.g. the Coordinated Regional cli-
mate Downscaling Experiment; CORDEX14) climate data from GCMs. However, RCMs suffer from large biases, 
errors and sensitivity to the boundary conditions of the driving GCMs, which limits their application for local 
scale impact assessments15,16. In addition, dynamical models are computationally expensive and require large 
data storage and processing times13,15–18. In contrast, downscaling based on statistical methods provides a high 
resolution equivalent to downscaling based on dynamical methods, but with much less resource and computa-
tional demand1,19. Statistical downscaling models are known to significantly reduce biases in individual GCMs 
and the ensemble means of multiple GCMs at a local scale6. Statistical methods involve the development of a 
statistical relationship between observed and model data during a historical period (e.g., 1981–2014) and then 
application of this relationship to downscale and bias correct the future climate parameters. In these statistical 
methods, it is assumed that the established historical link between local scale and large-scale climate variables 
will remain relatively constant in the future period13,19. In general, considering the simplicity and computa-
tional advantages of statistical methods they are widely used in climate change and variability, hydro-climate 
extremes and impact assessment studies at regional and local scales in sectors such as agriculture, energy and 
water resources16,20–24.

During the last few decades, several statistical downscaling methods such as the Bias Correction Constructed 
Analogues with Quantile mapping reordering (BCCAQ)25,26, Quantile Delta Mapping (QDM)25, Statistical 
Downscaling Model (SDSM)19, bias correction spatial disaggregation (BCSD)27, climate imprint delta method 
(CI)28, bias-corrected climate imprint delta method (BCCI)28, and equidistant cumulative distribution func-
tion (EDCDF)29 have been introduced and used in impact studies. Here, we used the BCCAQ gridded statisti-
cal downscaling method to develop daily high-resolution climate datasets globally from 18 CMIP6 (Coupled 
Model Intercomparison Project Phase 6) models across three Shared Socioeconomic Pathways (SSPs) scenarios. 
Compared to other gridded downscaling techniques such BCSD, CI, and BCCI, BCCAQ has been demonstrated 
to have superior performance when the downscaled variables are used for simulating hydrological extremes26. 
BCCAQ has been used to develop high-resolution climate datasets for assessing climate extremes in British 
Columbia30, and climate change impact assessment studies31,32 but it has not previously been applied glob-
ally. In addition, our new dataset33 provides high-resolution data for seven frequently used variables (Table 1) 
downscaled from 18 GCMs and 3 scenarios, compared with ClimateImpactLab/downscaleCMIP634 which 
provides only temperature and precipitation datasets based on the Quantile Delta Mapping (QDM) method. 
Similarly, the NASA global downscaled projection35 uses the BCSD method and does not include air pres-
sure, which is required in most hydrological models36,37. The Inter-Sectoral Impact Model Intercomparison 
Project (ISIMIP, https://www.isimip.org/), has also developed downscaled and bias-corrected climate data from 
CMIP6 models but it has a relatively coarse spatial resolution (0.5°). Our high-resolution (0.25°) daily climate 
dataset will be useful for assessing changes and variability in the climate and for driving a range of impact 
assessment models, including hydrological models incorporating analysis of extreme events. The new dataset is 
freely available to download from the Centre for Environmental Data Analysis (CEDA; https://doi.org/10.5285/
c107618f1db34801bb88a1e927b82317)33.

Methods
Data acquisition. Gridded high-resolution bias-corrected meteorological datasets were obtained from 
GloH2O (http://www.gloh2o.org/mswx/) to calibrate the downscaling model over the historical period (1981–
2014). GloH2O provides daily and sub-daily meteorological datasets (Multi-Source Weather; MSWX) such as 
mean temperature, maximum and minimum temperature, surface pressure, relative humidity and wind speed at 
a spatial resolution of 0.1° and for the period 1979-present38. The MSWX is developed based on multiple observa-
tional data sources, downscaling and bias-correction methods. For example, the average air temperature is devel-
oped by resampling the Climatologies at High resolution for the Earth’s Land Surface Areas (CHELSA)39 dataset 
to 0.1° and it is corrected using the climatology of the Climatic Research Unit Time Series (CRU TS) data38. For 
precipitation, Multi-Source Weighted-Ensemble Precipitation (MSWEP) available from GloH2O (www.gloh2o.
org/mswep) is used. MSWEP is developed by blending multiple sources such as ground observations, satellite 
and reanalysis datasets40,41 and has been shown to better represent extreme events42. MSWEP includes more than 
77,000 gauge data from Global Historical Climatology Network Daily (GHCNd), Global Summary of the Day 
(GSOD), and Global Precipitation Climatology Centre (GPCC), remote sensing-based precipitation products 

Variables Acronym Units

Precipitation pr mm/day

Near-surface (2 meter) air temperature tas °C

Maximum near-surface (2 meter) temperature tasmax °C

Minimum near-surface (2 meter) temperature tasmin °C

Surface air pressure ps kPa

Near-surface relative humidity hurs %

Surface (10 meter) wind speed sfcWind m/s

Table 1. Selected and downscaled climatological variables for the historical (1981–2014) and future (2015–2100) 
periods.
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such as Climate Prediction Center morphing technique (CMORPH), Tropical Rainfall Measuring Mission 
(TRMM), Multi-satellite Precipitation Analysis (TMPA), and Global Satellite Mapping of Precipitation (GSMaP), 
and reanalysis data from the Japanese 55-year reanalysis and European Centre for Medium-Range Weather 
Forecasts (ECMWF) interim reanalysis. The spatial resolution of MSWEP and MSWX is bilinearly interpolated 
to 0.25° for the downscaling process.

Herein we chose to assess three future (2015–2100) projections of climate based on the latest Shared 
Socioeconomic Pathway (SSP) scenarios outlined in the IPCC sixth assessment43. SSP2-4.5 represents a com-
monly used lower bound of warming, whereby a ‘middle of the road’ SSP is selected, keeping CO2 relatively low. 
In contrast, SSP5-8.5 represents a high-emissions SSP which is reliant upon fossil fuels44, but is now considered 
as unlikely45. In addition, we also chose to downscale SSP5-3.4-OS, which is known as an ‘overshoot scenario’, 
where warming follows a worst-case trajectory until 2040 before a rapid decrease driven by mitigation44. The 
historical and future climate data from the CMIP6 models were obtained from the Centre for Environmental 
Data Analysis (CEDA, https://esgf-index1.ceda.ac.uk/projects/cmip6-ceda/). We selected 18 GCMs based on 
the availability of daily data for precipitation, temperature, maximum and minimum temperature, air pressure, 

GCM
Institute and country of 
origin pr tas tasmax tasmin sfcWind ps hurs

ACCESS-CM256
Australian Community 
Climate and Earth System 
Simulator, Australia

✓* ✓* ✓* ✓* ✓* ✓ ✓*

BCC-CSM2-MR57
Beijing Climate Center 
Climate System Model, 
China

✓ ✓ ✓ ✓ ✓ ✓ ×

CESM258 Community Earth System 
Model, USA ✓ ✓ ✓ ✓ ✓ × ✓

CMCC-CM2-SR559
Centro Euro-Mediterraneo 
sui Cambiamenti Climatici, 
Italy

✓ ✓ × × ✓ ✓ ✓

CMCC-ESM259
Centro Euro-Mediterraneo 
sui Cambiamenti Climatici, 
Italy

✓* ✓* ✓* ✓* ✓* ✓ ✓*

GFDL-ESM460 NOAA Geophysical Fluid 
Dynamics Laboratory, USA ✓ ✓ ✓ ✓ ✓ ✓ ✓

HadGEM3-GC31-LL61 UK Met Office Hadley 
Centre, UK ✓ ✓ ✓ ✓ ✓ ✓ ✓

IITM-ESM62

Center for Climate Change 
Research, Indian Institute 
of Tropical Meteorology 
Pune, India

✓ ✓ × × ✓ × ✓

INM-CM4-863

Institute of Numerical 
Mathematics of the Russian 
Academy of Sciences, 
Russia

✓ ✓ ✓ ✓ ✓ × ✓

INM-CM5-063

Institute of Numerical 
Mathematics of the Russian 
Academy of Sciences, 
Russia

✓ ✓ ✓ ✓ ✓ × ✓

IPSL-CM6A-LR64 Institut Pierre Simon 
Laplace, France ✓* ✓* ✓* ✓* ✓* ✓* ✓*

KACE-1-0-G65

National Institute 
of Meteorological 
Sciences (NIMS) and 
Korea Meteorological 
Administration (KMA), 
Korea

✓ ✓ ✓ ✓ ✓ ✓ ✓

MIROC666
Atmosphere and Ocean 
Research Institute, 
University of Tokyo, Japan

✓* ✓* ✓* ✓* ✓ ✓ ✓*

MIROC-ES2L66
Atmosphere and Ocean 
Research Institute, 
University of Tokyo, Japan

✓ ✓ ✓ ✓ ✓ ✓ ✓

MPI-ESM1-2-LR67 Max Planck Institute for 
Meteorology, Germany ✓ ✓ ✓ ✓ ✓ ✓ ✓

MRI-ESM2-068 Meteorological Research 
Institute, Japan ✓* ✓* ✓* ✓* ✓* ✓* ✓*

NorESM2-MM69 Norwegian Climate Center, 
Norway ✓ ✓ ✓ ✓ ✓ ✓ ✓

UKESM1-0-LL70 UK Earth System Modelling 
project, UK ✓* ✓* ✓* ✓* ✓* ✓ ✓*

Table 2. The 18 selected CMIP6 Global Climate Models (GCMs) showing the availability of downscaled daily 
variables for the Shared Socioeconomic Pathways (SSPs) 2–4.5 and SSP5-8.5. GCMs that have also been forced 
with the SSP5-3.4-0 S scenario are indicated by an asterisk (*).

https://doi.org/10.1038/s41597-023-02528-x
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relative humidity and wind speed (Table 1). These variables are selected due to their frequent use in many envi-
ronmental impact assessment models, notably hydrological models36,37.

Fig. 1 Temporal correlation (a), RMSE (b) and bias (c) between MSWEP and downscaled GCM 
(ACCESS-CM2, left) and raw GCM (ACCESS-CM2, right) for monthly climatology precipitation during 
1981–2014.

Fig. 2 Temporal correlation (a), RMSE (b) and bias (c) between MSWX temperature (MSWX) and downscaled 
GCM (ACCESS-CM2, left) and raw GCM (ACCESS-CM2, right) for monthly climatological average 
temperature during 1981–2014.

https://doi.org/10.1038/s41597-023-02528-x
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Downscaling process. The statistical downscaling model used here to develop high-resolution climate 
data globally is the Bias Correction Constructed Analogues with Quantile mapping reordering (BCCAQ25,26). 
This is a hybrid downscaling model which combines the Bias Correction Constructed Analogs (BCCA31) and 
Bias Correction Climate Imprint (BCCI28) to produce daily climate variables, replicating extreme events and 
spatial covariance effectively26. BCCAQ, which combines different downscaling techniques, is more effective 
in replicating extreme events, spatial covariance and daily sequencing than using a single method30. The BCCI 
method interpolates the coarser climate data from climate models into a finer resolution and bias corrects the data 
using Quantile Delta Mapping (QDM25). The BCCA is used to perform quantile mapping between the climate 
model data and spatially aggregated reference dataset to the resolution of the climate models. The relationship 
between the reference dataset and climate model is used to bias-correct the model data. During the downscaling, 
the BCCI, BCCA and QDM algorithms run independently and the BCCAQ combines the outputs. In previous 
applications, BCCAQ was used by the Pacific Climate Impacts Consortium to downscale GCM data for Canada 
(https://data.pacificclimate.org/portal/downscaled_cmip6/map/). Here we apply the technique to global datasets 
for the first time. BCCAQ is calibrated using reference datasets of precipitation (MSWEP) and weather (MSWX) 
during the historical period (1981–2014) and then the calibration is used to downscale future scenarios. Further 
information about the BCCAQ downscaling model can be found at the Pacific Climate Impacts Consortium 
(PCIC, https://pacificclimate.org/).

Fig. 3 Comparison of Statistically Downscaled (DOWN, triangle) and raw GCMs (GCMs, circles) climatological 
precipitation for (a) Amazon, (b) Congo, (c) Danube, (d) Murray-Darling (Murray), (e) Mississippi, and (f) Yangtze.

https://doi.org/10.1038/s41597-023-02528-x
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Compared to other downscaling methods, such as Statistical DownScaling Model (SDSM) and Bias 
Correction and Spatial Downscaling (BCSD), BCCAQ is an extremely computationally intensive algorithm, 
requiring high memory compute nodes (~3 TB RAM per compute node) for global scale downscaling. We used 
the UK’s data analysis facility for environmental science (JASMIN, https://jasmin.ac.uk/) and the University of 
Southampton (https://www.southampton.ac.uk/isolutions/staff/iridis.page) and University of Oxford (https://
www.arc.ox.ac.uk/home) High-Performance Computing (HPC) resources. The downscaling was implemented 
using the ClimDown package, written in R (https://github.com/pacificclimate/ClimDown)46. Global input data 
for each of our simulations needed to be divided into 17 smaller areas to enable the analysis to complete within 
the allocated wall time of the HPC facilities (~48 hrs). The Climate Data Operators (CDO47) package was used 
to split and merge the datasets and adjust model grid types.

Evaluation methods. To assess the quality of the downscaled data several statistical and graphical methods 
are used. The downscaling data is compared against the reference dataset using the Pearson correlation coefficient, 
root mean square error (RMSE), bias and standard deviation. In addition, the Taylor diagram48 is used to summa-
rise the performance of individual models for each variable. The Taylor diagram is a graphical method frequently 
used for comparing a set of variables from observations and models using correlation coefficient, standard devia-
tion, and centred RMSE. Furthermore, extreme indices are used to assess the performance of the downscaled data 
for detecting extreme events such as heavy precipitation days and very warm and cold days. The indices are based  

Fig. 4 Comparison of Statistically Downscaled (DOWN, triangle) and raw GCMs (GCMs, circles) 
climatological average temperature for (a) Amazon, (b) Congo, (c) Danube, (d) Murray-Darling (Murray),  
(e) Mississippi, and (f) Yangtze.

https://doi.org/10.1038/s41597-023-02528-x
https://jasmin.ac.uk/
https://www.southampton.ac.uk/isolutions/staff/iridis.page
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on the definition of the Expert Team on Climate Change Detection and Indices (ETCCDI)49. Heavy precipitation 
is defined as the number of precipitation days where daily precipitation is greater than 10 mm. The very warm days 
indicate the percentage of days where the daily maximum temperature is greater than the 90th percentile of the daily 
maximum temperature of the reference period (1981–2014). In addition, very cold days represent the percentage of 
days where the daily maximum temperature is less than the 10th percentile of the daily maximum temperature of the 
reference period.

Data Records
The downscaled (0.25°) daily data from the 18 GCMs for each of the seven climatological variables (Table 2) 
and three SSP scenarios (SSP2-4.5, SSP5-3.4-0S and SSP5-8.5) for the future (2015–2100) and historical (1981–
2014) periods are available at the Centre for Environmental Data Analysis (CEDA, https://doi.org/10.5285/
c107618f1db34801bb88a1e927b82317)33. The CEDA data can be accessed by anyone from anywhere. The data 
are available in compressed NetCDF format. Individual files (i.e. global time series of a single variable) are large, 
each in the order of about 30 (historical) to 98 (SSPs) GB for historical and future data, respectively. As such, 
whilst they can be downloaded individually for any use, for UK based environmental science researchers they are 
best accessed via the JASMIN HPC cluster (https://jasmin.ac.uk/), which is linked to CEDA and provides direct 
access to our data using a linux machine (cd to /badc/evoflood/data/Downscaled_CMIP6_Climate_Data/).  

Fig. 5 Comparison of Statistically Downscaled (DOWN, triangle) and raw GCMs (GCMs, circles) 
climatological average surface air pressure (ps) for (a) Amazon, (b) Congo, (c) Danube, (d) Murray-Darling 
(Murray), (e) Mississippi, and (f) Yangtze.

https://doi.org/10.1038/s41597-023-02528-x
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Data for each variable is located in one of four folders according to the scenario modelled: Historical, SSP2-4.5, 
SSP5-3.4OS, and SSP5-8.5. For the future period 2015–2100 the file name conventions for all variables and 
scenarios are set as “Global_variable_Downscaled_Model_2015–2100_experiment.nc”, where “variable” is the 
name of the downscaled variable (e.g., pr and tas), “Model” is the name of the downscaled GCM, and “experi-
ment” is the future SSP scenario. For the historical period, the relevant records are denoted “Global_variable_
Downscaled_Model_1981–2014.nc”. Note that, unlike SSP2-4.5 and SSP5-8.5, only a few GCMs provide data for 
SSP5-3.4-OS (Table 2).

technical Validation
Comparison of downscaled and GCMs data. The downscaled high-resolution datasets are compared 
with the reference data and raw-GCMs (GCMs) during the period 1981–2014. In addition to producing high-res-
olution data, the performance of BCCAQ in removing biases and errors in GCMs is assessed. Figure 1 shows a 
comparison between reference (MSWEP) and downscaled and a GCM (ACCESS-CM2) climatological precip-
itation (pr). The downscaled data shows a higher correlation and lower bias and RMSE compared to the GCM. 
On the contrary, the GCM shows a large bias (up to ± 150 mm) and Root Mean Square Error (RMSE) in different 
parts of the world, particularly in Asia and South America and the Indian and Pacific oceans. The RMSE of 
monthly climatology precipitation from the GCM is very high compared to the downscaled GCM (Fig. 1b). The 

Fig. 6 Comparison of Statistically Downscaled (DOWN, triangle) and raw GCMs (GCMs, circles) 
climatological average relative humidity (hurs) for (a) Amazon, (b) Congo, (c) Danube, (d) Murray-Darling 
(Murray), (e) Mississippi, and (f) Yangtze.

https://doi.org/10.1038/s41597-023-02528-x
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downscaled precipitation shows a maximum error (up to 100 mm) only in parts of India. In contrast, the GCM 
showed an error of up to 300 mm in Africa, Asia and South America. Additionally, the downscaled data show a 
very low bias compared to the GCM, which showed a bias of up to 300 mm (Fig. 1c). Unlike the high correlation 
between the downscaled and reference data, the GCM shows a lower correlation in different parts of the world 
(Fig. 1a). The downscaled climatological average temperature (tas) shows a higher correlation and lower bias and 
RMSE compared to the GCM (Fig. 2). For example, the GCM shows a lower correlation in Central Africa and 
South America and a large bias (±5 °C) and RMSE (up to 6 °C) globally. Overall, the GCMs show a large bias and 
RMSE for all variables compared to the downscaled data.

To highlight the need for bias correlation and spatial downscaling and the utility of our new dataset, we 
selected six morpho-climatologically diverse river basins from around the world. The basins are Amazon, 
Congo, Danube, Murray–Darling (Murray), Mississippi, and the Yangtze. For each basin, the climatological 
average of the seven variables from the downscaled and GCMs are compared against the reference dataset. The 
comparison between the reference and downscaled and GCMs for all the variables and selected basins is sum-
marised in Figs. 3–8. For climatological average pr, most of the downscaled models show a correlation higher 
than 0.95 and a similar standard deviation (SD) to the reference datasets (Fig. 3). The GCMs, however, show a 
lower correlation and a higher SD and centred RMSE than the downscaled data in all the basins. Comparing 
all the basins, the downscaled data showed a lower correlation (0.4–0.92) in Murray, although this was still  

Fig. 7 Comparison of Statistically Downscaled (DOWN, triangle) and raw GCMs (GCMs, circles) 
climatological average wind speed (sfcWind) for (a) Amazon, (b) Congo, (c) Danube, (d) Murray-Darling 
(Murray), (e) Mississippi, and (f) Yangtze.
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considerably better than the GCMs. For tas, the downscaled data, compared to GCMS, show a higher correlation 
in all the basins (Fig. 4). In addition to the lower correlation, the GCMs show a higher SD and cRMSE than the 
downscaled data. For example, in Congo, the GCMs show a correlation between 0.1 to 0.8 with a mean of 0.42, 
whereas the downscale data show a correlation higher than 0.98. The performance of the downscale data is also 
clear for air pressure (ps, Fig. 5), relative humidity (hurs, Fig. 6), and wind speed (sfcWind, Fig. 7), which show 
a higher correlation, similar SD to the reference data, and lower centred RMSE. In general, the downscaled data 
is more accurate than the GCMs in terms of correlation, bias, and errors.

Global comparison of downscaled and reference datasets. The comparison between the downscaled 
and GCMs clearly shows the advantage of the downscaling method in removing biases and errors from GCMs 
and developing high-resolution climate datasets to drive impact models. Here we focus on assessing the perfor-
mance of the downscaling model in reproducing the climatology of the reference dataset. Figure 8 shows the 
global average (averaged over all grids) correlation, bias, and RMSE for all the models and variables. Based on the 
global average correlation, all models perform very well for hurs, sfcWind, tas, and tasmin with a correlation of 
higher than 0.98. It is, however, slightly lower (>0.95) for pr and tasmax. In addition to the high correlation, the 
average bias and RMSE are very low for the variables. For example, the average bias and RMSE for tas and pr are 
0.06 °C and 0.1 °C and 0.25 mm and 5.1 mm, respectively.

To identify the performance of the downscaled data from all the models and all variables spatial correlation 
(SFigs. 1–5) and RMSE (SFigs. 6–10) maps are provided in the supplementary material. It is evident from the 
global maps that the CC is higher than 0.8 for all variables in most parts of the world. This high correlation sug-
gests that the downscaling model has performed well in downscaling the variables and may also represent any 
biases in the reference dataset. Compared to wind speed (SFig. 2), temperature (SFig. 3) and relative humidity 
(SFig. 4), which all have a CC of greater than 0.9 in all parts of the world, the correlations obtained are typically 
slightly lower for precipitation (SFig. 1). For precipitation, the MPI-ESM1-2-LR and IITM-ESM GCMs reveal 
a lower CC (up to −0.6) in parts of Central Africa, but show similar performance to other downscaled GCMs 
(typical correlations >0.8) in other parts of the world.

Similarly, the downscaled data show a lower RMSE in most of the world (SFigs. 6–10). For precipitation, 
the IPSl-CM6A-LR, INM-CM4-8 and INM-CM5-0 show the highest RMSE up to 120 mm in South America 
(SFig. 6). The downscaled sfcWind data also shows a lower RMSE over land compared to Oceans, which shows 
an error of up to 0.3 m/s (SFig. 7). The BCC-CSM2-MR, compared to the other models show the highest RMSE 
over the Arctic Ocean (~0.3 m/s). Most of the downscaled models show a similar pattern of error for tas (up to 
0.98 °C), particularly over the temperate zone and the Arctic Ocean (SFig. 8). The average RMSE of the hurs of 
all models is between 0.2 and 0.4% (SFig. 9). Unlike to the error in sfcWind, hurs show higher RMSE over land 

Fig. 8 The spatial average correlation (CC), bias, and RMSE between the reference and the downscaled models 
for climatological average hurs, pr, ps, sfcWind, tas, tasmax, and tasmin. The bias and RMSE are normalised 
using the maximum and minimum values of the bias and RMSE, respectively. A normalized 0.5 means that 
the bias or RMSE falls between the minimum and maximum bias and RMSE value in the dataset. The X mark 
indicates the non-availability of downscaled data.
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compared to Oceans. The BCC-CSM2-MR, IPSL-CM6A-LR, MRI-ESM2-0, and NorESM2-MM, compared to 
the other models, show a higher RMSE (up to 0.12 kPa) for ps over the Arctic Ocean (SFig. 10). However, most 
of the models show a smaller RMSE for ps over the land. Overall, the climatology of the downscaled data from 
all the models and variables shows good agreement with the observed data.

Time series of global average downscaled and reference datasets. The global average annual pr, 
sfcWind, tas, hurs, and ps are also well reproduced by the downscaling model (SFigs. 11–15). The global average 
encompasses both land and ocean areas across all longitudes, spanning latitudes from 60°S to 85°N. Global aver-
age pr based on the reference datasets (i.e., MSWEP) during 1981–2010 is 1083 mm with a standard deviation 
(SD) of 13 mm (SFig. 11). All downscaled models reproduce a similar annual average pr with a SD of between 
9.9 mm and 31.3 mm. Even though the models reproduce the global average annual precipitation very well, some 
models such as CMCC-CM2-SR5, IPSL-CM6A-LR and NorESM2-MM showed a higher annual variability with 
a SD of about 31 mm. In addition, ACCESS-CM2, CMCC-ESM2, MPI-ESM1-2-LR and MRI-ESM3-0 show a SD 
of about 21 mm. The multi-model mean (MMM) of all models also shows an average precipitation of 1082.7 mm.

Global average annual tas based on the reference dataset is 16.52 °C (SD = 0.2 °C) and this was well repro-
duced by all models (between 16.50 °C–16.52 °C) and the MMM (16.51 °C) (SFig. 12). Compared to the other 
models, BCC-CSM2-MR, CMCC-CM2-SR5, HadGEM3-GC31-LL, IPSL-CM6A-LR, and UKESM1 show a 
higher annual variability (SD between 0.3–0.34 °C). Similarly, the average annual sfcWind is well reproduced 
by all the models (SFig. 13). The global average sfcWindfrom the reference data and all models and MMM is 
5.99 m/s. Compared to the individual models (SD = 0.3 m/s) and MMM (SD = 0.1 m/s), the reference data show 
a slightly higher annual variability (SD of 0.6 m/s). The average annual hurs, similar to sfcWind, is accurately 
reproduced by all the models and MMM (SFig. 14). Based on the reference and all the models, the global average 
annual hurs is 74.9%. The standard deviation of all the models is 0.1%, whereas the reference datasets show an 
SD of 0.2%. Further, the downscaled GCMs accurately represent the average annual ps when compared to the 
reference dataset (SFig. 15). The global average ps from the reference and individual models and MMM is 99.17 
kPa and shows a similar (except BCC-CSM2-MR and MRI-ESM2) SD of 0.1 kPa. The BCC-CSM2-MR and 
MRI-ESM2 show an SD of 0.2 kPa.

Fig. 9 The difference in average annual number of heavy precipitation days (days/year) between the downscaled 
models and the reference data. The red and blue colour indicates underestimation and overestimation of heavy 
precipitation days, respectively.
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Daily climate extremes. The downscaled data is also assessed for daily extreme events. The number of 
heavy precipitation days is well reproduced by all models (Fig. 9). Figure 9 provides the average difference in the 
number of annual heavy precipitation days between the models and reference data. Most of the models show an 
accurate representation of the number of heavy precipitation days over land compared to oceans. Based on the 
reference data, the average number of heavy precipitation days is 25 days per year. The CMCC-ESM2, compared 
to the other models, show a higher difference (±6 days per year) with reference data for heavy precipitation days 
such as in South America, Asia, and Africa. The average percentage of very warm days based on the reference data 
is 8.5% of the reference period. All models reproduce the percentage of very warm days very well over the land, 
except in some places of South East Asia (Indonesia and Thailand) and Central America (Fig. 10). However, all 
models show a higher percentage of very warm days (up to 1.4% higher than the reference data) over the oceans 
(Pacific, Indian and Atlantic oceans). Similarly, the average percentage of very cold days based on the reference 
dataset is 8.5%. All the models represented the percentage of very cold days very well over land than oceans 
(Fig. 11). The percentage of wet days is overestimated by up to 1.3% in oceans and few areas in South East Asia 
and Central America.

In summary, the downscaled data accurately reproduces observed data from the historical period for most 
areas. The high correlation and accurate representation of the global annual and climatological averages of all 
variables suggest that the downscaling model might also capture any biases in the reference dataset. Even though 
we used the most comprehensive and high-resolution historical climate datasets to calibrate and downscale 
the GCMs, it is the case that these datasets might add additional uncertainties in the historical and future cli-
mate through propagation of any errors. Specific to precipitation, as a key driver of global hydrological simu-
lations, MSWEP has been evaluated globally and used in various hydro-climate studies50,51. Based on recent 
evaluations52, MSWEP was found to outperform 22 other global and quasi-global precipitation datasets such as 
European Centre for Medium-range Weather Forecasts ReAnalysis Interim (ERA-Interim)53, Japanese 55-year 
ReAnalysis (JRA-55)54, and National Centers for Environmental Prediction (NCEP) Climate Forecast sys-
tem reanalysis (NCEP-CFSR)55. In addition, MSWEP was found to capture extreme events better than other 
satellite-based precipitation datasets42. Finally, we note that alongside the uncertainties in the reference cli-
mate datasets, it is important to consider the assumptions made in statistical downscaling models (e.g., the 
assumption of stationarity). However, these uncertainties aside, we are confident that our new downscaled 
high-resolution climate data can be used in global, regional and local scale impact assessment studies with high 
accuracy compared to GCMs.

Fig. 10 The difference in percentage of very warm days (%) between the downscaled models and the reference 
data. The blue colour indicates an overestimation of the percentage of very warm days (%).
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Code availability
The BCCAQ code used to downscale the CMIP6 GCMs can be found at the Pacific Climate Impacts Consortium 
(PCIC, https://pacificclimate.org/resources/software-library) page and on the R Package Documentation (https://
rdrr.io/cran/ClimDown/).
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