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A B S T R A C T   

Currencies must be priced in terms of a numéraire when they are included in a regression model. 
The numéraire can be either a single-currency numéraire or a multicurrency numéraire: a 
weighted basket of numéraire currencies. Pricing currencies in terms of a multicurrency 
numéraire results in a system of multilateral exchange rates. A no-arbitrage condition enforces the 
movements in the system of multilateral exchange rates associated with the numéraire currencies 
to be a singular system, where the covariance matrix is singular and its ordinary inverse does not 
exist. Singular systems pose a methodological challenge in a multivariate regression model. This 
paper provides a solution to overcome this methodological challenge by imposing implicit re-
strictions on both the explanatory variables and the regression coefficients. In addition, the 
generalized least squares estimator is modified by replacing the ordinary inverse with the 
generalized inverse. The proposed solution provides a consistent multivariate regression model to 
explain the observed heterogeneity in the relative currency market.   

1. Introduction 

Currencies are typically priced in terms of a numéraire. The numéraire can be either a single-currency numéraire that is a numéraire 
currency or a multicurrency numéraire that is a basket of numéraire currencies. If a multicurrency numéraire is chosen as the 
numéraire, each currency in the system of currencies is represented by a multilateral exchange rate. However, a no-arbitrage condition 
enforces the system of multilateral exchange rates associated with the numéraire currencies to be a singular system, which poses a 
methodological challenge in a multivariate regression model. The motivation for this paper is to overcome this methodological 
challenge. 

A numéraire must be chosen when currencies are included in both univariate and multivariate regression models. For example, all 
currencies are priced in terms of a common numéraire for a univariate Frankel-Wei regression model, which is used to measure the 
relationship between currencies (Frankel & Wei, 1994). The choice for the common numéraire is between a single-currency numéraire 
or a multicurrency numéraire. If a single-currency numéraire is chosen, the currencies are represented by bilateral exchange rates. As 
previously mentioned, if a multicurrency numéraire is chosen, the currencies are represented by multilateral exchange rates. 

Bilateral exchange rates tend to be used more than multilateral exchange rates (Haynes & Stone, 1994). However, multilateral 
exchange rates have recently been shown to be superior to bilateral exchange rates in the univariate Frankel-Wei regression frame-
work, as bilateral exchange rates result in a biased estimator of the regression coefficients (Kunkler, 2021). Two of the most popular 
multicurrency numéraires are the International Monetary Fund’s (IMF) Special Drawing Right (SDR) that was created in 1969 and the 
trade-weighted basket of numéraire currencies used for the US dollar index that was created in 1973. Another multicurrency 
numéraire that results in numéraire-invariant multilateral exchange rates is an equally-weighted basket of numéraire currencies 
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(Hovanov et al., 2004; Kunkler & MacDonald, 2015). 
A multicurrency numéraire is a weighted basket of numéraire currencies. The numéraire currencies themselves can be priced in 

terms of the multicurrency numéraire, even though the numéraire currencies are members of the multicurrency numéraire. For 
example, the US dollar can be priced in terms of the Special Drawing Right (SDR), even though the US dollar is a numéraire currency of 
the SDR. A no-arbitrage condition enforces the log returns of the system of multilateral exchange rates associated with the numéraire 
currencies to be a singular system, where the covariance matrix is singular and its ordinary inverse does not exist. Singular systems 
pose a methodological challenge when it comes to multivariate regression models. For example, when the disturbance covariance 
matrix from the multivariate regression model is singular, the ordinary matrix inverse does not exist. As a consequence, the generalized 
least squares (GLS) estimator of the regression coefficients also does not exist. 

Much of the work in this area has been stimulated by the work on allocation models (see Haupt & Oberhofer, 2006, and the 
references within). There are two main solutions, namely, the deletion of one of the equations (Barten, 1969), or modifying the 
generalized least squares estimator of the regression coefficients (Theil, 1971). The former solution leads to the question of whether the 
deleted equation impacts the estimated parameters (see Bewley, 1986; Fiebig, 2001; Haupt & Oberhofer, 2006). The latter solution 
involves modifying the generalized least squares (GLS) estimator of the regression coefficients by replacing the ordinary inverse of the 
disturbance covariance matrix with the Moore-Penrose generalized inverse of the disturbance covariance (see Kreijger & Neudecker, 
1977; Theil, 1971). 

The solution that modifies the generalized least squares estimator of the regression coefficient (Theil, 1971) requires a singular 
disturbance covariance matrix. However, using any set of explanatory variables does not necessarily result in a singular disturbance 
covariance matrix. There are necessary and sufficient conditions for the existence of the generalized-inverse estimator of the regression 
coefficients (Dhrymes & Schwarz, 1987a). As a consequence, implicit restrictions are required on the explanatory variables and the 
regression coefficients to enforce the disturbance covariance matrix to be singular. If the implicit restrictions are satisfied, the 
generalized-inverse estimator of the regression coefficients will always exist (Dhrymes & Schwarz, 1987b). 

This paper contributes to the literature by highlighting the methodological challenge of estimating regression coefficients when the 
numéraire currencies of a multicurrency numéraire are the dependent variables in a multivariate regression model. A solution is 
proposed based on Theil (1971) that modifies the generalized least squares (GLS) estimator of the regression coefficients by replacing 
the ordinary inverse with the generalized inverse. However, certain conditions need to be satisfied for the disturbance covariance 
matrix from the multivariate regression model to be singular. As a result, the solution imposes implicit restrictions on the explanatory 
variables and the regression coefficients to guarantee a singular disturbance covariance matrix. The multivariate regression framework 
can be classified as a model-derived singularity (Haupt & Oberhofer, 2002). The solution provides a consistent multivariate regression 
model to explain the observed heterogeneity in the relative currency market. 

Seven developed market currencies are considered, namely, the US dollar, the Japanese yen, the Eurozone euro, the Swiss franc, the 
British pound, the Canadian dollar, and the Australian dollar. The proposed multivariate regression framework does not pre-specify 
which explanatory variables should be used in a multivariate regression model: similar to the Arbitrage Pricing Theory (see Ross, 
1976). In addition, choosing explanatory variables for a multivariate regression model is a non-trivial task. For example, it is 
well-known that there is an exchange-rate disconnect puzzle between exchange rates and fundamentals (Engel & West, 2005; Meese & 
Rogoff, 1983a, 1983b). Thus, choosing the best set of explanatory variables is beyond the scope of this paper and is left for future 
research. 

A focal point of this paper is to illustrate the implicit restrictions and to provide an application of the proposed multivariate 
regression framework. Currencies have been shown to move heterogeneously with global equity markets (Campbell et al., 2010). As a 
consequence, a group of local equity market indexes is used as explanatory variables, where there is one local equity market index 
associated with each currency. The results section confirms the previously reported heterogeneity in the currency market by showing 
that all currencies cannot move with, or against, the movements in a global equity market index. Furthermore, all currencies move in a 
common (panel-like) fashion with, or against, to the movements in a group of relative (idiosyncratic) equity market indexes. 

The rest of this paper is organized as follows. Section 2 provides the material and methods. Section 3 describes the data sample and 
presents the results, and Section 4 concludes. 

2. Material and methods 

2.1. Bilateral exchange rates 

A bilateral exchange rate is the price of one currency in terms of another currency: a single-currency numéraire. In log terms,1 for a 
system of NC currencies, let pi/j

B,t represent the ith/jth bilateral exchange rate at time t for the ith currency in terms of the jth currency, 
where i, j = 1,…,NC; and t = 0,…,T. There is a no-arbitrage condition between the bilateral exchange rates for any three currencies 
given by: 

pi/j
B,t = pi/k

B,t − pj/k
B,t (1)  

1 Bilateral exchange rates are modelled in log terms so the model does not suffer from the well-known Siegel Paradox (Siegel, 1972). 
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where i,j,k = 1,…,NC; t = 0,…,T; pi/j
B,t is the ith/jth bilateral exchange rate; pi/k

B,t is the ith/kth bilateral exchange rate; and pj/k
B,t is the jth/

kth bilateral exchange rate (see Chacholiades, 1971). The no-arbitrage condition in (1) can be rearranged to give: 

pi/j
B,t + pk/i

B,t + pj/k
B,t = 0 (2)  

where i,j,k = 1,…,NC; t = 0,…,T; pi/j
B,t is the ith/jth bilateral exchange rate; pk/i

B,t is the kth/ith bilateral exchange rate with pk/i
B,t = − pi/k

B,t ; 

and pj/k
B,t is the jth/kth bilateral exchange rate. The no-arbitrage condition in (2) also applies to the log returns of the bilateral exchange 

rates for any three currencies given by: 

Δpi/j
B,t +Δpk/i

B,t +Δpj/k
B,t = 0 (3)  

where i,j,k = 1,…,NC; t = 1,…,T; Δpi/j
B,t = pi/j

B,t − pi/j
B,t− 1 is the log return of the ith/jth bilateral exchange rate; Δpk/i

B,t = pk/i
B,t − pk/i

B,t− 1 is the log 

return of the kth/ith bilateral exchange rate; Δpj/k
B,t = pj/k

B,t − pj/k
B,t− 1 is the log return of the jth/kth exchange rate; and Δ is the first difference 

operator. 

2.2. Multilateral exchange rates 

A multilateral exchange rate is the price of one currency in terms of a weighted basket of numéraire currencies: a multicurrency 
numéraire. In log terms, for a system of NC currencies, each multilateral exchange rate can be written as: 

pi
M,t =

∑NC

j=1
wjpi/j

B,t (4) 

where i = 1,…,NC; t = 0,…,T; pi
M,t is the ith multilateral exchange rate for the ith currency; wj is the numéraire weight associated 

with the jth numéraire currency; and pi/j
B,t is the ith/jth bilateral exchange rate, with pi/i

B,t = 0. It should be noted that the ith currency is 
also a numéraire currency of the multicurrency numéraire. For example, the US dollar is a numéraire currency of the Special Drawing 
Right (SDR) from the International Monetary Fund (IMF). The movements in the US dollar can be priced in terms of the SDR by: 

ΔpUSD
M,t =

∑5

j=1
wjΔpUSD/j

B,t = 0.4338ΔpUSD/USD
B,t + 0.2931ΔpUSD/EUR

B,t + 0.1228ΔpUSD/CNY
B,t + 0.0759ΔpUSD/JPY

B,t + 0.0744ΔpUSD/GBP
B,t (5) 

where t = 1,…,T; ΔpUSD
M,t is the log return of the US dollar multilateral exchange rate in terms of the SDR; and ΔpUSD/j

B,t is the log return 

of the USD/jth bilateral exchange rate with j = 1,…,5 and ΔpUSD/USD
B,t = 0. The numéraire weights of the SDR are associated with the 

review in 2022, where the weights for the five numéraire currencies are: 0.4338 for the US dollar (USD), 0.2931 for the Eurozone euro 
(EUR), 0.1228 for the Chinese renminbi (CNY), 0.0759 for the Japanese yen (JPY), and 0.0744 for the British pound (GBP). Note that 
the numéraire weights of the SDR sum to one. 

It is assumed throughout the rest of this paper that multilateral exchange rates are priced relative to an equally-weighted basket of 
NC numéraire currencies so that wj = 1/NC for j = 1,…,NC. In this case, each multilateral exchange rate in (4) can be rewritten as: 

pi
M,t =

1
NC

∑NC

j=1
pi/j

B,t (6) 

where i = 1,…,NC; t = 0,…,T; pi
M,t is the ith multilateral exchange rate for the ith currency; and pi/j

B,t is the ith/jth bilateral exchange 
rate with j = 1,…,NC. 

2.3. Decomposing bilateral exchange rates 

Bilateral exchange rates can be decomposed into the difference between two of the multilateral exchange rates from (6) by: 

pi/j
B,t = pi

M,t − pj
M,t (7) 

where i,j = 1,…,NC, t = 0,…,T; pi/j
B,t is the ith/jth bilateral exchange rate; pi

M,t is the ith multilateral exchange rate; and pj
M,t is the jth 

multilateral exchange rate (Kunkler & MacDonald, 2015). The decomposition in (7) also applies to the log returns of the bilateral 
exchange rates by: 

Δpi/j
B,t = Δpi

M,t − Δpj
M,t (8) 

where i, j = 1,…,NC; t = 1,…,T; Δpi/j
B,t = pi/j

B,t − pi/j
B,t− 1 is the log return of the ith/jth bilateral exchange rate; Δpi

M,t = pi
M,t − pi

M,t− 1 is the 
log return of the ith multilateral exchange rate; and Δpj

M,t = pj
M,t − pj

M,t− 1 is the log return of the jth multilateral exchange rate. 
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2.4. A multivariate regression model 

In general, a multivariate regression model for the log returns of the NC multilateral exchange rates with NP explanatory variables 
can be written as: 

Δpi
M =

∑NP

p=1
xp,i

M βp,i
M + εi

M (9) 

where i = 1, …, NC; Δpi
M is a T × 1 vector of log returns of the ith multilateral exchange rate; xp,i

M is a T × 1 vector for the pth 
explanatory variable for the ith multilateral exchange rate; βp,i

M is the ith regression coefficient for the pth explanatory variable for the ith 
multilateral exchange rate; and εi

M is the ith disturbance term. 

2.5. Singular system of equations 

This section shows that the log returns for the system of NC multilateral exchange rates for the NC numéraire currencies is a singular 
system. In matrix notation, there is a no-arbitrage condition for the NC multilateral exchange rates in (6) such that: 

∑NC

i=1
pi

M = 0 (10) 

where pi
M is a (T+1) × 1 vector of the ith multilateral exchange rate; and 0 is a (T+1) × 1 vector of zeros (Kunkler & MacDonald, 

2015). The no-arbitrage condition in (10) also applies to the log returns of the multilateral exchange rates by: 
∑NC

i=1
Δpi

M = 0 (11) 

where Δpi
M is a T × 1 vector of the log returns of the ith multilateral exchange rate; Δpi

M,t = pi
M,t − pi

M,t− 1 is the log return of the ith 
multilateral exchange rate at time t with i = 1,…,NC; and 0 is a T × 1 vector of zeros. 

The no-arbitrage condition for the log returns of the system of NC multilateral exchange rates in (11) creates a linear dependency, 
which can be seen by rearranging (11) to give: 

Δpi
M = −

∑NC

j=1
I(i ∕= j)Δpj

M (12) 

where i = 1,…,NC; Δpi
M is a T × 1 vector of the log returns of the ith multilateral exchange rate; Δpj

M is a T × 1 vector of the log 
returns of the jth multilateral exchange rate; and I(i ∕= j) is an indicator variable that is one when i ∕= j and zero otherwise. 

The linear dependency between the log returns of the system of NC multilateral exchange rates results in a singular covariance 
matrix of the log returns of the multilateral exchange rates, where the ordinary matrix inverse does not exist. Let the covariance matrix 
be represented by: 

ΣΔp = cov
(
Δp1

M ,…,ΔpNC
M
)

(13) 

where ΣΔp is an NC × NC covariance matrix for the log returns of the system of NC multilateral exchange rates; and σi,j
Δp = cov

(
Δpi

M,

Δpj
M

)
is the covariance between Δpi

M and Δpj
M, and represents the ith row and jth column of ΣΔp, with i, j = 1,…,NC. 

In summary, the log returns of the system of NC multilateral exchange rates for the NC numéraire currencies is a singular system. 
Thus, the covariance matrix of the log returns for the system of NC multilateral exchange rates is singular and the ordinary inverse does 
not exist. Singular systems pose a challenge when it comes to multivariate regression analysis. For example, when the disturbance 
covariance matrix is also singular, the ordinary matrix inverse does not exist and consequently the generalized least squares (GLS) 
estimator of the regression coefficients will not exist. Theil (1971) suggested that the generalized inverse of the disturbance covariance 
matrix replace the ordinary inverse. Under these circumstances, there are necessary and sufficient conditions on the existence of the 
generalized-inverse estimator of the regression coefficients (Dhrymes & Schwarz, 1987a). In addition, if the adding up conditions are 
imposed the generalized-inverse estimator of the regression coefficients will always exist (Dhrymes & Schwarz, 1987b). 

2.6. Implicit restrictions 

2.6.1. Introduction 
Using any set of explanatory variables does not necessarily result in a singular disturbance covariance matrix. Consequently, 

implicit restrictions are imposed on the explanatory variables and the regression coefficients, so the disturbance covariance matrix 
from the multivariate regression is singular. If the implicit restrictions are satisfied, the generalized-inverse estimator of the regression 
coefficients will always exist (Dhrymes & Schwarz, 1987b). 

The covariance matrix of the system of NC disturbance terms in (9) is given by: 

Σε = cov
(
ε1

M ,…, εNC
M
)

(14) 

where Σε is an NC × NC disturbance covariance matrix; and σi,j
ε = cov

(
εi

M, ε
j
M

)
is the covariance between εi

M and εj
M, and represents 
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the ith row and jth column of Σε, with i,j = 1,…,NC. One way for the disturbance covariance matrix to be singular is to impose implicit 
restrictions on the explanatory variables and the regression coefficients so that: 

∑NC

i=1
εi

M = 0 (15) 

where εi
M is a T × 1 vector of the ith disturbance term with i = 1,…,NC; and 0 is a T × 1 vector of zeros. 

Thus, implicit restrictions can be imposed on the explanatory variables and the regression coefficients so that the disturbance 
covariance matrix will be singular. Subsequently, the generalized least squares (GLS) estimator of the regression coefficients can be 
modified by replacing the ordinary inverse with the generalized-inverse (Theil, 1971). If the implicit restrictions are satisfied, the 
disturbance covariance matrix will be singular. In addition, the generalized-inverse generalized least squares (GI-GLS) estimator of the 
regression coefficients will always exist. 

Different implicit restrictions are required for different explanatory variables. It is assumed that explanatory variables belong to one 
of three main types, namely, absolute explanatory variables, a group of relative explanatory variables, or a group of hybrid explanatory 
variables. Each of the three main types of explanatory variables, together with the implicit restrictions, are discussed in the subsections 
below. 

2.6.2. Absolute explanatory variables 
An absolute explanatory variable is a common explanatory variable for all currencies. Each currency has a separate regression 

coefficient associated with the absolute explanatory variable. For example, the movements in a global equity market index is an 
absolute explanatory variable, as there is only one global equity market index and all currencies have their own exposure to the 
movements in the global equity market index. It is assumed that there are NA absolute explanatory variables in a multivariate 
regression model. 

The implicit regression-coefficient restriction for an absolute explanatory variable is that the sum of the regression coefficients 
across the system of NC currencies is equal to zero: 

∑NC

i=1
βa,i

A = 0 (16) 

where a = 1,…,NA; and βa,i
A is the ith regression coefficient associated for the ath absolute explanatory variable with i = 1,…,NC. 

In matrix form, a multivariate regression model for an absolute explanatory variable (NA = 1) and the associated regression co-
efficients can be written by stacking the system of NC equations to give: 

ΔpM =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

Δp1
M

⋮
⋮

ΔpNC
M

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

xa
A 0 ⋯ 0

0 ⋱ ⋱ ⋮
⋮ ⋱ ⋱ 0
0 ⋯ 0 xa

A

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎣

βa,1
A

⋮
βa,NC

A

⎤

⎥
⎥
⎦+

⎡

⎢
⎢
⎢
⎢
⎢
⎣

ε1
M

⋮
⋮

εNC
M

⎤

⎥
⎥
⎥
⎥
⎥
⎦

= Xa
Aβa

A + εM (17) 

where a = 1; ΔpM = (Δp1
M;⋯;ΔpNC

M ) is a (NC ∗ T) × 1 stacked vector of the log returns of the system of NC multilateral exchange 
rates; xa

A is a T × 1 vector of the ath absolute explanatory variable; βa,i
A is the ith regression coefficient associated for the ath absolute 

explanatory variable with i = 1,…,NC; Xa
A = diag(xa

A,…, xa
A) is a (NC ∗ T) × NC diagonal matrix for ath absolute explanatory variable; βa

A 

= (βa,1
A ;⋯; βa,NC

A ) is a NC × 1 vector the regression coefficients associated for the ath absolute explanatory variable; and εM = (ε1
M;⋯; εNC

M )

is a (NC ∗ T) × 1 stacked vector of disturbance terms. 
If the implicit restriction for the absolute explanatory variable in (16) is satisfied, the cross-sectional sum of the disturbance terms is 

given by: 

∑NC

i=1
εi

M =
∑NC

i=1
Δpi

M −
∑NC

i=1
xa

Aβa,i
A =

∑NC

i=1
Δpi

M − xa
A

∑NC

i=1
βa,i

A = 0 (18) 

where εi
M is the ith disturbance term in (17); 

∑NC
i=1Δpi

M = 0 from (11); and 
∑NC

i=1βa,i
A = 0 from (16). In this situation, the disturbance 

covariance matrix Σε is singular. 

2.6.3. Relative explanatory variables 
A relative explanatory variable is an idiosyncratic explanatory variable for a specific currency. The relative explanatory variable 

belongs to a group of NC relative explanatory variables, where there is one for each currency. For example, the group of lagged log 
returns of the NC multilateral exchange rates is a group of relative explanatory variables. It is assumed that there are NR groups of 
relative explanatory variables in a multivariate regression model, where each group contains NC relative explanatory variables: one for 
each currency. 

The implicit regression-coefficient restriction for each group of relative explanatory variables is that all currencies share a common 
(pooled) regression coefficient, represented by βr

R for the rth group of relative explanatory variables, where r = 1,…,NR. In addition, 
the implicit explanatory-variable restriction for each group of relative explanatory variables is that the cross-sectional sum, at each 
time t, is equal to zero: 
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∑NC

i=1
xr,i

R,t = 0 (19) 

where r = 1,…,NR, t = 1,…,T; and xr,i
R,t is the ith relative explanatory variable in the rth group of relative explanatory variables. 

In matrix form, a multivariate regression model for a group of relative explanatory variables (NR = 1) and the associated common 
regression coefficient can be written by stacking the system of NC equations to give: 

ΔpM =

⎡

⎢
⎢
⎣

Δp1
M

⋮
ΔpNC

M

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

xr,1
R

⋮
xr,NC

R

⎤

⎥
⎥
⎦βr

R +

⎡

⎢
⎢
⎣

ε1
M

⋮
εNC

M

⎤

⎥
⎥
⎦ = Xr

Rβr
R + εM (20)  

where r = 1; ΔpM = (Δp1
M;⋯;ΔpNC

M ) is a (NC ∗ T) × 1 stacked vector of the log returns of the system of NC multilateral exchange rates; 
xr,i

R is a T × 1 vector of the ith relative explanatory variable for the rth group of relative explanatory variables with i = 1,…,NC; βr
R is a 

common regression coefficient associated for the rth group of relative explanatory variables; Xr
R = (xr,1

R ;⋯; xr,NC
R ) is a (NC ∗ T) × 1 

stacked vector of the rth group of relative explanatory variables; and εM = (ε1
M;⋯; εNC

M ) is a (NC ∗ T) × 1 stacked vector of disturbance 
terms. 

If the implicit restrictions are satisfied for a group of relative explanatory variables, the cross-sectional sum of the disturbance terms 
is given by: 

∑NC

i=1
εi

M =
∑NC

i=1
Δpi

M −
∑NC

i=1
xr,i

R βr
R =

∑NC

i=1
Δpi

M − βr
R

∑NC

i=1
xr,i

R = 0 (21)  

where εi
M is the ith disturbance term in (20); 

∑NC
i=1Δpi

M = 0 from (11); and 
∑NC

i=1xr,i
R = 0 from (19). In this situation, the disturbance 

covariance matrix Σε is singular. 

2.6.4. Hybrid explanatory variables 
Hybrid explanatory variables are similar to relative explanatory variables. For example, a hybrid explanatory variable is a 

currency-specific explanatory variable and belongs to a group of hybrid explanatory variables. For example, the movements in local 
equity market indexes are a group of hybrid explanatory variables, where there is one local equity market index associated with each 
currency. It is assumed that there are NH groups of hybrid explanatory variables in the multivariate regression model, where each 
group contains NH hybrid explanatory variables: one for each currency. 

The difference between a group of hybrid explanatory variables and a group of relative explanatory variables is that the cross- 
sectional sum for a group of hybrid explanatory variables, at each time t, does not equal to zero: 

∑NC

i=1
xh,i

H,t ∕= 0 (22) 

where h = 1,…,NH; t = 1,…,T; and xh,i
H,t is the ith hybrid explanatory variable in the hth group of hybrid explanatory variables with i 

= 1,…,NC. 
The implicit explanatory-variable restriction decomposes each group of NC hybrid explanatory variables into an absolute 

explanatory variable and a group of NC relative explanatory variables by: 

xh,i
H,t = xh

A,t + xh,i
R,t (23)  

where h = 1,…,NH; i = 1,…,NC; t = 1,…,T; xh,i
H,t is the ith hybrid explanatory variable in the hth group of hybrid explanatory variables; 

xh
A,t is the absolute explanatory variable for the hth group; and xh,i

R,t is the ith relative explanatory variable for the hth group. 
The absolute explanatory variable in (23) can be created by calculating the cross-sectional average of the group of hybrid 

explanatory variables to give: 

xh
A,t =

1
NC

∑NC

i=1
xh,i

H,t (24) 

where h = 1,…,NH; t = 1,…,T; xh
A,t is the absolute explanatory variable for the hth group; and xh,i

H,t is the ith hybrid explanatory 
variable for the hth group. Subsequently, the relative explanatory variables in (23) can be calculated by subtracting the absolute 
explanatory variable for the hth group in (24) from the ith hybrid explanatory variable for the hth group to give: 

xh,i
R,t = xh,i

H,t − xh
A,t (25) 

where h = 1,…,NH; t = 1,…, T; xh,i
R,t is the ith relative explanatory variable for the hth group; xh,i

H,t is the ith hybrid explanatory 
variable for the hth group; and xh

A,t is the absolute explanatory variable for the hth group in (24). 
The cross-sectional sum of the group of relative explanatory variables in (25) is: 
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∑NC

i=1
xh,i

R,t =
∑NC

i=1

(
xh,i

H,t − xh
A,t

)
=
∑NC

i=1
xh,i

H,t − NC

(
1

NC

∑NC

i=1
xh,i

H,t

)

= 0 (26)  

where h = 1,…,NH; t = 1,…,T; xh,i
R,t = xh,i

H,t − xh
A,t is the ith relative explanatory variable for the hth group in (25); xh,i

H,t is the ith hybrid 

explanatory variable for the hth group; and xh
A,t =

1
NC

∑NC
i=1xh,i

H,t is the absolute explanatory variable for the hth group in (24). Thus, the 
group of relative explanatory variables for the hth group in (25) satisfies the implicit explanatory-variable restriction in (19), where the 
cross-sectional sum of the group of relative explanatory variables is equal to zero. 

In matrix form, a multivariate regression model for the decomposition of a group of NC hybrid explanatory variables (NH = 1) into 
an absolute explanatory variable and a group of NC relative explanatory variables can be written by stacking the system of NC equations 
to give: 

ΔpM =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

Δp1
M

⋮
⋮

ΔpNC
M

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

xh
A 0 ⋯ 0

0 ⋱ ⋱ ⋮
⋮ ⋱ ⋱ 0
0 ⋯ 0 xh

A

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎣

βh,1
A

⋮
βh,NC

A

⎤

⎥
⎥
⎦+

⎡

⎢
⎢
⎣

xh,1
R

⋮
xh,NC

R

⎤

⎥
⎥
⎦βh

R +

⎡

⎢
⎢
⎢
⎢
⎢
⎣

ε1
M

⋮
⋮

εNC
M

⎤

⎥
⎥
⎥
⎥
⎥
⎦

= Xh
Aβh

A +Xh
Rβh

R + εM (27)  

where h = 1; ΔpM = (Δp1
M;⋯;ΔpNC

M ) is a (NC ∗ T) × 1 stacked vector of the log returns of the system of NC multilateral exchange rates; 
xh

A is a T × 1 vector of the absolute explanatory variable for the hth group; Xh
A = diag(xh

A,…, xh
A) is a (NC ∗ T) × NC diagonal matrix for 

the absolute explanatory variable for the hth group; βh
A = (βh,1

A ;⋯; βh,NC
A ) is a NC × 1 vector the regression coefficients for the hth group; 

βh,i
A is the ith regression coefficient for the hth group with i = 1,…,NC; xh,i

R is a T × 1 vector of the ith relative explanatory variable for the 
hth group; βh

R is the regression coefficient associated for the hth group; Xh
R = (xh,1

R ;⋯; xh,NC
R ) is a (NC ∗ T) × 1 stacked vector of the hth 

group of relative explanatory variables; and εM = (ε1
M;⋯; εNC

M ) is a (NC ∗ T) × 1 stacked vector of disturbance terms. 
If the implicit restrictions are satisfied for the group of hybrid explanatory variables, the cross-sectional sum of the disturbance 

terms is given by: 

∑NC

i=1
εi

M =
∑NC

i=1
Δpi

M −
∑NC

i=1

(
xh

Aβh,i
A + xh,i

R βh
R

)
=
∑NC

i=1
Δpi

M − xh
A

∑NC

i=1
βh,i

A + βh
R

∑NC

i=1
xh,i

R = 0 (28)  

where εi
M is the ith disturbance term in (27); 

∑NC
i=1Δpi

M = 0 from (11); 
∑NC

i=1βh,i
A = 0 from (16); and 

∑NC
i=1xh,i

R = 0 from (19). In this 
situation, the disturbance covariance matrix Σε is singular. 

2.6.5. Summary 
In general, explanatory variables can be classified into one of three main types, namely, absolute explanatory variables, a group of 

relative explanatory variables, or a group of hybrid explanatory variables. However, a group of hybrid explanatory variables can be 
decomposed into an absolute explanatory variable and a group of relative explanatory variables. Thus, each explanatory variable in a 
multivariate regression model is either an absolute explanatory variable or a relative explanatory variable. As a result, there are only 
two core types of explanatory variables, namely, absolute explanatory variables and relative explanatory variables. 

2.7. A multivariate regression model with implicit restrictions 

The form of a multivariate regression model for the log returns of each multilateral exchange rate with NA absolute explanatory 
variables (including one for the intercept) and NR groups of relative explanatory variables can be written as: 

Δpi
M =

∑NA

a=1
xa

Aβa,i
A +

∑NR

r=1
xr,i

R βr
R + εi

M (29)  

where i = 1,…,NC; Δpi
M is a T × 1 vector of log returns of the ith multilateral exchange rate; xa

A is a T × 1 vector for the ath absolute 
explanatory variable; βa,i

A is the ith regression coefficient for the ath absolute explanatory variable; xr,i
R is a T × 1 vector for the ith 

explanatory variable for the rth group of relative explanatory variables; βr
R is the common regression coefficient for the rth group of 

relative explanatory variables; and εi
M is the ith disturbance term. It should be noted that the multivariate regression model in (29) also 

includes the hybrid explanatory variables, subsequent to the decomposition in (23). 
In matrix form, the multivariate regression model in (29) can be written by stacking the system of NC equations to give: 

ΔpM =

⎡

⎢
⎢
⎣

Δp1
M

⋮
ΔpNC

M

⎤

⎥
⎥
⎦ =

[
X1

A ⋯ XNA
A

]

⎡

⎢
⎢
⎣

β1
A

⋮
βNA

A

⎤

⎥
⎥
⎦+

[
X1

R ⋯ XNR
R

]

⎡

⎢
⎢
⎣

β1
R

⋮
βNR

R

⎤

⎥
⎥
⎦+

⎡

⎢
⎢
⎣

ε1
M

⋮
εNC

M

⎤

⎥
⎥
⎦ = XAβA +XRβR + εM (30)  

where ΔpM = (Δp1
M;⋯;ΔpNC

M ) is a (NC ∗ T) × 1 stacked vector of the log returns of the system of NC multilateral exchange rates; Xa
A =
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diag(xa
A,…, xa

A) is a (NC ∗ T) × NC diagonal matrix for the ath absolute explanatory variables in (17) with a = 1,…,NA; βa
A is a NC × 1 

vector regression coefficients for the ath absolute explanatory variables in (17); Xr
R is a (NC ∗ T) × 1 stacked vector for the rth group of 

relative explanatory variables in (20) with r = 1,…,NR; βr
R is the common (panel-like) regression coefficient for the rth group of relative 

explanatory variables in (20); and εM = (ε1
M;⋯; εNC

M ) is a (NC ∗ T) × 1 stacked vector of disturbance terms. 
If the implicit restrictions are satisfied, the cross-sectional sum of the disturbance terms is given by: 

∑NC

i=1
εi

M =
∑NC

i=1
Δpi

M −
∑NC

i=1

(
∑NA

a=1
xa

Aβa,i
A +

∑NR

r=1
xr,i

R βr
R

)

=
∑NC

i=1
Δpi

M −
∑NA

a=1
xa

A

∑NC

i=1
βa,i

A +
∑NR

r=1
βr

R

∑NC

i=1
xr,i

R = 0 (31) 

where εi
M is the ith disturbance term in (30); 

∑NC
i=1Δpi

M = 0 from (11); 
∑NC

i=1βa,i
A = 0 from (16); and 

∑NC
i=1xr,i

R = 0 from (19). In this 
situation, the disturbance covariance matrix Σε is singular. 

The full covariance matrix of the disturbance terms is given by: 

Ωε = Σε⨂IT (32)  

where Ωε is a (NC ∗ T) × (NC ∗ T) full covariance matrix; Σε is an NC × NC disturbance covariance matrix in (14); and ⨂ is the Kro-
necker product. The generalized least squares (GLS) estimator of the regression coefficients of the multivariate regression in (30) is 
given by: 

E(β) = (X′Ω− 1
ε X)

− 1
(X′Ω− 1

ε y). (33)  

where Ωε is a (NC ∗ T) × (NC ∗ T) full covariance matrix of the disturbance terms in (32); X = [XA XR ] is a (NC ∗ T) × (NA ∗ NC +NR)

matrix of the combined explanatory variables, with NA absolute explanatory variables and NR groups of relative explanatory variables; 
and β = (βA; βR) is a (NA ∗ NC +NR) × 1 vector of the combined regression coefficients. 

However, the full disturbance covariance matrix in (32) is singular from (31) so the ordinary inverse of the disturbance covariance 
matrix Ω− 1

ε does not exist. Consequently, the generalized least squares (GLS) estimator of the regression coefficients in (33) also does 
not exist. In contrast, when the disturbance covariance matrix is singular, the generalized inverse of the disturbance covariance matrix 
Ω− g

ε does exist. The generalized-inverse generalized least squares (GI-GLS) estimator of the regression coefficients can be written as: 

Eg(β) = (X′Ω− g
ε X)

− 1
(X′Ω− g

ε y). (34)  

where Ω− g
ε is the generalized inverse of the full covariance matrix of the disturbance terms in (32); and all other terms are the same as 

described in (33). Thus, if the implicit restrictions are satisfied, the generalized-inverse generalized least squares (GI-GLS) estimator of 
the regression coefficients in (34) will always exist. 

3. Results 

3.1. Data 

The data consists of a system of seven (NC = 7) currencies, namely, the US dollar (USD), the Eurozone euro (EUR), the Japanese yen 
(JPY), the Swiss franc (CHF), the British pound (GBP), the Canadian dollar (CAD) and the Australian dollar (AUD). A system of six 
bilateral exchange rates against the US dollar are sourced from Bloomberg with 49 years of monthly data from Bloomberg from 1st 
January 1973 to 31st December 2021. 

A group of seven local equity market indexes are considered as explanatory variables. The system of seven equity market indexes 
together with the associated three letter currency code is: United States (USD), Europe (EUR), Japan (JPY), Switzerland (CHF), United 
Kingdom (GBP), Canada (CAD) and Australia (AUD). The equity market indices are the MSCI total return indices. The German market 
total return index was used as a proxy for the equity market index associated with the euro. 

3.2. Multivariate regression model 

The form of a multivariate regression model for the log returns of each of the seven (NC = 7) multilateral exchange rates with two 
(NA = 2) absolute explanatory variables (including one for the intercept) and one (NR = 1) group of relative explanatory variables can 
be written as: 

Δpi
M = xI

AαI,i
A + xE

AβE,i
A + xE,i

R βE
R + εi

M (35)  

where i = 1,…,NC; Δpi
M is a T × 1 vector of log returns of the ith multilateral exchange rate; xI

A is a T × 1 vector of ones; αI,i
A is the ith 

intercept coefficient; xE
A is a T × 1 vector of the log returns of the global equity market index; βE,i

A is the ith regression coefficient for the 
log returns of the global equity market index; xE,i

R is a T × 1 vector of the log returns of the ith relative equity market index; βE
R is the 

common regression coefficient for the log returns of the group of relative equity market indexes; and εi
M is the ith disturbance term. 
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Fig. 1. Cumulative log returns for the multilateral exchange rates. Notes: Figure displays the cumulative log returns of the seven multilateral exchange rates.  
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3.3. Dependent variables 

The dependent variables consist of the log returns of the seven (NC = 7) multilateral exchange rates. The log returns of the NC 
multilateral exchange rates are priced in terms of an equally-weighted basket of all NC numéraire currencies in (6). Note that all NC 
currencies are numéraire currencies of the multicurrency numéraire. For example, the US dollar multilateral exchange rate is 
calculated using (6) to give: 

ΔpUSD
M,t =

1
7
∑7

j=1
ΔpUSD/j

B,t =
1
7
ΔpUSD/USD

B,t +
1
7

ΔpUSD/EUR
B,t +

1
7

ΔpUSD/JPY
B,t +

1
7
ΔpUSD/CHF

B,t +
1
7

ΔpUSD/GBP
B,t +

1
7

ΔpUSD/CAD
B,t +

1
7
ΔpUSD/AUD

B,t (36)  

where t = 1,…,T; ΔpUSD
M,t is the log return of the US dollar multilateral exchange rate; and ΔpUSD/j

B,t is the log return of the USD/jth 

bilateral exchange rate with ΔpUSD/USD
B,t = 0 and j = 1,…,NC. 

Fig. 1 displays the cumulative log returns of each multilateral exchange rate. Table 1 reports the descriptive statistics for the log 
returns of the system of seven multilateral exchange rates. The Swiss franc (CHF) has the highest average annualised return of 2.41%, 
and the Australian dollar has the lowest average annualised return of − 1.63%, which is closely followed by the British pound (GBP) 
with an average annualised return of − 1.60%. The highest annualised volatilities of 8.58% and 8.49% are associated with the 
Australian dollar (AUD) and the Japanese yen (JPY), respectively. In contrast, the lowest annualised volatility of 6.07 % is associated 
with the Eurozone euro (EUR). 

Significant positive skewness values of 0.784 and 0.352 are associated with the safe-haven currencies of the Japanese yen (JPY) and 
the Swiss franc (CHF), respectively. In contrast, significant negative skewness values of − 1.301, − 0.694, and − 0.252 are associated 
with the Australian dollar (AUD), the British pound (GBP), and the Canadian dollar (CAD), respectively. The movements in all 
multilateral exchange rates experience significant ADF statistics (Dickey & Fuller, 1979) and insignificant KPSS statistics (Kwiatkowski 
et al., 1992), which provide significant evidence of stationarity. The movements in all of the multilateral exchange rates also expe-
rience significant kurtosis and significant Jarque-Bera statistics (Jarque & Bera, 1987), which indicate non-normal log returns. 

Table 2 reports the correlation matrix for the log returns of the multilateral exchange rates. There are three highly significant 
positive observed correlations. The first positive observed correlation is 0.626 between the Eurozone euro (EUR) and the Swiss franc 
(CHF), which is driven by the geographically close proximity of the Eurozone and Switzerland. The second positive observed corre-
lation is 0.439 between the US dollar (USD) and the Canadian dollar (CAD), which is driven by the geographically close proximity of 
the US and Canada. The third positive observed correlation is 0.271 between the Canadian dollar (CAD) and the Australian dollar 
(AUD), which is driven by both currencies being associated with commodity exporting countries: commodity currencies (Chen & 
Rogoff, 2003). 

Table 1 
Descriptive statistics for the movements in the multilateral exchange rates.   

Average Std. Dev. Skew Kurt ADF KPSS Jarque-Bera 

USD -0.48 % 6.34 % -0.003 4.03** -23.6**  0.046 25.9** 
EUR 0.79 % 6.07 % 0.049 4.27** -23.1**  0.043 40.1** 
JPY 1.48 % 8.49 % 0.784** 6.12** -23.5**  0.041 299.5** 
CHF 2.41 % 7.17 % 0.352** 4.81** -24.5**  0.091 92.9** 
GBP -1.60 % 6.55 % -0.694** 6.56** -22.6**  0.063 358.0** 
CAD -0.97 % 6.41 % -0.252* 4.00** -24.8**  0.034 30.8** 
AUD -1.63 % 8.58 % -1.301** 8.38** -23.6**  0.035 876.8** 

Notes: This Table reports the summary statistics for the log returns of each multilateral exchange rate. The summary statistics consist of: annualised 
average return (Average); the annualised standard deviation (Std. Dev.); skewness (Skew), kurtosis (Kurt), Augmented Dickey-Fuller unit root test 
(ADF) displaying the test statistic, KPSS test displaying the test statistic; and the Jarque-Bera normality test. Significance levels for skewness, kurtosis, 
ADF, KPSS, and Jarque-Bera are denoted by * for 5 %, and ** for 1 %. 

Table 2 
Correlation matrix.   

USD EUR JPY CHF GBP CAD AUD 

USD 1.000 -0.521** -0.053 -0.496** -0.165** 0.439** -0.105* 
EUR -0.521** 1.000 -0.174** 0.626** 0.035 -0.471** -0.348** 
JPY -0.053 -0.174** 1.000 0.012 -0.263** -0.376** -0.356** 
CHF -0.496** 0.626** 0.012 1.000 -0.062 -0.605** -0.423** 
GBP -0.165** 0.035 -0.263** -0.062 1.000 -0.172** -0.226** 
CAD 0.439** -0.471** -0.376** -0.605** -0.172** 1.000 0.271** 
AUD -0.105* -0.348** -0.356** -0.423** -0.226** 0.271** 1.000 

Notes: This Table reports the correlation matrix for the log returns of the multilateral exchange rates. Significance levels for the correlations are 
denoted by * for 5 %, and ** for 1 %. 
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3.4. Explanatory variables 

The explanatory variables consist of the movements in a group of local equity market indexes. There is one local equity market 
index associated with each currency. However, the cross-sectional sum of the movements in the group of local equity market indexes 
does not equal to zero. Thus, the movements in a group of local equity market indexes are classified as a group of hybrid explanatory 
variables. The decomposition of a group of hybrid explanatory variables in (23) is used to decompose the log return of the ith local 
equity market indexes at time t to give: 

xE,i
H,t = xE

A,t + xE,i
R,t (37) 

where i = 1,…,NC; t = 1,…,T; xE,i
H,t is the log returns of the ith equity market associated with the ith currency; xE

A,t =
1

NC

∑NC
i=1xE,i

H,t is the 

log return of the global equity market index (absolute explanatory variable) using (24); and xE,i
R,t = xE,i

H,t − xE
A,t is the log return of the ith 

relative equity market index (relative explanatory variable) using (25). 
Table 3 reports the descriptive statistics for the group of hybrid explanatory variables (Panel A), together with the absolute 

explanatory variable (Panel B) and the group of relative explanatory variables (Panel C). The absolute explanatory variable (Panel B) 
represents the movements in a global equity market index (GBL) and calculated by the cross-sectional average of the log returns for the 
group of local equity market indexes. The group of relative explanatory variables (one for each currency) are calculated from the 
differences between the movements in the local equity market indexes (Panel A) and the movements in the global equity market index 
(Panel B). 

The movements in the global equity market index (absolute explanatory variable) have an annualised return of 8.54 %, and an 
annualised volatility of 13.65 %. In contrast, the group of the movements in the relative equity market index (relative explanatory 
variables) have an average annualised return of exactly 0.00 % by construction, and an average annualised volatility of 10.84 %. The 
movements in the relative US equity market index (USD) outperform the movements in the global equity market the most by 1.73 % 
annually. In contrast, movements in the relative Japanese equity market index (JPY) underperform the movements in the global equity 
market the most by − 3.65 % annually. 

All of the explanatory variables experience significant ADF statistics (Dickey & Fuller, 1979) and insignificant KPSS statistics 
(Kwiatkowski et al., 1992), which provide significant evidence of stationarity. All of the explanatory variables also experience sig-
nificant kurtosis and significant Jarque-Bera statistics (Jarque & Bera, 1987), which indicate non-normal log returns. 

Table 3 
Descriptive statistics for the explanatory variables.  

Panel A: Hybrid explanatory variables  

Average Std. Dev. Skew Kurt ADF KPSS Jarque-Bera 

USD 10.27% 15.40 % -0.666** 5.53** -22.7** 0.113 200.1** 
EUR 7.83 % 19.62 % -0.852** 6.01** -22.5** 0.043 294.1** 
JPY 4.89 % 18.07 % -0.393** 4.51** -22.1** 0.133 71.1** 
CHF 7.94 % 15.76 % -0.775** 6.50** -21.3** 0.122 360.0** 
GBP 9.86 % 18.33 % 0.262** 12.67** -22.0** 0.057 2301.5** 
CAD 8.88 % 16.20 % -0.853** 6.62** -22.3** 0.038 392.9** 
AUD 10.10 % 18.88 % -1.967** 20.61** -23.1** 0.053 7989.0** 

AVG 8.54 % 17.47 % -0.749 8.92     

Panel B: Absolute explanatory variable  

Average Std. Dev. Skew Kurt ADF KPSS Jarque-Bera 

GBL 8.54 % 13.65 % -1.312** 9.39** -20.7** 0.083 1169.6**  

Panel C: Relative explanatory variables  

Average Std. Dev. Skew Kurt ADF KPSS Jarque-Bera 

USD 1.73 % 7.90 % 0.469** 4.23** -27.5** 0.069 58.5** 
EUR -0.71 % 12.13 % -0.435** 5.47** -24.9** 0.027 168.2** 
JPY -3.65 % 13.81 % 0.057 4.43** -24.9** 0.144 50.6** 
CHF -0.60 % 9.11 % 0.001 3.84** -23.7** 0.114 17.3** 
GBP 1.32 % 10.94 % 1.105** 13.44** -23.5** 0.016 2792.3** 
CAD 0.34 % 9.56 % -0.087 3.54** -24.9** 0.061 8.0* 
AUD 1.56 % 12.43 % -0.313** 7.83** -27.1** 0.028 581.8** 

AVG 0.00 % 10.84 % 0.114 6.11    

Notes: This Table reports the summary statistics for the explanatory variables, with Panel A reporting the group of hybrid explanatory variables (one 
for each currency), Panel B reporting the absolute explanatory variable and Panel C reporting the group of relative explanatory variables (one for each 
currency). The summary statistics consist of: annualised average return (Average); the annualised standard deviation (Std. Dev.); skewness (Skew), 
kurtosis (Kurt), Augmented Dickey-Fuller unit root test (ADF) displaying the test statistic, KPSS test displaying the test statistic; and the Jarque-Bera 
normality test. Significance levels for skewness, kurtosis, ADF, KPSS, and Jarque-Bera are denoted by * for 5 %, and ** for 1 %. 
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3.5. Multivariate regression output 

Table 4 reports the observed regression coefficients from the multivariate regression model in (35) for the entire 49-year data 
sample. The regression coefficients are estimated using the generalized-inverse generalized least squares (GI-GLS) estimator in (34). 
The first data column of Table 4 reports the intercept coefficients (αI,i

A ) for the movements in the seven multilateral exchange rates. The 
Swiss franc (CHF) and the Japanese yen (JPY) have significant positive intercept coefficients of 0.0020 and 0.0012, respectively. In 
contrast, the Australian dollar (AUD), the British pound (GBP), and the Canadian dollar (CAD) have significant negative intercept 
coefficients of − 0.0014, − 0.0013 and − 0.0008, respectively. 

The second data column of Table 4 reports regression coefficients (βE,i
A ) associated with the movements in the global equity market 

index (absolute explanatory variable). The Australian dollar (AUD) and the Canadian dollar (CAD) move significantly with the global 
equity market index, with observed regression coefficients of 0.2191 and 0.1193, respectively. In contrast, the Japanese yen (JPY), the 
Swiss franc (CHF), the US dollar (USD), and the Eurozone euro (EUR) move significantly against the global equity market index, with 
observed regression coefficients of − 0.1375, − 0.1174, − 0.0610, and − 0.0383, respectively. 

The third data column of Table 4 reports the common regression coefficient (βE
R) associated with the movements in the group of 

relative equity market indexes (a group of relative explanatory variables). The common regression coefficient is the same for all 
currencies and is simply repeated for each currency. Currencies move significantly against the relative equity market indexes with a 
value of − 0.0247. This shows that the currencies are shock-absorbers, so that when the local equity market index out (under) 
performs relative to the global equity market index, the associated currency under (out) performs. 

4. Conclusion 

A multicurrency numéraire is a weighted basket of numéraire currencies. A no-arbitrage condition enforces the movements in a 
system of multilateral exchange rates associated with the numéraire currencies of the multicurrency numéraire to be a singular system. 
Singular systems pose a methodological challenge in a multivariate regression model. This paper proposed a solution to overcome the 
methodological challenge that consisted of two parts. The first part imposed implicit restrictions on the explanatory variables and the 
regression coefficients to guarantee that the disturbance covariance matrix was singular. The second part replaced the ordinary inverse 
with the generalized inverse to modify the generalized least squares (GLS) estimator of the regression coefficients (see Theil, 1971). 

The solution provided a consistent multivariate regression framework to explain the observed heterogeneity in the relative cur-
rency market. For example, all currencies cannot move with, or against, absolute explanatory variables. In this situation, the het-
erogeneity appears in the observed regression coefficients. In addition, all currencies move in a common (panel-like) fashion with, or 
against, a group of relative explanatory variables. In this situation, the heterogeneity appears in the currency-specific explanatory 
variables. 
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Kunkler, M., & MacDonald, R. (2015). Half-lives of currencies and aggregation bias. Economics Letters, 135, 58–60. 
Kwiatkowski, D., Phillips, P. C. B., Schmidt, P., & Shin, Y. (1992). Testing the null hypothesis of stationarity against the alternative of a unit root. Journal of 

Econometrics, 54, 159–178. 
Meese, R. A., & Rogoff, K. S. (1983a). Empirical exchange rate models of the seventies: Do they fit out of sample? Journal of International Economics, 14(1–2), 3–24. 
Meese, R. A., & Rogoff, K. S. (1983b). The out of sample failure of empirical exchange models. in exchange rates and international macroeconomics. In A. Jacob Frenkel. 

(Ed.). Chicago: Univ. Chicago Press.  
Ross, S. A. (1976). The arbitrage theory of capital asset pricing. Journal of Economic Theory, 13, 341–360. 
Siegel, J. J. (1972). Risk, interest rate and the forward market. Quarterly Journal of Economics, 86, 303–309. 
Theil, H. (1971). Principles of econometrics. New York: Wiley,.  

M. Kunkler                                                                                                                                                                                                              

http://refhub.elsevier.com/S0148-6195(23)00025-5/sbref10
http://refhub.elsevier.com/S0148-6195(23)00025-5/sbref11
http://refhub.elsevier.com/S0148-6195(23)00025-5/sbref11
http://refhub.elsevier.com/S0148-6195(23)00025-5/sbref12
http://refhub.elsevier.com/S0148-6195(23)00025-5/sbref12
http://refhub.elsevier.com/S0148-6195(23)00025-5/sbref13
http://refhub.elsevier.com/S0148-6195(23)00025-5/sbref13
http://refhub.elsevier.com/S0148-6195(23)00025-5/sbref14
http://refhub.elsevier.com/S0148-6195(23)00025-5/sbref15
http://refhub.elsevier.com/S0148-6195(23)00025-5/sbref16
http://refhub.elsevier.com/S0148-6195(23)00025-5/sbref17
http://refhub.elsevier.com/S0148-6195(23)00025-5/sbref17
http://refhub.elsevier.com/S0148-6195(23)00025-5/sbref18
http://refhub.elsevier.com/S0148-6195(23)00025-5/sbref19
http://refhub.elsevier.com/S0148-6195(23)00025-5/sbref20
http://refhub.elsevier.com/S0148-6195(23)00025-5/sbref20
http://refhub.elsevier.com/S0148-6195(23)00025-5/sbref21
http://refhub.elsevier.com/S0148-6195(23)00025-5/sbref22
http://refhub.elsevier.com/S0148-6195(23)00025-5/sbref22
http://refhub.elsevier.com/S0148-6195(23)00025-5/sbref23
http://refhub.elsevier.com/S0148-6195(23)00025-5/sbref24
http://refhub.elsevier.com/S0148-6195(23)00025-5/sbref25

	Multilateral exchange rates: A multivariate regression framework
	1 Introduction
	2 Material and methods
	2.1 Bilateral exchange rates
	2.2 Multilateral exchange rates
	2.3 Decomposing bilateral exchange rates
	2.4 A multivariate regression model
	2.5 Singular system of equations
	2.6 Implicit restrictions
	2.6.1 Introduction
	2.6.2 Absolute explanatory variables
	2.6.3 Relative explanatory variables
	2.6.4 Hybrid explanatory variables
	2.6.5 Summary

	2.7 A multivariate regression model with implicit restrictions

	3 Results
	3.1 Data
	3.2 Multivariate regression model
	3.3 Dependent variables
	3.4 Explanatory variables
	3.5 Multivariate regression output

	4 Conclusion
	Acknowledgement
	References


