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Field‑ and concentration‑ 
dependent relaxation of magnetic 
nanoparticles and optimality 
conditions for magnetic fluid 
hyperthermia
Patrick Ilg 1,3* & Martin Kröger 2,3

The field‑dependent relaxation dynamics of suspended magnetic nanoparticles continues to present 
a fascinating topic of basic science that at the same time is highly relevant for several technological 
and biomedical applications. Renewed interest in the intriguing behavior of magnetic nanoparticles 
in response to external fields has at least in parts be driven by rapid advances in magnetic fluid 
hyperthermia research. Although a wealth of experimental, theoretical, and simulation studies have 
been performed in this field in recent years, several contradictory findings have so far prevented 
the emergence of a consistent picture. Here, we present a dynamic mean‑field theory together 
with comprehensive computer simulations of a microscopic model system to systematically discuss 
the influence of several key parameters on the relaxation dynamics, such as steric and dipolar 
interactions, the external magnetic field strength and frequency, as well as the ratio of Brownian and 
Néel relaxation time. We also discuss the specific and intrinsic loss power as measures of the efficiency 
of magnetic fluid heating and discuss optimality conditions in terms of fluid and field parameters. Our 
results are helpful to reconcile contradictory findings in the literature and provide an important step 
towards a more consistent understanding. In addition, our findings also help to select experimental 
conditions that optimize magnetic fluid heating applications.

The relaxation dynamics of Magnetic Nanoparticles (MNPs) is of great interest in solid state and colloidal sci-
ence. This field of research has received even more attention in recent years when MNPs have found numerous 
technological, environmental, and biomedical  applications1,2. For example, Magnetic Fluid Hyperthermia (MFH) 
is currently studied intensively as a promising method for cancer treatment by field-controlled local heating of 
tissue with the help of  MNPs3–5. In this method, the dissipated heat results from magnetic losses of MNP relaxa-
tion following externally applied oscillating magnetic  fields3,6,7.

One of the main challenges today is to increase the efficiency of this method by determining optimal param-
eter combinations of MNPs and applied  fields3,8. Trial and error approaches are notoriously difficult due to the 
large parameter  space4. Therefore, a better understanding of the physical mechanism underlying this method is 
highly  desirable6,9. While earlier studies focused on magnetic losses of individual  MNPs5,7, many recent works 
consider also the effect of interactions and MNP concentration on heating  efficiency10–16. The latter is typically 
measured in terms of the specific loss power ( SLP ), also called specific absorption rate, which is the volumetric 
work done by the external field per unit cycle and magnetic mass density.

At present, there is a controversy in the literature about the concentration–dependence of the SLP . Several 
experimental studies found SLP decreasing with increasing concentration of MNP (see e.g.10–12 and references 
therein). However, Martinez-Boubeta et al.13 instead reported non-monotonic behavior of SLP with concentra-
tion, recently confirmed by Kim et al.14 This would suggest there might be optimal conditions for MFH in terms 
of MNP concentration which maximize heating  efficiency15. Some works suggested that the different findings 
might be due to intrinsic properties of MNPs and cluster  shapes10,11, the role of Brownian rotational particle 
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 motion17,18, or dipolar  interactions19,20. A recent simulation  study21 that found chain-formation to increase SLP 
seems to support some of these suggestions, whereas a corresponding theoretical  work22 arrives at opposite 
conclusions. To an extent, the confusing and sometimes contradictory findings might be related to the fact 
that these studies are difficult to compare, with some studies considering mobile MNPs, while other consider 
them immobile, and using different MNPs with different magnetic anisotropies or different coatings, adding 
to uncertainties in the effective dipolar interaction strengths. These differences can have pronounced effects on 
the heating  efficiency4,23. Nevertheless, there seems to be agreement that MNP interactions play an important 
role on heating efficiency of MFH and that more research is needed to shed light on these unsolved  issues10–13,19. 
It has been  suggested24,25 that the intrinsic loss power ( ILP ) is a preferable parameter compared to SLP when 
discussing the efficiency of magnetic fluid hyperthermia from ensembles of MNPs. We will follow this sugges-
tion here and report results for ILP.

Besides MFH, relaxation dynamics of interacting MNPs in applied fields is also an interesting topic from a 
theoretical point of view. Starting with the famous Landau-Lifshitz-Gilbert equation of monodomain magnetics, 
the field-dependent relaxation of non-interacting MNPs suspended in viscous liquids has already been studied 
many years  ago26–28 and recently been revisited thanks to more efficient numerical  methods29–32. Over the last 
years, considerable progress has been made to extend analytical results to moderately interacting MNPs within 
dynamical mean-field  theory33–37. These theoretical results, however, rely on the rigid-dipole approximation, i.e. 
they neglect the internal, so-called Néel relaxation and consider Brownian particle rotation only (Fig. 1a). On 
the other hand, a number of simulation studies were performed for the opposite case of immobile MNPs where 
only Néel relaxation is  present38–40, some studies include comparison to the corresponding  experiments41,42. For 
immobile MNPs with strong magnetic anisotropy, interactions are found to lead to weaker heating efficiency, 
whereas the opposite is observed for MNPs with low or zero magnetic  anisotropy22,39,43.

It is interesting to note that the case of interacting MNPs where Brownian particle rotation and internal Néel 
processes are both present is much less explored. It is only in the absence of external magnetic fields and particle 
interactions that Brownian and Néel relaxation can be considered as independent processes. In this case, the 
effective relaxation time τeff  is dominated by the faster process and given  by7

where τB and τN denote the Brownian and Néel relaxation time, respectively. While Eq. (1) is heavily used to 
analyze experimental results, it should be kept in mind that applied magnetic fields or dipolar interactions lead to 
coupling of Brownian and Néel processes, not only invalidating Eq. (1) but also giving raise to non-exponential 
 relaxation44 with corresponding non-Debye susceptibilities.45,46 In the presence of a static external field, it has 
been shown for non-interacting MNPs that the alternating current (AC) magnetic susceptibility can develop 
a bimodal shape where the maximum loss peak might not correspond to the longest relaxation time.32 Cor-
responding experimental  studies45 emphasized in particular the need for improved models to better described 
the field-dependent Néel contribution.

Here, we investigate the field- and interaction-dependent relaxation and AC susceptibility of MNPs by com-
prehensive computer simulation studies and dynamic mean-field theory (Fig. 1b). Thereby, we consider the case 
of mobile and magnetically hard MNPs where Néel processes can be considered as rare, thermally activated 
events occurring alongside rotational diffusion of the nanoparticles. We have verified in our earlier  work32 that the 
simplified diffusion-jump model provides a highly efficient and accurate description in this regime. From kinetic 
mean-field theory we obtain explicit expressions for the effective relaxation times, susceptibilities and SLP as well 
as ILP . These mean-field expressions predict computer simulation results of the underlying microscopic model 

(1)
1

τeff
=

1

τB
+

1

τN
,

Figure 1.  (a) The model system is composed of mobile and magnetically hard spherical MNPs, each 
characterized by diameter σ and magnitude of the magnetic moment µ , while the direction of the moment 
either rotates with the particle (Brownian rotational relaxation time τB ), or flips its direction inside the particle 
(Néel relaxation time τN ). (b) We study an interacting ensemble of N such spherical particles at volume fraction 
φ and temperature T both theoretically and numerically in the presence of an oscillating magnetic field, H(ω) , 
whose strength is characterized by the time-independent Langevin parameter h and the magnitude h̃(ω) of the 
added small oscillating component. Our results will be discussed in terms of dimensionless parameters such as 
h, φ , dipolar interaction strength � ∝ µ2/σ 3kBT , the ratio q = τB/τN , and Langevin susceptibility χL = 8�φ.
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system rather well up to moderate dipolar interaction strengths. Our studies elucidate how dipolar interactions, 
the strength of a static bias field, and the ratio of Brownian and Néel relaxation time influence magnetization 
relaxation and the SLP and ILP . The results obtained here also shed light on the controversy about a possible 
non-monotonicity of SLP with concentration of MNPs and the underlying physical mechanisms. In particular, 
we identify different parameter regimes where SLP and ILP is either monotonically increasing or decreasing 
with concentration or attains a maximum. The latter allows us to identify optimal conditions of fluid and field 
parameters such that ILP and SLP are maximized.

Specific and intrinsic loss power
The central quantity used to measure magnetic fluid heating efficiency is the so-called specific loss power ( SLP ), 
also called specific absorption rate, that measures the volumetric power dissipation P per total mass density ρ of 
MNPs present in the volume element in a time-varying magnetic  field5,25,

In a cyclic process with angular frequency ω , the volumetric power dissipation is given by P = ω
2π µ0

∮

H · dM 
and is therefore proportional to the area enclosed by the hysteresis curve.7 The permeability of free space is 
denoted by µ0 , the external magnetic field H and the magnetization M.

We consider time-varying fields of the form H(t) = H0 + H̃(t) , where a harmonically oscillating field 
H̃(t) = H̃ cos(ωt) is applied in addition to a static field H0 . If the amplitude H̃ = |H̃| is small enough to remain 
within the linear response regime, the resulting magnetization becomes M(t) = M0 + M̃(t) , where M̃ is parallel 
to H̃ and can be written in terms of the in-phase ( χ ′ ) and out-of-phase ( χ ′′ ) component of the susceptibility as 
M̃(t) = H̃[χ ′ cos(ωt)+ χ ′′ sin(ωt)] , such that SLP in Eq. (2)  becomes7

where

denotes the dimensionless Langevin parameter associated with the static field H0 with µ the magnitude of the 
magnetic moment of a single MNP and kBT the thermal energy. Setting h = 0 in the results below corresponds 
to the absence of a static field, H0 = 0 , i.e. when only a weak oscillating field H̃(t) is applied. In principle, the 
oscillating field H̃ can be applied in different directions with respect to the static field H0 . Here, we will focus on 
the case where these fields are applied parallel to each other.8 We denote the corresponding susceptibilities as 
χ‖ to distinguish them from the perpendicular case χ⊥ . In the absence of a static bias field, H0 = 0 , the system 
is isotropic and χ� = χ⊥ = χ.

Due to the appearance of the external factors ω and H̃ in Eq. (3), it has been argued that instead of SLP , the 
intrinsic loss power ( ILP ) should be reported to quantify the efficiency of magnetic hyperthermia from ensembles 
of  MNPs25. The ILP parameter is defined  as24,25

where the last equality follows from the linear response result (3). Since the dimensions of ILP are 
Hm2/kg = m4/(As)2 , we introduce the dimensionless ILP by ILP∗ = ρILP/(πµ0φ) , where ρ/φ denotes the 
mass density of a single MNP. From the relation (5) we obtain the dimensionless

i.e. the dimensionless ILP∗ is equal to the imaginary part of the susceptibility normalized with the volume frac-
tion of magnetic material, thereby justifying the intrinsic nature of this parameter. The density of a single MNP 
with Fe2O3 core is ρ/φ = 5175 kg/m3 , such that we find ILP/ILP∗ ≈ 7.6× 10−10 m4/(As)2 = 0.76 nHm2/kg.

Previous theoretical results
The central quantity governing the loss power in the linear response regime, Eqs. (3) and (5), is the out-of-phase 
component of the AC magnetic susceptibility. For non-interacting MNPs in the absence of externally applied 
fields, the complex susceptibility χ∗ = χ ′ − iχ ′′ is given by the Debye form

where χ0 denotes the zero-frequency susceptibility and τ can be identified with the effective relaxation 
time τeff  defined in Eq. (1). The imaginary part χ ′′

D of the Debye susceptibility (7) entering ILP ∗ is given by 
χ ′′
D = χ0ωτ/[1+ (ωτ)2] and achieves its maximum at ω̂ = 1/τ where χ ′′

D(ω̂) = χ0/2 . The corresponding 

(2)SLP =
P

ρ
.

(3)SLP =
µ0ωH̃

2

2ρ
χ ′′(ω, h),

(4)h =
µ0µ|H0|

kBT

(5)ILP =
SLP
ω
2π H̃

2
=

πµ0

ρ
χ ′′
� (ω, h),

(6)ILP∗ =
χ ′′
� (ω, h)

φ
,

(7)χ∗
D(ω) =

χ0

1+ iωτ
,
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result when inserting the Debye expression χ ′′
D into Eq. (3) or (5) is routinely used to analyze magnetic heating 

 experiments3,7. For non-interacting and thermally blocked MNPs, χ0 can be identified with the Langevin sus-
ceptibility χL = nµ0µ

2/(3kBT) , with n = N/V  the number density of MNPs. Boltzmann’s constant is denoted 
by kB . When internal Néel relaxation is included, χ0 in general depends on the magnetic anisotropy and the 
orientation of the easy axis of the MNPs relative to the oscillating H  field47.

Some  authors45 used the empirical Havriliak-Negami model, originally proposed for dielectric spectra, to 
capture magnetic susceptibilities via

where χ∞ denotes the susceptibility at infinite frequency, α,β stretching exponents and χo = χ∗(0)− χ∞ is 
related to the zero-frequency susceptibility. For the special case α = 0,β = 1 , χ∞ = 0 , and χo = χ0 , one recov-
ers the Debye model χ∗

D(ω) . In the general case, Eq. (8) describes asymmetric and broadened spectra where the 
maximum of the loss peak at ω̂ is not necessarily located at 1/τ , i.e., ω̂ depends nonlinearly on τ and the remaining 
Havriliak-Negami parameters. Experimental susceptibility data could be well fitted to Eq. (8).45 However, due to 
its empirical nature, the microscopic foundation of the Havriliak-Negami model remains unclear in the present 
context, which makes the interpretation of the fit parameters challenging.

In the presence of a static external field, the susceptibilities and thus SLP and ILP depend on the orientation 
of the weak field oscillating relative to the static field. Within the classical model of non-interacting rigid dipoles, 
the AC susceptibilities for parallel and perpendicular orientations relative to the applied static field are obtained 
using the effective field approximation (EFA)27 as

with L1(x) = coth(x)− 1/x the Langevin function. The corresponding field-dependent relaxation times τ �,⊥(h) 
are discussed in detail later. The EFA Eqs. (9)–(10) hold only for non-interacting and thermally blocked MNPs. 
Recent works have shown that a modified mean-field approximation is able to extend these results to include 
dipolar interactions up to moderate  strengths35,48. However, it remains unclear how Eqs. (9), (10) can be general-
ized beyond the rigid-dipole approximation, i.e. how Néel relaxation can be included alongside dipolar interac-
tions. We found corrections to the Debye model due to Néel relaxation in terms of a diffusion-jump  model49, 
but these results were restricted to zero external field.

In this context, it should be noted that the relaxation times τ are treated as fit parameters when Eqs. (7) 
and (8) are used to fit experimental  data10,45,46,50. Below, starting from a microscopic model, we aim to derive a 
generalization of Eqs. (9), (10) which allows us to include the field-induced effects of Brownian as well as Néel 
relaxation with no adjustable parameters.

Results of dynamic mean‑field theory
In the following, we study the effects of interparticle interactions and externally applied magnetic fields on the 
effective relaxation behavior of a system composed of N spherical particles contained in a volume V, where 
each particle carries a magnetic moment µui , i ∈ {1, . . . ,N} , whose orientation is encoded by the unit vector 
ui . Thereby, we are especially interested in the dynamics of the magnetization M which is defined as the total 
magnetic moment per unit volume, M =

∑N
i=1 µ�ui�/V = Msatm , where Msat = Nµ/V  denotes the saturation 

magnetization and

a mean dimensionless magnetization per particle. Here and in the following, time-dependent configurational 
averages are denoted by �·� . Within the many-body diffusion-jump  model49 considered here, the magnetization 
equation can be written as

Details of the model and derivation of Eq. (12) are provided in the Methods section. We note that Eq. (12) does 
not represent a closed-form magnetization equation as it includes higher-order correlations due to the coupling 
of the local field hloci  to other particles, see Eq. (37). To make further analytical progress with Eq. (12), we assume 
the local field to be identical for all particles, hloci = h

loc . Furthermore, we assume that cross-correlations in the 
Néel relaxation can be neglected. Under these assumptions, Eq. (12) simplifies to

(8)χ∗
HN(ω) = χ∞ +

χo

[1+ (iωτ)1−α]β
,

(9)χ∗
� (ω, h) = χL

3L′1(h)

1+ iωτ �(h)

(10)χ∗
⊥(ω, h) = χL

3L1(h)/h

1+ iωτ⊥(h)
,

(11)m = �u� =
1

N

N
∑

i=1

�ui�,

(12)
d

dt
m = −

1

τB
m+

1

2τBN

N
∑

i=1

(

�hloci � − �uiui · h
loc
i �

)

−
1

τNN

N
∑

i,j=1

�uj e
−ui ·h

loc
i �.

(13)
d

dt
m = −

1

τB

[

m−
1

2

(

h
loc − �uu� · hloc

)

]

−
1

τN
�u e−u·hloc �.
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We will specify to particular mean-field approximations later. For the moment, we only assume hloc = hlocĥ 
with hloc = hloc(h) . Furthermore, we employ the effective field approximation (EFA) introduced by Martsenyuk 
et al.51 Since EFA assumes that Brownian motion randomizes dipolar orientations sufficiently, we expect this 
approximation to limit the results of this section to the regime τN ≫ τB , and thus, q ≪ 1 , i.e. corrections to the 
rigid-dipole approximation. Within EFA, we find that the long-time relaxation is described by

with ĥ = H0/|H0| and the field-dependent relaxation times, τ ‖ and τ⊥ , parallel and perpendicular to the applied 
field,

Details of the derivation can be found in the Methods section. Equations (15) and (16) show additivity of the 
field-dependent rates resulting from Brownian and Néel relaxation. These results involve the Langevin function 
L1 defined after Eq. (4) and its derivative L′1(x) = x−2 − sinh−2(x) . In the absence of Néel relaxation, τN → ∞ , 
these expressions for the relaxation times agree with those derived  earlier35,52.

To arrive at more explicit expressions, we need to specify hloc , i.e. choose a particular mean-field approxima-
tion. In the first order modified mean-field theory (MMF1), we have hloc = h+ χLL1(h)

53. Within the rigid-
dipole approximation, MMF1 was found to provide accurate predictions for the relaxation dynamics in case 
χL � 0.537,54,55. Using MMF1, explicit expressions for Eqs. (15) and (16) up to first order in χL are obtained, see 
Eqs. (49)–(54). We verified that the Brownian contributions to these expressions agree with existing  results34. 
To cover also stronger dipolar interactions, a second-order modified mean-field theory (MMF2) had been pro-
posed  with56

Inserting this expression for hloc into Eqs. (15) and (16) and expanding to second order in χL leads to rather 
cumbersome expressions. For weak applied fields h, the relaxation times simplify to

where τeff = τB/(1+ q) defined in Eq. (1) denotes the effective single-particle relaxation time in zero field. The 
six coefficients c�,⊥k  appearing in Eq. (18) are given in Eqs. (55)–(57), while the h-independent coefficients are 
identical for parallel and perpendicular relaxation and reduce to 1+ χL/3+O(χ2

L ) for q → 0 , in agreement 
with existing predictions.49

From Eq. (18), because the c0 ’s are negative, we see that initially τ ‖ decreases quadratically with increasing 
field strength h. We also note from Eq. (15) that the Néel contribution is non-monotonic in the effective field 
strength, i.e. the corresponding rate changes from increasing to decreasing around hloc ≈ 2 . Consequently, for 
fixed q and sufficiently large hloc , we find τ ‖ to be governed by the Brownian contribution and decrease corre-
spondingly, while the Néel contribution freezes out.

To calculate also the dynamic magnetic susceptibility, we consider a weak, time-dependent magnetic field 
h̃(t) = µ0µH̃(t)/kBT , |h̃| ≪ 1 , that is externally applied in addition to the static field H0 . Repeating the above 
calculations, we arrive with δm� = m� −meq and h̃� = h̃ · ĥ , at (d/dt)δm� = −δm�/τ � + (α�/3)h̃

�(t) Similarly, 
for the perpendicular component we find (d/dt)m⊥ = −m

⊥/τ⊥ + (α⊥/3)h̃
⊥(t) , from which we infer the two 

susceptibilities

with amplitudes

(14)
d

dt
m = −

1

τ �
(m� −meq)ĥ−

1

τ⊥
m

⊥,

(15)
1

τ �
=

1

τB

L1(h
loc)

hlocL′1(h
loc)

dh

dhloc
+

1

τN

hloc

3 sinh(hloc)L′1(h
loc)

,

(16)
1
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1
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2L1(hloc)

h
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+

1

τN

(hloc)2
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(17)hloc = h+ χLL1(h)+
1

16
χ2
LL1(h)L

′
1(h).

(18)
τ �,⊥

τeff
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χL

3(1+ q)
+

(1− 15q)χ2
L

144(1+ q)2
+

(
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�,⊥
0 + c
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1 χL + c
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2 χ2

L

)

h2 +O(h4,χ3
L), q ≡

τB

τN
,

(19)χ�,⊥ = χL
τ �,⊥α�,⊥

1+ iωτ �,⊥
,

(20)α� =
3L1(h

loc)

τBhloc
+

hloc

τN sinh(hloc)
,

(21)α⊥ =
3(1− L1(h

loc)/hloc)

2τB
+

hloc

τN sinh(hloc)
.
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In the present approximation, due to linearizing the relaxation dynamics (14) near equilibrium, the susceptibil-
ity (19) is of the Debye form and peaked at the relaxation times τ �, τ⊥ , respectively. Besides the location, also 
the height of the peak shows a dependence on the static field strength h. For h → 0 we find isotropic behaviour 
with α� = α⊥ = 1/τeff  , as expected.

The field-dependence of the Brownian contribution to the susceptibility has been calculated within EFA 
already some time  ago27, at least for non-interacting MNPs. For the Néel contribution, most results in the lit-
erature are obtained for frozen particles without Brownian contribution and given (often isotropic) orientation 
of easy  axes27,39. The case of mobile MNPs with Brownian and Néel contributions both present considered here 
has been hardly explored so far from a theoretical point of view.

With the susceptibilities at hand, we are now able to discuss the parameters SLP and ILP . As stated above, we 
follow  Refs24,25. and focus first on the parameter ILP . For concreteness, we specify in Eq. (6) to the case where the 
oscillating field is parallel to the static field. Inserting the mean-field result (19) into Eq. (6) we obtain

From Eq. (22), we find that the frequency dependence of ILP∗ follows the classical Debye law (7), i.e. first 
increases monotonically with frequency ω of the applied field, reaching a maximum at ω̂ = 1/τ � before decreas-
ing to zero for further increasing frequencies.

For weak fields and concentrations, the amplitude (20) decreases quadratically with h and linearly with χL,

where q ≡ τB/τN , as before. In the same limit, the relaxation times are given by Eq. (18) so that we obtain from 
Eq. (22) for all q and ω and for small h and χL,

where qw serves as a useful abbreviation. From Eq. (24) we find that ILP∗ is independent of the magnetic field 
strength h and increases initially with the dipolar interaction strength for h ≪ 1 and χL ≪ 1 . In the weak field 
regime where Eq. (24) holds, the dependence of ILP∗ on interaction strength χL changes, i.e. develops a maxi-
mum with respect to χL at

provided that qw > 0 . This condition is satisfied either (i) for any frequency if q > 3/5 ; or (ii) if q < 3/5 (i.e. 
τeff /τB > 5/8 ) and (ωτeff )2 > (9− 15q)/(23+ 15q) . Thus, we expect a maximum in ILP to occur as a function 
of dipolar interaction strength or concentration when the frequencies ω are large enough. Note, however, that 
ILP∗ decreases for frequencies larger than τ−1

eff  , so this regime might not be very relevant for MFH applications. 
The other case when ILP develops a maximum with concentration occurs if τB is as large or larger than τN.

(22)ILP∗ = 8�τ �α�
ωτ �

1+ (ωτ �)2
.

(23)τeffα� = 1−
2+ 5q

30(1+ q)

(

1+
2

3
χL +

1

8
χ2
L

)

h2 +O(h4,χ3
L),
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8�ωτeff

1+ (ωτeff )
2

[

1+
2

3(1+ q)[1+ (ωτeff )
2]
χL −

qw

[1+ (ωτeff )
2]2

χ2
L

]

+O(h2,χ3
L),

(25)qw ≡
5

24(1+ q)
[1+ (ωτeff )

2] −
1

9(1+ q)2
[3− (ωτeff )

2].

(26)χ∗
L =

1+ (ωτeff )
2
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Figure 2.  (a, b) The mean-field result (22) for the dimensionless ILP∗ as a function of the applied field strength 
h and volume fraction φ . The remaining parameters are chosen as ωτeff = 1 , � = 4 , with q = 0.01 in panel (a) 
and q = 1 in panel (b). The solid black line indicates φ∗ ≡ χ∗

L /8� , where χ∗
L is given in Eq. (26). (c) The mean-

field prediction for the critical field strength hc versus ωτeff and q. For h < hc , the ILP∗ initially increases with 
MNP concentration, whereas the opposite is the case for h > hc . The analytic approximation (59) reproduces the 
exact mean-field result for hc qualitatively, and quantitatively for ωτeff > 1 . Contour lines equidistantly spaced at 
�hc = 0.1 intervals up to hc = 1.7.
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Figure 2a,b illustrates the mean-field result (22) for ILP∗ for frequency ω = 1/τeff , dipolar interaction strength 
� = 4 and two values for q = 0.01 and q = 1 . As expected, ILP∗ develops a maximum as a function of φ in cer-
tain cases. We note that the predicted location of the maximum, φ∗ = χ∗

L /8� with χ∗
L given by Eq. (26), is only 

approximate since it was derived for weak fields and small concentration. From Fig. 2a,b we furthermore find 
that applying a constant bias field h leads to a decrease of ILP∗ . The initial quadratic decrease is worked out in 
the Methods section, Eq. (58). The dependence of ILP∗ on concentration is more involved, showing increasing 
as well as decreasing behavior. We define a critical field hc by limχL→0 dILP

∗/dχL = 0 , i.e. where ILP∗ changes 
from increasing to decreasing trend with interaction strength χL at small concentrations. Note that within mean-
field theory, this critical field is independent of the dipolar interaction strength � . Figure 2c presents a contour 
plot of hc , showing that it tends to decrease to zero with q and ωτ , with its maximum hc ≈ 1.7104 for q → 0 and 
ωτeff → 0 . Taking into account terms up to order O(h2,χL) in ILP∗ , we find an explicit expression for hc given 
by Eq. (59). For the special case ωτeff = 1 , this expression simplifies to h2c = 15/[2(5+ 3q)].

Figure 3 shows an overview of the different qualitative behaviors of ILP∗(φ) according to the mean-field 
prediction (22). For different values of the dipolar interaction strength � and frequencies, we show the behavior 
of ILP∗ in the plane spanned by the ratio of relaxation times q and the field strength h. We distinguish between 
different types of increase with φ (blue colors), existence of a maximum (green), and different forms of decreas-
ing with φ (yellow and red colors). We observe from Fig. 3 that the ILP∗ behavior shows pronounced changes 
with h, but varies only weakly with q. We also observe that the critical field given by Eq. (59) is a good predictor 
for the location of a local maximum in ILP∗ as a function of concentration, especially at high frequencies, where 
hc is low enough to be captured by a fourth-order approximation. For ωτeff = 6 , for example, we find hc to be 
small enough such that the analytic expression (59) captures the transition from initial increase of ILP∗ with 
concentration to a decrease accurately.

We will continue the discussion of ILP∗ in more detail later when comparing these predictions to simulation 
results. But before, we first evaluate the accuracy and limits of validity of the mean-field results presented in this 
section via a detailed comparison to simulation results of the model system presented above.

Simulation results and comparison to theory
Dynamic properties of the system within linear response regime are encoded in the complex magnetic suscep-
tibility χ∗

γ (ω) . Since dynamic properties are anisotropic in the presence of a static external field H0 , we distin-
guish parallel and perpendicular components of the susceptibility with respect to H0 . These quantities can be 
computed by the formula

where we introduced the auto-correlation function

with the fluctuations δUγ (t) = Uγ (t)− �Uγ � , where Uγ (t) = N−1
∑N

j=1 uj,γ (t) denotes the instantaneous γ
-component of the reduced magnetization. The dot in Eq. (27) denotes the time derivative. The static (or zero-
frequency) susceptibility is given by χγ (0) = 3NχLCγ (0).

Figure 4 shows the imaginary ( χ ′′
�  ) part of the complex susceptibility χ∗

� (ω) = χ ′
�(ω)− iχ ′′

� (ω) parallel to the 
applied field. The simulation data are obtained by numerically evaluating Eq. (27) from the correlation functions 
Cγ (t) for a range of frequencies ω . The correlation functions themselves are calculated by evaluating Eq. (28) from 
computer simulations in the stationary state using time averages. Up to moderate dipolar interaction strengths 

(27)χ∗
γ (ω) = −χγ (0)

∫ ∞

0

Ċγ (t)

Cγ (0)
eiωtdt, γ ∈ {�,⊥}

(28)Cγ (t) = �δUγ (t)δUγ (0)�,

Figure 3.  Qualitative theoretical behavior of ILP ∗ versus Langevin parameter h and the ratio q, for a particular 
� and for three different dimensionless frequencies ωτeff in (a)–(c). All colors (except for circles) based on 
theoretical MMF2 behavior of ILP ∗ defined in Eq. (6) in φ ∈ [0, 0.1] : (1) ILP ∗ increases monotonically+convex 
with φ , (2) increases monotonically but neither convex nor concave, (3) increases monotonically+concave, (4) 
goes through a maximum, (5) decreases monotonically+concave, (6) decreases monotically but neither convex 
nor concave, (7) decreases monotonically convex. Region (1) is absent for the present range of parameters. The 
green region (4) is the one which exhibits a local maximum, for all blue regions ILP ∗ increases with φ . Beyond a 
certain critical h = hc (interfacial line between green and orange), ILP ∗ decreases with φ in any case. Black line 
shows our analytical approximation (59) for the critical field strength hc where the initial ILP ∗ changes from 
increasing to decreasing with φ . The analytical expression works very well only for hc ≪ 1 , as it was obtained via 
Taylor expansion about h = 0 . Colored circles mark simulation results for q ∈ {0.01, 1}.
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( � ≤ 2 ), we find that the susceptibilities are well described by a Debye form. Moreover, as seen in Fig. 4a,b, the 
mean-field result (19) with Eqs. (15) and (20) is found to predict the simulation data quite accurately for all field 
strengths and over a broad range of model parameters. We emphasize that no fitting parameter is involved in 
the comparison between mean-field theory and simulation results. For strong dipolar interactions, the MMF2 
approximation is no longer accurate (see e.g. Fig. 9 and  Refs49,54.) and the mean-field predictions (19) are therefore 
less reliable. From Fig. 4c,d we indeed find not only quantitative discrepancies, but that the dynamic magnetic 
susceptibility can no longer be accurately described in terms of a Debye model. Instead we find that the data can 
be fitted to the Havriliak-Negami model, Eq. (8). There, the stretching exponents α and β describe the asymmetric 
and broadened shape of the susceptibility spectra. For � = 4 and φ = 0.02 , best fits are obtained for parameter 
values (α,β) = (0.05, 0.77), (0.07, 0.77), (0.13, 0.78), (0.21, 0.70) for q = 0.01 and h = 0.5, 1, 2, 10 , respectively. 
And correspondingly for q = 1 these values are (α,β) = (0.09, 0.83), (0.14, 0.91), (0.19, 0.98), (0.26, 1.56) . Thus, 
the values of the stretching exponent α are found to increase with magnetic field strength h, reflecting a broad-
ening of the relaxation spectrum. Interestingly, the asymmetry parameter β behaves differently for q = 0.01 and 
q = 1 . While β remains rather insensitive to h for q = 0.01 , a significant increase of β with h is found for q = 1 . 
We also note the development of a shoulder at low frequencies for strong fields that is not captured by Eq. (8).

Next, we define characteristic relaxation times τ ′′ω = 1/ω̂ from the peak frequencies ω̂ of χ ′′
�  . In the parameter 

range investigated here, χ ′′
�  shows a single peak so that we can obtain ω̂ unambiguously from a fit to the Debye 

function (7) in the vicinity of the maximum. Figure 5 shows the corresponding relaxation times τ ′′ω as a func-
tion of the dimensionless field strength h. While the field-dependent decrease of the effective relaxation times 
has already been studied within the rigid-dipole approximation by several  authors33–37, our results extend these 
studies beyond the rigid-dipole approximation by including additional Néel relaxation. We observe from Fig. 5 
that additional Néel contributions do not change qualitatively the decrease of the effective relaxation times with 
increasing field strength. In the absence of an external field ( h = 0 ), dipolar interactions increase the effective 

Figure 4.  Stochastic simulations versus theory at volume fraction φ = 0.02 . The imaginary part of the 
reduced dynamic magnetic susceptibility χ∗

� (ω)/χ�(0) parallel to the applied field is shown as a function of 
reduced frequency ωτeff . Data for several values of the constant bias field h ∈ {0.5, 1, 2, 10} are included. Other 
parameters are chosen as � ∈ {2, 4} and q ∈ {0.01, 1} in (a)–(d). Simulation results obtained from Eq. (27) for 
selected frequencies are indicated by circles. In panels (a) and (b), solid lines show the corresponding theoretical 
results (19) with τ ‖ , α‖ , and hloc calculated from Eqs. (15), (20), and (17). In panels (c) and (d), solid lines show 
fits of the simulation results to Eq. (8); fitting parameters are mentioned in the text part. Simulations were 
performed using N = 2000 ( � = 2 ) and N = 10000 ( � = 4 ) particles for a duration of 2× 105τB.

Figure 5.  Stochastic simulations versus theory. Characteristic relaxation times τ ′′ω = ω̂−1 obtained from the 
peak frequencies ω̂ of χ ′′

�  shown in Fig. 4 normalized with the effective relaxation time τeff defined by Eq. (1). 
Data are shown as a function of applied field strength h for (a) the same parameter values as in Fig. 4, i.e., 
φ = 0.02 , � = 2 , and (b) φ = 0.02 , � = 4 . Solid lines show the corresponding mean-field predictions (15) for 
the long-time relaxation times. Simulations were performed using N = 2000 ( � = 2 ) and N = 10000 ( � = 4 ) 
particles for a duration of 2× 105τB.
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relaxation times, τ ′′ω > τeff  , as already discussed by us  earlier49 (see also Ivanov and  Camp57 for a corresponding 
study in the rigid-dipole limit). It is interesting to note that the field-induced decrease of τ ′′ω/τeff  is strongest in 
the rigid-dipole limit q → 0 and that larger values of the ratio q = τB/τN lead to a more gradual decrease of the 
relaxation times with h. We also point out that for � = 2 , the mean-field approximation (15) provides accurate 
predictions for τ ′′ω except for weak fields and q = 1 where Eq. (15) underestimates the relaxation times. In the 
rigid-dipole limit, a modified Weiss mean-field approach was found to be more accurate than modified mean-
field approximation for the relaxation  dynamics57. It will be interesting for future work to explore the accuracy 
of such an approach for field-dependent relaxation times beyond the rigid-dipole approximation. For � = 4 , the 
MMF2 approximation is no longer applicable and the corresponding mean-field result (15) seriously underes-
timates τ ′′ω for weak fields ( h � 2).

The deviation of the dynamic magnetic susceptibility from the Debye form reflects the non-exponential nature 
of the magnetization relaxation. As we have pointed out  previously32,49, different characteristic relaxation times 
can be defined in this case, where the longest relaxation time does not necessarily correspond to the maximum 
in χ ′′ . Therefore, Fig. 6 compares different definitions of characteristic relaxation times. In addition to τ ′′ω defined 
from the peak frequency of χ ′′

�  , we also show the integrated relaxation time, τ̄ =
∫∞
0 C�(t)dt , a quantity that 

is often discussed for non-exponential  relaxation49,58. Furthermore, we also consider the short time relaxation 
time τshort obtained from the initial slope of the autocorrelation function (28), τ−1

short = −(d/dt) ln C�(t)|t=0 . 
Finally, we also show in Fig. 6 the long-time relaxation time τlong that governs the late stages of the relaxation. 
To determine τlong , we fit a double-exponential form to the autocorrelation function (28),

where 0 ≤ c ≤ 1 is a weight factor. Having already determined τshort , Eq. (29) contains only two fit parameters 
due to the relation τ−1

short = (1− c)τ−1
long + cτ−1

1  . We use a Bayesian information criterion to decide between sin-
gle– ( c = 0 ) and double– ( c  = 0 ) exponential fits (see Ref.49 for more details on this procedure). When fitting data 
for � = 4 to the Havriliak-Negami model, there is in principle also the fit value of the effective relaxation time τ 
in Eq. (8). We find this fit value to coincide with τ ′′ω within a factor 2–3 for these parameters. To not overburden 
the graph, we do not include this quantity in the comparison in Fig. 6. We observe from Fig. 6 that these differ-
ent relaxation times agree with each other rather well for � = 2 . Some discrepancies can be discerned for weak 
external fields h, where τ̄ ≈ τlong are found to be somewhat larger than τ ′′ω ≈ τshort . For strong fields, all four 
definitions become indistinguishable. For strong dipolar interactions ( � = 4 ), however, significant differences 
are apparent. Except for very weak fields, τ̄ is found to be the larger than the other relaxation times. In addition, 
for weak up to moderate field strengths, τlong and τ ′′ω are found to be roughly similar to each other, while τshort is 
smaller, reflecting a faster initial relaxation. For strong fields, τlong , τ ′′ω and τshort become identical. Thus, besides 
the failure of MMF2 for strong dipolar interaction strengths, linearizing the magnetization Eq. (14) in addition 
misses the important distinction between τshort and τlong.

We next turn our attention to results for the ILP relevant for hyperthermia applications. Here, we limit 
ourselves to the linear response regime where the intrinsic loss power is given by Eq. (5). Thus, in addition to 
the frequency dependence shown above, we now focus on the field- and concentration dependence, as well as 
the influence of ratio q of Brownian and Néel relaxation times. To check the accuracy and limits of validity of 
the mean-field prediction (22), we compare this expression to our simulation results for the susceptibilities χ ′′

� .
The dimensionless ILP∗ , Eq. (6), as a function of the volume fraction φ of MNPs is shown in Fig. 7a; the 

dipolar interaction strength is chosen as � = 2 . Results for different field strengths h and different dimensionless 
frequencies ωτeff of the external magnetic field are shown. Both of these parameters are seen to have a substantial 
effect on SLP∗ . The ratio q of Brownian to Néel relaxation time, on the other hand, has only a minor impact on 
ILP∗ , as seen by a comparison of the data for q = 0.01 and q = 1 . Depending on the chosen parameters, we find 
ILP∗ increasing or decreasing with φ , in qualitative with mean-field predictions. We also find that the mean-field 

(29)
C�(t)

C�(0)
= (1− c)e−t/τlong + c e−t/τ1 ,

Figure 6.  Stochastic simulation results at volume fraction φ = 0.02 . Comparison of different relaxation times, 
τ ′′ω , τ̄ , τshort , τlong , defined in the text normalized with τeff defined by Eq. (1). Data are shown as a function of 
applied field strength h for the same parameter sets as in Fig. 4, i.e., � ∈ {2, 4} and q ∈ {0.01, 1} (parameters 
mentioned in panels). Note the different scales on the y-axis. Simulations were performed using N = 2000 
( � = 2 ) and N = 10000 ( � = 4 ) particles for a duration of 2× 105τB.
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prediction (22) provides a rather accurate quantitative description of the simulation data for most parameter 
values. In Fig. 7b, we again show ILP∗ as a function of φ , but for stronger dipolar interactions, � = 4 . Again, we 
compare stochastic simulation results to the mean-field prediction (22). We observe that the values of ILP∗ are 
significantly increased compared to the case � = 2 for all concentrations, field strengths and frequencies. This 
increase is in agreement with the mean-field prediction (22). Although strong dipolar interactions are beyond 
the range of validity of the MMF2 approximation, this mean-field result still describes ILP∗ semi-quantitatively 
for small concentrations or strong enough fields as long as the frequencies are not too high, ωτeff ≤ 1.

We want to emphasize that the mean-field predictions agree with the simulation results also on a more 
qualitative level, as summarized in Fig. 3, showing that ILP∗ increases with φ for small magnetic field strengths 
h, but decreases for large fields. From Fig. 7a for � = 2 , ωτeff = 0.5 and 1, we indeed find ILP∗ increasing with φ 
for h ≤ 1 and decreasing for h ≥ 2 . Similarly, from Fig. 7b for � = 4 , ωτeff = 0.5 and 1, ILP∗ increases with φ for 
h = 0.5 , goes through a maximum for h = 1 , and decreases with φ for h ≥ 2 . We note that the maxima in this 
regime are very shallow on the scales presented in Fig. 7.

Having presented our results on ILP , we close this section with a discussion on an alleged correlation between 
SLP and cluster  sizes10,11. Based on their experimental results, a phenomenological relation between SLP and 
the mean chain size 〈n〉 of MNPs was suggested. Branquinho et al.11 argued that strong dipolar interactions 
decrease SLP whereas weak interactions increase SLP , such that SLP attains a maximum for rather short chains, 
�n� ∼ 2 . . . 6 . Note that the concentration and dipolar interaction dependence of SLP and ILP are identical since 
these quantities differ only by the frequency and squared amplitude of the oscillating field, see Eq. (5). Therefore, 
the proposed relation SLP(〈n〉) should be inherited by ILP(〈n〉).

Here, we test this hypothesis using a cluster analysis of MNP configurations obtained from our computer 
simulations. We adopt a commonly employed energy criterion (see e.g.58,59) according to which two MNPs 
belong to the same cluster if their dipolar interaction energy satisfies �dd

ij /kBT ≤ −1.5 � . From analyzing many 
statistically independent snapshots, we calculate the average cluster size 〈n〉 . In agreement with earlier results, 
Fig. 8a finds 〈n〉 increasing with h, φ , and � . For the chosen parameters, average cluster sizes are found to be rather 
small, �n� ∼ 1 . . . 2 . In Fig. 8b, we plot ILP∗/� parametrically versus 〈n〉 for different values of the magnetic field 
h and different dipolar interaction strengths � . While both parameters, h and � , have a significant influence on 
ILP , Fig. 8b clearly shows that their combined effect is not captured by the average cluster size 〈n〉 alone, since 
the same value of 〈n〉 can correspond to rather different values of ILP∗ . Note that the quantity ILP∗/� depends 
on 〈n〉 and h, but is approximately independent of � in this regime. These findings demonstrate that one has to be 
very careful using phenomenological arguments in terms of rigid chain-like aggregates to explain the behavior 
of SLP or ILP in this parameter regime.

Figure 7.  Stochastic simulations versus theory. The dimensionless intrinsic loss power ILP ∗ (6) as a function 
of volume fraction φ , for different field strengths h ∈ {0.5, 1, 2, 10} , q = 0.01 (open symbols) and q = 1 (filled 
symbols) at (a) � = 2 using N = 2000 particles and (b) � = 4 using N = 10000 particles (simulation: open and 
closed symbols, theory Eq. (22): dashed and solid lines). For both cases (a) and (b) the figure shows result at 
three different frequencies: ωτeff = 0.5 (left), ωτeff = 1 (middle), and ωτeff = 6 (right) with τeff from Eq. (1).
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Conclusions
In this communication, we have developed a kinetic mean-field theory and performed extensive computer 
simulations of the dynamics of a microscopic model system that accounts for steric and dipolar interactions 
between MNPs, as well as their Brownian and Néel relaxation in the presence of external magnetic fields. Explicit 
expressions for the field-dependent relaxation times are obtained by a combination of modified mean-field theory 
and effective field approximation. The theoretical expressions are seen to provide a rather accurate prediction 
of the simulation results over a broad range of parameters, including weak up to moderate dipolar interaction 
strengths. Mean-field theory and simulations both show that the dynamic magnetic susceptibility and the SLP 
and ILP depend not only on the magnitude and frequency of the external magnetic field, but also on the con-
centration and intrinsic properties of the MNPs and their environment. Our mean-field results allow us to map 
out the qualitative behavior of the SLP and ILP over a broad range of model parameters. In particular, we explore 
parameter regions where the ILP increases with MNP concentration, regions where ILP decreases, and where 
a maximum in ILP is expected. We have tested these theoretical predictions and overall obtained good, often 
quantitative, agreement with simulation results. Therefore, our findings help to maximize ILP by identifying 
optimal conditions not only for the external magnetic field strength and frequency, but also for MNP properties, 
concentration and environment, via dipolar interaction strength and ratio of Brownian to Néel relaxation time. 
Our theoretical results become inaccurate for strong dipolar interactions where modified mean-field theory is 
known to break down. In this regime, we also observe deviations from Debye-like susceptibilities, pointing at 
the importance of non-exponential relaxation behavior. Extensions of the theory to strong dipolar interactions 
which are able to capture these effects are left for future work.

The presented results can be used to support several experimental findings and interpretations. In the experi-
ments reported by Piñeiro-Redondo et al.17, for example, SLP was reported to increase or decrease with concen-
tration when MNPs with smaller or larger steric shells were used, respectively. Since the size of the steric shell 
affects the Brownian but not the Néel relaxation time, their observations can be rationalized with our model 
using different values of q. For the experiments reported by Kim et al.14, the ratio q is very small and frequencies 
higher than 1/τeff  are chosen. For these conditions, the critical field hc defined in Eq. (59) is small and since field 
strengths h > hc were applied by Kim et al.14, all their experiments in the dilute regime showed SLP decreasing 
with increasing concentration, in qualitative agreement with our mean-field result. In the opposite limit of slow 
Brownian relaxation, q ≫ 1 , we find the critical field to become very low for any frequency, hc ∼ O(q−1/2) . 
Although the approximation (EFA) we use is not quantitatively accurate in this regime, a number of experiments 
for quasi-immobilized MNPs indeed find SLP to decrease with increasing  concentration10,60.

Some authors have put forward a phenomenological model to explain the behavior of SLP in terms chain-
like structures formed by  MNPs11. We have tested this idea using a detailed cluster analysis applied to many 
MNP configurations obtained in our computer simulations. In agreement with earlier results, we confirm that 
stronger dipolar interactions and larger field strengths lead to an increase in the effective cluster size 〈n〉 of 
MNPs. However, we find that the corresponding increase in ILP or SLP can not be explained by the change in 〈n〉 
alone, strongly suggesting that the phenomenological model is too simplistic for the parameter region investi-
gated here. A more qualitative explanation for the non-monotonic concentration-dependence of SLP has been 
 proposed14 based on the relative importance of various energy contributions. For large enough concentrations, 
these authors also assume rigid, chain-like structures to dominate the response, leading to SLP decreasing with 
increasing concentration. For lower concentrations, incoherent modes are postulated to dominate since dipolar 
interactions are balanced by steric and magnetic field interactions. In this regime, it is argued that SLP increases 
with increasing concentration. Within our study, we have not detected evidence supporting this picture. Instead, 
our studies reveal that SLP and ILP need to be considered in the wider parameter space including the external 
field as well as the fluid parameters.

Steric and dipolar interaction effects are of great interest in the recent literature on relaxation and power 
absorption of suspended MNPs in general. In view of biomedical applications such as hyperthermia, magnetic 

Figure 8.  Stochastic simulation results. (a) Mean cluster size 〈n〉 versus volume fraction φ . (b) Testing 
a proposed relation between ILP ∗ and mean cluster  size11, shown is ILP ∗/� versus 〈n〉 as this quantity is 
insensitive to � at small 〈n〉 . Parameters are chosen as N = 10000 , q = 1 , h ∈ {0.5, 1, 2} , ωτeff = 1 and different 
φ ∈ [0, 0.1] for � = 4 (filled squares) and � = 5 (open circles). The result in (b) is qualitatively unaffected by 
ωτeff.
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particle imaging or magnetic spectroscopy, this interest is in part driven by notorious agglomeration kinetics 
occurring in biological  environments61. The vastly different time scales influencing MNP dynamics presents a 
major challenge for modelling and simulations. Although our model allows us to consider different degrees of 
MNP rotational mobility relative to internal Néel relaxation processes, further work is needed to better under-
stand the interplay between MNP relaxation and agglomeration kinetics in biological environments.

Methods
Model system
We here employ the same model system that we studied  earlier49, but now include an externally applied mag-
netic field. In order to make the paper self-contained, we here give a brief description of the model, referring 
the reader to the existing publication for more details and the original  Ref62. for a justification of the model in 
the dilute, non-interacting limit.

Interaction potential
Our system consists of N interacting particles (MNPs) in a volume V, corresponding to a volume fraction 
φ = πnσ 3/6 with effective diameter σ . We denote with ri and µi = µui the position and magnetic moment of 
particle i, respectively, with i = 1, . . . ,N  . The three-dimensional unit vectors ui denote the orientation of the 
magnetic moment. For simplicity, we consider monodisperse systems where the magnitude µ = |µi| of the 
magnetic moment is identical for all particles. Generalizations to polydisperse systems are straightforward.

Interparticle interactions as well as the interaction with the external magnetic field H are described by the 
potential

with h = µ0µH/kBT  the dimensionless external field, and where �dd
ij  denotes the point-dipole interaction 

between particles i and j,

The unit vector pointing from particle j to i is defined by r̂ij = (ri − rj)/rij with rij = |ri − rj| . The dipolar inter-
action parameter

plays an important role since it measures the strength of dipole-dipole interactions relative to thermal  energy63. 
Note, that the two dimensionless parameters h and � adsorb µ0 , µ , kBT , and H, while σ sets the length unit.

The spherically symmetric contribution �s
ij describes steric repulsion among the particles and is commonly 

modelled by a purely repulsive Lennard-Jones potential,

where rc = 21/6σ and �(x) = 1 if x > 0 and zero otherwise, denotes the Heaviside step function. The Lennard-
Jones parameter ε controls the strength of the repulsion, whereas σ is a measure for the hydrodynamic particle 
diameter. In the following, we fix ǫ = kBT , such that the static properties are fully determined by the dimension-
less parameters φ , � , h. Static properties of dipolar systems in an applied magnetic field described by Eq. (30) 
have been studied in the literature to great extent, as also reflected by existing  reviews64,65.

It should be noted that the potential (30) does not include contributions from the magnetic anisotropy energy 
that arises when the magnetisation direction ui deviates from the particle’s easy  axis26,46. Here, we assume that 
the anisotropy energy is sufficiently large so that magnetic moment and easy axis can be considered to be well-
aligned. For cobalt and iron-oxide particles, for example, this condition is fulfilled for particles with magnetic 
core diameters larger than 5 and 12 nm, respectively.

Dynamics
We follow common practice in colloidal science and model the dynamics of the nanoparticles as over-
damped Brownian motion in a viscous carrier with translational and rotational friction coefficients ξ and ξrot , 
 respectively63,66. With the N-particle, time-dependent probability density FN (r, u; t) , where r = {r1, . . . , rN } , 
u = {u1, . . . ,uN } , the diffusion-jump model proposed by us can be written  as49

The Fokker-Planck-Smoluchowski operator describes translational and rotational Brownian motion subject to 
the interaction potential �  as66,

(30)� = −kBT

N
∑

i=1

ui · h+
1

2

N
∑

i �=j=1

(

�dd
ij +�s

ij

)

,

(31)�dd
ij =

µ0µ
2

4πr3ij

[

ui · uj − 3(ui · r̂ij)(uj · r̂ij)
]

.

(32)� =
µ0µ

2

4πσ 3kBT

(33)�s
ij = 4ε

[

(σ/rij)
12 − (σ/rij)

6
]

�(rc − rij),

(34)
∂

∂t
FN = L̂FN + Q̂FN .
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Here, we introduced ∇i ≡ ∂/∂ri and the rotational operator Li ≡ ui × ∂/∂ui . The model corresponding to 
Q̂FN = 0 , known as “rigid-dipole approximation”, neglects internal Néel relaxation processes and has been studied 
extensively in the literature.35,48,54,63 We note that the model (35) corresponds to the “free-draining” approxima-
tion where hydrodynamic interactions between particles are neglected. While this approximation is routinely 
adopted, notable exceptions including these effects have been  reported21,67.

As indicated above, we here go beyond the rigid-dipole approximation and include Néel relaxation for the case 
of large magnetic anisotropy energies, where magnetisation reversals ui → −ui within individual nanoparticles 
can be considered as thermally activated events. Assuming statistically independent reversals and employing the 
detailed balance condition to ensure the Boltzmann equilibrium Feq ∼ exp [−�/kBT] is a stationary solution to 
the diffusion-jump dynamics (34), we  find49

with u(i) = {u1, . . . , ui−1,−ui , ui+1, . . . ,uN } denoting the orientation state with the magnetic moment of particle 
i reversed. The hereby introduced dimensionless local field hloci  acting on particle i, combining dipolar interac-
tions as well as the Zeeman energy, is given by

Note that other (e.g. Glauber-type) rates are in principle also  admissible62 but that we found the Arrhenius rates 
used in Eq. (36) to be more appropriate to recover field-dependent Néel relaxation in limiting  cases32.

We treat the bare, single-particle Néel relaxation time τN as input parameter of the model. Together with 
the single-particle Brownian rotational diffusion time, τB = ξrot/(2kBT) , they form the basic time scales of our 
model. The microscopic time scale τD related to the attempt frequency does not appear in the model since Néel 
processes are modelled in Eq. (36) as thermally activated events. While τD ∼ 10−10 s, τB and τN are typically many 
orders of magnitude larger. Therefore, the present scheme is much more efficient than directly coupling Brownian 
particle motion to the Landau-Lifshitz-Gilbert equation for modeling internal relaxation.68

From Eq. (34), we can write the magnetization dynamics as

Inserting the explicit form of the operators L̂ and Q̂ from Eqs. (35) and (36) into Eq. (38) and performing partial 
integration, we arrive at Eq. (12).

Model parameters
With the thermal energy kBT setting the energy scale, the particle diameter σ the unit length, and the Brownian 
rotation diffusion τB setting the time scale, we here summarize the dimensionless parameters that fully charac-
terize the model under investigation.

First, we measure the dimensionless MNP concentration in terms of the volume fraction φ = πnσ 3/6 , with 
n the particle number density. The dipolar interaction strength is quantified by the dimensionless parameter � 
defined by Eq. (32), while the dimensionless external magnetic field strength is given by the Langevin parameter 
(4). Since the model contains two basic time scales, τB and τN , their dimensionless ratio,

is another important parameter of our model, so that τB/τeff = 1+ q . Below, we consider time-dependent 
magnetic fields oscillating with frequency ω . Therefore, the final dimensionless parameter in this study is the 
dimensionless frequency ωτeff  . To summarize, our model is defined by five dimensionless quantities: φ , � , h, q, 
and ωτeff .

Within mean-field theory, the parameters φ and � do not appear separately. Instead, the role of interactions 
is approximately captured by their combined effect via the Langevin susceptibility χL which can be written as

Derivation of effective relaxation times within dynamic mean‑field theory
Starting point is the magnetization Eq. (13). The yet unspecified local field hloc is assumed to be of the form 
h
loc = hlocĥ , with hloc = y(h) and where the function y(h) depends on the particular form of the mean-field 

approximation and thus, in particular also on χL.

(35)L̂FN =
1

ξ

N
∑

i=1

∇i · [FN∇i�+ kBT∇iFN ]+
1

ξrot

N
∑

i=1

Li · [FNLi�+ kBTLiFN ].

(36)Q̂FN (r, u; t) =
1

2τN

N
∑

i=1

[

eui ·h
loc
i FN (r, u

(i); t)− e−ui ·h
loc
i FN (r, u; t)

]

(37)h
loc
i = h− �

∑

j(�=i)

(σ/rij)
3[uj − 3(uj · r̂ij)r̂ij].

(38)
d

dt
m =

1

N

N
∑

j=1

∫ ∫

uj(L̂+ Q̂)FN (r, u; t)dr du.

(39)q =
τB

τN
,

(40)χL = 8�φ.
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To arrive at closed-form expressions, we use the effective field approximation (EFA) that has been found to 
provide quite accurate approximations for dynamic properties under various  circumstances27,52,63. The basic 
assumption of EFA is that nonequilibrium moments can be calculated with the equilibrium probability density, 
where the external field h is replaced by an effective field ζen,

where n is a unit vector that is not necessarily parallel to h and hloc . However, in equilibrium, ζe = h , n = ĥ and 
Eq. (41) reduces to the mean-field equilibrium distribution with y(h) = hloc the local field.

Evaluating the right hand side of Eq. (13) with the help of Eq. (41) we find

where Sj = �Pj(u · n)� = Lj(y(ζe)) are the nonequilibrium orientational order parameters, Pj(x) the jth 
order Legendre polynomial, and L1(x) = coth(x)− 1/x the Langevin function. In addition, we have defined 
ν = y(ζe)n − h

loc . Equation (42) provides a closed but nonlinear magnetization equation that can be rewritten 
as a time evolution equation for the effective field ζen.

Here, instead, we are interested in the long-time relaxation and therefore linearize Eq. (42) around 
the stationary state for constant h. To do this, we introduce the dimensionless deviation of the effec-
tive field from the applied field, � = ζen − h , as well as its parallel, �� = � · ĥ , and perpendicu-
lar, �⊥ = �−��

ĥ , component. To first order in � we find ζe = h+�� and n = ĥ+ h−1�⊥ . Thus, 
Sj = Lj(y(h+��)) = S

eq
j + L′j(h

loc)(dhloc/dh)�� +O(��2) ,  w h e r e  S
eq
j = Lj(h

loc) .  Fu r t h e r m o r e , 
ν = (dhloc/dh)��

ĥ+ (hloc/h)�⊥ +O(�2).
Inserting these expressions into Eq. (42) and linearizing in � , we find that the relaxation equations for 

the magnetization component parallel ( m� = m · ĥ ) and perpendicular ( m⊥ = m−m�
ĥ ) to the applied field 

separate,

Finally, we express � , and thus the effective field ζen = �+ h , in terms of the magnetization components, 
�� = (m� − S

eq
1 )/[L′1(h

loc)dhloc/dh] , �⊥ = (h/S
eq
1 )m⊥ , such that we arrive at the linearized magnetization 

relaxation Eq. (14) with meq = S
eq
1 = L1(h

loc) and effective relaxation times

Using the relation Seq2 = L2(h
loc) with L2(x) = 1− 3L1(x)/x , these expressions agree with Eqs. (15) and (16) 

given above.
Note that the form of hloc has not been specified yet and therefore these expressions hold for arbitrary hloc in 

terms of h and χL , in particular.

First‑order modified mean‑field approximation
Specifying to the first-order modified mean-field approximation (MMF1), hloc = h+ χLL1(h) , Eqs. (15) and 
(16) read to first order in χL

where

is the classical EFA result for the parallel relaxation time in the non-interacting limit, using the rigid-dipole 
 approximation51. The coefficient

(41)fζe (u) =
y(ζe)

4π sinh(y(ζe))
ey(ζe)u·n,
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is an equivalent but more compact expression of an existing  result34, where also the expression

can be found. The non-interacting limit for the Néel contribution is well  known32,

In Eq. (47), we also introduced the coefficients

Define the effective parallel and perpendicular relaxation times in the non-interacting limit by

Within MMF1, to first order in χL we obtain from Eq. (47)

Second‑order modified mean‑field approximation
For the second-order modified mean-field approximation (17), the corresponding expressions for the relaxation 
times up to second order in χL are rather cumbersome. For weak fields, the relaxation times within MMF2 up 
to second order in h and χL are given by Eq. (18) with coefficients

with the ratio q from Eq. (39).

Expansion of ILP ∗
Within EFA, the expansion of ILP ∗ given by Eq. (22) up to linear terms in χL and quadratic terms in h becomes

where ILP∗(h = 0) is given by (24), and

From this expansion, we find that applying a weak constant bias field h leads to a quadratic decrease of ILP∗ . The 
qualitative behavior of ILP ∗ at small χL depends on the magnitude of h because hc solves limχL→0 dILP

∗/dχL = 0 . 
For h > hc it rises with increasing χL , while it decreases with χL for h < hc . The approximation (59) for hc is only 
useful as long as hc ≪ 1 , which is generally the case for sufficiently large ωτeff  . The unapproximated expression 
for hc is plotted in Fig. 2c.

Simulation approach and validation
To check the quality of the mean-field approximations used in the Dynamic mean-field theory section, we 
perform extensive computer simulations of the model system presented in the Model system section below. The 
diffusion-jump model (34) can be integrated using operator-splitting  techniques49,

(49)t
�
1 (h) =

L1(h)

h
+

L1(h)L
′′
1 (h)

L′1(h)

(50)t⊥1 (h) =
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(51)
τ
�
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= 3 sinh(h)
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h
,
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h2
.
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where we used the short-hand notation FN (t) = FN (r, u; t) . From Eq. (60) we find that the dynamics can be 
integrated forward over a short time step �t by a succession of a diffusion step e�tL̂ and a jump process �t Q̂ . 
Since diffusion is described by the Fokker-Planck operator (35), we use Brownian Dynamics simulations to 
propagate the configurations {r(t),u(t)} by a time step �t , which requires �t ≪ τB.

To simulate the jump process �t Q̂ for a time interval �t , we consider the probability pi that the moment ui 
has not reversed its orientation between t = 0 and t = �t . According to Eq. (36), this probability is given by 
pi = e−ri�t with rate ri = e−ui ·h

loc
i /(2τN) . Thus, the probability that the reversal of moment ui takes place in the 

time interval �t is 1− e−ri�t , a well-known property of Poisson processes. Therefore, calculating the probabilities 
pi(t) from the current configuration and resulting hloci (t) , we reverse the orientations of the magnetic moments 
ui(t) → −ui(t) in the time step �t with probability 1− pi(t).

We note that the time step �t should be small enough so that (i) ri�t < 1 , i.e. at most a single reversal per 
magnetic moment within �t . In addition, we also require (ii) that the local field hloci  can be considered constant 
over this time interval. This implies that the fraction xflip of magnetic moments that reverse their orientation 
during �t must be relatively small (we ensured that xflip does not exceed 0.05). For τN ≫ τB (i.e. considering small 
corrections to rigid-dipole approximation), the time step from stochastic simulations should in general be small 
enough to ensure conditions (i) and (ii) above. For τN ≈ τB or even τN < τB , condition (ii) might not be satisfied. 
In this case, one might re-calculate the probabilities pi whenever xflip is exceeded or perform k successive jump 
steps, each using a reduced time step �t/k to integrate the Q̂ part of the dynamics. In the extreme case τN ≪ τB 
(corresponding to basically immobile particles, not considered here), such schemes become inefficient and one 
resorts to kinetic Monte-Carlo simulations.39,40

We consider systems of N particles in a cubic simulation box of volume V. The corresponding volume frac-
tion is defined as φ = Nπσ 3/(6V) , where the hydrodynamic diameter σ was introduced in Eq. (33). To simulate 
bulk systems we use periodic boundary conditions in all three spatial dimensions. To deal with the long-range 
nature of dipolar interactions, we use the so-called reaction field  method69. In this method, a cut-off radius rRF 
is introduced and all interactions for particles closer than rRF are calculated explicitly according to Eq. (31). 
The far-field contribution is approximated as a magnetic continuum, leading to an additional reaction-field for 
every particle of the form hRFi = �(σ/rRF)

3
∑

j∈Ri
uj , where the sum extends over all particles within a sphere 

of radius rRF centered at particle i (and includes particle i). We have verified (see e.g. Fig. 9 below) that cut-off 
values rRF = 5σ and 8σ are sufficient to achieve accurate results for the simulation parameters used in our study 
for volume fractions φ ≥ 0.05 and φ < 0.05 , respectively. The number N of MNPs ranges between N = 1000 for 
� ≤ 2 and N = 10000 for � ≥ 4 , and is generally mentioned in the figure captions. A rectangular simulation box 
is used which is uniaxially extended in the direction of the applied magnetic field. A time step of �t = 0.001τB is 
chosen. We ensure proper equilibration before data are collected. Within the stationary regime, data are typically 
collected over a time interval of 104 τeff .

We have performed several tests to validate our implementation of the model system. For example, we veri-
fied that results are independent of the initial configurations and there are no finite-size effects, i.e. results do 
not change when using larger N than reported here. We also reproduced results on cluster sizes available from 
the literature and several theoretical results in the limit φ → 0.

We also verified that the equilibrium magnetization Meq = Msat�u · ĥ�eq does not depend on q. This result is 
expected – since equilibrium properties should not depend on relaxation times – and provides a further check 
for proper equilibration of our samples. Moreover, our results for Meq agree quantitatively with earlier simulation 

(60)FN (t +�t) = e�t[L̂+Q̂]FN (t) ≈ e�tL̂FN +�t Q̂FN ,

Figure 9.  Stochastic simulation results. Normalized equilibrium magnetization Meq/Msat as a function of 
applied field strength h. Different symbols denote different values of dipolar interaction strength � ∈ {1, 2, 4} 
and volume fraction φ ∈ {0.01, 0.02, 0.04} . Solid lines correspond to the second order modified mean-field 
approximation, Eq. (61).
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 results59 for φ = 0.157 with � = 1 and � = 2 (not shown). Figure 9 shows Meq normalized with the saturation 
magnetization Msat as a function of the dimensionless field strength h for different concentrations and dipolar 
interaction strengths. As reported  previously59, dipolar interactions increase Meq compared to the non-interacting 
values. For � = 1 and 2, this increase is very accurately described by MMF2,

where the local field hloc is given by Eq. (17) and L1(x) denotes the Langevin function. Also in agreement with 
previous  observations48,59, MMF2 is very accurate up to moderate interaction strengths, but is found to under-
predict the magnetization for strong dipolar interactions (here � = 4 ). For strong dipolar interactions, the flexible 
chain model could offer a promising alternative approach.70

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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