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Abstract
We obtain sequences of inclusion sets for the spectrum, essential spectrum, and
pseudospectrum of banded, in general non-normal, matrices of finite or infinite
size. Each inclusion set is the union of the pseudospectra of certain submatrices
of a chosen size 𝑛. Via the choice of 𝑛, one can balance accuracy of approxima-
tion against computational cost, and we show, in the case of infinite matrices,
convergence as 𝑛 → ∞ of the respective inclusion set to the corresponding
spectral set.

1 INTRODUCTION

In many finite difference schemes or in physical or social models, where interaction between objects is direct in a finite
radius only (and is of course indirect on a global level), the correspondingmatrix or operator is banded, also called of finite
dispersion, meaning that the matrix is supported on finitely many diagonals only. In the case of finite matrices this is of
course a tautology; in that context one assumes that the bandwidth is not only finite but small compared to the matrix
size, where the bandwidth of a matrix 𝐴 is the distance from the main diagonal in which nonzeros can occur. (Precisely:
it is the largest |𝑖 − 𝑗| over all matrix positions (𝑖, 𝑗) with 𝐴𝑖,𝑗 ≠ 0.) So this is our setting: finite, semi-infinite or bi-infinite
banded matrices.
We equip the underlying vector space with the Euclidian norm, so our operators act on an 𝓁2 space over {1, … ,𝑁} or

ℕ = {1, 2, …} or ℤ = {… ,−1, 0, 1, …}. In the two latter cases (semi- and bi-infinite matrices), we assume each diagonal to
be a bounded sequence, whence the matrix acts as a bounded linear operator, again denoted by 𝐴, on the corresponding
𝓁2 space.
The exact computation of the spectrum by analytical means is in general impossible (by Abel-Ruffini) if the size of the

matrix is larger than four. So one is forced to resort to approximations. But for non-normalmatrices and operators, also the
approximation of the spectrum is extremely delicate and unreliable, hence one often substitutes for the spectrum, spec𝐴,
the pseudospectrum,

spec𝜀𝐴 ∶= {𝜆 ∈ ℂ ∶ ‖(𝐴 − 𝜆𝐼)−1‖ > 1∕𝜀}, 𝜀 > 0,

that is much more stable to approximate, and then sends 𝜀 → 0. Note that, by agreeing to say ‖𝐵−1‖ = ∞ if 𝐵 is not
invertible, one has spec𝐴 ⊂ spec𝜀𝐴 for all 𝜀 > 0. For an impressive account of pseudospectra and their applications, see
the monograph [1].
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provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
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Our aim in this paper is to derive inclusion sets for spec𝐴, spec𝜀𝐴 as well as the essential spectrum, specess 𝐴, in terms
of unions of pseudospectra ofmoderately sized (butmany) finite submatrices of𝐴 of column dimension 𝑛. Moreover, if the
matrix is infinite, we prove convergence, as 𝑛 → ∞, of the respective inclusion set to each of spec𝐴, spec𝜀𝐴, or specess 𝐴.

2 APPROXIMATING THE LOWER NORMON 𝓵𝟐(ℤ)

Our arguments are, perhaps surprisingly, tailor-made for the case of bi-infinite vectors and matrices on them. In fact,
instead of 𝓁2(ℤ), everything also works for 𝓁2(𝐺) with a discrete group 𝐺, for example, 𝐺 = ℤ𝑑, subject to Yu’s so-called
Property A [2, 3]. Only later, in Section 6, we manage to work around the group structure and to transfer results to 𝓁2(ℕ)
and 𝓁2({1, … ,𝑁}), hence: to semi-infinite and finite matrices.
As some sort of antagonist of the operator norm, ‖𝐴‖ = sup{‖𝐴𝑥‖ ∶ ‖𝑥‖ = 1}, we look at the so-called lower norm1

𝜈(𝐴) ∶= inf {‖𝐴𝑥‖ ∶ ‖𝑥‖ = 1}
of a banded and bounded operator on 𝓁2(ℤ). Fixing 𝑛 ∈ ℕ and limiting the selection of unit vectors 𝑥 to those with a finite
support of diameter less than 𝑛, further limits how small ‖𝐴𝑥‖ can get. Precisely,

𝜈𝑛(𝐴) ∶= inf {‖𝐴𝑥‖ ∶ ‖𝑥‖ = 1, diam(supp 𝑥) < 𝑛}, 𝑛 ∈ ℕ, (2.1)

is typically larger than 𝜈(𝐴) – but (and this is remarkable) only larger by at most the amount of a certain 𝜀𝑛 ∼ 1∕𝑛 that we
will quantify precisely below. Let us first write this important fact down:

𝜈𝑛(𝐴) − 𝜀𝑛 ≤ 𝜈(𝐴) ≤ 𝜈𝑛(𝐴). (2.2)

This observation can be traced back to refs. [4, 5] and, for Schrödinger operators, even to refs. [6, 7]. Extensive use has
beenmade of (2.2), for example, in refs. [8, 9]. The statement diam(supp 𝑥) < 𝑛 in (2.1) translates to supp 𝑥 ⊆ 𝑘 + {1, … , 𝑛}
for some 𝑘 ∈ ℤ. Hence,

𝜈𝑛(𝐴) = inf {𝜈(𝐴|𝓁2(𝑘+{1,…,𝑛})) ∶ 𝑘 ∈ ℤ}. (2.3)

Let us write 𝑃𝑛,𝑘 for the operator of multiplication by the characteristic function of 𝑘 + {1, … , 𝑛} and agree on writing

𝐴|𝓁2(𝑘+{1,…,𝑛}) =∶ 𝐴𝑃𝑛,𝑘 ∶ 𝓁2(𝑘 + {1, … , 𝑛}) → 𝓁2(ℤ), 𝑛 ∈ ℕ, 𝑘 ∈ ℤ.

Inmatrix language,𝐴𝑃𝑛,𝑘 corresponds to thematrix formed by columns number 𝑘 + 1 to 𝑘 + 𝑛 of𝐴. By the band structure
of 𝐴, that submatrix is supported in finitely many rows only, even reducing it to a finite𝑚 × 𝑛 matrix, where𝑚 equals 𝑛
plus two times the bandwidth of 𝐴. Then 𝜈(𝐴𝑃𝑛,𝑘), as in (2.3), is the smallest singular value of this𝑚 × 𝑛matrix, making
this a standard computation.

3 𝜺𝒏 AND THE REDUCTION TO TRIDIAGONAL FORM

Our analysis of 𝜀𝑛 is particularly optimized in the case of tridiagonal matrices, that is when 𝐴 has bandwidth one, so that
it is only supported on the main diagonal and its two adjacent diagonals. Let 𝛼, 𝛽, 𝛾 ∈ 𝓁∞(ℤ) denote, in this order, the
sub-, main- and superdiagonal of𝐴, with entries 𝛼𝑖 = 𝐴𝑖+1,𝑖 , 𝛽𝑖 = 𝐴𝑖,𝑖 and 𝛾𝑖 = 𝐴𝑖−1,𝑖 with 𝑖 ∈ ℤ. In that case (see refs. [4,
12, 13]),

𝜀𝑛 = 2(‖𝛼‖∞ + ‖𝛾‖∞) sin 𝜋

2(𝑛 + 1)
< (‖𝛼‖∞ + ‖𝛾‖∞) 𝜋

𝑛 + 1
∼
1

𝑛
. (3.1)

1 It is not a norm! Our terminology is that of refs. [10, 11].
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CHANDLER-WILDE et al. 3 of 8

Although (2.2) holds with this choice of 𝜀𝑛 for the very general setting of all tridiagonal matrices, formula (3.1) turns out
to be best possible in some nontrivial examples such as the shift operator [12].
To profit from these well-tuned parameters also in the case of larger bandwidths, note that (2.2) and (3.1) even work

in the block case, that is when the entries in the 𝓁2 vectors are themselves elements of some Banach space 𝑋 and the
matrix entries of 𝐴 are operators on 𝑋. So the trick with a band matrix 𝐵 with a larger bandwidth 𝑏 is to interpret 𝐵 as
block-tridiagonal with blocks of size 𝑏 + 1:

Here, a matrix 𝐵 with bandwidth 𝑏 = 2 is identified with a block-tridiagonal matrix 𝐴 with 3 × 3 blocks, noting that
3 = 𝑏 + 1.
Since the blocks of 𝐴 can be operators on a Banach space 𝑋, one can even study spec 𝐵 and spec𝜀𝐵 by our techniques

for bounded operators 𝐵 on 𝐿2(ℝ) ≅ 𝓁2(ℤ,𝑋), where 𝑋 = 𝐿2([0, 1]), for example, for integral operators 𝐵 with a banded
kernel 𝑘(⋅, ⋅).

4 THE ROLE OF THE LOWER NORM IN SPECTRAL COMPUTATIONS

If 𝐴 sends a unit vector 𝑥 to a vector 𝐴𝑥 with norm 1

4
then, clearly, 𝐴−1, bringing 𝐴𝑥 back to 𝑥, has to have at least

norm four. The lower norm, 𝜈(𝐴), is pushing this observation to the extreme. By minimizing ‖𝐴𝑥‖
‖𝑥‖ , it minimizes

‖𝑦‖
‖𝐴−1𝑦‖

and hence computes the reciprocal of ‖𝐴−1‖ – with one possible exception: non-invertibility of 𝐴 due to 𝜈(𝐴) = 0 or
𝜈(𝐴∗) = 0. Properly: since 𝜈(𝐴) > 0 iff𝐴 is injective and has a closed range (e.g., [10, Lemma 2.32]),𝐴 is invertible iff both
𝜈(𝐴) and 𝜈(𝐴∗) are nonzero2. Keeping this symmetry of 𝐴 and 𝐴∗ in mind,

1∕‖𝐴−1‖ = min{𝜈(𝐴), 𝜈(𝐴∗)} =∶ 𝜇(𝐴),
(see, e.g., [2]), where, again, ‖𝐴−1‖ = ∞ signals non-invertibility and where 1∕∞ ∶= 0. From here it is just a small step to

spec𝐴 = {𝜆 ∈ ℂ ∶ ‖(𝐴 − 𝜆𝐼)−1‖ = ∞} = {𝜆 ∈ ℂ ∶ 𝜇(𝐴 − 𝜆𝐼) = 0}
and

spec𝜀𝐴 = {𝜆 ∈ ℂ ∶ ‖(𝐴 − 𝜆𝐼)−1‖ > 1∕𝜀} = {𝜆 ∈ ℂ ∶ 𝜇(𝐴 − 𝜆𝐼) < 𝜀}, 𝜀 > 0. (4.1)

Being able to approximate 𝜈(𝐴), up to 𝜀𝑛 ∼
1

𝑛
, by 𝜈𝑛(𝐴), enables us to approximate spec𝐴 and spec𝜀𝐴, with a controllable

error, by sets built on 𝜈𝑛(𝐴 − 𝜆𝐼) and 𝜈𝑛(𝐴∗ − 𝜆𝐼).

5 APPROXIMATING THE PSEUDOSPECTRUM IN THE BI-INFINITE CASE

Applying (2.2) to 𝐴 − 𝜆𝐼 and (𝐴 − 𝜆𝐼)∗ = 𝐴∗ − 𝜆𝐼 in place of 𝐴, we see that

𝜇𝑛(𝐴 − 𝜆𝐼) < 𝜀 ⇒ 𝜇(𝐴 − 𝜆𝐼) < 𝜀 ⇒ 𝜇𝑛(𝐴 − 𝜆𝐼) < 𝜀 + 𝜀𝑛,

where 𝜇𝑛(𝐵) ∶= min{𝜈𝑛(𝐵), 𝜈𝑛(𝐵∗)}, noting that 𝜀𝑛 is independent of 𝜆 ∈ ℂ, by (3.1).

2 By 𝐴∗ we denote the Banach space adjoint of 𝐴. In particular, (𝜆𝐼)∗ = 𝜆𝐼, not 𝜆𝐼.
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Combining this with (2.3) and (4.1), we conclude (cf. [4, Thm. 4.3 & Cor. 4.4]):

Proposition 5.1 (Bi-infinite case). For bounded band operators 𝐴 on 𝓁2(ℤ) and corresponding 𝜀𝑛 from (3.1)3, one has

⋃
𝑘∈ℤ

spec𝜀(𝐴𝑃𝑛,𝑘, 𝐴
∗𝑃𝑛,𝑘) ⊆ spec𝜀𝐴 ⊆

⋃
𝑘∈ℤ

spec𝜀+𝜀𝑛
(𝐴𝑃𝑛,𝑘, 𝐴

∗𝑃𝑛,𝑘), 𝜀 > 0, 𝑛 ∈ ℕ, (5.1)

where we abbreviate spec𝜀(𝐴, 𝐵) ∶= spec𝜀𝐴 ∪ spec𝜀𝐵.

By iterated application of (5.1), one can extend (5.1) to the left and right as follows:

spec𝜀−𝜀𝑛
𝐴 ⊆

⋃
𝑘∈ℤ

spec𝜀(𝐴𝑃𝑛,𝑘, 𝐴
∗𝑃𝑛,𝑘) ⊆ spec𝜀𝐴 ⊆

⋃
𝑘∈ℤ

spec𝜀+𝜀𝑛
(𝐴𝑃𝑛,𝑘, 𝐴

∗𝑃𝑛,𝑘) ⊆ spec𝜀+𝜀𝑛
𝐴.

And now, sending 𝑛 → ∞, we have 𝜀𝑛 → 0, by (3.1), and then Hausdorff-convergence spec𝜀+𝜀𝑛𝐴 → spec𝜀𝐴 as well as
spec𝜀−𝜀𝑛

𝐴 → spec𝜀𝐴, see for example, [14]
4. We conclude (cf. [4, Sec. 4.3]):

Proposition 5.2. The subsets and supersets of spec𝜀𝐴 in (5.1) both Hausdorff-converge to spec𝜀𝐴 as 𝑛 → ∞.

6 APPROXIMATING THE PSEUDOSPECTRA OF SEMI-INFINITE AND FINITE
MATRICES

Now take a bounded and banded operator𝐴 on 𝓁2(ℕ). In ref. [13] we show how to reduce this case (via embedding𝐴 into
a bi-infinite matrix plus some further arguments) to the bi-infinite result:

Proposition 6.1 (Semi-infinite case). For bounded band operators 𝐴 on 𝓁2(ℕ) and corresponding 𝜀𝑛 from (3.1), one has

⋃
𝑘∈ℕ0

spec𝜀(𝐴𝑃𝑛,𝑘, 𝐴
∗𝑃𝑛,𝑘) ⊆ spec𝜀𝐴 ⊆

⋃
𝑘∈ℕ0

spec𝜀+𝜀𝑛
(𝐴𝑃𝑛,𝑘, 𝐴

∗𝑃𝑛,𝑘), 𝜀 > 0, 𝑛 ∈ ℕ,

where again spec𝜀(𝐴, 𝐵) ∶= spec𝜀𝐴 ∪ spec𝜀𝐵. Also here the sub- and supersets Hausdorff-converge to spec𝜀𝐴 as 𝑛 → ∞.

The technique that helps to deal with one endpoint on the axis can essentially be repeated for a second endpoint:

Proposition 6.2 (Finite case). For finite band matrices 𝐴 on 𝓁2({1, … ,𝑁}) with some𝑁 ∈ ℕ, one has

𝑁−𝑛⋃
𝑘=0

spec𝜀(𝐴𝑃𝑛,𝑘, 𝐴
∗𝑃𝑛,𝑘) ⊆ spec𝜀𝐴 ⊆

𝑁−𝑛⋃
𝑘=0

spec𝜀+𝜀𝑛
(𝐴𝑃𝑛,𝑘, 𝐴

∗𝑃𝑛,𝑘), 𝜀 > 0, 1 ≤ 𝑛 ≤ 𝑁,

where again spec𝜀(𝐴, 𝐵) ∶= spec𝜀𝐴 ∪ spec𝜀𝐵.

This time, of course, there is no way of sending 𝑛 → ∞, hence no Hausdorff-convergence result.

7 APPROXIMATING SPECTRA

So far we have convergent subsets and supersets of spec𝜀𝐴 for 𝜀 > 0. The spectrum, spec𝐴, can now be Hausdorff-
approximated via sending 𝜀 → 0. However, there is a more direct approach: introducing closed-set versions of

3 Note that 𝜀𝑛 , if using (3.1), has to be computed for the block-tridiagonal representation of 𝐴, see Section 3.
4 In the case of a Banach space-valued 𝓁2, that Banach space should be finite-dimensional or subject to the conditions in Theorem 2.5 of ref. [14].
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pseudospectra,

Spec𝜀𝐴 ∶= {𝜆 ∈ ℂ ∶ ‖(𝐴 − 𝜆𝐼)−1‖ ≥ 1∕𝜀} = {𝜆 ∈ ℂ ∶ 𝜇(𝐴 − 𝜆𝐼) ≤ 𝜀}, 𝜀 ≥ 0,

we can prove identical copies of Propositions 5.1, 6.1 and 6.2 with upper-case (i.e., closed) instead of lower-case (i.e., open)
pseudospectra everywhere – and including the case 𝜀 = 0, see ref. [13]. The latter brings convergent supersets for spec𝐴 =
Spec0𝐴 right away, without the need for a further limit 𝜀 → 0. Here is the new formula for the bi-infinite case, evaluated
for 𝜀 = 0.

⋃
𝑘∈ℤ

spec (𝐴𝑃𝑛,𝑘, 𝐴
∗𝑃𝑛,𝑘) ⊆ spec𝐴 ⊆

⋃
𝑘∈ℤ

Spec𝜀𝑛
(𝐴𝑃𝑛,𝑘, 𝐴

∗𝑃𝑛,𝑘), 𝑛 ∈ ℕ. (7.1)

8 EXAMPLES

For three selected operator examples, we show theHausdorff-convergent (as𝑛 → ∞) superset bounds on spec𝐴 from (7.1).
All three operators are given by tridiagonal bi-infinite matrices. Moreover, all three matrices are periodic, so that we can
analytically compute the spectrum by Floquet-Bloch; that is, treating the 3-periodic matrix as a 3 × 3-block convolution
on 𝓁2(ℤ,ℂ3) and turning that, via the corresponding block-valued Fourier-transform, into a 3 × 3-blockmultiplication on
𝐿2(𝕋,ℂ3), whose spectrum is obvious, see, for example, Theorem 4.4.9 in ref. [15]. For comparison, the exact spectrum is
superimposed in each example as a red curve in the last column.

a) We start with the right shift, where the subdiagonal is 𝛼 = (… , 1, 1, 1, … ) and the main and superdigonal are 𝛽 = 𝛾 =
(… , 0, 0, 0, … ). The spectrum is the unit circle, and here are our supersets for 𝑛 ∈ {4, 8, 16}:

b) Our next example is 3-periodic with subdiagonal 𝛼 = (… , 𝟎, 0, 0, … ), main diagonal 𝛽 = (… ,−𝟑
𝟐
, 1, 1, … ) and super-

diagonal 𝛾 = (… , 𝟏, 2, 1, … ), where 𝛼0, 𝛽0 and 𝛾0 are highlighted in boldface. The spectrum consists of two disjoint
loops, and we depict our supersets for 𝑛 ∈ {32, 64, 128}:

c) Our third example is also 3-periodic with subdiagonal 𝛼 = (… , 𝟎, 0, 0, … ), main diagonal 𝛽 = (… ,−𝟏
𝟐
, 1, 1, … ) and

superdiagonal 𝛾 = (… , 𝟏, 2, 1, … ), where 𝛼0, 𝛽0 and 𝛾0 are highlighted in boldface. The spectrum consists of one loop,
and we depict our supersets for 𝑛 ∈ {8, 16, 32}:
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Another effect of the 3-periodicity of the diagonals in𝐴 is that there are only three distinct submatrices𝐴𝑃𝑛,𝑘 and𝐴∗𝑃𝑛,𝑘
each for 𝑘 ∈ ℤ. In fact, for many operator classes, the infinite unions in (5.1), (7.1) and so on, reduce to finite unions. For
example, for a {0, 1}-valued aperiodic diagonal [16], there are only 𝑛 + 1 different subwords of length 𝑛, and for a {0, 1}-
valued random diagonal, there are 2𝑛 (again, finitelymany) different subwords of length 𝑛. Also, for non-discrete diagonal
alphabets, the infinite union can be reduced to a finite one via compactness arguments, see our discussion in ref. [12].

9 APPROXIMATING ESSENTIAL SPECTRA

In the casewhere𝐴 is an infinitematrix there is large interest also in the approximation of the essential spectrum, specess 𝐴,
which is the spectrum in the Calkin algebra, that is, the set of all 𝜆 ∈ ℂ where 𝐴 − 𝜆𝐼 is not a Fredholm operator, that
is, is not invertible modulo compact operators.
Our results in this section apply when each 𝐴𝑖,𝑗 ∈ ℂ, but also when each 𝐴𝑖,𝑗 is a bounded linear operator on a Banach

space 𝑋, as long as 𝑋 is finite-dimensional or the operators {𝐴𝑖,𝑗} are collectively compact in the sense of refs. [17, 18].
As for the spectrum (see Section 3) it is enough to consider the case when 𝐴 is tridiagonal. The bi-infinite case is easily

reduced to the semi-infinite case: Indeed, modulo compact operators,

𝐴 ≅

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⋱ ⋱

⋱ 𝐴−2,−2 𝐴−2,−1

𝐴−1,−2 𝐴−1,−1

0

𝐴1,1 𝐴1,2

𝐴2,1 𝐴2,2 ⋱

⋱ ⋱

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=∶

⎛⎜⎜⎜⎝

𝐴−

0

𝐴+

⎞⎟⎟⎟⎠
,

so that

specess 𝐴 = specess 𝐴− ∪ specess 𝐴+.

It remains to look at semi-infinite banded matrices 𝐴. Modulo compact operators, for every𝑚 ∈ ℕ,

𝐴 =

⎛⎜⎜⎝
𝐴11 𝐴12
𝐴21 𝐴22 ⋱

⋱ ⋱

⎞⎟⎟⎠
≅

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

⋱

0

𝐴𝑚+1,𝑚+1 𝐴𝑚+1,𝑚+2

𝐴𝑚+2,𝑚+1 𝐴𝑚+2,𝑚+2 ⋱

⋱ ⋱

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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so that, with

⎛⎜⎜⎝
𝐴𝑚+1,𝑚+1 𝐴𝑚+1,𝑚+2
𝐴𝑚+2,𝑚+1 𝐴𝑚+2,𝑚+2 ⋱

⋱ ⋱

⎞⎟⎟⎠
=∶ 𝐴>𝑚 ,

we have

specess 𝐴 = specess 𝐴>𝑚 ⊆ spec𝐴>𝑚 ⊆
⋃
𝑘≥𝑚

Spec𝜀𝑛
(𝐴𝑃𝑛,𝑘, 𝐴

∗𝑃𝑛,𝑘), 𝑚, 𝑛 ∈ ℕ,

using the semi-infinite version of (7.1) in the last step. Taking the intersection over all𝑚, 𝑛 ∈ ℕ gives

specess 𝐴 ⊆
⋂
𝑛∈ℕ

⋂
𝑚∈ℕ

⋃
𝑘≥𝑚

Spec𝜀𝑛
(𝐴𝑃𝑛,𝑘, 𝐴

∗𝑃𝑛,𝑘). (9.1)

In ref. [13], using results from ref. [2], we prove the following:

Proposition 9.1 (Semi-infinite). For bounded band operators 𝐴 on 𝓁2(ℕ), formula (9.1) holds in fact with “⊆” replaced by
equality. In addition, after this replacement,

a) the intersection sign “∩𝑛∈ℕ” in (9.1) can be replaced by a Hausdorff-limit lim𝑛→∞;
b) the two intersection signs “∩𝑛∈ℕ∩𝑚∈ℕ” in (9.1) can be replaced by a single Hausdorff-limit lim𝑚=𝑛→∞.
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