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ABSTRACT

Fluvial flood forecasting systems increasingly couple river discharge to a flood map library or a real-time hydrodynamic model to provide

forecast flood maps to humanitarian agencies. The forecast flood maps can be linked to potential impacts to inform forecast-based financing

schemes. We investigate a new application of scale-selective verification by evaluating three flood forecasting systems. Two simulation

library systems, Flood Foresight (30 m) and GloFAS Rapid Flood Mapping (1,000 m) and one hydrodynamically modelled system, the Bangla-

desh Flood Forecasting and Warning Centre (FFWC) Super Model (300 m), all made predictions of flooding extent at different spatial scales

(grid lengths, in brackets) for the Jamuna River flood, Bangladesh, July 2020. The flood maps are validated against synthetic-aperture-radar-

derived observations of flooding using a scale-selective approach that can compare directly across different spatial scales. At short forecast

lead times, the Super Model outperforms the other systems. Near to the Bangladesh border, the trans-boundary benefits of the two global

systems are evident. We find that scale-selective methods can quantify the skill of systems operating at different spatial scales so that the

benefits and limitations can be evaluated. Multi-system comparison of flood maps is important for improving impact-based forecasts and

ensuring funds and response activities are appropriately targeted.
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HIGHLIGHTS

• Through a new application of our scale-selective validation method we compare flood maps of different spatial scales (grid lengths) with

SAR-derived observations.

• Three flood forecasting systems (two global ensemble and one local deterministic) operating in Bangladesh, July 2020 are evaluated.

• The results show the importance of accounting for spatial scale when interpreting skill scores in multi-system studies.
1. INTRODUCTION

Flood forecasting systems are increasingly used to improve preparedness ahead of a major flooding event (Stephens & Cloke
2014; Wu et al. 2020). One of the main action points from the recent Global Assessment Report (GAR2022) on Disaster Risk
Reduction (DRR) is to ‘design systems to factor in how human minds make decisions about risk’ (UNDRR 2022). While flood
forecasting systems have improved significantly and continue to improve both globally and locally, the reliance on govern-

ment departments and disaster managers to make the right decisions when faced with a potential crisis can result in
inappropriate actions and unpreparedness (e.g. Fekete & Sandholz 2021; Coughlan de Perez et al. 2022). The GAR2022
report shows that just 5.8% ($5.5 billion USD) of official development assistance contributes to disaster prevention

and preparedness compared to 90.1% ($119.8 billion USD) for emergency response. Yet it has been demonstrated
(for Europe) that financing for mitigation purposes such as flood forecasting systems can lead to overall cost savings
(Pappenberger et al. 2015).

Forecast-based financing (FbF) schemes can form a major element of DRR strategies and aim to directly link forecasts of
extreme events to humanitarian actions (Coughlan de Perez et al. 2015, 2016). FbF schemes work by quantifying risks in
advance of crises or disasters, prepositioning funds, and agreeing in advance how funds will be released based on forecasts,
This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (CC BY 4.0), which permits copying, adaptation and
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ahead of an event (OCHA 2020). Anticipation and risk financing allows humanitarians to be better prepared by making

important decisions before disaster strikes. These proactive decisions, directly linked to action (rapid fund release) remove
the potential for reactive, incorrect decisions in the midst of a disaster. The success of the FbF system largely depends on
the threshold triggers set and on the performance of the flood forecasting system at mapping the flood hazard.

Advances in flood forecasting systems both at global and local levels link together meteorological and hydrological fore-
casts to hydrodynamic models, simulating flood-wave propagation (Emerton et al. 2016; Wu et al. 2020; Apel et al. 2022).
The resulting flood maps when directly linked to impacts can be used to inform DRR schemes. Multiple trade-offs exist in
the development of such systems that inherently depend on observation data availability and computing power. These

determine whether the maps can be modelled in real-time or are pre-calculated and form part of a simulation library;
the spatial scale (grid size) of the forecast flood maps and whether the maps are deterministic or probabilistic (Savage
et al. 2016). A recent review of flood inundation prediction (Bates 2022) states that a key task to drive forward the devel-

opment of better global hydraulic models will be more rigorous and comprehensive validation. Hoch & Trigg (2019)
outline a Global Flood Model Validation Framework which includes a recommendation to routinely validate flood
extent. Quantitative performance evaluation forms an important part of fitness-for-purpose assessment and continual

system improvement. Currently, there is limited quantitative validation of operational flood forecasting systems producing
flood maps and operating in the same area. A recent advancement in flood map validation (Hooker et al. 2022) means that
quantitative comparisons can be made across flood maps at different spatial scales, which makes a multi-system evaluation

possible.
The accuracy of ensemble forecasts of flood extent can be verified by comparing with observations of flooding from

unmanned aerial vehicles or satellite-based sensors. Satellite-based synthetic-aperture radar (SAR) sensors are active,
which means they can operate at night, through cloud and weather, and are well known for their flood detection capability

(e.g. Horritt et al. 2001; Mason et al. 2012; Schumann et al. 2022). The SAR backscatter intensity depends on the smoothness
of the surface, with unobstructed flooded areas returning low backscatter values. Recent techniques used to extract flood
extent from SAR images have led to improved flood detection in urban areas (Mason et al. 2018, 2021a, 2021b). Since
late 2021, SAR-derived flood maps are produced for every Sentinel-1 image detecting flooding around the world by the
Global Flood Monitoring (GFM) service (EU Science Hub 2021; GFM 2021; Hostache 2021), part of the Copernicus Emer-
gency Management Service (CEMS) (Copernicus Programme 2021). Within 8 h of the Sentinel-1 image acquisition, three

flood detection algorithms are combined to give the flood class and uncertainty estimation per grid cell.
In this paper, through application of a new approach, we evaluate the inundation accuracy of three fluvial flood forecasting

systems operating during severe flooding of the Jamuna River in Bangladesh, July 2020. The flood maps are compared against
satellite SAR-derived flooding extent. The systems are: Flood Foresight, an FbF system run by JBA Consulting working in part-

nership with the Start Network (Revilla-Romero et al. 2017); the Global Flood Awareness System (GloFAS); Rapid Flood
Mapping (RFM) service (Alfieri et al. 2013; GloFAS 2022a); and the Bangladesh Flood Forecasting and Warning Centre
(FFWC) Super Model (BWDB 2020), each producing forecast flood maps at different spatial scales (30, 1,000, and 300 m,

respectively). We investigate how a novel scale-selective spatial verification approach (Hooker et al. 2022) can be applied
to multi-system studies where the forecast flood maps are presented at different spatial scales. Through applying this
approach, we determine a skillful scale of each flood map that can be directly compared and discuss the benefits and limit-

ations of each forecast system for flood mapping purposes that underpin the triggering of FbF schemes.
We describe the characteristics of the Jamuna River flood, July 2020 in Section 2. The three flood forecasting systems are

described in Section 3 along with details of the SAR-derived observation of flooding. The scale-selective methods used to

evaluate the forecast flood maps are outlined in Section 4. The performance of Flood Foresight with forecast lead time is pre-
sented in Section 5.1 and the multi-system flood map comparisons are presented in Section 5.2. In Section 5.3, we discuss the
benefits and limitations of each system and conclude with recommendations in Section 6.
2. FLOOD EVENT ON THE JAMUNA RIVER, BANGLADESH JULY 2020

Bangladesh lies on the world’s largest delta that drains the Tibetan plateau and the Himalayas to the north via the Brahma-

putra and Ganges River systems. The river system capacity in Bangladesh is overwhelmed each monsoon season by the
volume of water travelling through. Flooding is exacerbated in coastal regions where tidal surges from tropical cyclones
impede the river drainage (Bernard et al. 2022). Due to its geographical location and the low lying, low slope nature of
om http://iwaponline.com/hr/article-pdf/54/10/1115/1312070/nh0541115.pdf
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the land, Bangladesh is susceptible and vulnerable to flooding year after year and faces a worsening situation as a result of

climate change and sea level rise (Hossain et al. 2021).
This study focuses on the Brahmaputra River (locally named the Jamuna River), which is characterised by braided, mean-

dering channels that migrate continually due to frequent silting and erosion, particularly during flood events. The total length

of the Brahmaputra is 2,900 km with a catchment area of around 583,000 km2. Several flashy tributaries such as the Teesta
join the main channel in the north from steep catchments in the southern Himalayas. The main distributary of the Jamuna
River is the Old Brahmaputra, described by the Bangladesh FFWC as a high flow spill river contributing largely to flooding,
depending on the variations of siltation at the entry point (BWDB 2020).

Bangladesh is divided locally into administrative districts, locally named zilas. Four of these that align along the Jamuna
River have been chosen for the comparison of flood mapping skill, these are Kurigram, Gaibandha, Jamalpur, and Sirajganj
(Figure 1).
Figure 1 | Four districts (zilas) of interest in the Jamuna catchment in northern Bangladesh.
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Bangladesh experienced an active monsoon season during the summer of 2020 which brought severe and prolonged flood-

ing in multiple spells. An unusually wet May following cyclone Amphan meant that water levels were already raised ahead of
the monsoon season (Hossain 2020). According to the Bangladesh Water Development Board (BWDB) the flooding had
some remarkable characteristics. It began earlier than usual in late June and had a triple peak that had never been seen

before. The flooding affected 40% of the country, inundating over 34,000 km2. In 2020, this resulted in the second highest
level of flooding since 1989 and the second longest flood duration since 1998. An estimated 5.5 million people were affected
with 1 million houses waterlogged. Around 1.1 million people were displaced with almost 100,000 evacuated to over 1,500
shelters. Almost 1 million tube-wells and more than 100,000 latrines were damaged, 83,000 hectares of paddy fields were

affected, and 257 people lost their lives.
The FFWC estimates that the Jamuna basin received 20% more rainfall in July than normal (BWDB 2020). Gaibandha

recorded the highest 1-day maximum rainfall across the basin at 250 mm, with a 10-day consecutive maximum rainfall of

549.5 mm. The heavy monsoon rainfall in July caused two flood peaks in one month, the first peak around 15 July and
the second around 25 July.
3. FLOOD FORECASTING SYSTEMS AND DATA

The focus of this multi-system comparison is to evaluate the performance of three systems at forecasting the flood inundation

extent for the second flood peak on 25 July. In this section, we briefly outline these three flood forecasting systems and sum-
marise their similarities and differences in simulating flood inundation extent (Sections 3.1, 3.2, and 3.3). Table 1 details the
main system attributes. The flood map data used for comparison from each system are described in Section 3.4.
Table 1 | Flood forecasting system comparison

Attribute Flood Foresight GloFAS Rapid Flood Mapping FFWC

System application Forecast-based financing for
humanitarian early action

Global, broad scale medium range flooding
prediction for large river basins

National flood
forecasting and
warning

System type Ensemble simulation library
(globally scalable)

Global ensemble simulation library (upstream
drainage area . 5,000 km2, river width .

100 m)

Deterministic

Forecast type Daily, 10-day lead time Daily, maximum flood extent next 30 days Daily, 5-day lead time

Meteorological model ECMWF IFS ECMWF IFS BMD (WRF)

Hydrological model LISFLOOD LISFLOOD MIKE II FF rainfall-
runoff

Hydraulic model RFLOW/JFLOW CA2D MIKE II GIS

Observed driving/input data None None Rainfall and river
water level

Grid length (m) 30 1,000 300

DSM/DEM NEXTMAP World30 DSM SRTM (adjusted) Survey of Bangladesh
(.10 years old)

DSM/DEM grid resolution
(m)

30 90 (re-scaled to 1,000) 300

Modelled flood map return
period thresholds (years)

20, 50, 100, 200, 500 and 1,500
plus 30 interpolated flood
maps

10, 25, 50, 100, 250, 500 and 1,000 N/A

Flood map selection ensany. 5year return period
threshold

ensmean. 10-year return period threshold N/A

Defences included? No No Yes

Any ensemble member forecast discharge value is defined as ensany. The mean forecast discharge value of all ensemble members is defined as ensmean.
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3.1. GloFAS RFM

GloFAS couples state-of-the-art numerical weather prediction (NWP) forecasts with a distributed hydrological model. With
its continental scale set-up, it provides downstream countries with forecasts of upstream river conditions up to one month

ahead as well as continental and global overviews for large river basins. As of version 3.1 (released in May 2021), this mod-
elling chain is based on the full configuration of the LISFLOOD hydrological model, forced by an ensemble of meteorological
inputs (GloFAS 2022a). The meteorological forecast data are provided to LISFLOOD by the ECMWF Integrated Forecasting
System (IFS), the operational 51 ensemble member NWP system from ECMWF (Alfieri et al. 2013; GloFAS 2022a). The

NWP data (precipitation, temperature, potential evapotranspiration, and evaporation rates for open water and bare soil sur-
faces) are taken as inputs into the hydrological model, LISFLOOD. LISFLOOD is a distributed hydrological rainfall-runoff
model, simulating surface, groundwater and subsurface water flow and then routing the water to river channels and simulat-

ing the routing of the channel flow (LISFLOOD 2022). LISFLOOD includes consideration of snow melt, infiltration,
vegetation interactions (interception, evapotranspiration, water uptake) and exchange of soil moisture between a 3-layer
soil water balance sub-model. The runoff data produced are routed through a representation of the river network using a

double kinematic wave approach. The river network used is taken from the HydroSHEDS dataset (Lehner 2014). GloFAS
is calibrated using historical streamflow records from selected stations worldwide (Hirpa et al. 2018). For Bangladesh,
four river gauges have been used to calibrate GloFAS as reported on the GloFAS web viewer (GloFAS 2022c). Two of
these gauges are on river reaches that would impact the four Jamuna River districts: one at Bahadurabad on the main

Jamuna River, and another upstream at Kaunia on the Teesta River, a tributary of the Jamuna River. The observation
record at Kaunia is very short at around 7 years (1985–1992), while the record at Bahadurabad is over 35 years (1981–
2015). Modified Kling-Gupta Efficiency (KGE) is calculated for each station; a performance measure that indicates how

well the model reanalysis (at day 0) replicates the flows observed, greater than 0.8 is very good and less than 0.2 is very
poor. Both stations have KGE values above 0.7, indicating relatively good hydrological model performance.

GloFAS RFM (GloFAS 2022b) displays a maximum flood extent over the next 30 days by matching the return periods from

the GloFAS streamflow forecast to a catalogue of modelled inundation extents. Flood maps are triggered for basins greater
than 5,000 km2 and where the 10-year RP threshold is exceeded by the ensemble mean. The RP flood maps available are listed
in Table 1. The flood maps were developed using the semi-inertial formulation of the CA2D hydraulic model which is a

reduced complexity model based on the cellular automata approach and the diffusive wave equations, specifically designed
to simulate flood inundation events involving wide areas (Dottori & Todini 2011). Dottori et al. (2016) describe the methods
used to derive the flood maps at specified return periods on a global scale using a vegetation corrected version of the global
DEM SRTM (Farr et al. 2007). The hydraulic modelling was performed at 1 km grid resolution.

3.2. Flood Foresight

The Start Network (Start Network 2022) is a charity and network of over 80 humanitarian agencies and aims to develop
locally led early action by moving to a model of proactive funding to alleviate crises before they happen. JBA Consulting,

in partnership with the Start Network, have developed a Disaster Risk Financing (DRF) system for the Jamuna River that
links a fluvial probabilistic flood inundation forecasting system, Flood Foresight (Revilla-Romero et al. 2017), to populations
impacted by flooding (Figure 2). The DRF system quantifies the flood risk to the population for the purposes of setting trigger

threshold levels through a probabilistic global catastrophe risk model, FLY (Dunning 2019).
A domain of interest is divided into ‘Impact Zones’ (IZ) or sub-catchments using the HydroBASINS dataset (Lehner 2014).

The Flood Foresight system links each IZ to GloFAS grid cells providing 51 ensemble member forecasts of river discharge

(Section 3.1). Based on the forecast discharge for each IZ, a precomputed flood map is selected from a simulation library.
The flood map library was hydrodynamically modelled using JFlow® (Bradbrook 2006) and RFlow using a detailed DSM
at 30 m spatial scale at specified return period (RP) thresholds (detailed in Table 1). These were subsequently linearly interp-
olated at five intermediate intervals between each RP threshold and extrapolated between zero and the 20-year RP flood map

(totalling 36 flood maps). The flood map selected is determined by the RP threshold exceeded within each IZ. An example
forecast domain in Figure 3 shows neighbouring IZ trigger flood maps at different RP thresholds and the RP threshold is not
exceeded in every IZ.

The simulation library approach enables rapid flood map selection so that the system can be run in near real-time. Where
the forecast discharge exceeds a 5-year RP threshold the probabilistic flood maps are triggered and linked to populations
impacted. IZ linked to a 2-year RP threshold (Figure 3) will not trigger a flood map due to low confidence in the RP threshold
://iwaponline.com/hr/article-pdf/54/10/1115/1312070/nh0541115.pdf
EADING user
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levels and the uncertain flood map interpolation process at low discharge values. The system runs daily and produces 51
ensemble member flood extent and depth maps for forecast lead times up to 10 days ahead. Hooker et al. (2023a) rec-
ommended consideration of all ensemble members as indicators of potential flooding so we evaluate each grid cell where

any ensemble member indicates flooding (ensany).

3.3. Bangladesh FFWC

Historical catastrophic flooding in Bangladesh has led to well developed and forward-thinking flood forecasting and warning
services. Under the Ministry of Water Resources, flood forecasting in Bangladesh is the responsibility of the BWDB following

the BWDB Act-2000. The FFWC, established in 1972, is the lead organisation for flood forecasting and warning services. The
FFWC acts as coordinators between other Bangladesh agencies and ministries involved in flood disaster management. During
the event in July 2020, FFWC provided a 5-day deterministic and a 10-day probabilistic flood forecast. The FFWC have ident-

ified two main priority areas of improvement: to increase warning lead time and to make location specific flood forecasts
(BWDB 2020). Operationally, FFWC uses real-time hydrological data from water level and rainfall stations at 3-h intervals.
Rainfall estimates are based on the preceding 3 days of rainfall along with analysis derived from NWP forecasts from the Ban-

gladesh Meteorology Department (BMD, NCAR (2022)). Forecast flood bulletins are prepared daily and disseminated
through various modes to multiple recipients.

During the monsoon flood season, the FFWC generate a daily hydrodynamically modelled flood inundation map for the

Jamuna, Ganges and Meghna river basins. The flood maps are generated using output files from MIKE 11 FF Rainfall-
Runoff hydrological model and hydrodynamic modelling simulations using a customised MIKE 11 GIS model (Havnø
et al. 1995; Gourbesville 1998). The Digital Elevation Model (DEM) used for the hydrodynamic modelling has a 300 m spatial
resolution that was collected by the Survey of Bangladesh (SoB) more than 10 years previously.

3.4. Observation data

The data described here are used to evaluate the three flood forecasting systems. Observations of river water level from eight
river gauges across the four districts were provided by the FFWC for validation purposes. The gauge locations are shown in
Figure 1 in yellow, five are located on the main Jamuna River channel and three are located on tributaries/distributaries of the

Jamuna River. Three satellite SAR images from Sentinel-1 (S1A) acquired on 25 July 2020 and three pre-flood images from the
same track from 7 June were used to derive a remotely observed flood map. The HASARD flood mapping algorithm (Chini
et al. 2017) hosted on WASDI (WASDI 2022) uses a statistical, hierarchical split-based approach to separate the two classes

(flooded and unflooded) using the pre-flood and flood images. The HASARD mapping algorithm removes permanent water
bodies, such as the river channel, reservoirs, and lakes. Flooded areas beneath vegetation, near to buildings and under bridges
will not be detected using this method. To smooth the HASARD flood maps and allow a fairer comparison we apply a
om http://iwaponline.com/hr/article-pdf/54/10/1115/1312070/nh0541115.pdf
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Figure 3 | Example Flood Foresight forecast domain divided into Impact Zones (shown in colour with black outline where the 2-year return
period threshold is exceeded), each linked to a GloFAS grid cell. The Impact Zone colour shows the corresponding return period threshold
exceeded, determined by the GloFAS forecast discharge.
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morphological closing operation, without impacting the location of the flood extent, to flood fill buildings and vegetation. So

that the flood prediction accuracy alone can be evaluated, the pre-flood occurrence of surface water using the JRC Global
Surface Water database (Pekel et al. 2016) has been removed from the forecast inundation maps. The observed flood
extent mosaic derived from the three SAR images at 20 m grid size was re-scaled to match the relevant forecast flood map

grid lengths using majority (mode) aggregation.
4. SCALE-SELECTIVE EVALUATION METHODS

The flood forecasting systems detailed in Table 1 produce flood maps at 30, 300, and 1,000 m spatial scales (grid lengths).

Validation of forecast flood maps against remotely observed flooding extent is typically carried out by labelling each grid
cell using a contingency table with categories: correctly predicted flooded, under-prediction (miss), over-prediction (false
alarm), and correctly predicted unflooded. After labelling, conventional binary performance measures such as Critical Suc-

cess Index (CSI) and Pierce Skill Score (PSS) are calculated and give a domain average skill score (Stephens et al. 2014).
Comparing the binary performance measures of these flood maps at different spatial scales would not be meaningful as
the higher resolution maps would be overly penalised due to the double penalty impact (Roberts & Lean 2008; Hooker
://iwaponline.com/hr/article-pdf/54/10/1115/1312070/nh0541115.pdf
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et al. 2022). Several commonly applied binary performance measures will be included here for demonstration and compari-

son purposes only and the details of these can be found in Supplementary material, Appendix A, Table A1.
To tackle the issue of validating across differing spatial scales, we apply a scale-selective approach to flood map evaluation.

The scale-selective evaluation approach includes calculation of the Fraction Skill Score (FSS, Roberts & Lean 2008) and

location specific agreement scales (Dey et al. 2016), which are plotted on a Categorical Scale Map (CSM, Hooker et al.
2022, 2023a). A brief summary of the method is given here. For full methodology please see Roberts & Lean (2008); Dey
et al. (2016); Hooker et al. (2022, 2023a). The FSS calculates the accuracy of a forecast flood map by comparing against
an observed flood map across a range of neighbourhood lengths (n, see Figure 4). First, every grid cell is compared

(n ¼ 1). Then, the next largest neighbourhood size, n ¼ 3, surrounding each grid cell is compared and the process continues
to n ¼ 5, n ¼ 7 and so on. The fraction flooded (number of flooded grid cells in the neighbourhood divided by the total
number of grid cells in the neighbourhood) in each of the forecast and observed flood maps are used to calculate the FSS

at each n. The FSS calculation is based on the Brier Skill Score. The FSS for each n is derived by calculating the mean squared
error (MSE) between the forecast and observed fractions and dividing this by a reference MSE. This value is subtracted from 1
to give the FSS score. Increasingly larger neighbourhoods are compared until a target FSS score has been reached and

exceeded at which point the skillful scale has been met (e.g. see Figure 9). The target FSS score, given by
FSST � 0:5þ fo=2 depends on the fraction of observed flooding in the domain of interest, fo.

The FSS gives a domain averaged skill score. We also calculate a local agreement scale (S) for each grid cell that can be

mapped onto a CSM. The relationship between S and n is given by S ¼ (n� 1)=2. An acceptable level of background bias
between the forecast and observed flood maps can be pre-set. This is used to determine an agreement criterion. Like the
FSS method, the comparison begins at each grid cell, if the agreement criterion is met, the grid cell is labelled with an agree-
ment scale S ¼ 0. Where the criterion is not met, a larger neighbourhood size is compared (e.g. n ¼ 3). The fraction flooded in
Figure 4 | An example FSS calculation applied to forecast flooding extent, 1¼ flooded (in blue), 0¼ unflooded (in white) compared to a
remotely observed flood extent in pink. The FSS is calculated for two neighbourhood sizes, n ¼ 1 (small gold box) and n ¼ 3 (large gold box).
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each of the forecast and observed flood maps are compared and if the criterion is met the agreement scale assigned would be

S ¼ 1. The process continues to larger neighbourhoods (e.g. n ¼ 5, S ¼ 2) until either the criterion is met or a predetermined
limit is reached (Slim, set to 9 for this application). The agreement scale at this limit would indicate a miss or false alarm for the
grid cell. Combining a map of agreement scales with a conventional contingency map creates a CSM which shows the level of

agreement (S) and whether the forecast is over- or under-predicting the flooding extent (e.g. see Figure 8). The CSM shows a
location specific skill score that can be linked to different aspects of the forecast system such as IZ and their associated river
discharge forecast or RP thresholds, river channel bathymetry, the DSM or flood defences.
5. RESULTS AND DISCUSSION

Forecast flood maps for the Jamuna River flooding, July 2020 from each of the three systems described in Sections 3.2 and 3.3

are compared against SAR-derived flood maps (described in Section 3.4) using scale-selective evaluation methods (as dis-
cussed in Section 4). First, in Section 5.1, the Flood Foresight system performance is evaluated against forecast lead time,
where flood maps out to 10-day lead time are available. Performance evaluation of the other two systems with forecast

lead time was not possible due to the availability of flood maps. In Section 5.2, we compare the forecast flood maps from
each of the systems described in Section 3 and discuss their benefits and limitations in Section 5.3.

5.1. Flood Foresight in Jamuna River: a case study

The performance of the Flood Foresight system with forecast lead time is evaluated here. Flood Foresight predicts the flooding
extent for second flood peak on 25 July at all lead times (out to 10 days). To evaluate the spatial accuracy within each district
with forecast lead time, the absolute agreement scale score has been averaged across each district (solid lines, Figure 5).

An average agreement scale of zero would indicate the forecast and observed fields are in agreement at grid level, S ¼ 2
means agreement is reached within a 5� 5 neighbourhood. Across the 10-day forecast Flood Foresight performs best in Kur-
igram district in the north with consistently the worst performance in Sirajganj. Three of the districts (except Jamalpur) show
a similar trend with forecast lead time with the best performance for all districts (smallest average agreement scale) occurring

at a 10-day lead time (2.31) with a second peak of performance at a 4-day lead time (2.61). The performance worsens from a
4-day lead time to a 1-day lead time across all districts, with an average agreement scale at a 1-day lead time of 3.42.
The unusual variation in skill with forecast lead time for Jamalpur prompted further investigation into the driving data.
Figure 5 | Flood Foresight average agreement scale against forecast lead time for each district and updated Jamalpur following reassociation
of IZ with GloFAS grid cells, forecast valid for 25 July.
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Section 3.2 describes how the domain is divided into IZ with each of these linked to the driving data, GloFAS river dis-

charge (Figure 3). The flood map selection within each IZ depends on the forecast discharge exceeding a particular RP
threshold. A direct comparison of observed and modelled river conditions is not possible as observed data are river water
levels, GloFAS provides forecast discharge, and the stage-discharge relationships are not available. The observed river

water levels have been aligned using human judgment to the nearest GloFAS grid cell forecast discharge (1-day lead time
control member) and compared for all river gauges. We aimed to match the trend in the two series while keeping the
local station risk level close to the GloFAS 2 and 5-year RP threshold levels. Two of the eight river gauges are located in
Jamalpur (Figure 1). Bahadurabad is located on the main Jamuna channel and Jamalpur is on a distributary of the Jamuna

River crossing the Jamalpur district (Figure 6). Hydrographs for gauges located outside of Jamalpur are plotted in Supplemen-
tary material, Appendix A, Fig. A1. Bahadurabad (Figure 6(a)) is well calibrated in GloFAS (Section 3.1) and the overall
forecast aligns well with the observed river water level; the second flood peak magnitude is slightly underestimated. The dis-

charge forecast skill for Jamalpur station (Figure 6(b)) is very different to the observed river water level in terms of variation in
water levels/discharge, timing and magnitude of flood peaks. A closer look at the river routing network in GloFAS shows that
the Old Brahmaputra distributary in Jamalpur is not connected to the main river channel; this connection should occur at

flood flows. To overcome the disconnection of the distributary in the river network, the IZ association to GloFAS grid
cells in the Flood Foresight system design was manually updated. IZ aligning the Old Brahmaputra, crossing Jamalpur,
were reassociated to GloFAS grid cells located upstream on the main Jamuna channel. The new forecast hydrograph for

Jamalpur (Figure 6(c)) shows an improved forecast compared to observed river water levels. However, the first flood peak
arrives quicker than observed and the second flood peak magnitude is underestimated.

Following the gauge reassociation update to the Flood Foresight system, updated CSMs were reanalysed and this led to an
improvement in the overall skill for the Jamalpur district (Figure 5) but with variation in skill with forecast lead time. The

variation is investigated by examining the CSMs for Jamalpur. Figure 7(a) maps the original CSM for Jamalpur for run
date 20 July. CSMs show a location specific (at each grid cell) agreement scale between the forecast flood map and the
observed SAR-derived flood map. There is a large area of under-prediction around Jamalpur caused by the disconnection

of the Old Brahmaputra distributary (as discussed above).
The CSM change map (Figure 7(b)) is calculated by taking the difference between the absolute CSM values,

jupdated CSMj � joriginal CSMj. The CSM change map for Jamalpur shows where the reassociation has impacted the

flood map. A negative agreement scale change indicates an increase in skill (purple, smaller grid size), whereas a positive
agreement scale change indicates a decrease in skill (orange, larger grid size). The CSM change values can highlight areas
where the agreement scale has increased/decreased but have not reached S ¼ 0 (agreement at grid level). Areas surrounding
the Old Brahmaputra (in purple) show most of the increased skill following the reassociation. However, there are regions of

Jamalpur not impacted by the reassociation that remain under-predicted where smaller distributaries run, that would not be
captured/calibrated in GloFAS due to their small size (Figure 7(b)). This results in some variation in skill with forecast lead
time remaining after the reassociation (Figure 5). The visualisation of incremental improvements at specific locations will

benefit future flood map development work. The CSM change map shows more sensitivity to changes in skill that would
not be visible on a conventional contingency map.

5.2. Multi-system flood map comparison

GloFAS RFMs are displayed when the mean ensemble member exceeds the 10-year RP threshold within the next 30 days. By
inspecting the reporting point hydrograph at Bahadurabad on each of the 10 days preceding the flood peak (25 July), we

found that the 10-year RP threshold was exceeded just once by the ensemble mean on the 18 July (run date), which
means only one forecast flood map was available from GloFAS RFM for evaluation. FFWC provided daily flood maps,
based on most recent observations, valid for the same day. For the multi-system comparison, based on the availability of fore-
cast flood maps, the following have been selected to compare in detail: Flood Foresight’s flood map for the same run date as

the available RFM forecast (18 July forecast date, valid date 25 July), the RFM (run date 18 July) and the FFWC flood map for
25 July (run date and forecast valid date) have each been compared to the SAR-derived flood map (25 July) and CSMs cal-
culated (Figure 8). CSMs have also been calculated for all available forecast lead times for the Flood Foresight system (not

shown).
The large area of flood under-prediction (in red) to the northwest of Sirajganj on each CSM (Figure 8) can be linked to

observed very heavy rainfall and possible surface water flooding (SWF) detected by the SAR data. The recorded rainfall
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Figure 6 | (a) GloFAS forecast discharge (control member, 1-day lead time) compared to FFWC observed river water level for the main
Jamuna channel at Bahadurabad and (b) the old Brahmaputra distributary in the Jamalpur district. (c) The old Brahmaputra distributary
forecast discharge following reassociation of IZ with GloFAS grid cells. The GloFAS RP threshold levels are taken from the nearest GloFAS grid
cell to the gauge station location. Station risk levels are provided by FFWC.
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Figure 7 | (a) Original CSM for Jamalpur. (b) CSM change (updated CSM – original CSM) for Jamalpur following reassociation of IZ with GloFAS
grid cells. Run date 20 July, forecast valid for 25 July for (a) and (b).

Figure 8 | CSM for flood inundation forecasts from three forecast systems for flood peak 25 July compared to SAR-derived flooding. (a) Flood
Foresight run date 18 July, (b) GloFAS RFM run date 18 July, and (c) FFWC flood map run date 25 July.
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described earlier (Section 2) is confirmed by rainfall derived from satellite data, (Climate Hazards Group InfraRed Precipi-

tation with Station (CHIRPS) data (Funk et al. 2015)), which shows that the July rainfall anomaly in this area was 125–
175 mm. The accumulated rainfall in GloFAS for the ensemble mean for the 20 days preceding 25 July amounts to a maxi-
mum of 300 mm, with up to 400 mm north of Bahadurabad. This is an under-prediction compared to observed rainfall
(Gaibandha 1-day maximum rainfall 250 mm, 10-day consecutive maximum rainfall 549.5 mm), which explains the under-

prediction seen in Figure 8(a) and 8(b). Note that each system forecasts fluvial flooding and does not account for SWF,
which was likely given the extreme rainfall accumulations recorded. This is a limitation of both Flood Foresight and RFM
systems and demonstrates the need for combining fluvial and SWF forecasting systems or combining the forecast flood

maps with SAR data using data assimilation (e.g. García-Pintado et al. 2015; Cooper et al. 2019).
The CSM for Flood Foresight (Figure 8(a)) shows areas of over-prediction (in blue) next to the Jamuna River. It is likely that

more of the river channel has been removed from the SAR image during the flood mapping process compared to the
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12-month occurrence of water in the Global Surface Water database. Also, the Jamuna River channel migration will also con-

tribute to errors in this area as the DSM was acquired in 2016. To the west of Sirajganj, the FFWC correctly maps flooding
associated with the Atrai River, a tributary of the Jamuna River that is not forecast by the other two systems. Multiple tribu-
taries flow across Gaibandha and Sirajganj that are not currently resolved by GloFAS. This also impacts the performance of

Flood Foresight when flood maps were not triggered above the 5-year RP threshold.
Flood waters are (Figure 8(b)) spread further from the main river channel in the RFM, compared to the Flood Foresight

flood map. This is due to the GloFAS configuration where clusters of cells are linked to the main channel reporting
points. The RFM extent is also due to a smoother DEM created by re-scaling from 90 to 1,000 m. This will effectively

remove flood barriers such as embankments and roads. An element of smoothing (albeit to a lesser extent compared to
the RFM) would also occur in the Flood Foresight flood maps at 30 m grid length. The FFWC CSM shows good accuracy
in Sirajganj and Jamalpur (Figure 8(c)). In Sirajganj, there is a region of over-prediction on both the Flood Foresight and

the RFM CSM not present on the FFWC CSM. The FFWC model includes flood defences and water level observations
from Kazipur, both could contribute to the better performance seen here. FFWC maps perform less well in Kurigram
where the flooding extent is underestimated. Kurigram is next to the northern border of Bangladesh where upstream

water level data are unavailable for hydrological model calibration and validation. The benefits of the trans-boundary systems
of GloFAS and Flood Foresight are evident here.

To quantify the district performance of each system the FSS has been calculated for neighbourhood sizes up to n ¼ 19 or

larger (not plotted) where the FSS target has not been reached (Figure 9). The FSS gives a measure of spatial accuracy for
each system flood map; however, the score is not directly comparable across different spatial scales since the scores are
Figure 9 | Average FSS plotted against neighbourhood size (n) for each forecast system (run dates as described in Figure 8) in Kurigram (a),
Gaibandha (b), Sirajganj (c). and Jamalpur (d) and the target skill score for each district.
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calculated in terms of a neighbourhood size (Section 4). We can calculate a skillful scale, which is half of the neighbourhood

size at which the FSS exceeds FSST . This accounts for the size of the grid cell and can be directly compared across each of the
forecast systems. For example, in Figure 9(a) for Kurigram, at grid level (n ¼ 1) the FFWC FSS (0.52) exceeds the Flood Fore-
sight FSS (0.48). We saw on the CSM map (Figure 8) that the Flood Foresight map appeared to capture the observed flooding

at Kurigram more accurately than the FFWC map. Despite this observation, the FFWC map has a higher CSI score (0.35,
Supplementary material, Appendix A, Fig. A2 (c)) compared to the Flood Foresight CSI (0.31, Supplementary material,
Appendix A, Fig. A1(a)) because the grid size is not accounted for by the CSI. However, neither of the two systems flood
maps have reached the target FSST at grid level (Figure 9(a)). The FFWC map exceeds FSST at n ¼ 3 and the Flood Foresight

map exceeds FSST at n ¼ 7. By accounting for the impact of the grid size, the skillful scale for Flood Foresight for Kurigram is
105 m ((1=2)(7� 30)) compared to 450 m ((1=2)(3� 300)) for the FFWC flood map indicating the Flood Foresight system is
more accurate in Kurigram. In Gaibandha, the skillful scale is similar for Flood Foresight and the FFWC maps (255 m versus

300 m, Figure 9(b)). In Sirajganj, Flood Foresight requires a neighbourhood size similar to the grid size of the GloFAS RFM to
exceed FSST at 1,005 m (Figure 9(c)). Following the reassociation of the IZ in Jamalpur, Flood Foresight has a skillful scale of
105 m here compared to a high FSS score for the FFWC model at 300 m grid level (Figure 9(d)). Across all districts, GloFAS

RFM exceeds the FSST at grid level with the best performance in Jamalpur and the worst performance in Gaibandha which
can be linked to the underestimation of flooding extent seen on the CSM (Figure 8(b)).

The scale-selective approach is also useful for comparing performance above the FSST line where two systems exceed FSST

at grid level (n ¼ 1). For example, in Jamalpur (Figure 9(d)) at n ¼ 1 the RFM FSS is 0.90 compared to the FFWC FSS of 0.85.
However, FFWC reaches the same score as the RFM (at n ¼ 1, 0.90), at n ¼ 3. In terms of spatial scale, the same FSS is
reached by FFWC at n ¼ 3 (450 m) as RFM at n ¼ 1 (1,000 m), indicating that the FFWC flood map is more accurate than
RFM in Jamalpur. The same result is true in Sirajganj (Figure 9(c)) where the FFWC FSS at n ¼ 3 (0.89) exceeds the RFM

FSS at n ¼ 1 (0.87). In Gaibandha (Figure 9(b)) the FFWC FSS at n ¼ 5 (0.73, 750 m) exceeds the RFM FSS at n ¼ 1
(0.72). Overall, by accounting for grid length, the FFWC provides the most accurate forecast flood map (albeit at a 0-day
lead time) in Jamalpur, Sirajganj and Gaibandha. RFM is most skillful in Kurigram with Flood Foresight outperforming

the FFWC model here.
5.3. Discussion

GloFAS RFMs are designed to give an early indication, up to a month in advance that severe flooding is possible for large
rivers across the globe. The RFMs are triggered when the ensemble mean discharge exceeds the 10-year RP threshold over
the next 30 days. The RP threshold levels are calculated using ERA5 reanalysis data (Harrigan et al. 2020). GloFAS RFM

is triggered for the Jamuna River only once at an 8-day lead time on 18 July (mapping maximum extent over the next 30
days) where the flood map shows a high level of skill across the districts of interest (Figure 8), comparable to the local
FFWC flood maps, which use local observations. Unfortunately, the RFM skill reduces closer to the event with no flood

maps triggered after 18 July. We also see this impacting the Flood Foresight skill, which reduces closer to the flood peak
(Figure 5). The Flood Foresight system indicates flooding surrounding the Jamuna River at all forecast lead times. The flood-
ing extent is generally under-predicted. This is partly due to the discharge forecast not exceeding the 5-year RP threshold,

which also links to unresolved/uncalibrated smaller tributaries/distributaries in the GloFAS river network.
Boelee (2022) finds (for Africa, based on GloFAS ensemble-reforecast flows) that the forecast discharge exceedance above

RP thresholds depends on both the forecast lead time and the number of ensemble members considered (the probability trig-

ger set). Boelee found more flood occurrences were predicted at medium-range lead times, compared to short-range lead
times. We infer that these results could also apply to Bangladesh and that they partly explain the RFMs best performance
at 8-day lead time. The ERA5 reanalysis data is used to initialise the GloFAS forecast and determine the RP thresholds. Cur-
rently, the RP thresholds do not account for either forecast lead time or ensemble variability. The GloFAS hydrographs at

Bahadurabad indicate a reanalysis discharge value of around the 2-year RP threshold for all lead times within 5 days of
the flood peak. This is a significant underestimation compared to observed river levels (both in historical context and com-
pared to FFWC danger levels and severe flood thresholds). High confidence is assigned to the initial conditions in the

streamflow forecast and also in the short-term forecast before the ensembles show more variation at longer lead times.
This leads to an overall under-estimation of the flood magnitude at shorter lead times. Zsoter et al. (2020) found that ensem-
ble-reforecast-based thresholds would lead to an improved forecast at lead times beyond a few days as they can account for
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variations in forecast skill with lead time and ensemble variability. Ensemble-reforecast-based thresholds could improve the

flood map selection in both the RFM and Flood Foresight systems, which presently are the main limitation of both systems.
The RFM uses the ensemble mean or 50% of ensemble members must exceed the RP threshold to trigger a flood map. How-

ever, Boelee (2022) found that the percentage of flood events exceeding the threshold for any RP dropped to less than 50% as

soon as the required ensemble size was increased to two ensemble members or more, for all the lead times. Extreme flood
event prediction can lie in the ensemble member outliers (Hooker et al. 2023a). The Flood Foresight system uses information
from all ensemble members for impact forecasts, which is a major benefit of this system. The automated probabilistic flood
maps can be produced quickly in near real-time indicating a spread of possible conditions that could support the decision-

making process. The RFM could see an improved forecast at more lead times if any ensemble member exceeding the RP
threshold (rather than the mean) triggered the flood map selection. This would require further investigation in flood prone
areas so that the number of ensemble members chosen can be optimised to avoid increasing false alarms. The RFM could

also provide probabilistic information by combining flood maps from all ensemble members that exceed the RP threshold.
The FFWC model performs significantly better at shorter lead times compared to the other two systems, which is not sur-

prising as locally observed river level and rainfall data are used as input data. The benefits of the FFWC model are that no RP

thresholds need to be determined or exceeded to produce a flood map and there are no flood map interpolation uncertainties.
The deterministic FFWC models forecast skill drops significantly with forecast lead time (BWDB 2020), which reduces the
usefulness for flood mitigation and FbF purposes at longer lead times. The FFWC model performs less well compared to RFM

and Flood Foresight near to the country’s border where observations upstream are unavailable.
6. CONCLUSIONS

Forecast flood maps are increasingly sought to accurately link flooding hazard to populations impacted to inform FbF
schemes. Humanitarian agencies in Bangladesh would like the impacts mapped in detail at Union level (4,571 Unions in Ban-
gladesh) at long forecast lead times (out to 10 days) so that insurance funds can be locally targeted in good time. This creates a

conflict between the detail or spatial scale (grid size) of the flood maps and the forecast skill of the flood forecasting system.
Spatial validation of forecast flood maps from multiple systems has received little attention, partly due to the problem of com-
paring skill scores from maps at different spatial scales. Here, we applied a validation approach using scale-selective methods

(Hooker et al. 2022) that determines a skillful scale, which can be directly compared across forecast systems.
We evaluated three flood forecasting systems: Flood Foresight (30 m), GloFAS RFM (1,000 m), and the FFWC Super Model

(300 m) each predicting flooding extent at different spatial scales (shown in brackets) for the Jamuna River in July 2020. Each
of the maps were compared against SAR-derived observations of flooding extent. Evaluating Flood Foresight skill at all lead

times out to 10 days for four districts revealed issues with unresolved/uncalibrated tributaries/distributaries in GloFAS (used
to input forecast discharge to Flood Foresight). Reconfiguring the Flood Foresight system led to an improved flood map fore-
cast in one district (Jamalpur), but similar issues remained in other areas. This highlights one problem with trying to combine

a gridded global hydrometeorological model with a detailed sub-catchment network and linking this to detailed flood maps.
The flood mapping skill in the Jamuna basin is linked to the detail of the river network and whether flood maps are triggered,
which depends on exceeding the RP threshold set. Where Flood Foresight maps were triggered, such as in Kurigram, the flood

map accuracy outperformed the local FFWC model. This is due to its location next to the border of Bangladesh and the lack
of upstream observations. In other areas the FFWC model captures more detail in the river network and shows less under-
prediction compared to the other systems. For FbF applications and humanitarian response in Bangladesh, a combination of

Flood Foresight and the local FFWC model could produce flood inundation maps at a useful scale that can be linked to flood-
ing impacts. Flood Foresight has the benefit of forecast skill at a longer lead times (up to 10 days) with probabilistic maps
accounting for some of the forecast uncertainty. Flood Foresight could be supplemented or linked to driving data from the
FFWC model at shorter lead times to incorporate local observations and a higher resolution river network. This would

avoid regions of non-trigger where no flood map is selected from the Flood Foresight library due to the forecast discharge
not exceeding the RP threshold. GloFAS RFM is designed as a deterministic ‘heads-up’ tool at a coarse resolution that
would be difficult to link to impacts for FbF applications in its current configuration. All systems miss flooding across a

wide area captured by the SAR data that is possibly due to SWF. These fluvial flood forecasting systems are not designed
to map SWF and we recommend combining the forecast flood maps with SAR-derived flood maps through data assimilation
so that SWF can be accounted for in post event impact calculations for FbF schemes. Alternatively, a combined fluvial/pluvial
://iwaponline.com/hr/article-pdf/54/10/1115/1312070/nh0541115.pdf
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flood forecasting system would be ideal; however, pluvial flood forecasting practice is currently less developed in part due to

the difficulties in observing SWF and accurately predicting convective rainfall (Speight et al. 2021).
For future spatial validation of flood maps using SAR data, we recommend making use of the Copernicus GFM product

(GFM 2021) which maps flooding detected from all Sentinel-1 images since October 2021. Importantly, an exclusion

mask layer is available which can be used to exclude areas where SAR is unable to detect flooding such as in dense urban
areas, under vegetation and near steep topography. The forecast flood maps would no longer be penalised for over-prediction
in regions where the SAR cannot reliably detect flooding. Another opportunity for improvement lies with the flood map
library. Both Flood Foresight and RFM maps are currently undefended. However, both would likely be improved if flood

defence information from FFWC could be incorporated, allowing areas benefiting from those defences to be discounted
when flood conditions are at return periods lower than the standard of protection of the defence. Alternatively, a new
high resolution DTM including local defence features, ideally through acquiring LiDAR data (where locally obtained),

would improve the local accuracy of the flood maps. The maps held within the simulation library could be hydrodynamically
precomputed at lower discharge return periods, which would avoid inaccuracies caused by flood map interpolation beneath
the lowest RP level. This would increase the confidence in these flood maps so that a lower RP threshold could be used to

trigger FbF allowing more people access to insurance funds.
Fortunately, some of the issues discussed here such as the river network detail will be partly resolved by the major upgrade

to GloFAS with version 4.0 due in 2023 (Grimaldi 2022). Significantly, the spatial resolution of GloFAS will increase four fold

to approximately 5 km grid size. The river network will increase similarly, and more distributaries/tributaries will be included
in Bangladesh. This upgrade along with the use of ensemble-reforecast-based RP thresholds should improve the flood map
selection process used by both GloFAS RFM and Flood Foresight. Scale-selective validation methods will enable future
system changes to be evaluated and compared meaningfully. Ideally, this would be automated and integrated into the

flood forecasting system.
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