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Abstract 
 
This paper compares two asymmetric models for high-frequency transaction data in 
financial markets, namely, the three-state Asymmetric Autoregressive Conditional 
Duration (AACD) model and the Activity Direction Size (ADS) model. It is shown that the 
two asymmetric models measure different aspects of the same underlying asymmetric 
nature of high-frequency transaction data. It is also shown that by extending the AACD 
model to include two size variables and adjusting for partial durations, each model’s 
parameter estimates can be used to estimate the other model’s parameters exactly. 
Thus, the two asymmetric models are equivalent, and measure the durations and price 
changes jointly. 
 
Keywords: High-frequency transaction data 
 
JEL: G15 
 

 

1. Introduction 

High-frequency transaction data in financial markets occurs in continuous time and is 
irregularly spaced. Models of high-frequency transaction data measure the durations 
and/or price changes of security. Some models focus on the inter-arrival times (durations) 
between high-frequency transactions and other models focus on the changes in the price 
of the security of interest. For example, by far the most common class of models for 
measuring the inter-arrival times between transactions is the class of Autoregressive 
Conditional Duration (ACD) models (Bauwens & Hautsch, 2009). More generally, it has been 
shown that durations and price changes can be modelled jointly as a marked point process 
(see Engle, 2000). As the number of models of high-frequency transaction data increases, it 
is important to reflect on the similarities of current models. The motivation of this paper is to 
highlight the underlying commonalities between two asymmetric models of high-frequency 
transaction data, namely, the Activity Direction Size (ADS) model (Rydberg and Shephard, 
2003) and the three-state Asymmetric Autoregressive Conditional Duration (AACD) model 
(Tay et al., 2011). The three-state asymmetric autoregressive conditional duration is a 
generalisation of the Autoregressive Conditional Duration (ACD) model of Engle and Russell 
(1998). Thus, by comparing two generalised asymmetric models, such as the ADS model and 
the three-state AACD, further comparisons can be made to more specific models of high-
frequency transaction data.  
 
The Activity Direction Size (ADS) model decomposes high-frequency scaled price 
movements of a security into three main variables, namely, activity, direction, and size 
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(Rydberg and Shephard, 2003). For each transaction, activity measures whether the price 
moved (active) or was flat (inactive). Conditional on the price moving, direction measures 
whether the price moved up or down. Also conditional on the price moving, size measures 
the magnitude of the move in multiples of tick sizes. The ADS model captures the asymmetry 
between up and down price movements through both direction and size.  
 
Inter-arrival times (durations) between transactions are usually modelled with conditional 
duration models, with the most well-known model being the Autoregressive Conditional 
Duration (ACD) model of Engle and Russell (1998). A two-state Asymmetric Autoregressive 
Conditional Duration (AACD) model of Bauwens and Giot (2003) extended the ACD model 
by including two durations, namely, up durations and down durations. In addition, a three-
state Asymmetric Autoregressive Conditional Duration (AACD) of Tay et al. (2011) extended 
the two-state AACD model by including three durations, namely, flat durations, up 
durations, and down durations. Extensive surveys on conditional duration models 
demonstrate that it is an active area of research (see Pacurar, 2008; Bhogal and 
Ramanathan, 2019). 
 
In this paper, the three-state AACD model is extended to mirror the two size variables of the 
ADS model, namely, an up size and a down size. In addition, by incorporating partial 
durations, this paper contributes to the literature by showing that each model’s parameter 
estimates can be used to estimate the other model’s parameters exactly. Thus, the two 
asymmetric models are equivalent and measure different aspects of the same asymmetric 
model. Ultimately, the two asymmetric models measure the durations and price changes 
jointly, which demonstrates that both models are more general than originally expected. 
 
 
2. Material and Methods 

2.1 Preliminaries 
High-frequency transaction data in financial markets occurs in continuous time and is 
irregularly spaced. For example, when a transaction occurs, a price, a volume, and a time 
are recorded. Models of high-frequency transaction data measure both the durations and 
price movements of a security. More specifically, the price of a security within a specified 
time period can be written as: 

 𝑃𝑃𝑡𝑡𝑒𝑒 = 𝑃𝑃𝑡𝑡𝑖𝑖 + ∑ ∆𝑃𝑃𝑡𝑡𝑛𝑛
𝑁𝑁
𝑛𝑛=1                                                              (1) 

where 𝑃𝑃𝑡𝑡𝑒𝑒 is the price of the security at the end time 𝑡𝑡𝑒𝑒, 𝑃𝑃𝑡𝑡𝑖𝑖 is the price of the security at the 
initial time 𝑡𝑡𝑖𝑖, ∆𝑃𝑃𝑡𝑡𝑛𝑛 is the change in the price of the security between times 𝑡𝑡𝑛𝑛 and 𝑡𝑡𝑛𝑛−1, 𝑡𝑡𝑛𝑛 is 
the transaction’s arrival time, and 𝑁𝑁 is the number of transactions, with 𝑡𝑡𝑖𝑖 ≤ 𝑡𝑡1 ≤ ⋯ ≤ 𝑡𝑡𝑛𝑛 ≤ ⋯ ≤
𝑡𝑡𝑁𝑁 ≤ 𝑡𝑡𝑒𝑒.  

The prices are discrete and live on a lattice of prices driven by the tick size of the security 
(Rydberg and Shephard, 2003). The scaled price of a security at time 𝑡𝑡𝑛𝑛 can be written as: 

 𝑍𝑍𝑡𝑡𝑛𝑛 = 𝑃𝑃𝑡𝑡𝑛𝑛/𝜅𝜅                                                                      (2) 

where 𝑍𝑍𝑡𝑡𝑛𝑛 is the scaled price, 𝑃𝑃𝑡𝑡𝑛𝑛 is the price, and 𝜅𝜅 is the tick size. The tick size scales the 
price to be an integer lattice of scaled prices. In addition, the change in the scaled price 
of a security at time 𝑡𝑡𝑛𝑛 can be written as: 
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 ∆𝑍𝑍𝑡𝑡𝑛𝑛 = 𝑍𝑍𝑡𝑡𝑛𝑛 − 𝑍𝑍𝑡𝑡𝑛𝑛−1                                                                                        

 = 𝑃𝑃𝑡𝑡𝑛𝑛/𝜅𝜅 − 𝑃𝑃𝑡𝑡𝑛𝑛−1/𝜅𝜅                                                                             

 = ∆𝑃𝑃𝑡𝑡𝑛𝑛/𝜅𝜅                                                                             (3) 

where ∆𝑍𝑍𝑡𝑡𝑛𝑛 is the change in the scaled price, ∆𝑃𝑃𝑡𝑡𝑛𝑛 is the change in the price with ∆𝑃𝑃𝑡𝑡𝑛𝑛 = 𝑃𝑃𝑡𝑡𝑛𝑛 −
𝑃𝑃𝑡𝑡𝑛𝑛−1, and 𝜅𝜅 is the tick size. 
 
2.2 Partial Durations 
Partial duration represents the time-interval (duration) between the end time and the last 
transaction time. For example, the total elapsed time can be written as: 

 𝑇𝑇 = 𝑡𝑡𝑒𝑒 − 𝑡𝑡𝑖𝑖                                                                       (4) 

where 𝑇𝑇 is the total time, 𝑡𝑡𝑖𝑖 is the initial time, and 𝑡𝑡𝑒𝑒 is the end time. The duration (inter-arrival 
time) between two transactions is given by: 

 ∆𝑡𝑡𝑛𝑛 = 𝑡𝑡𝑛𝑛 − 𝑡𝑡𝑛𝑛−1                                                                  (5) 

where ∆𝑡𝑡𝑛𝑛 is the duration, 𝑡𝑡𝑛𝑛 and 𝑡𝑡𝑛𝑛−1 are transaction arrival times. The expected unadjusted 
duration can be estimated by: 

 𝜓𝜓 = 1
𝑁𝑁
∑ ∆𝑡𝑡𝑛𝑛𝑁𝑁
𝑛𝑛=1  

 = 1
𝑁𝑁(𝑡𝑡𝑁𝑁 − 𝑡𝑡𝑖𝑖) 

= 𝑇𝑇𝑁𝑁
𝑁𝑁                                                                           (6) 

where 𝜓𝜓 is the expected unadjusted duration, ∆𝑡𝑡𝑛𝑛 is the duration in Equation (5), 𝑇𝑇𝑁𝑁 = (𝑡𝑡𝑁𝑁 −
𝑡𝑡𝑖𝑖) and 𝑁𝑁 is the number of transactions.  

However, if a transaction doesn’t occur at the end time, there exists a partial duration, which 
is the time since the last transaction at time 𝑡𝑡𝑁𝑁. The partial duration is given by: 

 𝛿𝛿 = 𝑡𝑡𝑒𝑒 − 𝑡𝑡𝑁𝑁                                                                        (7) 

where 𝛿𝛿  is the partial duration, 𝑡𝑡𝑁𝑁  is the last transaction time, and 𝑡𝑡𝑒𝑒  is the end time. 
Incorporating the partial duration into the expected duration estimation in Equation (6) 
produces: 

𝜓𝜓∗ = 1
𝑁𝑁𝛿𝛿 + 𝜓𝜓 

       = 1
𝑁𝑁𝛿𝛿 + 𝑇𝑇𝑁𝑁

𝑁𝑁  

 = 𝑇𝑇𝑁𝑁
𝑁𝑁

                                                                                 (8) 

where 𝜓𝜓∗ is the expected adjusted duration, 𝛿𝛿 is the partial duration in Equation (7), 𝜓𝜓 is the 
expected unadjusted duration in Equation (6), ∆𝑡𝑡𝑛𝑛 is the duration in Equation (5), and 𝑇𝑇 is 
the total time in Equation (3), with: 

 𝑇𝑇 = 𝛿𝛿 + ∑ ∆𝑡𝑡𝑛𝑛𝑁𝑁
𝑛𝑛=1  



 
 

 

58 
 

HIGH-FREQUENCY TRANSACTION DATA 

              = 𝑡𝑡𝑒𝑒 − 𝑡𝑡𝑖𝑖  (9) 

When 𝑁𝑁 is large, the partial duration 𝛿𝛿 plays a small role in the calculation of the expected 
duration in Equation (8), since: 

 lim
𝑁𝑁→∞

1
𝑁𝑁
𝛿𝛿 = 0                                                                                  (10) 

However, the partial duration plays an important role when comparing the two asymmetric 
models. 

Assuming that the arrival times of transactions are exponentially distributed, the expected 
intensity is estimated by: 

𝜆𝜆 = 1
𝜓𝜓∗ 

 = 𝑁𝑁
𝑇𝑇

                                                                                        (11) 

where 𝜆𝜆 is the expected adjusted intensity, 𝜓𝜓∗ is the expected adjusted duration in Equation 
(8), 𝑁𝑁 is the number of transactions, and 𝑇𝑇 is the total time in Equation (9). 
 
2.3 Activity Direction Size (ADS) Model 

The Activity Direction Size (ADS) decomposition of the change in the scaled price of a 
security at time 𝑡𝑡𝑛𝑛 can be written as: 

 ∆𝑍𝑍𝑡𝑡𝑛𝑛 = 𝐴𝐴𝑡𝑡𝑛𝑛𝐷𝐷𝑡𝑡𝑛𝑛𝑆𝑆𝑡𝑡𝑛𝑛  (12) 

where ∆𝑍𝑍𝑡𝑡𝑛𝑛  is the change in the scaled price in Equation (3), 𝐴𝐴𝑡𝑡𝑛𝑛  is the activity, 𝐷𝐷𝑡𝑡𝑛𝑛  is the 
direction, and 𝑆𝑆𝑡𝑡𝑛𝑛 is the size (Rydberg and Shephard, 2003).  

The activity of a security represents whether a transaction moves the price or not. The 
probability that transactions are active (moves the price) can be estimated by: 

 𝑝𝑝(𝐴𝐴 = 1) = 1
𝑁𝑁∑ 𝐼𝐼(𝐴𝐴𝑡𝑡𝑛𝑛 = 1)𝑁𝑁

𝑛𝑛=1  

 = 𝑁𝑁𝐴𝐴
𝑁𝑁  (13) 

where 𝑝𝑝(𝐴𝐴 = 1)  is the probability that transactions are active, 𝐴𝐴𝑡𝑡𝑛𝑛  is the activity of the 
transaction price at time 𝑡𝑡𝑛𝑛, 𝐼𝐼(𝐴𝐴𝑡𝑡𝑛𝑛 = 1) an indicator variable that is one when a transaction 
moves the price and zero otherwise; and 𝑁𝑁𝐴𝐴 is the number of transactions where the price 
moved, with 𝑁𝑁𝐴𝐴 = ∑ 𝐼𝐼(𝐴𝐴𝑡𝑡𝑛𝑛 = 1)𝑁𝑁

𝑛𝑛=1 . In contrast, the probability that transactions are flat (not 
active) can be estimated by: 
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𝑝𝑝(𝐴𝐴 = 0) = 1 − 𝑝𝑝(𝐴𝐴 = 1) 

 = 1 − 𝑁𝑁𝐴𝐴
𝑁𝑁  

= 𝑁𝑁𝐹𝐹
𝑁𝑁                                                                                (14) 

where 𝑝𝑝(𝐴𝐴 = 0) is the probability that transactions are flat, 𝑝𝑝(𝐴𝐴 = 1) is the probability that 
transactions are active in Equation (13), 𝑁𝑁𝐹𝐹  is the number of flat transactions, 𝑁𝑁𝐴𝐴  is the 
number of active transactions, and 𝑁𝑁 is the total number of transactions, with 𝑁𝑁 = 𝑁𝑁𝐹𝐹 + 𝑁𝑁𝐴𝐴. 

The up direction of a security represents whether a transaction moved the price up or not. 
The conditional probability for the up direction is given by: 

 𝑝𝑝(𝐷𝐷 = 1|𝐴𝐴 = 1) = 1
𝑁𝑁𝐴𝐴
∑ 𝐼𝐼(𝐷𝐷𝑡𝑡𝑎𝑎 = 1)𝑁𝑁𝐴𝐴
𝑎𝑎=1  

 = 𝑁𝑁𝑈𝑈
𝑁𝑁𝐴𝐴

  (15) 

where 𝑝𝑝(𝐷𝐷 = 1|𝐴𝐴 = 1) is the conditional probability that active transactions move the price 
up, 𝐷𝐷𝑡𝑡𝑎𝑎 is the direction of the transaction price at time 𝑡𝑡𝑛𝑛, 𝐼𝐼(𝐷𝐷𝑡𝑡𝑛𝑛 = 1) an indicator variable 
that is one when the price moves up and zero otherwise. Similarly, the down direction of a 
security represents whether a transaction moved the price up or not. The conditional 
probability for the down direction is given by: 

 𝑝𝑝(𝐷𝐷 = −1|𝐴𝐴 = 1) = 1
𝑁𝑁𝐴𝐴
∑ 𝐼𝐼(𝐷𝐷𝑡𝑡𝑎𝑎 = −1)𝑁𝑁𝐴𝐴
𝑎𝑎=1  

       = 𝑁𝑁𝐷𝐷
𝑁𝑁𝐴𝐴

  (16) 

where 𝑝𝑝(𝐷𝐷 = −1|𝐴𝐴 = 1) is the conditional probability that active transactions move the price 
down, 𝐷𝐷𝑡𝑡𝑎𝑎  is the direction of the transaction price at time 𝑡𝑡𝑛𝑛 , 𝐼𝐼(𝐷𝐷𝑡𝑡𝑛𝑛 = −1)  an indicator 
variable that is one when the price moves down and zero otherwise, and 𝑁𝑁𝐴𝐴 = 𝑁𝑁𝑈𝑈 + 𝑁𝑁𝐷𝐷 with: 

 𝑝𝑝(𝐷𝐷 = 1|𝐴𝐴 = 1) + 𝑝𝑝(𝐷𝐷 = −1|𝐴𝐴 = 1) = 1  (17) 

Finally, the size of a security represents the magnitude of the price movement in multiples of 
tick sizes. Assuming information asymmetry between the magnitude of the up and down 
movements, size is usually separated into up size and down size. Typically, there is no flat size, 
as the conditional probability for flat size is given by: 

 𝑝𝑝(𝑆𝑆𝐹𝐹 = 0|𝐴𝐴 = 0) = 1  (18) 

where 𝑝𝑝(𝑆𝑆𝐹𝐹 = 0|𝐴𝐴 = 0) is the conditional probability that flat transactions do not move the 
price, which is one. The conditional probabilities for up size and down size are given by: 

 𝑝𝑝(𝑆𝑆𝑈𝑈 = 𝑧𝑧|𝐷𝐷 = 1,𝐴𝐴 = 1)  (19) 
 
 𝑝𝑝(𝑆𝑆𝐷𝐷 = 𝑧𝑧|𝐷𝐷 = −1,𝐴𝐴 = 1)  (20) 

where 𝑝𝑝(𝑆𝑆𝑈𝑈 = 𝑧𝑧|𝐷𝐷 = 1,𝐴𝐴 = 1) is the conditional probability that up transactions move the 
price up by 𝑧𝑧 tick sizes, and 𝑝𝑝(𝑆𝑆𝐷𝐷 = 𝑧𝑧|𝐷𝐷 = −1,𝐴𝐴 = 1) is the conditional probability that down 
transactions move the price down by 𝑧𝑧 tick sizes.  
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Table 1 reports the ADS model for different values (𝑧𝑧) of the scaled price change. The 
expected value of the change in the scaled price is given by: 

 𝐸𝐸(∆𝑍𝑍) = 𝑝𝑝(𝐴𝐴 = 0)𝐸𝐸(𝑆𝑆𝐹𝐹) + 𝑝𝑝(𝐴𝐴 = 1)𝑝𝑝(𝐷𝐷 = 1|𝐴𝐴 = 1)𝐸𝐸(𝑆𝑆𝑈𝑈) − 𝑝𝑝(𝐴𝐴 = 1)𝑝𝑝(𝐷𝐷 = −1|𝐴𝐴 = 1)𝐸𝐸(𝑆𝑆𝐷𝐷) 

 = 𝑤𝑤𝑈𝑈𝐸𝐸(𝑆𝑆𝑈𝑈) − 𝑤𝑤𝐷𝐷𝐸𝐸(𝑆𝑆𝐷𝐷)  (21) 

where 𝐸𝐸(∆𝑍𝑍)  is the expected change in the scaled price of the security, 𝐸𝐸(𝑆𝑆𝐹𝐹)  is the 
expected flat size, 𝐸𝐸(𝑆𝑆𝑈𝑈) is the expected up size, 𝐸𝐸(𝑆𝑆𝐷𝐷) is the expected down size, 𝑤𝑤𝑈𝑈 =
𝑝𝑝(𝐴𝐴 = 1)𝑝𝑝(𝐷𝐷 = 1|𝐴𝐴 = 1)  is the up weight, and 𝑤𝑤𝐷𝐷 = 𝑝𝑝(𝐴𝐴 = 1)𝑝𝑝(𝐷𝐷 = −1|𝐴𝐴 = 1)  is the down 
weight. The 𝐸𝐸(𝑆𝑆𝐹𝐹) = 0 since by definition there is no price movement for flat transactions. 

 

Table 1:  Activity Direction Size (ADS) Model 

States 𝒛𝒛 𝒑𝒑(∆𝒁𝒁𝒕𝒕𝒏𝒏 = 𝒛𝒛) Weights 

Flat 𝑧𝑧 = 0 𝑤𝑤𝐹𝐹 𝑤𝑤𝐹𝐹 = 𝑝𝑝(𝐴𝐴 = 0) 

Up 𝑧𝑧 = 1,2, .. 𝑤𝑤𝑈𝑈𝑝𝑝(𝑆𝑆𝑈𝑈 = 𝑧𝑧) 𝑤𝑤𝑈𝑈 = 𝑝𝑝(𝐴𝐴 = 1)𝑝𝑝(𝐷𝐷 = 1|𝐴𝐴 = 1) 

Down 𝑧𝑧 = −1,−2, .. 𝑤𝑤𝐷𝐷𝑝𝑝(𝑆𝑆𝐷𝐷 = 𝑧𝑧) 𝑤𝑤𝐷𝐷 = 𝑝𝑝(𝐴𝐴 = 1)𝑝𝑝(𝐷𝐷 = −1|𝐴𝐴 = 1) 

Notes: Table 1 reports the ADS model for different values (𝑧𝑧) of the scaled price change with: 𝑝𝑝(𝐴𝐴 = 0) is the 
probability of flat transactions, 𝑝𝑝(𝐴𝐴 = 1) is the probability of active transactions, 𝑝𝑝(𝐷𝐷 = 1|𝐴𝐴 = 1) is the conditional 
probability that active transactions move the price up, 𝑝𝑝(𝐷𝐷 = −1|𝐴𝐴 = 1) is the conditional probability that active 
transactions move the price down, 𝑤𝑤𝐹𝐹 is the flat weight, 𝑤𝑤𝑈𝑈 is the up weight, 𝑤𝑤𝐷𝐷 is the down weight, 𝑝𝑝(𝑆𝑆𝑈𝑈 = 𝑧𝑧) is the 
probability of an up size transaction equalling 𝑧𝑧, and 𝑝𝑝(𝑆𝑆𝐷𝐷 = 𝑧𝑧) is the probability of a down size transaction equalling 
𝑧𝑧. 
 

2.4 Asymmetric Autoregressive Conditional Duration with Size (AACDS)  

Inter-arrival times (durations) between transactions are typically modelled with conditional 
duration models, such as the Autoregressive Conditional Duration (ACD) model of Engle 
and Russell (1998). The three-state AACD model of Tay et al. (2011) extended the two-state 
AACD of Bauwens and Giot (2003) to include three durations, namely, flat durations (F), up 
durations (U), and down durations (D).  

A size variable was not included in the original three-state AACD model, as less than 0.5% of 
the transactions moved more than one tick (Tay et al., 2011). However, in this paper, two 
size variables are included in the three-state AACD model to mirror the size variables of the 
ADS model, namely, an up size and a down size. The extended three-state AACD with size 
model will be referred to as the three-state AACDS model. 

The standard ACD model can be written in terms of a marked point process (see Engle, 
2000). In this context, the three-state AACDS model can be written as three marked point 
processes by: 

 𝑝𝑝(𝜓𝜓𝐹𝐹
∗ , 𝑆𝑆𝐹𝐹) = 𝑝𝑝(𝜓𝜓𝐹𝐹

∗ )𝑝𝑝(𝑆𝑆𝐹𝐹|𝜓𝜓𝐹𝐹
∗ ) = 𝑝𝑝(𝜓𝜓𝐹𝐹

∗ ) 

 𝑝𝑝(𝜓𝜓𝑈𝑈
∗ , 𝑆𝑆𝑈𝑈) = 𝑝𝑝(𝜓𝜓𝑈𝑈

∗ )𝑝𝑝(𝑆𝑆𝑈𝑈|𝜓𝜓𝑈𝑈∗ )  (22) 

 𝑝𝑝(𝜓𝜓𝐷𝐷
∗ ,𝑆𝑆𝐷𝐷) = 𝑝𝑝(𝜓𝜓𝐷𝐷

∗ )𝑝𝑝(𝑆𝑆𝐷𝐷|𝜓𝜓𝐷𝐷∗ ) 
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where 𝑝𝑝(𝜓𝜓𝐹𝐹
∗ , 𝑆𝑆𝐹𝐹), 𝑝𝑝(𝜓𝜓𝑈𝑈

∗ , 𝑆𝑆𝑈𝑈), and 𝑝𝑝(𝜓𝜓𝐷𝐷
∗ , 𝑆𝑆𝐷𝐷) are joint probability distributions of the associated 

adjusted durations and scaled price changes for flat transactions, up transactions, down 
transactions, respectively. All flat size movements are equal to zero, so that 𝑝𝑝(𝑆𝑆𝐹𝐹 = 0|𝜓𝜓𝐹𝐹

∗ ) = 1. 

Using Equation (8), the expected adjusted duration for the three states can be written as: 

 𝜓𝜓𝐹𝐹
∗ = 𝑇𝑇

𝑁𝑁𝐹𝐹
 

 𝜓𝜓𝑈𝑈
∗ = 𝑇𝑇

𝑁𝑁𝑈𝑈
 (23) 

 𝜓𝜓𝐷𝐷
∗ = 𝑇𝑇

𝑁𝑁𝐷𝐷
 

where 𝜓𝜓𝐹𝐹
∗  is the expected adjusted flat duration for 𝑁𝑁𝐹𝐹  flat durations, 𝜓𝜓𝑈𝑈

∗  is the expected 
adjusted up duration for 𝑁𝑁𝑈𝑈 up durations, 𝜓𝜓𝐷𝐷

∗  is the expected adjusted down duration for 𝑁𝑁𝐷𝐷 
down durations, and 𝑇𝑇 is the total time in Equation (9). 

Assuming that the arrival times of the transactions of the three states are exponentially 
distributed and using Equation (11), the expected intensities are estimated by: 

 𝜆𝜆𝐹𝐹 = 1
𝜓𝜓𝐹𝐹
∗ = 𝑁𝑁𝐹𝐹

𝑇𝑇
 

 𝜆𝜆𝑈𝑈 = 1
𝜓𝜓𝑈𝑈
∗ = 𝑁𝑁𝑈𝑈

𝑇𝑇
 (24) 

 𝜆𝜆𝐷𝐷 = 1
𝜓𝜓𝐷𝐷
∗ = 𝑁𝑁𝐷𝐷

𝑇𝑇
 

where 𝜆𝜆𝐹𝐹 is the expected flat intensity, 𝜆𝜆𝑈𝑈 is the expected up intensity, 𝜆𝜆𝐷𝐷 is the expected 
down intensity, and the other terms are from Equation (23). The expected intensity for all 
transactions can be estimated by: 

 𝜆𝜆 = 𝜆𝜆𝐹𝐹 + 𝜆𝜆𝑈𝑈 + 𝜆𝜆𝐷𝐷 

 = 1
𝑇𝑇

(𝑁𝑁𝐹𝐹 + 𝑁𝑁𝑈𝑈 + 𝑁𝑁𝐷𝐷) 

 = 𝑁𝑁
𝑇𝑇

 

 = 1
𝜓𝜓∗

  (25) 

where 𝜆𝜆  is the expected intensity of all 𝑁𝑁  transactions, with 𝑁𝑁 = 𝑁𝑁𝐹𝐹 + 𝑁𝑁𝑈𝑈 + 𝑁𝑁𝐷𝐷 , 𝜓𝜓∗  is the 
expected adjusted duration, and the other terms are from Equation (23) and Equation (24). 

Table 2 reports the AACDS model for different values (𝑧𝑧) of the change in the scaled price. 
The expected value of the scaled price change can be written as: 

 𝐸𝐸(∆𝑍𝑍) = 𝜆𝜆𝐹𝐹
𝜆𝜆𝐹𝐹+𝜆𝜆𝑈𝑈+𝜆𝜆𝐷𝐷

𝐸𝐸(𝑆𝑆𝐹𝐹) + 𝜆𝜆𝑈𝑈
𝜆𝜆𝐹𝐹+𝜆𝜆𝑈𝑈+𝜆𝜆𝐷𝐷

𝐸𝐸(𝑆𝑆𝑈𝑈) − 𝜆𝜆𝐷𝐷
𝜆𝜆𝐹𝐹+𝜆𝜆𝑈𝑈+𝜆𝜆𝐷𝐷

𝐸𝐸(𝑆𝑆𝐷𝐷) 

 = 𝑤𝑤𝐹𝐹𝐸𝐸(𝑆𝑆𝐹𝐹) + 𝑤𝑤𝑈𝑈𝐸𝐸(𝑆𝑆𝑈𝑈) − 𝑤𝑤𝐷𝐷𝐸𝐸(𝑆𝑆𝐷𝐷) 

 = 𝑤𝑤𝑈𝑈𝐸𝐸(𝑆𝑆𝑈𝑈) − 𝑤𝑤𝐷𝐷𝐸𝐸(𝑆𝑆𝐷𝐷)  (26) 
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where 𝐸𝐸(∆𝑍𝑍)  is the expected change in the scaled price of the security, 𝐸𝐸(𝑆𝑆𝐹𝐹)  is the 
expected flat size, 𝐸𝐸(𝑆𝑆𝑈𝑈) is the expected up size, 𝐸𝐸(𝑆𝑆𝐷𝐷) is the expected down size, 𝑤𝑤𝐹𝐹 =

𝜆𝜆𝐹𝐹
𝜆𝜆𝐹𝐹+𝜆𝜆𝑈𝑈+𝜆𝜆𝐷𝐷

 is the flat weight, 𝑤𝑤𝑈𝑈 = 𝜆𝜆𝑈𝑈
𝜆𝜆𝐹𝐹+𝜆𝜆𝑈𝑈+𝜆𝜆𝐷𝐷

 is the up weight, and 𝑤𝑤𝐷𝐷 = 𝜆𝜆𝐷𝐷
𝜆𝜆𝐹𝐹+𝜆𝜆𝑈𝑈+𝜆𝜆𝐷𝐷

 is the down 
weight. The 𝐸𝐸(𝑆𝑆𝐹𝐹) = 0 since by definition there is no price movement for flat transactions.  

 

Table 2:  Three-state AACDS Model 

States 𝒛𝒛 𝒑𝒑(∆𝒁𝒁𝒕𝒕𝒏𝒏 = 𝒛𝒛) Weights 

Flat 𝑧𝑧 = 0 𝑤𝑤𝐹𝐹 𝑤𝑤𝐹𝐹 = 𝜆𝜆𝐹𝐹
𝜆𝜆𝐹𝐹+𝜆𝜆𝑈𝑈+𝜆𝜆𝐷𝐷

 

Up 𝑧𝑧 = 1,2, .. 𝑤𝑤𝑈𝑈𝑝𝑝(𝑆𝑆𝑈𝑈 = 𝑧𝑧) 𝑤𝑤𝑈𝑈 = 𝜆𝜆𝑈𝑈
𝜆𝜆𝐹𝐹+𝜆𝜆𝑈𝑈+𝜆𝜆𝐷𝐷

 

Down 𝑧𝑧 = −1,−2, .. 𝑤𝑤𝐷𝐷𝑝𝑝(𝑆𝑆𝐷𝐷 = 𝑧𝑧) 𝑤𝑤𝐷𝐷 = 𝜆𝜆𝐷𝐷
𝜆𝜆𝐹𝐹+𝜆𝜆𝑈𝑈+𝜆𝜆𝐷𝐷

 

Notes: Table 2 reports the AACDS model for different values (𝑧𝑧) of the change in the scaled price with: 𝜆𝜆𝐹𝐹 is the flat 
(or inactive) intensity, 𝜆𝜆𝐴𝐴 is the total number of active intensity, 𝜆𝜆𝑈𝑈 is the up intensity, 𝜆𝜆𝐷𝐷 is the down intensity, 𝑤𝑤𝐹𝐹 is 
the flat weight, 𝑤𝑤𝑈𝑈 is the up weight, 𝑤𝑤𝐷𝐷 is the down weight, 𝑝𝑝(𝑆𝑆𝑈𝑈 = 𝑧𝑧) is the probability of an up size transaction 
equalling 𝑧𝑧, and 𝑝𝑝(𝑆𝑆𝐷𝐷 = 𝑧𝑧) is the probability of a down size transaction equalling 𝑧𝑧. 

 

2.5 Comparison  

In this section, it is shown that the estimated parameters of each asymmetric model can be 
used to estimate the parameters of the other model. It is also shown that if the partial 
durations are used, the models are identical. The three-state Asymmetric Autoregressive 
Conditional Duration with Size (AACDS) model consists of three durations (flat, up, and 
down) and two size variables (up and down). The ADS model consists of two indicator 
variables (activity and direction) and two size variables (up and down).  

The probabilities associated with the activity and direction of the ADS model can be written 
in terms of both the expected adjusted durations and the expected intensities of the three-
state AACDS model by: 

 𝑝𝑝(𝐴𝐴 = 0) = 𝑁𝑁𝐹𝐹
𝑁𝑁

= 𝑁𝑁𝐹𝐹
𝑇𝑇

𝑇𝑇
𝑁𝑁

= 𝜓𝜓∗

𝜓𝜓𝐹𝐹
∗ = 𝜆𝜆𝐹𝐹

𝜆𝜆
  (27) 

 𝑝𝑝(𝐴𝐴 = 1) = 𝑁𝑁𝐴𝐴
𝑁𝑁

= 𝑁𝑁𝐴𝐴
𝑇𝑇

𝑇𝑇
𝑁𝑁

= 𝜓𝜓∗

𝜓𝜓𝐴𝐴
∗ = 𝜆𝜆𝐴𝐴

𝜆𝜆
  (28) 

 𝑝𝑝(𝐷𝐷 = 1|𝐴𝐴 = 1) = 𝑁𝑁𝑈𝑈
𝑁𝑁𝐴𝐴

= 𝑁𝑁𝑈𝑈
𝑇𝑇

𝑇𝑇
𝑁𝑁𝐴𝐴

= 𝜓𝜓𝐴𝐴
∗

𝜓𝜓𝑈𝑈
∗ = 𝜆𝜆𝑈𝑈

𝜆𝜆𝐴𝐴
  (29) 

 𝑝𝑝(𝐷𝐷 = −1|𝐴𝐴 = 1) = 𝑁𝑁𝐷𝐷
𝑁𝑁𝐴𝐴

= 𝑁𝑁𝐷𝐷
𝑇𝑇

𝑇𝑇
𝑁𝑁𝐴𝐴

= 𝜓𝜓𝐴𝐴
∗

𝜓𝜓𝐷𝐷
∗ = 𝜆𝜆𝐷𝐷

𝜆𝜆𝐴𝐴
  (30) 

where 𝜓𝜓𝐴𝐴∗ = 𝑇𝑇
𝑁𝑁𝐴𝐴

 is the expected adjusted active duration for 𝑁𝑁𝐴𝐴 = 𝑁𝑁𝑈𝑈 + 𝑁𝑁𝐷𝐷 active durations, 

𝜆𝜆𝐴𝐴 = 𝑁𝑁𝐴𝐴
𝑇𝑇

= 1
𝜓𝜓𝐴𝐴
∗  is the expected active intensity, and all other terms have been previously 

described. Thus, the estimated parameters of the three-state AACDS model can be used to 
estimate the parameters of the ADS model. 
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Similarly, the three expected intensities of the three-state AACDS can be written in terms of 
the estimated probabilities of the ADS model by: 

 𝜆𝜆𝐹𝐹 = 𝑁𝑁𝐹𝐹
𝑇𝑇

= 𝑁𝑁𝐹𝐹
𝑁𝑁

𝑁𝑁
𝑇𝑇

= 𝑁𝑁
𝑇𝑇
𝑝𝑝(𝐴𝐴 = 0)  (31) 

 𝜆𝜆𝑈𝑈 = 𝑁𝑁𝑈𝑈
𝑇𝑇

= 𝑁𝑁𝑈𝑈
𝑁𝑁

𝑁𝑁
𝑇𝑇

= 𝑁𝑁
𝑇𝑇
𝑝𝑝(𝐴𝐴 = 1)𝑝𝑝(𝐷𝐷 = 1|𝐴𝐴 = 1)  (32) 

 𝜆𝜆𝐷𝐷 = 𝑁𝑁𝐷𝐷
𝑇𝑇

= 𝑁𝑁𝐷𝐷
𝑁𝑁

𝑁𝑁
𝑇𝑇

= 𝑁𝑁
𝑇𝑇
𝑝𝑝(𝐴𝐴 = 1)𝑝𝑝(𝐷𝐷 = −1|𝐴𝐴 = 1)  (33) 

where all terms have been previously described. Thus, the estimated parameters of the ADS 
model can be used to estimate the parameters of the three-state AACDS model. It should 
be noted that because all duration models account for partial durations, the common total 
time (𝑇𝑇) makes the two asymmetric models equivalent.  
 

Table 3:  Comparison of the two asymmetric models 

States 𝒛𝒛 𝒑𝒑(∆𝒁𝒁𝒕𝒕𝒏𝒏 = 𝒛𝒛) ADS Weights AACDS Weights 

Flat 𝑧𝑧 = 0 𝑤𝑤𝐹𝐹 𝑤𝑤𝐹𝐹 = 𝑝𝑝(𝐴𝐴 = 0) 𝑤𝑤𝐹𝐹 = 𝜆𝜆𝐹𝐹
𝜆𝜆𝐹𝐹+𝜆𝜆𝑈𝑈+𝜆𝜆𝐷𝐷

 

Up 𝑧𝑧 = 1,2, .. 𝑤𝑤𝑈𝑈𝑝𝑝(𝑆𝑆𝑈𝑈 = 𝑧𝑧) 𝑤𝑤𝑈𝑈 = 𝑝𝑝(𝐴𝐴 = 1)𝑝𝑝(𝐷𝐷 = 1|𝐴𝐴 = 1) 𝑤𝑤𝑈𝑈 = 𝜆𝜆𝑈𝑈
𝜆𝜆𝐹𝐹+𝜆𝜆𝑈𝑈+𝜆𝜆𝐷𝐷

 

Down 𝑧𝑧 = −1,−2, .. 𝑤𝑤𝐷𝐷𝑝𝑝(𝑆𝑆𝐷𝐷 = 𝑧𝑧) 𝑤𝑤𝐷𝐷 = 𝑝𝑝(𝐴𝐴 = 1)𝑝𝑝(𝐷𝐷 = −1|𝐴𝐴 = 1) 𝑤𝑤𝐷𝐷 = 𝜆𝜆𝐷𝐷
𝜆𝜆𝐹𝐹+𝜆𝜆𝑈𝑈+𝜆𝜆𝐷𝐷

 

Notes: Table 3 reports both the ADS and the AACDS model for different values (𝑧𝑧) of the scaled price change with: 
𝑝𝑝(𝐴𝐴 = 0) is the probability of flat transactions, 𝑝𝑝(𝐴𝐴 = 1) is the probability of active transactions, 𝑝𝑝(𝐷𝐷 = 1|𝐴𝐴 = 1) is the 
conditional probability that active transactions move the price up, 𝑝𝑝(𝐷𝐷 = −1|𝐴𝐴 = 1) is the conditional probability 
that active transactions move the price down, 𝜆𝜆𝐹𝐹 is the flat (or inactive) intensity, 𝜆𝜆𝐴𝐴 is the total number of active 
intensity, 𝜆𝜆𝑈𝑈 is the up intensity, 𝜆𝜆𝐷𝐷 is the down intensity, 𝑤𝑤𝐹𝐹  is the flat weight, 𝑤𝑤𝑈𝑈 is the up weight, 𝑤𝑤𝐷𝐷 is the down 
weight, 𝑝𝑝(𝑆𝑆𝑈𝑈 = 𝑧𝑧) is the probability of an up size transaction equalling 𝑧𝑧, and 𝑝𝑝(𝑆𝑆𝐷𝐷 = 𝑧𝑧) is the probability of a down 
size transaction equalling 𝑧𝑧. 

In general, the expectation of the scaled change in price for both models can be written 
as: 

 𝐸𝐸(∆𝑍𝑍) = 𝑤𝑤𝐹𝐹𝐸𝐸(𝑆𝑆𝐹𝐹) + 𝑤𝑤𝑈𝑈𝐸𝐸(𝑆𝑆𝑈𝑈) −𝑤𝑤𝐷𝐷𝐸𝐸(𝑆𝑆𝐷𝐷) 

 = 𝑤𝑤𝑈𝑈𝐸𝐸(𝑆𝑆𝑈𝑈) −𝑤𝑤𝐷𝐷𝐸𝐸(𝑆𝑆𝐷𝐷)  (34) 

where 𝐸𝐸(∆𝑍𝑍)  is the expected change in the scaled price of the security, 𝐸𝐸(𝑆𝑆𝐹𝐹)  is the 
expected flat size, 𝐸𝐸(𝑆𝑆𝑈𝑈) is the expected up size, and 𝐸𝐸(𝑆𝑆𝐷𝐷) is the expected down size. The 
𝐸𝐸(𝑆𝑆𝐹𝐹) = 0 since by definition there is no price movement for flat transactions.  
 

2.6 Predictive (conditional) models 

It should be noted that more sophisticated dynamic models are typically used to estimate 
both asymmetric models. In this paper, both asymmetric models have been described as 
simple in-sample models. Models can be estimated contemporaneously (in-sample) or 
predictively (out-of-sample). In addition, most applications of both asymmetric markets 
have been used for predictions. For example, the joint probability function at time 𝑡𝑡𝑛𝑛 for a 
are predictive model can be written as: 
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 𝑝𝑝�𝜓𝜓𝑡𝑡𝑛𝑛 , 𝑆𝑆𝑡𝑡𝑛𝑛|ℱ𝑡𝑡𝑛𝑛−1�  (35) 

where 𝜓𝜓𝑛𝑛 is the duration, 𝑆𝑆𝑡𝑡𝑛𝑛 is the size, and all explanatory variables used in the model exist 
in the filtration ℱ𝑡𝑡𝑛𝑛−1: past information. However, the motivation of this paper is to compare 
the variables of the two asymmetric models, rather than focus on any particular version of 
the models. 

 

3. Results 

The data sample of transaction prices is a single day (21st June 2012) sourced from Lobster 
for five US securities, namely, Apple, Amazon, Google, Intel, and Microsoft. Figure 1 displays 
the prices rebased at 100. All securities depreciated over the day, where the depreciations 
were -1.38% for Apple, -1.48% for Amazon, -2.42% for Google, -2.94% for Intel, and -2.66% for 
Microsoft.  

 
Figure 1:  Security prices rebased at 100 

 

Notes: Figure 1 displays the transaction prices for the 21st of June, 2012 for the five securities, namely, Apple, 
Amazon, Google, Intel, and Microsoft. 

 

Table 4 reports summary statistics of the high-frequency transaction data for the prices of 
the five securities. The tick size 𝜅𝜅 for all five securities is 0.005. The total time 𝑇𝑇 for all five 
securities is 23,400 seconds (6.5 hours). The securities with the three highest number of 
transactions are: Apple at 34,990, Microsoft at 33,414, and Intel at 32,483. In contrast, the 
securities with the two lowest number of transactions are: Amazon at 11,419 and Google at 
11,678. Interesting, both Intel and Microsoft have a large number of transactions that do not 
move the price with 29,693 from 32,483 and 30,218 from 33,414, respectively.  
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Table 4:  Summary Statistics of the Security Prices 
 
 Apple Amazon Google Intel Microsoft 

𝜅𝜅 0.005 0.005 0.005 0.005 0.005 
𝑇𝑇 23,400 23,400 23,400 23,400 23,400 
𝑁𝑁 34,990 11,419 11,678 32,483 33,414 
𝑁𝑁𝐹𝐹 17,175 5,886 5,631 29,693 30,218 
𝑁𝑁𝐴𝐴 17,815 5,533 6,047 2,790 3,196 
𝑁𝑁𝑈𝑈 8,948 2,921 2,973 1,397 1,545 
𝑁𝑁𝐷𝐷 8,867 2,612 3,074 1,393 1,651 

Notes: Table 4 reports the summary statistics of the high-frequency transaction data for the prices of the five 
securities, which consists of: 𝜅𝜅 is the tick size, 𝑇𝑇 is the total time, 𝑁𝑁 is the total number of transactions, 𝑁𝑁𝐹𝐹 is the total 
number of flat (or inactive) transactions, 𝑁𝑁𝐴𝐴 is the total number of active transactions, 𝑁𝑁𝑈𝑈 is the total number of up 
transactions, and 𝑁𝑁𝐷𝐷 is the total number of down transactions. 

Table 5 reports the parameter estimates of the Activity Direction Size (ADS) model. Figure 2 
displays the activity of the transaction prices, displaying both the probability of flat 
transaction prices (𝑝𝑝(𝐴𝐴 = 0)) and the probability of active transaction prices (𝑝𝑝(𝐴𝐴 = 1)). Intel 
and Microsoft both have high probabilities for flat transaction prices with values of 0.914 and 
0.904. Thus, over 90% of the transactions associated with Intel and Microsoft do not move 
the price. In contrast, the conditional probability for both directions are all close to 0.500. For 
example, the largest conditional probability difference of 0.056 is for Amazon, which has a 
conditional probability of an up direction of 0.528 compared to a conditional probability of 
a downward direction of 0.472. The size variables are common to both asymmetric models 
and will be discussed later. 
 

Figure 2:  Activity Probabilities 

 

Notes: Figure 2 displays the activity of the transaction prices for the 21st of June, 2012 for the five securities, namely, 
Apple, Amazon, Google, Intel, and Microsoft. Flat represents the probability of flat transaction prices and Active 
represents the probability active transaction prices. 
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Table 5:  Activity Direction Size (ADS) model 

 Apple Amazon Google Intel Microsoft 

𝑝𝑝(𝐴𝐴 = 0) 0.491 0.516 0.482 0.914 0.904 
𝑝𝑝(𝐴𝐴 = 1) 0.509 0.485 0.518 0.086 0.096 

𝑝𝑝(𝐷𝐷 = 1|𝐴𝐴 = 1) 0.502 0.528 0.492 0.501 0.483 
𝑝𝑝(𝐷𝐷 = −1|𝐴𝐴 = 1) 0.498 0.472 0.508 0.499 0.517 

𝑆𝑆𝑈𝑈 6.537 6.045 10.747 1.395 1.548 
𝑆𝑆𝐷𝐷 6.780 7.013 11.308 1.515 1.548 

Notes: Table 5 reports the parameter estimates of the Activity Direction Size (ADS) model, which consists of: 𝑝𝑝(𝐴𝐴 = 0) 
is the probability of flat transactions, 𝑝𝑝(𝐴𝐴 = 1)  is the probability of active transactions, 𝑝𝑝(𝐷𝐷 = 1|𝐴𝐴 = 1)  is the 
conditional probability that active transactions move the price up, 𝑝𝑝(𝐷𝐷 = −1|𝐴𝐴 = 1) is the conditional probability 
that active transactions move the price down, 𝑆𝑆𝑈𝑈 is the expected up size, and 𝑆𝑆𝐷𝐷 is the expected down size. 

Table 6 reports the parameter estimates of the Asymmetric Autoregressive Conditional 
Duration with Size (AACDS) model. Figure 3 displays the expected durations of the 
transaction prices, displaying both the expected adjusted flat durations (𝜓𝜓𝐹𝐹

∗ )  and the 
expected adjusted active durations (𝜓𝜓𝐴𝐴∗). The smallest expected adjusted flat durations are 
0.788 seconds for Intel and are 0.774 seconds for Microsoft. The same two securities also 
have the largest expected adjusted active durations, which are 8.387 seconds for Intel and 
are 7.322 seconds for Microsoft. In contrast, the expected adjusted duration for both 
directions are very similar for all securities. For example, the largest expected duration 
difference of 0.973 seconds is for Microsoft, which has an expected adjusted up duration of 
15.146 seconds compared to an expected adjusted down duration of 14.173. Note that all 
of the intensities are the inverse of their associated expected adjusted durations. For 
example, Apple has the highest intensity for all transactions of 𝜆𝜆 = 1.495, which is the inverse 
of the expected adjusted duration for all transactions of 𝜓𝜓∗ = 1/𝜆𝜆 = 0.669. One again, the 
size variables are common to both asymmetric models and will be discussed later. 
 

Figure 3:  Expected Durations in Seconds 

 

Notes: Figure 3 displays the expected durations of the transaction prices for the 21st of June 2012 for the five 
securities, namely, Apple, Amazon, Google, Intel, and Microsoft. 
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Table 6:  Asymmetric Autoregressive Conditional Duration with Size (AACDS) model 

 Apple Amazon Google Intel Microsoft 

𝜓𝜓∗ 0.669 2.049 2.004 0.720 0.700 
𝜓𝜓𝐹𝐹
∗  1.362 3.976 4.156 0.788 0.774 

𝜓𝜓𝐴𝐴∗  1.314 4.229 3.870 8.387 7.322 
𝜓𝜓𝑈𝑈
∗  2.615 8.011 7.871 16.750 15.146 

𝜓𝜓𝐷𝐷
∗  2.639 8.959 7.612 16.798 14.173 
𝜆𝜆 1.495 0.488 0.499 1.388 1.428 
𝜆𝜆𝐹𝐹 0.734 0.252 0.241 1.269 1.291 
𝜆𝜆𝐴𝐴 0.761 0.237 0.258 0.119 0.137 
𝜆𝜆𝑈𝑈 0.382 0.125 0.127 0.060 0.066 
𝜆𝜆𝐷𝐷 0.379 0.112 0.131 0.060 0.071 
𝑆𝑆𝑈𝑈 6.537 6.045 10.747 1.395 1.548 
𝑆𝑆𝐷𝐷 6.780 7.013 11.308 1.515 1.548 

Notes: Table 6 reports the parameter estimates for the Asymmetric Autoregressive Conditional Duration with Size 
(AACDS) model, which consists of: 𝜓𝜓∗ is the expected adjusted duration, 𝜓𝜓𝐹𝐹

∗  is the expected adjusted flat duration, 
𝜓𝜓𝐹𝐹
∗  is the expected adjusted active duration, 𝜓𝜓𝐴𝐴∗  is the expected adjusted up duration, 𝜓𝜓𝑈𝑈

∗  is the expected duration, 
𝜓𝜓𝐷𝐷
∗  is the expected adjusted down duration, 𝜆𝜆 is the intensity, 𝜆𝜆𝐹𝐹  is the flat (or inactive) intensity, 𝜆𝜆𝐴𝐴  is the total 

number of active intensity, 𝜆𝜆𝑈𝑈 is the up intensity, 𝜆𝜆𝐷𝐷 is the down intensity, 𝑆𝑆𝑈𝑈 is the expected up size, and 𝑆𝑆𝐷𝐷 is the 
expected down size. 

The asymmetric models are equivalent and measure different aspects of the same 
asymmetric nature of high-frequency transaction data. Each model’s parameter estimates 
can be used to estimate the other model’s parameters exactly. For example, the expected 
adjusted flat duration for the AACDS model is 0.788 seconds for Intel and can be calculated 
from the parameter estimates of the ADS model by: 

 𝜓𝜓𝐹𝐹
∗ = 𝑇𝑇

𝑁𝑁
1

𝑝𝑝(𝐴𝐴=0)
= 0.720

0.914
= 0.788  (36) 

 
where 𝜓𝜓𝐹𝐹

∗  is the expected adjusted flat duration, 𝜓𝜓∗ is the expected adjusted duration for all 
transaction prices, and 𝑝𝑝(𝐴𝐴 = 0) is the probability that transactions are flat. Similarly, the 
probability that transactions are active for the ADS model is 0.086 for Intel and can be 
calculated from the parameter estimates of the AACDS model by: 

 𝑝𝑝(𝐴𝐴 = 1) = 𝜓𝜓∗

𝜓𝜓𝐴𝐴
∗ = 0.720

8.387
= 0.086  (37) 

 
where 𝑝𝑝(𝐴𝐴 = 1) is the probability that transactions are active, 𝜓𝜓∗ is the expected adjusted 
duration for all transaction prices, and 𝜓𝜓𝐴𝐴∗  is the expected adjusted active duration. 
 
  



 
 

 

68 
 

HIGH-FREQUENCY TRANSACTION DATA 

Table 7:  Common parameter estimates of the two asymmetric models 

 Apple Amazon Google Intel Microsoft 

𝑤𝑤𝐹𝐹 0.491 0.516 0.482 0.914 0.904 
𝑤𝑤𝑈𝑈 0.256 0.256 0.255 0.043 0.046 
𝑤𝑤𝐷𝐷 0.253 0.229 0.263 0.043 0.049 
𝑆𝑆𝑈𝑈 6.537 6.045 10.747 1.395 1.548 
𝑆𝑆𝐷𝐷 6.780 7.013 11.308 1.515 1.548 

𝑬𝑬(∆𝒁𝒁) -0.046 -0.058 -0.241 -0.005 -0.005 
Notes: Table 7 reports the common parameter estimates of the two asymmetric models consisting of: 𝑤𝑤𝐹𝐹 is the flat 
weight, 𝑤𝑤𝑈𝑈 is the up weight, 𝑤𝑤𝐷𝐷 is the down weight, 𝑆𝑆𝑈𝑈 is the expected up size, 𝑆𝑆𝐷𝐷 is the expected down size, and 
𝐸𝐸(∆𝑍𝑍) is the expected change in the scaled price. 
 

Table 7 reports the common parameter estimates of both asymmetric models. The 
expected values for both size variables are larger than one tick size for all securities, which 
justifies the inclusion of a size variable in the three-state Asymmetric Autoregressive 
Conditional Duration (AACD) model. Google has the highest expected tick sizes of 10.747 
for up moves and 11.308 for down moves. In contrast, Intel has the lowest expected tick sizes 
of 1.395 for up moves and 1.515 for down moves. In addition, Amazon has the largest 
difference of 0.968 between the up size variable and the down size variable.  

The expected values of 𝐸𝐸(∆𝑍𝑍) for each security is negative, where the values are -0.046 for 
Apple, -0.058 for Amazon, -0.241 for Google, -0.005 for Intel, and -0.005 for Microsoft. Google 
has the largest expected value which can be seen by using Equation (34): 

 𝐸𝐸(∆𝑍𝑍) = 𝑤𝑤𝑈𝑈𝐸𝐸(𝑆𝑆𝑈𝑈) + 𝑤𝑤𝐷𝐷𝐸𝐸(𝑆𝑆𝐷𝐷) 

 = 0.255 × 10.747 − 0.263 × 11.308   

 = −0.241  (38) 

where 𝐸𝐸(∆𝑍𝑍)  is the expected change in the scaled price of the security, 𝐸𝐸(𝑆𝑆𝐹𝐹)  is the 
expected flat size, 𝐸𝐸(𝑆𝑆𝑈𝑈) is the expected up size, and 𝐸𝐸(𝑆𝑆𝐷𝐷) is the expected down size.  
 

Conclusion 

This paper compared two asymmetric models of high-frequency transaction data in 
financial markets, namely, the Activity Direction Size (ADS) model and the three-state 
Asymmetric Autoregressive Conditional Duration with Size (AACDS) model. It was shown that 
both asymmetric models are equivalent and measure different aspects of the same 
asymmetric nature of high-frequency transaction data. The size variables plays an integral 
part of both asymmetric models, as the magnitude of price changes occur in multiples of 
the underlying tick size. Thus, the inclusion of two size variables in the AACD model extends 
it to model durations and price changes jointly: creating a more general model. The 
implication of this paper is that researchers can compare the parameter estimates of one 
model with the parameter estimates of the other model, especially when more 
sophisticated dynamic models are used: one model provides a yardstick for the other.  
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