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Abstract: This paper discusses current formulations based on fuzzy-logic control concepts as applied
to the removal of impulsive noise from digital images. We also discuss the various principles related
to fuzzy-ruled based logic control techniques, aiming at preserving edges and digital image details
efficiently. Detailed descriptions of a number of formulations for recently developed fuzzy-rule
logic controlled filters are provided, highlighting the merit of each filter. Fuzzy-rule based filtering
algorithms may be designed assuming the tailoring of specific functional sub-modules: (a) logical
controlled variable selection, (b) the consideration of different methods for the generation of fuzzy
rules and membership functions, (c) the integration of the logical rules for detecting and filtering
impulse noise from digital images. More specifically, we discuss impulse noise models and window-
based filtering using fuzzy inference based on vector directional filters as associated with the filtering
of RGB color images and then explain how fuzzy vector fields can be generated using standard
operations on fuzzy sets taking into consideration fixed or random valued impulse noise and fuzzy
vector partitioning. We also discuss how fuzzy cellular automata may be used for noise removal
by adopting a Moore neighbourhood architecture. We also explain the potential merits of adopting
a fuzzy rule based deep learning ensemble classifier which is composed of a convolutional neural
network (CNN), a recurrent neural networks (RNN), a long short term memory neural network
(LSTM) and a gated recurrent unit (GRU) approaches, all within a fuzzy min-max (FMM) ensemble.
Fuzzy non-local mean filter approaches are also considered. A comparison of various performance
metrics for conventional and fuzzy logic based filters as well as deep learning filters is provided. The
algorhitms discussed have the following advantageous properties: high quality of edge preservation,
high quality of spatial noise suppression capability especially for complex images, sound properties
of noise removal (in cases when both mixed additive and impulse noise are present), and very fast
computational implementation.

Keywords: fuzzy filter; image processing; color image sequences; multichannel filtering; neuro-fuzzy
network

1. Introduction

The quality of color image data is often degraded by additive noise, impulse noise,
or mixed additive and impulse noise [1]. Additive noise, as a temporal type of noise
source, includes dark noise, shot noise, and noise from mechanical vibrations, which,
generally, can be approximated by a Gaussian function with a signal-dependent mean [2].
Impulse noise is normally produced by noisy sensors and/or transmission errors [3–6] in
the data transmission or communication channels, as well as during the data capturing
process from digital cameras [7]. Impulsive noise can be characterized by short duration,
high-energy spikes, with independent random process statistics, and more accurately
modelled by heavy-tailed, non-Gaussian distributions [8,9]. Although there are many
impulse noise removal techniques [10–12], as more recently discussed by Roy et al., it is
possible to efficiently remove impulse noise from grey-scale images using a support vector
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machine (SVM) classifier in conjunction with a fuzzy filtering technique [13]. Furthermore,
a neuro-fuzzy network may be used for de-noising [14] or hybrid approaches [15,16].
A short overview of different denoising methods applicable to image processing and image
understanding can be found in the work by Tian et al. [17] and the work by Fan et al. [18].

The issue in properly fixing the challenges of color image denoising is to (a) pinpoint
the origins of the noise characteristics and account for their diversity, and (b) take into
account the non-stationary statistics of the underlying image structures [19]. These two
factors have sparked a recent interest into combining the noise and/or structure estimation
with color image restoration filtering algorithms. When constructing filters for color image
restoration, three key goals must be satisfied: noise reduction, chromaticity maintenance,
and edge detail preservation [20].

It is well established that problems related to signal processing cannot be efficiently
dealt with by applying linear techniques, especially when it comes to the nonlinearity
of image formation processing. Furthermore, one has to cover the nonlinear nature of
the human visual system [21]. By combining standard linear and nonlinear filters with
fuzzy logic, fuzzy modelling serves as a link between linear and nonlinear approaches.
Because information gathered from data can be contaminated by noise, establishing a
correct mathematical model of a nonlinear system is more challenging, as it includes
evaluating a deterministic component, a distinct stochastic component, and an increasing
of parameters. In this case, fuzzy reasoning is highly suitable since it allows for the selection
of soft thresholds that can better adjust to the nonlinearity in the model inputs [21,22].

Fuzzy inference refers to the formulation process of the mapping from a given input
to an output via fuzzy logic statements. Then, the mapping establishes a foundation where
decision making can be realized, or patterns are to be identified [23]. The fuzzy rule-based
modelling approach is grounded in verbally formulated rules, which are overlapped in the
whole parameter space [24,25]. The goal of the fuzzy modeling approach is to create a fuzzy
rule foundation that is suitable for the task at hand. The filtered output is flexible to adjust,
and nonuniform patterns which are most similar to edge and corner in local structure are
treated. A window-based fuzzy filter is typically used to recover and rectify a corrupted
pixel locally, where the fuzzy rule responds immediately with the signal elements within
the operational window.

In summary, a logic control strategy can be implemented as part of computational
intelligence methods to process and analyse highly nonlinear, time-varying images and
signals in a natural and uniform way with the use of fuzzy set theory. The purpose of this
paper is to clarify how to incorporate fuzzy rule based on traditional vector and fuzzy
vector spaces to algorithms tailored for digital image filtering. All the main definitions
and properties of fuzzy vector spaces available in the literature are systematically covered
and fundamental differences between vector and fuzzy vector spaces are highlighted. The
paper also makes a contribution to current color image analysis techniques, by presenting
a survey on comparative performance evaluations of methods proposed in the literature,
discussing the applicability of different fuzzy methods to improve the effectiveness and
the quality of data analysis , from the perspective of image denoising, image restoration,
image classification, edge detection, and other well established performance metrics. In
addition, the paper also provides a step by step approach for the analysis and synthesis of
fuzzy-model-based nonlinear filters and provides new directions for the development of
ensemble model filters based on several base learning techniques such as convolutional
neural network (CNN), recurrent neural networks (RNN), long short term memory neural
network (LSTM) and gated recurrent unit (GRU) approaches, all within a fuzzy min-max
(FMM) ensemble.

This article is suitable for researchers, practitioners, engineers and educators in the
field of artificial intelligence in general, with prior familiarity with specific topics such as
image/signal processing or categorization. We also assume readers have a basic under-
standing of classical logic concepts like truth tables and logic operations, but not necessarily
about their many-valued or fuzzy logic counterparts which are reviewed in this article.
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The main goal is the clarification of expert-system-like rule sets based on fuzzy sets in order
to support the development of new algorithms. This framework is ,therefore, conceived to
be a potential starting point to a future standard framework for guiding experts in adopt-
ing fuzzy rule based inference engines to enhance the use of computational intelligence
techniques for multi-channel color image analysis and classification.

The following provides an overview of how this paper is structured. The main
framework for color image analysis is presented in Section 2. In this section, the noise
models used for the evaluation of the fuzzy filter performance are presented. Section 3
overviews fuzzy rule design on the basis of local information. Different types of fuzzy
linguistic variables are also considered. Section 4 addresses the construction of a fuzzy filter.
Experimental analysis and comparisons, in terms of quality performance are provided in
Section 5. Finally, Section 6 summarizes the most significant aspects highlighted in each
section and provides concluding remarks and directions for future research.

2. General Filtering Framework for a Color Image

It is well acknowledged that color imaging transmits more information than greyscale
imaging. Consequently, most scientific applications adopt color and multi-spectral imaging
equipment. The origins of this obvious benefits can be linked back to Fellgett’s multiplex
advantage in astronomy, which indicates that a multispectral system has an added benefits
over its monochromatic counterpart due to the higher throughput per unit time related
to the various individual channels of the collected data. Noise filtering is one of the most
typical image processing operations in the framework of integrating data, and it is an
important aspect of any image processing system [26,27].

2.1. Impulse Noise Models

Digital color images are modelled in a specific color space, that is, RGB, L∗a∗b∗ or
HSV. The RGB color space is employed in a large percentage of applications. Various
colors can be obtained via blending red (R), green(G) and blue (B) light in diverse percent-
ages [28]. Assuming [x] denotes a chromatic R, G, B image, each pixel xk = (xR

k , xG
k , xB

k )
then denotes a three-component vector in a color space. Moreover, an address k denotes a
location in [x], which is referred to as a pixel or picture element. It is noted that in a color
image, each individual channel L can also be totally regarded as a monochrome (grayscale)
digital image [xL], L = R, G, B. The correlation existing among the colour components
of natural images [29] is represented by the color attributed in the individual pixels in
an image. The (gray scale) intensity is typically stored as an 8-bit integer. It generally
gives 256 probable diverse grey shades, from black to white, usually reflected as a [0,255]
integer interval.

For the evaluation of fuzzy noise suppression algorithms, there are three commonly
used models to simulate different types of distortions for a multichannel signal corrupted
by impulsive noise [7,27,28,30].

Let xk = [xR
k , xG

k , xB
k ] model the noisy pixel, where

xL
k =

{
υL

k with Probability π

ιL
k with Probability 1− π

(1)

and the contamination component ιL
k is a stochastic noise term [7,27,28,30].

The following noise models are assumed:

(I) Salt and pepper noise (fixed-valued noise):

In this kind of noise model, pixels in the image vary considerably in color compared
with their surrounding pixels. The color of a noisy pixel is rarely related to the color of its
surrounding picture elements.
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(a) Let {υL
k } with L = R, G, B model the original pixel before being vitiated by the noise

processing. And the picture elements are subsequently distorted as per the scheme
below:

xk =



{υL
k } with Probability 1− p

{ι1, υG
k , υB

k } with Probability p1 p
{υR

k , ι2, υB
k } with Probability p2 p

{υR
k , υG

k , ι3} with Probability p3 p
{ι1, ι2, ι3} with Probability p4 p

(2)

where ι1, ι2, ι3 are independent and equal to 0 or 255, p is the sample corruption
probability with p = 1− (1− π)3 and p1, p2, p3 are corruption possibilities regarding
every color channel, so that ∑4

i=1 pi = 1. In such circumstances, the contamination of
color image components is still non-correlated [7,27,28,30].

(b) In this kind of noise model, the RGB channels are corrupted due to the impulse noise (0
or 255) and possibility p like in (a), while the contamination process is correlated. This
case is called the extended noise model and has been discussed extensively in [27,30–32].
Its main characteristic is that pi = 0.25, i = 1, 2, 3, 4. This implies that one of the
image channels will probably be corrupted since an additional channel has been
corrupted already.

(II) Impulsive uniform or randomly valued noise: In such a case, the average value is
equal to the real one. Let xk = {ι1, ι2, ι3} with probability p, where the value of a
noisy pixel from each color channel ι1, ι2, ι3 ∈ [0, 255] is modelled as a random process,
being identically distributed and independent, with an arbitrary potential probability
density function. The contamination of the color image components is uncorrelated.

2.2. Window-Based Filtering for Fuzzy Inference System

Natural images are modelled as non-stationary processes. Filtering is normally per-
formed in a series of stationary sub-images, through the subdivision of an image into
smaller regions [33,34]. These smaller image regions are identified via a support win-
dow W. Over the image domain, the filter window W is moved to individually modulate
all those image pixels, aiming to process the input image thoroughly. It is also referred in
the literature as a sliding windowing procedure. [34].

A fuzzy filter operation is usually based on windows. For every picture element of
the noise image, a series of adjacent picture elements is taken into consideration. Fuzzy
operators process these neighborhood data via fuzzy rules to speculate calibration terms
aimed at removing noise. If none of the rules are met, the center pixel remains largely
unchanged [35]. More specifically, according to [35], x(c) denotes the image element
luminance at the center location c in the noise image and let W(c) = xj(c); j = 1, . . . , (2D +
1)× (2S+ 1) be the set of neighboring pixels which belong to a (2D+ 1)× (2S+ 1) window
around x(c). With reference to [35], the input variables of the operator are the luminance
differences defined by

∇yk(c) = yk(c)− xk(c) (3)

The resulting luminance value yk = xk +∇yk is generated by the combination of
the output variable ∇y(c) which is the correction term, and x(c). Here, k labels the pixel
position in an image. To achieve the goal of yielding the correction term with removal of
the noise impulses, the operator nonlinearly maps the set of input parameters to the output
parameter by using fuzzy rules. Given that images to be processed have l grey values, then
input and parameters take values in the interval [−l + 1, l − 1]. Fuzzy set theory allows for
the stepwise evaluation of the element membership in a set after applying a subordinate
function valued at the real unit interval [0,1]. Fuzzy rules cope well with a significant range
of patterns in the pixels when detecting noise impulses [36].
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3. Basic Concepts of Vector Filters

Noise reduction in multi-channel images has been extensively studied over the past
few years, mainly because of its significance to chromatic image processing [27,37]. The cer-
tain fundamental concepts and defined notations with regard to chromatic images provide
the basis for development and evaluation of fuzzy-rules-based filtering techniques.

Multi-channel images become vector-valued samples rather than scalars. However,
vector-valued samples cannot be sorted directly for their vector structures, leading to
difficulty in noise removal from an image. Barnett [38] has proposed four vector-valued
sub-ordering schemes: the first is marginal ordering (M-ordering), the second is reduced
(aggregated) ordering (R-ordering), the third is partial ordering (P-ordering) and the fourth
is conditional ordering (C-ordering). R-ordering schemes are frequently used to acquire
order statistics by mapping an observed vector-valued sample to a scalar quantity, which
can be viewed as the aggregated distance between one sample and the others.

3.1. Ranking Vector-Valued Data

Distinct distance measure metrics (DDMM) may be adopted to develop higher order
statistics for multichannel filtering techniques [9,34,39]. We can assume a situation where
a filtering window (or a sliding window) with size N = (2τ + 1)2 (N is generally odd) is
applied on the image I centered at location (c). The generalized Minkowski metric is the
most frequently employed method to realize the quantification of the distance between two
three-channel samples xi,L and x(j,L) with L = R, G, B is the generalised Minkowski metric,
written as

ρ(xi, xj) = ||xi − xj||γ =

(
∑

L=R,G,B
|x(i,L) − x(j,L)|γ

) 1
γ

(4)

where γ denotes the norm parameter, with γ = 1, 2 and ∞ denoting L1 norm of Block
distance, L2 norm of Euclidean distance, and L∞ norm of Max distance, respectively.
The norm L2 for the Euclidean distance measures is frequently used. In this context,
the expression || · ||L2 is rewritten as || · || with omitted L2 for convenience [9,34,39].

The vector angular distance between two three-dimensional vectors, x(i,L) and x(j,L),
in the orientation processing of chromatic pictures, in which L = R, G, B is defined as the
Equation (5) [9,34,40]

ρ(xi, xj) = cos−1

(
xi · xj

||xi||||xj||

)
= cos−1

 ∑L x(i,L)x(j,L)√
∑L x2

(i,L)

√
∑L x2

(j,L)

.

where L = R, G, B. The R-ordering of input vector x1, x2, . . . , xN is determined from the
resulting order statistic, which is the aggregated distance corresponding to xi

di =
N

∑
j=1

ρ(xi, xj). (5)

The resultant R-ordering is a ranked vector x(1) ≤ x(2) ≤ . . . ≤ x(N), with the identical
order as sorted d(k), k = 1, 2, . . . , N where

d(1) ≤ d(2) ≤ . . . ≤ d(N). (6)

The nonlinear ordered multi-channel estimator defines the vector x(1) as the filter
output [41].

3.2. Vector Directional Filters

Basic vector directional filter (BVDF) [40] and generalised vector directional filter
(GVDF) [40] are two extensively adopted families of directional filters. They form the
basic methodological foundation, which enable image processing techniques to improve
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the capability in the detection and classification of objects and feature extraction from an
image [42]. The aggregated angular distance between the input vector and its neighbors
is minimized by the output of BVDF, which also removes image vectors with non-typical
orientations in the vector space. The BVDF output yBVD is the lowest ranked vector x(1).
The GVDF is designed in two stages. The first stage aims to match the first r terms of ranked
input vectors according to the aggregated angular distance. The second stage adopts an
additional filtering procedure processing this set of color vectors x(i), i = 1, . . . , r according
to their magnitude.

Further methodologies that are used for color vector directional calculation are pre-
sented by Bhatti et al. [42]. In their research work, a satellite image dataset that consists
of different color intensity with a large amount of noise is analysed. The satellite image
dataset is viewed as the complex numbers, and represented as a quaternion fourtuple (w, x,
y, z). Under the RGB color model, each pixel of a color image can be represented as a pure
quaternion, with an extra dimension of time. Quaternion Fourier Transform and Clifford
algebra are the two main algorithms to be used in color vector directional filtering.

3.2.1. Directional-Distance Filters

A directional-distance filter (DDF) was put forward in [43] for improving the direc-
tional filter efficiency. Such a filter preserves the BVDF structure and uses a diverse distance
criterion to sort the vectors within the process window [43]:

dDDF =

(
N

∑
j=1
||xi − xj||

)1−p

·
(

N

∑
j=1

cos−1

(
xi · xj

||xi||||xj||

))p

where i = 1, 2, . . . , N.
The advantage of the directional-distance filter is the capability to remove the noise

and repair the images without introducing a significant distortion. The drawback is that
these direction based filters present a high computational complexity [44] . In the research
conducted by Atitallah et al [44], an optimized field-programmable gate array (FPGA)
(hardware) was designed in combination with the adaptive vector directional distance filter
(AVDDF) for removing noise from the images in real-time.

3.2.2. Hybrid Multichannel Filters

Hybrid multichannel filter (HMF),which is another efficient rank-ordered technique,
was discussed in [45]. In [46], an alternative approach to HMF is mainly discussed. Si-
multaneously, the vector magnitude and orientation can be incorporated within hybrid
multichannel filters. This way, further performance improvement of traditional filters may
be achieved. The output of an HMF (yHM) consists of the outputs of a VMF (yVM) and a
BVDF (yBVD) filters [45]. It is formulated as follows

yHM = (1− α)βyBVD + (1− β)yVM + αβyξ (7)

where α, β ∈ [0, 1]. yξ is the center vector-valued picture element of a filtering window.
yBVD, yVM, and yξ denote the outputs of a BVDF, a VMF, and an identity filter, sepa-
rately [37].

One more hybrid basic vector filter and its switching extensions are introduced by
Zhong et al. [47], as an extension of the above. By utilizing reliable marginal filter and
retaining the inherent correlation between multi-channels, the proposed method selects
the vector, with minimal distance to the output of the marginal median filter. Based on
this scheme, some well-known switching filters are easily modified to improve their noise
suppression capability.
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3.2.3. Center-Weighted Vector Median Filters (CWVMFs)

While center-weighted vector median filters (CWVMFs) [31,45,48] relate to the simplest
case filters which are only controlled by the value of the center weight, CWVMFs use a
positive integer central weight, w, the output of which is written as

yw(c) ∈W(c)| = arg min
1<i<N

{Rw
i } (8)

where W(c) denotes a sliding window with a size N centered at position c, and the sign Rw
i

labels the central weighted aggregated vector distance (CWAVD), according to [49].
Even though the standard VMF is powerful enough for noise suppression, some details

are to be smeared in the filter window. With an increase in the value of w, the detailed
retention ability of the filter is uplifted whereas the noise inhibition property is reduced.
When w ≥ (N + 1)/2 [50], the CWVM filter will definitely become an identity filter.

More recently, a better version named center-weighted trimmed vector median (CWTVM)
filter was proposed [50]. A CWTVM filter allows more robust local structure classification
than the CWVM filter when high central weights are involved. The CWTVM filter ranks in
a specific way, which is to rank the picture elements of a filtering window in the ascending
order. And this ranking is based on their Euclidean distances from the CWTVM filter to the
center pixel of the window (center local distance ranking order). Pixels are arranged within
a particular center pixel and local distance order is utilized as inputs for the filter output to
be calculated.

As the central weight is increased, the proposed CWTVM filter can obtain much more
stability in filtering impulsive noise in contrast to the CWVMF, which receives a benefit
from its center-distance trimmed technique.

As the CWVM filter’s alternative version, the switch-based CWVMF is also worth
discussing. Suppose that there is a filter window W(c) centered at the picture element x(c)
that contains N image element specimens, those filters initially adopt values of CWVMFs
with the central weights w = 1, 2, . . . , (N − 1)/2, separately, to gain a set of reference
estimates, {yw(c)|w = 1, 2, . . . , (N − 1)/2}, from the picture elements of the window,
in which yw(c) means the output of a CWVMF with a central weight w. Afterwards,
the distance from the center pixel to every referential estimate is identified.

A drawback of this filter is that the accuracy of their binary noise detection heavily
relies on the threshold values and the condition (e.g., impulse noise model and image
structure) of the threshold optimization. Furthermore, the switch-based reconstruction
mechanism works only efficiently in the removal of the impulse noise. It has to be noted
that such practice is not suitable for suppressing other kinds of noise, suc as additive noise
or mixed noise that may also contaminate images as.

3.2.4. Peer Group Techniques

A peer group filter (PRT) is put forward in [51], and more applications are discussed
in [52,53]. The main objective of the peer group filter is to suppress impulse noise while
preserving important image features like edges, corners and textural information. The peer
group P associated with the central pixel of W is a set consisting of the central pixel
x(c) and its neighbour pixels belonging to W, whose distance to x(c) is not exceeding d.
The parameter r denotes the number of neighbours of x(c), which belong to the peer group
P(x(c), r, d).

A fast peer group filter (FPGF), introduced in [54], just works like a simple switching
filter performing between an identification filter and VMF. The center pixel x(c) is retained
when there are r neighbors in W, based on the distance parameter d. Or else, the vector
medium x(1) of the samples in W will substitute for the center pixel. After that, the filter
output is yPG(c). And it is then formulated according to [54] as follows

yPG(c) =

{
x(c) if all x(c) ∈ P(x(c), r, d)
x(1)(c) otherwise

(9)
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Simplicity and accelerated computational performance are the main merits of the pro-
posed FPGF approach. In addition, according to the similarity to the center pixel [51,55,56],
ordered neighbor pixels are used to define the peer group. Color pixel vectors in a filter
window xi, i ∈ 0, . . . , n2 − 1 are ordered to x(i), i ∈ 1, . . . , n2 − 1. Let x0 instead of x(c)
denote the center pixel vector (as explained in [51,55]) and the similarity measurement µ
can be expressed using the following inequality:{

µ(x0, x(0)) ≥ µ(x0, x(1)) ≥ . . . ≥ µ(x0, x(n2−1)) (10)

It is obvious that x0 = x(0), and

P(x0, r, d) = {x(i), i = 1, . . . , r} (11)

The number of members of r may be further calculated by using Fisher’s linear
discriminant (FLD). Based on the discussion above, two important parameters determine
the appropriate construction of a peer group filter: distant threshold d and the number of
peer group members r [51,55].

Generally, there are several vector filters in color image processing which take advan-
tage of correlations existing across different color image channels. Furthermore, many of
these non-linear vector filters are taking advantage from the recent developments in the
theory of robust statistics [57,58]. Considering the use of well ordering principle, the lowest
ranked vectors are viewed as the filter output of these filter structures. This ranked order is
derived from the results acquired following the use of the distance or similarity measure
criteria adopted [30,34], where the lowest ranked vectors are closest to all the other vectors
in the filter window. Alternatively, a reduced order of vector means the importance of the
central vector is increased, so that its likelihood to be the lowest ranked vector (filter out) is
the highest.

It is feasible to customize the smoothing criterion to local image characteristics rather
than using typical vector filter for a predetermined amount of smoothing or noise re-
moval [34]. There have been several approaches discussed in the literature that achieve this
through (i) vector combination in a sliding window [34,59]; (ii) weighted vector median
operations [60–62]; (iii) cluster analysis when a noisy vector detection is required [63–66];
(iv) combination of different vector filters in each image location by using a rational function
for the final output [67]; (v) Other signal processing methods such as wavelet transforms
and curvelet transforms [68–71] together with neuro-fuzzy filters [72–74] are also possible.

4. Fuzzy Vector Filters

To create a fuzzy filter, it is crucial to understand where and how a special member-
ship function is formed, how it is used, and how its influence is measured, as well as
how it can be tailored according to the imaging situation at hand to produce meaningful
results. Solutions to the issue of membership definition and graded membership [9] may
be various,according to distinct interpretations of fuzziness. The following subsections
first review a few fundamentals and define fuzzy (logic) variables regarding color images.
The approaches adopted to calculating specific fuzzy variables are represented as special
cases tailored to specific problems. These lead to relevant membership functions suitable to
achieve outputs of the fuzzy logic filters.

4.1. Standard Operations of Fuzzy Set

On X , the fuzzy set is defined, and based on the color value in an image [75], the im-
precision is indicated by the subordinate function µ. µX (x) is the subordinate function that
gives a precise definition regarding how the values of x in X will be mapped within [0,1].

Similarly to classical set theory, fuzzy sets apply functions T-norm and S-norm (or
T-conorm) to enable intersection and union operators. A T-norm, called ltriangular norm,
is an operator T from [0, 1]× [0, 1] into [0,1] which is transitive, associative and elevating
in both variables while admitting 1 as the unit element. It stands for a conjunction and at
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the same time generalizes the logical proposition ‘and’, labeled by the intersection. This
can be illustrated in Figure 1. The minimum operator of two fuzzy sets A and B, shown in
Figure 1a is the model intersection. It is the red line as shown in Figure 1b. This minimum
operator is one of the “triangular norms”. With the T-norms there are the T-conorms, also
called the S-norms. They model union. The maximum operator is an S-norm. It is the blue
line as shown in Figure 1b.

A S-norm, is an operator S from [0, 1]× [0, 1] into [0,1], which is referred to as triangular
conorm. It is commutative, associative and elevating in both variable quantities which
have the attached property that allows 0 as the identity element. It theoretically denotes
a disjunction and generalises union and also the logical operator ‘or’ at the same time,
labeled by union.

According to [76], the minimum and the maximum functions labelled by min(A, B)
and max(A, B) separately, are also used as models to define intersection and lunion of
fuzzy sets (A, B ∈ [0, 1]). The sign ‘min’ corresponds to the greatest T-norm and ‘max’
corresponds to the least S-norm or T-conorm. Additionally, according to [77], the product
and the probabilistic sum are also another way to express T-norm and its dual T-conorm,
i.e.,

Π(A, B) := AB A, B ∈ [0, 1] (12)

Π′(A, B) := A + B− AB A, B ∈ [0, 1]. (13)

A complementation (or a standard negation) is an operator c from [0,1] into [0,1] which
is stringently decreasing, such that c(0) = 1, c(1) = 0. The most-utilized complementa-
tion [78–80] is:

µc(A)(x) = 1− µA(x) for ∀x ∈ [0, 1]. (14)

The different T-norm, S-norm and complementation operators make it possible to
map from inputs to outputs while utilizing a series of linguistical rules. These rules hold
the form IF A AND B OR C THEN. The T-norm and S-norm operators merely replace the
AND and OR operators, accordingly. The merit of such inference system lies in that it is
quite intuitive, largely reducing the necessary time for optimizing the output function [81].

Figure 1. Illustration of T-Norm (a) and S-Norm (b).

4.2. Fuzzy Approaches for Noise Identification

A principal merit of order statistics filtering is its ability to incorporate noise-identification
algorithms with sophisticated filtering methods [81,82]. Order statistics filtering embodies
the main ideas behind vector median filters. An alternative method for impulsive noise
identification of chromatic images is proposed in [83]. Standing on the opposite side of the
vector methods, this fuzzy noise identification is utilized in every chromatic component
respectively. With application of n× n filtering window, for every chromatic component
of every image element, the absolute value diversities between the center image element
x0 and every chromatic neighboring pixel xk. A fuzzy set small labelled by S1 is designed
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to identify when these differences can be considered as sufficiently small (below a set of
threshold value). S1(∆xR

k ) for k = 1, . . . , n2 − 1 are sorted in decreasing order and the K
neighbors are taken into consideration only when they show sufficient differences.

In a similar manner, a membership function S2 can be designed to investigate the
correlation between individual color components. The local differences among three color
components can be viewed as different fuzzy varieties which can therefore be evaluated by
the fuzzy membership function [83].

µRG
k = S2

(
|S1(∆FR

k )− S1(∆FG
k )|
)

µRB
k = S2

(
|S1(∆FR

k )− S1(∆FB
k )|
)

(15)

where the functions µRG
k and µRB

k are used to label the degree where the local difference
in the R component resembles the local difference in the G and B components (between
the central pixel and the image element at location k). The µRG

k and µRB
k are sorted in

a descending order for the sake of assessing the degree of joint similarity in contrast to
K neighbors and to avoid a probably noisy component being taken as reference when
assessing the degree of similarity between local pixels and their differences [83].

Therefore, a chromatic component is taken as noise-free when

(a) it resembles certain neighbour values
(b) the local differences compared with neighbours resemble the local differences in

certain other chromatic components
(c) the resemblance levels of the other RGB component values compared with the neigh-

bour values are high. It is crucial not to introduce a probably noisy component as
reference when calculating the similarity between the local differences.

4.2.1. Fixed Valued Impulse Noise

In [7,28,84] histogram-based approaches to remove impulse noise have been discussed
for fixed-valued impulse noise reduction. According to [84], (i) if an image is contaminated
by a fixed-valued noise type, the noise histogram only contains peaks; (ii) if an image is
contaminated by a mix of fixed-valued impulsive noise (FVIN) and Gaussian noise, and if
the relative histogram involves both peaks and some other features around some extreme
values, one can assume that a pixel can be identified; (iii) otherwise, it can be viewed as an
image without a fixed value of impulse noise pixel.

The estimated standard deviation can be viewed as a fuzzy variable to identify indi-
vidual the “impulse noise pixels” (introduced in [85]). In most cases, the low standard de-
viation corresponds to histograms which contain purely peaks while for the large standard
deviation, it corresponds to histograms which contain peaks with certain features normally.

Plots of intensity value (horizontal-axis) with the largest quantity of detection
(perpendicular-axis) in the histogram are used to decide if there are any peaks. A thresh-
old value is then defined for tracing and identifying a proper peak. This value has been
experimentally derived as 0.08 in [7].

According to [28], histograms come from the color components that are most likely
corrupted with impulse noise. The reason lies in that pixels corrupted with fixed value of
impulse noise are vastly different from surrounding pixels in a local window, leading to the
minimum and maximum intensity values, frequently denoted by qmax or qmin. To compute
histograms for each image component, a two-step procedure is used relying on this concept:
(i) the separation of the broken greyscale images into small chunks from each color channel,
with a recommended chunk size of 5× 5; and (ii) the determination of the value of the
two featured intensities qmax or qmin, which should be included in the calculation of the
histogram, depends on the following conditions to be satisfied according to [28]: if qmax
is involved, then |m1 − qmax| > |m1 −m2| or |m2 − qmax| > |m1 −m2|; if qmin is involved,
then |m1 − qmin| > |m1 − m2| or |m2 − qmin| > |m1 − m2|, where m1 and m2 denote the
image intensities at two different locations within a local window with m1 > m2.
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Defining the subordinative degrees µnoise(pR) for the intensity value pk
R of a R compo-

nent within the fuzzy set noise (or large denoted by [·]L or µL) [28]:

µnoise(pk
R) =

[
H(pk

R)

∑255
pR=0 H(pR)

]L

= µL

[
H(pR)

∑255
pR=0 H(pR)

]
(16)

For this constant value of impulse noise, it is expected that at least one intensity
value with a subordinative degree in the fuzzy set noise can be identified successfully, or a
conclusion can be made that image is not corrupted with the definite value of impulsive
noise. If this is not the actual case, then the arbitrary value of impulse noise has to
be detected.

4.2.2. Random Valued Impulse Noise

The histogram-based approach discussed in [28] illustrates the fuzzy derivative with
the histogram that is conducted in order to achieve pixel screening for RVIN. The fuzzy
derivative is employed to evaluate the parameters of membership function. Here, we
discuss the extension of this algorithm using a fuzzy variable that focuses on the evaluation
of the differences existing between the chromatic components in special surroundings
around a filtered central picture element. This approach aims to utilize such information to
filter the color components of the central pixel, while preserving the observed diversities.

Owing to the different intensity values in distinct components [28]

RG(k1, k2) = CR(k1, k2)− CG(k1, k2)

RB(k1, k2) = CR(k1, k2)− CB(k1, k2)

GB(k1, k2) = CG(k1, k2)− CB(k1, k2)

GR(k1, k2) = −RG(k1, k2)

BR(k1, k2) = −RB(k1, k2)

BG(k1, k2) = −GB(k1, k2), (17)

these matrices enable us to speculate the histograms of the entire color differences (R-G,
R-B and G-B).

The fuzzy mean process with the normalised inputs is subsequently followed to
determine the output 4RG(K1, k2) which equals the one of the three fuzzy mean values
closest to the reference value4PRGC(k1, k2). These fuzzy variables finally determine the
resultant outputs of this filter.

Furthermore, in the recent research conducted by [3], in order to address moderate
and highly corrupted grayscale images with Random Valued Impulse Noise, an efficient
image restoration technique based on spatially directional adjoining pixels and fuzzy
logic is designed. By decomposing a larger image size of impulsive regions into numerous
overlapping small patches, the low as well as high density of impulse noise can be estimated.
Direction-based fuzzy rules give appropriate reasoning for edge and texture detection in an
image. A switching-technique-based fuzzified degree identifies a certain pixel of an image
as a noise-free, noisy or edge pixel in the filtering phase.

4.3. Fuzzy Vector Partition

To determine the possibility that a pixel is contaminated by impulse noise, fuzzy
rule systems with fuzzy inference methods are used. However, it is hard to execute the
signal process steps for those subordinate functions to be achieved precisely and for the
fuzzy approximate reasoning to be performed accurately. A partition learning method is
proposed to deal with such issues [19,50,86]. Assuming a k-dimensional observation of
vectors O(k) given by k one dimensional linguistic variables, a partition is defined so that
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the observation vector space, S sub-set of RK, is classified into a set of ς mutual exclusive
blocks, defined as Ω1, Ω2,. . . ,Ως [19], satisfying

Ωi = {O(k) ∈ S : c(O(k)) = i}, i = 1, 2, . . . , ς, (18)

in which the classifier c(·) is defined as a function of the observational vector O(k). For ev-
ery input x(k) in correspondence to the O(k), a partition of the vector space S, is merely
categorized into one of ς non-overlapping blocks as per the c(·). Referring to [19], the ς
blocks Ωi, i = 1, 2, . . . , ς satisfy

S =
ς⋃

i=1

Ωi and Ωi ∩Ωj = ∅, i 6= j. (19)

Owing to its computational efficiency, the scalar quantisation (SQ) is normally con-
sidered to be the preferred classifier c(·) when designing the partition fuzzy filter. Ev-
ery block i can be considered as a Cartesian product of the interval blocks sK namely,
i = s1 × s2 × . . . × sK. Then, every scalar component Od(c) can be categorized in an
independent way via SQ [87].

As per the partition of the measurement vector space, the subordinate function for the
image element x(k) is written as αi(k), i = 1, 2, . . . , ς. A learning approach is applied to
obtain the optimum filter, with the output value as close to the initial signal as possible.

The work in [19,50] proposes a vector partition filter [19,88] to tackle the nonsta-
tionary statistics of image structures, and realize the integration of standard deviation
with the fuzzy ranking technology [89,90] to minimise the influence of noise-type-related
misclassification.

The fuzzy-ordered specimen vector, S̃r = [x(1) . . . , x̃(N)]
T , is produced as per the

centroid de-fuzzification approach through a normalised matrix transformation [89,90], i.e.,

S̃r = R̃Sx/||R̃|| (20)

where R̃ is produced from the matrix R via the substitution of a real-valued constituent for
its binary counterpart written as

R̃(i), j = µ[x(i), xj] (21)

According to Equation (20), the computation of the fuzzy ordered specimen x̃(i) is
stated below

x̃(i) =
∑N

j=1 µ[x(i), xj]xj

∑N
j=1 µ[x(i), xj]

(22)

in which µ[·]ε[0, 1] is a fuzzy subordinate function that describe the level to which x(i) and
xj are associated. The subordinate function µ is normally modeled as a Gaussian function
based on the specimen spread [89,90].

Now one can use the input variables to calculate the partition cells. When W(c) is
a filtering window centered at c and involving N image elements, and the multivariable
satifies the equation: x(c) = [xR(c), xG(c), xB(c)]T , which represents the center image
element of the window, and referential filter is completed via a central weighted vector
filter with special step-wise preservation attributes [91,92]. The filter is afterwards applied
to W(c) for several times to produce the estimates below:

Y(c) = [y1(c), y2(c), . . . , yk(c), . . . , y N−1
2
(c)]T (23)

in which yk(c) reflects the output produced via the referential filter with a central weight
1 ≤ k ≤ N−1

2 .
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For a given center weight k, the output of the fuzzy ranked CWVMF is written as

Ỹk(c) =
∑N

i=1{µ[yk(c), xi(c)] · xi(c)}
∑N

i=1{µ[yk(c), xi(c)]
(24)

in which yk(c) is in correspondence to the output of the CWVMF, and xi(c) is identical to a
chromatic specimen of W(c). Thereafter, the formulation of a distance vector is realized
at every coordinate c as per the fuzzy reference estimates, ỹk(c), and x(c) form the central
image element of the filtering window, according to [91,92].

According to [50], an enhanced form of the partition filter that leverages partition-
based trimmed vector median, instead of center-weighted vector median, as a fuzzy
reference estimator can be designed and evaluated.

The partition-based trimmed vector median differs from the trimmed vector median
that is center-weighted as illustrated in Section 3.2, the difference lies in the fact that
the latter replaces the threshold value of center-weighted trimmed vector median with
(N − 1)/2. The updated version of the fuzzy partition filter simplifies computation and
adapts well to local features of image structures. A more recent study performed by Saddam
et al. [93] illustrates the effect of fuzzy partitioning in Crohnąŕs disease classification via
the use of a neuro-fuzzy based approach. The proposed system with eight partitions
shows an accuracy of 97.67% with sensitivity, specificity, positive predictive and negative
predictive value of 96.07%, 100%, 100% and 94.61%, respectively. Therefore, such a partition-
based fuzzy model can be thought of as a process of dimension reduction in the case of
classification, as 95.33% reduction dimension is obtained.

5. Fuzzy Filters Design and Implication

Basic concepts on noise detection methods along with basic fuzzy sets for noise filtering
were described in Sections 3 and 4.1. In this section, several recently developed de-noising
and classification methods along with the outputs of fuzzy filter systems are discussed.
Normally, as a noisy color pixel or component, a filtering or smoothing operation should
be carried out proportionally to achieve accurate image analysis. To better estimate the
original value while retaining edge information and avoiding color artifacts, the estimated
value is calculated utilizing information from its local neighborhood or the other color
components of the filtered pixels.

5.1. Fuzzy Cellular Automata for Noise Removal

One of the non-linear filtering techniques, cellular automata, has been utilized to
eliminate image noise using fuzzy logic. Space is defined in cellular automata as a uniform
grid containing several components known as cells. For computer science applications
such as image processing, cellular automata can be utilized to model a wide range of
phenomena. In cellular automata, the value of each cell is decided exclusively by its
adjacent surrounding cells, with discrete time as well as local and consistent rules. Using
a sliding window, cells can take a new value at different time steps (t = 0, 1, 2, . . . , n)
according to their current positions and their neighbors by following a local transition
function. Cellular automata are defined by the four tuples L, Q, r, f, where “Q” is a finite
set of states, “r” and “f” are neighborhood radius and a transition function, respectively.
The letter “L” denotes the regular grid of cells.

The adjacent structure of two-dimensional cellular automata, as shown in Figure 2,
depicts the core cell xi,j and its eight surrounding neighbors. Depending on the transfer
function F and the cell state of its eight surrounding neighbors at time t, the cell status at
time t + 1 is modified.
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Figure 2. Mean cell location in Moore neighborhood architecture [94].

Piroozmandan et al. [94] presented a fuzzy-logic-based local transmission function
to achieve fuzzy cellular automata, with the intention of eliminating image impulse noise
while maintaining essential details in the image, such as the edges and texture. Fuzzy
cellular automata (FCA) was described as a strong tool in artificial intelligence through [95].
For cell states and functional traction areas, fuzzy values in form of linguistic variables are
employed instead of definite values in this framework.

To achieve fuzzy cellular automata, a fuzzy logic-based local transmission function
aims at the removal of impulse noise in an image and maintaining the meaningful details
such as the edges and texture of the image [94]. A two-stage method is presented for
monitoring impulsive noise and image restoration. In the first stage, damaged pixels are
located in two steps. The initial approach is to identify the damaged pixels by estimating
the least value of its core pixels and mean value of Moore neighboring pixels. As shown on
Figure 3, they are the images computed in terms of the harmonic mean (HM) [96] of the
four multiple positions of the five bordering pixels around the key (red) pixel.

The Moore neighbor algorithm is used incorporated with the mean filter for noise
detection and feature extraction. Furthermore, the Moore Neighbor algorithm is robust to
detect the noise of object as well as features of an object.

The second stage requires an inspection of pixels that were detected as uncorrupted in
the previous stage, in order to ascertain if they are still uncorrupted or have been damaged.
For the uncorrupted pixel detected, one measures the extreme values of the arithmetic
mean (AM) of four separate places of five pixels in the vicinity of the key point on the basis
of Figure 3. The idea is simple but effective for noise detection. Noise basically occurs
where there shows significant changes in intensity. The principle of the algorithm used
is based on detecting an increase in the difference between those pixels where intensity
values change significantly.

Figure 3. Illustration of four potential placements of the five adjacent pixels around the red key
pixel [94].
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Finally, the damaged and corrected pixel is diagnosed using cellular automata as
follows [94]:

Xj,j =

{
Xj,jis a uncorrupted pixel, F(i, j) = xmax

HM/AM <= xi,j

N − 1, N − 2is a corrupted pixel, F(i, j) = xmin
HM/AM > xi,j

(25)

Figures 4 and 5 respectively demonstrate the outcome of the filtered Peppers image
consisting of 768× 768 pixels with a 75% salt-and-pepper noise density, along with the
PSNR graph for the Fuzzy based solution compared to some other strategies, for example,
adaptive impulse sensing via center-weighted median filters (ACWMF) [97], new impulse
detector regarding switching median filtering (SWMF) [98], Modified directional weighted
filter (MDWF) [99], A. Selmani’s method [100], Fuzzy stochastic stimulus-related noise
removal method (FRINR) [28], H. Deng’s method [101], fuzzy inference rule by the else-
action filter (FIRE) [36] and boundary discriminative noise detection (BDND) [102], along
with a two-phase fuzzy cellular automata approach proposed by [94].

From Figure 4, the subjective quantitative measurement shows great visual perfor-
mance with clear edges in the Peppers image restoration using the proposed filtering in
regard to two-phase fuzzy cellular automata (Figure 4k). The proposed fuzzy approach
allows edges to be restored even in the low contrast areas, where fuzzy rule adopted was
adjusted to obtain good results, and identify the edges of the image. Even though the
methods such as SWMF (Figure 4c), ACWMF (Figure 4f), and FIRE (Figure 4i) remove a lot
of salt-and-pepper noise in the images, they are not successful in preserving image details
such as edges, especially in the regions with low contrast.

Figure 4. Illustration of multiple filtering strategies for the Peppers image with 75% salt-and-pepper
noise [94].
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Figure 5. PSNR measurements on Peppers reconstruction image with 768× 768 pixels by 15–90%
salt-and-pepper noise [94].

5.2. An Optimized Fuzzy System for Edge Detection

When it comes to digital image processing, edge detection is a commonly used ap-
proach. The target is to detect pixels that correlate the image edges. The employment of
filters to attenuate noise leads to loss in edge detection capability. It is crucial to evaluate
the intensity restrictions of pixels in their vicinity in order to promote edge detection. Many
spots in an image have an opaque gradient, but none of them constitute of joint edges of
space. To determine the edge points, some linear and nonlinear algorhitms, such as Sobel,
Prewitt and Robert, have to be adopted. As fuzzy approaches have been gaining more
popularity recently, they may soon become one of the most successful methods for edge
detection tasks.

Azimirad et al. [103] designed efficient Prewitt mask matrices and proposes an opti-
mum rule-based fuzzy inference system. Table 1 improved fuzzy set theory-based edge
detection rules for Prewitt mask matrices. There are four inputs (PIi, 1 = 1, 2, 3, 4) and one
output in the designed fuzzy system. In this table, “Bl” is black pixel value, “Wh” is white
pixel value and “En” is edge enable. This table demonstrates the 16 fuzzy rules offered on
the [103].

Deepak et al. [104] compared the classic edge detection algorithms, including Sobel
Filter, Prewitt Filter, Robert Filter, along with two new fuzzy approaches. Totally 34 fuzzy
rules were defined. The proposed fuzzy system was able to detect the edges of the image
more reliably, and aid in improving the sharpness and clarity of the edges, according to
the results. It has a more accurate and more reliable performance in edge detection with
the comparison to the traditional methods. The results of simulations utilizing classic
edge detection approaches and fuzzy-based modelling for edge identification are shown in
Figure 6. It is obvious to see that fuzzy based filtering performs well in the edge detection
tasks as shown in Figure 6e,f, compared with traditional filtering approaches as shown in
Figure 6b–d.

Generally, these traditional filters process the data in a relatively short time and are
computationally optimized, however, they are susceptible to noise. The Fuzzy method
performs mathematical and logical reasoning based on approximations rather than crisp
values. Therefore the technique significantly reduces the complexity of problems where
fixed values cannot be attained or predicted.
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Table 1. Displays the new and improved fuzzy set theory-based edge detection rules.

Input Output

PI1 PI2 PI3 PI4 Out

Wh Bl Bl Bl En

Bl Wh Bl Bl En

Bl Bl Wh Bl En

Bl Bl Bl Wh En

Bl Bl Bl Bl En

Bl Wh Wh Wh En

Wh Bl Wh Wh En

Wh Wh Bl Wh En

Wh Wh Wh Bl En

Wh Wh Wh Wh Wh

Bl Bl Wh Wh En

Bl Wh Bl Wh En

Bl Wh Wh Bl En

Wh Bl Wh Bl En

Wh Wh Bl Bl En

Wh Bl Bl Wh En

Figure 6. Illustration of the simulation outcomes for classic edge detection techniques: (a) Orig-
inal Image, (b) Sobel Filter, (c) Prewitt Filter, (d) Robert Filter, (e) fuzzy approaches designed by
Deepak [104], (f) Optimised fuzzy system designed by Azimirad et al. [103].

5.3. Fuzzy Deep Ensemble Classifier

The main goals in AI based image processing is the creation of an efficient classifier.
In most domains, the deep learning approach holds a significant place in contemporary
research. The fuzzy logic technique, on the other hand, is directly analogous to the seg-
mentation approach. Das et al. [105] designed a deep ensemble learning based on a fuzzy
min-max (FMM) classifier [106]. The outcome merges the structure of four deep learning-
based models, namely Convolutional Neural Networks (CNN), Recurrent Neural Network
(RNN), Long Short Term Memory (LSTM) based network, and Gated Recurrent Unit (GRU)
based neural network, all of which were trained simultaneously from the same dataset,
(Ah). The use of a fuzzy min-max classifier to predict the performance of the underlying
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classifiers reduces the uncertainty in performance. The block diagram of the proposed
method is depicted in Figure 7. The input dataset Ah is passed through each of the four
proposed classifiers that are deep neural network related, and the four neural network
approaches produce different discriminant functions used for feature extraction and object
classification. The values of the resultant classification function are compared and the one
with the largest value is selected to identify the pattern class.

The fuzzy min-max (FMM) classifier includes one input layer, one hidden layer,
and one output layer. The Fuzzy model receives the eight-element vector coming from the
four deep learning classifiers with two classes of each. The second layer FB consists of the
hyper box based fuzzy set nodes (b1, b2, . . . , bm). A min-max learning procedure with a
fuzzy membership function is used to create dual links between input nodes and hyper box
nodes by considering jth hyper box as a fuzzy membership function Bj = Vj, Wj, Yj, where,
Vj, Wj and Yj regard the mini point, max point, and the corresponding label of the class,
respectively. The final layer FC consists of class nodes (c1, c2). The layer configurations of
the FMM model are depicted in Figure 8.

The research work by Das et al. [105] also looked at the fidelity of the mentioned four
base learning models in association with neural networks along with the stacked ensemble
learning model (shown as Figure 9). The ensemble output from the base classifiers is fed to
the fuzzy model in terms of class probability and labels. The min-max algorithm for correct
decisions is used in the fuzzy model. The stacked ensemble outperforms base models,
increasing final accuracy in contrast to base models for both datasets, for example, 97.62%
validation accuracy on the brain tumor classification using the Kaggle dataset whereas
95.24% was achieved on the chest X-ray dataset. When evaluated on the benchmark BRATS
dataset, the Fuzzy deep ensemble model likewise delivers competitive results with an
accuracy of 97.59%.

Figure 7. Block diagram of the proposed Ensemble model. After [105].

Figure 8. Three-layer fuzzy neural network [105].
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Figure 9. The comparison of test accuracy for (a) Kaggle Brain image dataset (b) Chest X-ray
dataset [105].

5.4. Fuzzy Non Local Mean Filter

Non local Means (NLM) filters [107] with bias correction is a promising technique for
signal dependent noise. The NLM denoising is based on self-similarity and is computation-
ally very expensive. A method called lifting was recently demonstrated to conduct NLM
denoising of one-dimensional signals [108]. Owing to the independent effect of the patch
length, the cost of lifting is dramatically reduced, especially for large patches. Unfortunately,
it is difficult to directly extend lifting for non-local means denoising of images.

Singha and Kaurb [107] designed a fuzzy-rule based fast non-local mean filtering, and
is based on a speed enhanced NLM. The fuzzy Jacord similarity measurement on integral
image is in terms of the self-similarity of sub windows. This helps to find the weights of
similar pixel at a faster rate than the traditional NLM algorithm and more accurately than
the existing fast NLM method. These similar pixels further generate noise-free pixels using
conventional bias subtraction methods. The fuzzy non local mean filter performs better
than existing Fast NLM technique with high density Rician noise in standard brain MR
images and is 20 times faster than traditional NLM.

The other fuzzy filters, such as fuzzy-bilateral filtering [109,110], enables an interlaced
field to progressive frames to be converted while sustaining and improving image details,
the key operations of image processing. However, it is a challenge to perform filter-based
interpolation and detail enhancement simultaneously, as they are contradictory operations.
Since the fuzzy-bilateral filter [109] prefers close pixels over distant pixels in terms of both
domain and range, it allows adaptive application onto both existing pixel activity and the
associated position between existing neighbor pixels and the missing pixels. Simulation
results on video analysis and reconstruction prove the possibility of achieving efficient
interpolation of the interlaced field while enhancing details.

5.5. Resultant Experiments and Comparison

The test image, i.e., Peppers with image size of 800× 1200 shown in Figure 10a has
been used to evaluate the performance among several filtered images with added 65%
salt-and-pepper noise as shown in Figure 10b. These filtered images include an median
filtered image, a fuzzy smoothing filter, a fuzzy wavelet filter, adaptive fuzzy type 2
filter [111], and a noise adaptive fuzzy switching median filtered image (NAFSM) [112].
The median filter shows difficulty in removal of salt-and-pepper noise, fuzzy smoothing
enables to partly remove the noise, but at the cost of image blurring, which in turn loses
sharp edges. Wavelet fuzzy filter is capable of protecting the image boundary, but at the loss
of some small parts of an image. Adaptive fuzzy filter and NAFSM filter have the ability to
effectively filter the noise in an image, with the noise to be filtered very thoroughly.
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Figure 10. Illustration of multiple filtering strategies for Peppers image with 65% salt-and-pepper
noise. (a) An original image with image size of 800× 1200. (b) A noisy image with added 65%
salt-and-pepper noise. (c) Filtered image using a median filter. (d) Filtered image using a fuzzy
smoothing filter. (e) Filtered image using a fuzzy wavelet filter. (f) Filtered image using adaptive
fuzzy type 2 filter. (g) Filtered image using NAFSM.

The filter performance is assessed by taking into account both the noise suppression
and the detail preserving capabilities of the filter. To this end, we have used the Mean Square
Error (MSE), the Peak Signal to Noise Ratio (PSNR), and the Signal to Noise Ratio (SNR)
that measure the detail preserving capability, the noise suppression capability, and the
strength of a desired signal relative to background noise, respectively.

In Table 2, the NAFSM filter reflects its superior performance in terms of MSE, PSNR,
SNR, this is closely comparable to the performance achieved in impulse noise detection
and reduction approaches. Adaptive fuzzy type 2 filter (AFT2F) shows slightly weakened
performance in image restoration compared with NAFSM filter, but with improved results
compared with fuzzy smoothing and fuzzy wavelet filtering. Fuzzy smoothing shows an
inferior performance,in impulse noise removal tasks.

Table 3 is to compare the performance in terms of the state of art results using conven-
tional filters, fuzzy filters, along with deep learning filters. The images include color images,
gene datasets, satellites images, and MRI datasets. Noise types include salt-and-pepper
noise (NM1), Impulse noise (NM2), Gaussian & Impulse noise (NM3), and Rician noise
decreasing the MR image quality.
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Table 2. Comparison of the performance measured in terms of MSE, PSNR and SNR using the
Peppers image contaminated with 65% noise.

Fuzzy Filters Fuzzy Smoothing Wavelet Fuzzy Filter AFT2F NAFSM

MSE 189.35 107.18 5.9392 2.3532

PSNR 15.3587 17.8798 40.3935 44.4141

SNR 10.7782 12.9507 16.3254 20.3461

Table 3. Comparison of the performance in terms of the state of art results using conventional filters,
fuzzy filters, along with deep learning filters.

Filter Image NT ND MAE MSE NCD PSNR SSIM FSIM Sens Spec Accu
VMF Lena NM2 10% 3.69 56.5 4.29

BVDFs Lena NM2 10% 4.10 67.6 4.32
DDFs Lena NM2 10% 3.73 57.3 4.24
AVDF Lena NM2 10% 4.54 59.5 5.0 3

HMAMF Lena NM2 10% 5.67 91.98
HVMF Lena NM2 10% 3.59 39.16

CWTVM Lena NM2 10% 21.80
CWVM Lena NM2 10% 25.9

SCWVMF [113] Boats NM2 10% 3.89 112.54 27.62
PRF [53] Peppers NM4 10% 8.54 8.44 25.44
AVMF Peppers NM4 10% 7.93 8.04 26.59

PGSVMF Peppers NM4 10% 8.17 9.01 26.36
PGSAMF Peppers NM4 10% 8.36 8.25 27.28

FMPGSAMF Peppers NM4 10% 8.33 8.48 26.23
FRVP Parrot NM2 10% 0.90 24.4 0.57

ACWVDF Parrot NM2 10% 0.72 37.4 0.37
DPGF [56] Lena NM2 20% 32.2
DWM [62] Lena NM2 20% 33.6

AVDDF [44] Lena NM4 FPGA 1.00 33.34
CA+QFT [42] SI SIN 25.24 2.77 0.38
FWMF [82] Lena NM2 20% 39.5 0.98 0.997
FINR [83] Parrot NM2 20% 2.37 32.92

AFSF [114] Parrot NM2 20% 2.86 30.53
HAF Parrot NM2 20% 9.28 25.84

PGSF [54] Parrot NM2 20% 4.18 28.48
FISF Parrot NM2 20% 3.01 29.23

QSAF Parrot NM2 40% 35.33 0.939 0.972
FIDRM [115] Parrot NM2 40% 35.13 0.88 0.97

FCA [94] Lena NM2 15% 34.7 0.98
SWF Pepper NM1 30% 18.1 0.79

ACWMF Pepper NM1 30% 20.5 0.87
FCA Pepper NM1 30% 42.5 0.999

FANLM [107] BMRI Rician 9% 30.5 81.5
NLM [107] BMRI Rician 9% 28.1 73.2
AT2F [111] Lena NM2 20% 40.79

FARTMAP [105] BH 0.99 0.98 98.7
RNN BH 0.90 0.79 87.2
LSTM BH 0.92 0.86 90.38
GRU BH 0.92 0.83 89.7

NFP [93] GD 96.07 100 97.67

6. Conclusions and Future Work

This paper has reviewed some recent advances in the analysis and synthesis of fuzzy-
model-based nonlinear filters. Different noise models for the evaluation of the fuzzy
filter performance were considered. Furthermore, different fuzzy rule designs based on
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local information are also discussed. The construction of an optimal fuzzy system for
edge detection has received special attention, such as fuzzy cellular automata for the
identification of corrupted pixels towards image noise removal, a fuzzy deep ensemble
classifier with the biomedical application. Various results on the image visualised analysis
of fuzzy-model-based filter design for edge detection, denoise removal and deep ensemble
classifier, have been highlighted during the survey. Based on the literature review, some
related issues for future research works are outlined as follows.

As a pre-processing step for compaction, edge recognition, image segmentation, the re-
moval of random-valued noise (RVN) and salt-and-pepper noise (SPN) from digital images
are critical [4,116,117]. Fuzzy-model-based nonlinear systems have been developed to
reduce combined noise from digital images. The existing results on analysis and design
of fuzzy-model-based nonlinear systems were derived mainly in terms of sufficient con-
ditions with the use of various mathematic models, such as neural networks, cellular
automata, fuzzy logic controllers, and so on. How to further reduce the conservatism and
relax the computation complexity, as well as maintain the important image details deserve
further investigation.

In the past few years, sophisticated technologies such as fuzzy-rule based systems,
neural networks and numerous optimization methods have been utilized to detect edges
and reduce noise in digital images. These techniques are effective at detecting noise in
high-noise environments, but they have several drawbacks. When the density of digital
photos is large, these methods introduce computational complexity, and key image features
may be lost, as well as certain image edges. Although there have been some attempts to deal
with those issues, the obtained results are still preliminary as most of the useful information
on membership functions is ignored during the networked fuzzy controller/filter design.
Thus, some more powerful relaxation techniques and compensation strategies to tackle this
issue are desired.

Researchers working on a variety of image detection problems are still looking for
an efficient classifier. In recent advancements, it has been noticed that most works are
primarily focused on CNN-based models, whilst alternative deep learning strategies such
as the fuzzy-model-based nonlinear classification scheme are limited, despite the fact that
this technique outperforms a single model. Fuzzy-model-based nonlinear classification
systems with reduced fault classification and reduced fault-tolerant control problems for
various image processing, especially as applied to medical image processing tasks would
be an interesting topic [118–121].

Nowadays, big data are present in almost everywhere of our daily life including social
networks, online and offline transactions, medical records, and sensors. An immense
volume of heterogeneous data can be generated at exponential rates. The capabilities
of handling big data are vital to many scientific and engineering applications. Fuzzy
set techniques play an important role in processing big data as they can not only model
uncertainties of both data sources and results of algorithms, but offer a platform for
potentially new application areas where fuzzy-rule based logic control has not yet been
deployed. Examples are likely to be found in emergent research areas such as virtual and
augmented reality. Furthermore, it may also be argued that they may also be incorporated to
some degree in many future solutions for business, education, robotics, AI based diagnostics
or manufacturing, and renewable energy sectors, as long as DSP based filter engineering
approaches may be seamlessly integrated within these fields.
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Abbreviations
The following symbols and abbreviations are used in the manuscript:

I a two-dimensional (2-D) image
[x(k1,k2)] a two-dimensional (2-D) image matrix
H the number of rows of an image matrix
W the number of columns of an image matrix
x(k1,k2) a pixel addressed by 2-D sequence
xk a pixel addressed by 1-D sequence
L individual channel of a color image
R, G, B red, green, blue color components
υL

k model the original pixel
ι contamination component
p the sample corruption probability
W a support window
N commonly used filter window size
c center pixel position under a window
l gray levels
yk the output color vector
γ norm parameter
L1 norm of Block distance
L2 norm of Euclidean distance
L∞ norm of Max distance
di an aggregated distance of a specific pixel
dVMF an aggregated distance of VMF
dVDF an aggregated distance of VDF
dDDF an aggregated distance of DDF
dPG accumulated similarity of peer group
ρ distance function
yVM output of vector median filters
yVD output of vector directional filters
yBVD output of basic vector directional filter
yHM output of hybrid multichannel filter
yξ output of identification filter
yLmod

modified L filter output
yFPG output of fuzzy peer group
α, β coefficients of hybrid multichannel filter
Rw

i center weighted aggregated vector distance
w a positive integer central weight
yw(c) output of a CWVM filter
ew(c) center pixel reference distance
h̄ a group of preset thresholds
T threshold value
ŷ switch-based center weight vector median
P(x(c), r, d) peer group
T triangular norm
S triangular conorm
µ membership function
C certainty
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Ψi number i partition cell
Ψ fuzzy matrix
σ sample spread
Ξ Laplacian mask
∇D basic gradient value
∇̇D related gradient values
∇̈D related gradient values
D gradient direction within a sliding window
SVM support vector machine
DDMM Distinct distance measure metrics
BVDF Basic vector directional filter
GVDF Generalised vector directional filter
DDF A directional distance filter
FPGA Field programmable gate array
AVDDF Adaptive vector directional distance filter
HMF Hybrid multichannel filter
CWVMFs Center weighted vector median filters
PRT Peer group filter
FPGF Fast peer group filter
ACWMF Adaptive center weighted median filters
SWMF Switching median filtering
MDWF Modified directional weighted filter
FRINR Fuzzy stochastic stimulus related noise removal method
FIRE Fuzzy inference rule by the else-action filter
BDND Boundary discriminative noise detection
FMM Fuzzy min max
CNN Convolutional Neural Networks
RNN Recurrent Neural Network
LSTM Long Short Term Memory neural network
GRU Gated Recurrent Unit
NLM Non local Means
NAFSM Noise adaptive fuzzy switching median filtered image
MSE Mean Square Error
PSNR Peak Signal to Noise Ratio
SNR Signal to Noise Ratio
AFT2F Adaptive fuzzy type 2 filter
VDF Vector directional filter
SSIM Structured Similarity Index
QFT Quaternion Fourier Transform
DDF Directional-distance filters
NCD Normalized color difference
HMF Hybrid multichannel filter
HMAMF Hybrid marginal arithmetic mean filter
HVMF Hybrid Vector mean Filters
AVMF Adaptive vector median filter
PGSVMF Peer group switching vector median filter
PRF Peer region filter
PGSAMF Peer group switching arithmetic mean filter
FMPGSAMF Fuzzy modified peer group switching arithmetic mean filter
WVDFs Weighted vector directional filters
HVFs Vector directional hybrid filters
DPGF Directional weighted peer group
FWMF Fuzzy based Weighted Mean Filter
FSIM Feature similarity index
MWMF Modified Weighted Mean Filter
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FINR Fuzzy based impulse noise reduction method
PGSF Peer group switching filter
FISF Fuzzy inference system filter
HAF Histogram adaptive fuzzy filter
FIDRM Fuzzy impulse noise detection and reduction method
QSAF Quadrant based spatially adaptive fuzzy filter
FRVP Fuzzy-rank vector partition
FCA Fuzzy cellular automata
ADCWM Adaptive impulse detection via center weighted median filters
SWF Switching median filter
FARTMAP Fuzzy adaptive resonance theory mapping
FANLM Fuzzy Cmeans and adaptive non-local means
UNLM Unbiased NLM filter
AT2F Adaptive Type-2 Fuzzy Approach
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