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Abstract
Introduction Colorectal cancer (CRC) is the third most commonly diagnosed cancer worldwide. Alteration in lipid metabo-
lism and chemokine expression are considered hallmark characteristics of malignant progression and metastasis of CRC. 
Validated	diagnostic	and	prognostic	biomarkers	are	urgently	needed	to	define	molecular	heterogeneous	CRC	clinical	stages	
and subtypes, as liver dominant metastasis has poor survival outcomes.
Objectives The aim of this study was to integrate lipid changes, concentrations of chemokines, such as platelet factor 4 
and	interleukin	8,	and	gene	marker	status	measured	in	plasma	samples,	with	clinical	features	from	patients	at	different	CRC	
stages or who had progressed to stage-IV colorectal liver metastasis (CLM).
Methods High-resolution liquid chromatography-mass spectrometry (HR-LC-MS) was used to determine the levels of can-
didate lipid biomarkers in each CRC patient’s preoperative plasma samples and combined with chemokine, gene and clinical 
data. Machine learning models were then trained using known clinical outcomes to select biomarker combinations that best 
classify CRC stage and group.
Results Bayesian	neural	net	and	multilinear	regression-machine	learning	identified	candidate	biomarkers	that	classify	CRC	
(stages I-III), CLM patients and control subjects (cancer-free or patients with polyps/diverticulitis), showing that integrating 
specific	lipid	signatures	and	chemokines	(platelet	factor-4	and	interluken-8;	IL-8)	can	improve	prognostic	accuracy.	Gene	
marker status could contribute to disease prediction, but requires ubiquitous testing in clinical cohorts.
Conclusion Our	findings	demonstrate	that	correlating	multiple	disease	related	features	with	lipid	changes	could	improve	
CRC	prognosis.	The	 identified	 signatures	could	be	used	as	 reference	biomarkers	 to	predict	CRC	prognosis	 and	classify	
stages, and monitor therapeutic intervention.

Keywords	 Metastatic	colorectal	cancer	classification	·	Biomarker	·	Multi-omics	·	Machine	learning	·	Cancer	Subtypes	·	
Lipidomics
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1 Introduction

Colorectal cancer (CRC) is the third most common malig-
nancy and the second most deadly cancer, with approxi-
mately 2 million new CRC cases diagnosed and 1 million 
deaths worldwide in 2020. The global number of new CRC 
cases is predicted to reach 3.2 million cases by 2040 (Xi & 
Xu, 2021). The overall survival (OS) rate at 5 years is 90% 
for stage-I, 70% for stage-II, 58% for stage-III, and < 25% 
for stage-IV (Health & Welfare, 2018). CRC patients are 
highly likely to develop secondary hepatic malignancies, 
even after surgical removal of the primary tumour tissue 
(Manfredi et al., 2006;	Paschos	&	Bird,	2008). Almost 20% 
of CRC patients present with liver metastases. These CRC 
patients have a poor prognosis and response to treatment 
outcomes due to inter-tumour heterogeneity.

In recent years, molecular biomarkers such as carcino-
embryonic antigen (CEA), microsatellite instability (MSI), 
Kirsten Rat Sarcoma Viral Oncogene Homolog (KRAS) and 
B-Raf Proto-Oncogene Serine/Threonine Kinase (BRAF) 
gene mutation have been employed to aid prognosis in 
CRC. These allow better predictions of clinical outcomes 
after surgical treatment (Febbo et al., 2011). For instance, 
increased CEA levels are associated with progression of 
CRC and usually fall after surgical treatment (Becerra et 
al., 2016;	 Lalosevic	 et	 al.,	 2017). However, according to 
Sørensen et al. (Sørensen et al., 2016),	CEA	does	not	effec-
tively identify curable CRC recurrence, and its diagnostic 
sensitivity only ranges between 50% and 80%. For patients 
with metastatic CRC, mutations in genes MSI, KRAS and 
BRAF correlate with poor overall survival but are not pre-
dictive	biomarkers	of	the	effectiveness	of	chemotherapy;	for	
example by oxaliplatin (Gutierrez et al., 2019). The overall 
sensitivity of KRAS and BRAF for CRC detection is 77% 
and 92.2% respectively, in cell-free DNA samples (Formica 
et al., 2022;	Sun	et	al.,	2021). The accuracy of CRC progno-
sis can be improved by integrating CEA, KRAS and BRAF 
with other clinically relevant biomarkers.

Molecular signatures based on altered lipid metabolism 
have also correlated with CRC occurrence. Lipids play a 
key role in initiating phosphorylation and acetylation dur-
ing	kinase	signalling	(Dobrzyńska	et	al.,	2005;	Prochownik	
et al., 2020;	Tan	et	al.,	2013) and in responses to apoptotic 
stimuli. Dysregulated sphingolipids and phospholipids such 
as phosphatidylserine (PS) tend to increases with tumour 
development. Quantitative measures of blood lipid compo-
sition,	 specifically	 phospholipids	 in	 liver	metastatic	CRC,	
is	reflective	of	carcinoma	expression	in	intestinal	epithelial	
cells	(Dobrzyńska	et	al.,	2005;	Li	et	al.,	2013;	Notarnicola	
et al., 2005).

Several studies have suggested that factors such 
as overexpression of serine catalysing enzymes (e.g., 

phosphatidylserine synthase I and II) and lipid kinase sig-
nalling cascades (PI3K/AKT, EGFR, or Wnt pathways) 
correlate with metastatic CRC progression (Koveitypour et 
al., 2019). A study of CRC patient blood samples reported 
that plasma PS levels increased in CRC stage-I to IV com-
pared with healthy subjects. The study also reported that 
PS exposed on the platelets resulted in an increased level 
of blood clotting responses during metastasis development 
(Zhao et al., 2016a).

An immunohistochemical examination of CRC tis-
sue showed that the lipid signalling enzyme, phospholipid 
scramblase	 1	 (PLSCR1),	was	 significantly	 upregulated	 in	
the early stages of CRC. Overexpressed PLSCR1 is impli-
cated	in	inflammatory	pathways	that	may	increase	the	risk	
of developing neoplastic polyps in the colon (Kuo et al., 
2011).

Considerable evidence points to the reprogramming of 
lipid metabolism being associated with molecular heteroge-
neity that promotes CRC metastasis. Levels of up- or down-
regulated lipids, together with established CRC biomarkers, 
may allow better discrimination of CRC stages and deter-
mine the risk of metastatic progression. Thus, integrating 
lipid	profiles	with	additional	patient	biochemical	and	clini-
cal information such as chemokine levels, gene mutation 
status, patient’s age, number and location of tumour nodes, 
and	family	history	may	improve	CRC	staging	classification.	
Suitable machine learning (ML) algorithms are well suited 
to	perform	sparse	feature	identification	and	generate	robust	
CRC staging predictions from complex, high dimensional 
CRC clinical datasets.

This study generated multivariate statistical models to 
identify clinically useful prognostic plasma lipid biomarker 
signatures that can stratify patients into cancer free indi-
viduals (CFI), CRC with stages I to IV (CRC), and patients 
with stage-IV colorectal liver metastasis (CLM) groups. 
We utilised high-performance liquid chromatography-mass 
spectrometry to identify plasma lipids obtained from, (i) 
CFI (those who had undergone non-cancer-related surgery), 
(ii)	CRC	cases	with	different	stages	including	stage-IV	dis-
tant metastasis (metastasised to any organs except the liver), 
and (iii) individuals diagnosed with CLM.

Lipid signatures, patient clinical characteristics, gene 
mutation status, and CRC-related chemokines levels, such 
as interleukin-8 (IL-8) and platelet factor-4 (PF4) were used 
to train the machine learning (ML) models. A multiple lin-
ear regression with expectation maximisation (MLR-EM) 
algorithm was used to perform sparse feature selection and 
to generate linear regression models. A nonlinear Bayesian 
regularized neural network (BRANN) was used to model 
and predict CRC stages.

The	aim	was	 to	determine	whether	adding	 lipid	profile	
data	 to	 established	 CRC	 biomarkers	 could	 significantly	
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improve discrimination of disease cohorts and staging pre-
diction	 accuracy.	 Notably,	 both	 models	 identified	 levels	
of subtypes of triglyceride, phosphatidylserine, and phos-
phatidyl-ethanolamine	 as	 being	 significantly	 different	 in	
the	CFI,	CRC	and	CLM	groups.	In	total,	we	identified	16	
lipid	subtypes	associated	with	different	stages	of	CRC.	The	
MLR-EM models generated a 12 readout biomarker panel 
that	accurately	classified	the	CFI	and	disease	groups	(CRC/
CLM).

2 Methods

2.1 Study participants and biomarker features

The study was conducted with the approval of the Monash 
University and University of Adelaide Human Research 
Ethics	 Committee.	 The	 study	 used	 126	 de-identified	 bio-
bank stored plasma samples from CFI and patients diag-
nosed	with	different	stages	of	CRC.	Table	1 summarises the 
clinical characteristics of participants.

The	following	CRC	stages	were	defined:	stage-I,	stage-
II, stage-III and stage-IV (metastasised to any organs except 
liver). We assigned the CRC stage-IV metastasised to the 
liver as a separate group, named “CLM”. This assignment 
as	a	separate	group	may	be	helpful	 to	 identify	differential	
expression of lipid metabolism in CRC stages IV compared 
to	the	patients	specifically	diagnosed	with	CLM.

The CRC (stage-I to IV) and CLM patient samples 
recruited in this study had undergone primary tumour resec-
tion	and	continued	treatment	for	at	least	five	years	after	the	

surgical intervention. The probability of patient survival in 
this cohort was calculated using disease-free survival data 
for each sample. Additionally, this study used established 
prognostic biomarker levels for the ML-based integrative 
modelling. The detection of protein and gene biomarkers 
in clinical patients were conducted as previously reported 
by the Department of Surgery in the University of Adelaide 
(Kirana et al., 2020). The clinical data included blood circu-
lating cytokine proteins and gene mutation status (Supple-
mentary Table S1).

2.2 Plasma lipid extraction

Biobank plasma samples were stored at -80 °C and thawed 
to 2 °C for 10 min before lipid extraction. The Folch method 
was used to extract plasma lipids (Folch et al., 1957). 
Briefly,	 in	 PYREX®	 culture	 tubes,	 2	 mL	 of	 chloroform:	
methanol	(2:1,	vol/vol),	8	µL	of	deuterated	internal	standard	
(SPLASH®	 LIPIDOMIX®	 mass	 spec	 standard,	 Avanti)	
were	added	 to	100	µL	of	plasma,	vortexed	and	 incubated	
for 30 min. The internal standard contains deuterated lipids 
including phosphatidylethanolamine (PE), phosphatidyl-
serine (PS), phosphatidylglycerol (PG), phosphatidylino-
sitol (PI), phosphatidic acid (PA), lysophosphatidylcholine 
(LysoPC), lysophosphatidylethanolamine (LysoPE), cho-
lesteryl ester (CE), monoglycerides (MG), diglycerides 
(DG), triglycerides (TG), and sphingomyelin (SM). To each 
sample,	400	µL	of	0.9%	NaCl	was	added,	and	the	sample	
was centrifuged at 1200 RPM for 15 min. After centrifu-
gation, the upper phase was removed, and the lower phase 
was collected into glass auto-sampler vials and evaporated 

Characteristics CFI CRC CLM
Sample size, n 29 78 18
Age 34–82 (57) 38–89 (67.5) 42–81 (65.5)
Gender
 Female, n 19 32 9
 Male, n 11 46 9
Waist size (cm) 78–123 (108) 77–141 (111) 85–117 (94)
Cancer stage
 Stage 0, n (No residual of adeno-
matous, malignancy, carcinomatous or 
tumour)

- 16 -

 Stage-I, n - 12 -
 Stage-II, n - 14 -
 Stage-III, n - 18 -
 Stage-IV, n - 16 -
Pathology Polyp and adenomas 

development.
Had positive ascending 
colon tumour

Liver lesion 
believed 
to be 
metastatic

Pathological type (polyps and 
adenomas)

- < 6 x TA LGD,
1 x TVA LGD
1 x VA LGD
6 x SSA, 2 x HP

2 x TA 
LGD,
4 x HP

Table 1 Demographic and char-
acteristic features of CFI, CRC 
and CLM patient blood samples 
were used to identify lipids. CFI 
-	cancer	free	individuals;	CRC	-	
colorectal	cancer;	CLM	-	colorec-
tal	cancer	liver	metastasis;	TA	
-	tubular	adenomas;	VA	–	villous	
adenomas;	TVA	-	tubulovillous	
adenomas;	SSA	–	sessile	serrated	
adenomas;	HP	–	hyperplastic	
polyps;	LGD	-	low-grade	dys-
plasia. Measurement medians in 
brackets
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2.5 Sample sizes and disease classes

The number of samples in each group was based on avail-
ability of clinical information such as the cancer stage and 
pathological type of patients matching all disease subtypes. 
We used a t-test to account for the smaller size of samples 
and	to	quantify	statistical	significance.	For	CFI-CRC-CLM,	
333 putative lipid features matching MS/MS and retention 
time	were	identified	in	patient	samples.	For	the	ML	model-
ling,	 each	group	were	assigned	 to	a	different	 class	─	CFI	
(class 0), CRC (class 1) and CLM (class 2). A total of 66 
samples were used, comprising CFI (n = 16), CRC (n = 32) 
and CLM (n = 18). For CFI and CRC, 289 putative lipid 
features	 from	MS/MS	 and	 retention	 time	 were	 identified	
in patient samples. For ML analysis, again each group was 
assigned	a	different	class,	with	a	total	of	59	samples	─	CFI	
n = 13), CRC stage-I (n = 13), CRC stage-II (n = 11), CRC 
stage-III (n = 12) and CRC stage-IV (n = 10). The class 
occupancies were well balanced. For CFI and mCRC, 353 
additional features such as lipids, proteins, gene mutation 
status and patient clinical details (age, weight, and gender) 
were used in the models. Of the total of 48 samples, 15 were 
CFI and 33 were mCRC, showing some class imbalance.

2.6 Computational models

The lipid LCMS peak intensities were scaled by 100,000 
for the computational models. Outliers were eliminated 
using the mean and standard deviation of replicates. The 
outcomes of the descriptive statistical analysis, correlation 
coefficients,	 and	 regression	 models	 were	 plotted	 using	 R	
version 1.3. Disease-free survival estimation was performed 
in R version 1.3 using the Kaplan–Meier method. Bayes-
ian regularized neural network machine learning and sparse 
multilinear	 regression	were	 used	 for	 disease	 classification	
(Burden & Winkler, 1999, 2008, 2009a, b). The MLR-EM 
sparse feature selection method was used to identify rele-
vant predictor lipids and to interpret the multiple prognos-
tic features that could classify the disease and CFI cohorts. 
Supplementary Figure S1 shows the study design used to 
interpret potential biomarker features that classify the dis-
ease status. For ML analysis, again each disease stage was 
assigned large integers, the rationale being the biomarkers 
will also increase (or decrease) with higher levels of disease 
severity.	CFI	was	coded	as	0;	CRC	stage-I	was	coded	as	1;	
CRC	stage-II	was	coded	as	2;	CRC	stage-III	was	coded	as	3;	
and CRC stage-IV was coded as 4. For CFI and mCRC dis-
criminatory models, CFI was assigned to class 0 and mCRC 
to class 1 using a similar rationale.

under	nitrogen	flow.	Finally,	a	1:9	ratio	of	water	and	buta-
nol-methanol	 (50:50)	 was	 added	 to	 the	 dried	 samples	 to	
resuspend the sample for analysis.

2.3 LC-MS analysis and data Processing

10	µL	of	 the	 lipid	extracts	was	analysed	on	a	Q-Exactive	
Orbitrap	mass	 spectrometer	 (Thermo	Scientific,	Waltham,	
Massachusetts, USA) coupled with high-performance liq-
uid	 chromatography	 (HPLC)	 system	 (Dionex	 Ultimate®	
3000	RS,	Thermo	Scientific).	Chromatographic	separation	
was	 performed	 on	 Ascentis	 Express®	 (Supelco,	 Merck)	
100 ×	2.1	mm,	 2.7	 µM	C8	 reversed-phase	 column	with	 a	
guard column (Phenomenex, C8, 2 mm x 2) maintained at 
40 °C. Mobile phases were 40% isopropanol with 8 mM 
ammonium formate and 2 mM formic acid (A), and 98% iso-
propanol with 8 mM ammonium formate and 2 mM formic 
acid	(B).	The	flow	rate	was	0.2	mL/min.	Positive	and	nega-
tive ion mode MS data were collected using polarity switch-
ing in full scan mode at 70k resolution for the m/z range 140 
to 1300 m/z. The electrospray voltage was set at 3.50 kV, 
sheath gas to 35, auxiliary gas to 13, and sweep gas to 1 
arbitrary unit. Pooled plasma quality control (PQC) samples 
containing internal standards were acquired throughout the 
run and were used to assess analytical run quality. MS/MS 
data were collected on a PQC sample injected separately for 
positive and negative ion modes. MS/MS data were used 
to	confirm	lipid	identity	and	match	them	with	quantitative	
data in full scan (MS1) runs. Routine data processing in an 
untargeted fashion was performed using IDEOM software 
(Creek et al., 2012). Extracted and aligned features were 
annotated,	searching	accurate	mass	(within	3	ppm	cut	off)	
against databases such as HMDB, Lipidmaps, KEGG, and 
MetaCyc (Aurelio et al., 2016;	Creek	et	al.,	2012;	Han	et	al.,	
2018).	Approximately	350	lipids	were	confidently	identified	
matching MS/MS data and retention time correlation within 
each lipid class, > 350 putative metabolites were annotated 
per sample.

2.4 Sample grouping

We categorised sample cohorts into three groups to under-
stand and predict key molecules involved in disease pro-
gression. CFI-CRC-CLM contained lipid features of CFI, 
CRC and CLM. CFI-CRC group contained lipid features 
of CFI and CRC (stage-I, stage-II, stage-III, and stage-IV). 
CFI-mCRC group contained lipid datasets integrated to 
clinical characteristic and multi-omics features of CFI and 
mCRC (both CRC and CLM datasets were combined, to dif-
ferentiate diseased cohorts from cancer free group).
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3.1 Modelling the CFI, CRC and CLM groups

We	coded	disease	groups	into	different	nominal	classes	of	
disease	 severity	─	 class	 0	 for	CFI,	 class	 1	 for	CRC,	 and	
class 2 for CLM. The MLR-EM sparse feature selection 
identified	 9	 lipid	 features	 that	 best	 classify	 these	 three	
groups. Figure 2A and 2B show the sign and magnitude of 
the	influence	of	the	lipid	features	on	the	model.	The	iden-
tified	 lipid	 features	 included	 the	putative	phosphatidylser-
ine	subset	PS	(18:0/23:3)	detected	at	m/z	− 855.59 and RT 
− 14.08, that discriminate the CFI (n = 16), CRC (n = 32) 
and CLM (n = 18) cohorts. The MLR-EM model predicted 
the class membership of the training set with an r2 of 0.76 
and a standard error of 0.40. The test set class membership 
prediction had an r2 of 0.61 and a standard error of 0.45 
(Supplementary Figures S2A and S2B).

The model prediction errors were almost entirely pre-
dictions	differing	by	± 1 class. Outliers for the training set 
model included patients diagnosed to be CRC (class 1) but 
predicted to be CFI (class 0). Furthermore, a CLM sample 
was diagnosed as class 2 but predicted as CRC (class 1). 
The truth tables for the prediction of the training and test 
set classes are shown in Supplementary Table S2A. Class 

3 Result

Samples from three groups - CFI, CRC, and CLM were used 
to identify candidate prognostic biomarkers. The median 
age of male and female participants diagnosed with CRC 
was 67.5 (range 32–89), whereas, for the CLM, the median 
was 65.5 (range 42–81). Among the 126 samples, 43.6% 
of men and 32.5% of women had undergone adjuvant ther-
apy or cancer-related treatments. The CRC patients were 
diagnosed with adenomas, hyperplastic polyps, or graded 
dysplasia.

Kaplan-Meier analysis described disease-free survival 
(DFS) curves up to 5 years (Fig. 1A) and the OS (overall 
survival) rate up to 8 years (Fig. 1B). The log-rank test was 
carried	out	 to	measure	 the	difference	between	 the	groups,	
significant	 at	 the	p	= 0.002 level for DFS and p = 0.02 for 
OS. The DFS shows that for stage-IV distant CRC patients 
and those diagnosed with CLM, ~ 75% were likely to sur-
vive for less than 3 years. This indicates that the likelihood 
of recurrence of the disease is higher than for stage I, stage 
II and stage III CRC patients, even after administration of 
adjuvant therapies.

Fig. 1 Disease-free survival (DFS) and Overall survival (OS) were 
performed using the Kaplan-Meier (KM) method to estimate the sur-
vival probability of CRC and CLM individuals. The DFS refers to the 
survival probability up to 5 years after the primary treatment, shown in 
Fig. 1A. The OS refers to the survival probability of up to 8 years from 

the start of primary treatment, shown in Fig. 1B. The bottom table 
indicates the number of patients at risk of survival. Stage 0 to stage 
IV	-	colorectal	cancer	with	different	stages,	CLM	-	colorectal	cancer	
liver metastasis
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prediction of the BRANN test set classes had an r2 of 0.68 
and a standard error of 0.42. Notably, the outliers in the 
BRANN model were similar to those of the MLR model, 
suggesting	that	a	 linear	model	 is	sufficient.	In	the	training	
set model, three CFI samples (class 0) were predicted to be 
CRC	class	1;	two	CLM	samples	were	diagnosed	as	class	2	
but predicted to be CRC (class 1). The outliers for the test 

prediction accuracy was 87% for the training set and 77% 
for the test set.

We	used	the	subset	of	9	features	identified	by	the	MLR-
EM model to train a non-linear BRANN model and obtained 
similar discrimination of the classes (Supplementary Fig-
ure S2C and S2D). The prediction of BRANN training set 
classes had an r2 of 0.77 and a standard error of 0.34. The 

Fig. 2	 Neural	 network-identified	 top	 lipid	 features	 classify	 CFI	
(n = 16), CRC (n = 32) and CLM (n = 18) groups. Histograms show 
the	sign	and	magnitude	of	 the	9	most	relevant	features	 identified	by	
the MLR-EM model (A). Right side table show the MLR-EM regres-
sion	 coefficients	 with	 t-tests	 and	 p-values	 (B).	 Results	 for	 models	
combining multi-omics, chemokines and gene status features with 
lipid features for the CFI contained n = 15 and (CRC/CLM) contained 
n = 33 dataset (C). The sign and magnitude of contributions of the 11 
most relevant features to the model are shown in the histogram. Right 

side	table	show	the	MLR-EM	regression	coefficients	with	t-tests	and	
p-values	(D).	CE–cholesteryl	ester;	LysoPE	-	 lyso	phosphatidyletha-
nolamine,	PS	–	phosphatidylserine;	PE	–	phosphatidylethanolamine;	
TG	–	 triacylglyceride;	FA	–	 fatty	acid;	 IL-8	–	 interleukin	8;	PF-4	–	
platelet	factor	IV;	MLH1	gene	–	DNA	mismatch	repair	protein	Mlh1;	
PA	–	phosphatidic	acid;	MG	–	monoglyceride;	PC	–	phosphatidylcho-
line;	CFI	 cancer	 free	 individuals;	CRC	–	 colorectal	 cancer;	CLM	–	
colorectal	cancer	liver	metastasis;	mCRC	–	group	contain	both	CRC	
and CLM cohorts
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stage	in	the	test	set	was	low,	the	16	lipid	features	identified	
by	MLR	produced	a	statistically	significant	classification.

Subsequently, we trained the BRANN model to predict 
the	likelihood	of	CRC	staging	classification	using	the	16	rel-
evant lipid features (Supplementary Figure S4C and S4D). 
The neural network model performed similarly to the linear 
MLR with r2 of 0.88 for the training set and 0.64 for the test 
set. The BRANN truth table showed that some CRC stages 
were	 incorrectly	 predicted.	 The	 BRANN	 classified	 CRC	
stage-I to CRC stage-IV with an overall accuracy of 73% 
for the training dataset and 37% for the test set, increas-
ing to 89% accuracy if an error of one stage was allowed 
(Supplementary Table S3B). Notably, our analysis identi-
fied	a	putative	lipid	ion	observed	at	m/z	861.61,	annotated	
as lactosylceramide (LacCer (d18)), which was positively 
correlated with CRC progression.

3.3 Modelling the CFI and mCRC with additional 
patient features

Multi-omics datasets merged with lipid features may 
improve	the	classification	and	biomarker	identification	for	
metastatic cancer groups. We added patient physical and 
clinical features, such as gender, age, waist size, standard 
clinical biomarkers (e.g., chemokine proteins, and genetic 
attributes (microsatellite instability, KRAS and BRAF muta-
tion status)) to the training dataset. The multidimensional 
dataset consisted of 48 data points comprising 24 CRC, 15 
CFI, and 9 CLM patients. Similar to the previously per-
formed analysis, we nominally coded CFI group as class 0, 
and all CRC groups (CRC and CLM) as class 1. Features 
positive for gene mutation (G > A or G > T for KRAS muta-
tion, and c.1799T > A for BRAF mutation) were coded as 
+ 1, those negative for mutation as -1 and unknown as 0.

We were able to generate a predictive model for the CFI 
and mCRC dataset using the merged features. We inves-
tigated	 the	 effect	 of	 sparsity	 on	 feature	 selection	 using	 a	
range	of	β	= 0.2–0.6 in the MLR-EM algorithm. For lower 
sparsity	 (more	 features	 selected,	β	= 0.2), the MLR model 
identified	biomarkers	such	as	phospholipids,	MLH-1	gene,	
interleukin 8 (IL-8), platelet factor 4 (PF-4) and midkine 
as being important to discriminate the disease stages in 
male patients. By optimising the sparsity of feature selec-
tion, the MLR models consistently selected MLH-1 (DNA 
mismatch repair protein-encoding gene) and IL-8 as being 
good discriminators (Supplementary Tables S5 to Table S9). 
However, the small sample size is problematic for choosing 
the best predictors. Based on the complexity of the data-
sets, at least 9 to 12 features are required to achieve sta-
tistically	 significant	 disease	 state	 discrimination.	 Thus,	 a	
sparsity	coefficient	β	of	0.4	 identified	11	relevant	 features	
that discriminated between groups (Fig. 2C and D). These 

set included two samples diagnosed to be CFI (class 0) but 
predicted to be CRC (class 1). The truth table for predicting 
class membership for the neural network model is shown in 
Supplementary Table S2B. Class prediction accuracy was 
identical to that for the MLR model, 87% for the training set 
and 77% for the test set.

3.2 Modelling the CFI and CRC groups

In	total,	59	plasma	samples	for	the	CFI	and	CRC	classifica-
tion For CFI (n = 13), CRC stage-I (n = 13), CRC stage-II 
(n = 11), CRC stage-III (n = 12) and CRC stage-IV (n = 10) 
cohorts were used to train regression models. Here, MLR-
EM	identified	the	16	most	relevant	lipid	features	(Supple-
mentary Figure S3).	Of	 those,	 four	 lipids	 (PC	 (33:2),	 PE	
(36:2),	SM	(d37:1)	and	TG	(47:5))	have	odd	chain	lengths.	
When cross validating the lipid ions with retention time, 
these odd chain lipids could also be annotated as lipids with 
even	chain	lengths.	For	example,	PC	(33:2)	observed	at	m/z	
744.553 [M +	H]	 could	 be	PE	 (36:2),	 PC	 (37:2)	 observed	
at m/z 800.615 [M +	H]	 could	 be	PE	 (40:2).	Both	 groups	
have similarities in their retention time ranges. Thus, mul-
tiple reaction monitoring methods should be developed 
for	 future	analyses	 to	 strengthen	 the	confirmation	of	 lipid	
subtypes. Supplementary Figure S4 shows the training and 
test set predictivity for linear MLR and non-linear BRANN 
models.

The	MLR	classified	the	class	membership	with	an	r2 of 
0.88 for the training set and 0.64 for the test set. The MLR-
EM training set truth table showed that two of the CRC 
stage-II samples were predicted to be CRC stage-I, one 
CRC stage-III, and three were predicted to be CRC stage-
IV. The overall accuracy of the MLR training dataset was 
75% (Supplementary Figure S4A and S4B). The accuracy 
when allowing mismatches of ± 1 stage was 100%. Addi-
tional regression models with various degrees of applied 
sparsity	β	(β	=	0.5,	35	features	to	β	= 1.0, 16 features) were 
used	 to	 generate	models.	 The	 less	 sparse	 (β	= 0.5) model 
recapitulates the clinical CRC stages in the training set but 
was not predictive because the size of the data set was rela-
tively small. The test set was randomly selected and reduced 
to 20% for all classes (CRC stages and CFI). Sparser MLR 
models	with	β	= 1.0 (16 lipid features) were found to be the 
best compromise between complexity and accuracy com-
pared	 to	other	 levels	of	sparsity	 (β	= 0.9–0.5) as shown in 
Supplementary Figure S5.

The truth table for the MLR-EM test set showed that 
two CRC stage-II samples were wrongly predicted as CRC 
stage-I and CRC stage-III. The MLR test accuracy was 42% 
for	overall	classification	performance	and	89%	accuracy	if	
allowing a classifying error of one CRC stage (Supplemen-
tary Table S3A). Although the number of samples in each 
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markers with low or no relevance to disease stages. Subse-
quently, we performed data-driven integrative multi-omics 
modelling by merging protein, genetic, and clinical bio-
markers	with	the	lipid	profiles.	The	models	exhibited	very	
useful accuracy in classifying CFI and CRC cohorts. Inter-
estingly, the nonlinear BRANN ML models did not appear 
to	 generate	 significantly	 better	 predictions	 than	 the	 linear	
regression models, suggesting that the relationship between 
biochemical features and CRC staging was essentially lin-
ear. Overall this study achieved good accuracy in CFI-CRC-
CLM	classification	and	excellent	accuracy	in	CFI-CRC.	We	
acknowledge that advanced imputation methods like miss-
ing not at random (Saito et al., 2020) are also worth con-
sidering although, ultimately, additional high quality data 
will best improve the robustness and prediction reliability 
of models. Ideally, a robust QQQ-MS method could be 
developed	around	the	lipid	subtypes	identified	in	this	study,	
which	would	improve	annotation	and	give	highly	quantifi-
able data.

Most previous CRC studies reported a correlation between 
increased low-density cholesterol and TG with the occur-
rence	 of	 polyps.	 Specifically,	 our	 sparse	MLR-EM	model	
identified	9	key	lipid	features	as	being	prognostic	biomark-
ers.	 Notably,	 CE	 (22:6)	 p	=	0.026,	 CE	 (18:3)	 p	= 0.0001, 
TG	 (56:9)	p	=	0.005	and	FA	 (16:1)	p	= 0.0005 lipids were 
significantly	different	 in	CRC	and	CLM	patients.	A	previ-
ous study conducted by Byberg et al. reported that the pro-
portion	of	palmitoleic	acid	(FA	(16:1)	and	CE	in	serum	can	
be used to estimate the stearoyl-CoA desaturase-1 enzyme 
activity (involved in diabetes-induced CRC metastasis) 
and cancer-related death (Byberg et al., 2014). The models 
predicted	 that	PS	 subclass	 such	as	PS	 (40:1)	p	= 0.02 and 
PS	(18:0/23:3)	p	= 0.04 can discriminate metastatic disease 
groups. It was previously reported that PS was externalized 
on the surface of platelets through all CRC stages. This was 
associated with a hyper-coagulant state in cancer prolifera-
tion (Zhao et al., 2016b). PS exposure on platelets/circulat-
ing cells results in a pro-coagulation condition in the venous 
vessels connecting intestinal tissues.

When analysing lipids in CRC stages I to IV, the MLR-
EM	 algorithm	 identified	 16	 putative	 lipid	 prognostic	 bio-
markers. Conspicuously, we posit that the peak at m/z 
861.61 is a lactosylceramide (LacCer (d18) with p = 0.01. 
This LacCer feature is consistent with several studies on 
human CRC tissue, suggesting that the upregulation of lac-
tosylceramide synthase occurred during the angiogenesis 
process (new blood vessel formation). However, this will 
need	 to	be	confirmed	(Chatterjee	et	al.,	2019;	Kolmakova	
et al., 2009). For instance, a study conducted by Kolma-
kova et al. reported that lactosylceramide synthase isomer 
(β1,4GalT-V)	mRNA	expression	was	upregulated	4.5	fold	in	
human CRC endothelial cells when inhibiting sphingosine 

11 features were used to generate an MLR-EM model pre-
dicting	 disease	 status.	 Importantly,	 PS	 (40:1),	 IL-8,	 PF-4,	
PE	(42:6),	DG	(29:1)	([M	+ NH4]+), and MLH1 gene fea-
tures showed a positive correlation with CRC (p ≤ 0.05) 
incidence. Using these augmented features, the MLR-EM 
model	 (β	=	0.4)	 classified	 mCRC	 and	 CFI	 group	 with	 an	
accuracy of 97% for the training set and 78% for the test set 
(Supplementary Table S4). The truth table shows that the 
model	classified	patients	with	CFI	accurately,	but	one	class	
1 sample was predicted to be class 0 (CFI) in the training 
dataset. Similarly, in the test set, two class 1 samples were 
predicted to be class 0.

4 Discussion

Biomarkers such as CEA, DNA mismatch repair protein-
encoding genes, KRAS and BRAF mutation status are often 
used to estimate the risk of CRC progression. However, 
comprehensive analysis at the molecular level is urgently 
needed to elucidate CRC heterogeneity and identify multi-
ple biomarkers classifying CRC subtypes. Based on Kaplan-
Meier analysis, < 40% stage-IV CRC patients with liver 
metastasis survived at two years. Some of the CLM patients 
were diagnosed with low-grade dysplasia and hyperplastic 
polyps.

This study analysed preoperative CRC patients’ plasma 
samples using HR-LC-MS and ML approaches to iden-
tify lipids involved in CRC-liver metastatic progression. 
The lipid, protein, and gene datasets were initially stan-
dardized for CFI-CRC-CLM, CFI-CRC and CFI-mCRC 
disease	 subtype	classifications.	Datasets	with	missing	ele-
ments	 (ion	 detected	 by	LC-MS)	 and	 outliers	 likely	 affect	
ML model prediction and require the dataset to be reduced. 
Most often, features with missing values and outliers are 
deleted, which leads to the loss of important information. 
Classical approaches such as principal component analy-
sis (PCA) are typically used for data reduction (Shi et al., 
2021;	Stanimirova	et	al.,	2007). However, PCA has short-
comings such as failing to assess missing elements and is 
strongly	affected	by	outliers.	The	sparse,	efficient	ML	meth-
ods used in this study are relatively tolerant of noisy and 
missing data, allowing the calculation of model parameters. 
A plasma fatty acid biomarker study conducted by Malan 
et al. (Malan et al., 2020) reported that EM was a suitable 
approach for a small sample size. Another study suggested 
that the EM embedded PCA method was robust to missing 
data and outliers (Stanimirova et al., 2007).

Here, we used both linear MLR-EM and nonlinear 
BRANN models to predict disease stage and progression. 
Both	models	identified	the	most	relevant	lipid	features	sig-
nificant	 at	 the	95%	confidence	 level	 by	 eliminating	many	
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biomarkers which, upon further validation, could improve 
the diagnostic accuracy of CRC staging. The limitations of 
our study are primarily the relatively small cohort of patients 
in the study (data set size and completeness). Clearly, data-
driven methods like machine learning improve substantially 
when trained on larger data sets. Interestingly, key biomark-
ers such as KRAS, BRAF,	and	CEA	were	not	 identified	as	
competitive disease progression discriminators, but this 
may change with larger cohorts.

5 Conclusion

Our	ML	models	identified	a	range	of	disease-relevant	lipid	
subtypes, including phospholipids and sphingolipids in 
patient	plasma	samples.	The	model	identified	more	than	9	
lipid subtypes that could be potential molecular biomark-
ers for classifying CRC and CLM compared to CFI. These 
lipids could also be valuable in predicting the recurrence/
pathogenesis of CRC after adjuvant therapy. Our analysis 
provides evidence that a combination of multi-omics fea-
tures	such	as	IL-8,	PF-4,	MLH-1,	and	specific	plasma	PS	and	
PE lipids can help predict tumour progression in the early 
stages of CRC. Analysis of a larger sample size from well-
characterised clinical cohorts is likely to further strengthen 
our	ML	models,	which	show	significant	promise	in	guiding	
biomarker selection for CRC disease management.

Supplementary Information The online version contains 
supplementary material available at https://doi.org/10.1007/s11306-
023-02049-z.
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enzymes, suggesting increased synthesis of LacCer in blood 
vessels (Kolmakova et al., 2009).	 Our	 model	 identified	
variation in LacCer level as important, raising the question 
whether disease progression is associated with the VEGF 
pathway	 in	 different	 CRC	 stages.	 Similarly,	 Deng	 et	 al.	
reported a related study identifying lipid biomarkers for 
CRC using in-capillary extraction nanoelectrospray ion-
ization MS (Deng et al., 2021). This study reported lipid 
biomarkers	that	were	differentially	expressed	in	CRC	tissue	
versus non-cancer, but no computational modelling of their 
data was performed. Several of the biomarkers they identi-
fied	also	appeared	in	our	list	of	the	most	relevant	features	
from	the	MLR-EM	modelling;	these	include	PC	(36:3)	and	
PC	(34:2).	Overall,	when	compared	to	disease-free	survival	
results,	patients	with	metastatic	CRC	stage	have	significant	
dysregulation of 16 lipid prognostic biomarkers that could 
potentially be biomarkers of disease progression.

Merging	multi-omics	 features	with	 the	 lipid	 profiles	 in	
the	final	modelling	study	resulted	in	the	sparse	feature	selec-
tion	 MLR-EM	 identifying	 lipids	 PS	 (40:1)	 p	< 0.05, TG 
(36:0)	p	=	0.008,	PE	(42:6)	p	=	0.01,	MG	(18:0)	p	= 0.003, 
PA	(24:0)	p	=	0.01	and	PC	(18:2)	p	< 0.05, as useful for clas-
sifying CFI versus mCRC. Conspicuously, throughout the 
analysis, PS subsets appeared to be an excellent predictor 
to classify mCRC group. In addition, although we assumed 
the addition of prognostic gene biomarkers such as MSCI, 
KRAS and BRAF might improve model predictions, our 
study	identified	that	compared	to	KRAS and BRAF, MLH-1 
gene (p =	0.2)	also	classified	disease	cohorts.	However,	the	
MLH-1	 gene	 was	 not	 statistically	 significant	 enough	 to	
serve as a potential biomarker candidate in isolation. There-
fore, study of a large number of samples with MSI mutation 
status may be useful to improve disease prediction and clas-
sification	accuracy.	In	addition,	the	MLR-EM	model	identi-
fied	chemokines	such	as	IL-8	and	PF-4	as	relevant	features	
classifying CRC cases versus the CFI cohort. Based on a 
previous	 study,	 we	 suggest	 that	 there	 might	 be	 a	 signifi-
cant link between PS and chemokines in the progression of 
metastatic CRC (Meyer et al., 2017). Meyer et al. reported 
that	thrombin-stimulated	PF-4	produced	α-granules	(a	cel-
lular component of platelet containing coagulant proteins) 
enriched with PS (Meyer et al., 2017). We observed that our 
models (p = 0.05) consistently predicted lipids such as PS 
along with TG and PE, and chemokines including PL-4. We 
suggest	 that	 in	 biomarker	 identification,	 addition	 of	 IL-8,	
PL-4 and MLH-1 may improve the ability of ML models 
to accurately classify CRC subtypes. Our biomarker fea-
tures can be used in large scale studies to validate clinical 
outcome in CRC and compare cancer free CRC cohorts to 
recurrent CRC individual.

In	this	work,	we	have	identified	a	novel	integrated	bio-
marker panel including lipidomic, genetic, and proteomic 
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