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Thesis Abstract 

 

Food stability, described by the IPCC as the continuous availability and access to food 

without disruption, is one of the four pillars of food security. Extreme events and climatic 

variability can disrupt stability and are expected to increase due to climate change. Improving 

the stability of yields and farm income is identified as an important area of research. 

However, there remains few quantitative assessments examining the factors affecting stability 

of agricultural systems, particularly at the farm level.  

The main objectives of this thesis are to examine changes in the probability of adverse 

weather events across the UK in the 21st Century, as well as, examine the relative effect of 

climate variability, subsidies and farming practices on the stability of food production and 

farm income. The main aims are to provide knowledge on the impact of adverse weather on 

the stability of agriculture, now and in the future, and provide recommendations to improve 

stability in the context of a changing climate and more variable conditions. 

I used crop-climate modelling to examine changes in the frequency, magnitude and 

spatial patterns of adverse weather conditions throughout the UK during 21st century. I then 

analysed empirical data, using multilevel modelling, to examine the effects of farming 

practices, subsidies and climate variability on the stability of food production and income. 

Results demonstrate that climatic changes, in particular rainfall patterns, threaten 

agricultural production and the stability of agriculture. However, farming practices have a 

large effect on stability in comparison to climate. The three key aspects of farm management 

and policy identified to improve stability were: increasing agricultural diversity, increasing 

the efficiency of agrochemical use and agri-environmental management. These novel 

findings have important implications for adaptation and suggest that farmers, supported by 

policymakers, may have opportunities to improve stability in the face of more variable 

conditions. 
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Chapter 1 - General introduction 

 

1 Background: The multiple pressures on the stability of agriculture 

Food stability, described by the IPCC as the continuous availability and access to food 

without disruption, is one of the four pillars of food security, and extreme events associated 

with climate change can disrupt stability (Mbow et al., 2019). Production shocks that can 

arise from adverse weather events also often increase food price volatility, which is 

particularly detrimental to food security of the poorest consumers (Haile et al., 2017; Tadesse 

et al., 2014). Such volatility intensifies the challenge of ending world hunger and achieving 

food security by 2030, one of the UN Sustainable Development Goals (Griggs et al., 2013). 

With the global population expected to rise to 9 billion in 2050 (FAO, 2009), increasing the 

stability of food production and farmer livelihoods, under variable conditions, will help 

address the challenge of producing enough food today and in the future.  

The stability of agricultural production and farmers’ incomes are being confronted by a 

series of multiple pressures, including production risks (e.g., adverse weather and climatic 

change), economic volatility (e.g., food price spikes), and changing policy incentives, which 

are expected to become more intense over the coming decades. 

Production risks, for instance flooding, droughts or pests and disease, represent some of 

the key risks to agriculture, which can have a severe impact on yields (Deryng et al., 2014; 

Powell and Reinhard, 2015; Reyer et al., 2013; Trnka et al., 2014). Extreme weather events, 

such as the European wide heatwave in 2003, can have a dramatic impact on production even 

in temperate regions such as the UK, and these currently rare high temperature events could 

become normal by the middle of the 21st Century (Knox et al., 2012; Met Office, 2019). Farm 

incomes are also subject to production risks, as well as, economic volatility and uncertainty in 

price of outputs and inputs (Komarek et al., 2020; OECD, 2009). Recent food price spikes 

have often followed climate extremes in major producing countries, for example, droughts 

and heatwaves in key production areas are thought to have contributed to rapid food price 

inflation for wheat observed in 2007/8 (Gilbert and Morgan, 2010; Piesse and Thirtle, 2009; 

Porter et al., 2014).  

Many of the events which threaten agricultural production and livelihoods will be 

further affected by climate change. Extreme weather events, such as widespread heatwaves, 
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heavy precipitation and prolonged droughts, are expected to become more frequent and/or 

intense across many regions worldwide (Powell and Reinhard, 2015; Seneviratne et al., 

2012). Climate change is also expected to alter the severity and distribution of pests and 

disease, with many pests thriving under warmer temperatures and higher CO2 (Lamichhane et 

al., 2015). These risks and uncertainties challenge farmers ability to maintain consistency in 

production and income from year to year, which can have a knock-on effect on the 

sustainability of farm businesses and food supply.  

In addition to the impact of climatic, economic and resource pressures, farmers also 

face risks from changing policies (e.g., changes in regulation or policy incentives). Farmers 

across Europe have previously reported that institutional risk associated with policy 

uncertainty as a major concern (Komarek et al., 2020). Following the UK’s exit from the 

European Union the next few years are a pivotal moment for agricultural policy in the UK 

with the phased withdrawal of direct payments and the introduction of the Environmental 

Land Management schemes. This represents a significant change for farmers in the UK which 

is likely to drive change in farming practices and land use and may lead to abandonment in 

some of the more marginal, less productive land areas (e.g. the uplands; Arnott et al. (2021)). 

Understanding how policy and farm management effects the stability of food production and 

farm income, and how farmers could adapt to these multiple increasing pressures is therefore 

an important area of research. 

The stability of agriculture is essential for future food security, however it is also 

important adaptation to improve stability is not at the detriment of the natural environment. 

Agriculture affects, and is affected by, the availability and quality of natural resources 

including water and soils and biodiversity. Preserving the quality of the environment and 

provision of ecosystem services is therefore also of vital importance to ensure the 

sustainability of agroecological systems, environmental resources and nature into the future 

(Pretty, 2008).  

 

2 The focus of this thesis and structure of the introduction 

The primary focus of this thesis is to identify farming practices and adaptation options 

for agriculture, to improve the stability of food production and farm income in the context of 

a changing climate and more variable conditions. Examining yield variability and identifying 

strategies to increase stability of yields is recognised as an important area of research (Porter 

et al., 2014). Maintaining stable farm income is also considered a key issue faced by farmers 
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and addressed by policy makers (OECD, 2009; Severini et al., 2016), to ensure sustainable 

farm businesses that can continue to produce food.  

This thesis focuses on UK agriculture. The temperate climate in the UK is well suited 

for agriculture, with the sector occupying around 70% of the UK’s total land area (Knox et 

al., 2012). The agri-food sector is also an important sector for the UK economy, accounting 

for 6.3% (~£120 billion) of national Gross Value Added in 2018, and employing around 4 

million people (Department for Environment Food and Rural Affairs. et al., 2019). However, 

rising temperatures, changing rainfall patterns and increased frequency of extreme events, as 

well as economic, environmental and technological risks threaten the stability of UK 

agriculture (Knox et al., 2010). 

In this thesis I initially use crop-climate modelling to quantify changes in the 

frequency, magnitude and spatial patterns of a range of adverse weather events throughout 

the UK during 21st century. This is important to provide an understanding of the adverse 

weather conditions which may pose a risk to UK wheat production in a changing climate. In 

addition, this analysis also provides an understanding of the localised spatial patterns of 

weather across the UK to inform the future modelling in this thesis. This first study focuses 

on wheat, the most widely grown cereal crop in the world (FAOSTAT, 2018; Lobell et al., 

2012) and an important crop for the UK, with approximately 40% of the UK arable cropping 

area dedicated to wheat production (Defra, 2018).  

In subsequent chapters I then use statistical models that combine data from the Farm 

Business Survey and Met Office climate data (which are both further described in Chapter 2) 

from England and Wales, between 2005 and 2017, to examine how farming practices and 

subsidies affect the stability of farm income and food production in a variable climate. In 

combination these studies provide knowledge and understanding of how adverse weather 

affects the stability of agriculture, now and in the future, and important adaptation options to 

improve the stability of food production and farm income, in the context of a changing 

climate and more variable conditions. 

Within this introductory chapter I will begin by providing an overview of each of the 

important components: extreme weather events, climate variability and change, and the 

effects of farm management and policy on the stability of agricultural systems. Finally, I 

provide a summary of the research gaps that this research project seeks to address.   
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3 Effects of extreme weather, climate variability and change on agriculture 

Variations in agricultural production from year to year is, among other factors, affected 

by variations in weather, and our changing climate is associated with an increase in climatic 

variability and extremes (IPCC, 2012; Kovats et al., 2014; Rahmstorf and Coumou, 2011). 

The last three decades (1983-2012) have been successively warmer and the warmest period in 

the Northern hemisphere in the last 1400 years (during which such assessment is possible) 

(IPCC, 2014). Since the 1950s there has also been an increase in extreme weather events 

across many regions, including warm temperature extremes and the number of heavy 

precipitation events (IPCC, 2014). Across the Northern hemisphere, and specifically in 

Europe there has been an increase in the number of hot temperature extremes; the probability 

distribution of temperatures has shifted to the right and become broader due to an increase in 

the number of hot anomalies (Hansen et al., 2012) as illustrated by the schematic diagram in 

figure 1. Changes in both the mean climate and its variability will affect the frequency of 

climate extremes, although the specific mechanisms behind changes in these extremes 

remains largely unknown (van der Wiel and Bintanja, 2021). Across Europe, projections 

show an increase in summer temperature variability and heatwaves (Fischer et al., 2012; 

Fischer and Schär, 2009). There is also a projected increase in interannual variability in 

precipitation, in temperate regions, which has implications for the occurrence of droughts and 

flooding (He and Li, 2019). As a result, changes in climatic variability and extremes, and 

their effects on agricultural systems, has received increasing attention in the past few years. 

Extreme weather can make food production unstable and arguably poses a more 

immediate threat to agricultural productivity than gradual changes in mean climate; which 

allow greater time for farmers to adapt (Blanc and Reilly, 2017). Heat waves, flooding and 

droughts can severely reduce crop yields (Reyer et al., 2013; Deryng et al., 2014; Trnka et al., 

2014; Powell and Reinhard, 2015) and impact livestock systems, influencing both the direct 

health of the animal, as well as, grassland productivity and the availability of feed (Olesen 

and Bindi, 2002; Kipling et al., 2016). For example, a widespread heatwave across Europe in 

2003 had a dramatic impact on the agricultural sector; in the worst affected areas of Italy and 

France, livestock became stressed and key crops saw record reductions in yield, farms 

suffered economically as a result of production losses (Battisti and Naylor, 2009; IPCC, 

2007). Extreme weather can also affect farm management and operations, for example very 

wet conditions during sowing or harvesting can restrict access to fields and the timing of 

operations (Arnell and Freeman, 2021; Trnka et al., 2014). Climatic changes and the impact 
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of adverse weather conditions may also affect soil fertility and the prevalence of pests and 

disease, which will alter what farmers choose to grow or can grow successfully.  

 

 

 

Figure 1 – Schematic showing the effect when both the mean and variance increase for a 

normal distribution of temperature. Source: adapted from Folland et al. (2001). 

 

3.1 Extreme weather, climate variability and change in the UK  

Climate change simulations predict an increase in both the frequency and intensity of 

extreme weather in Europe towards the end of the 21st Century. Climate projections show a 

marked increase in summer heatwaves and heavy precipitation events for Europe, however 

considerable variability is observed across regions and seasons (Kovats et al., 2015, Powell 

and Reinhard, 2015). In the UK, there is a trend towards wetter winters and drier summers, 

however, due to interannual climate variability, modelling indicates some individual seasons 

could go against this trend (Lowe et al., 2018). 

The UK is well known for the variability of its weather, both spatially and changes in 

weather over time. The UK’s climate has a high degree of spatial variation; precipitation in 

particular can exhibit large spatial variation, and temperatures can also vary considerably in 

different regions of the country (Kendon et al., 2020). Future climate projections, over the 



Chapter 1 

6 

 

21st century, show there are also seasonal and spatial variations across the country. In 

summer, for example, there is a north-south gradient, the south is expected to see larger 

reductions in precipitation, as well as greater warming (Lowe et al., 2018), which could 

reduce water availability for crops and increase heat stress in animals, subsequently reducing 

yields (e.g. Clarke et al., 2021; Fodor et al., 2018). 

Research examining the effects of extreme weather and climate change on agricultural 

production is often performed at a global scale (e.g., Deryng et al., 2014; Iizumi and 

Ramankutty, 2016) or regional scale, which may use a small number of sites in the UK as 

part of larger scale assessment (e.g., Semenov et al. 2014; Trnka et al., 2014). Analysis at this 

broad scale can provide a tool to explore adaptation to climate variability and change for the 

global agriculture and food sectors. However, within UK at a local scale, weather conditions 

are likely to be wide ranging; for example Semenov, (2009) and Richter and Semenov, 

(2005) focused on the impacts of heat and drought stress in wheat across England and Wales, 

finding the probability of heat stress is higher in the south east, and drought stress will remain 

greater in the east of the UK throughout the 21st Century. Therefore, it is important to 

examine the effect of climate variability and change for the UK at a small spatial scale, in 

order to capture this spatial variability. There also remains a research gap to examine the 

effect of a wider range of extreme weather events at a small spatial scale on UK agriculture. 

 

3.2 Definitions and indicators of extreme weather and climate variability 

There are various ways in which extreme weather events and climatic variability have 

been defined in the literature considering agricultural systems and climatic change. These 

include by examining statistical extremes, interannual climatic variability, or specific 

“impact-related” weather conditions (or agroclimatic indicators) which have an adverse effect 

agricultural systems and food production. 

An extreme weather event in meteorology is usually defined by the probability or 

frequency of occurrence; a climate variable exceeding a predefined percentile near the upper 

(or lower) ends of the observed probability function (e.g above 95th percentile; (Howarth and 

Brooks, 2017; IPCC, 2012). Such indicators can provide a broad understanding of how low-

probability extreme events may change under future climate scenarios and their associated 

effects on agroecological systems, the environment, as well as society more generally. 

Extreme weather events can also be described by specific “impact” events affecting 

agricultural systems or production; for example, cardinal temperatures above which crop 

development slows, or agricultural drought whereby reduced precipitation and/or increased 
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evapotranspiration impinges on crop production (IPCC, 2012). These weather events are 

sometimes termed adverse weather conditions (Gobin, 2018; Trnka et al., 2015, 2014) or 

agroclimatic indicators (Rötter et al., 2018; Trnka et al., 2011, 2010), to distinguish from the 

meteorological definition. 

An initial literature review covering experimental studies and crop-modelling research 

has identified a large range of agroclimatic indicators which define key thresholds affecting 

production for the main crops and livestock within the UK. A full list of the indicators is 

provided in the thesis appendix. The range of indicators identified in the literature recognises 

that adverse weather conditions can occur either over a few days during sensitive crop stages, 

particularly during flowering and early grain development, as well as longer-term stresses 

occurring throughout the growing season. Crops are sensitive to specific thresholds at key 

stages of their development, for example higher temperatures during the reproductive stage of 

development can impact pollen viability, fertilisation, and grain or fruit formation (e.g. U.S. 

Department of Agriculture (USDA), 2008). For example temperatures above 31°C can cause 

sterility and reduction in grain numbers for wheat (Alghabari et al., 2014; Porter and Gawith, 

1999), whereas maize can tolerate higher temperatures up to 33°C during reproduction, 

which begin to reduce yields (Gabaldón-Leal et al., 2016; Rattalino Edreira and Otegui, 

2012). Livestock can be particularly vulnerable to high temperatures and humidity during the 

warmer months. Heat stress can lead to increases respiration and decreased food intake, 

affecting reproduction and productivity in cattle (e.g. Key et al., 2014), sheep (e.g. Sejian et 

al., 2017), pigs (e.g. Cross et al., 2018) and poultry (e.g. Purswell et al., 2012). Temperature-

Humidity Indices (THI) are a useful tool for classifying heatwaves and the severity of heat 

stress effecting livestock productivity, also considering the duration of exposure (e.g. Hahn et 

al. 2009; U.S. Department of Agriculture (USDA), 2008).  

The thesis appendix provides a comprehensive summary of agroclimatic indicators, 

which can be used to quantify the impacts of adverse weather conditions on yields or other 

measures of farm performance. In addition, these indicators can be used to consider how the 

probability of experiencing adverse weather conditions may change under future climate 

scenarios, to identify the specific climatic risks facing crops and livestock. 

I focused my review of agroclimatic indicators on the thresholds and subsequent yield 

impacts identified in experimental studies or modelling research which focus on individual 

crops or livestock, and therefore identify a clear physiological or biological mechanism 

causing the reduction in yields. Studies using these specific agroclimatic indicators may, as a 

result, detect stronger responses for individual crops or livestock. However, it is more 
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difficult to generalise the effects of these agroclimatic indicators at the farm level, i.e., across 

crops or types of production. More recently, some broad agroclimatic indicators have been 

developed to assess the sensitivity of agricultural production, across a range of commodities 

(e.g. Trnka et al., 2010; Arnell and Freeman, 2021) which help examine the effect of climate 

change on agricultural systems. These indicators can provide useful knowledge on how 

climatic conditions may change under future climate scenarios and help assess potential risks 

to agricultural systems and inform future adaptation strategies. These more generalised 

indicators provide proxies for agricultural impacts, rather than attempting to quantify the 

actual impacts on yields or output but as a result can be more flexible in their calculation. 

Broader agroclimatic indicators can, therefore, complement more specific crop or livestock 

modelling and provide an important contribution to assess the overall effect of climate 

change on agricultural production. 

The effects of interannual climate variability on agriculture have also been examined 

using empirical data, by associating variability in climate to crop yield variability. Previous 

studies have examined the variation in temperature and precipitation over multiple periods, 

using measures of dispersion or spread such as standard deviation or relative measures 

including the coefficient of variation (e.g. Acheampong, Ozor and Owusu, 2014; Leng, 

2017). Other studies have examined annual anomalies (deviations) in temperature or 

precipitation from the mean (over months or years), and their effect on mean yield or yield 

variability (e.g., Matiu et al. 2017, Ray et al. 2015, Reidsma et al. 2009). These studies 

highlight variations in climate (temperature, rainfall, and their interactions) are a dominant 

factor explaining crop yield variability.  

 

4 Effects of farm management and policy on the stability of agriculture 

To effectively guide adaptation to more variable conditions, it is important to 

understand the drivers of agricultural systems dynamics, i.e., changes over time in yields and 

profitability. A recent systematic review by Dardonville et al. (2020) identified that most 

quantitative assessments of agricultural systems dynamics focus on factors affecting crop 

yields, with fewer examining economic returns, and a very small number considering both. 

However, there remains few quantitative assessments examining these relationships, 

particularly at the farm level (Dardonville et al., 2020). 

Agricultural diversity and level of intensification, of various types, are the factors most 

frequently examined for their effects on agricultural systems dynamics, highlighting their 

interest to scientists (Dardonville et al., 2020). More diverse agricultural systems, with a 
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broader range of traits and functions, are associated with a range of benefits, such as 

improved soils and reducing the risk of crop failure, which could improve stability of farm 

performance in a changing climate (Degani et al., 2019; Lin, 2011). Greater use of 

agrochemicals, including fertiliser and pesticides, has been associated with higher yields, 

however the effect on the stability of yields is unclear (Dardonville et al., 2020). It is also 

important to consider that management strategies to enhance yield and its stability may not 

necessarily have complementary benefits for farm profitability, which requires expenditure to 

be considered. Therefore, a combined assessment examining how farm management and 

policy affect stability of both food production and farm income is important to ensure 

sustainability of farm businesses that can continue to produce food into the future. 

A European study identified that farm characteristics (e.g. size, and farm type) can  also 

have a large influence on yield and income variability, often larger than climatic conditions 

which can be more important at the regional level (Reidsma and Ewert, 2008). Larger farms 

may have a wider range of topography or soil conditions, and could also benefit financially 

from greater economies of scale, helping increase their capacity to cope with more variable 

weather and economic conditions (El Benni et al., 2012; Velandia et al., 2009). Farm or 

production type can also influence stability of farm performance, with livestock often 

considered a lower risk production output than crops (Chavas et al. 2019) and variability of 

income found to be higher on arable farms than dairy farms (Reidsma et al., 2009). 

Therefore, it is important to consider these farm characteristics when developing the 

modelling design to examine the factors affecting farm stability. 

The Common Agricultural Policy (CAP) scheme supports farmers in the European 

Union (EU). Key aims of the CAP are to improve agricultural productivity, ensuring a stable 

supply of affordable food, as well as reducing income variation by reducing domestic price 

volatility (El Benni et al., 2012; European Commission, 2021; OECD, 2009). Agricultural 

subsidies are thought to stabilise farm incomes (Enjolras et al., 2014; OECD, 2009) as the 

variability in subsidies is potentially lower than other agricultural income (Severini et al., 

2016). However, empirical research has found contrasting results, with direct payments found 

to increase the variability of agricultural income and crop yields across Europe (Enjolras et 

al., 2014; Reidsma et al., 2009), suggesting further quantitative studies are needed to evaluate 

these relationships.  

The CAP provides payments to farmers across the EU via two main categories: Pillar 1 

of the CAP provides direct (area-based) payments to farmers and market support. Prior 

research has primarily focused on the ability of direct payments to stabilise farm income. 
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Other government subsidy payments are directly tied to farm management and could 

therefore influence both yield and income. Pillar 2 pays farmers for implementing measures 

to benefit the environment or biodiversity, e.g., installing hedges, through voluntary agri-

environment schemes (AES) or to support the wider rural economy (European Commission, 

2005). Prior research has indicated options included in agri-environment schemes may help 

increase resilience of production to pests and disease (Menalled et al., 2003; Ottoy et al., 

2018; Tschumi et al., 2016) and reduce the effects of extreme weather events (Bishop et al., 

2016; Degani et al., 2019). However, the overall effectiveness of agri-environment schemes 

in delivering ecosystem service benefits remains poorly understood (Ottoy et al., 2018). The 

effect of participation in agri-environment schemes on the stability of agricultural production 

or income does not appear to have been examined previously. 

The UK left the EU on 31 January 2020 and introduced a new Agriculture Bill 

providing the legislative framework for a new agricultural support scheme (Coe and Finlay, 

2020). Under this new agricultural policy direct payments will be phased out and a series of 

new schemes will start, this includes the new Environmental Land Management scheme 

which focuses on the delivery of public goods and improving the health of our environment 

(DEFRA, 2018). These represent significant changes to agricultural policy in the UK. During 

the transitional period the government will review the effectiveness of past schemes and pilot 

new approaches (Downing and Coe, 2018). Evidence and analysis are needed to inform 

policymakers about the effect of prior schemes on the stability of food production and farm 

income and where additional support could be targeted. 

 

5 Summary of knowledge gaps and thesis aims 

This literature review has identified a number of research gaps and areas of focus for 

my research project, which are described in this section alongside the aims of the thesis. Here 

I summarise the subsequent chapters of this thesis and the main aims of each data chapter.  

Firstly, in chapter 2, I introduce the farm and climate data used in the subsequent 

research chapters. I also critically evaluate the crop models which are used to identify adverse 

weather conditions which pose a risk to UK agriculture (chapter 3), as well as, the statistical 

methods used to examine factors affecting the stability of food production and farm income 

(Chapters 4 and 5).  

Following this are the data chapters of the thesis. In Chapter 3 I focus on identifying 

adverse weather conditions which pose a risk to UK agriculture, by quantifying changes in 
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the probability of adverse weather conditions throughout the 21st Century. Chapter 3 focuses 

on wheat production, an important crop for the UK, and seeks to provide a comprehensive 

analysis of projected changes in the frequency magnitude and spatial patterns of adverse 

weather conditions for UK wheat production. Previous research has often focused on single 

sites within the UK, however, adverse and extreme weather conditions are often localised, 

therefore I use 25 sites across the UK to examine differences in weather at a small spatial 

scale. Previous crop-modelling studies also often focus on specific weather conditions (e.g., 

heat and/or drought stress), not considering other adverse conditions which may threaten 

production, including waterlogging or lodging. I use both a process-based crop model (Sirius) 

and a range of agroclimatic indicators to provide a comprehensive analysis on a range of 

adverse weather conditions which may pose a risk to wheat production in a changing climate. 

In addition, this analysis also provides an understanding of the localised spatial patterns of 

weather across the UK to inform the model structure in Chapter 5, as well as enabling further 

discussion of the subsequent empirical analysis on farm stability (Chapters 4 and 5) in the 

context of future climate projections. 

Having identified that weather conditions can have important impacts on wheat 

production, this research project then aims to identify farming practices and adaptation 

options to improve the stability of food production and farm income, in the context of a 

changing climate and more variable conditions. Following the literature review a number of 

specific research gaps have been identified, as well as important areas of focus for this 

analysis. Firstly, due to the often-localised nature of extreme weather and spatial variation of 

weather across the UK there is a need to link yields to weather data and assess the impact of 

these events for UK agriculture at a small spatial scale. Secondly, agricultural production and 

incomes can be affected by a range of factors, including climate variability, farm 

management and characteristics and policy, however, quantitative assessments of these 

factors on agricultural stability remain rare (Dardonville et al., 2020). Examining the 

importance of each of these factors will help to further understand these relationships and 

help guide adaptation at the farm level. Farm or production type has also been identified as an 

important factor influencing the stability of income and production, therefore I use separate 

multilevel models across a range of different farm types to provide targeted recommendations 

for farmers and policy makers. I focus on farm level adaptation to provide recommendations 

for farmers and policy makers which can improve the stability and therefore ultimately the 

sustainability of farm businesses and food production for consumers. The extensive 

information collected in the Farm Business Survey as well as the spatial extent and large 
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numbers of farms included, combined with climatic data, provides an opportunity to examine 

the factors explaining these different aspects of farm performance.  

Chapter 4 focuses on factors affecting the stability of farm income. I examine farms in 

England and Wales between 2007 and 2015, across a range of different farm types, using data 

from the Farm Business Survey. I use multilevel modelling to examine the effect of farming 

practices, farm characteristics and policy on the stability of farm income, whilst also 

considering how alternative measures of stability can affect these relationships. Chapter 4 

does not explicitly consider the effects of climate on the stability of farm performance1 as I 

wanted to focus initially on understanding the effects of farming practices, characteristics and 

policy on stability, whilst introducing and examining alternative measures of stability. 

Chapter 5 then expands on chapter 4 to incorporate the effects of climate variability and 

additionally examine factors affecting the stability of total food production. I use multilevel 

modelling to examine the relative effects of farming practices, subsidies and climate 

variability on the stability of food production and farm income, at the farm level. I examine 

farms in England and Wales between 2005 and 2017, and link farms to climate data at a sub-

regional scale. Examining the stability of farm income and food production is important for 

future food security, however empirical analysis on agricultural system dynamics remains 

rare, particularly at the farm level. Previous assessments of the factors affecting agricultural 

system dynamics have focused upon the stability of yields for individual crops. It is also 

important to look at stability of total food production at the farm level, across a range of 

commodities, as this allows us to examine the effects of farm level management decisions 

(e.g., diversifying production) on food production at the farm level. I consider the stability of 

food production from a consumer’s perspective, by examining variability in calories 

produced at the farm level, which has not been explored previously. This therefore helps to 

understand the relative effects of climate and farm management on the stability of food 

available to the consumer. Loss of production following adverse weather conditions can also 

affect farm incomes, which could affect the ability of the farm business to sustain its 

operations from year to year. There are very few combined assessments of the factors 

affecting the stability of both food production and farm incomes, which will help effectively 

target adaption to improve the sustainability of farm businesses and food supply. This is, as 

far as I am aware, the first empirical study to examine the relative effects of farming 

 
1 While the effect of climate conditions are not quantified, the multilevel models incorporate random 

intercepts for each farm and county, which represent characteristics of variables not included in the 

model, including climatic conditions (refer to chapter 2 and chapter 4 methods). 
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practices, subsidies and climate variability on the stability of calories produced alongside 

farm incomes.  

 

6 Thesis structure and chapter objectives 

Chapter 1 – General introduction 

• Summarise pressures on the stability of agriculture and related risks to food security 

• Overview of the literature regarding the effects of extreme weather, climate variability 

and change on agriculture, including how to define and measure extreme weather and 

climate variability. 

• Overview of existing literature examining the effects of farm management and policy 

on the stability of agriculture 

• Describe key knowledge gaps surrounding adaptation to improve the stability of 

agriculture in the context of a changing climate and more variable conditions. 

• Summarise research chapters and their objectives 

 

Chapter 2 – Data and methodology 

• Summarise and critique the climate and farm data used in the subsequent research 

chapters 

• Critically evaluate the statistical methods used in the subsequent research chapters, 

including: 

o methods to examine the impacts of extreme weather, climate variability and 

climate change on agricultural outputs, 

o methods to measure agricultural systems dynamics (stability, vulnerability, 

resilience and robustness), and 

o methods for examining the factors affecting the stability of food production 

and farm income. 

 

Chapter 3 – Adverse weather conditions for UK wheat production under climate change 

• Research question: Focusing on wheat production, how does the frequency, 

magnitude and spatial patterns of a range of adverse weather conditions change 

throughout the UK during 21st century? 
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• This study aims to provide a comprehensive analysis of adverse weather conditions 

which may pose a risk to wheat production in a changing climate, throughout the UK 

in the 21st century. 

• More broadly also to provide an understanding of the localised spatial patterns of 

weather across the UK and gain knowledge of projected climate trends for the UK. 

 

Chapter 4 – Stability of farm income: The role of agricultural diversity and agri-environment 

scheme payments 

• Research question 1: What affect do farming practices and subsidies have on the 

stability of farm income across England and Wales? 

• Research question 2: Do different measures affect the interpretation of stability 

and the relationships identified in the models? 

• This study aims to provide targeted recommendations for farmers and policy makers, 

by farm type, to improve the stability of farm income  

 

 

Chapter 5 – Towards stability of food production and farm income in a variable climate  

• Research question 1: What is the relative effect of climate variability, subsidies 

and farming practices on the temporal stability of food production and farm 

income, in England and Wales? 

• This study aims to identify adaptation options, for farmers and policy makers, to 

improve the stability of food production and farm income, including where there may 

be trade-offs between improving these different aspects of farm performance. 

 

Chapter 6 – General discussion 

• Summarise research findings and their relevance within the existing literature. 

• Discuss policy implications to improve the stability of agriculture.  

• Discuss issues encountered during the research project 

• Identify opportunities for future work. 
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Chapter 2 - Data and Methodology 

This data and methodology chapter provides an overview and justification of the data 

and methods used in this thesis and their limitations. In this thesis I combine several datasets 

and use a number of models to answer the research questions developed in the introduction 

(summarised in Table 1). Within this data and methodology chapter I firstly introduce the 

historical climate data (used in chapters 3 and 5) as well as the Farm Business Survey data 

(used in chapters 4 and 5). Secondly, in this chapter, I critically evaluate the methods used to 

examine the key aims of this thesis; discussing the crop models used in chapter 3, the 

alternative methods for measuring stability and agricultural systems dynamics (for chapters 4 

and 5), and finally by discussing statistical methods for examining factors affecting the 

stability of food production and farm income. Specific details on the data and methods 

relevant to each study (including time periods examined, generation of the future climate 

projections, calculation of the key variables, and model specifications) are provided within 

each subsequent data chapter (3, 4 and 5). 

 

Table 1 – Summary of the research questions, key data sources and models used in the thesis 

 
Research Question(s) Key datasets Models used Chapter 

1) Focusing on wheat production, how does 

the frequency, magnitude and spatial patterns 

of a range of adverse weather conditions 

change throughout the UK during 21st 

century? 

1) Met Office climate station data  

(used to generate climate 

projections, agri-climatic indicators 

and simulate wheat yields) 

2 crop models  

(Sirius and 

AgriClim) 

3 

1) What affect do farming practices and 

subsidies have on the stability of farm income 

across England and Wales? 

2) Do different measures affect the 

interpretation of stability and the relationships 

identified in the models? 

1) Farm Business Survey data Multilevel 

models 

4 

1) What is the relative effect of climate 

variability, subsidies and farming practices on 

the temporal stability of food production and 

farm income, in England and Wales? 

1) Farm Business Survey data 

2) HadUK-grid Met Office climate 

data 

Multilevel 

models 

5 

 

1. Data 

1.1 Climate data 

I use two different sets of climate data in this thesis. In my first study (chapter 3) I use 

daily observed weather data from 25 Met Office meteorological stations to examine adverse 
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weather conditions which may pose a risk to wheat production in a changing climate, 

throughout the UK in the 21st century. Site specific climate data is well suited for use in crop 

modelling studies, which can simulate yields or the probability of weather events occurring at 

specific locations, using historical data and under future climate projections (e.g., Semenov 

and Shewry (2011; Senapati et al. (2019a)). Site specific results can then be interpolated 

across larger growing areas. In chapter 3, I do so to examine spatial variation in adverse 

weather conditions for wheat across the UK. In my final data chapter (chapter 5), which links 

climatic data to the Farm Business Survey data, I use the HadUK-grid 5km gridded climate 

dataset from the Met Office (Hollis et al., 2019). HadUK-grid is a new set of gridded climate 

data variables derived from the UK meteorological station data, that has been interpolated to 

a regular grid with improved consistency of station data and after having been subject to a 

rigorous quality control analysis. I use HadUK-grid climate data in chapter 5 to provide an 

accurate and robust estimate of the weather experienced by each farm, using county locations 

and averages. The following sections (1.1.1 and 1.1.2) provide an overview of the climate 

data used, including how I considered the accuracy of the data and any limitations. 

 

1.1.1 Met Office climate station data 

To address the first aim of this thesis; provide a comprehensive analysis of adverse 

weather conditions which may pose a risk to wheat production in a changing climate, 

throughout the UK in the 21st century, I use historical climate data obtained from the Met 

Office station network (Met Office, 2019). Initially data was obtained for 85 climate stations 

across the UK stations within the Met Office network (Figure 1), spanning the period 1981-

2012. The weather data includes daily records for maximum and minimum air temperature, 

precipitation and sunshine hours (or radiation) and the calculation of each of these variables 

is provided in Table 2. Monthly averages from weather station records are commonly used 

for long term climate analysis, however averages are not sufficient for analysing extreme 

weather events such as changes in intense rainfall and heat waves (Menne et al., 2012). In 

Chapter 3, I examine a range of adverse weather conditions, including heat and drought stress 

during the reproductive period, therefore daily weather data is necessary to calculate the 

phenological development of wheat and the effect of adverse weather conditions coinciding 

with sensitive stages.  

To examine changes in adverse weather conditions at a small spatial scale across the 

UK, throughout the 21st Century, I chose 25 weather stations to examine in Chapter 3. These 
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25 sites (shown in Figure 1) provided a broad coverage of the UK, and in particular across the 

wheat growing area. These stations also reported <10% missing values in total and where 

missing values did exist, the consecutive daily missing values present were for 5 days or less. 

 

 

Figure 1 - Geographical location of a) all 85 Met Office weather stations and b) final 25 Met 

Office weather stations used in Chapter 3. 

 

Table 2 - Description of climate variables included in the Met Office climate data 

Climate variable Abbreviation Description Unit 

Maximum air temperature Tmax Maximum air temperature measured 

between 0900 GMT on day D and 0900 

GMT on day D+1 

Celsius (°C) 

Minimum air temperature Tmin Minimum air temperature measured 

between 0900 GMT on day D-1 and 0900 

GMT on day D 

Celsius (°C) 

Precipitation Rain Total precipitation amount measured 

between 0900 GMT on day D and 0900 on 

day D+1 

Millimetres 

(mm) 

Sunshine hours (or 

radiation) 

SUN (or RAD) Hours of sunshine (h) or Radiation (J/m2 or MJ/m2 or 

J/cm2) per day 

 

The Met Office climate data represents raw data obtained directly from the weather 

station recorders, therefore, to ensure the accuracy of this data I performed a range of quality 
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control procedures (from Durre et al., 2010 and Feng et al., 2004) to identify and remove 

erroneous values. I use the climate station data to analyse and identify extreme or adverse 

weather events (Chapter 3); therefore, the primary aim of the quality control procedures were 

to identify the largest errors in daily values, principally those which could impact the analysis 

of extreme temperature and rainfall events. This process involves identifying as many errors 

as possible, whilst reducing the probability of considering valid weather observations as 

errors (i.e. false positives; Durre et al., 2010). Cleaning the climate station data involves a 

number of stages which have been outlined below. The first stage involves examining for any 

obvious inconsistencies in the dataset, comprising the following checks: firstly, by comparing 

the weather observations against UK climate records as published by the Met Office (2017), 

referred to as extreme value inconsistencies. The UK climate records as of 2018 are 

summarised in Appendix A. Secondly, examining the logical or physical relationships 

between the observations to identify internal inconsistencies, for instance the maximum 

temperature cannot be below the minimum temperature for any given day. Thirdly, 

investigating any repetition or duplication of zero values in the dataset, since zeros may be 

used incorrectly as a missing value code in climate data (Durre et al., 2010). Finally, 

checking for any records which represent a duplicate of the records at another weather station 

on the same day. The next stage involves examining for statistical outliers in the weather 

data, by identifying those observations which appear inconsistent with the set of weather data 

and therefore may represent an error (Barnett and Lewis, 1994). I standardised the 

temperature data (centred around zero, with a standard deviation of 1) using Z-scores to 

identify observations which lie more than 4 standard deviations from the mean (of each 

station and month across the duration of the dataset) and appear inconsistent with 

temperatures at neighbouring stations on that day. A summary of the conditions for 

identifying errors in the Met Office climate station data are provided in Appendix B. The 

observations which are considered obvious inconsistencies or statistical outliers were 

subsequently recoded as missing values within the data set. Values removed from the final 

dataset used in Chapter 3 represented less than 0.1% of the dataset. The number of erroneous 

values removed represent a very small proportion of the dataset, and therefore their inclusion 

may not have significantly affected the results. However, it is not possible to know in 

advance the number of erroneous values which will be identified through the quality control 

procedures, which aim to provide a more robust dataset for analysis.  

Further details on the climate data, including periods examined, the calculation of 

adverse weather indices and future climate projections are provided in Chapter 3.  
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1.1.2 HadUK-grid Met Office climate data 

In this thesis I also aim to identify farming practices and adaptation options to improve 

the stability of food production and farm income, in the context of a changing climate and 

more variable conditions. In Chapter 5 I link the Farm Business survey (FBS) data, from 

England and Wales, to the Had-UK grid climate data at a sub-regional scale, in order to 

examine the relative effect of climate variability alongside farming practices, farm 

characteristics and policy on the stability of food production and farm income.  

The Had-UK grid dataset is based upon historical weather observations from Met 

Office climate stations, which is interpolated into a regular grid across the UK (Hollis et al., 

2019). Daily climate variables, including maximum and minimum temperature and 

precipitation (measured using the same criteria described in Table 2) are available from 1960 

for temperature and 1891 for precipitation. Quality control procedures (including range 

checks, internal consistency checks and near‐neighbour checks), which correct or remove 

erroneous values, have been performed by the Met Office on the station data used to produce 

the grids (Hollis et al., 2019). In addition all the daily grids have been checked to ensure no 

erroneous station data was used, as described in Perry et al. (2009). These gridded climate 

observations provide consistent and reliable climate estimates, without missing values across 

the entire UK area. Had-UK grid gridded climate observations are beneficial in that regional 

values can be created for any arbitrary area (e.g., counties in our analysis) with accuracy and 

consistency, enabling data to be combined with other spatial datasets. I link the climate data 

to farm data to investigate the relationships between weather and farm stability. 

To provide an estimate of the weather at each farm I calculate the daily weather 

variables for each county or unitary authority (the finest spatial resolution available for farm 

locations in the farm data, see section 1.2) using the average of each 5km grid square within 

each county boundary. Figure 2 shows the county and unitary authority boundaries, which 

represent the spatial characteristics (farm locations) used in the Farm Business Survey, 

overlaid with the 5km HadUK-grid 5km gridded cells used to calculate the daily weather 

observations for each county. The Farm Business Survey is discussed in the following 

section. 
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Figure 2 – Map of England and Wales showing county (or unitary authority boundaries) in the Farm 

Business survey data, overlaid on the 5km British National Grid; used in the HadUK-grid dataset and 

to calculate the weather for each county. 

 

1.2 Farm Business Survey data 

I use data from the Farm Business Survey (FBS) (Defra, 2020) to examine how a range 

of factors, including farming practices and subsidies, are associated with stability of farm 

income (Chapter 4) and food production (combined assessment in Chapter 5). The extensive 

information collected in the Farm Business Survey as well as the spatial extent and large 

numbers of farms included, combined with climatic data, provides an opportunity to examine 

the factors explaining these different aspects of farm performance.  

The Farm Business Survey is an annual survey conducted in England and Wales, 

collecting business information for approximately 2,300 farms each year. The FBS provides 

information on the physical and economic performance of the farm business, including farm 

characteristics, crop yields, livestock production, income, costs and subsidies. The FBS data 

is available annually from 1982. In this project I examine data between 2005 and 2017 as the 

county boundaries used to spatially classify the farms remain consistent in the FBS data 

throughout this period. Furthermore, the FBS variables which are examined as part of this 
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thesis, including farm business income, are defined and calculated using a consistent method 

since 2005. 

The coverage of the FBS is restricted to farms which meet a minimum size criteria1. 

Small farms excluded from the survey only account for approximately 4% of agricultural 

production in England and Wales (Rural Business Research, 2020). The sample of farms is 

stratified across 14 farm types and 7 regions to provide a uniform sample across each stratum. 

Therefore, the Farm Business Survey provides a representative sample in terms of farm type, 

farm size and regional location across England and Wales. Around 93% of the panel of farms 

is retained annually, the remaining 7% leaving as a result of natural turnover, with 

replacements chosen at random retaining uniformity within each stratum (Department for 

Environment Food and Rural Affairs, 2016). The FBS therefore represents an unbalanced 

panel of farms over multiple years of farms across England and Wales.  

To check the accuracy and quality of the FBS data several cleaning procedures were 

performed, to check for erroneous values which may have been imputed or calculated 

incorrectly in the survey. I performed statistical and consistency checks on the data, including 

inspecting significant outliers in each of the variables using Z-scores (>4) and visual 

inspection using scatterplots, as well as inspecting large changes in farm business income or 

utilised agricultural area from year to year. In addition, I recalculated the derived variables, 

including farm business income and yield from the underlying variables in the data to ensure 

their accuracy and that there were no internal inconsistencies in the data. Less than 1% of 

total observations, which were considered to be erroneous, were removed from the dataset as 

part of these checks. 

For spatial analysis it was not possible to obtain a gridded or precise location of each 

farm, however the FBS data does include the Region (North/East/West England or Wales) 

and County, Metropolitan County or Unitary Authority in which each farm is located. The 

County, Metropolitan County or Unitary Authority areas generally correspond with the 

European Commission NUTS level 3 (European Commission, 2020) classification for 

England and Unitary Authority areas for Wales. Figure 2 shows the county and unitary 

authority boundaries which are used to spatially classify farms in the FBS data. In chapter 5, 

this geographical information is used to estimate the weather at each farm and link the 

 
1 The FBS population includes farms which meet a minimum size criteria, as follows: From 2010/11 >€25,000 

of standard output (“SO”), 2004/05 to 2009/10 >0.5 standard labour requirements (“SLR” – half a full time 

equivalent) or negligible economic activity, and 2003/04 and earlier >8 Economic size units (ESUs) which 

measure the economic size of the farm based on the gross margin (refer to Defra, (2016) for more information). 
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climate data to FBS data, and subsequently farm stability. A more precise location of the 

farm would enable the weather and farm data to be linked at a smaller spatial scale, which 

may improve the estimation of weather at the farm, particularly in large counties or those 

with greater topographical variation. However, in previous research the effects of climate on 

the variability of income and yields have been linked at a regional scale across Europe (with 

4 regions in England and Wales; Reidsma et al. (2009)), therefore using counties and unitary 

authorities in this thesis considers these relationships at a much smaller spatial scale than 

examined previously.  

Further details on the farm types considered in each of the studies, as well as the 

calculation of dependent variables (stability of income and food production) and independent 

variables (farming practices, characteristics and subsidies) examined in the FBS data are 

provided in Chapters 4 and 5.  

 

2 Methodology 

In this section I discuss the methods used in each study in this thesis. Firstly, I discuss 

the crop models used in chapter 3, to examine changes in adverse weather conditions for UK 

wheat production, under baseline and future climate scenarios. Secondly, I discuss the 

alternative methods for measuring agricultural systems dynamics (i.e., changes over time), to 

examine the ability of farms to maintain performance in a non-stable environment, in order to 

identify adaptation options to improve farm stability. Finally, I evaluate the statistical 

methods, which allow the use of an unbalanced panel of farm data, to examine factors 

affecting the stability farm income and food production (chapters 4 and 5), including 

combining with climate data to examine the effect of climate variability (chapter 5). 

 

2.1 Crop models and statistical models to assess climate change impacts crop 

production 

There is a growing understanding that a range of methods are needed to fully assess the 

impacts of climate on agricultural yields and across global, regional and local scales (e.g., 

Lobell and Asseng, 2017). Crop modelling enable us to simulate relationships found in 

experiments, e.g. heat stress responses, interactions between crop management and weather, 

and explore the effects of future climate scenarios. The sensitivity of food production to 

extreme weather, climatic variability and climate change are usually assessed using 
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physiological process-based crop models or statistical models. In this section I briefly 

overview these different approaches and explain my choice of methods for chapter 3.  

Process-based crop models of varying complexity have been developed to simulate 

crop development, growth, yield, water and nutrient uptake at the site scale. For wheat, these 

include Sirius (Jamieson et al., 1998) and AFRCWHEAT2 (Porter, 1993). Process-based crop 

models use data and assumptions on soils (including available water holding capacity) and 

management (nitrogen applications, irrigation and sowing date) to model plant growth and 

phenological development and simulate yields using historical and projected weather. 

Therefore, these models provide a clear physiological mechanism for linking climate to 

yields, but they can be constrained due to the availability of data (Roberts et al., 2017). 

Process-based crop models have been used to model the effects of adverse weather under 

climate change by considering differences in the simulated yields using historical and 

projected weather data (Roberts et al., 2017), including the effect of heat, drought and water 

stress in wheat (Senapati et al., 2019a, 2019b; Stratonovitch and Semenov, 2015). 

Agroclimatic indicators can also be used to examine changes in adverse weather 

conditions under baseline and future climates (e.g., Arnell and Freeman, 2021; Trnka et al., 

2014, 2011). Agroclimatic indicators can also often consider adverse weather conditions not 

fully addressed by crop models e.g., waterlogging during sowing or harvest (Arnell and 

Freeman, 2021; Trnka et al., 2010). Methods used to calculate agroclimatic indicators do not 

model yields directly but can examine changes in the probability of occurrence or magnitude 

of a wide range of adverse weather conditions to complement crop models for an overall 

assessment of production conditions. Agroclimatic indicators are commonly based on crop 

specific thresholds and use simple thermal time models to calculate the timing of sensitive 

stages which may coincide with adverse weather conditions e.g., high temperature stress 

during anthesis for wheat (Trnka et al. (2014)).  

In Chapter 3, I used a process-based crop model (Sirius) and the AgriClim model 

(which calculates the probability of a range of agroclimatic indicators), to provide a 

comprehensive analysis of adverse weather conditions which may pose a risk to wheat 

production in a changing climate, throughout the UK in the 21st century. Further details on 

the crop models used, including parameterisation, and the calculation of adverse weather 

indices are provided in Chapter 3. 

Chapter 3 does not consider adaptation. To effectively target adaptation to climatic 

variability and change, it is necessary to understand the importance of climate alongside other 

factors which can affect the stability of agriculture, including farm management and policy, 
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and assess their relative importance, as addressed in chapters 4 and 5. Section 2.2 discusses 

the alternative methods for measuring agricultural systems dynamics, i.e., changes over time, 

including farm stability. Section 2.3 then evaluates the statistical methods used to examine 

the effects of climate variability, in combination with farming practices, characteristics and 

government policy on the stability of agriculture. 

 

2.2 Measuring agricultural system dynamics (stability, vulnerability, resilience and 

robustness) 

Agriculture is exposed to unpredictable conditions, i.e., environmental or economic 

shocks or perturbations which often cannot be anticipated, therefore examining the ability of 

agriculture to maintain performance in a non-stable environment is an important area of 

research. In recent decades, different concepts of agricultural systems dynamics (i.e. changes 

over time) have been developed from different disciplines; stability, robustness, vulnerability 

and resilience. Literature may call for agricultural systems to be more stable (Mishra and 

Sandretto, 2002; Pacín and Oesterheld, 2014), more robust (ten Napel et al., 2011; Urruty et 

al., 2017), more resilient (Chavas and Di Falco, 2017) or less vulnerable (Reidsma and 

Ewert, 2008). While these concepts are related, all focus on the ability to maintain or recover 

functionalities under variable conditions (Dardonville et al., 2020; Urruty et al., 2016), there 

are differences in the definition and measurement of each concept. Table 3 defines each 

concept and describes how these have been measured in previous studies. A visual depiction 

of each concept is also shown in Figure 3. Stability is concerned with constancy of a given 

attribute over time or across space; the less it fluctuates the more stable it is (Holling, 1973; 

Urruty et al., 2016). Robustness can be considered to take this definition of stability further 

and consider the ability to maintain desired outputs following specific shocks or perturbations 

(Urruty et al., 2016). Vulnerability is concerned with the state of fragility and potential 

impacts of shocks, but is also a broader concept which encompasses the biological and social 

factors of agricultural systems (Urruty et al., 2016). Resilience has been defined by various 

literature (e.g. Holling, 1973, The Resilience Alliance, 2010, Folke, 2016, OECD, 2020) and 

this definition has also developed over time, however all recent definitions focus the ability 

of a system to absorb disturbances, adapt and transform. Resilience is notoriously difficult to 

examine empirically, at least in a way which examines all aspects and the full concept of 

resilience (Darnhofer, 2021). I chose to focus on the concept of stability for this thesis; 

seeking to quantify the ability of agricultural systems to cope with changeable conditions and 
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maintain stability in output over time. Quantifiable measures of stability (or inversely 

variability) have been used in various agricultural studies and using different statistical 

methods (Urruty et al., 2016) which appear well suited and practical to calculate using the 

unbalanced panel of farms in the Farm Business Survey. The other concepts for measuring 

agricultural systems dynamics (robustness, vulnerability and resilience) focus on responses to 

specific perturbations and would involve tracking individual farms and their responses over 

time, this approach would be challenging with an unbalanced panel dataset and would not 

make full use of all datapoints available. Therefore, the concept of stability appears most 

appropriate and practical to use in this thesis. 

This project seeks to identify farming practices and adaptation options for agriculture 

which confer greater stability of food production and farm income, in the context of a 

changing climate and more variable conditions. Stability of agricultural production or income 

is often measured by examining variability; high stability is associated with low variability in 

yield or income. There are a number of quantitative methods for measuring variability, 

including temporal measures of variability, standard deviation and coefficient of variation 

(e.g., Batisani, 2012, Döring and Reckling, 2018), or annual deviations from the mean 

(anomalies; e.g., Reidsma et al. 2009). These measures are commonly used, robust and 

meaningful measures of variability, which have been used across a range of disciplines, as 

well as to measure agricultural system dynamics. It is important, however, to recognise these 

alternative methods for measuring stability in agricultural systems may provide different 

results and therefore affect the interpretation of stability. In chapter 4, I examine factors 

affecting the stability of farm income and compare these relationships using 4 different 

measures of stability (measures and their calculations provided in chapter 4).  
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Concepts Definition in agricultural context How to measure? (examples) 

(a) Stability In natural sciences, stability is often defined as 

the constancy of a given attribute over time or 

across space; the less it fluctuates the more 

stable it is (Holling, 1973; Urruty et al., 2016). 

Stability is often measured by examining the variability of data, e.g. using 

measures of dispersion over time such as standard deviation or coefficient 

of variation (Batisani, 2012; Döring and Reckling, 2018) or deviations 

from the mean (Reidsma et al., 2009). 

(b) Robustness Ability to maintain desired agricultural 

outputs despite perturbations (Urruty et al., 

2016). 

Impact (value) of perturbation on agricultural output, e.g., change in yield 

following abiotic stress (Urruty et al., 2017). 

(c) Vulnerability The sensitivity of a system to shock, or degree 

to which a system is harmed by disturbance 

(Dardonville et al., 2020; Urruty et al., 2016) 

The degree to which a shock affects output or performance, e.g. the 

relative effect of climate variability on crop productivity across regions 

(Reidsma and Ewert, 2008). 

(d) Resilience Ecological resilience was originally defined by 

Holling, (1973) as the ability of a system to 

absorb change and withstand disturbance and 

persist in its configuration. 

 

More recently resilience is also defined as the 

ability of a system to withstand perturbation 

and anticipate future disturbance through its 

adaptive capacity (Dardonville et al., 2020; 

Urruty et al., 2016) 

Todman et al. (2016) provides 4 quantifiable characteristics to describe 

resilience: 

1. Degree of return to a reference level or original state. 

2. Return time - Time taken to reach a new quasi-stable state. 

3. Rate of return (gradient) at which the function reaches the new state. 

4. Efficiency - Cumulative magnitude of the function (area under the 

curve) before reaching a new state.  

 

 

Table 3 - Summary (definitions and measurement) of the concepts of stability, robustness, vulnerability and resilience.
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Figure 3 – Illustration of a) stability, b) robustness, c) vulnerability and d) resilience 

concepts. Resilience diagram shows how the resilience characteristics for degree of return, 

return time and efficiency are quantified from the modelled response curve (adapted from 

Todman et al., (2016) and Urruty, Tailliez-Lefebvre and Huyghe, (2016)). 

 

2.3 Statistical methods for examining factors affecting the stability of food production 

and farm income 

A primary aim of this thesis is to identify farming practices and adaptation options for 

agriculture to improve the stability of food production and farm income, at the farm level, in 

the context of more variable conditions and climate change. To examine these relationships, I 

considered various multivariate statistical methods, including cluster analysis and multiple 

regression techniques, which are discussed in this section. 

Cluster analysis is a multivariate statistical technique for classifying data and grouping 

observations into smaller and more homogenous groups, using distance matrices (Punj and 

Stewart, 1983). Cluster analysis can provide knowledge of the characteristics of groups 

within the data. In the context of this project, this technique could be used to identify the 

characteristics of groups of farms which have more stable yields or income. However, there 

are some limitations of cluster analysis which are relevant to this project and the data being 
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examined. The Farm Business Survey data examined comprises panel data, with repeated 

observations over multiple years, which can be complex and challenging to interpret using 

cluster analysis, i.e., how are the results interpreted if farms are present in different clusters or 

groups over time? Cluster analysis is commonly used with cross-sectional data (e.g. Gaspar et 

al. (2007)) or for time series data when averaging observations over multiple years (e.g. 

Giannakis and Bruggeman, (2015)). In many circumstances cluster analysis is also not the 

sole analytical tool for investigating the multivariate data (Agarwal and Skupin, 2008). For 

example, Giannakis and Bruggeman (2015) used cluster analysis to identify significant 

differences in economic performance of farms across countries in the EU, followed by 

logistic regression to analyse the factors that affect economic performance of farms.  

Cluster analysis was explored initially in developing the methods to use in Chapter 4; to 

identify the factors (farm characteristics, practices, and subsidies) affecting the stability of 

farm income. As mentioned above, when using farm data across multiple years I found farms 

often changed clusters over time, which was difficult to interpret. When examining individual 

years separately, clusters tended to represent obvious existing groupings in the data e.g., farm 

type, rather than more nuanced management factors, and when examining the data by year 

and farm type some of the samples were very small and the clusters appeared unstable. 

Cluster analysis was not deemed best suited to examine the complex and unbalanced panel 

data in the Farm Business Survey therefore alternative methods were investigated. 

Multilevel modelling was investigated as an alternative method, to identify farming 

practices and adaptation options for agriculture to improve farm stability. Multilevel models 

(also termed hierarchical or linear mixed models) are extensions of regression analysis which 

are suited for data with complex patterns of variability and focus on nested levels of 

variability within the data (Snijders and Bosker, 1999). Multilevel models are particularly 

suited to panel data sets, with repeated measurements over time, by allowing observations 

from the same individual (or farm) to be correlated. Multilevel models can also incorporate a 

nesting structure, which allow multiple ‘levels’ of correlation, or groupings, within the 

dataset to be nested within each other. In the Farm Business Survey, we observe farms over 

multiple periods, in addition farms can be grouped spatially, e.g., by region or county, on the 

basis that farms in different regions of the country have certain characteristics, e.g., 

topography or soils, which could affect the stability of farm income or production. The 

advantage of using multilevel models is therefore in permitting the intercepts and/or slopes of 

variables (e.g., farming practices and climate variables) to vary between levels in the data, by 

using random effects which account for omitted variables, i.e., unobserved differences 
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between farms and spatial differences (Lobell et al., 2011; Reidsma et al., 2009, 2007). 

Multilevel models can also easily accommodate unbalanced panels (Laird and Ware, 1982; 

Snijders and Bosker, 1999). A graphical representation of an example multilevel model is 

presented in Figure 4, which shows that random intercepts and slopes can be used to account 

for variation in the effect chemical use on the stability of crop yield across different regions.  

Multilevel analysis has been used specifically to examine the effects of climate 

variability, including temperature, precipitation and drought, on crop yield variation (e.g., 

Matiu et al. 2017 and Rowhani et al. 2011). As with many statistical models, multilevel 

models can be used flexibly and have been used to examine the influence of a wide range of 

factors, including farming practices, subsidies and climate on the variability of crops yields 

and farm income across regions of Europe (Reidsma et al., 2009, 2007). Therefore, multilevel 

analysis is considered the most appropriate and robust method to identify adaptation options 

to improve the stability of food production and farm income, in the context of more variable 

conditions, whilst accounting for the unbalanced and nested panel farm business survey data 

used in this thesis. 

 

Figure 4 - Graphical example of multilevel model with a random intercept and slopes βqj 

(accounting for variation between regions). Each solid line represents the effect of, for 

example, chemical use on the stability of crop yield in a specific region j. The dotted line is 

the mean relationship across all regions βq0 (adapted from: Reidsma et al., 2007). 
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2.3.1 Considerations and challenges in statistical analysis 

Assessing the relationship between climate, management and farm performance over 

time and across regions is complex. As with all statistical analysis, it is important to 

recognise the challenges and considerations to be made when using multiple regression, as 

well as when using historical farm and climate data more generally.  

Firstly, climatic variables can exhibit a strong correlation increasing the risk of 

confounding (coefficients can be unreliable which affects the interpretation of results), 

therefore it is important to consider multicollinearity between all variables in the statistical 

analysis (Bakker et al., 2005). I examined collinearity in the multilevel models using a variety 

of measures; using pairwise scatterplots, correlation coefficients and variance inflation 

factors (VIFs), which were all below the recommended thresholds for the final models 

reported in Chapters 4 and 5 (refer to the methodology sections in each of these chapters for 

further details).   

Chapter 5 examines the relative effect of climate variability, subsidies and farming 

practices on the temporal stability of food production and farm income. In developing this 

model, I considered a range of variables to indicate climate variability. I calculated specific 

weather conditions which affect agricultural production, including drought (using the 

standardised precipitation evapotranspiration index (SPEI) and climatic water balance; 

Vicente-Serrano et al. (2010)), and warming and heat stress (using growing degree days 

(GDD) and killing degree days (KDD); e.g., Butler and Huybers, (2013)). I also considered 

the timing of these events across different seasons. The mean and variability of each climate 

variable was included to reduce the risk of confounding, however these were often correlated, 

as were the seasonal climate variables (Chapter 5 appendix C – table C.1). In addition, when 

using these seasonal adverse weather conditions, the model coefficients did not appear stable 

when adding or removing variables from the models, therefore raising concern over the 

reliability of the results. The final models presented in Chapter 5 examine variability in 

temperature and precipitation, across the main growing season, which appear better able to 

capture the effect of climate variability on food production at the farm level and provide more 

robust results. I also considered using interaction terms to consider how farming practices and 

subsidy payments moderate the relationship between climate variability and the stability of 

income. However, interpreting a clear relationship between two continuous variables was 

often difficult (Chapter 5 appendix C – table C.2 and C.3). It may have been preferable to 

interact farming practices of different groups e.g., those who do participate in agri-

environment schemes and those who don’t, or which type of schemes they participate in (e.g., 
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entry- or higher-level stewardship) or organic vs conventional farming. However, this could 

comprise a different piece of research in response to different research questions.  

Another consideration when estimating regression models is endogeneity, which 

describes the issue of correlation between the explanatory variables and the error term in 

regression. This typically occurs in two main instances, firstly when an omitted variable is 

correlated with another variable or the error term, and secondly when there is simultaneity, 

meaning the dependent variable and independent variable jointly determine each other 

simultaneously. Endogeneity may arise in chapters 4 and 5, for example, farms which 

participate more in agri-environment schemes may be reflective of more progressive and 

forward-thinking farmers. Alternatively, farmers may seek to diversify agricultural activities 

to reduce exposure to variability in their incomes, which may be reflective of the risk averse 

attitude of some farmers (DiFalco and Perrings, 2003). Simultaneously, increased price 

volatility (and unstable incomes) could provide an incentive for farmers to diversify 

production (de Roest et al., 2018). One way to control for endogeneity is to use instrumental 

variables regression to split the explanatory variable and remove the part of the error term 

which is correlated in the main analysis. Finding instrumental variables, which affect the 

explanatory variable but have no other effect on the dependent variable, can be challenging, 

particularly when using secondary historical data. Therefore, whilst I was not able to 

empirically account for potential endogeneity in the models, the associations between the 

variables examined were often supported by previous empirical studies which found similar 

results, as well as experimental studies which indicated the underlying mechanisms to 

support the relationships identified. In Chapters 4 and 5 the model specifications are 

discussed in detail, including how each of the variables included in the models were 

calculated and any data transformations that were applied, as well as, further discussion on 

the relationships identified in each study in the context of previous research. 
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Appendices 

Appendix A: UK climate records from the Met Office  

The tables below report the national records for temperature and precipitation, as reported by 

the Met Office. Providing the highest and lowest maximum and minimum temperatures 

recorded for each month of the year, split by country. As well as the highest 24-hour rainfall 

totals for a rainfall day, by country. 

 

Table A.1 UK temperature records from the Met Office - Highest and lowest daily 

maximum. Source: (Met Office, 2017) 

Month 

Highest 

Temperature 

(°C) 

Lowest 

Temperature 

(°C) 

England     

January 17.6 -11.3 

February* 19.7 -10.0 

March 25.6 -3.7 

April* 29.4^ -1.1 

May* 32.8 2.1 

June* 35.6 5.7 

July 36.7 9.1 

August 38.5 8.9 

September* 35.6^ 6.2 

October 29.9 1.1 

November* 21.1 -4.0 

December* 17.7 -8.2 

Wales   
January* 18.3 -8.0 

February 18.6 -5.8 

March 23.9 -4.7 

April 26.2 0.0 

May* 29.2 3.1 

June 33.7 6.9 

July 34.6 9.8 

August 35.2 10.0 

September 31.1 6.5 

October 28.2 2.2 

November 22.4 -5.6 

December* 18.0 -7.8 

Scotland   
January 18.3 -13.0 

February* 17.9 -10.0 
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March 23.6 -4.6 

April 27.2 -1.0 

May 30.9 1.6 

June* 32.2 5.1 

July 32.8 7.5 

August 32.9 8.9 

September 32.2 4.4 

October 27.4 -0.2 

November 20.6 -10.5 

December* 18.3 -15.9 

Notes: Temperature records exclude stations above 500 m AMSL and are based on the period 

0900-0900 GMT. When compiling these tables, the Met Office has attempted to verify all 

records by comparing values with neighbouring stations. A ^ symbol denotes some 

reservations about the record value quoted. 

 

Table A.2 UK temperature records from the Met Office - Highest and lowest daily minimum 

temperature records. Source: (Met Office, 2017) 

Month 

Highest 

Temperature 

(°C) 

Lowest 

Temperature 

(°C) 

England     

January 13.0 -26.1 

February 13.0 -20.6 

March 13.0 -21.1 

April 15.2 -15.0 

May 18.9 -9.4 

June 22.7^ -5.6 

July 23.3 -1.7 

August 23.9 -2.0 

September 21.7 -5.6 

October 18.6 -10.6 

November 15.9 -15.5 

December 13.7 -25.2 

Wales   
January 12.5 -23.3 

February 13.0 -20.0 

March 14.2 -21.7 

April 14.5 -11.2 

May 18.6 -6.1 

June 19.9 -4.0 

July 22.2 -1.5 

August 22.0 -2.8 

September 18.9 -5.5 

October 19.4 -9.4 
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November 15.0 -18.0 

December 15.0 -22.7 

Scotland   
January 12.6 -27.2 

February 13.7 -27.2 

March 12.3 -22.8 

April 15.2 -13.3 

May 17.4 -7.7 

June 19.3 -5.6 

July 20.0 -2.5 

August 20.5 -4.5 

September 18.7 -6.7 

October 16.1 -11.7 

November 14.5 -23.3 

December 12.5 -27.2 

Notes: Temperature records exclude stations above 500 m AMSL and are based on the period 

0900-0900 GMT. When compiling these tables, the Met Office has attempted to verify all 

records by comparing values with neighbouring stations. A ^ symbol denotes some 

reservations about the record value quoted. 

 

Table A.1 UK precipitation records from the Met Office - Highest 24-hour rainfall totals for 

a rainfall day (0900-0900 GMT). Source: (Met Office, 2017) 

Country Rainfall (mm) Date Location 

England 279 18/07/1955 Martinstown (Dorset) 

Scotland 238 17/01/1974 Sloy Main Adit (Argyll & Bute) 

Wales 211 11/11/1929 Lluest Wen Reservoir (Mid Glamorgan) 

Notes: The highest 24-hour total for any 24-hour period is 341.4 mm on 5th December 2015 

at Honister Pass (Cumbria). 
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Appendix B: Summary of conditions for identifying inconsistencies and outliers in the 

Met Office climate station data 

 

Table A.3 Conditions for identifying inconsistencies and outliers within the weather data. 

 

Notes: 

*Temperature records and rainfall totals are sourced from Met Office, (2017). 

**Sun variables were also included in the Met Data dataset and included in checks above (to 

identify where all values = 0 and where values represent a duplicate of another station) 

 
 

 

 

Variable Condition for identifying errors 

Extreme value inconsistencies   

Tmax 
*Tmax > highest daily maximum temperature for month and country 

*Tmax < lowest daily maximum temperature for month and country 

Tmin 
*Tmin > highest daily minimum temperature for month and country 

*Tmin < lowest daily minimum temperature for month and country 

Rain *Rain > highest 24hour rainfall for each country 

Internal inconsistencies   

Tmax Tmax < Tmin  

Tmin Tmin> Tmax 

Rain Rain < 0 

Erroneous zeros   

Tmax, Tmin, Rain **all values = 0 

Tmax, Tmin Tmax and Tmin both = 0 °C or = -17.8°C (0°F) 

Duplicate values   

Tmax, Tmin, Rain 

**all values at one station = all values at another station 

and stations are >100km apart 

Statistical outliers   

Tmin Z ≥±4 and Tmin = 0°C or -0.4°C 

Tmin 

Z ≥±4 and large Tmin differences compared to neighbouring 

stations 

Tmax 

Z ≥±4 and large Tmax differences compared to neighbouring 

stations 
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Chapter 3 - Adverse weather conditions for UK wheat production under climate change 

This chapter has been published as a research article: Harkness, C., Semenov, M. A., Areal, 

F., Senapati, N., Trnka, M., Balek, J, and Bishop, J. (2020) ‘Adverse weather conditions for 

UK wheat production under climate change’, Agricultural and Forest Meteorology. Elsevier 

B.V., 282–283, p. 107862. doi: 10.1016/j.agrformet.2019.107862. 

Author contribution: CH conducted the data analysis, produced all figures, led the 

interpretation of the results and wrote the paper. MS provided the Sirius crop model data, 

MT and J Balek provided the AgriClim crop model data. All co-authors provided comments 

on the paper. 

Abstract 

Winter wheat is an important crop in the UK, suited to the typical weather conditions in 

the current climate. In a changing climate the increased frequency and severity of adverse 

weather events, which are often localised, are considered a major threat to wheat production. 

In the present study we assessed a range of adverse weather conditions, which can 

significantly affect yield, under current and future climates based on adverse weather indices. 

We analysed changes in the frequency, magnitude and spatial patterns of 10 adverse weather 

indices, at 25 sites across the UK, using climate scenarios from the CMIP5 ensemble of 

global climate models (GCMs) and two greenhouse gas emissions (RCP4.5 and RCP8.5). 

The future UK climate is expected to remain favourable for wheat production, with most 

adverse weather indicators reducing in magnitude by the mid-21st century. Hotter and drier 

summers would improve sowing and harvesting conditions and reduce the risk of lodging. 

The probability of late frosts and heat stress during reproductive and grain filling periods 

would likely remain small in 2050. Wetter winter and spring could cause issues with 

waterlogging. The severity of drought stress during reproduction would generally be lower in 

2050, however localised differences suggest it is important to examine drought at a small 

spatial scale. Prolonged water stress does not increase considerably in the UK, as may be 

expected in other parts of Europe. Climate projections based on the CMIP5 ensemble reveal 

considerable uncertainty in the magnitude of adverse weather conditions including 
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waterlogging, drought and water stress. The variation in adverse weather conditions due to 

GCMs was generally greater than between emissions scenarios. Accordingly, CMIP5 

ensembles should be used in the assessment of adverse weather conditions for crop 

production to indicate the full range of possible impacts, which a limited number of GCMs 

may not provide. 

1. Introduction 

Climate change is associated with a warming trend, as well as, increasing climatic 

variability and extremes (Rahmstorf and Coumou, 2011; IPCC et al., 2012; Kovats et al., 

2015). Agricultural production is highly dependent on weather conditions, and extreme and 

adverse weather events beyond the normal conditions experienced by crops can have a 

dramatic impact on their yield. When coinciding with sensitive stages of crop development, 

adverse weather events including high temperature, late frost, heavy precipitation and 

drought can severely reduce crop yield and affect its quality (Deryng et al., 2014; Powell and 

Reinhard, 2015; Trnka et al., 2014). Severe cases of heat stress or prolonged drought can also 

lead to a total crop failure (Gourdji et al., 2013; Lesk et al., 2016; Trnka et al., 2014). The 

impact and increased frequency of adverse weather events may pose more of an immediate 

risk to food production, in comparison to changes in mean climate, since farmers have less 

time to adapt. Losses in agricultural production due to adverse weather conditions, alongside 

potential for high volatility in food prices, intensifies the challenge of ending world hunger 

and achieving food security by 2030 (target of the UN Sustainable Development Goals; 

Griggs et al., 2013), for a world population anticipated to increase to 9 billion by 2050 (FAO, 

2009). As a result, adverse weather has been the focus of increasing attention in crop-climate 

modelling studies.  

Wheat is the most widely grown cereal crop in the world (FAOSTAT, 2018; Lobell et 

al., 2012). As a temperate species the typical weather conditions of western Europe, including 

the UK, are favourable for wheat production (Reynolds et al., 2010). Approximately 40 % 

(~1.8 million hectares) of the arable cropping area in the UK is dedicated to wheat production 

(Defra, 2018). Despite the relatively small acreage, the UK produces approximately 2% of 

the world’s wheat benefitting from a high average yield of ~8 t ha-1, compared to a world 

average of ~3.5 t ha-1 (FAOSTAT, 2018). 

Wheat is sensitive to various adverse weather conditions and abiotic stresses which can 

significantly reduce yields. Heat stress during anthesis can reduce grain number by affecting 
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floret fertility (Alghabari et al., 2014; Mitchell et al., 1993; Porter and Gawith, 1999) and heat 

stress during grain filling can reduce grain size and quality (Nasehzadeh and Ellis, 2017; 

Savill et al., 2018). Late frosts, particularly those during ear emergence and early anthesis, 

can cause damage to the ear and yield loss (Al-Issawi et al., 2013; Fuller et al., 2007). 

Approximately 30% of wheat in the UK is estimated to be grown on drought-prone soils 

(Weightman et al., 2005). Prolonged water stress reduces leaf expansion and accelerates leaf 

senescence, and can reduce radiation use efficiency (Jamieson et al., 1998). Short-term 

drought episodes are also a particular issue for wheat at stem elongation and grain filling, 

causing a reduction in growth and crop-die back, while drought stress during reproductive 

development reduces grain number (Dong et al., 2017; Ma et al., 2017). Heavy rainfall prior 

to and at maturity can also lead to lodging and yield losses, as well as, a reduction in quality 

(Berry et al., 2003; Russell and Wilson, 1994). In addition, wet conditions during sowing and 

harvest can restrict farming activities and the ability to sow or harvest at the most appropriate 

time (Trnka et al., 2014, 2011).  

Notable adverse weather events that have impacted wheat production in the UK include 

severe flooding in the summer of 2007, which was estimated to reduce cereal yields by 

approximately 40 % in the flooded areas (Posthumus et al., 2009). Prolonged drought in 2011 

affected growth of arable crops in England and Wales, followed by record high rainfall in the 

spring and summer of 2012, which in flooded areas reduced yields and delayed harvesting 

(Kendon et al., 2013; Parry et al., 2013). Prediction of the future occurrence of adverse 

weather events can, particularly at a large scale, be challenging due to the often localised 

nature of adverse weather events and uncertainty in future projections (Reyer et al., 2013; 

Seneviratne et al., 2012). Climate projections show a marked increase in summer heatwaves 

and heavy precipitation events for Europe (Kovats et al., 2014). There is considerable 

variability in projections across regions (Kovats et al., 2014; Powell and Reinhard, 2015), and 

seasons, with winters expected to become wetter and summers drier (Semenov, 2009). 

Previous studies predict the probability of adverse weather conditions for wheat may increase 

under a future climate, resulting in more frequent crop failure in Europe’s key wheat growing 

regions (Trnka et al., 2014). Identifying areas within the UK which may be sensitive to 

particular adverse weather conditions is therefore an important area of research in 

understanding these climatic risks. Prior assessment of the adverse weather conditions which 

pose a risk to wheat production across the UK could aid in early decision making regarding 

choice of cultivars and crop management strategies. Previous evidence has either focused on 

a limited number of adverse weather events, for example heat or drought stress, or examined 



Chapter 3 

50 

 

a range of events at a single station within the UK, which cannot identify spatial variations 

within the wheat growing area. This study examines the magnitude and spatial patterns of a 

range of adverse weather events based on different adverse weather indices across the UK, 

providing comprehensive analysis for adverse weather conditions which may pose a risk to 

wheat production under changing climate. The main objectives of the present study were to 

provide a comprehensive analysis of projected changes in the frequency, magnitude and 

spatial patterns of a range of adverse weather conditions for wheat production throughout the 

UK in the mid-21st century.  

2. Methods 

2.1 Study area  

This study used daily weather data from 25 sites across the UK (Figure 1). The 25 sites 

were selected from 85 climate stations within the Met Office network (Met Office, 2019) 

including sites which reported less than 10% missing values for temperature and 

precipitation, as well as, providing broad and even coverage of the key wheat growing areas 

in the UK. 
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Figure 1 - UK wheat cropped area 2010 (ha per 25 km2), data from EDINA (2018) 

including outline of key growing area. Location of the 25 UK sites included in the study 

(blue and red dots). Box plot results are presented for those sites with red dots (10 sites) and 

the letters within are  used to split these 10 sites into 4 regions (referring to the cardinal 

direction of the site within the wheat growing area): north (N), east (E), south (S) and west 

(W).  
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2.2 Baseline and future climate scenarios 

In the present study, the baseline climate was based on daily observed weather data 

during 1981-2010 including maximum and minimum air temperature, precipitation and 

sunshine hours (or solar radiation). We used quality control procedures (from Feng et al., 

2004 and Durre et al., 2010) to identify and remove erroneous values which represented less 

than 0.1% of the dataset. To produce the local-scale future daily weather scenarios we used 

climate projections from 16 global climate models (GCMs; supplementary material) from the 

CMIP5 multi-model ensemble used in IPCC Assessment Report 5 (AR5) (IPCC, 2014). For 

the 2041-2060 and 2081-2100 climate scenarios (subsequently denoted as 2050 and 2090 

respectively), two representative concentration pathways (RCPs) were used: a midrange 

mitigation scenario (RCP4.5) and a high emission scenario (RCP8.5). RCPs represent 

different targets of radiative forcing in 2100 i.e. 2.6, 4.5, 6.0, 8.5 W/m2 (van Vuuren et al., 

2011). Corresponding CO2 concentrations (ppm) used in the simulations are presented in 

Table 1.  

 

Table 1  - CO2 concentrations (ppm) for the baseline, RCP4.5 and RCP8.5 

 Baseline RCP4.5 RCP8.5 

1981 - 2010 364   

2041 - 2060  487 541 

2081 - 2100  533 844 

 

2.3 Construction of the local-scale climate scenarios using LARS-WG 

Due to the coarse spatial and temporal predictions from GCMs, and large uncertainties 

in the model outputs, it is not appropriate to use daily output from GCMs when analysing 

extreme weather events (Semenov et al., 2010). For each of our 25 sites, we downscaled the 

climate projections to local-scale scenarios for use in the analysis. Both the baseline and all 

future climate scenarios were generated using LARS-WG (Semenov et al., 2010), a stochastic 

weather generator used in many recent European climate change impact and risk assessments 

(Trnka et al., 2015, 2014; Vanuytrecht et al., 2016), and found to perform well in a range of 

diverse European climates (Semenov et al., 2013, 2010). LARS-WG downscales the 

projections from the GCMs and incorporates changes in both the mean climate, climatic 

variability and extreme events derived from the GCMs (Semenov, 2007), by allowing 

modification to the statistical distribution of the weather variables. For the baseline climate, 
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site-specific observed daily weather data from 1981-2010 was used to estimate site 

parameters and then LARS-WG was used to generate 300 years of daily weather data with 

the same statistical characteristics as the observed data. A large number of years (300) were 

generated to produce daily weather data with probability distributions close to those of the 

observed baseline climate and accurate reproduction of climatic variability and extreme 

weather events. For each site, future synthetic daily weather data (300 years) was generated 

by the LARS-WG weather generator based on changes in distributions of climate variables 

derived from each GCM and emissions scenario representing the climate in 2050 and 2090. 

Changes in monthly mean maximum and minimum temperatures and changes in monthly 

mean precipitation derived from each of the GCMs from the CMIP5 ensemble were 

incorporated into LARS-WG. Changes in the length of dry/wet spells were not considered 

due to coarse spatial resolutions of GCMs from CMIP5. For the UK, accounting for changes 

in the length in dry/wet spells should not affect the main conclusions (Vanuytrecht et al., 

2014). In previous studies, LARS-WG demonstrated a good performance to reproduce 

extreme weather events in diverse climates including the UK (Gitau et al., 2018; Semenov, 

2008). 

 

2.4 Measuring adverse weather conditions for wheat production 

Using the AgriClim software we computed the probability of 7 adverse weather conditions 

and used a crop simulation model, Sirius, to examine the severity of water, drought and heat 

stress. We used multiple GCMs, emission scenarios, and two future time periods to contrast a 

range of possible future climates and provide an indication of the uncertainty in predictions. 

Table 2 describes the indices used to evaluate changes in adverse weather conditions in the 

UK under climate change. These indices were developed in previous studies to represent 

adverse weather conditions during different phenological stages which could lead to crop 

failure or a significant yield reduction in winter wheat.   
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Table 2 - Overview of the adverse weather indices used in this study 

Indicator name Effect on wheat  Event trigger / Indicator description  

1 Frost with no snow Leaf chlorosis; burning of leaf tips, severe crop damage (Trnka et al., 

2010b) 

Tmin 1 ≤ −20 °C for at least 1 day with no or very limited snow cover2 (< 1 cm snow) 

2 Late frost After the loss of winter-hardiness leads to leaf chlorosis, floret 

sterility, damage to lower stem (Gusta and Fowler, 1976; Petr, 1991) 

Tmin 1 is ≤ −2 °C, after mean air temperature is continuously 10 °C (for at least 5 days) and 

does not drop below 10 °C for more than 2 days in a row 

3 Extremely wet early 

season 

Occurrence of diseases, nitrogen leaching, waterlogging and root 

anoxia (Bartholomeus et al., 2008; Malik et al., 2002) 

Soil moisture is at or above field capacity for >60 days from sowing to anthesis. Days with a 

mean temperature <3 °C are not counted 

4 Lodging  Severe reduction of yield and grain quality, through increased harvest 

losses and exposure to diseases (Berry et al., 2003; Russell and 

Wilson, 1994) 

At least 2 days (from anthesis to 5 days before maturity) with daily precipitation >40 mm, 

or >20 mm and soil moisture on the previous day at or above field capacity.  

5 Grain filling extreme 

heat  

Speeds up development and decreases yield until the growth stops 

(Nasehzadeh and Ellis, 2017; Savill et al., 2018) 

Tmax3 > 35 °C for at least 3 days during the period from 5 days after anthesis to maturity 

6 Adverse sowing 

conditions  

Restricts the ability to use the appropriate sowing window (Trnka et 

al., 2014, 2011) 

Fewer than 3 days during the sowing window4 with the soil moisture in the top layer <90% 

but >5% and rain on the day is <5 mm and ≤10 mm on the preceding day 

7 Adverse harvest 

conditions  

Restricts the ability to harvest at the most appropriate time (Trnka et 

al., 2014, 2011) 

Fewer than 3 days during the harvest window5 with soil moisture in the top layer <85 % and 

rain on the given day is <0.5 mm and ≤5 mm on the preceding day 

8 Heat stress  

index (HSI) 

Heat stress during the reproductive period causes partial or complete 

sterility of the florets (Alghabari et al., 2014; Porter and Gawith, 

1999) 

𝐻𝑆𝐼 =  (1 – 𝑌𝑤ℎ/𝑌𝑤)   

where 𝑌𝑤ℎ is water and heat limited yield of heat sensitive, drought tolerant, Mercia.  

9 Drought stress index 

(DSI) 

Drought stress during the reproductive period causes premature 

abortion of florets and sterility (Dong et al., 2017; Ma et al., 2017) 
𝐷𝑆𝐼 =  (1 – 𝑌𝑤𝑑/𝑌𝑤)   

where 𝑌𝑤𝑑 is water-limited yield of drought sensitive, heat tolerant, Mercia.  

10 Water stress  

index (WSI) 

Water stress during the entire growing season causes severe reduction 

of growth or crop die back (Jamieson et al., 1998) 
𝑊𝑆𝐼 =  (1 – 𝑌𝑤/𝑌)   

where 𝑌 is potential yield (not limited by water) of heat and drought tolerant Mercia, 𝑌𝑤 is 

water-limited yield (rain fed only) of heat and drought tolerant Mercia.  

1 The Tmin minimum daily temperature was measured 2 m above ground; thus, the actual crop temperature might be even lower. 2 The snow cover was estimated using a 

model validated by (Trnka et al., 2010b). 3 The Tmax maximum daily temperature was measured 2 m above ground. 4 The sowing window is sowing date ±15 days. 5The 

harvest window is maturity date + 5 days, to maturity + 25 days. 
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We used the software AgriClim (Trnka et al. 2010) to compute the probability of a 

range of adverse weather conditions under the baseline and future climate scenarios, using 

indices 1-7 (Table 2). These thresholds were used in the European wheat study of Trnka et al. 

(2014) and determined using a combination of literature and expert judgement. The indicators 

include the effect of low temperatures. The lethal low temperature according to Porter and 

Gawith (1999) (−17.2 °C) was modified to incorporate the effect of snow cover. Based on 

experimental evidence −20 °C was considered a critical low temperature threshold, with no 

continuous snow cover, causing severe crop damage in winter wheat (Bergjord et al., 2008; 

Trnka et al., 2010b). Furthermore, following loss of winter-hardiness late frosts can lead to a 

substantial reduction in yield and based on previous findings a temperature threshold of −2 

°C was used, following exposure of wheat to warm temperatures (>10 °C) (Gusta and 

Fowler, 1976; Petr, 1991). The adverse weather indices also consider the effect of high and 

heavy precipitation. Extremely wet conditions leading to waterlogging between sowing and 

anthesis was based upon the number of days with soil moisture at or above the field capacity 

(Trnka et al., 2014). A high risk of lodging occured with at least 2 days of heavy precipitation 

or high soil moisture and rainfall between anthesis and maturity (Trnka et al., 2014). The 

probability of high temperatures during grain filling was measured using the mean lethal 

maximum temperature (35 °C) identified in Porter and Gawith (1999). The final two indices 

calculated using AgriClim consider the effect of highly saturated topsoil and precipitation 

during the sowing or harvesting period and causing highly unsuitable conditions for field 

operations, making sowing or harvesting impossible (Trnka et al., 2014). The AgriClim 

software (Trnka et al. 2010), uses daily inputs of global radiation, maximum and minimum 

temperature and precipitation to calculate phenological development and the incidence of 

adverse weather conditions for winter wheat. Sunshine hours were converted to solar 

radiation using the approach described in Rietveld (1978). The daily reference (ETr) 

evapotranspiration was estimated using the FAO Penman-Monteith method, with wind speed 

and relative humidity estimated (Allen et al., 1998). Actual evapotranspiration (ETa) and soil 

moisture content were then estimated using the SoilClim water balance model, which 

accounted at least partly for preferential soil water flow and snow cover (Hlavinka et al., 

2011). We used one soil profile across all sites with an available water capacity of 180 mm to 

focus on the signal from climate projections. The phenological phases were calculated in 

accordance with the methods described in Olesen et al. (2012), based upon thermal time 

above a base temperature for the following stages: sowing-emergence-anthesis-maturity. For 

each scenario, we used the first 50 years of our generated data for initiation of the 
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calculations e.g. the soil moisture or phenological model. The data from this spinoff period 

were not used in the analyses. The presented results of adverse weather conditions within 

AgriClim were based on the remaining 250 years of data. 

To provide evidence for a comprehensive range of adverse weather conditions, we used 

the Sirius crop model (Jamieson et al., 1998) to examine the impact of 3 adverse weather 

conditions on wheat yield, calculating the following indices: heat stress index (HSI) drought 

stress index (DSI) and water stress index (WSI) (Table 2; indicators 8-10). HSI measures the 

proportion of yield loss due to the effect of heat stress during the reproductive period, as 

described in Stratonovitch and Semenov (2015). For the heat sensitive wheat cultivars heat 

stress occurs at temperatures above 30 °C, during the following 2 periods: 10 days before 

anthesis to anthesis (meiosis and fertilisation) and 5-12 days after anthesis (beginning of 

grain filling). DSI measures the proportion of yield loss due to the effect of drought stress 

during the reproductive period, as described in Senapati et al. (2018). For the drought 

sensitive wheat cultivars daily photosynthesis and the rate of leaf senescence depend on the 

ratio of actual to potential transpiration and drought stress reduces the grain number when the 

ratio of actual transpiration to potential transpiration falls below 0.9 during the following 

reproductive period: 10 days before flowering to 5 days after flowering. WSI measures the 

proportion of yield loss due to water stress during the whole growing season. A water stress 

factor reduces leaf expansion and accelerates leaf senescence in the water-limited yield, as 

described in Semenov et al. (2009).  

The Sirius crop model is described in detail in Jamieson et al. (1998). To summarise, 

Sirius is a process based wheat simulation model which uses daily weather data, soil 

description, and management information (nitrogen applications, irrigation and sowing date) 

to model phenological development and grain yield, including responses to adverse climatic 

effects including heat, drought and water stress (Senapati et al. 2018). Biomass production is 

calculated from intercepted photosynthetically active radiation and simple partitioning rules 

are used to calculate grain growth (Jamieson et al., 1998). Sirius has been used frequently in 

wheat studies and found to perform well under diverse climatic conditions, including the UK 

and across Europe (Ewert et al., 2002; Jamieson et al., 1998; Martre et al., 2006). We use 

Sirius version 2018, available from https://sites.google.com/view/sirius-wheat/. Wheat yields 

were simulated using Sirius for the Mercia wheat cultivar grown in the UK, which has been 

calibrated previously using agronomic experiments in the UK (Lawless et al., 2005; Richter 

and Semenov, 2005). No nitrogen limitation was considered in this study. A single soil-water 

profile, Hafren, with an available water capacity of 177 mm was used at all sites. A soil-water 

https://sites.google.com/view/sirius-wheat/
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profile with a lower available water capacity of 127 mm was also used for comparison, with 

the results provided in the supplementary material. In the current version of Sirius (2018), 

there is no direct effect of increased CO2 on water-use efficiency (no interaction between CO2 

and drought), therefore, we are not able to assess this effect on WSI and DSI. However, in 

previous studies, Sirius was able to simulate well the grain yield of wheat grown under 

elevated CO2 and drought conditions in the FACE experiment at Maricopa (Ewert et al., 

2002). We present the mean of each index: HSI, DSI and WSI. In addition, we present the 

extremes of each indicator using the 95th percentile (HSI95, DSI95 and WSI95); which shows 

the proportion of yield loss expected to occur on average once every 20 years due to each 

stress, termed ‘extreme heat stress’, ‘extreme drought stress’ and ‘extreme water stress’ 

respectively. 

For all 25 sites the cultivars used in both models (AgriClim and Sirius) represent winter 

wheat which is typically sown in the UK between September and November; in this study we 

used a typical sowing date of 20th October for the baseline and future climate scenarios, 

consistent with Semenov and Stratonovitch (2015) and Senapati et al. (2019).  

We examine the probability and severity of adverse weather conditions for the baseline 

and future climate scenarios using the median result from all 16 GCMs, as well as, analysing 

the range of results across the 16 GCMs to provide an indication of uncertainty. Box plot 

results are presented for 10 of the 25 sites, providing coverage of the UK wheat growing area 

(Figure 1). Maps are produced by interpolating the impact indices from all 25 stations using 

the inverse distance weighted (IDW) method. IDW is a fast and commonly applied 

interpolation technique (Lu and Wong, 2008) previously used for interpolation of climatic 

data and found to perform well at modelling temperature and precipitation (Hadi and Tombul, 

2018; Li et al., 2011). Results for the 2090 climate are included in supplementary material. 

3. Results 

3.1 Future UK climate  

CMIP5 future climate projections generally reflect a trend towards hotter and drier 

summers and warmer wetter winters for the UK, consistent with the UKCP18 probabilistic 

climate projections (Lowe et al., 2018). 2050 climate projections from the 16 GCMs analysed 

predicted an annual average temperature increase from the baseline between 0.4 and 2.5 °C 

for RCP4.5, and between 0.2 and 3.0 °C for RCP8.5 for all 25 sites in the UK, with greater 

warming in the summer months (Supplementary Figure 1). In 2050 sites EH and HX in the 
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far south east of England showed the greatest rise in annual average temperatures (up to 3.0 

°C under RCP8.5; Supplementary Table 3). Climate projections for rainfall showed 

variability throughout the year; the early part of the year (January to April) is predicted to be 

wetter, whereas summer and early autumn (June to October) is predicted to be drier 

(Supplementary Figure 2). The decrease in precipitation during the summer was greatest at 

sites RR and HX in the South East of England (~20 % decrease under RCP8.5), while sites in 

the North showed the smallest decrease, using the median of GCMs (Supplementary Figure 

2; Supplementary Table 4). Climate projections in 2050 showed a wide range in monthly 

rainfall predictions across all 16 GCMs, with winter rainfall increasing up to ~40 % and 

decreasing as much as 10% and summer rainfall increasing or decreasing up to ~30 % 

(RCP8.5; Supplementary Table 4).   

 

3.2 Advancing anthesis and maturity dates 

Figure 2 shows the anthesis and maturity dates for winter wheat under baseline and 

future climate scenarios for 10 sites in the wheat growing area, as simulated using the 

AgriClim software. Mean anthesis dates, for the 10 sites, were between 10 and 11 days earlier 

under midrange emissions (RCP 4.5) and between 12 and 14 days earlier than the baseline 

using a high-emissions scenario (RCP 8.5). Mean maturity dates were approximately two 

weeks (13-15 days) earlier under midrange emissions and 16-19 days earlier under high 

emissions. This advancement is linked to faster crop development under higher temperatures 

due to a faster rate of thermal time accumulation (Figure 2). Winter wheat flowers and 

matures earlier in a warmer climate since the minimal thermal requirement is accumulated 

faster in both RCP4.5 and RCP8.5 in the mid-21st century, when using a fixed sowing date. 

This phenological advancement reduces the relative duration of the vegetative and 

reproduction stages (emergence-anthesis) by up to 2 weeks, whereas the grain filling period 

(anthesis-maturity) reduces by less than 1 week.   
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Figure 2 – Mean anthesis and maturity dates and values of temperature rate during 

sowing to anthesis and anthesis to maturity, calculated using AgriClim. Black rectangles 

indicate the 1981-2010 baseline and box plots indicate the 2050 climate scenarios for RCP4.5 

(light grey) and RCP8.5 (dark grey). The calculations consider a medium-ripening cultivar. 

DOY represents day of year. 

 

3.3 Probability of adverse weather conditions under climate change 

Figure 3 shows the probability of occurrence of a range of adverse weather conditions, 

under the baseline and 2050 climate, for RCP4.5 and RCP8.5 emissions scenarios. The box 

plots for the future climate present the range of results from 16 GCMs in the CMIP5 

ensemble.  
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Figure 3 - Probability of the occurrence of adverse weather conditions under baseline 

and 2050 projected climate, calculated using AgriClim. Black rectangles indicate the 

1981-2010 baseline and box plots indicate the 2050 climate scenarios for RCP4.5 (light grey) 

and RCP8.5 (dark grey). The calculations consider a medium-ripening cultivar.  

 

Sites in the north were consistently the wettest during the sowing period (sowing date 

±15 days) under the baseline climate, showing a probability of adverse sowing conditions up 

to 8%. In contrast, sites in the east are driest, showing a probability less than 5% during the 

baseline period. The risk of adverse sowing conditions decreased at 8 out of 10 sites under 

2050 climate scenarios (and in 2090) as a result of lower soil moisture during the sowing 
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period following a drier summer, as predicted by the CMIP5 ensemble. Sites AW and RR 

indicated little change or an increase in probability. 

An extremely wet early season, with possibility of waterlogging between sowing and 

anthesis, was projected to increase at 9 out of 10 sites under future climates due to increased 

rainfall and heavy precipitation events in the winter and spring. At sites RR and BD the 

probability of an extremely wet early season is 10% under the baseline climate, which almost 

doubles under high emissions in 2050 (and more than doubles in 2090, refer to 

supplementary material). The maps in Figure 4 illustrate the probability of an extremely wet 

early season under baseline and 2050 climate scenarios, with results from all 25 sites 

interpolated across the UK. The baseline climate in the far west of the country, generally 

beyond the key wheat growing area, was extremely wet during the early season. For the 2050 

climate projections ‘dry’ and ‘wet’ maps use values from the driest and wettest GCMs to 

illustrate the range of results from the 16 GCMs used in our study. There is a large variation 

in the probability of an extremely wet early season between GCMs, which is greater than 

variation in probability of occurrence between emissions scenarios (Figure 3 & 4). The 

majority of GCMs showed an increase in the probability of an extremely wet early season, 

however a smaller number showed a decreased risk under 2050 climate scenarios. The 

probability of an extremely wet early season using the driest GCM (MPI-ESM-MR) shows 

there is generally little change in probability compared to the baseline. In contrast, the wettest 

GCM (GDFL-CM5) shows the probability of waterlogging increases across large areas of the 

English wheat growing area, as most areas of the country are becoming wetter during the 

early season.  
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Figure 4 - The probability of an extremely wet early season (sowing – anthesis) for the 

1981-2010 baseline and 2050 climate using RCP4.5 and RCP8.5 emissions scenarios and dry 

(MPI-ESM-MR) and wet (GFDL-CM3) GCMs. MPI-ESM-MR is one of the driest models in 

winter (predicting the largest decrease in rainfall at several sites; supplementary material) and 

shows a decrease in the probability of an extremely wet early season at a number of UK sites. 

GFDL-CM3 which is the wettest GCM in winter (shows the largest increase in rainfall; 

supplementary material) and commonly shows the largest increase in probability of an 

extremely wet early season. 

 

The risk of a late frost was nil or negligible at 9 sites under the baseline climate and the 

probability increased slightly (to 1%) at only one site (EH) under 2050 climate scenarios (and 

in 2090). In the case of a severe frost with no snow cover (figure not presented) the 

probability was nil during the baseline and future climate scenarios. The probability of heat 
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stress during grain filling (temperatures above 35 °C) was nil or negligible during the 

baseline and 2050 climate scenarios (and in 2090). The probability of heavy precipitation 

events between anthesis and maturity, which are a precursor to lodging, was small in the 

south with a baseline probability less than 1%, which reduced further under 2050 climate 

scenarios. Results demonstrated variability in the risk of lodging in other regions, the 

majority of sites showed a decrease under future climate scenarios (in 2050 and 2090), 

however the probability of lodging increased slightly at sites LE, SC and MA (up to 1%). The 

probability of adverse conditions at harvest was predicted to decrease under 2050 climate 

scenarios (and in 2090) across all regions, driven by hotter and drier summers reducing soil 

moisture at harvest. 

 

3.4 Severity of heat, drought and water stress under climate change 

Figure 5 shows the mean proportion of yield loss as a result of drought stress during 

reproduction (DSI) and water stress during the season (WSI), under baseline and 2050 

climate scenarios, simulated using Sirius. Mean heat stress around anthesis (HSI) was nil or 

negligible under baseline and future climate scenarios.  

 

Figure 5 - Mean drought stress index (DSI) and water stress index (WSI). Black 

rectangles indicate the 1981-2010 baseline and box plots indicate the 2050 climate scenarios 

for RCP4.5 (light grey) and RCP8.5 (dark grey).  

 

Mean DSI was highest in the east of the UK with an average of 0.04-0.05 under the 

baseline climate, representing a 4-5% yield loss as a result of drought stress during 

reproductive development. In contrast, the north and west regions experienced the lowest 

drought stress, with DSI between 0.01 and 0.02 under the baseline climate. Most sites showed 
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a decrease in mean drought stress during the reproductive period by 2050, with exception of 

sites WH and RR, which showed an increase. 

Mean WSI ranged from 0.05-0.12 under the baseline climate, representing a 5-12 % 

yield loss as a result of water stress during the entire growing season, with the highest water 

stress in the south and east of the UK (9-12 % yield loss). Under midrange emissions in 2050 

the mean proportion of yield loss due to water stress increased by up to 25 % in the south and 

east regions (to 10-14 %). Under high emissions in 2050, however, sites in these regions 

show a smaller increase in WSI (less than 10 %) in comparison to the baseline climate. The 

north and west regions experienced the least water stress with WSI less than 0.07 under the 

baseline climate and small change or a reduction in WSI under 2050 climate scenarios. 

 

3.5 Extremes of heat, drought and water stress under the future climate 

We used the 95th percentile of heat (HSI95) and drought stress (DSI95) during 

reproductive development and water stress (WSI95) over the entire wheat growing season to 

analyse extremes, termed as ‘extreme heat stress’, ‘extreme drought stress’ and ‘extreme 

water stress’ respectively. HSI95, DSI95 and WSI95 indicate the corresponding proportion of 

yield losses expected to occur on average once every 20 years. The proportion of yield loss 

due to extreme heat stress during the reproductive period (HSI95) was nil or negligible under 

baseline, 2050 and 2090 climate scenarios.  

Figure 6 shows extreme drought stress (DSI95) under baseline and 2050 climate for 

RCP4.5 and RCP8.5 emissions scenarios. Figure 7 illustrates spatial patterns in DSI95, with 

results from the 25 sites interpolated across the UK, using the median of GCMs. DSI95 was 

consistently highest at sites in the east under the baseline climate, between 0.24-0.27, 

representing 24-27 % yield loss as a result of extreme drought during reproduction. DSI95 

was also high in the south under the baseline climate, with high spatial variability. The 

highest extreme drought stress during reproductive development occurred in the far south east 

of England, as indicated by the darkest area in Figure 7. In contrast, other areas in Southern 

England experienced the lowest extreme drought stress, with the minimum at site RR (DSI95 

<0.1). Overall, the north and west regions had the lowest extreme drought stress during 

reproduction, with less than 15 % yield loss under the baseline climate. Consistent with the 

mean DSI, most sites showed a decrease in extreme drought stress during reproduction 

(DSI95) by 2050 (and by 2090, refer to supplementary material). Our projections show a 

reduction in DSI95 across most regions of the UK under midrange emissions with a further 

reduction under high emissions (Figure 7). DSI95 was predicted to reduce by almost half by 
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2050 at site EH in South East England, reducing from 29 % yield loss under the baseline 

climate to 16 % under RCP4.5, and further to 11 % yield loss under RCP8.5. However, the 

box plot at site EH shows a large range, with results from all 16 GCMs showing greater 

uncertainty compared to other sites. In contrast, small areas in the UK projected an increased 

drought stress around anthesis by 2050. At site RR, DSI95 more than doubled from 8 % 

under the baseline period to 22 % and 21 % under midrange and high emissions respectively, 

with little difference between emission scenarios. 

 

Figure 6 – 95-percentile drought stress index (DSI95). Black rectangles indicate the 1981-

2010 baseline and box plots indicate the 2050 climate scenarios for RCP4.5 (light grey) and 

RCP8.5 (dark grey).  
 

 

Figure 7 - 95-percentile of drought stress index (DSI95) for the 1981-2010 baseline and 

median 2050 climate using RCP4.5 and RCP8.5 emissions scenarios 
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Across most of the wheat growing area in England extreme water stress during the 

growing season (WSI95) ranged between 0.20 – 0.30, representing 20 and 30 % possible 

yield losses under the baseline climate (Figures 8 and 9). WSI95 was highest in the south and 

east of the country under the baseline climate. Extreme water stress was lowest 

(WSI95<0.20) across the north of the UK. However less spatial variation was found between 

sites for extreme water stress than extreme drought stress. At most sites WSI95 increased 

slightly (less than 0.05) between the baseline and future climate, therefore very little change 

in WSI95 was shown, with exception of the far west wheat growing area which showed a 

decrease in extreme water stress during the entire growing season (Figure 9). Extreme water 

stress was predicted to be greater under midrange emissions (RCP4.5) than high emissions 

(RCP8.5) at most sites in the south and east, with a greater increase in rainfall during the 

winter and spring under RCP8.5. In 2090, a reduction in extreme water stress was projected 

at most sites across the UK due to further increase in the winter and spring rainfall under 

RCP8.5. 

Uncertainty in simulating the impacts of extreme drought (DSI95) and extreme water 

stress (WSI95) is highlighted by the range of projections of different GCMs (Figures 6 & 8) 

with some showing increases in risk and some showing decreases by 2050. This range is 

consistent with the variation in predicted monthly rainfall between the baseline and 2050 

climate; with summer rainfall increasing or decreasing up to ~30 % across all 16 GCMs and 

winter rainfall increasing up to ~40 % and decreasing as much as 10% (RCP8.5). Greater 

variation is shown for extreme drought events during the reproductive period (DSI95) in 

comparison to water stress during the growing season (WSI95), highlighting particular 

uncertainty in GCM model predictions for simulating extreme drought during the 

reproductive period. 
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Figure 8 – 95-percentile water stress index (WSI95). Black rectangles indicate the 1981-

2010 baseline and box plots indicate the 2050 climate scenarios for RCP4.5 (light grey) and 

RCP8.5 (dark grey). 

 

 

Figure 9 - 95-percentile of water stress index (WSI95) for the 1981-2010 baseline and 

median 2050 climate using RCP4.5 and RCP8.5 emissions scenarios 

 

4. Discussion 

Wheat is sensitive to various climatic stresses throughout the growing season. Overall, 

future climates in the UK are expected to remain favourable for wheat production under a 

midrange (RCP4.5) and a high emissions scenario (RCP8.5), with most adverse weather 

indicators reducing in frequency or magnitude during the 21st century. Drier summers are 
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expected to reduce the probability of overly wet conditions during sowing and around the 

harvest period, which can restrict the ability to sow or harvest at the most appropriate time 

(Trnka et al., 2014). The risk of lodging which can lead to yield losses and a reduction in 

quality (Berry et al., 2003; Gobin, 2018; Russell and Wilson, 1994; Trnka et al., 2015), is 

also expected to decrease with fewer heavy rainfall events prior to and at maturity.  

The risk of severe winter frosts, which can lead to severe crop damage including leaf 

chlorosis, following exposure to temperatures below −20 °C with no snow cover (Trnka et 

al., 2014), would most likely be zero under future climate, as temperatures will not fall this 

low. Late frosts, which occur after the loss of winter hardiness at temperatures below −2 °C, 

cause leaf chlorosis, floret sterility during anthesis and damage the lower stem, leading to 

medium to severe yield loss (Gusta and Fowler, 1976; Petr, 1991). The risk of a late frost 

seems negligible at all sites throughout the UK wheat growing area. 

High temperatures and heat stress around anthesis could induce sterility and 

considerable yield loss in wheat, with a critical temperature during reproduction around 30 

°C (Alghabari et al., 2014; Semenov et al., 2014; Porter and Gawith, 1999). Previous research 

found a small risk of heat stress around anthesis (>30 °C) at one site in South East England 

(RR) under mid-century climate scenarios (Semenov et al., 2014; Semenov and Shewry, 

2011) and we found consistent results throughout the UK, with negligible yield losses due to 

heat stress during reproduction under both baseline and future climate scenarios. The 

probability of heat stress during grain filling (> 35 °C), which can reduce grain size and 

quality (Nasehzadeh and Ellis, 2017; Savill et al., 2018) was also negligible.  

The probability of an extremely wet early season, driven by increased rainfall between 

sowing and anthesis, would increase under future climates across most of the UK wheat 

growing area. This can cause waterlogging, root anoxia, and fertilizer leaching (Trnka et al., 

2014). Furthermore, wetter winters, coupled with the predicted warmer temperatures and 

fewer frosts may increase the prevalence of pests and disease such as Zymoseptoria tritici 

(Fones and Gurr, 2015; Pietravalle et al., 2007). The impact of pests and disease on wheat 

yield was not analysed in this study. Other landscape characteristics, including soil type and 

slope of the land, can influence the probability of waterlogging which were not analysed. 

An increase in precipitation during the winter and early spring may reduce the impacts 

of hotter and drier summers under future climates in the UK. Prolonged water stress during 

the growing season reduces leaf expansion, accelerates leaf senescence and subsequently 

reduces yield (Jamieson et al., 1998). Despite a decrease in rainfall between May and 

October, water stress is predicted to decrease across England and Wales for two reasons also 
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indicated by Semenov, (2009): Firstly, additional winter rainfall would be stored in the soil, 

depending on the available water capacity, and made available to the crop during the dry 

period. Secondly, winter wheat would mature earlier in a warmer climate, therefore reducing 

exposure to the hotter drier period towards the end of the crop growth. Senapati et al. (2019) 

also found a low probability of severe drought during reproduction in mid-century climate 

scenarios, at site RR in South East England. Our results show the proportion of yield loss due 

to drought stress during reproduction is generally higher in the south and east of the UK, 

which receives less rainfall than the north and west. Drought stress is however spatially and 

temporally diverse, showing variation between sites within the same region, and variation in 

future climate predictions. Yield loss due to drought stress is likely to decrease across most of 

the UK under future climates, with exceptions of two sites (RR and WH) which show an 

increase. We used one soil profile across all sites with an available water capacity of 177 mm 

(for drought and water stress calculations in Sirius) to focus on the signal from climate 

projections. However, soil depth and soil type, as well as, other landscape characteristics can 

influence the frequency and severity of adverse weather conditions, including short-term 

drought and prolonged water stress. Using a light soil, with an available water capacity of 

127 mm, the relative yield losses due to drought and water stress were found to be 

substantially greater than when using a medium soil (refer to supplementary material). 

Relative yield losses due to water stress in the future climate are generally expected to be 

similar to the baseline or increase slightly across the south and east of the UK. However, 

water stress for sites in the west is expected to decrease. Climate signals indicate 

vulnerability to water stress will not increase considerably in the UK, as may be expected in 

other parts of the world. However, our results show that the impact of a changing climate on 

water and drought stress is spatially specific and likely to depend on local environmental 

conditions, including soil characteristics. 

Different studies predicted the risk of adverse weather conditions, and subsequent crop 

failure under climate change across a large region of Europe (Trnka et al., 2015, 2011). The 

risk of heat stress and drought was projected to increase across Southern Europe, particularly 

around the Mediterranean (Olesen et al., 2011; Trnka et al., 2014). Furthermore, regions of 

Northern Europe (Scandinavia) are expected to suffer more from frost stress due to lower 

temperatures in the future climate (Trnka et al., 2014). However, the present study shows that 

the temperate climate of the UK is expected to be suitable for growing wheat in the future. 

The UK already dedicates a large proportion of agricultural land to wheat production and it 

may be difficult to expand outside of the current growing area with the west experiencing 



Chapter 3 

70 

 

very wet conditions in the early part of the season. Efforts are therefore required to increase 

wheat production for future food security in the current growing region, through greater 

intensification or enabling wheat to cope better with region and season-specific climatic 

threats. The severity of adverse weather conditions will depend on cultivar characteristics. 

Our results highlight the importance of research focusing on early season waterlogging, 

which mostly occurs in the western growing regions but is expected to increase throughout 

the UK under future climates. Prolonged water stress will not increase considerably in the 

UK, but greater tolerance to water stress would help to increase overall yields by minimising 

ongoing yield losses for wheat grown in the south and east of the UK.  

In the current study, we used future projections from 16 GCMs from CMIP5 to analyse 

adverse weather conditions for UK wheat production. The multi-model median provides an 

estimate of future conditions compared to the baseline climate, however the distribution of 

projections also provides important information about uncertainty. Predictions for the 2050 

climate show a wide range in monthly rainfall predictions, which lead to uncertainty in the 

results of different adverse weather indices, for example: adverse conditions at sowing, wet 

early season and drought and water stress, as indicated by the wide range in results. At many 

sites the minimum values for these adverse weather conditions show a decrease in risk, 

whereas the maximum values show an increase. There is also generally a larger difference 

between the GCMs (minimum and maximum values) than between emission scenarios, 

highlighting the importance of using a range of models in the analysis of extreme and adverse 

weather conditions.  

Our results highlight the importance of looking at a range of sites across the UK to 

provide results at a smaller spatial scale, in order to make inferences about the weather 

related risks for UK wheat production, and guide local adaptation or growing area expansion. 

Weather across the UK shows large spatial variation under the baseline and future climate, 

thus climate risk assessment relevant to wheat production needs to be analysed at a local 

scale, particularly when considering the risk of drought stress. 

Underpredicting inter-annual variability is a well-known issue with weather generators 

including LARS-WG. However, this should not affect the calculation of adverse weather 

conditions analysed because the indices are based on extreme weather formulated using daily 

values, often during a short period of the crop development. It has been shown that LARS-

WG reproduces extreme weather events well (Gitau et al., 2018; Semenov, 2008). 
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5. Conclusion 

The UK climate is expected to remain favourable for wheat production, with most 

adverse weather indicators reducing in magnitude during the 21st century. Hotter and drier 

summers, and warmer wetter winters are expected to lead to improved sowing and harvest 

conditions, along with a reduced risk of lodging. The risk of late frosts and probability of heat 

stress during reproductive and grain filling periods would likely remain low in the future 

across the UK. The rainfall patterns appear more influential for wheat production in the UK. 

The probability of a wetter winter and spring, which generally cause issues with 

waterlogging, leaching and root anoxia in the western wheat growing regions, are expected to 

increase throughout the UK in the future. The severity of drought stress during the 

reproductive period is generally lower in the future climate, however there are localised 

differences across the wheat growing area and accordingly it is important to examine drought 

episodes at a small spatial scale so that adaptation can be targeted efficiently. Prolonged 

water stress does not seem to increase considerably in the UK, as may be expected in other 

parts of Europe and the world.  

Climate predictions from the CMIP5 ensemble show a wide range in projections for 

monthly precipitation, and relative changes from the baseline climate. Based on adverse 

weather indices, our study shows GCMs revealed uncertainty in the adverse weather 

conditions, including waterlogging and yield losses due to drought and water stresses. This 

variation in adverse weather indicators due to GCMs is generally greater than the variation 

between RCP emissions scenarios. Accordingly, GCM ensembles should be used in the 

assessment of adverse weather conditions for crop production to indicate the full range of 

possible impacts, which a limited number of GCMs may not provide. 

In the present study, we analysed the frequency and magnitude of a range of adverse 

weather conditions, which have been identified within the literature as resulting in a 

significant yield reduction. However, with existing process-based crop models, including 

Sirius, it is not possible to quantify the impact of all adverse weather conditions analysed in 

this study on wheat yields, for example waterlogging and lodging. In order to examine these 

impacts the adverse weather conditions and abiotic stresses simulated in crop models could 

be expanded. Similarly, the subsequent impact on farm income was not well known. In order 

to understand the full impact of adverse weather conditions on crop production, and in turn 

farm income, these aspects should be considered in future research to develop farm resilience 

and address future food insecurity, in a changing climate. 



Chapter 3 

72 

 

Acknowledgements 

We thank Ian Shield for providing the North Wyke climate data and for helpful 

comments on the manuscript. Caroline Harkness acknowledges financial support from the 

University of Reading and Rothamsted Research, who provided joint funding for this 

research. Rothamsted Research receives grant-aided support from the Biotechnology and 

Biological Sciences Research Council (BBSRC) through Designing Future Wheat 

[BB/P016855/1] and Achieving Sustainable Agricultural Systems [NE/N018125/1] jointly 

funded with NERC. Mirek Trnka and Jan Balek acknowledge support of project SustES – 

“Adaptation strategies for sustainable ecosystem services and food security under adverse 

environmental conditions” (CZ.02.1.01/0.0/0.0/16_019/0000797). 

  



Chapter 3 

73 

 

References 

Al-Issawi, M., Rihan, H.Z., El-Sarkassy, N., Fuller, M.P., 2013. Frost Hardiness Expression 

and Characterisation in Wheat at Ear Emergence. J. Agron. Crop Sci. 199, 66–74. 

https://doi.org/10.1111/j.1439-037X.2012.00524.x 

Alghabari, F., Lukac, M., Jones, H.E., Gooding, M.J., 2014. Effect of Rht Alleles on the 

Tolerance of Wheat Grain Set to High Temperature and Drought Stress During Booting 

and Anthesis. J. Agron. Crop Sci. 200, 36–45. https://doi.org/10.1111/jac.12038 

Allen, R.G., Luis, S.P., RAES, D., Smith, M., 1998. FAO Irrigation and Drainage Paper No. 

56. Crop Evapotranspiration (guidelines for computing crop water requirements). Rome, 

Italy. 

Bartholomeus, R.P., Witte, J.P.M., van Bodegom, P.M., van Dam, J.C., Aerts, R., 2008. 

Critical soil conditions for oxygen stress to plant roots: Substituting the Feddes-function 

by a process-based model. J. Hydrol. 360, 147–165. 

https://doi.org/10.1016/j.jhydrol.2008.07.029 

Bergjord, A.K., Bonesmo, H., Skjelvåg, A.O., 2008. Modelling the course of frost tolerance 

in winter wheat. I. Model development. Eur. J. Agron. 28, 321–330. 

https://doi.org/10.1016/j.eja.2007.10.002 

Berry, P.M., Sterling, M., Baker, C.J., Spink, J., Sparkes, D.L., 2003. A calibrated model of 

wheat lodging compared with field measurements. Agric. For. Meteorol. 119, 167–180. 

https://doi.org/10.1016/S0168-1923(03)00139-4 

Defra, 2018. Farming Statistics Provisional Crop Areas, Yields and Livestock Populations At 

June 2018 - United Kingdom. 

Deryng, D., Conway, D., Ramankutty, N., Price, J., Warren, R., 2014. Global crop yield 

response to extreme heat stress under multiple climate change futures. Environ. Res. 

Lett. 9. https://doi.org/10.1088/1748-9326/9/3/034011 

Dong, B., Zheng, X., Liu, H., Able, J.A., Yang, H., Zhao, H., Zhang, M., Qiao, Y., Wang, Y., 

Liu, M., 2017. Effects of Drought Stress on Pollen Sterility, Grain Yield, Abscisic Acid 

and Protective Enzymes in Two Winter Wheat Cultivars. Front. Plant Sci. 8, 1–14. 

https://doi.org/10.3389/fpls.2017.01008 

Durre, I., Menne, M.J., Gleason, B.E., Houston, T.G., Vose, R.S., 2010. Comprehensive 

automated quality assurance of daily surface observations. J. Appl. Meteorol. Climatol. 

49, 1615–1633. https://doi.org/10.1175/2010JAMC2375.1 

EDINA, 2018. EDINA agcensus [WWW Document]. Agric. census data. URL 

http://agcensus.edina.ac.uk/index.html (accessed 1.30.19). 

Ewert, F., Rodriguez, D., Jamieson, P., Semenov, M.A., Mitchell, R.A.C., Goudriaan, J., 

Porter, J.R., Kimball, B.A., Pinter, P.J., Manderscheid, R., Weigel, H.J., Fangmeier, A., 

Fereres, E., Villalobos, F., 2002. Effects of elevated CO2 and drought on wheat: Testing 

crop simulation models for different experimental and climatic conditions. Agric. 

Ecosyst. Environ. 93, 249–266. https://doi.org/10.1016/S0167-8809(01)00352-8 

FAO, 2009. FAO’s Director-General on How to Feed the World in 2050. Popul. Dev. Rev. 

35, 837–839. https://doi.org/10.1111/j.1728-4457.2009.00312.x 

FAOSTAT, 2018. FAOSTAT Crops [WWW Document]. URL 



Chapter 3 

74 

 

http://www.fao.org/faostat/en/#data/QC (accessed 11.22.18). 

Feng, S., Hu, Q., Qian, W., 2004. Quality control of daily meteorological data in China, 

1951-2000: A new dataset. Int. J. Climatol. 24, 853–870. 

https://doi.org/10.1002/joc.1047 

Fones, H., Gurr, S., 2015. The impact of Septoria tritici Blotch disease on wheat: An EU 

perspective. Fungal Genet. Biol. 79, 3–7. https://doi.org/10.1016/j.fgb.2015.04.004 

Fuller, M.P., Fuller, A.M., Kaniouras, S., Christophers, J., Fredericks, T., 2007. The freezing 

characteristics of wheat at ear emergence. Eur. J. Agron. 26, 435–441. 

https://doi.org/10.1016/j.eja.2007.01.001 

Gitau, M.W., Mehan, S., Guo, T., 2018. Weather Generator Effectiveness in Capturing 

Climate Extremes. Environ. Process. 5, 153–165. https://doi.org/10.1007/s40710-018-

0291-x 

Gobin, A., 2018. Weather related risks in Belgian arable agriculture. Agric. Syst. 159, 225–

236. https://doi.org/10.1016/j.agsy.2017.06.009 

Gourdji, S.M., Sibley, A.M., Lobell, D.B., 2013. Global crop exposure to critical high 

temperatures in the reproductive period: Historical trends and future projections. 

Environ. Res. Lett. 8, 1–10. https://doi.org/10.1088/1748-9326/8/2/024041 

Griggs, D., Stafford-Smith, M., Gaffney, O., Rockström, J., Öhman, M.C., Shyamsundar, P., 

Steffen, W., Glaser, G., Kanie, N., Noble, I., 2013. Sustainable development goals for 

people and planet. Nature 495, 305–307. https://doi.org/10.1038/495305a 

Gusta, L. V., Fowler, D.B., 1976. Dehardening and rehardening of spring-collected winter 

wheats and a winter rye. Can. J. Plant Sci. 56, 775–779. https://doi.org/10.4141/cjps76-

126 

Hadi, S.J., Tombul, M., 2018. Comparison of Spatial Interpolation Methods of Precipitation 

and Temperature Using Multiple Integration Periods. J. Indian Soc. Remote Sens. 46, 

1187–1199. https://doi.org/10.1007/s12524-018-0783-1 

Hlavinka, P., Trnka, M., Balek, J., Semerádová, D., Hayes, M., Svoboda, M., Eitzinger, J., 

Možný, M., Fischer, M., Hunt, E., Žalud, Z., 2011. Development and evaluation of the 

SoilClim model for water balance and soil climate estimates. Agric. Water Manag. 98, 

1249–1261. https://doi.org/10.1016/j.agwat.2011.03.011 

IPCC, 2014. Climate Change 2013: The Physical Science Basis. Contribution of Working 

Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate 

Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, 

USA. https://doi.org/10.1017/CBO9781107415324 

IPCC, 2012. Managing the Risks of Extreme Events and Disasters to Advance Climate 

Change Adaptation, A Special Report of Working Groups I and II of the 

Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, 

UK, and New York, NY, USA, Cambridge. 

https://doi.org/10.1017/CBO9781139177245 

Jamieson, P.D., Semenov, M.A., Brooking, I.R., Francis, G.S., 1998. Sirius: A mechanistic 

model of wheat response to environmental variation. Eur. J. Agron. 8, 161–179. 

https://doi.org/10.1016/S1161-0301(98)00020-3 



Chapter 3 

75 

 

Kendon, M., Marsh, T., Parry, S., 2013. The 2010-2012 drought in England and Wales. 

Weather 68, 88–95. https://doi.org/10.1002/wea.2101 

Kovats, R.S., Valentini, R., Bouwer, L.M., Georgopoulou, E., Jacob, D., Martin, E., 

Rounsevell, M., Soussana, J.-F., 2014. Europe, in: Barros, V.R., Field, C.B., Dokken, 

D.J., Mastrandrea, M.D., Mach, K.J., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, 

Y.O., Genova, R.C., Girma, B., Kissel, E.S., Levy, A.N., MacCracken, S., Mastrandrea, 

P.R., White, L.L. (Eds.), Climate Change 2014: Impacts, Adaptation, and Vulnerability. 

Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment 

Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, 

Cambridge, pp. 1267–1326. https://doi.org/10.1017/CBO9781107415386.003 

Lawless, C., Semenov, M.A., Jamieson, P.D., 2005. A wheat canopy model linking leaf area 

and phenology. Eur. J. Agron. 22, 19–32. https://doi.org/10.1016/j.eja.2003.11.004 

Lesk, C., Rowhani, P., Ramankutty, N., 2016. Influence of extreme weather disasters on 

global crop production. Nature 529, 84–87. https://doi.org/10.1038/nature16467 

Li, Q., Chen, Y., Shen, Y., Li, X., Xu, J., 2011. Spatial and temporal trends of climate change 

in Xinjiang, China. J. Geogr. Sci. 21, 1007–1018. https://doi.org/10.1007/s11442-011-

0896-8 

Lobell, D.B., Sibley, A., Ivan Ortiz-Monasterio, J., 2012. Extreme heat effects on wheat 

senescence in India. Nat. Clim. Chang. 2, 186–189. 

https://doi.org/10.1038/nclimate1356 

Lowe, J.A., Bernie, D., Bett, P., Bricheno, L., Brown, S., Calvert, D., Clark, R., Eagle, K., 

Edwards, T., Fosser, G., Fung, F., Gohar, L., Good, P., Gregory, J., Harris, G., Howard, 

T., Kaye, N., Kendon, E., Krijnen, J., Maisey, P., McDonald, R., McInnes, R., 

McSweeney, C., Mitchell, J.F., Murphy, J., Palmer, M., Roberts, C., Rostron, J., Sexton, 

D., Thornton, H., Tinker, J., Tucker, S., Yamazaki, K., Belcher, S., 2018. UKCP18 

Science Overview report. 

Lu, G.Y., Wong, D.W., 2008. An adaptive inverse-distance weighting spatial interpolation 

technique. Comput. Geosci. 34, 1044–1055. https://doi.org/10.1016/j.cageo.2007.07.010 

Ma, J., Li, R., Wang, H., Li, D., Wang, X., Zhang, Y., Zhen, W., Duan, H., Yan, G., Li, Y., 

2017. Transcriptomics Analyses Reveal Wheat Responses to Drought Stress during 

Reproductive Stages under Field Conditions. Front. Plant Sci. 8, 1–13. 

https://doi.org/10.3389/fpls.2017.00592 

Malik, A.I., Colmer, T.D., Lambers, H., Setter, T.L., Schortemeyer, M., 2002. Short-term 

waterlogging has long-term effects on the growth and physiology of wheat. New Phytol. 

153, 225–236. https://doi.org/10.1046/j.0028-646X.2001.00318.x 

Martre, P., Jamieson, P.D., Semenov, M.A., Zyskowski, R.F., Porter, J.R., Triboi, E., 2006. 

Modelling protein content and composition in relation to crop nitrogen dynamics for 

wheat. Eur. J. Agron. 25, 138–154. https://doi.org/10.1016/j.eja.2006.04.007 

Met Office, 2019. UK climate - Synoptic and climate stations [WWW Document]. URL 

https://www.metoffice.gov.uk/public/weather/climate-network 

Mitchell, R.A.C., Mitchell, V.J., Driscoll, S.P., Franklin, J., Lawlor, D.W., 1993. Effects of 

increased CO2 concentration and temperature on growth and yield of winter wheat at 

two levels of nitrogen application. Plant, Cell Environ. 16, 521–529. 



Chapter 3 

76 

 

https://doi.org/10.1111/j.1365-3040.1993.tb00899.x 

Nasehzadeh, M., Ellis, R.H., 2017. Wheat seed weight and quality differ temporally in 

sensitivity to warm or cool conditions during seed development and maturation. Ann. 

Bot. 120, 479–493. https://doi.org/10.1093/aob/mcx074 

Olesen, J.E., Børgesen, C.D., Elsgaard, L., Palosuo, T., Rötter, R.P., Skjelvåg, A.O., 

Peltonen-Sainio, P., Börjesson, T., Trnka, M., Ewert, F., Siebert, S., Brisson, N., 

Eitzinger, J., van Asselt, E.D., Oberforster, M., van der Fels-Klerx, H.J., 2012. Changes 

in time of sowing, flowering and maturity of cereals in Europe under climate change. 

Food Addit. Contam. - Part A Chem. Anal. Control. Expo. Risk Assess. 29, 1527–1542. 

https://doi.org/10.1080/19440049.2012.712060 

Olesen, J.E., Trnka, M., Kersebaum, K.C., Skjelvåg, A.O., Seguin, B., Peltonen-Sainio, P., 

Rossi, F., Kozyra, J., Micale, F., 2011. Impacts and adaptation of European crop 

production systems to climate change. Eur. J. Agron. 34, 96–112. 

https://doi.org/10.1016/j.eja.2010.11.003 

Parry, S., Marsh, T., Kendon, M., 2013. 2012: From drought to floods in England and Wales. 

Weather 68, 268–274. https://doi.org/10.1002/wea.2152 

Petr, J., 1991. Weather and yield. Elsevier, Amsterdam. 

Pietravalle, S., Shaw, M.W., Parker, S.R., van den Bosch, F., 2007.  Modeling of 

Relationships Between Weather and Septoria tritici Epidemics on Winter Wheat: A 

Critical Approach . Phytopathology 93, 1329–1339. 

https://doi.org/10.1094/phyto.2003.93.10.1329 

Porter, J.R., Gawith, M., 1999. Temperatures and the growth and development of wheat a 

review. Eur. J. Agron. 10, 23–36. 

Posthumus, H., Morris, J., Hess, T.M., Neville, D., Phillips, E., Baylis, A., 2009. Impacts of 

the summer 2007 floods on agriculture in England. J. Flood Risk Manag. 2, 182–189. 

https://doi.org/10.1111/j.1753-318X.2009.01031.x 

Powell, J.P., Reinhard, S., 2015. Measuring the effects of extreme weather events on yields. 

Weather Clim. Extrem. 12, 69–79. https://doi.org/10.1016/j.wace.2016.02.003 

Rahmstorf, S., Coumou, D., 2011. Increase of extreme events in a warming world. Proc. Natl. 

Acad. Sci. 108, 17905–17909. https://doi.org/10.1073/pnas.1101766108 

Reyer, C.P.O., Leuzinger, S., Rammig, A., Wolf, A., Bartholomeus, R.P., Bonfante, A., de 

Lorenzi, F., Dury, M., Gloning, P., Abou Jaoudé, R., Klein, T., Kuster, T.M., Martins, 

M., Niedrist, G., Riccardi, M., Wohlfahrt, G., de Angelis, P., de Dato, G., François, L., 

Menzel, A., Pereira, M., 2013. A plant’s perspective of extremes: Terrestrial plant 

responses to changing climatic variability. Glob. Chang. Biol. 19, 75–89. 

https://doi.org/10.1111/gcb.12023 

Reynolds, M.P., Hays, D., Chapman, S., 2010. Breeding for adaptation to heat and drought 

stress., in: Climate Change and Crop Production. CABI, Wallingford, pp. 71–91. 

https://doi.org/10.1079/9781845936334.0071 

Richter, G.M., Semenov, M.A., 2005. Modelling impacts of climate change on wheat yields 

in England and Wales: assessing drought risks. Agric. Syst. 84, 77–97. 

https://doi.org/10.1016/j.agsy.2004.06.011 



Chapter 3 

77 

 

Rietveld, M.R., 1978. A new method for estimating the regression coefficients in the formula 

relating solar radiation to sunshine. Agric. Meteorol. 19, 243–252. 

https://doi.org/10.1016/0002-1571(78)90014-6 

Russell, G., Wilson, G.W., 1994. An Agro-Pedo-Climatological Knowledge-Base of Wheat 

in Europe, Joint Research Centre, European Commission, Luxembourg. Luxembourg. 

Semenov, M., 2008. Simulation of extreme weather events by a stochastic weather generator. 

Clim. Res. 35, 203–212. https://doi.org/10.3354/cr00731 

Semenov, M.A., 2009. Impacts of climate change on wheat in England and Wales. J. R. Soc. 

Interface 6, 343–350. https://doi.org/10.1098/rsif.2008.0285 

Semenov, M.A., 2007. Development of high-resolution UKCIP02-based climate change 

scenarios in the UK. Agric. For. Meteorol. 144, 127–138. 

https://doi.org/10.1016/j.agrformet.2007.02.003 

Semenov, M.A., Donatelli, M., Stratonovitch, P., Chatzidaki, E., Baruth, B., 2010. ELPIS: A 

dataset of local-scale daily climate scenarios for Europe. Clim. Res. 44, 3–15. 

https://doi.org/10.3354/cr00865 

Semenov, M.A., Martre, P., Jamieson, P.D., 2009. Quantifying effects of simple wheat traits 

on yield in water-limited environments using a modelling approach. Agric. For. 

Meteorol. 149, 1095–1104. https://doi.org/10.1016/j.agrformet.2009.01.006 

Semenov, M.A., Pilkington-bennett, S., Calanca, P., 2013. Validation of ELPIS 1980 − 2010 

baseline scenarios using the observed European Climate Assessment data set. Clim. Res. 

57, 1–9. https://doi.org/10.3354/cr01164 

Semenov, M.A., Shewry, P.R., 2011. Modelling predicts that heat stress, not drought, will 

increase vulnerability of wheat in Europe. Sci. Rep. 1, 66. 

https://doi.org/10.1038/srep00066 

Semenov, M.A., Stratonovitch, P., 2015. Adapting wheat ideotypes for climate change: 

Accounting for uncertainties in CMIP5 climate projections. Clim. Res. 65, 123–139. 

https://doi.org/10.3354/cr01297 

Semenov, M.A., Stratonovitch, P., Alghabari, F., Gooding, M.J., 2014. Adapting wheat in 

Europe for climate change. J. Cereal Sci. 59, 245–256. 

https://doi.org/10.1016/j.jcs.2014.01.006 

Senapati, N., Brown, H.E., Semenov, M.A., 2019a. Raising genetic yield potential in high 

productive countries: Designing wheat ideotypes under climate change. Agric. For. 

Meteorol. 271, 33–45. https://doi.org/10.1016/j.agrformet.2019.02.025 

Senapati, N., Stratonovitch, P., Paul, M.J., Semenov, M.A., 2019b. Drought tolerance during 

reproductive development is important for increasing wheat yield potential under 

climate change in Europe. J. Exp. Bot. 70, 2549–2560. 

https://doi.org/10.1093/jxb/ery226 

Seneviratne, S.I., Nicholls, N., Easterling, D., Goodess, C.M., Kanae, S., Kossin, J., Luo, Y., 

Marengo, J., McInnes, K., Rahimi, M., Reichstein, M., Sorteberg, A., Vera, C., Zhang, 

X., Rusticucci, M., Semenov, V., Alexander, L. V., Allen, S., Benito, G., Cavazos, T., 

Clague, J., Conway, D., Della-Marta, P.M., Gerber, M., Gong, S., Goswami, B.N., 

Hemer, M., Huggel, C., van den Hurk, B., Kharin, V. V., Kitoh, A., Tank, A.M.G.K., Li, 

G., Mason, S., McGuire, W., van Oldenborgh, G.J., Orlowsky, B., Smith, S., Thiaw, W., 



Chapter 3 

78 

 

Velegrakis, A., Yiou, P., Zhang, T., Zhou, T., Zwiers, F.W., 2012. Changes in Climate 

Extremes and their Impacts on the Natural Physical Environment, in: Field, C.B., 

Barros, V., Stocker, T.F., Dahe, Q. (Eds.), Managing the Risks of Extreme Events and 

Disasters to Advance Climate Change Adaptation. Cambridge University Press, 

Cambridge, pp. 109–230. https://doi.org/10.1017/CBO9781139177245.006 

Stratonovitch, P., Semenov, M.A., 2015. Heat tolerance around flowering in wheat identified 

as a key trait for increased yield potential in Europe under climate change. J. Exp. Bot. 

66, 3599–3609. https://doi.org/10.1093/jxb/erv070 

Trnka, M., Eitzinger, J., Dubrovský, M., Semerádová, D., Štěpánek, P., Hlavinka, P., Balek, 

J., Skalák, P., Farda, A., Formayer, H., Žalud, Z., Change, C., Paper, A., 2010a. Is 

rainfed crop production in central Europe at risk? Using a regional climate model to 

produce high resolution agroclimatic information for decision makers. J. Agric. Sci. 148, 

639–656. https://doi.org/10.1017/S0021859610000638 

Trnka, M., Hlavinka, P., Semenov, M.A., 2015. Adaptation options for wheat in Europe will 

be limited by increased adverse weather events under climate change. J. R. Soc. 

Interface 12, 20150721. https://doi.org/10.1098/rsif.2015.0721 

Trnka, M., Kocmánková, E., Balek, J., Eitzinger, J., Ruget, F., Formayer, H., Hlavinka, P., 

Schaumberger, A., Horáková, V., Možný, M., 2010b. Simple snow cover model for 

agrometeorological applications. Agric. For. Meteorol. 150, 1115–1127. 

https://doi.org/10.1016/j.agrformet.2010.04.012 

Trnka, M., Olesen, J.E., Kersebaum, K.C., Skjelvåg, A.O., Eitzinger, J., Seguin, B., Peltonen-

Sainio, P., Rötter, R., Iglesias, A., Orlandini, S., Dubrovský, M., Hlavinka, P., Balek, J., 

Eckersten, H., Cloppet, E., Calanca, P., Gobin, A., Vučetić, V., Nejedlik, P., Kumar, S., 

Lalic, B., Mestre, A., Rossi, F., Kozyra, J., Alexandrov, V., Semerádová, D., Žalud, Z., 

2011. Agroclimatic conditions in Europe under climate change. Glob. Chang. Biol. 17, 

2298–2318. https://doi.org/10.1111/j.1365-2486.2011.02396.x 

Trnka, M., Rötter, R.P., Ruiz-Ramos, M., Kersebaum, K.C., Olesen, J.E., Žalud, Z., 

Semenov, M.A., 2014. Adverse weather conditions for European wheat production will 

become more frequent with climate change. Nat. Clim. Chang. 4, 637–643. 

https://doi.org/10.1038/nclimate2242 

van Vuuren, D.P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., Hurtt, 

G.C., Kram, T., Krey, V., Lamarque, J.-F., Masui, T., Meinshausen, M., Nakicenovic, 

N., Smith, S.J., Rose, S.K., 2011. The representative concentration pathways: an 

overview. Clim. Change 109, 5–31. https://doi.org/10.1007/s10584-011-0148-z 

Vanuytrecht, E., Raes, D., Willems, P., 2016. Regional and global climate projections 

increase mid-century yield variability and crop productivity in Belgium. Reg. Environ. 

Chang. 16, 659–672. https://doi.org/10.1007/s10113-015-0773-6 

Vanuytrecht, E., Raes, D., Willems, P., Semenov, M.A., 2014. Comparing climate change 

impacts on cereals based on CMIP3 and EU-ENSEMBLES climate scenarios. Agric. 

For. Meteorol. 195–196, 12–23. https://doi.org/10.1016/j.agrformet.2014.04.017 

Weightman, R., Foulkes, J., Snape, J., Fish, L., Alava, J., Greenwell, P., 2005. Physiological 

traits influencing hardness and vitreosity in wheat grain, in: Using Cereal Science and 

Technology for the Benefit of Consumers. pp. 220–224. 

https://doi.org/10.1533/9781845690632.6.220 



Chapter 3 - Appendix A – supplementary material 

79 

 

Supplementary Material 

Adverse weather conditions for UK wheat production under climate change 

 

1. Future UK climate 

 

Supplementary Figure 1 – Mean maximum monthly temperature for the 1981-2010 

baseline (solid line) and box plots for the 2050 climate scenarios (RCP4.5 and RCP8.5). At 

four sites across the UK wheat growing area.  
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Supplementary Figure 2 - Mean monthly precipitation for the 1981-2010 baseline (solid 

line) and box plots for the 2050 climate scenarios (RCP4.5 and RCP8.5). At four sites across 

the UK wheat growing area. 

 

2. Frequency and severity of adverse weather conditions in 2090 

The probability of an extremely wet early season for wheat production is projected to 

increase by the 2050 (as discussed in the main text). Supplementary Figure 3 provides the 

probability of an extremely wet early season at all 25 sites and all climate scenarios, 

illustrating an increasing trend across time and emissions scenarios. In 2090 the probability of 

an extremely wet early season is expected to increase more than two-fold at 10 sites across 

the wheat growing area under high emissions (RCP8.5), including sites RR, MA and WH 

which are located within a key wheat growing region of the South East. 
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Supplementary Figure 3 - Probability of the occurrence of extremely wet early season 

under baseline and projected climate. Black rectangles indicate the 1981-2010 baseline. 

Box plots indicate the 2050 climate scenarios for RCP4.5 and RCP8.5 and 2090 climate 

scenarios for RCP4.5 and RCP8.5, from left to right. The calculations consider a medium-

ripening cultivar.  

 

Supplementary Figure 4 and Supplementary Figure 5 provide the 95-percentile of 

drought stress index (DSI95) and water stress index (WSI95), respectively, at all 25 sites and 

all climate scenarios.  

In 2090 most sites project a lower DSI95 under both RCP4.5 and RCP8.5 in 

comparison to the baseline period. In contrast site RR is unique in projecting an increase in 

DSI95 by 2100 under both emission scenarios. In 2090, using the median of GCMs, most 

sites show little change or a lower WSI95 under RCP8.5 in comparison to the baseline 

climate. HSI95 (heat stress index) continues to be negligible or very low in 2090. 
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Supplementary Figure 4 - 95-percentile of drought stress index (DSI95) Black rectangles 

indicate the 1981-2010 baseline. Box plots indicate the 2050 climate scenarios for RCP4.5 

and RCP8.5 and 2090 climate scenarios for RCP4.5 and RCP8.5, from left to right.  
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Supplementary Figure 5 - 95-percentile of water stress index (WSI95) Black rectangles 

indicate the 1981-2010 baseline. Box plots indicate the 2050 climate scenarios for RCP4.5 

and RCP8.5 and 2090 climate scenarios for RCP4.5 and RCP8.5, from left to right. 

 

3. Range of projections from the CMIP5 ensemble 

For most sites CSIRO-MK36 (GCM model no. 3) is the driest model in summer, with 

the largest reduction in rainfall between the baseline and 2050 climate, as illustrated by 

Supplementary Figure 6, however this is cooler than other models. For most sites GFDL-

CM3 (GCM model no. 5) is the hottest model in the CMIP5 ensemble in the summer, which 

is also consistently very dry across UK sites. INM-CM4 (GCM model no. 9) is frequently the 

coldest model in summer and MIROC-ESM (GCM model no. 11) commonly the wettest. 

For most sites GFDL-CM3 is the wettest model in winter, with the largest increase in 

precipitation between the baseline and 2050s (RCP8.5) as illustrated by Supplementary 

Figure 6. For most sites MIROC-ESM the hottest model in the CMIP5 ensemble for winter. 

CSIRO-MK36 is the coldest model in winter. A number of GCMs predict no change or a 

small decrease in winter precipitation, however there is not one model which is consistently 
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the driest in winter across all sites in the UK. MPI-ESM-MR (GCM no. 12) is the driest for 

site RR and a number of other sites. 

 

 

Supplementary Figure 6 – Absolute changes in mean temperature and relative changes in 

mean precipitation at site RR (Rothamsted Research) during a) the summer months (JJA) and 

b) the winter months (DJF), between baseline (1981-2010) and 2050 climate, under RCP8.5 

for 16 GCMs from the CMIP5 ensemble. Model numbers correspond with Supplementary 

Table 2. 

 

4. Drought and water stress for light soils 

We consider the effect of soil available water capacity (AWC) on extreme drought 

stress (DSI95) and extreme water stress (WSI95) (Supplementary Figure 7). The AWC used 

in these calculations represents a medium and light soil, with the majority of wheat in 

England and Wales grown on soils with an AWC 95-215 mm (Clarke, 2017; Hallett et al., 

1996) 
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Supplementary Figure 7 – 95-percentile of drought stress index (DSI95) (a, b) and water 

stress index (WSI95) (c, d) The first column (a, c) shows results for the medium soil with 

AWC of 177 mm (as used in Figures 5-9 and Supplementary Figures 4-5), and the second 

column (b, d) shows results for light soil with AWC of 127 mm. Black rectangles indicate the 

1981-2010 baseline and box plots indicate the 2050 climate scenarios for RCP4.5 (light grey) 

and RCP8.5 (dark grey). 
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Supplementary Table 1 - Characteristics of the 25 UK sites for the 1981-2010 baseline conditions 

The mean dates of the phenological stages represent the AgriClim model estimates for early-, medium- and late-ripening cultivars. (The sowing, 

anthesis and maturity dates are expressed as the day of the year – DOY from January 1st). 
 

Site  Acronym  Lat  Long Alt Mean precip.  Mean temp, °C Sowing DOY 

          Annual, mm Jan, min Jul, max   

Wick WK 58.45 -3.09 36 793                    1.7                15.7  293 

Kinloss KI 57.65 -3.56 5 688                    1.3                18.5  293 

Dyce DY 57.21 -2.20 65 812                    1.2                18.1  293 

Leuchars LU 56.38 -2.86 10 709                    0.6                19.0  293 

Eskdalemuir ES 55.31 -3.21 242 1747 -0.1                17.8  293 

Tynemouth TY 55.02 -1.42 33 631                    2.4                18.2  293 

Shap Fell SF 54.50 -2.68 255 1753                    0.5                18.0  293 

Whitby WT 54.48 -0.60 41 561                    2.1                18.6  293 

Leeming LE 54.30 -1.53 32 643                    1.2                20.7  293 

Ringway RG 53.36 -2.28 33 805                    1.7                20.4  293 

Holyhead Valley HV 53.25 -4.54 10 848                    4.0                18.3  293 

Waddington WD 53.18 -0.52 68 602                    1.5                20.9  293 

Shawbury AW 52.79 -2.66 72 652                    1.0                20.7  293 

Marham MA 52.65 0.57 21 644                    0.9                21.8  293 

Church Lawford SC 52.36 -1.33 107 676                    1.3                21.4  293 

Wattisham WH 52.12 0.96 89 626                    1.3                21.3  293 

Aberporth AP 52.14 -4.57 133 857                    3.2                17.9  293 

Sennybridge SQ 52.06 -3.61 307 1375                    0.9                18.0  293 

Rothamsted RR 51.80 -0.35 128 751                    1.2                21.0  293 

Bristol BW 51.45 -2.60 42 855                    3.5                21.7  293 

East Hamsted EH 51.38 0.78 75 680                    1.6                22.1  293 

Boscombe Down BD 51.16 -1.75 126 751                    1.6                21.7  293 

North Wyke NW 50.77 -3.90 177 1065                    2.6                19.7  293 

Herstmonceux HX 50.89 0.32 52 787                    2.4                20.7  293 

Camborne CB 50.22 -5.33 87 1037                    4.7                18.3  293 
* In the case of the late cultivar at Eskdalemuir and Wick, maturity was not reached. 
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Supplementary Table 2 - Global climate models from the CMIP5 ensemble used in the LARS-WG weather generator. The scenarios are 

based on RCP4.5 and RCP8.5 for the periods 1981-2010 (baseline) and 2041-2060 and 2081-2100. 

Model 

no. Research centre Country 

Global climate 

model Grid resolution Reference 

1 The Centre for Australian Weather and Climate Research   Australia  ACCESS1-3 1.25° x 1.88° (Collier and Uhe, 2012) 

2 Canadian Centre for Climate Modelling and Analysis Canada CanESM2 2.77° x 2.81° (Chylek et al., 2011) 

3 
Australia's Commonwealth Scientific and Industrial 

Research Organisation 
Australia  CSIRO-MK36 1.85° x 1.88° (Jeffrey et al., 2013) 

4 EC-EARTH consortium  Europe EC-EARTH 1.125° x 1.125° (Hazeleger et al., 2012) 

5 Geophysical Fluid Dynamics Laboratory USA GFDL-CM3 2° x 2.5° (Griffies et al., 2011) 

6 Goddard Institute for Space Studies National USA GISS-E2-R-CC 2.00° x 2.50° (Chandler et al., 2013) 

7 UK Meteorological Office UK HadGEM2-ES 1.25° x 1.88° (Collins et al., 2011; Jones et al., 2011) 

8 Institute Pierre Simon Laplace France IPSL-CM5A-MR 1.27° x 2.50° (Dufresne et al., 2013) 

9 Institute for Numerical Mathematics Russia INM-CM4 1.50° x 20° 
(Volodin et al., 2013; Yurova and 

Volodin, 2011) 

10 University of Tokyo, National Institute for Envir. 

Studies, Japan Agency for Marine-Earth Science & 

Technology 

Japan  

MIROC5 1.39° x 1.41° 
(Mochizuki et al., 2012; Tatebe et al., 

2012; Watanabe et al., 2011) 

11 MIROC-ESM 2.77° x 2.81° (Watanabe et al., 2011) 

12 Max-Planck Institute for Meteorology Germany MPI-ESM-MR 1.85° x 1.88° 
(Brovkin et al., 2013; Schmidt et al., 

2013) 

13 Meteorological Research Institute Japan MRI-CGCM3 1.11° x 1.13° (Tsujino et al., 2011) 

14 

National Centre for Atmospheric Research USA 

NCAR-CCSM4 0.94° x 1.25° 
(Jahn and Holland, 2013; Meehl et al., 

2013) 

15 
NCAR-CESM1-

CAM5 
0.94° x 1.25° (Jahn and Holland, 2013) 

16 Norwegian Climate Centre Norway NorESM1-M 1.90° x 2.50° (Bentsen et al., 2013; Iversen et al., 2013) 
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Supplementary Table 3 – Annual mean temperature for the 1981-2010 baseline and change in annual mean temperature under future climate 

scenarios (RCP4.5 and RCP8.5).  

Minimum and maximum values show the smallest and largest change in temperature (respectively) across all 16 GCMs, from the baseline. 

  

Annual mean 

temp, °C  Change in annual mean temp, from baseline, °C 

Site  Baseline  

RCP4.5 RCP8.5 

Min GCM Max GCM Min GCM Max GCM 

AP                     9.9                0.5                2.1                0.5                2.5  

AW                     9.6                0.6                2.2                0.6                2.7  

BD                   10.1                0.6                2.3                0.8                2.8  

BW                   11.2                0.6                2.3                0.7                2.9  

CB                   10.9                0.4                1.9                0.4                2.4  

DY                     8.6                0.5                1.9                0.3                2.4  

EH                   10.2                0.5                2.5                0.8                3.0  

ES                     7.6                0.6                2.0                0.4                2.4  

HV                   10.5                0.5                2.0                0.5                2.5  

HX                   10.6                0.4                2.5                0.8                3.0  

KI                     8.9                0.5                1.9                0.3                2.3  

LE                     9.5                0.6                2.1                0.5                2.6  

LU                     8.8                0.6                2.0                0.4                2.4  

MA                   10.0                0.6                2.2                0.7                2.7  

NW                   10.0                0.5                2.2                0.5                2.7  

RG                   10.0                0.6                2.2                0.6                2.7  

RR                     9.8                0.6                2.4                0.8                2.9  

SC                     9.9                0.6                2.2                0.7                2.7  

SF                     8.0                0.6                2.0                0.5                2.5  

SQ                     8.4                0.6                2.1                0.6                2.6  

TY                     9.4                0.6                2.1                0.5                2.6  

WD                     9.9                0.6                2.2                0.7                2.7  

WH                   10.0                0.6                2.3                0.7                2.8  

WK                     8.0                0.4                1.8                0.2                2.2  

WT                     9.4                0.7                2.2                0.5                2.7  
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Supplementary Table 4 – Mean precipitation for the 1981-2010 baseline, for summer (JJA) and winter (DJF) and change in precipitation under 

future climate scenarios (RCP4.5 and RCP8.5).  

Minimum and maximum values show the smallest and largest change in precipitation (respectively) across all 16 GCMs, from the baseline. 

  
Mean precip., 

summer, mm Change in summer precip., from baseline, % 

Mean precip., 

winter, mm Change in winter precip., from baseline, % 

Site Baseline 

RCP4.5 RCP8.5 

Baseline 

RCP4.5 RCP8.5 

Min 

GCM 

Max 

GCM 

Min 

GCM 

Max 

GCM 

Min 

GCM 

Max 

GCM 

Min 

GCM 

Max 

GCM 

AP 64  -25  12  -26  12  77  -4  35  -6  38  

AW 57  -28  13  -26  10  54  -5  34  -5  31  

BD 52  -26  16  -25  22  73  -8  26  -3  34  

BW 63  -25  19  -26  20  84  -10  28  -6  31  

CB 66  -21  13  -23  13  112  -5  31  -4  35  

DY 63  -11  9  -11  10  66  -3  32  -7  37  

EH 47  -25  27  -25  30  61  -8  28  -4  32  

ES 129  -21  10  -19  7  178  -5  36  -3  32  

HV 62  -18  14  -20  14  74  -5  39  -5  41  

HX 56  -28  23  -28  22  76  -8  27  -5  30  

KI 63  -9  5  -15  10  54  -6  24  -10  31  

LE 58  -20  16  -20  18  51  -4  34  -6  41  

LU 64  -13  6  -11  8  55  -1  33  -4  39  

MA 58  -23  20  -26  23  50  -7  34  1  38  

NW 63  -23  15  -27  10  118  -6  27  -5  29  

RG 65  -25  16  -24  18  71  -5  38  -6  39  

RR 60  -31  20  -32  22  62  -8  28  -3  33  

SC 64  -27  18  -24  18  49  -1  34  -2  38  

SF 99  -21  12  -19  10  204  -9  32  -8  30  

SQ 89  -19  14  -23  18  136  -2  35  -3  36  

TY 53  -18  10  -20  12  49  -5  37  -8  39  

WD 60  -24  12  -28  17  45  -4  30  -5  36  

WH 59  -24  24  -26  25  45  -4  37  4  43  

WK 60  -13  8  -17  11  66  -2  30  -8  32  

WT 46  -21  10  -21  14  48  -1  40  -3  42  
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Abstract  

Instability (or variability) in farm income represents a significant challenge for farm 

management and the design of public policies. Identifying farming practices which can 

increase the stability of farm income may help farms to cope with shocks such as extreme 

weather events and economic challenges. Farming practices associated with increasing 

agricultural diversity and agri-environment schemes are considered to improve ecological 

functions and landscape resilience, however, their effect on the stability of farm income is not 

well known. Using a multilevel model, we analyse the effect of a range of farming practices 

and subsidies on the stability of farm income, and their relative importance, using four 

different measures of stability. We examine data for 2,333 farms in England and Wales, from 

2007 to 2015, and use separate multilevel models for a range of different farm types to 

provide targeted recommendations for farmers. Here we show that greater agricultural 

diversity (i.e. lower degree of specialisation in different crop and livestock activities) 

increases the stability of farm income, in dairy, general cropping, cereal and mixed farms. 

Agricultural diversity is a particularly important factor for general cropping farms; increasing 

the degree of specialisation by one standard deviation (we use standardised coefficients), 

increases the variability of income by approximately 20%. Dairy, general cropping and mixed 

farms that receive more agri-environment payments also have more stable incomes, reducing 

variability by between 4 and 8%. In contrast, an increase in direct subsidies paid to farmers 
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based on the area farmed is associated with a relatively large decrease in the stability of farm 

income, ranging from 6-35% across most farm types. Reducing the intensity of inputs is 

found to be an important factor increasing the stability of income for all farm types; on 

average reducing the intensity of inputs reduces variability of income by 20%. Practices 

associated with increasing agricultural diversity and agri-environment schemes have 

previously been found to lead to a better provision of ecosystem services and resilience to 

abiotic stresses, reducing the need for expensive chemical inputs. Engagement in 

environmentally sustainable farming practices including agri-environment schemes, 

increasing agricultural diversity, and reducing the intensity of inputs, may increase the 

stability of many farm businesses whilst at the same time reducing negative impacts of 

farming on the environment.  

 

Graphical Abstract 
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1 Introduction 

Farm incomes are subject to a variety of threats including unpredictable weather, 

changes in policy or regulation, variation in the price of outputs and rising input costs 

(OECD, 2009). Levels of farm income are important, but the stability of income is also a key 

issue for agricultural businesses. Fluctuating incomes can affect farm decisions and the 

ability of a farm to sustain its operations year to year (Mishra and Sandretto, 2002; Severini 

et al., 2016). Instability (or variability) in farm income represents a significant challenge for 

farm management and the design of public policies. Greater stability of farm income, over a 

range of conditions, could improve the economic viability and sustainability of farms and 

therefore help maintain continuity in food production for a growing population with 

increasing demands for food (FAO, 2009). How we balance the need for food, the stability of 

farm businesses, as well as the protection of biodiversity and the environment also represents 

a major challenge.  

Research has examined drivers of agricultural system dynamics (i.e. changes over 

time), however, quantitative assessments remain rare, particularly at the farm level 

(Dardonville et al., 2020). We summarise a range of farming practices and government 

payments which may support stability of farm income and the gaps identified in previous 

research.  

One important strategy considered to increase the ability of agricultural systems to cope 

with shocks and variability, is increasing agricultural diversity (Dardonville et al., 2020; 

Gaudin et al., 2015; Urruty et al., 2016). Practices associated with increasing agricultural 

diversity involve harnessing ecological functions to increase the resilience and sustainability 

of landscapes and tend to have a positive impact on the natural environment (Pretty, 2008; 

Pretty and Bharucha, 2014; Rockström et al., 2017).  Diversification of crop and livestock 

activities is commonly recognised as an effective tool for managing business and climatic 

risks, by lessening the effects of variable commodity markets and weather, at the farm level 

(Bradshaw et al., 2004; Castañeda-Vera and Garrido, 2017; Martin et al., 2017). The effect of 

agricultural diversification on economic stability has previously been examined using 

different financial variables. Greater diversification of crop and livestock revenue has been 

associated with an increase in the stability of gross farm revenue and household income 

across valley, hill and mountain regions of Switzerland (El Benni et al., 2012). In addition, 

growing a wider range of crops or using a mixed cropping and livestock system has been 

found to stabilise return on capital, for lowland and small upland farms in Argentina (Pacín 
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and Oesterheld, 2014). Further empirical studies are warranted to validate the relationship 

between agricultural diversity (degree of specialisation in different crop and livestock 

activities) and the stability of agricultural systems in different contexts and at different spatial 

and temporal scales (Dardonville et al., 2020; Urruty et al., 2016), particularly for a range of 

farm types.  

Previous research examining the effect of farming intensity (based on input or output 

intensity) on the stability of farm income has found mixed results. Nitrogen fertiliser and 

pesticides have been found to increase yield but, similarly, their effect on the variability of 

yields is unclear (Dardonville et al., 2020). Intensification commonly relies upon a greater 

use of expensive agri-chemicals (Geiger et al., 2010). Higher pesticide and fertiliser costs, 

used as a proxy for physical quantities, have previously been associated with an increase in 

crop income by boosting production, but also with an increase in the variability (decrease in 

stability) of crop income (Enjolras et al., 2014). In contrast, Reidsma et al. (2009) found that 

variability of farm income was higher on less intensive farms across Europe, measured using 

total output per hectare (€). However, they did not test whether this varied between farm type, 

for example cereal or grazing farms, which require different levels of intensity. Further 

analysis would therefore help understand how increasing intensity, via the use of expensive 

inputs, affects the stability of farm businesses.  

The Common Agricultural Policy (CAP) scheme currently supports producer incomes 

in the European Union (EU), and a central aim is to reduce income variation by reducing 

domestic price volatility (El Benni et al., 2012; OECD, 2009). The CAP provides payments 

to farmers across the EU via two main categories: Pillar 1 provides direct payments to 

farmers and market support, with the majority dedicated to payments based on the area 

farmed (namely the Single Payment Scheme (SPS) which was replaced by the Basic Payment 

Scheme (BPS) in 2015). Pillar 2 pays farmers to implement environmentally friendly actions, 

e.g. installing hedges, through voluntary agri-environment schemes or to support the wider 

rural economy. Agricultural subsidies have been argued to play a role in stabilising farm 

incomes (Castañeda-Vera and Garrido, 2017; Enjolras et al., 2014; OECD, 2009) as the 

variability in subsidies is potentially lower than other agricultural income (Severini et al., 

2016). However, empirical studies have also found the opposite effect; Reidsma et al. (2009) 

found that variability was higher on farms that received more subsidies per hectare, across 

regions of Europe. Previous analysis in Italy has also linked direct payments to an increase in 

crop income variability (from production only), suggesting these payments may encourage 
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farmers to engage in riskier production practices (Enjolras et al., 2014). Further quantitative 

studies are warranted to evaluate the relationship between direct subsidies across a range of 

farm types and in different European countries (Castañeda-Vera and Garrido, 2017). In 

addition, the effect of agri-environment scheme payments (Pillar 2), which compensate 

farmers for implementing measures to benefit the environment or biodiversity, on the 

stability of farm income has not been examined previously. 

Across Europe and a range of farm types, larger farms have been associated with 

greater stability of farm income (El Benni et al., 2012; European Commission, 2009; 

Reidsma et al., 2009; Severini et al., 2016). Larger farms may benefit from greater economies 

of scale, as well as, a wider range of soils and landscapes and therefore may be better able to 

cope with extreme or adverse weather across the farm (El Benni et al., 2012; Marra and 

Schurle, 1994). However, further evidence is needed across a range of farm types, to 

understand the relative importance of farm size compared to a range of farming practices and 

subsidies, on the stability of farm income. 

On-farm diversification is considered an important strategy to reduce reliance on 

income from agricultural production which is subject to a wide variety of price fluctuations 

and climate stresses (McNally, 2001; McNamara and Weiss, 2005). On-farm diversification 

refers to activities which are fully integrated and derive income for the farm business, for 

example, income from a farm campsite or letting farm buildings. A greater proportion of 

income from on-farm diversification has previously been found to increase the economic 

sustainability of farm businesses in Scotland, by providing an hourly return to the farmer of at 

least the minimum wage (Barnes et al., 2015). The effect of on-farm diversification on the 

year-to-year stability of farm business income has been less investigated. A large number of 

studies have examined how reliance on off-farm income (from off-farm employment outside 

of the farm business) affects the stability of household or farmer income, with mixed results 

(e.g. El Benni et al., 2012; Jetté-Nantel et al., 2011; Mishra and Sandretto, 2002). A larger 

share of household income from off-farm employment has been associated with a decrease in 

the stability of farm revenue, considered a result of a shift in labour and potentially riskier 

agricultural production with farmers feeling more protected by alternative income sources (El 

Benni et al., 2012). Whether income from on-farm diversification has a similar effect on 

instability of farm income, or conversely increases stability by providing a more stable source 

of income is not well known. 
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The stability of farm income has previously been measured using a range of different 

indices, across different temporal scales (e.g. Barry et al., 2001; El Benni et al., 2012; 

Loughrey and Hennessy, 2016; Pacín and Oesterheld, 2014; Reidsma et al., 2009; Reidsma 

and Ewert, 2008). Alternative methods for measuring stability of income may provide 

different results, affecting the interpretation of a stable farm business. Therefore, we use a 

range of stability measures to provide a robust and more comprehensive analysis. In this 

study we use four stability measures to investigate the effect of farming practices and 

agricultural policy on the stability of farm income in England and Wales between 2007 and 

2015, using a multilevel mixed effects model.  

This study examines a range of different farm types, based on type of production, 

which can exhibit very different farm management and characteristics, for example livestock 

is considered a lower risk production output than crops (Chavas et al., 2019). Farms are often 

restricted to a type of production due to a substantial machinery investment or landscape 

characteristics, therefore, we analyse the effect of farming practices and agricultural policy 

for each farm type separately to provide targeted recommendations for farmers. Previous 

evidence, in other territories, has either focused on one production or farm type, or used a 

single measure of stability.  

We examine a range of farming practices and subsidies which, as overviewed above, 

previous literature has indicated may support the stability of farm businesses in different 

territories, or with mixed results, using different measures of stability. Understanding which 

management changes are beneficial to agriculture in the current climate, across different 

scales and a range of environments is important for understanding the adaptation options 

available in agriculture (Porter et al., 2014). The main aims of the present study are to 

provide comprehensive analysis of the effect of farming practices and subsidies on the 

stability of farm income, and their relative importance. Our results are useful in informing 

farmers which practices may aid in managing income stability and lead to a more robust farm 

business in the face of increasingly variable weather or future economic shocks.  

 

2 Materials and methods 

2.1 Data and study area 

The Farm Business Survey (FBS) is a survey conducted in England and Wales, 

collecting extensive information on the physical and economic performance of approximately 

2,500 farm businesses annually (Department for Environment Food and Rural Affairs, 2020). 
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The population of farms covered by the survey is detailed in the supplementary materials. 

Farms are classified into farm types according to which crop or livestock production accounts 

for more than two-thirds of standard gross margin (SGM). We analyse FBS data from 2007 to 

2015 for the following six farm types: dairy, cereals, general cropping (arable crops including 

field scale vegetables account for more than two-thirds of SGM), mixed (no other type 

accounts for more than two-thirds of SGM), Less Favoured Area (LFA) grazing (grazing 

livestock accounts for more than two-thirds of SGM and 50 per cent or more of the total land 

area is in LFA) and lowland grazing farms. Horticulture farms were excluded due their 

complexity (large diversity in production), as well as, pig and poultry farms due to small 

sample sizes. The data was examined for outliers and inconsistencies and less than 0.2% of 

observations, considered to be erroneous, were removed. 

Farm business income per hectare is used as the measure of income in this study and is 

calculated as the sum of: total output from agriculture, on-farm diversification and subsidies, 

less all fixed and variable costs, including paid labour and depreciation, and profit or loss 

from the sale of fixed assets. Farm business income represents the financial return to all those 

invested in the business (farmers, partners, shareholders) and is in essence the same as 

financial net profit. Farm business income enables the analysis of changes in income over 

time and is also used by policy makers when assessing the impact of new policies on the 

individual farm business (Department for Environment Food and Rural Affairs et al., 2018), 

therefore is the preferred measure of income in our study. 

 

2.2 Measuring the stability of farm income 

Stability of agricultural production or income is often measured by examining its 

variability; high stability of income is associated with low variability. We summarise the key 

measures of stability (or variability) used in studies that have previously examined the 

stability of income, using panel data. Stability has been measured over several time periods, 

to indicate medium-term stability, or as an annual deviation in income from the prior year or 

years. Stability has also been measured by examining absolute variability, or as a relative 

measure (ratio) to allow comparison between farms with different means. In this study we use 

four different measures for the stability of farm income (Table 1): two annual (or short-term) 

measures of stability (absolute and relative anomaly) and two medium-term measures of 

stability using the standard deviation and relative standard deviation of farm income.  
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2.2.1 Annual measures of stability 

To measure stability of a given year or season, we use the absolute anomaly calculated 

as the deviation in income from the expected income. Determining the expected income 

requires some consideration. Reidsma et al. (2009) considered using the trend in income per 

farm type over a 14 year period, however since the trend was often not different from zero, 

the authors used the mean income per farm type as an indicator of expected income. 

Measuring the absolute deviation from the mean income per farm type indicates the variation 

in income, for a particular year, from the average performance of farms considered to have 

similar characteristics. A compromise of this approach is that calculating absolute deviation 

from the mean for each farm type can result in large absolute anomaly values for those farms 

with income consistently above (or below) the farm type mean, even though these farms may 

show low variability in their own income year to year. In this study we calculate the absolute 

anomaly using the annual deviation from the individual farm mean, over a five-year rolling 

period. This provides an indication of the deviation in farm income from the average 

performance at the individual farm. We use a five-year rolling period1 to calculate the four 

stability measures in this study, therefore we consider only farms with a minimum of five 

consecutive years of data in the Farm Business Survey. 

Annual stability in farm income and crop yields have also been examined using the 

relatively anomaly; the ratio of the absolute anomaly and the expected income (Reidsma et 

al., 2009). Using a relative measure enables stability of farm income to be directly compared 

across farms (or farm types) with different means. However, relative measures should only be 

used with ratio data where there is a true or absolute zero. To examine relative stability on an 

annual basis we calculate the relative anomaly by dividing the absolute anomaly for the 

individual farm, by the 5-year rolling mean of each farm type (which is always positive) 

therefore accounting for temporal changes in the mean farm business income over the period 

 

 

1 We calculated stability measures over longer (13 years) and shorter time periods (3 years), these 

measures were highly correlated both with one another and with the 5-year measures (shown in Table 

1). We chose a 5-year period to enable us to capture temporal changes over the dataset but also 

include sufficient data points to calculate the mean income. 
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2007 to 2015. This gives an indication of the relative deviation from the average performance 

of farms considered to have more similar characteristics (e.g. as per Reidsma et al. (2009)).  

 

2.2.2 Medium-term measures of stability 

A common method of measuring absolute stability of income in the medium or long-

term is the standard deviation (SD) (Loughrey and Hennessy, 2016; Pacín and Oesterheld, 

2014). This indicates, for an individual farm or farm type, the amount of variation or 

dispersion around the mean over time. Measuring the SD of income at the farm level enables 

assessment of differences in stability between individual farms, which is not possible when 

examining SD for each farm type. Similar to the method used in Barry et al. (2001) and El 

Benni et al. (2012) we calculate the standard deviation by splitting the full data set (2005-

2017) into 13 overlapping time periods, each containing 5 consecutive years of farm business 

data per farm e.g. the standard deviation for 2007 comprises 5 income records for each farm 

with data for all years between 2005 and 2009 inclusive.  

The coefficient of variation (CV; SD divided by the mean) has also been used to 

analyse temporal variation in farm income (Barry et al., 2001; El Benni et al., 2012). Using a 

relative measure such as the CV, enables stability of farm income to be compared directly 

between farms, or farm types, with different means. However, as above, relative measures 

should only be used with ratio data where there is a true or absolute zero. Farm business 

income in this study measures the financial return to farmers or shareholders, therefore can be 

a positive (profit) or negative (loss) figure. As a result, the CV at the farm level (farm SD 

divided by the mean farm income) can be very large where the mean is close to zero (due to 

positive and negative income values) and in such instances does not accurately measure 

stability. We did not want to restrict the analysis to farms which only made a profit since this 

would not represent the full range of farms in England and Wales. Equally, we did not want 

to use an alternative measure of financial performance since Farm Business Income is a key 

measure of financial performance, widely used by policy makers to assess the impact of new 

policies on the individual farm business. To examine relative stability in the medium term we 

calculate a relative (or scaled) standard deviation by dividing the standard deviation for the 

individual farm by the rolling 5-year mean income of each farm type, therefore accounting 

for temporal changes in the mean income over the period 2007 to 2015. The rolling 5-year 

farm type mean income is always positive. This relative standard deviation is calculated using 

the mean income of farms with similar characteristics. Similar methods (scaling using the 
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mean for each farm type) have been used to calculate relative stability in previous studies 

(e.g. Reidsma et al., 2009; Reidsma and Ewert, 2008). Table 1 outlines the four measures 

used to examine stability of farm income in our analysis.  

Econometric studies have also examined changes in agricultural production and income 

by measuring the cost or willingness to pay to reduce risk, and exposure to downside risk 

(low yields or income) (Antle, 1987; Chavas, 2019; Chavas et al., 2019). Our study does not 

examine upside or downside risk separately, but instead we examine relative or absolute 

variation in income around the mean, each year and over 5 years. Large changes in income, 

particularly over a number of years, can be challenging for farm planning and management 

and therefore our results hope to inform which farming practices and subsidies are associated 

with less variable income, using these 4 alternative measures of stability. 
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Table 1 - Measures of stability of Farm Business Income (FBI) used in this analysis 

Stability measure Calculation What measure shows? 

Short-term/annual measures 

1 Absolute anomaly: 

absolute deviation from 

the rolling 5-year 

mean* FBI per ha (of 

individual farm) 

 

𝐴𝐵𝑆𝑖𝑡 = |𝑌𝑖𝑡 − �̅�𝑖| 
 

where �̅�𝑖 =
1

5
(∑ 𝑌𝑖)

𝑡+2
𝑡−2  

Absolute deviation in FBI per 

ha at each farm, from the 

average performance at the farm 

�̅�𝑖, in year t. 

2 Relative anomaly: ratio 

of absolute anomaly 

from farm mean 

(measure 1) divided by 

rolling 5-year mean* 

FBI per ha (per farm 

type) 

𝑅𝐸𝐿𝑖𝑡 =
𝐴𝐵𝑆𝑖𝑡

�̅�𝑚,𝑖

 

 

where �̅�𝑚,𝑖 = mean
∀ 𝑡𝑦𝑝𝑒 𝑚

(�̅�𝑖) 

 

Relative deviation in FBI per 

ha; absolute deviation in FBI per 

ha from the mean performance 

at the individual farm, scaled to 

the 5-year rolling mean FBI per 

ha of farms of the same type m 

(across England and Wales), in 

year t. 

Medium term measures 

3 Standard deviation: 

Rolling 5-year SD of 

FBI per farm 𝑆𝐷𝑖 = √
1

4
∑(𝑌𝑖𝑡 − �̅�𝑖)2

𝑡+2

𝑡−2

 

The amount of variation or 

dispersion in FBI per ha at the 

individual farm over a 5-year 

period. 

4 Relative (scaled) 

standard deviation:  

Rolling 5-year SD of 

FBI per farm (measure 

3) divided by rolling 5-

year mean FBI per ha 

(per farm type) 

 

𝑅𝐸𝐿. 𝑆𝐷𝑖 =  
𝑆𝐷𝑖

 �̅�𝑚,𝑖

 

The amount of variation or 

dispersion in FBI per ha at the 

individual farm, scaled to the 5-

year rolling mean FBI per ha of 

farms of the same type m (across 

England and Wales), in year t. 

*We also calculated the absolute anomaly and relative anomaly per farm type using the median FBI 

per ha, these measures were very strongly positively correlated (Pearson’s coefficient >0.98) with the 

absolute anomaly using the mean income, therefore the mean was used for consistency across all 

measures. 

 

2.3 Factors associated with the stability of farm income 

In this study we analyse the factors affecting the stability of farm income for each farm 

type, based on the type of production (dairy, cereals, general cropping, mixed, LFA grazing 

and lowland grazing farms). We are not focused on comparing farm types, however, farm 

characteristics and practices, e.g. size, intensity and diversity often vary significantly between 

farm types, therefore, we use separate models to quantify how each covariate affects stability 
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for each farm type. The results of a comparative multilevel model including all farm types 

and farm type interactions are included in the supplementary material. 

The definition and calculation of farming practices and EU subsidy payments 

examined, are shown in Table 2. To examine farming intensity across a range of farm types 

we use the IRENA indicator 15, which is calculated as the total cost of fertiliser, crop 

protection and concentrated animal feed per hectare (European Environment Agency, 2005). 

This IRENA indicator was developed to identify intensive, high input farms in comparison to 

extensive farms believed to have a lower environmental impact (European Environment 

Agency, 2005). The Farm Business Survey (FBS) does not provide a complete record of 

physical input quantities (e.g. fertilisers and pesticides used), and the IRENA indicator has 

previously been used to examine farming intensity in the FBS data across a range of farm 

types (crops and livestock) (Gerrard et al., 2012).  

Agricultural diversity (or inversely specialisation) of crop and livestock activities has 

been examined using the Herfindahl index (El Benni et al., 2012; Poon and Weersink, 2011). 

The Herfindahl index is calculated based on the proportion of gross farming revenue earned 

from crops (including wheat, barley, oilseed rape and other key crops) and livestock 

production (including milk and cattle production and other livestock products). The index 

ranges from 0 to 1 with lower values indicating a higher degree of agricultural diversity. An 

alternative measure of agricultural diversity is the Shannon Index, which calculates the 

diversity of crops grown (number of crops and their proportional representation) (Gerrard et 

al., 2012). However, we found the Herfindahl index more suitable to identify diversity across 

a range of different farm types.  

To examine agri-environment payments we use total rural development payments 

(pillar 2) per hectare, which comprise primarily agri-environment schemes, as well as, 

dedicated support for LFA farmers (refer to the supplementary materials for details of the 

schemes in operation during the study period). 

Summary statistics for the variables used in this study are shown in Table 3. The UK 

Consumer Price Index is used to deflate all monetary variables, including farm business 

income, to account for the change in the value of money over time (ONS, 2020).  
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Table 2 - Definition and calculations of variables (farm characteristics, farming practices and 

EU subsidy payments) analysed in the study 

Independent variable Calculation 

Farm characteristics  

Farm size  Area farmed (hectares) = The utilised 

agricultural area, plus land let in /minus land 

rented out 

Farming practices  

Intensity of inputs  The total cost of fertiliser, crop protection and 

concentrated animal feed (£), per hectare (area 

farmed) (IRENA indicator 15; European 

Environment Agency, 2005; Gerrard et al., 2012) 

Agricultural specialisation (inverse of 

diversification) 𝐻𝑒𝑟𝑓𝑖𝑛𝑑𝑎ℎ𝑙 𝑖𝑛𝑑𝑒𝑥 (𝑆) =  ∑(𝑝𝑖)
2

𝑛

𝑖=1

 

 

Where n is the total number of farming activities,  

𝑝𝑖is the proportion of revenue earned from the i-

th farming activity (revenue from farming 

activity divided by the total farming revenue). 

Can also be written as sum of revenue for each 

farming activity squared, divided by total 

revenue for agriculture squared: 

(Wheat2+ barley2 + other cereals2 + oilseed rape2 

+ peas and beans2 + potatoes2 + sugar beet2 + 

horticulture2 + other crops2 + by-products and 

forage2 + milk2 + cattle2 + sheep2 + pigs2 + eggs2 

+ chickens and other poultry2 + other livestock2 

+ other agriculture2) /total agricultural gross 

revenue2 

On-farm diversification  Reliance on diversified income (activities 

integrated into the farm business, in addition to 

agricultural output) = Gross revenue (output) 

from on-farm diversification (£) divided by total 

gross revenue (output) (£) 

EU subsidies (Agricultural policy)  

Direct payments per hectare 

 

Total direct payments (£) (Primarily the single 

payment scheme or basic payment scheme), per 

hectare (area farmed) 

Agri-environment payments per hectare Total payments under rural development policy 

(£; pillar 2), per hectare (area farmed) 
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Table 3 - Summary statistics of FBS data (2007-2015); values deflated using UK Consumer Price Index (2015=100; ONS, 2020).  

 
All Farms Dairy Cereals Gen. cropping Mixed LFA Grazing Lowland Grazing 

Farm Business Income (FBI) per ha (£)  364.95   599.38   387.18   532.18   297.43   200.34   266.83  

        

Dependent variables        

Absolute anomaly of FBI per ha (£)  142.16   209.88   156.99   217.82   131.42   77.73   115.40  

Relative anomaly of FBI per ha (£)  0.42   0.36   0.44   0.43   0.43   0.42   0.47  

Standard deviation of FBI per ha (£)  195.14   281.13   214.02   291.36   184.12   112.95   160.00  

Relative SD of FBI per ha (£)  0.59   0.49   0.61   0.57   0.61   0.61   0.65  
 

       

Independent variables        

Specialisation (Herfindahl index) (0-1)  0.58   0.71   0.40   0.38   0.49   0.63   0.69  

Input intensity per ha (£)  431.07   954.45   330.67   407.19   616.18   173.58   211.11  

Direct payments (SPS/BPS) per ha (£)  226.17   227.11   240.58   235.50   221.11   213.40   229.78  

Agri-environment payments per ha (£)  53.04   33.30   50.23   40.25   47.56   71.91   58.45  

Area farmed (hectares)  188.65   132.03   233.13   277.44   191.88   205.02   120.63  

On-farm diversification (reliance) (0-1)  0.04   0.02   0.07   0.04   0.05   0.02   0.06  

         

Number of observations  12,628   2,635   2,367   1,086   1,139   3,687   1,714  

Number of farms  2,333*   503   514   268   319   645   390  

Number of counties/unitary authorities  78   54   56   39   57   35   53  

*Note 283 farms change between farm types during the period, therefore appear in more than one farm type group during the relevant years. 
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2.4 Multilevel (two-level linear mixed effect) model 

The Farm Business survey collects extensive data on farm characteristics of individual 

farms across England and Wales on an annual basis. Many farms remain in the survey each 

year, however membership in the survey can change and therefore the data represents an 

unbalanced panel between 2007 and 2015.  

We estimate a multilevel (two-level linear mixed effect) model to examine the effect of 

a range of farm characteristics, farming practices and EU subsidies on the stability of farm 

income. This type of model can easily accommodate unbalanced data (Laird and Ware, 1982; 

Snijders and Bosker, 1999) and has been used previously to examine the influence of 

management on farm income (Reidsma et al., 2009, 2007). A multilevel model accounts for 

dependency within the data; observations are likely to be correlated in two ways, firstly 

because they are from the same farm (level 1), and secondly because farms belong to the 

same county or unitary authority (level 2) and are therefore likely to have a more similar 

climate or soil conditions than farms in different locations. A map of county and unitary 

authority boundaries (hereafter referred to as counties) is included in the supplementary 

materials (Supplementary Figure 1). We estimate the following two-level mixed model with 

farms nested within counties, based on restricted maximum likelihood (REML) using each of 

the four dependent variables measuring the stability of income2:  

 

log(Ytjk) = β0 + β1specialisationjk + β2intensityjk + β3direct paymentsjk + β4direct 

paymentsjk ∙ yearjk + β5agri-environment paymentsjk + β6yearjk + β7area farmedjk + β8on-farm 

diversificationjk + uk + rjk + etjk                    (1) 

 

where Y is the variability of income (instability), for each farm observed at level j=1, 

…, J, (level 1) nested into k=1, …, K counties (level 2), with also t = 1, ..., Tj periods for 

each, j, farm, β0 is the mean intercept across all groups, the regression coefficients β1,..., βp, are 

common to all groups, uk is the random intercept for level 2 (counties), rjk is the random 

intercept for level 1 (farms) and etjk is the level 1 residual (error term). 

 

 

2 A multilevel model performed significantly better (p value <0.05) than a linear (OLS) model when 

examining the null hypothesis that the level 1 and 2 groupings are equal to zero.  
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Multilevel models account for this dependency or nesting structure (farm and county) 

by splitting the residual into two uncorrelated components (Rabe-Hesketh and Skrondal, 

2012); firstly a permanent component, known as the random intercept or random effect which 

is specific to the farm (or county) and represents variation between farms (or counties). The 

random intercept is uncorrelated across farms (or counties) and represents characteristics of 

variables not included in the model. Secondly there is an idiosyncratic component or within-

farm (level 1) residual which is uncorrelated across time and farm. The multilevel model was 

also run with a further level, region (n=9), nested above county however this resulted in very 

little change to the model results. In each of the models, independent variables (listed in 

Table 2 and Table 3) were used as fixed effects and have been standardised (centred around 

zero, with a SD of 1) to account for the differences in scale between variables and in order to 

analyse the comparative effect size of each covariate. For models examining stability of 

income in the medium-term (standard deviation and relative standard deviation of farm 

business income per ha), the independent variables are averaged over the same five-year time 

period used to derive the dependent variables (Table 1). Year, t, is also included as a 

continuous fixed effect to examine the trend in income stability over time, as well as, any 

interaction between time and the value of direct payments per hectare. Model residuals were 

checked for normality and heteroskedasticity and all measures of income stability were log 

transformed to account for the non-normal distribution of the income data, to reduce the 

impact of outliers, and improve model fit based on the Akaike Information Criteria (AIC). To 

assess the explanatory power of the models, marginal R2 was calculated following Nakagawa 

and Schielzeth (2013) using the r2glmm package in R (Jaeger, 2017; R Core Team, 2019). 

For models examining stability of income in the medium-term we account for temporal 

autocorrelation in the farm specific error term using the corCAR1 function of the nlme R 

package (Pinheiro et al., 2019) by fitting a continuous first order autoregressive process. 

Before fitting the models, we checked for outliers and collinearity using pairwise scatterplots, 

in addition, correlation coefficients between independent variables were all <0.3 (therefore 

less than the recommended threshold of 0.7; Dormann et al. (2013).   

 

3 Results 

3.1 The effects of farming practices and subsidies on the variability of income  

Tables 4-7 show the results of the four multilevel (two-level linear mixed effect) 

models, using four measures of variability (inverse of stability) and include coefficients 
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indicating the relative strength of factors affecting the variability of income by farm type. 

Models use the log of the dependent variable, therefore the exponent of the coefficient, minus 

1 multiplied by 100, provides the percentage change in the variability of income (instability) 

for every increase in the independent variable by one standard deviation, holding all other 

predictors constant. 

Farming practices and subsidies explained a greater part of the variance when 

examining the stability of income in the medium term, using the standard deviation and 

relative standard deviation (marginal R2 between 0.12 and 0.39). The variance explained by 

fixed factors examining the effect on annual variability of income was often small (marginal 

R2 between 0.02 and 0.15). The Farm Business Survey provides summarised farm data which 

we use to examine the effect of farming practices and subsidies, however, the stability of 

income could also be affected more by specific farm management, as well as changing 

environmental conditions (e.g. climate variability). When comparing results across all 

measures of variability, we found regression results show the same relationships between 

farming practices and EU subsidies across all the four measures, however, the significance 

levels vary in a few instances. In addition, correlations between the measures of variability 

(Supplementary Table 1) show short-term variability is correlated with medium-term 

variability indicating farms with larger annual variability are more likely to also show larger 

variability of income over several years.  

 

3.1.1 Annual variability of farm income 

Table 4 and Table 5 show the results of the multilevel model explaining the factors 

affecting the variability (inverse of stability) of income on an annual basis, using the log of 

the absolute and relative anomaly respectively.  

Greater specialisation (or less diversity in crops and livestock activities) increases 

variability of absolute and relative income, between 8 and 21% with a significant relationship 

for dairy, general cropping and mixed farms. For general cropping farms, specialisation of 

agricultural activities has the largest relative effect on the variability of income in comparison 

to other covariates; increasing the Herfindahl index by 1 standard deviation increases the 

variability of income by approximately 20%. Increasing intensity (spending more on 

fertiliser, pesticide, or concentrated animal feed) is associated with an increase in variability 

of farm income between 20 and 30% for both absolute and relative income for all farm types, 

with exception of cereal farms where the effect is smaller (<10%).  
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An increase in direct payments per hectare of 1 standard deviation increases the 

variability of income in absolute and relative terms for dairy and LFA grazing farms by 25 

and 35% respectively, in addition, greater direct payments increase the variability of relative 

income for lowland grazing farms (16%). Over time the effect of direct payments decreases 

(approximately 3% per year), as the value of direct payments per hectare has generally fallen 

over the period (Supplementary Figure 2). The effect of agri-environment payments is 

smaller than direct payments and differs between farm types: for dairy, general cropping and 

mixed farms an increase in agri-environment payments per hectare decreases the variability 

in absolute and relative income between 5 and 7%, whereas for LFA grazing farms agri-

environment payments increase the variability in annual farm business income by 6%.  

When considering temporal changes in the mean farm business income per ha, 

variability in income, using the relative anomaly, increases for dairy, mixed and LFA grazing 

farms, indicating income for these farm types is becoming increasingly unstable. Increasing 

farm area is associated with a decrease in the variability in income in both absolute and 

relative terms. An increase in utilised agricultural area by 1 standard deviation is associated 

with a decrease in variability between 5 and 20% for all farm types, with exception of general 

cropping where there is no significant relationship. Increasing reliance on revenue from on-

farm diversification (activities integrated into the farm business, in addition to agricultural 

output) increases the variability of farm business income for dairy and grazing farms, 

however, the effect (4-8% increase) is smaller than other farming practices examined. 

Whereas greater reliance on income from on-farm diversification does not significantly affect 

the variability of income for general cropping, cereal and mixed farms.   
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Table 4 - Multilevel model results using (log) absolute anomaly of farm business income per 

hectare as dependent variable. Showing the effect of farming practices and subsidies on the 

variability of farm income. Significant at: *10, **5 and ***1 percent levels. 

 

  

  Dairy Cereals Gen. cropping Mixed LFA Grazing Lowland Grazing 

Random effects              

County SD 0.000 
 

0.000  0.110  0.205  0.126  0.065 
 

Farm SD 0.272 
 

0.210  0.364  0.315  0.248  0.346 
 

Level-1 residual 1.100 
 

1.187  1.072  1.117  1.094  1.115 
 

Fixed effects  

(Standard Error) 
                  

Intercept 

 

4.591 *** 4.983 *** 5.137 *** 4.336 *** 3.705 *** 4.386 *** 

(0.077)  (0.083)  (0.117)  (0.123)  (0.066)  (0.088)  

Specialisation 

(agricultural) 

 

0.111 *** 0.018  0.192 *** 0.076 * 0.028  0.008  

(0.026)  (0.026)  (0.043)  (0.043)  (0.021)  (0.033)  

Input intensity 

 

0.186 *** 0.089 *** 0.186 *** 0.258 *** 0.200 *** 0.201 *** 

(0.028)  (0.028)  (0.041)  (0.042)  (0.023)  (0.034)  

Direct payments per 

ha 

 

0.217 *** 0.064  -0.150  -0.040  0.301 *** 0.108  

(0.065)  (0.072)  (0.110)  (0.118)  (0.057)  (0.074)  

Year x direct 

payments per ha 

 

-0.029 *** 0.011  0.022  0.015  -0.019 ** -0.012  

(0.010)  (0.010)  (0.016)  (0.016)  (0.008)  (0.013)  

Agri-environment 

payments per ha 

 

-0.050 ** -0.037  -0.072 * -0.078 ** 0.054 ** 0.030  

(0.025)  (0.029)  (0.041)  (0.040)  (0.022)  (0.033)  

Year 

 

0.033 *** -0.058 *** -0.038 ** 0.004  0.016 ** -0.023 * 

(0.010)  (0.011)  (0.016)  (0.016)  (0.008)  (0.012)  

Area farmed 

 

-0.123 *** -0.054 ** 0.016  -0.138 *** -0.224 *** -0.190 *** 

(0.026)  (0.027)  (0.045)  (0.043)  (0.024)  (0.035)  

On-farm 

diversification 

 

0.041 * 0.041  0.045  0.060  0.077 *** 0.075 ** 

(0.025)  (0.027)  (0.041)  (0.041)  (0.020)  (0.032)  

                          

Observations (n) 2,635  2,367  1,086  1,139  3,687  1,714 
 

County (n) 54  56  39  57  35  53 
 

Farm (n) 503  514  268  319  645  390 
 

 
           

 

AIC          8,184  7,666  3,396  3,640  11,375  5,434 
 

BIC 8,254  7,735  3,455  3,700  11,450  5,499 
 

logLik -4,080  -3,821  -1,686  -1,808  -5,676  -2,705 
 

R2 0.083  0.043  0.065  0.088  0.138  0.065  
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Table 5 - Multilevel model results using (log) relative anomaly of farm business income per 

hectare as dependent variable. Showing the effect of farming practices and subsidies on the 

variability of farm income. Significant at: *10, **5 and ***1 percent levels. 

 

 

 Dairy Cereals Gen. cropping Mixed LFA Grazing Lowland Grazing 

Random effects                         

County SD 0.000  0.000  0.105  0.196  0.119  0.036 
 

Farm SD 0.270  0.210  0.363  0.322  0.251  0.354 
 

Level-1 residual 1.101  1.189  1.072  1.119  1.095  1.120 
 

Fixed effects  

(Standard Error) 
                  

Intercept 

 

-1.883 *** -1.285 *** -1.232 *** -1.794 *** -1.832 *** -1.320 *** 

(0.077)  (0.083)  (0.117)  (0.123)  (0.065)  (0.088)  

Specialisation 

(agricultural) 

 

0.118 *** 0.028  0.186 *** 0.077 * 0.025  0.008  

(0.026)  (0.027)  (0.043)  (0.043)  (0.021)  (0.033)  

Input intensity 

 

0.185 *** 0.066 ** 0.179 *** 0.258 *** 0.207 *** 0.201 *** 

(0.028)  (0.028)  (0.041)  (0.043)  (0.023)  (0.034)  

Direct payments per 

ha 

 

0.231 *** 0.108  -0.132  -0.007  0.302 *** 0.151 ** 

(0.066)  (0.072)  (0.110)  (0.119)  (0.057)  (0.074)  

Year x direct 

payments per ha 

 

-0.033 *** -0.001  0.015  0.007  -0.023 *** -0.023 * 

(0.010)  (0.010)  (0.016)  (0.016)  (0.008)  (0.013)  

Agri-environment 

payments per ha 

 

-0.050 ** -0.033  -0.072 * -0.076 * 0.059 *** 0.029  

(0.025)  (0.029)  (0.041)  (0.040)  (0.022)  (0.033)  

Year 

 

0.048 *** -0.004  -0.020  0.059 *** 0.059 *** 0.004  

(0.010)  (0.011)  (0.016)  (0.016)  (0.008)  (0.012)  

Area farmed 

 

-0.124 *** -0.062 ** 0.009  -0.141 *** -0.232 *** -0.195 *** 

(0.026)  (0.027)  (0.044)  (0.044)  (0.024)  (0.035)  

On-farm 

diversification 

 

0.042 * 0.043  0.049  0.061  0.082 *** 0.081 ** 

(0.025)  (0.027)  (0.041)  (0.041)  (0.020)  (0.032)  

                          

Observations (n) 2,635  2,367  1,086  1,139  3,687  1,714  

County (n) 54  56  39  57  35  53  

Farm (n) 503  514  268  319  645  390  
 

            

AIC          8,187  7,671  3,395  3,644  11,384  5,452  

BIC 8,258  7,740  3,455  3,704  11,459  5,517  

logLik -4,082  -3,823  -1,685  -1,810  -5,680  -2,714  

R2 0.092  0.015  0.061  0.101  0.145  0.062  
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3.2 Medium-term variability of farm income 

Table 6 and Table 7 show the results of the multilevel model, explaining the factors 

affecting the variability of income in the medium-term, using the log of the standard 

deviation of income and relative standard deviation respectively.  

Greater specialisation, or less diversity in crop and livestock activities, also increases 

variability of absolute and relative income in the medium term with a significant relationship 

for dairy (12%), cereal (5%) and general cropping farms. As observed using annual measures 

of stability, specialisation has the largest partial effect on variability of income for general 

cropping farms of all covariates examined, with results showing a 24% increase in variability 

is associate with an increase in the Herfindahl index of 1 standard deviation (Figure 1). Input 

intensity also increases medium-term variability in income for all farm types (by 10 to 28% 

for an increase in input intensity of 1 standard deviation). Figure 1 shows the partial effect of 

input intensity on the stability of income for general cropping farms, using the standard 

deviation of income. 

Consistent with the effect on annual variability, an increase in direct payments per 

hectare is relatively large and increases the medium-term variability of income in absolute 

and relative terms for dairy and LFA grazing farms (Figure 2) by approximately 20%. In 

addition, an increase in direct payments is associated with an increase in the variability of 

relative income in the medium-term, for cereals and lowland grazing farms, however the 

effect size is smaller (12 and 6% respectively). Over time the effect of direct payments per 

hectare on the medium-term variability in income decreases for dairy farms, however, it 

increases for cereals, mixed and lowland grazing farms. The effect of agri-environment 

payments on medium term variability is smaller than direct payments and differs between 

farm types: for dairy, general cropping (Figure 1) and mixed farms an increase in agri-

environment payments per hectare decreases the variability in absolute and relative income 

between 5 and 9%. Whereas an increase in agri-environment payments by 1 standard 

deviation for LFA grazing farms is associated with an increase in variability by 7% (Figure 

2). 

Variability in relative standard deviation of farm income, which accounts for changes in 

farm income over time, increases for dairy, cereals, mixed and LFA grazing farms, indicating 

income for these farm types is becoming increasingly unstable. Consistent with the effect on 

annual stability measures increasing farm size is associated with a decrease in medium-term 

variability in income, in both absolute and relative terms. An increase in utilised agricultural 
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area by 1 standard deviation is associated with a decrease in variability between 4 and 19% 

across all farm types, except for general cropping farms where there is no significant 

relationship. For most farm types, farm income shows greater variability in the medium-term 

with an increasing share of revenue coming from on-farm diversification, however, the size 

of the effect is smaller than most other farming practices (5-8%).  

Results of a sensitivity analysis using alternative measures of intensity and on-farm 

diversification and the impact of changes in farm type are available in the supplementary 

material.  
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Table 6 - Multilevel model results using (log) standard deviation of farm business income per 

hectare as dependent variable. Showing the effect of farming practices and subsidies on the 

variability of farm income. Significant at: *10, **5 and ***1 percent levels.  

  Dairy Cereals Gen. cropping Mixed LFA Grazing Lowland Grazing 

Random effects                         

County SD 0.060  0.024  0.154  0.101  0.113  0.113 
 

Farm SD 0.000  0.000  0.000  0.000  0.148  0.137 
 

Level-1 residual 0.480  0.496  0.564  0.518  0.505  0.509 
 

Fixed effects  

(Standard error) 
                  

Intercept 

 

5.272 *** 5.311 *** 5.509 *** 4.908 *** 4.471 *** 5.043 *** 

(0.044)  (0.044)  (0.073)  (0.068)  (0.043)  (0.052)  

Specialisation 

(agricultural) 

 

0.115 *** 0.051 *** 0.214 *** 0.028  0.022  -0.003  

(0.017)  (0.017)  (0.033)  (0.026)  (0.016)  (0.022)  

Input intensity 

 

0.185 *** 0.122 *** 0.141 *** 0.247 *** 0.203 *** 0.191 *** 

(0.019)  (0.017)  (0.028)  (0.026)  (0.017)  (0.021)  

Direct payments 

per ha 

 

0.152 *** -0.026  -0.041  -0.068  0.179 *** 0.008  

(0.034)  (0.036)  (0.056)  (0.054)  (0.033)  (0.035)  

Year x direct 

payments per ha 

 

-0.017 *** 0.016  0.008  0.028 *** 0.001  0.012 * 

(0.005)  (0.005)  (0.008)  (0.007)  (0.004)  (0.006)  

Agri-environment 

payments per ha 

 

-0.050 *** 0.003  -0.066 ** -0.051 ** 0.063 *** 0.027  

(0.016)  (0.018)  (0.028)  (0.022)  (0.016)  (0.022)  

Year 

 

0.032 *** -0.014 *** -0.011  0.024 *** 0.007 * -0.015 ** 

(0.006)  (0.005)  (0.008)  (0.008)  (0.005)  (0.006)  

Area farmed 

 

-0.121 *** -0.045 *** -0.016  -0.120 *** -0.193 *** -0.157 *** 

(0.017)  (0.017)  (0.035)  (0.026)  (0.019)  (0.025)  

On-farm 

diversification 

 

0.045 *** 0.062 *** 0.019  0.020  0.054 *** 0.077 *** 

(0.016)  (0.017)  (0.029)  (0.024)  (0.014)  (0.021)  

                          

Observations (n) 2,635  2,367  1,086  1,139  3,687  1,714  

County (n) 54  56  39  57  35  53  

Farm (n) 503  514  268  319  645  390  
 

            

AIC          2,012  1,919  909  1,231  3,066  1,541  

BIC 2,088  1,994  974  1,296  3,147  1,612  

logLik -993  -947  -442  -602  -1,520  -758  

R2 0.333  0.121  0.191  0.298  0.403  0.227  



Chapter 4 

 

 

116 

 

Table 7 - Multilevel model results using (log) relative standard deviation of farm business 

income per hectare as dependent variable. Showing the effect of farming practices and 

subsidies on the variability of farm income. Significant at: *10, **5 and ***1 percent levels. 

 

 

  Dairy Cereals Gen. cropping Mixed LFA Grazing Lowland Grazing 

Random effects 

County SD 0.061  0.031  0.145  0.094  0.104  0.110 
 

Farm SD 0.000  0.000  0.000  0.000  0.150  0.000 
 

Level-1 residual 0.487  0.493  0.570  0.523  0.512  0.535 
 

Fixed effects  

(Standard error) 
                  

Intercept 

 

-1.148 *** -0.893 *** -0.793 *** -1.169 *** -0.978 *** -0.600 *** 

(0.044)  (0.044)  (0.073)  (0.068)  (0.043)  (0.053)  

Specialisation 

(agricultural) 

 

0.111 *** 0.049 *** 0.201 *** 0.027  0.017  -0.002  

(0.017)  (0.017)  (0.033)  (0.027)  (0.016)  (0.022)  

Input intensity 

 

0.186 *** 0.091 *** 0.122 *** 0.247 *** 0.208 *** 0.183 *** 

(0.019)  (0.017)  (0.028)  (0.026)  (0.017)  (0.022)  

Direct payments 

per ha 

 

0.176 *** 0.115 *** 0.002  0.026  0.193 *** 0.061 * 

(0.034)  (0.036)  (0.057)  (0.054)  (0.033)  (0.036)  

Year x direct 

payments per ha 

 

-0.023 *** -0.008  -0.006  0.011  -0.007  -0.002  

(0.005)  (0.005)  (0.008)  (0.008)  (0.005)  (0.007)  

Agri-environment 

payments per ha 

 

-0.053 *** -0.016  -0.093 *** -0.051 ** 0.064 *** 0.017  

(0.016)  (0.018)  (0.028)  (0.022)  (0.016)  (0.022)  

Year 

 

0.039 *** 0.035 *** -0.001  0.071 *** 0.040 *** 0.006  

(0.006)  (0.005)  (0.008)  (0.008)  (0.005)  (0.006)  

Area farmed 

 

-0.127 *** -0.056 *** -0.024  -0.125 *** -0.206 *** -0.160 *** 

(0.017)  (0.017)  (0.036)  (0.026)  (0.019)  (0.025)  

On-farm 

diversification 

 

0.050 *** 0.083 *** 0.026  0.022  0.060 *** 0.081 *** 

(0.016)  (0.017)  (0.029)  (0.024)  (0.014)  (0.021)  

                          

Observations (n) 2,635  2,367  1,086  1,139  3,687  1,714  

County (n) 54  56  39  57  35  53  

Farm (n) 503  514  268  319  645  390 
 

           

AIC          2,154  1,931  934  1,251  3,191  1,585 

BIC 2,230  2,006  999  1,316  3,272  1,656 

logLik -1,064  -952  -454  -613  -1,583  -780 

R2 0.335  0.119  0.200  0.322  0.390  0.201 
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Figure 1 –Effects of input intensity, specialisation of farming activities and agri-

environment payments on the standard deviation (SD) of farm business income (FBI) 

per ha, for general cropping farms. Plots show the partial effects of a) input intensity, b) 

specialisation and c) agri-environment payments from the multilevel mixed model. The tick 

marks on the x-axis are the observed data points. The y-axis represents the partial effect of 

each variable on the (log) standard deviation of farm business income per hectare. The 

shaded areas indicate the 95 percent confidence intervals. 

 

Figure 2 – Effects of agri-environment payments and direct payments on the standard 

deviation (SD) of farm business income (FBI) per ha, for LFA grazing farms. Plots show 

the partial effects of a) agri-environment payments and b) Direct payments (t=7) from the 

multilevel mixed model. The tick marks on the x-axis are the observed data points. The y-

axis represents the partial effect of each variable on the (log) standard deviation of farm 

business income per hectare. The shaded areas indicate the 95 percent confidence intervals. 

 

 



Chapter 4 

 

 

118 

 

4 Discussion 

4.1 Agricultural diversity, a lower intensity of inputs and agri-environment payments 

are, for most farm types, associated with greater stability of income 

Our study demonstrates that increasing the diversity of agricultural activities and 

reducing the intensity of inputs, as well as, receiving higher payments from agri-environment 

schemes are associated with an increase in the stability of farm income. Our results highlight 

the potential of these farming practices and agri-environment schemes to improve the 

economic stability of farm businesses, which at the same time may benefit the environment. 

Greater agricultural diversification (i.e. lower degree of specialisation in different crop and 

livestock activities) increases the stability of farm income, in dairy, general cropping, cereal 

and mixed farms, and is a particularly important factor for general cropping farms. Reducing 

the intensity of inputs is found to be a particularly important factor to increase stability for 

most farm types, with a large effect size in comparison to other farming practices examined. 

Agri-environment payments are associated with greater stability at dairy, general cropping 

and mixed farms, however, the effect size is small in comparison. 

 

4.2 Agricultural diversity associated with greater stability 

Prior research has found greater diversity of agricultural activities or crops improves 

stability of revenue and household income, as well as, return on capital (El Benni et al., 2012; 

Lawes and Kingwell, 2012; Pacín and Oesterheld, 2014). There was, however, a need to 

validate the relationship between the diversity of agricultural activities and the stability of 

farm business income, across a range of different farm types and in other territories. Our 

analysis shows that greater diversity of agricultural activities also increases the stability of 

farm business income, in all farm types except for grazing farms. The effect of agricultural 

diversity is particularly important for general cropping farms who are, on average, the most 

diverse (Table 3) and may have the opportunity, and structure, to grow a wider range of 

crops. Increasing agricultural diversity could make farm businesses more resilient to 

economic shocks with access to a range of markets, therefore, reducing risks from potential 

price downturns (Bradshaw et al., 2004; Pacín and Oesterheld, 2014). Increased crop 

diversity has been found to lead to a better provision of ecosystem services, including higher 

yield, improved soil services and pest regulation (Degani et al., 2019), as well as, a reduction 

in the risk of crop failure (Gaudin et al., 2015). More diverse farms may be in a better 

position to adapt to changing environmental conditions, including drought (Degani et al., 
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2019; Lawes and Kingwell, 2012) or hot and dry years (Gaudin et al., 2015) due to improved 

soil moisture retention. Whereas, highly specialised farms could be more vulnerable to a 

given pest or disease and weather events affecting a larger proportion of production and be 

less able to recoup losses via other crops or livestock activities. Increasing resilience to 

abiotic and economic stresses by increasing agricultural diversity, may therefore also aid the 

stability of income. Increasing cropping system diversity has also been found to suppress 

weeds and improve soil fertility, lessening the need for expensive chemical inputs and 

reducing input costs, helping to maintain profitability whilst also reducing negative impacts 

on the environment (Davis et al., 2012).  

Whilst we examine agricultural diversity at the farm level, we do not examine the 

“composition effect” i.e. whether the presence of certain species may influence stability. The 

presence of productive and drought resistance species in grasslands, and legumes as a cover 

crop in diverse crop rotations, have been found to improve yield stability and therefore may 

also effect the stability of farm income (Dardonville et al., 2020).  We also consider that 

farmers may seek to diversify agricultural activities to reduce exposure to the variance in 

agricultural income (as suggested in Lin et al., 1974), therefore, this relationship may also be 

reflective of the risk averse attitude of some farmers. However, our finding that increasing 

agricultural diversity is associated with an increase in economic stability is consistently 

supported by a number of other studies, which examine a wide range of other farm 

characteristics, farming practices, insurance and economic variables, in different regions and 

contexts (e.g. Barry et al. (2001), Dardonville et al. (2020), El Benni et al. (2012), Enjolras et 

al. (2014), Loughrey and Hennessy (2016))  

 

4.3 Lower input intensity associated with greater stability 

Previous research has found mixed results regarding the effect of farming intensity, 

using different measures, on the stability of farm income (Enjolras et al., 2014; Reidsma et 

al., 2009). Modelling each farm type separately, we found a decrease in input intensity (lower 

cost of fertiliser, pesticides and concentrates per hectare) is associated with an increase in the 

stability of income across all farm types. With rising input prices, a concern of farmers is to 

control the use of expensive inputs and thereby increase profitability (Firbank et al., 2013). 

Farms with higher input costs are more likely to have higher gross revenues, however, this 

does not always translate to a higher farm business income (net profit); input intensity is 

weakly positively correlated (r<0.3) with farm business income per hectare (Supplementary 
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Table 2). In crops, when designing fertiliser management practices there is a trade-off 

between yield, nutrient use efficiency and the environment; as you increase nutrient input, 

yields typically increase (but at a decreasing rate) and nutrient use efficiency declines 

(Roberts, 2008). Increasing fertiliser rates has also been previously linked to a decrease in 

yield stability (Just and Pope, 1979). For livestock farms, intensive grain-fed livestock incurs 

higher costs for animal feed, as well as, increased water use (Godfray et al., 2010). Farms 

using more inputs may be taking greater risks; they have the potential for higher outputs, but 

their larger cost investment could lead to larger financial losses in the event of extreme 

weather events and production failures. The impact of input intensity on the stability of 

income during different weather events, for instance wet years where pests or diseases may 

be prevalent, would be an important interaction to examine further. Our results indicate that 

reducing the intensity of inputs is an important factor increasing the stability of income, with 

a large effect on stability, relative to the other farming practices examined. The input 

intensity indicator used in this study is based on the cost of inputs per hectare and therefore 

can only provide an approximation for physical quantities, however, reducing synthetic 

inputs could also improve environmental health by reducing surface runoff and 

eutrophication (Raun and Johnson, 1999).  

 

4.4 Receiving larger direct payments associated with a decrease in stability 

Direct payments provide flat-rate income support to farmers based on the area of land 

farmed. Direct payments, along with intensity of inputs, are found to be highly influential 

with models showing large effects on the stability of farm income. An increase in direct 

payments per hectare is associated with a decrease in the stability of farm income across most 

farm types. This may seem counterintuitive as one of the goals of the CAP is to support and 

stabilise farm incomes, however, previous studies have also found similar results. Flat-rate 

subsidy payments potentially represent a moral hazard to farmers. Farms receiving larger 

direct payments may be more inclined to engage in riskier production or be less focused on 

production outputs, with the knowledge they will receive a guaranteed level of income 

support from the government (Enjolras et al., 2014; Poon and Weersink, 2011; Reidsma et 

al., 2009).  
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4.5 The effect of agri-environment payments depends on the farm type 

4.5.1   Agri-environment payments improve stability for dairy, general cropping and mixed 

farms. 

In contrast with direct payments, agri-environment payments, for dairy, general 

cropping and mixed farms, increase stability in income. The contrast between the effect of 

agri-environment payments and direct payments is particularly interesting and has not been 

examined previously. The contrast between payments based on land area and payments for 

environmental activities suggest it could be the impacts of the environmental practices 

undertaken by the farmer which are associated with the stability of income (rather than just 

the receipt of money). Voluntary agri-environment schemes compensate farmers for 

implementing measures to benefit the environment or biodiversity. The CAP focuses on 

‘input based systems’ paying farmers and land managers for the ‘cost of inputs’ or ‘income 

foregone’. The increased stability we see may be due to increase provision of ecosystem 

services. Maintaining habitats for wildlife, such as wildflower strips, increased flower 

planting and field diversity through agri-environment schemes may improve the farmed 

environment for pollinators and natural enemies, supporting crop pollination and natural pest 

control (Blaauw and Isaacs, 2014; Kennedy et al., 2013; Menalled et al., 2003; Ottoy et al., 

2018). This ‘ecological intensification’ (Bommarco et al., 2013; Kleijn et al., 2019; Pywell et 

al., 2015) may also increase yield and income stability. Insect pollination may increase 

production stability, for instance by reducing yield losses following heat stress in faba bean 

(Bishop et al., 2016). Soil management practices under agri-environment schemes, including 

planting of winter cover crops and minimal cultivation practices, can improve soil fertility 

and structure and help reduce soil erosion, which could otherwise represent a risk during 

heavy rainfall events (Büchi et al., 2018; Degani et al., 2019; Natural England, 2013). 

Increasing soil organic matter has also been found to increase cereal productivity and yield 

stability (Pan et al., 2009). Agri-environment practices included in agri-environment schemes 

have been found to help maintain and stabilise yields, increase resilience to pests or disease, 

as well as reduce the effects of environmental hazards for instance climate shocks. Therefore, 

it is possible these agri-environment practices could be associated with a greater stability of 

farm income. The effect of agri-environment payments on stability is smaller than the effect 

of direct payments, however this remains a new and important finding. Further research to 

identify which environmental measures may be associated with greater stability of income, 

across different farm types and landscapes, could be of interest to farmers and policy makers 
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particularly given the UK’s transition to a new agricultural policy focusing on environmental 

land management and productivity measures. We also consider that the type of farmer 

choosing to participate in agri-environment schemes may be more progressive or adaptable, 

with prior research suggesting highly educated farmers who are open to innovation may be 

more willing to engage in agri-environment schemes (Barreiro-Hurlé et al., 2010; Peerlings 

and Polman, 2009). However, factors and characteristics which influence participation have 

been found to be varied and wide ranging, including farmer characteristics and attitudes (e.g. 

previous experience with agri-environment schemes), farm structure, social capital (e.g. 

influence of neighbouring farms), and economic factors (Lastra-Bravo et al., 2015), which 

were not considered as part of this study.  

 

4.5.2 Agri-environment payments decrease stability for Less Favoured Area grazing farms  

Agri-environment payments have the opposite effect for Less Favoured Area (LFA) 

grazing farms, reducing the stability of income. LFA grazing farms receive more money from 

agri-environment schemes per hectare, on average, than any other farm type (Table 3). LFA 

farmers received additional area-based payments to support the income of farms in 

challenging environments (refer to the supplementary materials for scheme details). 

However, the landscapes of LFA farms may not be well-suited for environmental 

enhancement, in comparison to other farm types, and therefore less able to deliver the 

ecosystem service benefits associated with a greater stability of production. LFA grazing 

farms have significantly fewer entry level and higher level options per agri-environment 

scheme agreement than other farm types in England (Department for Environment Food and 

Rural Affairs, 2006). In Wales, agri-environment schemes are considered more effective in 

providing income to support the viability of upland farming lifestyles, rather than providing 

ecosystem services (Arnott et al., 2019). Government support for LFA farms, via agri-

environment schemes, therefore appears to have a similar effect as direct payments and does 

not support the stability of income. 

 

4.6 Larger farms have a greater stability of income 

Farm size is associated with an increase in the stability of farm income, in line with 

prior research and is a moderately important factor in stabilising income. Larger farms may 

be more adept at coping with income and price variation; larger farms are associated with 

economies of scale, greater wealth, stability of land control and a larger asset base therefore 
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may have a better capacity to adapt to changing economic conditions or prices (El Benni et 

al., 2012; Velandia et al., 2009). In addition, a larger area of land may benefit from a wider 

range of topography and soil conditions and therefore yield responses across the farm. As a 

result larger farms may be better able to adapt to changing or extreme weather conditions 

(Marra and Schurle, 1994) which could aid in increasing the stability of income.  

 

4.7 Greater reliance on on-farm diversification decreases stability of income 

On-farm diversification into other activities (in addition to agricultural output) is often 

considered advantageous by providing an additional income source (McNally, 2001) and a 

viable financial return to farmers (Barnes et al., 2015). However, our results show that greater 

reliance on on-farm diversification decreases the stability of income, although the effect is 

relatively small. The effect of reliance on income from on-farm diversification has been less 

investigated in the literature, however, previous research found reliance on income from off-

farm employment had a similar effect, reducing the stability of household income (El Benni 

et al., 2012). Farms may be branching into other activities they are not specialised in. 

Importantly income from on-farm diversification is also, on average, not a consistent or 

stable source of income for farmers in England and Wales; farms may dip in and out of 

diversified activities with revenue from on-farm diversification showing high variability 

(mean CV of revenue from on-farm diversification is 0.82 across all farm types, over a five-

year rolling period), and therefore does not support income stability. Our results provide an 

initial indication of the relationship between on-farm diversification and the stability of 

income, however, farms can seek to diversify farm income in a variety of ways. Further 

analysis on the effect of reliance on on-farm diversification from different activities would 

help to provide a greater understanding of the relationship with the stability of farm income. 

  

4.8 Stability measures and moving beyond stability 

We use four stability measures to provide a robust analysis of overall income stability. 

The alternative measures of stability are correlated and provide similar results in our study, 

however, this may not be replicated in other regions, or when examining the effects of other 

farming practices or covariates. The choice of stability measure should depend upon the 

specific research question, and how stability is to be interpreted. 

Our study focuses on the stability of farm income, which is a key issue for agricultural 

businesses. However, total levels of farm income are also important to ensure viable 
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businesses for farmers. With a growing population more food will also need to be produced 

from existing agricultural land, by increasing output intensity using sustainable practices. 

Prior research identifies practices which strengthen sustainability to produce more food with 

less environmental impact (Campbell et al., 2014; Charles et al., 2014; Rockström et al., 

2017). Examples of sustainable production systems include using conservation techniques 

such as no-till farming and sophisticated crop rotations, requiring less chemical inputs, which 

aim to preserve ecosystem services and harness ecological functions to increase productivity, 

as well as, improve livelihoods (Pretty, 2008; Pretty and Bharucha, 2014; Rockström et al., 

2017). Our results show greater agricultural diversity and participation in agri-environment 

schemes may also reduce the variability of farm income. Therefore, whilst not the focus of 

our study, there appears to be some compatibility with these results and farming practices 

advocated to increase agricultural output and total farm income in a sustainable manner.  

 

5 Conclusions 

Our study provides knowledge on the effect of agricultural diversity on the stability of 

farm income in a new territory and across a range of different farm types. Results show that 

increasing the diversity of agricultural activities is associated with an increase in the stability 

of farm income, for dairy, general cropping, cereal and mixed farms. Agricultural diversity is 

an important farming practice associated with stability, particularly for general cropping 

farms. Prior research indicates farms with greater agricultural diversity may be in a better 

position to cope with climate and economic shocks, with crops and livestock exhibiting 

different responses to environmental conditions and by providing access to a wider range of 

markets. In addition, increasing crop diversity can also improve soil services and pest 

regulation reducing the need for expensive chemical inputs.  

Our results also show that reducing the intensity of inputs is associated with greater 

stability of income across all farm types. Reducing the intensity of inputs is found to be an 

important factor increasing the stability of income, with a large effect on stability, relative to 

the other farming practices examined. Current farming techniques tend to rely upon 

increasing the intensity of inputs to obtain higher outputs, however, farms using more 

increasingly expensive inputs may also be exposed to greater variability of income, in the 

event of extreme weather events and production failures. We did not consider how intensity 

of farming may increase total income or total production, which is also important to ensure 

viable businesses for farmers and to feed a growing population. However, increasing the 
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production of food should be done in a sustainable manner, with greater stability, whilst 

contributing to the health of ecosystems.  

Direct subsidies paid to farmers based on the area farmed are associated with a 

relatively large decrease in the stability of farm income, across most farm types. In contrast, 

we show that higher agri-environment payments increase the stability of farm income, for 

dairy, general cropping and mixed farms. Agri-environment schemes may help to reduce the 

effects of environmental hazards for instance climate shocks, as well as provide a higher and 

more stable provision of natural pest control, by adopting practices to benefit the environment 

or biodiversity. LFA grazing farms receive additional dedicated area payments via agri-

environment schemes to support farms in challenging environments. This flat rate income 

support for LFA farms appears to have a similar effect as direct payments and does not 

support income stability. The effect of agri-environment payments on stability is smaller than 

the effect of direct payments, however this remains a new and important finding. Further 

analysis to identify which environmental practices, undertaken through agri-environment 

schemes, may lead to greater stability of income is an area of research which could be of 

interest to farmers and policy makers, particularly given the current transition from direct 

payments to a new agricultural policy in the UK focusing on environmental land management 

and productivity measures.  

Our results suggest that engagement in environmentally sustainable farming practices, 

including increasing agricultural diversity, engagement in agri-environment schemes and 

reducing the intensity of inputs, can increase the stability of many farm businesses whilst also 

reducing negative impacts of farming on the environment. 
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Supplementary material 

Stability of farm income: the role of agricultural diversity and agri-environment scheme 

payments 

 

1. County and Unitary Authority boundaries used in the analysis 

 

Supplementary Figure 1 – County and Unitary Authority boundaries of England and 

Wales, used in the multilevel model analysis. 

 

2. Population of farms included in the Farm Business Survey 

The Farm Business Survey (FBS) is an annual survey conducted in England and Wales, 

collecting business information for approximately 2,500 farms each year (Defra, 2020). The 

FBS population includes farms which meet a minimum size criteria: from 2005 to 2009 it 

includes full-time farms and part-time farms which occupy a farmer for half their time or 

more (>0.5 standard labour requirements) and from 2010 it includes farms with at least 

€25,000 of output (Defra, 2020). Small farms excluded from the survey only account for 

approximately 4% of agricultural production (Rural Business Research, 2020). 
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3. Overview of changes in common agricultural policy during study period, in 

England and Wales 

Pillar 1 of the CAP provides direct payments to farmers, based on area farmed. Pillar 2 

“Rural Development Regulation” (RDR) includes support for agri-environment schemes 

(AES) and the wider rural economy. Agri-environment schemes represent a significant 

proportion of pillar 2 Rural Development Regulation (RDR) in the UK (Reed et al., 2014). 

The key AES in England operating during the period of this study was Environmental 

Stewardship (Natural England, 2009), which either paid farmers a flat rate for straightforward 

environmental management across the entire farm landscape (Entry Level Stewardship) or 

followed a more demanding level (Higher level stewardship) requiring more complex and 

targeted environmental management in return for larger payments. In Wales, a similar tiered 

agri-environment scheme, namely Tir Cynnal (entry level scheme) and Tir Gofal (higher 

level), was in operation until 2012. In 2012 these schemes were merged into a single scheme 

called Glastir (National Assembly for Wales, 2011) which, similar to Environmental 

Stewardship, paid farmers a flat rate per hectare under the ‘All Wales’ element of the scheme. 

The upper level element of the scheme targets specific areas of environmental concern and 

pays farmers depending on the specific management taken.  

Part of pillar 2 also provides additional dedicated support for farms in Less Favoured 

Areas (LFAs), for example those in mountainous or upland areas, to support these farms 

whilst preserving the environment and cultural landscape in Europe’s rural areas (Bonn et al., 

2008; DEFRA, 2006). From 2001, farmers in the English LFAs could receive area-based 

payments (under the Hill Farm Allowance) and optional payments for environmental 

enhancement (DEFRA, 2006). The HFA scheme closed in 2010 and farmers were offered 

Upland Entry Level Stewardship agreements as part of the Environmental Stewardship 

scheme, with an elevated standard payment rate (Natural England, 2013). Until 2012, Farms 

in the Welsh LFAs could also receive area-based payments (under “Tir Mynydd” hill support 

scheme). In 2012, LFA farmers receiving Tir Mynydd were offered Glastir agreements with 

elevated standard payment rates for LFAs (National Assembly for Wales, 2011). 

 

4. Correlation between the four measures of the stability of farm income 

Commonalities in their calculation leads to the annual measures of stability, absolute 

and relative anomaly, being strongly positively correlated (Supplementary Table 1). Equally, 

medium-term stability measures, the standard deviation and relative standard deviation of 

farm income are also strongly positively correlated (r>0.7). Both absolute measures (absolute 
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anomaly and standard deviation) and relative measures (relative anomaly and relative 

standard deviation) are moderately correlated with one another (Supplementary Table 1), 

therefore farms with larger variability in the annual terms are more likely to show larger 

variability over several years. Similar results are seen when calculating the Pearson’s 

correlation coefficients for each farm type separately. 

 

Supplementary Table 1 - Pearson’s correlation coefficient (r) of dependent variables used in 

the analysis 

  Relative anomaly Standard deviation Relative SD 

Absolute anomaly  0.830 0.689 0.480 

Relative anomaly  
 

0.509 0.655 

Standard deviation   
 

0.738 

 

5. Changes in Farm business income and direct payments over time 

Between 2007 and 2015 farm business income (a net figure incorporating all income, 

government payments, as well as, all fixed and variable costs) in England and Wales was 

highly changeable for all farm types, with large variability in mean income over time 

(Supplementary Figure 1). Since 2011, mean farm income has shown a downward trend 

across most farm types (Supplementary Figure 1Supplementary Figure ). Over the same 

period, direct payments (primarily Single Payment Scheme (SPS) and Basic Payment Scheme 

(BPS)) show a downward trend since 2009 across all farm types. Since direct payments are 

calculated in Euros, strengthening of the pound between 2009 and 2015 led to a reduction in 

the pound equivalent paid to farmers during this period. In addition, the value of single farm 

payments has not kept up with the rate of inflation, causing a reduction subsidies per ha in 

‘real’ monetary terms. 
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Supplementary Figure 2 - Farm business income and direct payments (primarily Single 

Payment Scheme or Basic Payment Scheme) per ha (2007-2015). Figures use data from 

the Farm Business Survey; values deflated using UK Consumer Price Index (2015=100; 

ONS, 2020)  

 

6. Correlation between input and output intensity and farm business income (FBI) 

per hectare 

There is a strong positive correlation (r>0.7) between the intensity of inputs (Cost of 

fertiliser, crop protection and concentrated animal feed divided by the area farmed in 

hectares) and output intensity (economic value of agricultural products produced per hectare). 

However, there is only a weak positive correlation (r<0.3) between input intensity and farm 

business income per hectare. Similar results are seen when calculating the Pearson’s 

correlation coefficients for each farm type separately. 

 

Supplementary Table 2 - Pearson’s correlation coefficient (r) of farm business income (FBI) 

and intensity variables used in the analysis 

 Input intensity Output intensity 

FBI per ha 0.298 0.535 

Input intensity  0.856 

 

7. Multilevel model, all farm types combined 

Using the same methods outlined in the main text, we ran multilevel models for the 

effect of farming practices and government payments on the stability of farm income with all 

farm types included in each model. Model were run using the two relative measures of 

income stability to account for the variation in mean income for each farm type. An 
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interaction was included between each farm type and the independent variables to examine if 

the effect of farming practices and government payments differ between farm types. 

The models indicate the effects of independent variables show relationships which are 

consistent with the farm type models included in the paper; for most farm types size and agri-

environment payments decrease the variability of income, while increasing input intensity, 

specialisation of farming activities, direct payments and greater reliance on income from on-

farm diversification increases the variability of income. The effects observed for each farm 

type are, in many cases, significantly different from the effects seen in dairy farms (used as 

the reference level). As seen in the paper, the effect of agri-environment payments for LFA 

grazing farms is significantly different from dairy farms and increases the variability of 

income. This same effect is found for lowland grazing farms in the model results below. 

 

Supplementary Table 3 - Multilevel model results for the effect of farming practices and 

government payments on the stability of farm income, including all farm types, using (log) 

relative anomaly of farm business income per hectare as dependent variable. Significant at: 

*10, **5 and ***1 percent levels. 

  All farms 

Random effects       

County SD 0.029     

Farm SD 0.298     

Level-1 residual 1.117     

Fixed effects     Standard 

error 

Intercept -1.895 *** (0.079) 

LFA Grazing Livestock 0.067  (0.100) 

Cereals 0.607 *** (0.113) 

Mixed 0.138  (0.140) 

General cropping 0.680 *** (0.140) 

Lowland Grazing Livestock 0.568 *** (0.116) 

Area farmed -0.121 *** (0.027) 

Input intensity 0.184 *** (0.029) 

Specialisation (agricultural) 0.118 *** (0.027) 

On-farm diversification 0.041  (0.025) 

Direct payments per ha 0.227 *** (0.067) 

Year 0.049 *** (0.011) 

Agri-environment payments per ha -0.050 * (0.026) 

Direct payments per ha × year -0.033 *** (0.010) 

Area farmed × LFA Grazing Livestock -0.118 *** (0.037) 

Area farmed × Cereals 0.064 * (0.038) 

Area farmed × Mixed -0.005  (0.048) 

Area farmed × General cropping 0.125 ** (0.050) 

Area farmed × Lowland Grazing Livestock -0.071 * (0.042) 

Input intensity × LFA Grazing Livestock 0.027  (0.038) 
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Input intensity × Cereals -0.128 *** (0.040) 

Input intensity × Mixed 0.079  (0.050) 

Input intensity × General cropping  0.000  (0.049) 

Input intensity × Lowland Grazing Livestock 0.019  (0.044) 

Specialisation × LFA Grazing Livestock -0.094 *** (0.035) 

Specialisation × Cereals -0.090 ** (0.038) 

Specialisation × Mixed -0.048  (0.049) 

Specialisation × General cropping 0.085 * (0.049) 

Specialisation × Lowland Grazing Livestock -0.109 *** (0.042) 

On-farm diversification × LFA Grazing Livestock 0.041  (0.033) 

On-farm diversification × Cereals 0.000  (0.038) 

On-farm diversification × Mixed 0.008  (0.046) 

On-farm diversification × General cropping 0.008  (0.047) 

On-farm diversification × Lowland Grazing 

Livestock 

0.039  (0.040) 

Direct payments per ha × LFA Grazing Livestock 0.065  (0.088) 

Direct payments per ha × Cereals -0.115  (0.096) 

Direct payments per ha × Mixed -0.215  (0.134) 

Direct payments per ha × General cropping -0.373 *** (0.130) 

Direct payments per ha × Lowland Grazing 

Livestock 

-0.081  (0.099) 

Year × LFA Grazing Livestock 0.008  (0.013) 

Year × Cereals -0.054 *** (0.015) 

Year × Mixed 0.004  (0.019) 

Year × General cropping -0.072 *** (0.019) 

Year × Lowland Grazing Livestock -0.046 *** (0.016) 

Agri-environment payments per ha × LFA Grazing 

Livestock 

0.110 *** (0.034) 

Agri-environment payments per ha × Cereals 0.023  (0.039) 

Agri-environment payments per ha × Mixed -0.019  (0.046) 

Agri-environment payments per ha × General 

cropping 

-0.029  (0.048) 

Agri-environment payments per ha × Lowland 

Grazing Livestock 

0.077 * (0.041) 

Direct payments per ha × year × LFA Grazing 

Livestock 

0.010  (0.013) 

Direct payments per ha × year × Cereals  0.030 ** (0.014) 

Direct payments per ha × year × Mixed 0.034 * (0.019) 

Direct payments per ha × year × General cropping 0.048 ** (0.019) 

Direct payments per ha × year × Lowland Grazing 

Livestock 

0.011 *** (0.016) 

Observations (n) 12,628     

County (n) 78     

Farm (n) 2,333     

        

AIC          39,727     

BIC 40,151     

logLik  -19,807   

R2 0.091     
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Supplementary Table 4 - Multilevel model results for the effect of farming practices and 

government payments on the stability of farm income, including all farm types, using (log) 

relative standard deviation of farm business income per hectare as dependent variable. 

Significant at: *10, **5 and ***1 percent levels. 

  All farms 

Random effects       

County SD 0.074     

Farm SD 0.000     

Level-1 residual 0.525     

Fixed effects     Standard 

error 

Intercept -1.140 *** (0.046) 

LFA Grazing Livestock 0.192 *** (0.056) 

Cereals 0.233 *** (0.061) 

Mixed 0.129 * (0.070) 

General cropping 0.256 *** (0.072) 

Lowland Grazing Livestock 0.543 *** (0.063) 

Area farmed -0.118 *** (0.017) 

Input intensity 0.205 *** (0.020) 

Specialisation (agricultural) 0.091 *** (0.017) 

On-farm diversification 0.048 *** (0.016) 

Direct payments per ha 0.181 *** (0.035) 

Year 0.037 *** (0.006) 

Agri-environment payments per ha -0.047 *** (0.017) 

Direct payments per ha × year -0.024 *** (0.005) 

Area farmed × LFA Grazing Livestock -0.087 *** (0.025) 

Area farmed × Cereals 0.079 *** (0.023) 

Area farmed × Mixed 0.025  (0.026) 

Area farmed × General cropping 0.089 *** (0.031) 

Area farmed × Lowland Grazing Livestock -0.044 * (0.026) 

Input intensity × LFA Grazing Livestock -0.007  (0.024) 

Input intensity × Cereals -0.145 *** (0.024) 

Input intensity × Mixed 0.072 ** (0.032) 

Input intensity × General cropping  -0.081 *** (0.029) 

Input intensity × Lowland Grazing Livestock -0.028  (0.027) 

Specialisation × LFA Grazing Livestock -0.077 *** (0.022) 

Specialisation × Cereals -0.045 * (0.023) 

Specialisation × Mixed -0.106 *** (0.027) 

Specialisation × General cropping 0.102 *** (0.030) 

Specialisation × Lowland Grazing Livestock -0.097 *** (0.025) 

On-farm diversification × LFA Grazing Livestock 0.011  (0.021) 

On-farm diversification × Cereals 0.045 ** (0.023) 

On-farm diversification × Mixed -0.046 * (0.025) 

On-farm diversification × General cropping -0.012  (0.024) 

On-farm diversification × Lowland Grazing 

Livestock 

0.030  (0.023) 

Direct payments per ha × LFA Grazing Livestock 0.021  (0.048) 

Direct payments per ha × Cereals -0.090 * (0.048) 
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Direct payments per ha × Mixed -0.172 *** (0.058) 

Direct payments per ha × General cropping -0.141 ** (0.062) 

Direct payments per ha × Lowland Grazing 

Livestock 

-0.116 ** (0.049) 

Year × LFA Grazing Livestock 0.004  (0.007) 

Year × Cereals 0.000  (0.008) 

Year × Mixed 0.020 ** (0.009) 

Year × General cropping -0.043 *** (0.009) 

Year × Lowland Grazing Livestock -0.028 *** (0.008) 

Agri-environment payments per ha × LFA Grazing 

Livestock 

0.105 *** (0.023) 

Agri-environment payments per ha × Cereals 0.020  (0.025) 

Agri-environment payments per ha × Mixed -0.001  (0.024) 

Agri-environment payments per ha × General 

cropping 

-0.031  (0.027) 

Agri-environment payments per ha × Lowland 

Grazing Livestock 

0.055 ** (0.026) 

Direct payments per ha × year × LFA Grazing 

Livestock 

0.017 ** (0.007) 

Direct payments per ha × year × Cereals  0.018 *** (0.007) 

Direct payments per ha × year × Mixed 0.034 *** (0.008) 

Direct payments per ha × year × General cropping 0.015 * (0.009) 

Direct payments per ha × year × Lowland Grazing 

Livestock 

0.022 *** (0.008) 

Observations (n) 12,628     

County (n) 78     

Farm (n) 2,333     

        

AIC          10,838     

BIC 11,269     

logLik -5,361     

R2 0.309   

 

8. Sensitivity analysis of multilevel model 

A small proportion of farms (n=283) change farm type across the time series, and 

therefore appeared in more than one model, albeit in different years. To consider how this 

may have affected the results we repeated the model analysis using farms classified as only 

one farm type across the data series (n=2049). The results of these models showed very little 

change to the models presented in this paper; the direction and relationships of the 

independent variables remained consistent and there was little change in the significance of 

variables in the models. Therefore, we can conclude a small subset of farms changing farm 

type across the time series does not impact the conclusions drawn from the study. 

We also examined the model results using alternative measures of intensity and on-

farm diversification. We ran the models using output intensity (economic value of 
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agricultural products produced per hectare (£)) as a measure of agricultural intensity. Output 

intensity was strongly positively correlated with input intensity (r>0.7; Supplementary Table 

2). The effect of output intensity on the stability of income revealed the same relationship as 

input intensity, increasing the variability of farm income across all models, with little change 

in the magnitude or significance of coefficients. We also examined the effect of on-farm 

diversification using different independent variables, including the total value of revenue 

from diversified activities per hectare (£) and a dummy variable capturing farms which do not 

engage in on-farm diversification (1) versus those who do (0), which was included in the 

model alongside the ratio of revenue from on-farm diversification. All variables showed 

similar relationships; farms who engage in on-farm diversification or increase revenue from 

diversified activities have more variable income. 
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Chapter 5 - Towards stability of food production and farm income in a variable climate 
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Abstract  

Stable food production is vital for food security. Stability of farm income is also 

necessary to ensure the sustainability of food production and to protect livelihoods, in a 

changing climate. We analyse the relative effects of climate variability, subsidies and farming 

practices on the stability of food production and farm income. We examine farms in England 

and Wales between 2005 and 2017, and link farms to climate data at a sub-regional scale. Our 

results show that variability in temperature and rainfall reduces the stability of farm income 

and food production, however, their importance varies between farm type. While variability 

in climate can be largely outside of the farmers control, our findings indicate that, under 

current conditions, farm management can have a comparatively large effect on stability. 

Greater agricultural diversity can have multiple benefits improving both the stability of food 

production and farm income. More controlled or precise use of agrochemicals may also help 

improve stability of income, whilst maintaining production. Future climate impacts and 

adaptation are likely to vary between farm types, therefore agricultural policy targeting the 

stability of farm performance should be flexible enough to be tailored to different types of 

production. 
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1 Introduction 

Stable food production is essential for food security (FAO, 2006). Likewise, stability of 

farm income is necessary to ensure the sustainability of farm businesses that can continue to 

produce food, and protect livelihoods, in a changing climate. Agriculture is subject to a wide 

range of risks and uncertainties, including climatic, economic, biotic (pests and disease) and 

environmental, many of which will intensify with climate change. The capacity of the 

agricultural system to cope with shocks and maintain stability of food production is vital to 

attaining the UN Sustainable Development Goals of eradicating hunger and securing food for 

an increasing global population (Griggs et al., 2013). 

Agricultural production, and therefore farm income, is highly dependent upon weather 

conditions. Climate change and associated increases in weather variability therefore pose 

many challenges to farmers. Climate variability and extremes (e.g. heat waves, flooding and 

drought) can severely reduce crop yields (e.g. Deryng et al., 2014; Powell and Reinhard, 

2015) and livestock productivity, influencing both the direct health of the animal and feed 

availability (Kipling et al., 2016). Farm incomes are also impacted by production losses due 

to adverse weather, in addition to other factors including changes in commodity prices and 

policy (Reidsma et al., 2009).  

Alongside climate impacts, the magnitude and stability of agricultural production and 

farm income are strongly associated with farm characteristics (e.g. farm type and size), 

farming practices (e.g. diversity, input intensity) and government subsidies (Harkness et al., 

2021; Reidsma et al., 2009). Understanding the effects of these farming practices and 

subsidies alongside, and in comparison to, the influence of climate could help farms adapt to 

more variable conditions. To effectively guide adaptation, it is important to understand the 

relative importance of government policy in comparison to farm-level management practices. 

However, quantitative assessments on agricultural system dynamics (i.e. changes over time) 

remain rare at the farm level (Dardonville et al., 2020). 

At the farm-level, changes in management can have dramatic impacts on the stability 

of food production and income. Increased diversity in crop rotations has been found to 

enhance yield stability in certain crops and reduce the risk of crop failure (Dardonville et al., 

2020; Gaudin et al., 2015). Greater use of fertiliser and pesticides is associated with greater 

yield, however the effect of agrochemicals on the variability of yields is unclear (Dardonville 

et al., 2020). Management strategies to enhance yield and its stability do not necessarily have 

complementary benefits for farm income, which requires expenditure to be considered. 
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Reducing input intensity, engaging in government agri-environment schemes and increasing 

agricultural diversity, as well as larger farm size have previously been found to increase the 

stability of income for many farm businesses (El Benni et al., 2012; Enjolras et al., 2014; 

Harkness et al., 2021; Pacín and Oesterheld, 2014).  

To effectively target adaptation, it is necessary to integrate climate, farm 

characteristics, farming practices and subsidies and assess their relative importance. 

However, the impacts of these factors are typically examined separately, in different 

disciplines, and at different spatial scales. The stability of agricultural production is usually 

assessed via the variability of yield over a given time period (e.g. Ceglar et al., 2016; 

Reidsma et al., 2009). Few studies have considered the impacts of a range of farming 

practices, subsidies and climate on the stability of both food production and farm income. 

Reidsma et al. (2009) found that increasing farm size and output intensity increased crop 

yield and income stability, while variability in direct payments decreased yield and income 

stability across regions of Europe. In addition, variability in precipitation decreased yield 

stability in many crops (Reidsma et al., 2009). In contrast to previous studies, our analysis 

here also considers the effect of agricultural diversity and agri-environment scheme 

payments, on the stability of food production and farm income. The production type can also 

influence the stability of income and food produced (e.g. Chavas, Cooper and Wallander, 

2019; Harkness et al., 2021), therefore we consider differences within and between farm 

types, which can exhibit very different farm management and characteristics. 

 The key aim of our research is to examine the relative effect of climate variability in 

combination with subsidies and farming practices on the temporal stability of food production 

and farm income, at the farm level. Here, we expand upon our previous work (Harkness et 

al., 2021) to incorporate the effects of climate variability and additionally examine factors 

affecting the stability of total food production at the farm level. This provides insight into 

how policy, and management at the farm-level, can improve the resilience and sustainability 

of farming in a changing climate. We use a cohort of 929 farms across counties of England 

and Wales over the period between 2005 and 2017, during which the UK experienced a 

diverse range of adverse weather conditions including flooding, drought, and heatwaves (e.g. 

Kendon, Marsh and Parry, 2013). We examine the stability of food produced at the farm level 

using a common unit of calories, which has not been examined previously. This enables us to 

compare productivity across different crop and livestock products. We examine the stability 

of farm income using the measure of farm business income, which is in essence the same as 
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net profit and integrates both income and expenditure. Our approach also enables us to 

evaluate trade-offs between enhancing the stability of food production and of farm income, 

and where potential adaptations may differ between farm types. 

 

2 Materials and methods 

2.1 Data and study area 

We examine data from the Farm Business Survey (FBS) between 2005 and 2017, 

which is a survey conducted in England and Wales collecting information from 

approximately 2,500 farm businesses annually (Defra, 2020). The FBS records farm level 

data on financial performance and food production, as well as subsidies received and other 

farm characteristics, including the county (or unitary authority) location of each farm. Farms 

are classified in the survey into farm types according to which type of production accounts 

for more than two-thirds of standard gross margin (SGM). We focus our analysis on cereals, 

general cropping (arable crops including field scale vegetables account for more than two-

thirds of SGM) and mixed farms (no other type accounts for more than two-thirds of SGM).  

Climate variability, and averages, have been calculated using the HadUK-Grid gridded 

climate observations produced by the Met Office (Hollis et al., 2019). The HadUK-grid 

dataset includes a wide set of climate variables, including temperature and precipitation, for 

daily, monthly, seasonal and annual timescales, as well as long term averages and at different 

spatial resolutions. We average 5km HadUK-Grid gridded climate observations for each 

county or unitary authority to provide an estimate of the climate at each farm, and link 

climatic conditions to farm data at a smaller spatial scale than used in previous studies (e.g. 

across regions of Europe in Reidsma et al. (2009)). Figure 1 shows the climate variables 

(described in section 2.3) for an example 5-year period included in the analysis, which 

illustrates the spatial differences between the county and unitary authorities (spatial units 

used in the analysis) in England and Wales. 
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Figure 1 – Spatial distribution of climate variables for an example 5-year period (2009-

2013): a) mean temperature b) mean monthly precipitation c) standard deviation of 

mean temperature d) standard deviation of mean monthly precipitation, during the 

main growing season (January-June) and across county and unitary authorities of 

England and Wales 

 

2.2 Measuring the stability of food production and farm income 

We examine the effect of climate variability in combination with subsidies and farming 

practices on medium-term stability of food production and farm income. We calculate 

medium-term stability (changes over time) using the standard deviation over a 5-year rolling 

period, as used in previous studies (Barry et al., 2001; Harkness et al., 2021). This measure 

indicates the amount of variation or dispersion of farm business income or calories at the 

individual farm over a 5-year period.  

To examine the stability of farm income we use farm business income per hectare 

(£/ha) which is calculated as the sum of: total output from agriculture, on-farm diversification 

and subsidies, less all fixed and variable costs, including paid labour and depreciation, and 

profit or loss from the sale of fixed assets (Harkness et al., 2021). Farm business income is in 

essence the same as net profit and is the preferred measure of income used by policy makers 



 

 

Chapter 5 

147 

 

to examine the impact of policies at the farm level (Department for Environment Food and 

Rural Affairs et al., 2018). 

The Farm Business Survey also records annual food production. To examine the 

stability of food produced at each farm, we calculate the total calories (kcal/ha) available for 

direct human consumption. Calories represents a common unit of production (analogous to 

£/ha for income) and therefore no weighting for different products is required. To calculate 

calories we use the FAO Food Balance Sheet (FAO, 2021) which derives calories per 100g 

for each agricultural commodity. We use these factors to convert the units of food produced 

in the Farm Business Survey (tonnes (crops), hectolitres (milk), dozen (eggs) and number 

(livestock)) into calories. Further details on the calculation of calories per food product is 

provided in the supplementary materials. As this study focuses on the stability of food 

production, using a consistent measure of food production over the period examined allows 

us to analyse how much total food production has varied for the main food products, as listed 

in Supplementary Table 1. The stability of calories per hectare has been calculated in the 

same way as for income; using the standard deviation over a 5-year rolling period. 

 

2.3 The factors affecting farm stability 

We use the same methods from Harkness et al. (2021) to calculate the farming 

practices: farm size, input intensity (cost of chemical inputs per hectare), agricultural 

diversification (degree of specialisation in different crop and livestock products), and value of 

subsidies: direct (area-based) payments and agri-environment scheme payments per hectare. 

To examine their relative effects on farm stability, these variables are averaged over the same 

5-year rolling period used to derive the dependent variables (standard deviation of farm 

income and calories). The calculations of independent variables are provided in 

supplementary table 2. 

To examine the effect of climate variability on the stability of food production and farm 

income, we calculate the standard deviation in temperature and rainfall over a 5-year rolling 

period. This involves firstly calculating the mean temperature and monthly precipitation for 

the first 6 months of the year (January – June) in each county to provide an indication of 

temperature and rainfall in the main growing period (similar to the approach used by Reidsma 

et al. (2009)). These county level climate conditions are then used to calculate the standard 

deviation in temperature and precipitation over a rolling 5-year period to examine the effect 

of climate variability at the farm level. Crops are affected by adverse weather conditions 
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which occur at specific stages of development, however, we wanted to examine how 

variability in climate conditions can affect total food production at the farm level (across all 

agricultural products), therefore we measured climate variability across the main part of the 

growing season for crops in the UK. The stability of performance may also be influenced by 

average climate conditions (or base temperatures), as well as variability, therefore we include 

variables capturing the mean temperature and precipitation for each 5-year period, to reduce 

the risk of confounding these relationships.  

The standard deviation is an absolute measure of dispersion, therefore we also control 

for the level of income and calories produced by each farm (using total farm business income 

and calories per hectare), which may also affect the level of stability. 

Summary statistics for the variables used in this study are shown in table 1. The UK 

Consumer Price Index is used to deflate all monetary variables, including farm business 

income, to account for the change in the value of money over time (ONS, 2020).  
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Table 1 - Summary statistics of FBS data (2005-2017); values deflated using UK Consumer Price Index (2015=100; ONS, 2020).  

*Note 162 farms change between farm types during the period, therefore appear in more than one farm type group during the relevant years. 

  Mean (2005-2017) Standard deviation (SD) (2005-2017) 

  All Farms Cereals Gen. cropping Mixed All Farms Cereals Gen. cropping Mixed 

Dependent variables         

SD of Farm Business Income (FBI) per ha (£) 219.57  213.77  271.13  183.97  144.05  116.84  192.72  129.06  

SD of calories per ha (kcal) 2,537,320  2,864,774  2,736,539  1,668,707  1,557,537  1,340,314  1,655,014  1,562,107  

Independent variables         

Farming practices and subsidies         

Specialisation (Herfindahl index) (0-1) 0.41  0.40   0.37  0.49  0.16  0.14  0.14  0.18  

Input intensity per ha (£) 413.59  327.26  399.05  607.44  533.25  137.37  243.86  997.30  

Direct payments (SPS/BPS) per ha (£) 237.57  244.15  237.49  223.87  62.36  59.95  57.06  69.42  

Agri-environment payments per ha (£) 45.70  48.54  39.81  45.22  50.47  56.62  41.19  43.74  

Area farmed (hectares) 234.97  233.52  284.21  192.41  246.33  218.59  358.33  144.99  

Climate (Jan-Jun)         

Mean temperature (°C)  8.29   8.31   8.40   8.14   0.66   0.66   0.51   0.74  

SD of mean temperature (°C)  0.90   0.91   0.91  0.88  0.21   0.21   0.22  0.19  

Mean monthly precipitation (mm)  60.07   58.18   55.95   67.84   16.08   13.79   14.72   18.88  

SD of mean monthly precipitation (mm)  15.48   15.27   14.42   16.90   4.53   4.35   3.87   5.09  

Control variables         

Farm Business Income (FBI) per ha (£)  390.96   387.20  495.80  301.80  393.09  357.27  460.26  373.88  

Calories per ha (kcal) 15,929,805  17,651,252  19,406,013  9,115,433  8,110,153  6,608,759  8,087,139  6,968,904  

Number of observations  4,529   2,357   1,044   1,128      

Number of farms  929*   512   261   318      

Number of counties/unitary authorities  65   56   38   57      
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2.4 Multilevel (two-level linear mixed effect) model 

We use a multilevel model to examine the relative effects of climate variability, 

farming practice and subsidies on the stability of food production and farm income. 

Multilevel models allow us to account for dependencies within the data: Farms belonging to 

the same county or unitary authority (level 2) have the same estimated climate and may also 

have more similar environmental conditions (e.g. soil) than farm in different counties. Farms 

are also surveyed in the data over multiple years (we consider farms in the survey for a 

minimum of 5 years) therefore the multilevel model controls for the correlation between 

observations from the same farm (level 1). This type of model can easily accommodate the 

unbalanced panel data used in this study (Snijders and Bosker, 1999) and has been used 

previously to examine the influence of management and climate on farm level performance 

(Harkness et al., 2021; Reidsma et al., 2009, 2007).  

We estimate a varying-intercept Bayesian two-level mixed model with farms nested 

within counties. The empirical specification of the model is: 

                     

       Ytjk ∼ Log-normal(utjk, σe) 

       utjk = α + αcounty[k] + αfarm[jk] + ∑βpXjk 

          α ∼ Normal(0, 10) 

   αcounty ∼ Normal(0, σcounty) 

     αfarm ∼ Normal(0, σfarm)         (1) 

         βp ∼ Normal(0, 10) 

         σe ∼ HalfCauchy(10) 

   σcounty ∼ HalfCauchy(10) 

     σfarm ∼ HalfCauchy(10) 

 

We fit a log-normal model to account for the non-normal distribution of the dependent 

variable, Ytjk (the standard deviation of income and calories), in each model and reduce the 

impact of outliers. In the linear model, α is the mean intercept across all groups, αcounty is the 

county level intercept (level 2), αfarm is the farm level intercept (level 1). βp denotes the 

coefficients for each predictor variable, Xjk, which are listed in table 1. α and β are given a 

vague (weakly informative) Gaussian prior centred on 0, and the residual variation (σe) is 

given a Half-Cauchy prior (Gelman, 2006; Nalborczyk et al., 2019), thus restricting the range 
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of possible values to positive ones. The same Half-Cauchy prior is specified for the two 

varying intercepts1. 

In each of the models, predictor variables have been standardised (centred around zero, 

with a SD of 1) to account for the differences in scale and to examine the relative effect size 

of each independent variable. Year, t, is also included as a continuous variable to control for 

the trend in income stability and calories over time, as well as examine the interaction 

between time and direct payments per hectare, which was significant for mixed farms. Before 

fitting the models, we checked for outliers and collinearity using pairwise scatterplots. In 

addition, correlation coefficients between independent variables were all less than the 

recommended threshold of 0.7 (Dormann et al. (2013).  

We fitted a Bayesian multilevel model in the brms package in R (Bürkner, 2018, 2017; 

R Core Team, 2019). To generate the posterior samples of the parameter estimates brms 

makes use of the computationally efficient Hamiltonian Monte-Carlo (HMC) Sampler (Neal, 

2011) and its extension the no-U-turn Sampler by Hoffman and Gelman (2014) implemented 

in the Stan software package (Stan Development Team, 2020). Each model was fitted with 4 

chains of 10,000 per chain of which 2,000 were used for the warm-up. Visual model 

diagnostics showed adequate mixing of chains for each parameter, with the Rhat value 

(Gelman and Rubin test statistic; Gelman and Rubin, (1992)) less than 1.003, providing 

strong evidence of convergence. A Bayesian version of the marginal R2 was obtained using 

the bayes_R2 method available in brms (Nalborczyk et al., 2019), with calculations based on 

Gelman et al., (2019). Due to the temporal nature of the variables we considered the presence 

of temporal autocorrelation. We inspected the residual variance (σe), which showed no 

significant autocorrelation. For comparison, we also estimated the same models using 

frequentist methods and incorporated a AR(1) residual autocorrelation structure2. The 

frequentist results are provided in the supplementary materials and show relationships which 

are consistent with the Bayesian results provided in section 3. 

 

 

 

1 We also ran the models using the default priors set in the brms package (weakly informative 

Student-t distributions), which resulted in little change to the model results. 
2 At the time of writing, the package used for applying MCMC does not allow for an AR(1) 

residual autocorrelation structure for unevenly spaced data (longitudinal data with gaps). 
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3 Results 

3.1 The effects of farming practices and subsidies on the variability of income  

Figures 2 and 3 show the posterior means, and 95% credible intervals (CIs), of the 

multilevel models. These figures indicate the relative effect of farming practices, subsidies 

and climate conditions on the variability (inverse of stability) of food production and farm 

income, by farm type. The model results are also provided in table annex 1 and 2. Models use 

the log of the dependent variable, therefore the exponent of the posterior mean, minus 1 

multiplied by 100, provides the percentage change in the variability of income for every 

increase in the independent variable by one standard deviation, holding all other predictors 

constant.  

 

3.1.1 Factors affecting the variability of farm income 

Farming practices are important factors influencing the variability of farm income per 

hectare (figure 2). Farms which spend more on chemical inputs (fertiliser, pesticide and 

concentrated animal feed) have more variable income. Increasing input intensity by 1 

standard deviation increases the variability of income between 10 and 21% across the 3 farm 

types, which represents a large increase relative to other factors examined. More specialised 

cereal and general cropping farms (i.e. those with less diversity of crop and livestock 

activities) also have more variable income, however, this was not an important factor for 

mixed farms. For general cropping farms (which are on average the most diverse; Table 1) 

specialisation has a large relative effect; increasing specialisation by 1 standard deviation 

increases the variability of income by 13% (95% CI [7%, 20%]). Larger cereal and mixed 

farms have more stable incomes. Increasing the area farmed by 1 standard deviation reduces 

the variability of income by 6% (95% CI [-9%, -3%]) for cereal farms, and for mixed farms 

the decrease is larger (-11%, (95% CI [-15%, -6%]).   

The value of direct payments per hectare is an important factor for cereal farms. An 

increase in direct payments increases the variability of income by 4% (95% CI [1%, 7%]). 

While the effect of agri-environment scheme payments differs between farm types. An 

increase in agri-environment payments per hectare decreases the variability of income for 

mixed farms by 6% (95% CI [-10%, -3%]), whereas increases the variability income by 3% 

for cereal farms, although the lower bound of the credible interval is close to zero (95% CI 

[0%, 6%]). Subsidies therefore have a smaller relative effect on the variability of income, in 

comparison to the farming practices examined in this study. 
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Climatic conditions are also estimated to be an important factor influencing the 

variability of income. The variability of income for cereal farms are particularly sensitive to 

changes in both prevailing (mean) temperatures and precipitation and its variability. Larger 

variability of temperature increases the variability of income for cereal farms by 5% on 

average, while increasing the variability of precipitation also has the same effect (5% 

increase). Increasing warmth (mean temperatures) and average precipitation has the opposite 

effect and are both associated with a decrease in the variability of income of 9%, while 

holding all other factors constant. Changes in precipitation have a larger effect for mixed 

farms and are found to be more important than changes in temperature. An increase in mean 

rainfall reduces the variability of income by 11%, whereas greater variability in precipitation, 

over a 5-year period, increases the variability of income by 7% on average, for mixed farms.  

Generally, the relative effects of climatic factors associated with the variability of 

income were similar in size to the effects of the farming practices examined (Figure 2). With 

exception of general cropping farms, where the effect of input intensity and specialisation 

were found to be more important than the climatic conditions examined (Figure 2).  
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Figure 2 – Posterior distribution of the standardised relative effects of farming practices, subsidies and climate variability on the 

variability (standard deviation) of farm business income per ha. Shaded areas represent the 95% credible intervals. 
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3.1.2 Factors affecting the variability of food production 

Farming practices examined also affect the stability of food production, however, the 

relative size of these effects differ between farm types (figure 3). For general cropping and 

mixed farms, increasing input intensity is associated with an average decrease in the 

variability of calories by 4% and 10% respectively. Spending more on chemical inputs 

therefore helps improve the stability of food production but increases the variability of 

farmers income. Increasing specialisation of crop and livestock activities is associated with 

an increase in the variability of calories for general cropping and cereal farms, however, this 

was not an important factor for mixed farms. The effect of specialisation is relatively large 

compared to other factors and is largest for cereal farms. Increasing specialisation by 1 

standard deviation increases the variability of calories by 10% for cereal farms (95% CI [7%, 

14%]), and by 5% (95% CI [1%, 10%]), for general cropping farms. Larger farms are 

associated with less variability in calories produced. Increasing the area farmed by 1 standard 

deviation reduces the variability in calories between 4% and 9% across the 3 farm types. 

The value of direct payments is an important factor for mixed farms. Receiving more 

direct payments per hectare is associated with an increase in the variability of calories 

produced by approximately 3% over the period examined, and this effect increases over time. 

The effect of agri-environment scheme payments on the variability of calories differs 

between farm types, which is consistent with the effects on farm income. An increase in agri-

environment scheme payments per hectare decreases the variability of calories for mixed 

farms by 5% (95% CI [-10%, 0%]), whereas increases the variability of calories for cereal 

farms by 3% (95% CI [0%, 6%]), although one bound of the 95% credible interval is close to 

zero. The relative effects of agri-environment scheme payments are therefore smaller than the 

farming practices we examined. 

Climatic conditions are also estimated to be an important factor influencing the 

variability of calories, however fewer important effects were found compared to those 

associated with the variability of income. Changes to both the prevailing (mean) temperature, 

and variability in temperatures, were important factors affecting the variability of calories for 

cereal farms; Increasing the temperature variability by 1 standard deviation was associated 

with an increase in the variability of calories of 3% (95% CI [0%, 5%]). While, increasing 

warmth (mean temperatures) decreased the variability of calories by 4% (95% CI [-7%, 0%]), 

while holding all other factors constant. An increase in mean rainfall was also associated with 
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a reduction in the variability of calories produced by mixed farms of 11% (95% CI [-17%, -

2%]).  

In general, the farming practices employed by farms are therefore associated with a 

larger relative effect on the stability of calories produced, compared to the effects of more 

variable climate conditions (figure 3). For general cropping farms in particular, farming 

practices and characteristics were more important than subsidies or climate variability in 

influencing the variability of calories produced (figure 3).  

In this study we estimate the relative effects of climate variability using variability in 

average temperature and monthly precipitation for the main part of the growing season, 

between January and June. We also estimate models using climate conditions over a 12-

month period, using all months in the agricultural season (October to September). Including 

all months in the analysis does not have a large impact on the results. Results of this 

sensitivity analysis are available in the supplementary material. 

We also examine results using a different calculation of diversity. In the main results 

we calculate diversity using revenue from different crop and livestock products. We also 

calculated the equivalent diversity index using the calories produced for each product type 

per farm (see supplementary table 2). Models using diversity in calories provided very similar 

results to the models using diversity based on revenues; also showing that specialisation of 

calories resulted in a large increase in the variability of farm business income and calories. 
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Figure 3 – Posterior distribution of the standardised relative effects of farming practices, subsidies and climate variability on the 

variability (standard deviation) of calories per ha. Shaded areas represent the 95% credible intervals. 
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4 Discussion 

Our study provides knowledge on the relative importance of farming practices, 

subsidies and climate variability on the stability of food production and farm income. Our 

results highlight the importance of agricultural diversity to increase the stability of both food 

production and farm incomes. We identified a potential trade-off in the use of agrochemicals 

between the stability of food production and farm incomes. More precise use of chemicals 

may help to increase the stability of income, whilst maintaining outputs. Subsidies paid to 

farmers through the Common Agricultural Policy have a small effect on the stability 

compared to farm management. Direct (area based) payments reduce stability of income and 

food production, whereas agri-environment schemes improve stability, for general cropping 

and mixed farms. Climate conditions also affect both the stability of food production and 

farm income, however, the importance and relative size of these effects vary between farm 

type. 

 

4.1 Diversity benefits both the stability of food production and farm income. 

Our results show that greater agricultural diversity is associated with greater stability of 

farm income and total calories produced at the farm level. The relative strength of these 

associations, in comparison to other farming practices and climate conditions, indicates that 

maintaining and/or increasing agricultural diversity is highly important for the future 

sustainability of farming systems and food security. More diverse agricultural systems, with a 

broader range of traits and functions, are associated with a range of benefits which could 

improve stability of farm performance in a changing climate (Dardonville et al., 2020; Lin, 

2011). More diverse agroecological systems, for example with greater crop diversity, have 

been found to improve pest and disease suppression and soil services (Degani et al., 2019; 

Lin et al., 2011). In addition, greater diversity may provide buffering and mitigation to the 

effects of climate variability and adverse conditions, including drought (Degani et al., 2019; 

Lawes and Kingwell, 2012) and high temperatures (Gaudin et al., 2015). The income of more 

diverse farms is also less affected by the price of single commodities on global markets, 

therefore reducing the potential impact of price downturns (Bradshaw et al., 2004; Pacín and 

Oesterheld, 2014).  

We also found that farm size is an important factor affecting stability. Larger farms 

were associated with greater stability of both food production and farm incomes across most 

farm types. The effect of farm size was particularly large for mixed farms. Larger farms may 



 

 

Chapter 5 

159 

 

benefit from greater economies of scale (El Benni et al., 2012). Larger farms may also 

encompass a more diverse range of topography or soils, which could result in different 

exposure and responses to weather conditions across the farm in similarity to agricultural 

diversity.  

 

4.2 Increasing inputs results in a potential trade-off between stability of food 

production and income 

Our results show that more intensive farms (those spending more on fertiliser, pesticide 

and concentrated animal feed) have less stable income. In contrast, we find that greater input 

intensity is also associated with more stability of calories produced at the farm level, for 

general cropping and mixed farms. Spending more on increasingly expensive chemical inputs 

has previously been associated with a reduction in the stability of farm income (Enjolras et 

al., 2014; Harkness et al., 2021). However, the effects of fertiliser and pesticides on the 

stability of yield are less clear (Dardonville et al., 2020). We find that the negative effect of 

input intensity reducing the stability of income is relatively large compared to other factors, 

including climate variability, for all farm types examined. The beneficial effect of chemical 

inputs stabilising food production is largest for mixed farms, where increased use of 

concentrated animal feed may protect livestock production from the effects of weather 

variability. For general cropping farms, higher input intensity may also help stabilise calories 

produced by preventing large crop losses (Popp et al., 2013). Despite the benefits to 

production, our results indicate that greater input intensity is not economically sustainable for 

farm businesses, with higher input costs reducing the stability of income. This suggests a 

potential trade-off in the use of chemical inputs between the stability of food production and 

farm incomes. Agrochemicals are often used in excess which has limited economic benefit, 

through declining nutrient efficiency and resistance (Roberts, 2008; Varah et al., 2020), as 

well as, leading to the contamination of ecosystems. Greater precision and more controlled 

use of chemicals may therefore offer an important solution to sufficiently support sustainable 

food production whilst at the same time reducing inputs costs and increasing income stability. 

Improved crop rotation and other practices of integrated pest management may also offer 

opportunities to reduce pesticide use without significant losses in crop yields (e.g. Barzman et 

al., 2015; Lechenet et al., 2017).  
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4.3 The effect of subsidies are relatively small and vary between farm type 

We find that the value of government subsidies affects both the stability of food 

production and farm income. However, the effects of subsidies on stability are relatively 

small compared to farming practices (i.e., diversification and input intensity), and vary 

between farm types. Our results generally indicate a positive association between agri-

environment payments and the stability of both farm income and food production, though the 

strength of this relationship varies between farm types. Agri-environment schemes 

compensate farmers for engaging in practices to benefit the environment or biodiversity and 

include options to maintain habitats for wildlife as well as soil management practices, which 

can help enhance ecosystem services and increase the resilience of the farm landscape (e.g. 

Degani et al., 2019; Kennedy et al., 2013; Ottoy et al., 2018). Farms receiving larger agri-

environment payments may be benefitting from the direct source of income and indirect 

benefits of ecosystem services to food production. Agri-environment schemes do not seem to 

have the same stabilising effect for cereal farms. Agri-environment scheme options may not 

provide the same benefits for cereal crops, or these farms may engage differently with the 

scheme. Our results indicate that direct payments, based on area alone, reduce the stability of 

income and food production for certain farm types. A guaranteed level of income support 

from the government has been considered to represent a moral hazard to farmers, who may be 

more inclined to engage in riskier production, leading to greater variability in farm 

performance (Enjolras et al., 2014; Harkness et al., 2021; Reidsma et al., 2009). Direct 

payments per hectare are also variable; strengthening of the pound against the Euro between 

2009 and 2015 led to a reduction in the pound equivalent, which alongside inflation, has 

reduced the value of direct payments paid to UK farmers over this period (Harkness et al., 

2021). In general, the effects of subsidies on stability are relatively small in comparison to the 

farming practices examined. Greater emphasis could be given in future schemes to support 

agricultural diversification, as well as more precise chemical application, which appear to 

offer the most important solutions to improve the stability and sustainability of food 

production and farm incomes. 

 

4.4 The effect of climate variability on farm stability differs between farms types 

Climate variability affects both the stability of farm income and food production. 

However, the importance and relative size of these effects can vary depending on the 

production type, as well as the measure of farm performance being examined. Climate 
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conditions are particularly important for cereal farms; variability in both temperature and 

rainfall reduce the stability of income, while deviations in temperature are more influential in 

reducing the stability of food production. For mixed farms, changes in precipitation have a 

larger effect on the stability of income and are found to be more important than changes in 

temperature. Reidsma et al. (2009) also found high variability in precipitation has a large 

effect on agricultural stability across Europe, however, they did not examine the effects 

between different types of production and examined climate at a larger regional scale. Grass 

productivity is particularly dependent upon rainfall and limited by more extreme conditions 

including dry periods in spring and summer (van den Pol-van Dasselaar et al., 2020). 

Therefore, mixed farms may incur additional costs for feeding livestock during periods of 

adverse weather leading to greater variability of income. General cropping farms do not 

appear as sensitive to variability in temperature and precipitation, while the effect of input 

intensity and specialisation were found to be more important. General cropping farms are, on 

average, the most diverse farm type (table 1), which may provide greater resilience to climate 

variability and adverse weather (Dardonville et al., 2020; Gaudin et al., 2015) and would be 

an interesting interaction to examine in future research. 

An increase in mean temperatures and rainfall are found to be generally associated with 

greater stability of income and food production. We suggest this is due to crops benefiting 

from warming, up to their optimum temperature thresholds, over the period of our study. An 

increase in growing degree days (warmth) has previously been found to increase crop yields 

and yield stability reflecting greater yields from longer maturing varieties (Butler and 

Huybers, 2015).  

Climate thresholds (cardinal temperatures and rainfall requirements/tolerances) and the 

timing of sensitive stages differ between crops. Our measures of climate variability were not 

specific, as we wanted to compare the effects of climate across different agricultural products 

and farm types. Climate indices specific to single crops (e.g. Harkness et al., 2020) may 

detect stronger responses for individual crop yields. Our analysis considers changes in county 

level mean temperatures and rainfall, and their variability, however we do not consider the 

effects of mean temperatures exceeding optimum thresholds, i.e., under future climates, or 

the effects of short-term extremes for example heatwaves or heavy rainfall events. The period 

examined in this study between 2005 and 2017 is not long enough to obtain signals from 

climate change. Interannual climate variability is driven by a range of different factors and 

modelling future climate variability is complex. Recent research has found interannual 
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variability (σ) in precipitation is generally expected to increase under global warming, which 

has implications for the occurrence of droughts and flooding (He and Li, 2019), as well as a 

projected increase in summer temperature variability and heatwaves (Fischer et al., 2012; 

Fischer and Schär, 2009). Without adaptation the effects of climate variability could have an 

increasingly large effect on the stability of future food production and farm incomes, and 

strategies to reduce this instability should be prioritised.  

 

5 Conclusions 

Our results highlight the importance of considering both farming practices and climate 

conditions when examining stability of farm performance at the farm level. While variability 

in climate can be largely outside of the farmers control our findings indicates that, under 

current conditions, farm management can have a comparatively large effect on stability 

which may provide opportunities for farmers, supported by policy makers, to tackle 

instability in farm performance. Our results suggest greater agricultural diversity and more 

controlled or precise use of agrochemicals may help improve the stability farm businesses 

and the sustainability of food production. In a changing climate the effects of climate 

variability could have an increasingly large effect on the stability of future food production 

and farm incomes, and therefore strategies to address instability should be prioritised. Future 

climate impacts and adaptation are also likely to vary between farm types, therefore 

agricultural policy targeting stability should be flexible enough to be tailored to different 

types of production. 
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Appendix A – Annex (model results tables) 

 

Table A.1 - Multilevel model results examining the effect of farming practices, subsidies and climate on the variability of farm business income, 

showing the posterior means, standard deviation (SD) and 95% credible intervals (CI) of each parameter. Parameters that do not have 0 in the 

95% credible interval are deemed important and marked with an “*” 

  Cereals General Cropping Mixed 

Parameter Posterior mean SD 95% CI Posterior mean SD 95% CI Posterior mean SD 95% CI 

σcounty (county SD) 0.05* 0.04 0.00 0.13 0.15* 0.06 0.03 0.26 0.09* 0.05 0.01 0.19 

σfarm (farm SD) 0.35* 0.02 0.32 0.38 0.44* 0.03 0.39 0.49 0.38* 0.02 0.34 0.424 

σe (SD of residuals) 0.34* 0.01 0.33 0.35 0.33* 0.01 0.32 0.35 0.35* 0.01 0.34 0.372 

α (Intercept) 5.34* 0.04 5.27 5.42 5.39* 0.06 5.26 5.51 4.88* 0.06 4.77 4.99 

β (Independent vars):             
Input intensity 0.09* 0.02 0.06 0.12 0.12* 0.03 0.07 0.17 0.19* 0.03 0.14 0.24 

Specialisation 0.05* 0.02 0.02 0.08 0.12* 0.03 0.06 0.18 0.02 0.03 -0.03 0.07 

Area Farmed -0.06* 0.02 -0.10 -0.03 -0.03 0.04 -0.10 0.04 -0.12* 0.03 -0.17 -0.06 

Direct payments 0.04* 0.02 0.01 0.07         -0.04 0.03 -0.09 0.01 -0.03 0.03 -0.09 0.04 

Direct payments x year         0.03* 0.01 0.02 0.04 

AES payments 0.03* 0.02 0.00 0.06 -0.03 0.03 -0.08 0.02 -0.07* 0.02 -0.11 -0.03 

SD temperature 0.05* 0.01 0.02 0.08 -0.02 0.02 -0.07 0.02 0.01 0.02 -0.03 0.05 

SD precipitation 0.05* 0.01 0.02 0.07 0.02 0.02 -0.02 0.06 0.07* 0.02 0.03 0.11 

Mean temperature -0.10* 0.02 -0.14 -0.06 -0.02 0.03 -0.07 0.03 -0.02 0.03 -0.07 0.04 

Mean precipitation -0.09* 0.02 -0.14 -0.05 -0.02 0.04 -0.09 0.06 -0.11* 0.03 -0.17 -0.05 

Total Income per ha 0.13* 0.02 0.10 0.16 0.14* 0.02 0.09 0.18 0.11* 0.03 0.06 0.16 

Year (t) -0.02* 0.01 -0.04 -0.01 0.00 0.01 -0.02 0.02 0.04* 0.01 0.02 0.06 

Observations (n) 2357       1044       1128       

County (n) 56       38       57       

Farm (n) 512       261       318       

R2 0.187    0.222    0.519    

WAIC 26704.05    12183.29    12435.64    
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Table A.2 - Multilevel model results examining the effect of farming practices, subsidies and climate on the variability of calories, showing the 

posterior means, standard deviation (SD) and 95% credible intervals (CI) of each parameter. Parameters that do not have 0 in the 95% credible 

interval are deemed important and marked with an “*” 

 

  Cereals General Cropping Mixed 

Parameter Posterior mean SD 95% CI Posterior mean SD 95% CI Posterior mean SD 95% CI 

σcounty (county SD) 0.08* 0.03 0.03 0.13 0.08* 0.05 0.01 0.18 0.13* 0.06 0.01 0.26 

σfarm (farm SD) 0.31* 0.01 0.28 0.34 0.31* 0.02 0.27 0.36 0.56* 0.03 0.50 0.62 

σe (SD of residuals) 0.33* 0.01 0.32 0.34 0.34* 0.01 0.33 0.36 0.40* 0.01 0.38 0.42 

α (Intercept) 14.65* 0.04 14.58 14.72 14.66* 0.06 14.54 14.76 13.80* 0.07 13.67 13.94 

β (Independent vars):             

Input intensity 0.01 0.02 -0.02 0.04 -0.04* 0.02 -0.09 0.00 -0.11* 0.04 -0.19 -0.03 

Specialisation 0.10* 0.02 0.07 0.13 0.05* 0.02 0.01 0.10 -0.02 0.03 -0.08 0.05 

Area Farmed -0.04* 0.02 -0.07 -0.01 -0.05* 0.03 -0.11 0.00 -0.10* 0.04 -0.17 -0.03 

Direct payments 0.00 0.02 -0.03 0.03 -0.02 0.02 -0.06 0.03 0.02 0.04 -0.06 0.09 

Direct payments x year         0.01* 0.01 0.00 0.03 

AES payments 0.03* 0.02 0.00 0.06 -0.03 0.02 -0.08 0.01 -0.05* 0.03 -0.10 0.00 

SD temperature 0.03* 0.01 0.00 0.05 -0.01 0.02 -0.05 0.04 -0.01 0.02 -0.06 0.03 

SD rainfall 0.02 0.01 -0.01 0.04 0.02 0.02 -0.01 0.06 0.02 0.02 -0.02 0.07 

Mean temperature -0.04* 0.02 -0.08 0.00 -0.04 0.02 -0.08 0.01 0.02 0.04 -0.05 0.10 

Mean rainfall 0.03 0.02 -0.01 0.07 -0.04 0.03 -0.11 0.03 -0.11* 0.04 -0.19 -0.02 

Total Calories per ha 0.17* 0.02 0.13 0.20 0.28* 0.03 0.22 0.33 0.47* 0.04 0.39 0.55 

Year (t) 0.02* 0.01 0.01 0.03 0.01 0.01 -0.01 0.03 0.05* 0.01 0.03 0.07 

Observations (n) 2357       1044       1128       

County (n) 56       38       57       

Farm (n) 512       261       318       

R2 0.196    0.227    0.379    

WAIC 71403.22    31578.63    33092.48    
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Supplementary materials 

Towards stability of food production and farm income in a variable climate 

 

1 Calculating total food production 

The Farm Business Survey (Department for Environment Food and Rural Affairs, 

2020a) records food produced annually at each farm in the relevant units for each food group 

i.e. tonnes (crops), hectolitres (milk), dozen (eggs) and number (livestock). To enable 

comparison of total food produced at each farm, and its variability, we calculate the number 

of calories (kcal) produced available for direct human consumption. To calculate calories we 

use the FAO Food Balance Sheet (FAO, 2021a) which provides country level production, 

imports, exports and stock variations for 98 food commodities for human consumption and 

derives calories/energy (kcal), fat and protein per capita. The FAO food balance sheet has 

been used in previous studies examining food supplies and the resulting adequacy to meet 

energy requirements (e.g. Macdiarmid et al., 2018). Calories, fat and protein per 100g for 

each commodity is derived in the food balance sheet data, which are termed “nutritive 

factors”. These nutritive factors are calculated in terms of their primary equivalents, which 

represent the weight of the original commodity, e.g., farm, carcass or fresh catch weight  

(Smith et al., 2016). We use the Food Balance Sheet nutritive factors to calculate the total 

calories produced at each farm, by converting the units of food produced in the Farm 

Business Survey e.g. tonnes of wheat, into calories. Please see supplementary table 1 for the 

calculation of kcal per unit of production in the Farm Business Survey, derived from the 

kcal/100g from the FAO food balance sheet.  

We exclude food products which are not available for direct human consumption (i.e. 

animal feed and seeds), as well as, rearing or breeding animals which are not primarily sold 

for slaughter. As this study focuses on the stability (or inversely variability) of food 

production, using a consistent measure of food production over the period (2005-2017) 

allows us to examine how much total food production has varied over the period in main food 

products listed in supplementary table 1. 

Within the Farm Business Survey, livestock production, or more specifically meat, is 

recorded using the number of animals sold. To calculate calories of meat produced at each 

farm we converted the quantity of livestock sold into weight (grams), and ultimately calories, 

using the average UK dressed carcass weights and liveweights per bird between 2005 and 

2017 (Department for Environment Food and Rural Affairs, 2020b). Supplementary table 1 

provides the weight used for each livestock category in the Farm Business Survey. Using 



Chapter 5 – Appendix B - Supplementary materials 

170 

 

average weights in the calculation of calories from meat in livestock production limits our 

ability to examine variability in the weight of livestock sold for slaughter, and therefore 

calories, on a temporal basis, i.e., livestock may have been affected by climate stresses or 

disease in a particular year. However, to enable analysis of food production at the farm level, 

using a common unit of production, it was necessary to make these assumptions. We limit 

our analysis to cereals, general cropping and mixed farms therefore livestock production was 

not the sole or key focus of our study. Milk production is provided in hectolitres in the Farm 

Business Survey, so volumes produced and therefore calories could be easily calculated.  
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Farm Business Survey data FAO Food balance sheet a      

FBS product Unit  FAO commodity Kcal/100 grams 

Average 
carcass 
weight/ 

liveweight 
(grams) b 

Kcal per 
unit in FBS Comments 

Winter wheat tonnes WHEAT  334  3,340,000    

Spring wheat tonnes WHEAT  334  3,340,000    

Mixed wheat tonnes WHEAT  334  3,340,000    

Durum wheat tonnes WHEAT  334  3,340,000    

Triticale tonnes TRITICALE  327  3,270,000    

Winter barley tonnes BARLEY  332  3,320,000    

Spring barley        tonnes BARLEY  332  3,320,000    

Mixed barley tonnes BARLEY  332  3,320,000    

Winter oats    tonnes OATS  385  3,850,000    

Spring oats tonnes OATS  385  3,850,000    

Mixed oats tonnes OATS  385  3,850,000    

Rye tonnes RYE  319  3,190,000    

Mixed cereals tonnes Cereals average 339 
 

3,394,000  
Used average of cereal crops: 
Wheat, triticale, barley, oats, rye. 

Grain maize tonnes MAIZE  356  3,560,000    

Beans for stockfeed tonnes     
 

-    
Excluded: crop not for human food 
consumption 

Peas for stockfeed tonnes     
 

-    
Excluded: crop not for human food 
consumption 

Peas harvested dry for human 
consumption tonnes PEAS DRY  346 

 
3,460,000    

Lupins tonnes LUPINS  390  3,900,000    

Soya beans tonnes SOYBEANS  335  3,350,000    

Other protein crops tonnes Legumes average 354 
 

3,535,000  
Used average of legume crops in 
FAO: Peas, lupins, soybeans, beans 

Spring beans tonnes BROAD BEANS DRY 343  3,430,000    

Winter beans tonnes BROAD BEANS DRY 343  3,430,000    

Potatoes - first early (i.e. wholly or 
mainly harvested by 31st. July) tonnes POTATOES  67 

 

670,000    

Processing potatoes tonnes POTATOES  67  670,000    

Ware potatoes tonnes POTATOES  67  670,000    
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Seed potatoes tonnes     
 

-    
Excluded: crop not for human food 
consumption 

Sugar beet (1) tonnes SUGAR BEETS  70  700,000    

Flax (1) tonnes LINSEED  498  4,980,000    

Linseed tonnes LINSEED  498  4,980,000    

Winter oilseed rape - not double 
low varieties tonnes RAPESEED  494 

                               
4,940,000    

Spring oilseed rape - not double 
low varieties tonnes RAPESEED  494 

                               
4,940,000    

Winter oilseed rape - double low 
varieties tonnes RAPESEED  494 

                               
4,940,000    

Spring oilseed rape - double low 
varieties tonnes RAPESEED  494 

                               
4,940,000    

Other oilseed rape - double low 
varieties tonnes RAPESEED  494 

                               
4,940,000    

Other herbaceous oilseed crops  
(e.g. poppy seed, sunflower) tonnes Other oilseed average 421 

 
                              

4,205,000  
Used average of other oilseed crops: 
poppy seed and sunflower 

Hemp tonnes     
 

-    
Excluded: crop not for human food 
consumption 

Hops (1) tonnes     

 

                                         
-    

Excluded: crop not included in FAO 
balance sheet (N.B. only 4 farms in 
FBS which produce hops between 
2005-2017) 

Medicinal plants,  aromatics and 
spices (mustard, caraway, canary 
seed, saffron, borage, evening 
primrose etc.) tonnes MUSTARD SEED 469 

 

                              
4,690,000  

Used mustard seed as a proxy. (No 
other food crops available in FAO 
balance sheet) 

Herbage seed (grass and clover) tonnes     
 

-    
Excluded: crop not for human food 
consumption 

Other arable crops (2) tonnes Arable crops average 327 
                               

3,265,000  
Used average of all the above arable 
crops 

Vegetable seeds, seedlings and 
young plants for sale tonnes     

 

-    
Excluded: crop not for human food 
consumption 

Cabbage - summer and autumn tonnes CABBAGES  19  190,000    

Cabbage - winter and winter 
storage tonnes CABBAGES  19 

 
190,000    

Brussels sprouts - fresh market tonnes CABBAGES  19 

 
                                 

190,000  

Brussels sprouts not included in FAO 
balance sheet therefore used 
cabbages as a proxy 
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Brussels sprouts - processing tonnes CABBAGES  19 

 
                                 

190,000  

Brussels sprouts not included in FAO 
balance sheet therefore used 
cabbages as a proxy 

Cauliflower tonnes CAULIFLOWER  9    90,000    

Winter hardy cauliflowers 
(broccoli) tonnes CAULIFLOWER  9 

 
     90,000    

Beetroot tonnes 
ROOTS AND TUBERS 
DRY 282 

 
2,820,000    

Carrots - fresh market tonnes CARROTS  38  380,000    

Carrots - processing tonnes CARROTS  38  380,000    

Parsnips tonnes 
ROOTS AND TUBERS 
DRY 282 

 
                              

2,820,000  

Brussels sprouts not included in FAO 
balance sheet therefore used roots 
and tubers as a proxy 

Parsley tonnes     

 

                                         
-    

Excluded: crop not included in FAO 
balance sheet (N.B. only 5 farms in 
FBS which produce parsley between 
2005-2017) 

Leeks tonnes 
LEEKS AND OTHER 
ALLIACEOUS 37 

                                  
370,000    

Onions - bulb tonnes ONIONS DRY  31    310,000    

Onions - salad or bunch tonnes ONIONS GREEN 24     240,000    

Lettuce - crisp / iceberg tonnes LETTUCE  12  120,000    

Spinach      tonnes SPINACH  16  160,000    

Green peas - market tonnes PEAS GREEN  31    310,000    

Green peas - processing tonnes PEAS GREEN  31    310,000    

Broad beans - market tonnes BROAD BEANS DRY 343  3,430,000    

Broad beans - processing tonnes BROAD BEANS DRY 343  3,430,000    

Runner and french beans - 
market tonnes STRING BEANS 27 

 
270,000    

Runner and french beans - 
processing tonnes STRING BEANS 27 

 
270,000    

Asparagus tonnes ASPARAGUS  12    120,000    

Marrows and courgettes tonnes 
PUMPKINS SQUASH 
GROUDS 19 

 
190,000    

Turnips and swedes, mainly for 
human consumption tonnes 

ROOTS AND TUBERS 
DRY 282 

                               
2,820,000    

Other / mixed fresh vegetables 
(celeriac, globe and Jerusalem 
artichokes, chicory) tonnes 

VEGETABLES FRESH 
NES 22 

 
                                 

220,000    
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Calabrese tonnes CABBAGES  19 

 
                                 

190,000  

Calabrese not included in FAO 
balance sheet therefore cabbages 
used as a proxy 

Strawberries - fresh market tonnes STRAWBERRIES 28    280,000    

Sweetcorn tonnes 
SWEET CORN 
PREPARED 77 

 
770,000    

Christmas trees tonnes     
                                          

-    
Excluded: crop not for human food 
consumption 

Flower bulbs and tubers tonnes     
                                          

-    
Excluded: crop not for human food 
consumption 

Flower seeds, cuttings etc. tonnes     
                                          

-    
Excluded: crop not for human food 
consumption 

All other and mixed cut flowers tonnes     
                                          

-    
Excluded: crop not for human food 
consumption 

Apples - culinary tonnes APPLES  48     480,000    

Apples - dessert less than 1,200 
trees per hectare tonnes APPLES  48 

                                  
480,000    

Apples - dessert over 1,200 trees 
per hectare tonnes APPLES  48 

                                  
480,000    

Apples - mixed dessert tonnes APPLES  48  480,000    

Apples - cider tonnes APPLES  48   480,000    

Pears - less than 1,200 trees per 
hectare tonnes PEARS  54 

 
540,000    

Pears - over 1,200 trees per 
hectare tonnes PEARS  54 

 
540,000    

Perry pears tonnes PEARS  54    540,000    

Cherries tonnes CHERRIES  65     650,000    

Plums - Victorias tonnes PLUMS  52    520,000    

Other / mixed  top  fruit  including  
peaches  and apricots tonnes 

peaches and apricot 
average 39 

 
                                 

390,000  
Used average of peaches and 
apricots 

Red and white currants tonnes CURRANTS  59   590,000    

Blackcurrants - fresh - market and 
processing tonnes CURRANTS  59 

                                  
590,000    

Raspberries tonnes RASPBERRIES  47    470,000    

Gooseberries tonnes GOOSEBERRIES 44 
                                  

440,000    

Other / mixed soft fruit including 
blackberries tonnes BERRIES NES  49 

                                  
490,000    

Mixed top and soft fruit tonnes FRUIT NES  45   450,000    
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Vineyard selling wine grapes tonnes GRAPES  53  530,000    

Miscanthus tonnes     
                                          

-    
Excluded: crop not for human food 
consumption 

Short rotation coppice tonnes     
                                          

-    
Excluded: crop not for human food 
consumption 

Whole milk 
hectolitre 

(100 litres) COW MILK  61 
 

63,013    

Milk Products (cheese, cream, 
butter etc.) 

hectolitre 
(100 litres) Milk products average  433 

                                    
34,463  

Used average of milk products: 
cheese, butter, cream 

Breeding bulls for use with the 
dairy herd (one year and over) Quantity (no.)     - 

                                         
-    

Excluded, animal used for breeding 
or rearing, not primarily sold for 
slaughter. 

Dairy cows Quantity (no.) BEEF VEAL  225  3,112  700,120    

Dairy calves Quantity (no.)      -    
                                         

-    

Excluded, animal used for breeding 
or rearing, not primarily sold for 
slaughter. 

Breeding bulls for use with the 
beef herd (one year and over) Quantity (no.)      -    

                                         
-    

Excluded, animal used for breeding 
or rearing, not primarily sold for 
slaughter. 

Beef cows - LFA Quantity (no.) BEEF VEAL  225  3,630  816,689    

Beef cows - Lowland Quantity (no.) BEEF VEAL  225  3,630  816,689    

Heifers in calf (rearing) - Dairy Quantity (no.)      -    
                                         

-    

Excluded, animal used for breeding 
or rearing, not primarily sold for 
slaughter. 

Heifers in calf (rearing) - Beef Quantity (no.)      -    
                                         

-    

Excluded, animal used for breeding 
or rearing, not primarily sold for 
slaughter. 

Fat cattle excluding veal calves Quantity (no.) BEEF VEAL  225  3,112  700,120    

Other cattle 2 yrs and over - Male 
(excluding bulls) Quantity (no.) BEEF VEAL  225  3,630  

                                 
816,689    

Other cattle 2 yrs and over - 
Female (excluding bulls) Quantity (no.) BEEF VEAL  225  3,112  

                                 
700,120    

Other cattle 1 to 2 years - Male 
(including bull beef) Quantity (no.) BEEF VEAL  225  3,398  

                                 
764,661    

Other cattle 1 to 2 years - Female Quantity (no.) BEEF VEAL  225  3,183  716,100    

Other cattle under 1 year - For 
slaughter as calves Quantity (no.) BEEF VEAL  225  423  

                                   
95,231    

Other cattle under 1 year - Other 
cattle and bull calves Quantity (no.) BEEF VEAL  225  423  

                                   
95,231    
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Rams and ram hoggs (6 months 
and over) Quantity (no.)      -    

                                         
-    

Excluded, animal used for breeding 
or rearing, not primarily sold for 
slaughter. 

Ewes and shearlings (one year 
and older) - LFA Quantity (no.)      -    

                                         
-    

Excluded, animal used for breeding 
or rearing, not primarily sold for 
slaughter. 

Ewes and shearlings (one year 
and older) - Lowland Quantity (no.)      -    

                                         
-    

Excluded, animal used for breeding 
or rearing, not primarily sold for 
slaughter. 

Ewe hoggs (6 months and less 
than 1 year to be used for 
breeding) Quantity (no.)      -    

                                         
-    

Excluded, animal used for breeding 
or rearing, not primarily sold for 
slaughter. 

Fat lambs and hoggets under 1 
year Quantity (no.) LAMB MEAT  119  191  

                                   
22,747    

Store lambs under 1 year Quantity (no.) LAMB MEAT  119  191  22,747    

Other sheep 1 year and over Quantity (no.) MUTTON LAMB  263  191  50,272    

Boars (includes boars sent for 
slaughter) Quantity (no.) PORK  220  1,485  

                                 
326,765    

Breeding sows (including gilts 
which have farrowed) Quantity (no.)      -    

                                         
-    

Excluded, animal used for breeding 
or rearing, not primarily sold for 
slaughter. 

Sows for slaughter Quantity (no.) PORK  220  1,485  326,765    

Gilts in pig Quantity (no.)      -    
                                         

-    

Excluded, animal used for breeding 
or rearing, not primarily sold for 
slaughter. 

Maiden gilts Quantity (no.)      -    
                                         

-    

Excluded, animal used for breeding 
or rearing, not primarily sold for 
slaughter. 

Fat pigs / finished pigs Quantity (no.) PORK  220  787  173,074    

Store pigs 20 kgs and over (All 
pigs being reared for the breeding 
herd) Quantity (no.)      -    

                                         
-    

Excluded, animal used for breeding 
or rearing, not primarily sold for 
slaughter. 

Piglets / weaners (under 20 kgs) Quantity (no.) PORK  220  787  173,074    

Eggs production dozen HEN EGGS  139  65*        1,084    

Hens and pullets in lay, cocks and 
cull hens Quantity (no.) CHICKEN MEAT 122  21  

                                    
2,622    

Pullets one week to point of lay Quantity (no.)      -    
                                         

-    

Excluded, animal used for breeding 
or rearing, not primarily sold for 
slaughter. 

Broilers Quantity (no.) CHICKEN MEAT 122  22     2,692    
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Other table chickens Quantity (no.) CHICKEN MEAT 122  21         2,622    

Turkeys Quantity (no.) TURKEY MEAT  126  126  15,938    

Ducks, geese and other poultry Quantity (no.) MEAT POULTRY 185  35**       6,383    

 

a Calories data obtained from FAO “nutritive factors” used in the Food Balance Sheets (FAO, 2001) 

b Average UK dressed carcass weights and liveweights per bird between 2005 and 2017 (Department for Environment Food and Rural Affairs, 2020b). 

*An average egg weight of 65g has been used which represents a medium egg size. 

**Duck and geese liveweights are taken from the FAO technical conversion factors used in the Food Balance Sheets (FAO, 2021b)  

Supplementary Table 1 - Conversion table to calculate calories for each food product in the Farm Business Survey 
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2 Calculation of independent variables (farming practices, subsidies and climate) 

We use the same methods from Harkness et al. (2021) to calculate the farming practices 

and value of subsidies for each farm: farm size, input intensity (cost of chemical inputs per 

hectare), agricultural diversification (degree of specialisation in different crop and livestock 

products), as well as the value of direct (area-based) payments and agri-environment scheme 

payments per hectare. The calculations of each variable are provided in supplementary table 

2. The calculation of climate variables (variability and averages) are described in the main 

text and detailed in supplementary table 2. 

 

Supplementary Table 2 - Definition and calculations of farming practices, EU subsidy 

payments and climate variables analysed in the study 

Independent variable Calculation 

Farming practices and subsidies a  

Farm size  Area farmed (hectares) = The utilised agricultural 

area, plus land let in or minus land rented out 

Intensity of inputs  The total cost of fertiliser, crop protection and 

concentrated animal feed (£), per hectare (area 

farmed) (IRENA indicator 15; European 

Environment Agency, 2005; Gerrard et al., 2012) 

Agricultural specialisation (inverse of 

diversification) 𝐻𝑒𝑟𝑓𝑖𝑛𝑑𝑎ℎ𝑙 𝑖𝑛𝑑𝑒𝑥 (𝑆) =  ∑(𝑝𝑖)2

𝑛

𝑖=1

 

 

Where n is the total number of farming activities,  

𝑝𝑖is the proportion of revenue earned from the i-th 

farming activity (revenue from farming activity 

divided by the total farming revenue). 
 

Can also be written as sum of revenue for each 

farming activity squared, divided by total revenue for 

agriculture squared: 

 

(Wheat2+ barley2 + other cereals2 + oilseed rape2 + 

peas and beans2 + potatoes2 + sugar beet2 + 

horticulture2 + other crops2 + by-products and forage2 

+ milk2 + cattle2 + sheep2 + pigs2 + eggs2 + chickens 

and other poultry2 + other livestock2 + other 

agriculture2) /total agricultural gross revenue2 

Direct payments per hectare 

 

Total direct payments (£) (Primarily the single 

payment scheme or basic payment scheme), per 

hectare (area farmed) 

Agri-environment payments per hectare Total payments under rural development policy (£; 

pillar 2), per hectare (area farmed) 

Climate variables b  
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Mean temperature (°C) Mean temperature (°C) for first half of year (Jan to 

June) 

SD of mean temperature (°C) SD of mean temperature (°C) for first half of year 

(Jan to June) 

Mean monthly precipitation (mm) Mean monthly rainfall for first half of year (mm) (Jan 

to June) 

SD of mean monthly precipitation (mm) SD of mean monthly rainfall (mm) for first half of 

year (mm) (Jan to June) 
a Farming practices and subsidies are averaged over the same rolling five-year time period used to 

derive the dependent variables 

b Climate variables (standard deviation (SD) and mean temperature and monthly rainfall) are 

calculated over the same rolling five-year period.  

 

3 Multilevel model using frequentist methods 

Using the same models outlined in the main text we estimate the multilevel models for 

the 3 farm types using frequentist methods. We fit the models using the nlme R package, and 

fit a continuous first order autoregressive process using the corCAR1 function to account for 

temporal autocorrelation in the farm specific error term, and which allows for an irregularly 

sampled dataset (Pinheiro et al., 2019).  

The results from the frequentist models are shown in supplementary tables 3 and 4. 

These models show relationships which are consistent with the Bayesian results shown in the 

main text; The direction of each coefficient is consistent with the posterior distributions and 

the size of the relative effects are similar. The significance of the coefficients vary in a few 

instances, where one bound of the Bayesian credible intervals shown in the main text were 

also close to zero. 
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Supplementary Table 3 - Multilevel model results using (log) standard deviation of farm 

business income per hectare as dependent variable. Showing the effect of farming practices, 

subsidies and climate on the variability of farm income. Significant at: *10, **5 and ***1 

percent levels.  

  Cereals General cropping Mixed 

Random effects       

County SD 0.04  0.12  0.01  

Farm SD 0.00  0.00  0.00  

Level-1 residual 0.48  0.55  0.50  

Fixed effects (Standard Error)       

Intercept 5.282*** (0.04) 5.392*** (0.06) 4.925*** (0.06) 

Input intensity 0.09*** (0.02) 0.11*** (0.03) 0.19*** (0.03) 

Specialisation 0.03** (0.02) 0.10*** (0.03) 0.02 (0.03) 

Area Farmed -0.06*** (0.02) -0.02 (0.03) -0.12*** (0.02) 

Direct payments 0.05*** (0.02) -0.03 (0.03) 0.00 (0.04) 

Direct payments x year   (0.02)     0.02*** (0.01) 

AES payments 0.02 (0.02) -0.05* (0.03) -0.05*** (0.02) 

SD temperature 0.02* (0.01) -0.03 (0.02) 0.01 (0.02) 

SD precipitation 0.07*** (0.01) 0.03* (0.02) 0.06*** (0.02) 

Mean temperature -0.06*** (0.02) -0.02 (0.02) 0.00 (0.03) 

Mean precipitation -0.11*** (0.02) 0.00 (0.03) -0.11*** (0.03) 

Total Income per ha 0.14*** (0.02) 0.15*** (0.03) 0.13*** (0.02) 

Year (t) -0.01** (0.01) 0.00 (0.01) 0.03*** (0.01) 

Observations (n) 2357  1044  1128  

County (n) 56  38  57  

Farm (n) 512  261  318  

AIC          1798  857  1209  

BIC 1891  936  1295  

logLik -883  -413  -588  

R2 0.195  0.190  0.345  
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Supplementary Table 4 - Multilevel model results using (log) standard deviation of calories 

per hectare as dependent variable. Showing the effect of farming practices, subsidies and 

climate on the variability of farm income. Significant at: *10, **5 and ***1 percent levels. 

 

4 Sensitivity analysis of climate variables included in the multilevel models  

The models estimated in the main text examine the effect of climate variability on the 

stability of food production and farm income using average temperatures and monthly 

precipitation for the main part of the growing season (January to June.) Here we consider 

how including all months of the agricultural season may affect these results. As we focus our 

study on cereal, general cropping and mixed farms the agricultural season for each harvest 

year is considered to start on the 1st October and finish on 30th September the following year.  

  Cereals General cropping Mixed 

Random effects       

County SD 0.08  0.09  0.14  

Farm SD 0.00  0.00  0.00  

Level-1 residual 0.45  0.46  0.68  

Fixed effects (Standard Error)       

Intercept 14.667*** (0.04) 14.696*** (0.06) 13.897*** (0.08) 

Input intensity 0.01 (0.02) -0.03 (0.02) -0.12*** (0.04) 

Specialisation 0.09*** (0.02) 0.07*** (0.02) -0.02 (0.04) 

Area Farmed -0.04*** (0.02) -0.06** (0.03) -0.11*** (0.04) 

Direct payments 0.01 (0.02) -0.01 (0.03) -0.01 (0.05) 

Direct payments x year      0.02* (0.01) 

AES payments 0.01 (0.02) -0.02 (0.02) -0.03 (0.03) 

SD temperature 0.02* (0.01) 0.00 (0.02) -0.01 (0.02) 

SD precipitation 0.01 (0.01) 0.03 (0.02) 0.01 (0.02) 

Mean temperature -0.02 (0.02) -0.03 (0.02) 0.02 (0.03) 

Mean precipitation 0.03 (0.02) -0.04 (0.03) -0.11*** (0.04) 

Total Calories per ha 0.15*** (0.02) 0.26*** (0.03) 0.49*** (0.04) 

Year (t) 0.02** (0.01) 0.00 (0.01) 0.03*** (0.01) 

Observations (n) 2357  1044  1128  

County (n) 56  38  57  

Farm (n) 512  261  318  

AIC          1585  864  1467  

BIC 1677  943  1552  

logLik -777  -416  -716  

R2 0.151  0.242  0.342  
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Using the Bayesian methods outlined in the main text we estimate the same multilevel 

models, except here climate variables are calculated using the mean temperature and mean 

monthly rainfall between 1st October and 30th September, as well as standard deviations over 

a five-year period. The results of these models are shown in the supplementary tables 5 and 6. 

These models show the same relationships identified in the main text. There is very little 

change in the posterior distributions of each farming practice; the relative effects on the 

stability of income and food production is very similar and the importance of each variable 

remains consistent. The relationships between climate variability (and averages) and farm 

stability are also the same; The direction of each climate variable remains consistent, while 

there are some small changes in the relative effect size. For general cropping farms the 

standard deviation of temperature is found to be an important factor increasing the variability 

of calories when using temperatures across the season, as shown in supplementary table 6. In 

summary, this sensitivity shows that, in our models, using data for the entire agricultural 

season to calculate temperature and rainfall variability, and averages over 5-year periods, 

leads to very little change compared to using climate conditions between January and June 

only.   
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  Cereals General Cropping Mixed 

Parameter Posterior mean SD 95% CI Posterior mean SD 95% CI Posterior mean SD 95% CI 

σcounty (county SD) 0.08* 0.04 0.01 0.17 0.15* 0.06 0.05 0.27 0.10* 0.05 0.01 0.20 

σfarm (farm SD) 0.35* 0.02 0.32 0.38 0.44* 0.03 0.39 0.49 0.38* 0.02 0.34 0.43 

σe (SD of residuals) 0.34* 0.01 0.33 0.35 0.33* 0.01 0.32 0.35 0.36* 0.01 0.34 0.37 

α (Intercept) 5.25* 0.04 5.18 5.33 5.42* 0.06 5.30 5.54 4.86* 0.05 4.76 4.97 

β (Independent vars):             

Input intensity 0.09* 0.02 0.05 0.12 0.12* 0.03 0.07 0.17 0.19* 0.03 0.14 0.24 

Specialisation 0.05* 0.02 0.02 0.09 0.12* 0.03 0.07 0.18 0.02 0.03 -0.03 0.07 

Area Farmed -0.06* 0.02 -0.09 -0.03 -0.03 0.04 -0.10 0.04 -0.12* 0.03 -0.17 -0.07 

Direct payments 0.03* 0.02 0.00 0.07 -0.04 0.03 -0.09 0.01 -0.03 0.03 -0.09 0.04 

Direct payments x year         0.03* 0.01 0.02 0.04 

AES payments 0.03 0.02 -0.01 0.06 -0.03 0.03 -0.08 0.02 -0.07* 0.02 -0.11 -0.03 

SD temperature (Oct-Sep)  0.02* 0.01 0.00 0.05 -0.01 0.02 -0.04 0.03 0.01 0.02 -0.03 0.04 

SD precipitation (Oct-Sep) 0.06* 0.01 0.04 0.08 -0.03 0.02 -0.07 0.01 0.04* 0.02 0.01 0.08 

Mean temperature (Oct-Sep) -0.16* 0.03 -0.22 -0.12 -0.02 0.03 -0.09 0.04 -0.04 0.03 -0.10 0.02 

Mean precipitation (Oct-Sep) -0.11* 0.02 -0.16 -0.07 0.04 0.04 -0.04 0.13 -0.11* 0.04 -0.18 -0.04 

Total Income per ha 0.12* 0.02 0.09 0.15 0.13* 0.03 0.09 0.18 0.11* 0.03 0.06 0.16 

Year (t) -0.01 0.01 -0.02 0.01 -0.01 0.01 -0.02 0.01 0.04* 0.01 0.03 0.06 

Observations (n) 2357       1044       1128       

County (n) 56       38       57       

Farm (n) 512       261       318       

R2 0.201    0.223    0.517    

WAIC 26680.55    12180.80    12444.28    

Supplementary Table 5 - Multilevel model results examining the effect of farming practices, subsidies and climate for the agricultural 

season (Oct-Sep) on the variability of farm business income, showing the posterior means, standard deviation (SD) and 95% credible 

intervals (CI) of each parameter. Parameters that do not have 0 in the 95% credible interval are deemed important and marked with an 

“*”.   
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  Cereals General Cropping Mixed 

Parameter Posterior mean SD 95% CI Posterior mean SD 95% CI Posterior mean SD 95% CI 

σcounty (county SD) 0.08* 0.03 0.02 0.13 0.09* 0.05 0.01 0.18 0.12* 0.06 0.01 0.24 

σfarm (farm SD) 0.31* 0.01 0.28 0.34 0.31* 0.02 0.27 0.36 0.55* 0.03 0.50 0.62 

σe (SD of residuals) 0.33* 0.01 0.32 0.34 0.34* 0.01 0.32 0.36 0.40* 0.01 0.38 0.42 

α (Intercept) 14.66* 0.03 14.59 14.72 14.71* 0.05 14.61 14.81 13.86 0.07 13.73 13.98 

β (Independent vars):             

Input intensity 0.01 0.02 -0.02 0.04 -0.03 0.02 -0.08 0.01 -0.10* 0.04 -0.18 -0.02 

Specialisation 0.10* 0.02 0.07 0.13 0.05* 0.02 0.01 0.10 -0.01 0.03 -0.08 0.06 

Area Farmed -0.04* 0.02 -0.07 -0.01 -0.05* 0.03 -0.11 0.00 -0.09* 0.04 -0.16 -0.02 

Direct payments 0.01 0.02 -0.02 0.04 -0.01 0.02 -0.06 0.04 0.02 0.04 -0.06 0.10 

Direct payments x year         0.02* 0.01 0.00 0.03 

AES payments 0.03 0.02 -0.01 0.06 -0.04 0.02 -0.08 0.01 -0.05* 0.03 -0.11 0.00 

SD temperature (Oct-Sep)  0.05* 0.01 0.02 0.07 0.04* 0.02 0.01 0.08 0.03 0.02 -0.02 0.07 

SD precipitation (Oct-Sep) -0.01 0.01 -0.03 0.02 -0.01 0.02 -0.04 0.03 0.02 0.02 -0.02 0.06 

Mean temperature (Oct-Sep) -0.06* 0.02 -0.10 -0.03 -0.04 0.03 -0.09 0.01 0.01 0.04 -0.07 0.09 

Mean precipitation (Oct-Sep) 0.00 0.02 -0.04 0.05 -0.05 0.03 -0.11 0.02 -0.15* 0.05 -0.24 -0.06 

Total Income per ha 0.16* 0.02 0.12 0.20 0.27* 0.03 0.21 0.32 0.45* 0.04 0.37 0.54 

Year (t) 0.02* 0.01 0.01 0.03 0.00 0.01 -0.02 0.01 0.04* 0.01 0.02 0.06 

Observations (n) 2357       1044       1128       

County (n) 56       38       57       

Farm (n) 512       261       318       

R2 0.202    0.231    0.376    

WAIC 71398.09    31573.80    33086.68    

Supplementary Table 6 - Multilevel model results examining the effect of farming practices, subsidies and climate for the agricultural 

season (Oct-Sep) on the variability of calories, showing the posterior means, standard deviation (SD) and 95% credible intervals (CI) of 

each parameter. Parameters that do not have 0 in the 95% credible interval are deemed important and marked with an “*”.  
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Appendix C – Exploratory multilevel models (tried and tested as part of Chapter 5) 

 

As discussed in chapter 2 other climate variables and model specifications were 

considered when developing the methods used in chapter 5. The correlation matrix (Table 

C.1) and models shown below (in tables C.2 and C.3) were produced when developing the 

methodology for Chapter 5. The variables or subsequent results from these models, were 

either not considered robust or appropriate to answer the research questions being examined.  

  



Chapter 5 – Appendix C 

187 

 

Table C.1 - Pearson’s correlation coefficient (r) of other climate variables considered for the analysis.  

Correlations between seasonal climate variables considered in the analysis (mean and standard deviation (SD) of the climatic water balance 

(CWB), growing degree days (GDD), killing degree days (KDD). 

 

 

Autumn 

CWB 

mean 

Spring 

CWB 

mean 

Summer 

CWB 

mean 

Winter 

CWB 

mean 

GDD 

mean 

KDD 

mean 

Autumn 

CWB 

SD 

Spring 

CWB 

SD 

Summer 

CWB 

SD 

Winter 

CWB 

SD 

GDD 

SD 

KDD 

SD 

Autumn.CWB.mean 1.000            

Spring.CWB.mean 0.907 1.000           

Summer.CWB.mean 0.913 0.836 1.000          

Winter.CWB.mean 0.903 0.882 0.776 1.000         

GDD.mean -0.401 -0.435 -0.438 -0.341 1.000        

KDD.mean -0.370 -0.354 -0.460 -0.309 0.278 1.000       

Autumn.CWB.sd 0.585 0.538 0.577 0.478 -0.238 -0.379 1.000      

Spring.CWB.sd 0.137 -0.017 0.134 0.054 0.037 -0.118 0.250 1.000     

Summer.CWB.sd 0.634 0.619 0.619 0.574 -0.227 -0.432 0.454 0.310 1.000    

Winter.CWB.sd 0.707 0.717 0.500 0.856 -0.194 -0.177 0.421 0.128 0.494 1.000   

GDD.sd -0.066 -0.086 -0.281 0.118 -0.009 0.114 -0.095 -0.158 -0.191 0.218 1.000  

KDD.sd -0.382 -0.359 -0.471 -0.315 0.266 0.969 -0.388 -0.137 -0.461 -0.177 0.145 1.000 
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Table C.2 – Multilevel model results examining how farming practices and subsidies affect the stability of farm income and moderate the effects of climate 

variability (with interaction terms)  

 

Linear mixed-effects model fit by REML in lme

Autocorrelation corrected using corCAR1

County SD 0.054        0.121     0.100    

Farm SD 0.000        0.000     0.000    

Level-1 residual 0.482        0.547     0.518    

Fixed effects (Standard errors in brackets)

(Intercept) 5.274 *** (0.040) 5.429 *** (0.065) 4.956 *** (0.059)

Area Farmed -0.064 *** (0.016) -0.016 (0.034) -0.140 *** (0.026)

Total Income per ha 0.166 *** (0.016) 0.133 *** (0.026) 0.145 *** (0.026)

Year (t) -0.012 * (0.007) -0.005 (0.010) 0.020 ** (0.010)

Climate

Variability in CWB -  Winter 0.048 *** (0.016) 0.020 (0.023) 0.020 (0.023)

Variability in CWB -  Summer 0.017 * (0.009) 0.018 (0.014) 0.023 (0.014)

Variability in GDD - Season -0.017 * (0.009) -0.003 (0.012) -0.022 (0.016)

Variability in KDD - Summer 0.001 (0.011) 0.009 (0.018) 0.014 (0.016)

Farming practices

Input intensity 0.092 *** (0.017) 0.123 *** (0.029) 0.205 *** (0.029)

Specialisation 0.045 *** (0.017) 0.106 *** (0.031) 0.023 (0.026)

AES payments 0.015 (0.017) -0.056 ** (0.028) -0.029 (0.022)

Interactions

Input intensity x Variability in CWB -  Winter 0.005 (0.014) -0.018 (0.022) -0.007 (0.023)

Input intensity x Variability in CWB -  Summer -0.004 (0.009) -0.021 * (0.011) -0.036 *** (0.011)

Input intensity x Variability in GDD -0.007 (0.010) 0.010 (0.015) -0.006 (0.016)

Input intensity x Variability in KDD 0.006 (0.013) -0.002 (0.030) -0.030 * (0.018)

Specialisation x Variability in CWB -  Winter 0.005 (0.015) -0.001 (0.017) 0.016 (0.022)

Specialisation x Variability in CWB -  Summer -0.006 (0.009) -0.004 (0.010) 0.019 (0.013)

Specialisation x Variability in GDD 0.012 (0.009) 0.024 * (0.013) -0.007 (0.016)

Specialisation x Variability in KDD 0.017 * (0.009) -0.025 (0.016) 0.004 (0.018)

AES payments x Variability in CWB -  Winter -0.007 (0.013) -0.013 (0.018) -0.009 (0.019)

AES payments x Variability in CWB -  Summer -0.019 ** (0.010) -0.015 (0.016) -0.008 (0.013)

AES payments x Variability in GDD 0.000 (0.010) -0.001 (0.013) 0.016 (0.015)

AES payments x Variability in KDD 0.000 (0.010) -0.010 (0.013) -0.012 (0.017)

Observations (n) 2357 1047 1128

County (n) 56 38 57

Farm (n) 512 262 318

AIC         1931 941 1320

BIC 2086 1075 1455

logLik -939 -444 -633

Cereals General cropping Mixed

Cereals General cropping Mixed
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Table C.2 – Multilevel model results examining how farming practices and subsidies affect the stability of food production and moderate the effects of 

climate variability (with interaction terms)  

 

Linear mixed-effects model fit by REML in lme

Autocorrelation corrected using corCAR1

County SD 0.101    0.093     0.181    

Farm SD 0.000    0.000     0.000    

Level-1 residual 0.446    0.463     0.684    

Fixed effects (Standard errors in brackets)

(Intercept) 14.621 *** (0.040) 14.657 *** (0.058) 13.934 *** 0.074

Area Farmed -0.047 *** (0.016) -0.062 ** (0.027) -0.129 *** 0.037

Total Calories per ha 0.161 *** (0.019) 0.332 *** (0.026) 0.555 *** 0.041

Year (t) 0.027 *** (0.006) 0.007 (0.010) 0.022 ** 0.011

Variability in CWB -  Winter 0.010 (0.016) -0.023 (0.023) -0.015 0.026

Variability in CWB -  Summer 0.043 *** (0.009) 0.065 *** (0.014) 0.039 *** 0.015

Variability in GDD - Season 0.023 *** (0.009) 0.045 *** (0.013) 0.016 0.016

Variability in KDD - Summer 0.015 (0.011) 0.001 (0.018) 0.014 0.017

Input intensity -0.002 (0.018) -0.070 *** (0.025) -0.152 *** 0.045

Specialisation 0.086 *** (0.016) 0.067 *** (0.025) -0.013 0.036

AES payments 0.006 (0.017) -0.019 (0.024) -0.007 0.029

Input intensity x Variability in CWB -  Winter 0.035 *** (0.013) 0.021 (0.022) 0.013 0.026

Input intensity x Variability in CWB -  Summer 0.015 * (0.008) 0.027 ** (0.011) 0.006 0.011

Input intensity x Variability in GDD 0.012 (0.010) 0.017 (0.015) -0.006 0.017

Input intensity x Variability in KDD 0.006 (0.013) -0.055 * (0.029) -0.026 0.018

Specialisation x Variability in CWB -  Winter -0.013 (0.014) 0.006 (0.017) -0.047 * 0.025

Specialisation x Variability in CWB -  Summer -0.015 * (0.008) -0.018 * (0.010) 0.025 * 0.014

Specialisation x Variability in GDD 0.002 (0.008) 0.006 (0.013) 0.019 0.017

Specialisation x Variability in KDD -0.009 (0.008) 0.034 ** (0.016) 0.016 0.019

AES payments x Variability in CWB -  Winter -0.008 (0.012) 0.000 (0.018) -0.010 0.023

AES payments x Variability in CWB -  Summer 0.002 (0.009) -0.011 (0.016) -0.002 0.015

AES payments x Variability in GDD 0.003 (0.009) -0.016 (0.014) 0.002 0.016

AES payments x Variability in KDD 0.007 (0.009) 0.003 (0.014) -0.010 0.019

Observations (n) 2357 1047 1128

County (n) 56 38 57

Farm (n) 512 262 318

AIC         1636 911 1549

BIC 1791 1044 1684

logLik -791 -429 -747

Cereals General cropping Mixed

Cereals General cropping Mixed
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Chapter 6 - General discussion 

In this discussion chapter I begin by summarising the state of knowledge at the start of 

the project and the knowledge gaps that I have sought to address. I then discuss the key 

findings and form recommendations for farmers and policymakers. Following this I consider 

my research in a wider context and discuss farm vs regional scale stability. In the final 

section I discuss the limitations of this thesis research and opportunities for expanding this 

research in the future, before providing my concluding remarks. 

 

1 State of knowledge before project and summary of knowledge gaps 

The literature review in chapter 1 highlighted several gaps in the literature that I have 

sought to address. Firstly, analysis on the effect of adverse weather or climate variability on 

UK agriculture was often performed at a large scale, as part of a global or regional 

assessment and often using only a small number of sites from the UK (e.g. for wheat, 

Semenov et al. 2014; Trnka et al. 2014). I highlighted that within UK, at a local scale, daily 

weather conditions are likely to be wide ranging. Previous studies, focusing on the effect of 

adverse weather on wheat at a smaller spatial scale, identified spatial variability in drought 

and heat stress across areas of the UK for wheat production (Semenov, 2009).  However, 

further research was needed to examine the effect of a wide range of adverse weather 

conditions, including heavy rainfall during sowing and harvest, waterlogging and lodging, at 

a small spatial scale across the UK.  

The literature examined in chapter 1 also highlighted that agricultural production and 

incomes can be affected by a range of factors, including climate variability, farm 

management and characteristics, and policy, however these impacts were often examined 

separately, at different spatial scales, and across different disciplines. In particular, 

quantitative assessments examining the factors affecting agricultural stability were rare, 

especially at the farm level (Dardonville et al., 2020). Previous literature identified some 

important factors which may support the stability of agriculture which have been summarised 

in chapters 4 and 5, alongside the research gaps identified.  

The extensive information collected in the Farm Business Survey as well as the spatial 

extent and large numbers of farms included, combined with climatic data, provided an 

opportunity to examine how a wide range of factors explain the stability of agriculture. I 
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specifically focused on farm level adaptation, which had been less investigated, to provide 

recommendations for farmers and policy makers to improve the stability and therefore 

ultimately the sustainability of farm businesses and food production for consumers.  

 

2 Summary and synthesis of findings 

The main findings of the thesis are summarised in Table 1, in response to the research 

questions formulated in Chapter 1. There are several main findings and recommendations that 

can be drawn from this thesis, which are discussed further in this section. In combination the 

research undertaken in this thesis provides knowledge and understanding of the impact of 

adverse weather on the stability of agriculture, now and in the future, and important 

adaptation options to improve the stability of food production and farm income, in the 

context of a changing climate and more variable conditions. 
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Table 1 – Summary of the main results from each data chapter, in response to the research questions described in Chapter 1. 

Key research question(s) Main findings Chapter 

Focusing on wheat production, how does the frequency, 

magnitude and spatial patterns of a range of adverse 

weather conditions change throughout the UK during 

21st century? 

a) Generally, the UK climate is expected to remain favourable for UK 

wheat production. 

b) However, wetter winter and springs could cause issues with 

waterlogging (changing rainfall patterns appear more influential than 

temperature). 

c) Localised differences suggest it is important to examine climate 

conditions at a small spatial scale. 

3 

1) What affect do farming practices and subsidies have 

on the stability of farm income across England and 

Wales? 

 

2) Do different measures affect the interpretation of 

stability and the relationships identified in the models? 

a) Engaging in environmentally sustainable farming practices including 

agri-environment schemes, increasing agricultural diversity, and 

reducing the intensity of inputs, increases the stability of income for 

certain farm types. 

b) The alternative measures of stability used are correlated and provide 

similar results (but the choice of stability measure should depend upon 

the research question, and interpretation of stability). 

4 

What is the relative effect of climate variability, 

subsidies and farming practices on the temporal stability 

of food production and farm income, in England and 

Wales? 

a) While variability in climate can be largely outside of the farmers 

control, my findings indicate that, under current conditions, farm 

management can have a comparatively large effect on stability.  

b) Greater agricultural diversity can increase the stability of both food 

production and farm income, and more precise use of agri-chemicals 

may improve income stability, whilst maintaining outputs. 

c) Practices to improve stability vary between farm types, therefore 

future agricultural policy should be adaptable to benefit different types 

of production.  

5 
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2.1 Wetter winters and springs threaten agricultural production in the UK 

Results from chapter 3 indicate that under a changing climate, changing rainfall 

patterns appear more influential than temperature for UK wheat production; the risk of 

waterlogging increases throughout the UK, with winter and spring predicted to be wetter, 

coupled with an increase in heavy precipitation events.  

Beyond wheat, and considering risks to UK agricultural production more generally, 

heavy rainfall and waterlogging during the early season has, in previous literature, been 

found to reduce yields in other cereal crops, for example barley (de San Celedonio et al., 

2014; Hakala et al., 2012). Wetter weather in the early season is also likely to threaten 

productivity in other crops grown in the UK through root anoxia, nutrient leaching and the 

ability to access fields. Wet weather in the early part of the season also favours a range of 

pathogens and fungal diseases which can affect crops in the UK, for example ‘eyespot’ 

(Pseudocercosporella herpotrichoides) which affects wheat, barley, oats, rye and triticale, 

(AHDB, 2019). 

Adaptation options to manage or cope with waterlogging in the UK are important for 

farmers and policy makers to consider. There is some evidence that specific varieties of 

wheat and barley may be more tolerant to waterlogging (e.g. Setter and Waters, 2003). 

Diversity in crop rotations is often advocated as a method, and improve soil structure and 

drainage which could improve the ability to cope with wetter weather (Ball et al., 2005). As 

well as improving soil resilience, including the ability to tolerate both wet and dry conditions, 

including within the same season. Diverse crop rotations have previously been found to  

reduce the incidence of weeds, including blackgrass, as well as, improve soil properties and 

structure (Ball et al., 2005; Degani et al., 2019), which could improve the ability to cope with 

wetter weather in the early season, but also the ability to withstand drought during the 

summer. Diversification may therefore be an increasingly important practice for farmers to 

adapt to climate change. The benefits and challenges of increasing agricultural diversity are 

discussed further in section 2.2.1.  

Further research into the effects of waterlogging would provide important knowledge 

for farmers and policy makers, for example by expanding process-based crop models and 

considering the effects of compound weather events during the season (e.g., water logging 

followed by drought). Further research is also required to better understand the effects of 

changing rainfall patterns on the wider agricultural system, by also incorporating the effects 

on pests and disease and soil management.  
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In the next section I discuss some of the farm management practices and policy 

strategies which could help farmers to improve the stability of food production and farm 

income in the face of more variable climatic conditions.     

 

2.2 Farm management can have a large effect on the stability of food production and 

farm income 

In this section I discuss the results in response to the main aim of this thesis; to identify 

farming practices and adaptation options for agriculture to improve the stability of food 

production and farm income in the context of a changing climate and more variable 

conditions. I discuss the key farming practices identified in chapters 4 and 5 that may provide 

opportunities for farmers to improve the stability and ultimately sustainability of agriculture. 

I also discuss the potential barriers to adopting some of these farming practices. 

 

2.2.1 Increasing agricultural diversity is the best way to increase the stability of 

agricultural systems 

The empirical analyses in this thesis find that increasing diversity in crop and livestock 

activities is associated with greater stability of farm income, across a range of stability 

measures (Chapter 4), and with greater stability of food production (Chapter 5). There are a 

variety of mechanisms by which agricultural diversity has been found to increase stability in 

previous research, for instance by improving the farmed environment and harnessing 

ecological functions to increase the resilience of landscapes and agricultural production, as 

well as reducing vulnerability to production and market or price risks, benefitting farm 

income (Pretty, 2008; Pretty and Bharucha, 2014; Rockström et al., 2017).  

Recent literature has identified a range of specific benefits that can arise from crop 

diversification, of various types, to moderate the effect of production risks in a changing 

climate. Examples of crop diversification in agricultural systems and the potential benefits for 

agricultural production under climate change are summarised in table 2. Alongside benefits 

of agricultural diversity for soil, greater agricultural diversity has also been found to supress 

pests and disease, and may therefore reduce the need for agrochemical inputs and the 

associated negative effects on the environment (Davis et al., 2012; Liebman et al., 2004). 

Greater diversity in agricultural activities could therefore play an important role in increasing 

the stability of farm income and food production and at the same time preserving 

environmental health. 
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Many studies have been conducted on the effects of agricultural diversity on 

agricultural production. A small number of studies have found little or no benefit from 

specific types of agricultural diversity (e.g. species richness, Barkaoui et al. (2016) and root 

functional diversity, Carter and Blair (2012)); Schmid and Pfisterer (2002) found crop 

biodiversity increased yields under unperturbed conditions, however, species-rich cropping 

systems were less resistant to drought, in addition, plots containing legumes seemed to suffer 

larger reductions in yield due to drought. This contrasts with other studies which identify 

benefits of using legumes in cover or catch crops (table 2). Further research to understand the 

effect of specific species (e.g., legumes) within a rotation to improve yield stability and 

resistance to adverse weather could be an important area for future research.  

As shown in Table 2 there are various types of agricultural diversification, including 

using crop rotations and growing a mixture of varieties in a monoculture. Due to lack of data 

on specific varieties or crop rotations I could not examine these types of diversity, however, 

there is a large collection of research which supports the finding of this thesis that greater 

diversity can increase the stability of agricultural outputs.  

 

.  
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Table 2 - Examples of crop diversification in agricultural systems and the potential benefits for agricultural production under climate change. 

Source: adapted and expanded from Lin (2011). 

Type of crop diversification Nature of diversification Benefit Mechanism for benefit Reference(s) 

Diverse crop rotations Temporal diversity through crop 

rotations (and the use of cover 

crops) 

Maintain yields under abiotic stress 

and lower risk of crop failure 

Higher yield resilience through improved 

soil properties and water retention leading 

to better ability to withstand drought 

stress  

(Degani et al., 2019; Gaudin 

et al., 2015) 

Disease suppression Alternating cereal crops with broadleaf 

crops disrupts the disease cycle 

(Krupinsky et al., 2002) 

Increased yield Diverse rotations and cover crops can 

provide nutrients and biological 

regulation services 

(Dardonville et al., 2020; 

Smith et al., 2008) 

Genetic diversity in monoculture Growing a number of different 

varieties of crop species in different 

fields across the farm 

Increased mean income and income 

stability  

Thought that greater genetic diversity in 

cereals makes a system more resilient to 

temperature and rainfall fluctuations 

(DiFalco and Perrings, 

2003) 

Increased yield stability  Increased temporal yield stability in 

grassland (under drought and non-

drought conditions) 

(Prieto et al., 2015) 

Mixed plantings 

(polycultures)/intercropping/species 

(taxonomic) diversity 

Growing two or more crop species 

within the field; spatial and 

temporal diversity of crops 

Increased biomass production Increased biomass production in 

grasslands, notably when subjected to a 

drought event 

(Picasso et al., 2008; Prieto 

et al., 2015)  

Increased yield stability Stabilizes ecosystem productivity in 

grasslands, by increasing resistance to 

climate events. 

(Isbell et al., 2015; Tilman 

et al., 2006) 

Disease suppression Grassland fields planted with multiple 

species decreased disease transmission  

(Mitchell et al., 2002) 

Climate change buffering More ecologically complex systems with 

wild varieties and temporal and spatial 

diversity of crops were able to grow 

under climate stress  

(Tengö and Belfrage, 2004) 

Functional diversity or composition 

effect 

The diversity of species’ niches or 

functions or the presence of species 

with certain traits 

Increase yield stability 

 

Legumes as catch or cover crops 

increased yield stability by improving soil 

structure and increasing nitrogen   

(Gaudin et al., 2015; Urruty 

et al., 2017) 
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Over the past few decades modern farming has become more specialised and intensive. 

Specialisation has also been considered an advantageous strategy for farmers; enabling 

benefits from economies of scale, as well as more efficient technical production (de Roest et 

al., 2018). Despite these benefits, specialised farms are considered more economically 

vulnerable, being highly dependent on the commodity markets in which they operate (de 

Roest et al., 2018). My research in this thesis has demonstrated that it is important to consider 

this economic and production vulnerability (i.e., instability) when assessing farm 

performance, and the importance of agricultural diversity to increase stability.  

This thesis does not examine total levels of income or food production, instead focuses 

on the stability of agriculture, by examining variations in food production and income around 

the mean, which is also a significant challenge for farmers. Large variation in income over 

several years can make farm decisions, for example investment choices, more difficult even if 

the farm has high income, which may also affect the variability of production with potential 

consequences on food security. However, as discussed in Chapter 4, previous research has 

indicated that practices associated with sustainable production systems, including crop 

rotations and reducing chemical inputs to preserve ecosystem services, can improve 

productivity and incomes (Pretty, 2008; Pretty and Bharucha, 2014; Rockström et al., 2017). 

There can, however, be barriers and perceived limitations to increasing agricultural 

diversity; including implications for achieving economies of scale, large initial start-up costs 

for producing a new product (e.g., on machinery), as well as learning how best to produce 

and market it (Bradshaw et al., 2004). Policy instruments which could be used to ease some 

of these challenges and encourage an increase in agricultural diversity, are discussed further 

in section 3 below. 

 

2.2.2 Increasing the efficiency of input use could increase the stability of income whilst 

maintaining agricultural production 

The level of intensity, and use of agrochemicals, has previously been recognised as an 

important factor influencing agricultural system dynamics (Dardonville et al., 2020). 

Spending more on chemical inputs was previously associated with less stable farm incomes 

(Enjolras et al., 2014). However, the effects of fertiliser and pesticides on the stability of 

yields were less clear (Dardonville et al., 2020).  

In chapters 4 and 5 of this thesis I find that increasing the amount spent on 

agrochemicals per hectare is associated with less stable income. In contrast, increasing input 

intensity was associated with more stable food production. As discussed in chapter 5 (section 
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4.2) this finding suggests a potential trade-off in the use of chemical inputs between the 

stability of food production and farm incomes. Improving the stability of food production and 

farm income is important for both food security and maintaining a sustainable farm business. 

Despite the benefits to production, the results of this thesis indicate that greater input 

intensity is not economically sustainable for farm businesses, with higher input costs 

reducing the stability of income. 

Some research suggests farmers may use chemicals in excess, which has limited 

economic benefit, through declining nutrient efficiency and resistance (Roberts, 2008; Varah 

et al., 2020). Results from a Farm Business Survey report found only around a fifth of farms 

carried out precision farming techniques i.e., soil mapping and use of satellite technology to 

guide fertiliser application (21% in 2015/16) (Defra, 2017). Farmer behaviour and risk 

attitudes may also influence the use of chemicals; In a study of wheat farmers in France those 

in the ‘high-input’ group were driven by a ‘safety’ crop management plan to maximise yields, 

however they were the least profitable and least efficient group compared to low-input and 

medium-input farms (Nave et al., 2013). Incurring larger input costs can therefore reduce 

total profitability, as well as increasing the temporal variability of income with research 

indicating chemicals are often used in excess and therefore with limited economic benefit. 

The agronomist-farmer exchange may also influence the intensity and amount of money 

spent on chemicals. Supplier affiliated agronomists have been found to be less likely to 

recommend lower doses of pesticides than their independent counterparts (Pedersen et al., 

2019). Engagement with or access to precision technology, farmer behaviours and farm 

advisors may therefore influence the use of agrochemicals and subsequently the ability to 

reduce chemical use.  

Researchers, farmers and policy makers need to consider how to reduce input-use to 

increase the stability of economically sustainable farm businesses, but whilst also maintaining 

food production. It is likely there will be some optima of agrochemical use; agrochemicals at 

some level can improve productivity and stability of food production. Whilst I do not 

quantify an optimal level of agrochemicals, increasing the efficiency of input use is highly 

important to maintain production but supress costs (Duru et al., 2015). In parallel, currently 

the yield benefits of pesticides are also threatened by over-use, leading to widespread 

resistance and reduced effectiveness, therefore strategies to increase yields through food-

production systems rather than pesticides are necessary (Varah et al., 2020). 

Policy makers need to create the conditions which enable farmers to transition to 

different crop protection and soil management practices and increase the efficiency of input 
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use in the long term. The policy implications and relevance of these findings are further 

discussed in section 3 below.   

 

2.2.3 Agri-Environmental management also associated with greater stability 

Agri-environment schemes compensate farmers for implementing measures to benefit 

the environment or biodiversity, or to support the wider rural economy (European 

Commission, 2005). The effect of agri-environment scheme payments on the stability of 

agricultural production or income, at the farm level, had not been examined previously. The 

results from this thesis generally indicate a positive association between agri-environment 

payments and the stability of both farm income and food production, however, this does vary 

between farm types.  

Prior research has indicated options included in agri-environment schemes may help 

increase pest regulation (Menalled et al., 2003; Ottoy et al., 2018; Tschumi et al., 2016), 

pollination and climate regulation; reducing the effects of extreme weather events (Bishop et 

al., 2016; Degani et al., 2019). Improving these specific ecosystem services could increase 

stability of the agricultural system and therefore provide the related mechanism behind my 

findings. However, the effectiveness of agri-environment scheme options at actually 

delivering ecosystem service benefits has only just started to be scientifically tested and their 

overall effectiveness remains poorly understood (Batáry et al., 2015; Ottoy et al., 2018). 

However, the contrast between the effect of agri-environment scheme payments and ‘direct 

payments’ based on land area, which are generally found in chapters 4 and 5 to increase the 

variability of income and food production, suggest the environmental practices undertaken by 

the farmer are associated with greater stability. 

Details of specific agri-environment scheme options farmers participated in were not 

available each year of the Farm Business Survey, therefore it was not possible to provide 

more specific recommendations as to which options are associated with greater stability. This 

would be an important area for future research; to look at the effect of enrolment in different 

agri-environment schemes and the options undertaken by the farmer. 

 

3 How can government policy support stability? 

Government policy should seek to combat production risks, including those from 

climate variability, and move towards greater agricultural sustainability to ensure we can 

continue to feed a growing population. The results of this thesis recommend three aspects of 
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farm management to improve the stability of food production and farm income; increasing 

agricultural diversity, increasing the efficiency of chemical input use and the use of 

environmentally friendly farming options which are relevant to the farm type. I discuss below 

the policy implications of these findings and how policy instruments could be used to 

encourage these farming practices. 

Previous research suggests farmers need more information and training about the 

options for, and implications of, agricultural diversification (de Roest et al., 2018). Firstly, 

farmers must have access to effective advisory services to provide technical support and 

advice as required. This could be through government funded services (e.g., Farming Advice 

Service), or charitable organisations (e.g., LEAF) to promote understanding, provide 

ecological expertise and access to different markets. Knowledge sharing could also be 

between farmers, and policies should encourage collaborative networks to share expertise on 

diversification (de Roest et al., 2018). Economic support could also be provided to subsidise 

the additional start-up costs required to diversify production systems.  

Agricultural intensification over the last 50 years has led to higher yields, but at the 

same time has increased vulnerability in the agricultural system, reducing resilience and 

sustainability (FAO and OECD, 2012). Recent literature has recognised the challenges for 

policy makers to stimulate a reduction in chemical use among farmers; a review by Lee et al. 

(2019) considered of a range of policy instruments (e.g., bans, subsidies and taxes) and found 

no definitive policy instrument can achieve a pesticide use reduction. Policy makers could 

encourage the use of precision farming techniques, for example, by providing grants or 

subsidies for machinery and technology which allow for better targeted fertiliser and 

agrochemical applications. The use of robotics and other smart technologies in precision 

farming is also an emerging technology, which can provide benefits for the efficiency and 

productivity of production, and funding research and development in this area is important. 

However, it is also important policy makers engage with the farming community about future 

technological development and allow a dialogue between all those affected by the innovation 

including consumers, who may have concerns about emerging technologies (Rose and 

Chilvers, 2018). Indeed, it could also be seen as controversial for policy makers to fund 

precision farming technologies, which may be seen to legitimise chemical-based agriculture 

(Wolf and Wood, 1997). 

Another approach is to promote the substitution of chemical inputs with less 

environmentally harmful ones, including integrated pest management (Barzman et al., 2015). 

Lefebvre et al. (2015) argues that there is a clear requirement for public intervention to 



Chapter 6 

201 

 

promote the adoption of IPM. A combined suite of incentives, including regulation, 

incentive-based instruments and information dissemination are most likely to increase IPM 

uptake (Lefebvre et al., 2015). Governments must also take an active role in promoting the 

use of IPM, not only to farmers but also increasing knowledge and awareness more widely, 

so that retailers and consumers are aware of the environmental and health consequences of 

their food choices. 

The results from this thesis indicate that for future ELM schemes to reduce the 

variability of food production and farm income, alongside achieving environmental benefits, 

it is important that payments are linked to farmers enhancing or maintaining the environment, 

and are not area based, to ensure payments do not act as a moral hazard. Whilst it is difficult 

to comment on specific options which should be targeted in future schemes, greater emphasis 

could be given to support agricultural diversification, as well as more precise chemical 

application, which offer the most important solutions to improve stability and also have 

environmental benefits. For example, it is important aspects of diversification which are not 

paid for directly through the market or production outputs, (e.g., cover crops or diverse lays) 

but which provide public goods through ecosystem services, are incentivised.  

It is also important that future agricultural schemes are flexible, and options can be 

tailored to farms, with climate impacts and adaptation options found in this thesis to vary 

between farm types. Results from Chapter 4 of this thesis indicate LFA farms may not be 

able to receive the same stabilising benefits that other farm types gain from agri-environment 

schemes and agricultural diversification. LFA farms are highly reliant on dedicated support 

from the government (described further in Chapter 4 supplementary material), but also have 

the lowest farm income per hectare, on average, compared to other farm types, with subsidy 

payments constituting a large proportion of farm business income (Chapter 4, Table 3). 

Historically, support has been considered necessary to maintain the economic viability of 

farms in the uplands, whilst also preserving the environment and cultural landscape in 

Europe’s rural areas (Bonn et al., 2008; DEFRA, 2006). However it has been argued farming 

marginal Less Favoured Areas may not always result in the best outcome for the environment 

(Merckx and Pereira, 2015). Recent research indicates subsidies to support ‘rewilding’ in 

some marginal land areas may deliver the most valuable outcome for biodiversity and 

ecosystem services (Merckx and Pereira, 2015). This strategy must however be balanced with 

the need to meet increasing food demands.     
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4 Moving from farm- to regional-scale stability of food production and farm income 

The ability of agriculture to provide a sustainable source of food for a growing 

population is one of the major challenges of the 21st Century. This thesis considers the effects 

of climate variability and adaptation towards stability at the farm level. While adaptation 

strategies (e.g., changes in crop management practices) are mostly adopted at the farm level, 

previous research has also assessed the vulnerability and resilience of agriculture at the 

regional level; Abson et al. (2013) found that diversity of land use in the UK increased the 

resilience of agricultural returns in the face of uncertain environmental and market 

conditions. The results of this thesis suggest that larger farms are associated with more stable 

food production and farm income, at the farm level. However, at the regional level, previous 

research found greater diversity in farm size and the value of outputs per hectare reduced the 

vulnerability of crop production to climate variability across Europe (Reidsma and Ewert, 

2008). Heterogeneity of farm characteristics, and yield responses, across larger land areas can 

therefore also help improve the stability and sustainability of UK agriculture in a changing 

climate. In addition to farm level adaptation, it is also important for policy makers to consider 

the diversity of farm characteristics and consider planned adaptation at a coarser scale e.g., 

region or country. 

 

5 Limitations of the thesis research 

Challenges associated with the statistical analysis have been discussed in chapter 2, 

including multicollinearity, confounding and endogeneity. Chapter 2 also highlights the 

spatial limitations of the farm data; the precise or gridded location of the farms are not known 

for confidentiality purposes. Therefore, the impact of small-scale characteristics particularly 

soil conditions, including the available water capacity, could not be examined. The average 

climate conditions across the counties were instead used as an estimate of the climate at the 

farm. A more precise location of the farms within each of the counties may have strengthened 

the analysis. 

Farmers attitudes may also influence farming practices and how farmers adapt currently 

to variable conditions. There is no regular data collection in the Farm Business Survey on 

farmer attitudes and decision-making processes, which may also influence the stability of 

income and yields. Therefore, this would need to be assessed using large scale and detailed 

farmer surveys to allow analyses that could capture any differences in farmers attitudes 

between farms (including spatial characteristics and farm management) and farm types. 
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Farmers may also change management in response to unstable conditions, and endogeneity is 

discussed further in chapter 2.  

Sociodemographic characteristics, e.g., age, gender, and education, may influence how 

farms are managed and therefore indirectly affect the stability of income and food production. 

In this thesis I focused on the direct effects of farm management, and therefore how farm 

management can help to adapt to more variable conditions. The Farm Business Survey does 

capture the age of the farmer and gender, however data on education status is limited 

(includes the level of education from school only, up to post graduate qualification). To 

examine which structural factors influence farm management and therefore farm 

performance, it would be better to consider what training or technical experience farmers 

have and other behavioural information, for instance whether they are part of cooperatives or 

groups and what their attitude to risk is. This could provide insight and knowledge on how to 

engage and encourage farmers to adopt certain practices (e.g., increasing agricultural 

diversification) which could improve stability. However, this could comprise a new research 

topic and further project in itself.  

Despite the limitations, the analysis in this thesis clearly improves knowledge and 

provides insights into the farming practices and adaptation options that improve the stability 

of food production and farm income. Although aspects remain to be studied, the analyses 

revealed some important factors that need to be considered when examining stability of 

agriculture in the context of a changing climate and more variable conditions. 

 

6 Opportunities for future work 

There are several opportunities for work that arise from the model results and the 

discussion of results in this thesis. For example, chapter 3 of this thesis used agroclimatic 

indicators to examine the probability of occurrence of waterlogging and other adverse 

weather conditions excluded from process-based crop models, however, I could not quantify 

the yield impacts. Process based crop models could therefore be expanded to examine the full 

range of effects of waterlogging, and other abiotic stresses, identified as risks to wheat 

production, to gain further understanding of these effects.  

In chapter 4 it is recognised that further analysis to identify which options (or 

environmental practices) in agri-environment schemes lead to greater stability could be of 

interest to farmers and policy makers, particularly given the current transition from direct 

payments to a new agricultural policy in the UK focusing on environmental land management 
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and productivity measures. The effects of other types of agricultural diversification on 

stability could also be considered in future research; in particular examining functional 

diversity and specifically the ‘composition effect’ of legumes within a rotation, to improve 

yield stability and resistance to adverse weather, could be an important area for future 

research. 

Chapter 5 considers the effect of current climate conditions, including climate 

variability, on the stability of food production and farm income. I did not explicitly model the 

effects of climate change on stability; interannual climate variability is driven by a range of 

different factors and modelling future climate variability is complex. In addition, I would 

have needed to account for additional factors such as changes in crop phenology in the future 

(i.e., advancing maturity due to rising temperatures). To make informative predictions about 

future conditions, assumptions would also likely need to be made on future subsidies, costs 

and farm adaptation, which could increase the level of uncertainty in the models. Whilst 

climate change was out of scope for chapter 5, this could be an opportunity for future work 

beyond this thesis. 

 

7 Concluding remarks 

The next few years presents a time of extreme challenges for agriculture. Climatic 

changes are expected to have multiple direct and indirect effects on agricultural production 

and farmers’ incomes. Improving the stability of yields is important for future food security 

and improving the stability of farm income could improve the economic viability and 

sustainability of farm businesses and in turn help provide a continuity of food supply, under 

more variable conditions. Therefore, the combined assessment in this thesis examining how 

farm management and policy affect stability of both food production and farm income was 

important to ensure the sustainability of farm businesses that can continue to produce food 

into the future. This thesis indicates that management practices, including increasing 

agricultural diversity and increasing the efficiency of agrochemical use, can have a relatively 

large effect on stability in comparison to the unpredictable effects of climate, and therefore 

farmers may have opportunities to improve stability in the face of more variable conditions. 

However, policy makers also need to support farmers to increase stability and reduce 

vulnerability to shocks, whilst also considering the multidimensional and sometimes 

competing challenges facing agriculture. 

Agriculture provides or is linked to many ecosystem services, including food 

production, adapting to and mitigating climate change, preserving the natural environment 
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and maintaining biodiversity. Managing these ecosystem services and considering any trade-

offs is an important consideration of policy makers. In the UK this is currently a pivotal 

moment for agricultural policy; with agricultural land comprising more than 70% of the UK 

land cover it has been recognised that farmers are important stewards of our environment, 

with the new agricultural policy focused on supporting the rural economy and achieving ‘A 

Green Future’ for the UK environment. The stability of farming is important for future food 

security, however it is important that changes in farming practices and policy are not at the 

detriment of the natural environment.  
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Thesis appendix - Agroclimatic indices 

1. Crops 

1.1. Wheat 

Climate shock  Indicator Impact/Response References (Location) 

Temperature 

Frost with no 

snow 

Tmin ≤ -20°C for at least 1 day with ˂1cm snow cover† Leaf chlorosis; burning leaf tips Trnka et al. (2014) 

(Europe) 

Trnka et al., (2015) 

(Europe) 

Late Frost Tmin ≤ -2°C after the start of the following window, determined as the 

period when the mean air temperature is continuously 10°C (for at 

least five days) and does not drop below 10°C for more than two days 

in a row 

Medium to severe yield loss Trnka et al. (2014) 

(Europe) 

Trnka et al., (2015) 

(Europe) 

Frost during 

anthesis 

Temperatures of -4 to -5°C canopy temperature around anthesis 

(Note: canopy minimum temperature is assumed a standard 2◦C 

cooler than air temperature) 

0% yield loss at −5◦C to 100% 

yield loss at −6◦C (canopy 

temperatures) 

(Barlow et al., 2015) 

(simulation) 

Frost during stem 

elongation 

Temperatures <−5 °C (air temperature) Extensive damage to ears (Fuller et al., 2007) (UK) 

Anthesis heat 

stress 

Tmax > +31°C for at least 2 days during ±5 days around anthesis Sterility and severe effect on 

yield 

Trnka et al. (2014) 

(Europe) 

Trnka et al., (2015) 

(Europe) 

Impact on Harvest Index (HI)1; a function of grain filling duration 

(GF) and daily increase of HI, for -5 days and +12 days around 

anthesis: HI = dHI / dt x GF 

Grain-set declines at 31°C and is 0% at 40°C 

Decrease in grain-set and final 

harvest index (yield) 

Moriondo et al. (2011) 

(Mediterranean) 

 

Temperature of ≥ +27°C mid-way through anthesis   Sterility and considerable yield 

loss 

Mitchell et al. (1993) 

(UK) 

 
1 Using the model proposed by Challinor et al., (2005) 
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Tmax/Tmin of 36/31°C for at least 2 days in 2/3 days prior to anthesis Sterility and small shrunk kernels 

with notching and chalking 

(parthenocarpy) 

Luo (2011) 

Cardinal temperatures for wheat during anthesis: 

• Tbase 9.5°C 

• Topt 21.0°C 

• Tmax 31.0°C (in 5 days prior to anthesis) 

Sterility and reduction in grain 

numbers 

Porter and Gawith, 

(1999) (Global) 

 

Daily Tmax >31.0°C occurs any days close to anthesis (when anthesis 

between days 135-166) 

Reduction in wheat yield Perry et al., (2002) 

(England & Wales) 

Critical temperatures for anthesis: 

- At field capacity: 31.7 ± 0.47 °C  

- At drought: 29.9 ± 0.47 °C  

Critical temp arbitrarily chosen as 

5% reduction in grain set 

Alghabari et al., (2014) 

(UK) 

Heat (>30 - 33°C) Reduced grain number and size Barlow et al., (2015) 

(Simulation) 

Heat stress during 

reproduction 

phase 

Tcrit is 27°C (critical temperature) 

Tlim is 40°C (limit temperature) 

Tday is daytime temperature 

 

Daily heat stress intensity (FHSd) 

 

𝐹𝐻𝑠𝑑 =  {

0.0 𝑓𝑜𝑟 𝑇𝑑𝑎𝑦 < 𝑇𝑐𝑟𝑖𝑡

     
𝑇𝑑𝑎𝑦 − 𝑇𝑐𝑟𝑖𝑡

𝑇𝑙𝑖𝑚 − 𝑇𝑐𝑟𝑖𝑡
𝑓𝑜𝑟 𝑇𝑐𝑟𝑖𝑡 ≤ 𝑇𝑑𝑎𝑦 < 𝑇𝑙𝑖𝑚

1.0 𝑓𝑜𝑟 𝑇𝑑𝑎𝑦 ≥ 𝑇𝑙𝑖𝑚

 

Mitchell et al., (1993) 

temperature of 27°C or higher 

midway through anthesis could 

result in a high number of sterile 

grains and considerable yield 

losses. 

(Teixeira et al., 2013) 

(Global modelling) 

Grain filling 

extreme heat 

exposure 

 

Tmax >35°C for at least 3 days from 5 days after anthesis to maturity Speeds up development and 

substantial yield reduction 

Trnka et al. (2014) 

(Europe) 

Trnka et al., (2015) 

(Europe) 

Heat (>30-40°C) Yield loss Porter and Gawith (1999) 

(Global) 

Tmax 28/15 °C (day/night), between anthesis and maturity (33 days for 

this temperature treatment) 

Greatly reduced total yield and 

thousand grain weight (smaller 

grains) 

(Savill et al., 2018) (UK) 
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Tmax 34/20 °C (day/night) for at least 7 days from 7 days after 

anthesis (DAA) (days after 50% anthesis), with greatest temporal 

sensitivity 7-14 and 14-21 DAA.   

Shorter filling and lower seed 

weight. Bread making quality - 

Protein and S concentrations 

improved but SDS volumes 

damaged by brief high 

temperature. 

(Nasehzadeh and Ellis, 

2017) (UK) 

Tmax > 25°C on more than 14 days  

or 

More than 15mm rain in a day and wind speed of more than 10ms-1 

or maximum temp exceeding 28C on 3 successive days  

regional yield is likely to be 

reduced by more than 10% 

(Russell and Wilson, 

1994) (Europe) For 

winter and spring 

common wheat north of 

latitude 45 °N  

Daily Tmax > 28°C on 3 successive days, or 

Daily Tmax > 25°C on > 14 successive days 

≥10% wheat yield losses Perry et al., (2002) 

(England & Wales) 

Steady decline kernel development for in temperatures above this. 

18/13°C (day/night) 

Reduction in duration of growth, 

reducing the kernel size. 

Chowdury and Wardlaw 

(1987) (Australia) 

Booting Critical temperatures: 

5% reduction in grain set (t5) 

- At field capacity: 33.9 °C ± 0.50 

- At drought: 26.5 °C ± 0.56  

 

50% reduction in grain set (t50) 

- Irrigated = 36.9 ± 0.65 

- Water withheld, = 31.3 ± 0.65;  

Critical temperatures relate to a 

percentage reduction in grain set. 

Alghabari et al., (2014) 

(UK) 

Successive single day transfers of pot-grown wheat to high 

temperature: 35/30◦C day/night 

Dependent on genotype, growth 

stage: grain set dropped below 

80% (20/15◦C) for Savannah. 

Barber et al., (2017) 

(UK) 

Precipitation 

Lodging event At least 2 days with daily precipitation >40mm or >20mm and soil 

moisture on the previous day is at or above field capacity; the period 

from anthesis to five days before maturity is considered 

Reduction in yield and quality 

 

Trnka et al. (2014) 

(Europe) 

Trnka et al., (2015) 

(Europe) 

> 15mm rain in 1 day during grainfill Wheat yield losses ≥10% (Russell and Wilson, 

1994)(Europe)  

Perry et al., (2002) 

(England & Wales) 



Thesis Appendix 

216 

 

Wind gusts of > 5 m.s−1 and rain > 7 mm 

from flag leaf to maturity 

10–90% yield loss 

 

~ 0.5% of potential yield is lost 

for each percentage area of crop 

lodged (LT)  

(Berry et al., 2003) and 

(Gobin, 2018) 

Waterlogging 

stem elongation to 

anthesis 

 

Waterlogging between stem elongation and anthesis Yield reduced linearly with the 

duration of waterlogging 2% 

wlday−1 

Marti et al.  

(2015) (Spain) 

Waterlogging between stem elongation and anthesis 34% to 92% yield losses de San Celedonio et al. 

(2014) (Argentina) 

Evapotranspiration 

Severe drought 

event sowing – 

anthesis 

ETa
§/ETr

‖ is less than 0.15 for at least 10 consecutive days between 

sowing and anthesis* 

Reduction in growth/crop die 

back 

 

Trnka et al. (2014) 

(Europe) 

Trnka et al., 

(2015)(Trnka et al., 

2015) (Europe) 

Severe drought 

event anthesis-

maturity 

ETa
§/ETr less than 0.15 for at least 10 consecutive days  

between anthesis and maturity 

Reduction in growth/crop die 

back 

 

Trnka et al. (2014) 

(Europe) 

Trnka et al., 

(2015)(Trnka et al., 

2015) (Europe) 

Severely dry 

(sowing-maturity) 

ET less than 0.15 for at least 21 days during period sowing to 

maturity* 

Reduction in growth/crop die 

back 

Trnka et al. (2014) 

(Europe) 

Trnka et al., (2015) 

(Europe) 

Soil moisture 

Extremely wet 

early season 

Soil moisture at or above capacity for >60 days from sowing to 

anthesis* 

Restricts growth and reduces 

yield 

 

Trnka et al. (2014) 

(Europe) 

Trnka et al., (2015) 

(Europe) 

Adverse 

conditions at 

sowing 

No more than 3 days during sowing window (sowing date ±15 days) 

with soil moisture in top layer <90% but >5% and rain on the day 

<5mm with ≤10mm on preceding day. 

Restricts sowing window Trnka et al. (2014) 

(Europe) 

Trnka et al., (2015) 

(Europe) 
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Adverse 

conditions at 

harvest 

Fewer than 3 days during harvest window (maturity date +5 days up 

to maturity + 25 days) with soil moisture in top layer <85% and rain 

on given day <0.5mm and ≤5mm on preceding day 

Restricts ability to harvest  

 

Trnka et al. (2014) 

(Europe) 

Trnka et al., (2015) 

(Europe) 

Drought suffered 

during stem 

elongation and 

grain-filling 

Drought suffered during the stem elongation and grain-filling stages, 

calculated as the difference between the cumulative rainfall and the 

potential evapotranspiration. 

Yield decrease (Brisson et al., 2010) 

 

Notes: * Excluding days with a mean temperature < 3°C 
† The snow cover was estimated using a model validated by Trnka et al.   
§The ETa refers to the actual evapotranspiration calculated for winter wheat assuming a soil water-holding capacity of 0.27 m and a maximum rooting depth of 

1.3 m (more details in the text). 

‖The ETr refers to the same crop surface as (§) but for reference evapotranspiration; the crop parameters were set according to (Allen et al., 1998)
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1.2. Barley 

Climate shock  Indicator Impact/Response References (Location) 

Cold/frost tolerance Minimal lethal temperature (LT50 – 50% of samples 

killed) between: -17.3°C and -12.9°C 

LT50 – 50% of samples killed Prášil et al., (2007) (Czech 

Republic) 

High temperature during 

vernalisation 

Mean temperature during vernalisation must not be > 

11°C, where vernalisation between Dec and May 

(winter barley) 

Not noted Perry et al., (2002) (England & 

Wales) 

 

 

Heat stress during heading 

to anthesis 

Mean temperature during spring barley heading to 

anthesis must not be > 30°C (where period in last 10 

days in June). 

Not noted Perry et al., (2002) (England & 

Wales) 

 

Heat stress during anthesis 

to maturity 

Mean temperature during spring barley anthesis to 

maturity must not be > 30°C  

Not noted Perry et al., (2002) (England & 

Wales) 

 

 

Heat stress during warm 

season 

Warm season classified as March-July (French study), 

heat stress conditions as follows: 

Winter barley: Tmax >33°C 

Spring barley Tmax >32°C 

Statistically significant 

negative impact on yield 

(relative to freezing temp) 

 

(Gammans et al., 2017) (France) 

Waterlogging between stem 

elongation and anthesis 

Waterlogging between stem elongation and anthesis 40% to 79% yield loss in 

winter barley 

(de San Celedonio et al., 2014) 

(Argentina) 

(Hakala et al., 2012) - Agro-meteorological variables expected to have a marked influence on growth and yield formation in barley. 

Rain before sowing 1. Rain during 1 month before sowing was classified 

according to monthly rainfall at: up to 23, 23–41 and 

41–113mm of rain/month.  

High rainfall before sowing 

and delayed sowing reduced 

barley yields. 

(Hakala et al., 2012) (Finland) 

Delayed sowing 2. Delayed sowing (sowing date).  See variable 1. (Hakala et al., 2012) (Finland) 

Drought/waterlogging after 

sowing 

3. Early season drought and waterlogging (rain 0–3 

weeks after sowing). 

 

Rainfall was divided into three classes: low (0–18·2 

mm), moderate (18·3–33·6 mm) and high (33·7–122·4 

mm). 

Moderate rainfall resulted in 

high yields, while both high 

rainfall and low rainfall 

reduced yields considerably. 

(Hakala et al., 2012) (Finland) 
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Drought after sowing 4. Drought at yield potential determination (rain 3–7 

weeks after sowing). 

 

Increase in rainfall increased 

yield. Drought at yield 

potential formation may 

reduce grain number and 

yield (Rajala et al. 2009, 

2011). 

(Hakala et al., 2012) (Finland) 

Frost damage 5. Frost damage during early growth (lowest 

temperature during 0–4 weeks after sowing). 

 

Significantly reduced yield of 

e.g. 

turnip rape, but has not been 

tested previously with barley 

(Hakala et al., 2012) (Finland) 

Heat stress at heading 7. High temperature stress (number of days with 

maximum temperature of 25 °C or higher 1 week 

before to 2 weeks after heading). 

 

Reduce grain number and 

yield  

(Hakala et al., 2012) (Finland) 

Heat stress at heading 8. Very high temperature stress (number of days with 

maximum temperature of 28 °C or higher 1 week 

before to 2 weeks after heading). 

See variable 7. 

 

(Hakala et al., 2012) (Finland) 

High temperature 

accumulation  before 

heading 

9. Rate of temperature sum (Tsum) accumulation 

before heading (Tsum accumulation rate from 14 days 

before heading to heading). 

 

Increased rate of development 

at yield potential formation 

has been shown to reduce 

grain number and yield  

(Hakala et al., 2012) (Finland) 

High temperature 

accumulation  at grain 

filling 

10. Rate of Tsum accumulation at grain filling (Tsum 

accumulation rate from heading to yellow ripeness).  

 

Shorten the duration of grain 

filling and may thus reduce 

grain yield. 

(Hakala et al., 2012) (Finland) 

High temperature 

accumulation  at grain 

filling 

11. Mean daily temperature sum accumulation rate at 

grain filling (Tsum accumulation rate (per (per day) 

from heading to yellow ripeness). 

See variable 10. (Hakala et al., 2012) (Finland) 

 

1.3. Oil seed rape 

Climate shock  Indicator Impact/Response References 

(Location) 
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Heat stress during 

anthesis 

Tmax > 35°C (Daytime temperatures increasing from 23°C to 35°C 

and night-time temperatures of 18°C) for 7 days during anthesis 

Fruit and seed development, as well as 

seed weight, were significantly reduced. 

(Young et al., 

2004) (Canada) 

Heat stress of 35/15°C in the early flowering stage Reduced harvest index relates to a 

reduction in seed weight and seeds per 

pod 

(Angadi et al., 

2000) (Canada) 

Drought stress 

during anthesis 

Drought stress is present when the actual soil water content, was < 

40% of the plant available water content of the effective rooting 

depth after winter.  

 

DI (between 0 and 1) increased linearly with decreasing relative 

plant available water content of the effective rooting depth: 

DI = 1 – (1 / 0.4) × rel. plant available water content  

Reduction in seed and oil yield. (Weymann et al., 

2015) (Germany) 

 

1.4. Peas/beans 

Climate shock  Indicator Impact/Response References (Location) 

Peas 

Heat stress on pollen 

germination 

Heat stress condition of 36/18°C (day/night) over 4 

days 

Reduced pollen germination 

by 30 and 55% in CDC Sage 

and CDC Golden cultivars, 

respectively. 

(Lahlali et al., 2014) (Canada) 

Heat stress during 

flowering 

30/25°C (day/night) for 7 days  Caused atrophy and flowers to 

abort. Reduced plant height, 

dry matter, seed yield, seed 

number and weight, harvest 

index. 

 

Water deficiency also 

decreased use of 32% at 

30/25°C 

(Mcdonald and Paulsen, 1997) 

Heat stress following 

germination on root 

growth 

• Temperatures between 25°C and 32°C  

• Heat stress of 32°C (for 1 or 3 days) 

Decrease in primary root 

growth 

(Gladish and Rost, 1993) 
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• However, the changes usually included a 1-2 

day time lag and were reversible. 

Inhibited the initiation of 

lateral roots 

Faba bean 

Heat stress during 

anthesis 

Heat stress for 5 days during anthesis 32°C (t50 lethal 

temperature) 

Mass per bean was highest at 25°C 

50% pollen germination 

estimated to be lost. 

(Bishop et al., 2016) (UK) 

 

1.5. Maize 

Climate shock  Indicator Impact/Response References (Location) 

Heat stress during/ 

around anthesis 

High temperatures ~33-40°C 

 

15 day period at pre-silking and from silking onwards.  

4–6 Mg·ha−1 grain loss (Rattalino Edreira and Otegui, 

2012) (Argentina) and (Gobin, 

2018) 

Critical temperature of 34°C 

 

However when using the air temperature for better 

performance increase the air temperature threshold to 

39°C 

Reduction in yield (Gabaldón-Leal et al., 2016) (Grain 

Maize; Argentina and Spain) 

Heat stress during 

reproduction phase 

Tcrit is 35°C (critical temperature) 

Tlim is 40°C (limit temperature) 

Tday is daytime temperature 

 

Daily heat stress intensity (FHSd) 

 

𝐹𝐻𝑠𝑑 =  {

0.0 𝑓𝑜𝑟 𝑇𝑑𝑎𝑦 < 𝑇𝑐𝑟𝑖𝑡
𝑇𝑑𝑎𝑦 − 𝑇𝑐𝑟𝑖𝑡

𝑇𝑙𝑖𝑚 − 𝑇𝑐𝑟𝑖𝑡
𝑓𝑜𝑟 𝑇𝑐𝑟𝑖𝑡 ≤ 𝑇𝑑𝑎𝑦 < 𝑇𝑙𝑖𝑚

1.0 𝑓𝑜𝑟 𝑇𝑑𝑎𝑦 ≥ 𝑇𝑙𝑖𝑚

 

 

Negative impact on yield (for 

T >30°C) which increases 

under drought conditions 

(Lobell et al., 2011) 

(Teixeira et al., 2013) (Global 

modelling) 

Heat stress – during 

pollination 

High temperatures of 40°C during pollination 

 

 

Immediately reduces the in 

vitro fertilization percentage, 

and after 6 h of stress, no 

fertilization occurs 

(Dupuis and Dumas, 1990) 

(France) 
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High temperature of 38/32°C (day/night) just after 

anther emergence 

 

Viability of pollen adversely 

affected. 

(Schoper et al., 1987) (Illinois US) 

High temperature of 38/32°C (day/night) during 

pollination 

Marked reduction in 

germination for all types at 

38°C compared with 27/21°C, 

32/26°C and several types 

showed no germination after 

48 h at 38°C 

(Herrero and Johnson, 1980) 

(Illinois US) 

Heat stress during 

emergence 

Mean temperature must not be >30°C where silage 

maize emergence is day 138-163 and grain maize 

emergence is 162-170 

Not provided Perry et al., (2002) (England & 

Wales) 

Heat stress  Any 20-day average mean temp >32°C Reduced yields of grain and 

silage maize 

Perry et al., (2002) (England & 

Wales) 

Heat stress during 

biomass growth 

Accumulation of temperatures >30°C 

 

Hourly temperatures estimated from daily minimum 

and maximum T using a sinusoidal function, and 

extreme degree days (EDD) were calculated as: 

𝐸𝐷𝐷 = ∑ 𝐷𝐷30+,𝑡 

𝑁

𝑡=1

 

𝐷𝐷30+,𝑡 =  {

   
     0           𝑖𝑓 𝑇𝑡 < 30°𝐶
𝑇𝑡 − 30

24
    𝑖𝑓 𝑇𝑡 ≥ 30°𝐶 

 

 

Where DD30+t is the EDD for hour t, and t spans from 

1 June to 31 August for a total of 2,208 h.  

During biomass growth 

temperatures above >30°C 

reduce yield as a result of 

increasing demand for water 

and reducing future water 

availability. 

(Lobell et al., 2013) (US) 

Frost during the season <-2◦C for a few minutes and 0◦C for more than 4 hours Lethal damage to stem leaf 

and ear 

(Sánchez et al., 2014) 

Drought  Precipitation Jun-Aug <150mm  Lower limit for corn 

production, irrigation for grain 

maize essential 

(Shaw, 1988)(Global) and Perry et 

al., (2002) (England & Wales) 
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Drought  Precipitation Jun-Aug <250mm Grain maize irrigation 

beneficial 

(Shaw, 1988)(Global) and Perry et 

al., (2002) (England & Wales) 

 

1.6. Oats 

Climate shock  Indicator Impact/Response References (Location) 

Heat stress during spring 

and summer months 

Critical max temperatures: 

April 24°C 

May 26°C 

June/July/August 36°C 

Crop growth is close to zero at 

the maximum temperatures. 

(Robertson et al., 2013)(Canada) 

Critical minimum 

temperatures 

Critical min temperatures: 

April 12°C 

May 5°C 

No growth occurs below these 

minimum temperatures.  

 

(Robertson et al., 2013)(Canada) 

 

2. Livestock 

2.1. Cattle 

Climate shock  Measurement  Impact/Response References  

Heat stress THI = temperature-humidity index, 

• THI = (dry bulb temperature °C) + (0.36 x dew point 

temperature °C) + 41.2 

 

THI threshold = THI threshold above which heat stress occurs in 

a given animal class 

 

THI thresholds: 

• Dairy cows: 70 

• Beef cows: 75 

• Growing finishing hogs: 72  

• Broiler chickens: 78 

Above thermoneutral zone animals may 

change respiration rates, heart rate, sweating, 

blood chemistry and hormones. Behaviour 

changes with an increase in water intake and 

a decrease in food intake and therefore can 

reduce livestock productivity.  

 

 

(Key et al., 2014) 

 

(U.S. Department 

of Agriculture 

(USDA), 2008) 
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THI can be calculated from the following equations, where dry-

bulb temperature (Tdb), wet-bulb temperature (Twb), and dew-point 

temperature (Tdp) are °C and relative humidity (RH) is %:  

 

• THI = 0.72 (Tdb + Twb) + 40.6;  

• THI = Tdb+ (0.36 Tdp) + 41.2;  

• THI = 0.8Tdb + RH (Tdb – 14.4) + 46.4.  

 

These THI represent the overall impact on livestock  

 

Further THI Indexes listed in (Dikmen and Hansen, 2009) which 

compares THI as a predictor of heat stress in a sub-topical 

environment  

• THI = (1.8 x Tdb + 32) – [(0.55 – 0.0055 x RH) x (1.8 x Tdb 

– 26.8)]  

• THI = (0.35 x Tdb + 0.65 x Twb) x 1.8 + 32  

• THI = (0.55 x Tdb + 0.2 x Tdp) x 1.8 + 32 + 17.5 (  

• THI = (0.15 x Tdb + 0.85 x Twb) x 1.8 + 32  

• THI = [0.4 X (Tdb + Twb)] x 1.8 + 32 + 15  

 

THI has proven successful in managing cattle 

and captures much of the impact of warm to 

hot thermal environments (albeit does have 

limitations – lacking thermal 

radiation/airflow and cold conditions.) (Hahn 

et al., 2009). 

 

1. Livestock weather severity index (LWSI) 

– tactical guide for mitigating heat stress: 

• Normal: ≤ 74  

• Alert: 75-78  

• Danger: 79-83  

• Emergency: ≥84 

 

2. Milk production decline (MDEC, 

kg/cow-day)  

 

MDEC = 1.075 – 1.736 M + 0.02474 M × 

THI  

 

where M = normal level of milk production 

in thermoneutral conditions, kg/cow-day 

Also discussed in:  

(U.S. Department 

of Agriculture 

(USDA), 2008) 

(Hahn et al., 2009) 

 

 

 

 

Temperature Humidity Index (THI)-hours 

For Bos Taurus cattle in feedlots exposed to single heat wave 

events (3 days with THI >70)  

 

Daily THI-hrs = ∑ (𝑇𝐻𝐼 − 𝑏𝑎𝑠𝑒)24
ℎ−1   

 

THI-hours are a measure of the magnitude of daytime heat load 

(intensity x duration). 

Other climatic factors e.g., solar radiation, 

wind speed and biological factors (e.g., heat 

tolerance, diet, acclimation to heat) can 

modify impacts. 

 

Severe to extreme conditions can be lethal 

combined with high solar radiation levels and 

low wind speeds, particularly with a 

maximum THI of 86 or higher.  

Also discussed in:  

(U.S. Department 

of Agriculture 

(USDA), 2008) 

(Hahn et al., 2009) 

 

Heat load index (HLI) 

 

Based on humidity, wind speed and predicted black globe 

temperature (BGT) developed as a guide for managing unshaded 

The thresholds are used to calculate the 

accumulated heat load (AHL) based on the 

THI-hours concept. When an animal is 

exposed to a HLI above its threshold, the 

Also discussed in:  

(U.S. Department 

of Agriculture 

(USDA), 2008) 
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Bos taurus cattle during hot weather (>28.C), by reviewing 

respiration rate and panting score  

 

Predicted BGT = 1.33 × Tdb – 2.65 × Tdb
0.5 + 3.21× log10(SR + 1) + 

3.5  

 

The HLI consists of two parts based on a black-globe temperature 

threshold of 25°C:  

 

HLIBGT>25 = 8.62 + 0.38 RH + 1.55 BGT – 0.5 WS + e(2.4 – WS)  

 

where e is the base of the natural logarithm, and: 

 

HLIBGT<25= 10.66 + 0.28 RH + 1.3 BGT – WS 

core body temperature increases and the 

longer the exposure the greater the stress. 

 

A base threshold was developed (HLI = 86) 

for unshaded Angus steers. Adjustments are 

subsequently made on the basis of : 

- genotype  

- coat colour  

- health status  

- access to shade  

- days on feed manure management  

- drinking water temperature. 

(Hahn et al., 2009) 

 

 

 

2.2. Sheep 

Climate shock  Measurement  Impact/Response References (Location) 

Heat stress 

 

Temperature humidity Index 

 

• THI = db°C – {(0.31-0.31 RH) (db°C – 14.4)}  

 

db°C is dry bulb temp (°C) and RH is relative humidity 

(RH%)/100.  

 

The values indicate the following: 

<22.2 = absence of heat stress; 22.2 to <23.3 = moderate heat stress; 

23.3 to <25.6 = severe heat stress and 25.6 and more = extreme heat 

stress 

Decrease in feed efficiency and 

utilization, disturbances in 

water, protein, energy and 

mineral balances, enzymatic 

reactions, hormonal secretions 

and blood metabolites. Which is 

reflected in the impairment of 

their reproduction and 

production traits. 

(Marai et al., 2007, 2001) and 

(Sejian et al., 2017) 

Estimate of the level of heat stress in dairy sheep in the 

Mediterranean region:  

 

• THI = {T − [0.55 × (1 − RH)] × (T − 14.4)}  

Valle del Belice sheep, although 

originating from a hot 

environment, are affected by 

heat stress starting at THI = 23 

(Finocchiaro et al., 2005) 
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T is the average dry bulb temperature in °C and RH is the relative 

humidity in percentage  

which decreases production 

yields. (Finocchiaro et al., 2005) 

THI index based on the ambient temperature (Ta) and RH as 

follows: 

 

• THI = 9/5 × [(T × 17.778) − (0.55 − (0.55 × RH/100) × (T 

− 14.444)];  

THI < 72 indicates thermo-

neutral conditions during winter 

and a THI value between 76 and 

78.5 represents mild-to-

moderate heat stress in summer 

season. 

(Sejian et al., 2017) 

The heat stress in sheep can also be estimated through another THI 

using the following formula:  

 

• THI = (Dry Bulb Temperature °C) + (0.36 Dew Point 

Temperature °C) + 41.2).   

In this case, a THI exceeding 72 

indicates mild stress, 80 

indicates medium stress, and 

above 90 indicates severe heat 

stress 

(Sejian et al., 2017) 

 

2.3. Pigs  

Climate shock  Measurement  Impact/Response References  

Heat stress 

 

A wet-/dry-bulb temperature index (WD Index)  

for growing-finishing swine (typically 30-90 kg bodyweight) in acute 

heat conditions 

 

Based on ambient dry-bulb (Tdb) temperatures from 34° to 43°C and 

wet-bulb (Twb) temperatures from 23°C to 31°C correlated four 

physiological parameters (skin temperature, rectal temperature, 

respiration rate, and heart rate) to these temperature conditions, using: 

 

• Swine WD Index = 0.75Tdb + 0.25Twb 

Impact on swine performance (Hahn et al., 2009) 

Temperature humidity Index 

 

Each hour, the temperature humidity index (THI) was 

calculated using outside temperature (°C) and relative humidity (RH) 

as: 

Days were classified into THI 

categories based on the maximum 

THI, THI categories included 

“Normal” (< 23.33 °C), “Alert” 

(23.33 °C ≤ × < 26.11 °C), 

(Cross et al., 2018)   
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• THI(°C) = T(°C)−[0.55−(0.0055 × RH)] × T(°C)−14.5 

“Danger” (26.11 °C ≤ × < 28.88 

°C), and “Emergency” (≥ 28.88 

°C) 

Temperature humidity Index 

• THI = (dry bulb temperature °C) + (0.36 x dew point 

temperature °C) + 41.2 

THI threshold = THI threshold above which heat stress occurs in a 

given animal class 

THI thresholds: Growing finishing hogs: 72  

Lower conception rates, smaller 

litters and lighter weights. Lower 

feed intake, weight gain and feed 

efficiency. 

(Key et al., 2014) 

 

(U.S. Department of 

Agriculture (USDA), 

2008) 

 

2.4. Poultry 

Climate shock  Measurement  Impact/Response References (Location) 

 Temperatures between 32°C and 38°C Feed consumption reduces 

for 5% for every 1 C rise in 

temperature between 32°C 

and 38°C. 

(Bhadauria et al., 2014) 

(India) 

Temperature humidity Index 

 

• THIbroilers = 0.85 Tdb + 0.15 Twb (1, Tao and Xin, 2003)  

• THIlayers = 0.6 Tdb + 0.4 Twb (2, Zulovich and DeShazer, 1990)  

• THIhen turkeys = 0.74 Tdb + 0.26 Twb (3, Xin et al., 1992)  

• THItom turkeys = 0.42 Tdb + 0.58 Twb (4, Brown-Brandl et al., 1997)  

 

where: THI = temperature-humidity index, °C Tdb = dry-bulb temperature, 

°C Twb = wet-bulb temperature, °C 

as THI exceeds 

approximately 21°C, bird 

performance significantly 

declined and body 

temperature increased up to 

1.7°C above nominal body 

temperature for broilers 

(41°C) 

(Purswell et al., 2012) 

(USA) 

THI = temperature-humidity index, 

• THI = (dry bulb temperature °C) + (0.36 x dew point temperature 

°C) + 41.2 

THI threshold = THI threshold above which heat stress occurs in a given 

animal class 

THI thresholds: Broiler chickens: 78 

Lower feed intake and 

weight gain. Lower laying 

performance, decrease in 

egg weight. Extreme heat 

also increases bird mortality 

rates. 

(Key et al., 2014) 

 

(U.S. Department of 

Agriculture (USDA), 

2008) 
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3. Agricultural drought indices 

Measurement  Impact/Response References  

The Standardized Precipitation Index (SPI)  

Based on the probability of precipitation for a given time-scale A 20 to 

30 year precipitation record is fitted to a probability distribution (e.g. 

gamma or Pearson type III) and then converted into z-scores so that the 

average SPI for a specified time-step is zero. Deviation from this value 

provides a classification of either a drought or wet period. 

Soil moisture conditions respond to precipitation 

anomalies on relatively short timescales, for 

example 1-6 months, so may wish to look at 1-

month to 6-month SPI for agricultural drought 

(World Meteorological Organization, 2012) 

Developed by: Mckee et al., 

(1993) 

Complete calculation 

procedures are available in 

World Meteorological 

Organization, (2012). 

 

 

The Standardized Precipitation Evapotranspiration Index (SPEI)  

 

Based on the SPI but includes reference evapotranspiration (ETo). A 

water surplus or deficit for each month is calculated by subtracting ETo 

from precipitation. A three-parameter log-logistic distribution is then 

used to adjust the calculated surplus or deficit. Values can be 

accumulated at different time scales (from 1 to 24 months) which are 

then converted to standard deviations from the average.  

The SPEI adopts the same drought classification 

as SPI.  

 

Developed by: Vicente-

Serrano et al., (2010) 

 

R package SPEI (Beguería 

et al., 2014) allows users to 

define parameters that best 

fit their specific use.  

The Palmer Drought Severity Index (PDSI)  

 

Based on precipitation, ETo and soil available water capacity (AWC) 

data for input into a water balance model to assess soil recharge, run 

off and surface soil moisture loss.  

 

The PDSI provides dimensionless values, classified into 11 categories.  

Published comparisons between the 

PDSI and soil moisture suggest PDSI might also 

give some indication of agricultural drought 

(Burke and Brown, 2008) 

Developed by (Palmer, 

1965) 

 

Aridity Index (AI) 

By combining rainfall and temperature anomalies, a simple aridity 

index (AI) can be developed. Anomalies have been standardised by the 

irrespective  standard  deviations  and  combined with twice the weight 

apportioned to the rainfall anomalies: 

 

Aridity index = –(Pi –�̅�)/σ+0.5(Ti –�̅�)/σ 

Used in (Marsh et al., 2007) to examine the major 

droughts in England and Wales, 1800–2006. 

 

Used in (Oliver et al., 2015) to examine the 

interacting impacts of land use and extreme 

drought on butterfly populations. 

Developed by Marsh, 

(2004). 
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In (Harouna and Carlson, 1994) used with equal weighting for rainfall 

and temp: Aridity index for month (i) and year (j):  

 

AIij = (Tij – �̅�i / Sti) – (Pij - �̅�i / Spi)  

Positive values are associated with warm and dry 

conditions. Opposite for negative. Air temp and 

rainfall equally weighted 

Equal weighting of rainfall 

and temp in Harouna and 

Carlson, (1994) 

Consecutive dry days (CDD)  

Max number of dry days without rain (below a given threshold 

typically 1mm day-1) within a consecutive period. For seasonal time 

frames, can be considered bound to specific seasons. 

 (IPCC, 2012) 

Precipitation Potential Evaporation Anomaly (PPEA) 

Cumulative difference, over a 12 month, period between precipitation 

and potential evapotranspiration  

 

The PPEA provides an alternate estimate of meteorological drought at 

time scales of 12 months. It is given by: 

 

PPEA = (P – Pc) – (PE – PEc) 

 

where P and PE are the average values of the precipitation 

and potential evaporation for the preceding 12 months, and Pc and PE 

are the 20-yr precipitation and potential evaporation climatologies, 

respectively. 

 Used in Burke and Brown, 

(2008): 
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