
University of Reading
Department of Meteorology

Data Driven Approaches to Improving

Space Weather Forecasts for the Power

Industry

Carl Andrew Haines

A thesis submitted for the degree of Doctor of Philosophy

January 2021



Declaration

I confirm that this is my own work and the use of all material

from other sources has been properly and fully acknowledged.

Carl Andrew Haines



Abstract

Abstract

Space weather impacts technological infrastructure in space and on Earth.

This thesis focuses on impacts on power systems through geomagnetic ac-

tivity. During heightened geomagnetic activity, currents can be induced in

power lines and cause degradation of transformers. Therefore, it is useful

to forecast the severity of geomagnetic storms and the resulting geomag-

netically induced currents (GICs) so that mitigating action can be taken.

This thesis faces this challenge through three bodies of work. The first

two bodies focus on forecasting parameters of geomagnetic storms and the

third provides a statistical downscaling scheme to aid forecasting of GICs.

In the first body of work, the duration of geomagnetic storms is

investigated. A statistical relationship is established between storm intensity

and duration. A skilful and reliable forecast of storm duration (given storm

peak intensity) is made, using log-normal distributions.

In the second body of work, two pattern-matching approaches are

taken to forecast the occurrence and intensity of geomagnetic storms in

geomagnetic index data. The support vector machine and analogue ensem-

ble are implemented for an historical dataset and evaluated using several

metrics. It is found that both methods are skilful with respect to clima-

tology and the best method is dependent on the needs of the end-user.
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Abstract

The third body of work provides a downscaling scheme to improve

the output of operational magnetospheric models such that a more realistic

geoelectric field can be forecast. Using the analogue ensemble approach,

a proof-of-concept study is presented which relates variability on a 1-hour

timescale to a 1-minute timescale. Implemented using a perfect prognostic

approach, the downscaling scheme enables a skilful estimate of geoelectric

field with respect to the benchmark of no downscaling.
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Chapter 1. Introduction

Chapter 1

Introduction

Short term variability in solar activity and the solar wind gives rise to

space weather, a natural hazard that impacts technology and human oper-

ations, both terrestrially and in space. Our modern-day reliance on tech-

nology leaves us particularly vulnerable to space weather effects. This the-

sis is particularly concerned with the vulnerability of power grids. This

chapter gives an introduction into the underlying physics relevant to under-

standing the research presented in later chapters.

1.1 The Sun, Solar Wind and Magnetosphere

Space weather impacts (see Section 1.3) that occur at Earth are due to a

series of processes that begin at the Sun. Plasma and magnetic flux from

the solar atmosphere flow through the heliosphere and some of this in-

teracts with the Earth’s magnetosphere leading to enhanced magnetospheric

and ionospheric conditions that impact infrastructure. In this section we

examine details of the Sun, the solar wind, and the magnetosphere that

are necessary for understanding the research presented in this thesis. We

are interested in the space weather impacts of geomagnetic storms, particu-

larly those driven by Coronal Mass Ejections (CMEs). Within this context,
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Chapter 1. Introduction

this section focuses on the solar corona upwards rather than the physical

processes that lead to the coronal activity.

1.1.1 Sun

The Sun’s atmosphere can be broken into several layers: the photosphere,

the chromosphere, the transition region and the corona in order of lowest

to highest altitude. Figure 1.1 shows the temperature and density of the

solar atmosphere as a function of height from the base of the photosphere.

As with Earth’s atmosphere, density decreases with increasing altitude fol-

lowing an approximate exponential decay in the photosphere and chromo-

sphere before a sharp drop in the transition region to a much slower de-

crease in the corona. Temperature varies through these layers with a local

minimum through the photosphere, approximately constant in the chromo-

sphere and a sharp rise in the transition region to the corona. Photons

from the solar interior take millions of years to reach the photosphere

due to repeated scattering. Protons are able to escape from the photo-

sphere which is why it is the main source of the light we observe from

the Sun and, in comparison, the chromosphere and corona are optically

thin at visible wavelengths.

Sunspots appear on the photosphere as darker regions and are re-

lated to the eruption of magnetic fields through the photosphere. In these

regions intense magnetic fields limit plasma convection and so the plasma

cools more than surrounding plasma (Preist, 2020b). This means sunspots

appear with a dark central umbra surrounded by a lighter penumbra. A

typical sunspot size is 1-20 millionths of the solar hemisphere (Preist,

2020b). They appear in pairs due to formation by loop emergence from

the photosphere and sometimes appear in larger groups.

The solar cycle is characterised by the rise and fall in observed

sunspots (Hathaway, 2015). The length of the cycle is variable, from 9

to 14 years with a median length of 10.5 years (van Driel-Gesztelyi and

2



Chapter 1. Introduction

Figure 1.1: The temperature and density of the solar atmosphere at different
altitudes starting at the base of the photosphere. This figure was adopted from
Preist (2020b).

Owens, 2020). The cyclic behaviour of the sunspot number is shown in

Figure 1.2 by the black line. The cycle is a result of the solar dynamo

(Charbonneau, 2020) but the reason for the cycle period and variation in

cycle period is not well understood. Each solar cycle is comprised of

a minimum and a maximum with rising and declining phases between.

The different phases are associated with different solar-wind properties and

hence varying space weather impacts, discussed further in Section 1.3. At

solar minimum the sunspot region occurs above and below the equator

with a mean location around ±25 degrees latitude, although there is signif-

icant variablitiy in latitude of individual sunspots (Ossendrijver, 2003), and

the location of new sunspots drifts equator-ward through the cycle (Hath-

away, 2015). The solar cycle impacts geomagnetic activity with an in-

crease of geomagnetic activity during solar maximum. This is seen by the

sunspot number and a geomagnetic index, aa, in Figure 1.2. It has also

been shown that the most extreme geomagnetic storms are more likely to

occur during solar maximum (Owens et al., 2021).

In the corona there are several structures that owe their existence to

3



Chapter 1. Introduction

Figure 1.2: A timeseries showing the sunspot number (black) and the geomag-
netic index, aa, (red). This figure was adopted from Hathaway (2015)

coronal magnetic field structures that are tied to the photosphere, including

loops, holes and streamers. Coronal loops are magnetic field lines connect-

ing regions of opposite polarity in the photosphere, commonly in regions

of flux emergence. Coronal holes are observed as dark regions in ex-

treme ultraviolet on the Sun due to their inactivity (Cranmer, 2009). They

are areas in the corona with a magnetic field rapidly expanding into the

heliosphere. This is due to an open magnetic topology allowing coronal

plasma to flow out along the magnetic field lines. The solar wind, a con-

tinual flow of plasma outward from the corona, consists of fast and slow

components. Coronal holes are the source of the fast solar wind (Cran-

mer, 2009). Coronal streamers sit above active regions and are made of

closed magnetic regions topped with open regions spanning into the he-

liosphere. During solar minimum, streamers appear in a belt around the

equator whereas at solar maximum streamers may appear in any location

in the corona (Preist, 2020b). The source of the slow solar wind is still

not fully understood (Kepko et al., 2016; Antiochos et al., 2011), however,

there is evidence that streamers are important in the formation of the slow

solar wind (Ofman, 2004).
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Chapter 1. Introduction

1.1.2 Solar Wind

The solar wind is a continuous outflow of plasma from the solar corona.

It is mainly made up of protons and electrons with some heavier ions.

Primarily, structure is divided into “fast” wind originating in the photo-

sphere of coronal holes (Cranmer, 2009; Preist, 2020b) and “slow” wind,

the origin of which is still being fully researched (Kepko et al., 2016;

Antiochos et al., 2011).

Typical properties of fast and slow solar wind are shown in Table

1.3. As well as greater radial velocity, we see that the fast wind is less

dense, hotter and has a weaker associated magnetic field when contrasted

to the slow solar wind. The geoeffectiveness of the solar wind is depen-

dant on its density, magnetic field strength, and radial velocity (Owens,

Lockwood and Barnard, 2018). The solar wind temperature does not im-

pact geoeffectiveness but is correlated with radial velocity. This geoeffec-

tiveness, G, can be quantified with a coupling function commonly in the

form of

G = n2/3−αB2αV 7/3−2αsin4(θ/2), (1.1)

where n is the solar wind density, B is the HMF intensity, V is

the radial solar wind speed and θ is the HMF non-radial clock angle.

Lockwood et al. (2017) empirically estimated the parameter α to be ap-

proximately 0.5.

The solar wind has a frozen-in magnetic field, called both the he-

liospheric magnetic field (HMF) and interplanetary magnetic field (IMF)

but referred to here as HMF, which originates from the coronal field and

extends out as the solar wind expands through the heliosphere. The HMF

has a spiral structure, due to solar wind plasma flowing radially, whilst

the foot points of the HMF field lines are fixed in the rotating solar at-

mosphere. This is known as the Parker spiral (Parker, 1959), depicted in

5



Chapter 1. Introduction

Figure 1.3: A table of the properties of fast and slow solar wind. Listed is the
radial velocity, density, temperature and magnetic field magnitude. The fast
solar wind originates in coronal holes and the slow solar wind in the streamer
belt. This figure was adopted from Owens (2020).

the ecliptic plane in Figure 1.4 although the spiral also exists outside the

ecliptic plane. The angle of the HMF relative to the solar radial direction

is a function of the distance from the Sun and the solar wind speed. In

a reference frame fixed with the Sun’s rotation, such that a coronal source

of plasma is fixed, the plasma has a velocity component in both the ra-

dial direction, r, and the solar longitudinal direction, ψ . The Parker spiral

for a source at ψ0 and R can be written as

r−R = a
u
ω
(ψ−ψ0), (1.2)

where u is the solar wind speed and ω is the Sun’s angular velocity

(Hundhausen, 1995). A typical angle at Earth (1 AU) for a solar wind

with speed 400 km/s is 45°. The Parker spiral has been shown to exist

by several spacecraft, although transients such as CMEs and Co-rotating

interaction regions (CIRs) interrupt the idealised pattern.

CIRs (Richardson, 2018; Gosling and Pizzo, 1999) occur where fast

and slow solar wind interact along the same radial line due to the Sun’s

rotation as shown in Figure 1.5. A fast wind stream (shown in red)

catches up with the slow wind stream (shown in blue) but are kept sep-

arate according to the frozen flux theorem because of their differing mag-

netic fields. A shock wave propagates forward into the slow wind and a

reverse wave back into the fast wind. The result is a region of increased

magnetic field intensity and increased plasma density, both of which in-
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Chapter 1. Introduction

Figure 1.4: A schematic of the HMF in the ecliptic plane. The parker spiral
is revealed by the spiralling shape of the magnetic field lines. This figure is
adopted from Owens and Forsyth (2013).

crease the geoeffectiveness of the solar wind, as can be understood through

Equation 1.1. The stream interface is also inclined to the solar-equatorial

plane, so as the field is compressed it deflects out of the plane, pro-

ducing magnetic field in the Bz direction and this is the major cause of

CIR geoeffectiveness. As the fast wind continues to advance it leaves a

rarefied region as it outpaces the slow wind behind it. In the Earth’s ref-

erence frame, an observer will see these interaction regions approximately

every 27-day solar rotation period because the coronal holes creating the

fast stream are usually long lasting and hence interaction regions are said

to co-rotate with the Sun.

CIRs can drive major geomagnetic storms. The “Living with a

Star” Coordinated Data Analysis Workshop in March 2005 analysed 79

major geomagnetic storms and found that nine were caused by CIRs. Richard-

son et al. (2006) found that the maximum size of storms observed due to

CIRs was −161 nT in the Dst index (see Section 2.2), a significant event.

Due to previously theorised estimates of minimum Dst caused by CIRs, it

is unlikely that a storm would far exceed this without being co-driven by

7



Chapter 1. Introduction

a CME.

Figure 1.5: The formation of CIRs looking down on the solar-ecliptic plane.
The red lines show fast solar wind and the blue show slow. At the front of the
fast wind is a compressed region and behind is a rarefied region. A shock wave
is shown at the front of the fast wind travelling forward and one travelling
back. This figure was adopted from Owens (2020).

Coronal mass ejections (CMEs) are large structures of plasma and

magnetic fields that are propelled into the heliosphere by the magnetic

field (Preist, 2020b; Kilpua, Koskinen and Pulkkinen, 2017; Webb and Howard,

2012). These large-scale transients are ejected into the background solar

wind and cause the most impactful space weather events. Figure 1.6 (left)

shows a schematic of a CME flowing into the heliosphere and travelling

towards Earth. The CME itself is shown as the large orange loop pro-

truding from the Sun. Its magnetic field is a flux rope, a twisted mag-

netic field generated by interactions of magnetic loops in the Sun’s atmo-

sphere via magnetic reconnection, hereafter referred to as simply reconnec-

tion (Preist, 2020b). Ahead of a high speed CME is a shock caused by

the movement of the CME through the background solar wind which is

travelling at a slower speed. Behind the shock is a sheath region in which

plasma and the associated magnetic field is compressed. Figure 1.6 (right)

8



Chapter 1. Introduction

shows four observed properties of a CME from August 2014 by the Ad-

vanced Composition Explorer (ACE) space craft at the L1 Lagrange point

(Stone, Frandsen and Mewaldt, 1998). We see that compared to the back-

ground solar wind, the sheath region has increased magnetic field magni-

tude, similarly variable magnetic field angles and increased radial speed.

When looking at the CME compared with the background solar wind we

see a large increase in magnetic field magnitude followed by a slow de-

crease back to that of the ambient solar wind. We see magnetic field

angles that vary on a lower frequency. The reason we see less point-

to-point variability and a systematic trend in the magnetic field angles is

because there is a stronger and more coherent magnetic field structure in-

side the CME. Finally the radial speed begins as that of the sheath region

and decreases down to the ambient solar wind. The field is southward at

the start and end of this CME so we would expect stronger coupling with

the magnetosphere during these times.

Figure 1.6: A CME travelling through the heliosphere. Left) is a schematic of
a CME travelling towards Earth. The magnetic field lines are shown in blue.
A shock is shown proceeding the CME with a sheath region behind it. Right)
shows solar wind observations of a CME in August 2014 from the ACE space-
craft. Shown from top to bottom is the magnetic field magnitude, magnetic
field latitude and longitude angles in geocentric solar magnetospheric coordi-
nates and solar wind speed in the radial direction. This figure was adopted
from Kilpua, Koskinen and Pulkkinen (2017).

9
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When there is sufficient shear between the magnetic fields of the

solar wind and the magnetosphere, reconnection can occur, coupling to-

gether the solar wind and magnetosphere. Due to the structure of Earth’s

magnetic field, these conditions typically occur when the solar wind mag-

netic field has a strong southward component, Bz, in geocentric solar mag-

netospheric reference frame. When enhanced day-side reconnection occurs,

the Dungey cycle begins, leading to enhanced geomagnetic activity. Solar

wind parameters and geomagnetic indices are shown in Figure 1.7 for an

event as an illustrative example. The enhanced speed and magnetic field

magnitude in a CME increases the rate of reconnection and hence increase

the energy transfer into the magnetosphere, as per Equation 1.1. If, how-

ever, BZ is northward, there will be less reconnection but the CME impact

can still compress the magnetosphere which leads to increased geomagnetic

activity, albeit less so than when there is enhanced dayside reconnection.

The speed of CMEs means that they usually arrive at the Earth two to

five days after they can be first observed at the Sun (Preist, 2020b). How-

ever, current observational capabilities mean that we cannot obtain reliable

observations until the CME reaches the L1 point giving approximately 30-

60 minutes warning of its geoeffectiveness (Morley, 2020; Pulkkinen and

Rastatter, 2009).

1.1.3 Earth’s Magnetosphere

Planets with a strong magnetic field, such as the Earth, will carve out a

cavity in the heliosphere that restricts the access of solar wind plasma and

the HMF. Such a cavity is called a magnetosphere. The cavity forms in

the solar wind because the very high electrical conductivity of the plasmas

in space and their very large spatial scales mean that the magnetic field is

“frozen-in” to the plasma and does not diffuse through it. This means the

plasma in the magnetosphere is constrained by Earth’s intrinsic magnetic

field and the plasma in interplanetary space is constrained by the exten-

10
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Figure 1.7: A timeseries of solar wind parameters and geomagnetic indices as
a CME passes through. This figure was adopted from Kilpua, Koskinen and
Pulkkinen (2017).

sion of the solar magnetic field there. To first order, the two cannot mix

although breakdowns of the frozen-in flux theorem, in particular reconnec-

tion, allow a degree of mixing of solar wind and magnetospheric plasmas.

The boundary will form where a balance is reached between the pressure

11
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of the Earth’s magnetosphere, where the magnetic pressure dominates, and

the solar wind pressure, dominated by the dynamic pressure. This is the

magnetopause.

The magnetopause stand off distance can be estimated by comparing

the dynamic pressure of the solar wind to the magnetic pressure of Earth’s

magnetic field by

(ρv2)sw =

(
4B(r)2

2µ0

)
m
, (1.3)

where ρ and v are the density and velocity of the solar wind, B(r) is the

magnetic field of the Earth and µ0 is the permeability of free space. The

magnetopause stand off distance corresponds to the value of r that bal-

ances this equation. Approximating the intensity of Earth’s magnetic field

as B(r) = B0/r3, where B0 is the magnetic moment, we can express r as

r = 6

√
2B2

0
µ0ρv2 . (1.4)

With typical solar wind values the magnetosphere reaches out to approx-

imately 10 RE (Earth radii) on the day side and is swept out to hun-

dreds of RE anti-sunward on the night side. This shape is shown in the

schematic in Figure 1.8.

Figure 1.8 displays and annotates several features of the magneto-

sphere. The bow shock is a shock formed as the supersonic and super-

Alfvénic solar wind approaches the magnetosphere and is responsible for

reducing the flow to subsonic speeds and to near stationary in the Earth’s

frame at the nose of the magnetosphere. The solar wind plasma travels

at speeds greater than the rate at which information is internally trans-

mitted, i.e. the Alfvén Mach number is greater than 1. The bow shock

commonly has a mach number of MA 5−10 (Sundberg et al., 2017). As

the solar wind flow is super Alfvénic, information on the presence of the

magnetosphere cannot be communicated to the solar wind flow via waves

and instabilities. Consequently, a magnetohydrodynamic (MHD) shock must

12



Chapter 1. Introduction

Figure 1.8: A schematic showing the structure of the magnetosphere in the
presence of solar wind where the Sun is out of shot to the left of the schematic.
This figure was adopted from Russell, Luhmann and Strangeway (2016).

form, in which the solar wind plasma is compressed, slowed and heated

behind the bow shock in a region called the magnetosheath. The mag-

netosheath flow is brought to rest at the nose of the magnetosphere, but

flows antisunward around the magnetosphere and eventually becomes indis-

tinguishable from the unshocked solar wind.

Both the bow shock and the magnetopause, the boundary between

the magnetosphere and near-Earth plasma, move Earthward as the dynamic

pressure of the solar wind is enhanced. Although the magnetopause keeps

the two sets of plasma separate, some of the solar wind plasma is able

to penetrate through reconnection and viscous interactions at the interface

(Arridge, 2020). As a consequence, magnetospheric current systems become

enhanced. This is discussed in more detail in Section 2.1.

13
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The Dungey Cycle

This section examines the Dungey cycle, a set of processes caused by

a southward magnetic field in the HMF that lead to substorms in the

magnetosphere (Dungey, 1961). A schematic for this cycle is shown in

Figure 1.9.

Figure 1.9: A schematic of the magnetosphere being driven by a southward
HMF to retell the Dungey cycle. This figure was adopted from Russell, Luh-
mann and Strangeway (2016).

Due to reconnection on the day side of the magnetosphere (1 in

Figure 1.9), some of the interacting plasma is transported to the area of

the magnetosphere on the night side of the earth called the magnetotail

(5). Here, the magnetic field intensifies as open field lines generated by

reconnection accumulate in the tail, raising the magnetic pressure in the

tail lobes which thins the cross-tail current sheet that separates them. As

the current sheet narrows there is further reconnection in the cross-tail cur-

rent sheet (6) which re-closes open field lines giving an explosive release

of plasma away from the reconnection site. Thus, some is transported

down the tail away from Earth and some travels down the magnetospheric

field lines into the poles (7). The newly reconnected field lines (8) con-
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vect around to the dayside (9). These so called substorms give us the

auroras but can also cause GICs. Intense geomagnetic storms are accom-

panied by intense and frequent substorms, however, intense substorms can

occur in the absence of an intense geomagnetic storm (Gonzalez et al.,

1994).

Substorms are made up of a growth, expansion and recovery phase

(Russell, Luhmann and Strangeway, 2016). During the growth phase, en-

ergy is stored in the magnetotail lobes. In the far tail, the lobe magnetic

field is set by the static pressure of the solar wind. Therefore, as more

flux is stored in the lobe, the tail radius increases to maintain pressure

balance with the solar wind. Closer to the Earth, in the near- and mid-

tail regions, the tail flares and so there is a component of the solar wind

dynamic pressure that acts perpendicular to the magnetopause. This limits

the tail expansion and so the magnetic energy density rises in the lobes in

the near- and mid-tail regions. During the expansion phase the lobe field

decreases as reconnection in the tail closes open field lines and closed

field lines move sun-ward and out of the tail under the magnetohydrody-

namic magnetic curvature (“tension”) force. The energy that was stored is

then sent to the tail plasma sheet, the ring current, and the ionosphere.

Finally, in the recovery phase the tail reconnection rate drops and the tail

stops losing energy. If there is a lower day-side reconnection rate and the

tail reconnection tends towards it then the magnetosphere heads towards a

quiet state. If, however, the day-side reconnection rate remains high, then

a new substorm growth phase begins when the tail reconnection falls be-

low the day-side reconnection rate.

Between the tail lobes is the cross tail current sheet. The current

sheet intensifies near the earth as the tail lobe magnetic field increases.

The enhanced current close to the Earth is disrupted at the start of the

expansion phase. We do not currently fully understand the reason for this

disruption and it is an active area of research (Pritchett and Lu, 2018).
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What we do know is that the disruption occurs closer to the earth than

the tail X-line. The disruption causes the current to flow down field lines

into the auroral ionosphere instead of flowing across the tail. The cur-

rent then flows along the highly-conducting auroral ionosphere and back

up field lines to complete the circuit. This current system is the substorm

current wedge (see Section 2.1) and the part that flows along the night

side auroral ionosphere is the auroral electrojet (see Section 2.1).

1.2 Single Particle Motion and MHD

Plasma is the fourth state of matter complementing solids, liquids and

gasses. They are an ionised, conductive gas made up of ions and elec-

trons in approximate balance resulting in quasi-neutrality. The solar wind

plasma is a rarefied plasma predominantly containing hydrogen and helium

ions along with small amounts of heavier ions. Due to its rarity, colli-

sions between particles are sufficiently infrequent that they are not dynam-

ically important in controlling the evolution of the plasma and it can be

treated as collisionless. This allows us to understand the evolution of a

single prticle in terms of the net force acting on it, including the electro-

magnetic field within the plasma. Alternatively, plasmas can be considered

as magnetised fluids and their motion understood using MHD (see Section

1.2.2).

1.2.1 Single Particle Motion

We now look at the equations that govern single particle motion. We first

look at the Lorentz force

F = q[E+(v×B)], (1.5)
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where E is the electric field, v is particle velocity, B is the magnetic

field, and q is the charge on the particle. The Lorentz force governs the

motion of charged particles in the presence of electromagnetic fields.

Using Newton’s Law of Motion, the motion of a particle under the

influence of the Lorentz force is given by

q[E+(v×B)] = m
dv
dt

, (1.6)

where m is the particle mass. In the absence of an electric field and

presence of a uniform magnetic field this becomes

q[(v×B)] = m
dv
dt

. (1.7)

Taking the dot product of both sides with v leads to

m
dv
dt
·v =

d mv2

2
dt

= 0. (1.8)

Therefore, the kinetic energy is constant meaning no work is done on the

particle in the absence of an electric field.

Now, consider a particle in a Cartesian coordinate system, with unit

vectors i, j and k, with a magnetic field, B, aligning the coordinate sys-

tem such that B = Bk, we can write equation 1.7 in its three components

as

dVx

dt
=

q
m

VyB,

dVy

dt
=− q

m
VxB,

dVz

dt
= 0.

(1.9)

These equations represent circular motion in the x-y plane, with constant

speed along the field aligned direction. The appearance of q in the first

two of these equations shows that the direction of circular motion will
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depend on the charge of the particle so positive ions and electrons will

move in opposite directions.

Now we introduce an electric field that has components parallel and

perpendicular to the magnetic field such that

E = E‖+E⊥. (1.10)

The parallel component of equation 1.6 is

q[E+(v×B)]‖ = m(
dv
dt

)‖. (1.11)

The parallel component of v×B is zero so

qE‖ = m(
dv
dt

)‖. (1.12)

Integrating with respect to time gives

V (t)‖ =
q
m

E‖t +V0, (1.13)

where V0 is the field aligned velocity of the particle at time t = 0. This

shows that in the presence of an electric field with a component parallel

to the magnetic field, the particle is accelerated along the field line with

direction determined by its charge.

Similarly, when there is a component of the electric field perpen-

dicular to the magnetic field, there is acceleration. In this case, the per-

pendicular component of equation 1.6 is

q[E⊥+(v⊥×B)] = m
dv⊥
dt

. (1.14)

By separating the velocity into gyrational and drift components, it can be
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shown that

V⊥ dri f t =
E⊥×B

B2 . (1.15)

Here we see that the drift velocity is not dependent on charge so ions

and electrons move in the same direction, therefore, a current is not cre-

ated.

Gradient Drift

In the previous section we discussed particles in a uniform magnetic field.

However, it is common for a magnetic field to vary spatially and have a

gradient. As a particle gyrates in a non-uniform magnetic field, it expe-

riences different field strengths in different parts of its gyration. In areas

with a stronger field the path will follow a tighter path and a weaker

field gives a looser path. Figure 1.10 shows the path of an ion and an

electron in a magnetic gradient. The combination of tighter and looser

spirals creates an overall drift in opposing directions.

Figure 1.10: A schematic showing gradient drift of an ion and electron in the
presence of a magnetic gradient. This figure has been adopted from Lockwood
(2019b).

Magnetic Mirror

The magnetic mirror phenomenon occurs when a particle is gyrating around

and travelling along a magnetic field and experiencing a gradient in the
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magnetic field as depicted in Figure 1.11. As the particle travels through

increasing magnetic field strength there is a force applied which acts against

its direction of travel.

The forces perpendicular and parallel to the magnetic field on a

gyrating particle are

F⊥ = Fcos(θ) (1.16)

and

F‖ = Fsin(θ), (1.17)

where θ is the angle between the particle’s guiding centre and its location

in its gyration as shown in Figure 1.11. By dividing these equations we

get and rewriting the tan function we get

F‖ = F⊥tan(θ) = f⊥
dr
dz

, (1.18)

where r is the gyration radius and z is the direction parallel to the mag-

netic field. We can use that the perpendicular force is the centrifugal force

F⊥ = mv2
⊥/r to get

F‖ =
mv2
⊥

r
dr
dz

. (1.19)

Now, conserving the magnetic flux through a circular cross section we

have that

c = BzA = Bzπr2, (1.20)

where c is a constant. Then differentiating and rearranging we have

dBz

dz
=−2

c
πr3 =−2

Bz

r
. (1.21)

Rearranging and substituting into 1.19 we get

F‖ =−
mv2

2Bz

dBz

dz
(1.22)
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showing that the force is in the opposite direction to an increasing mag-

netic gradient. Here, mv2

2Bz
= µm the magnetic moment.

Figure 1.11: A schematic of a particle travelling through a non-uniform mag-
netic field and gyrating around the field line. This figure has been adopted
from Lockwood (2019b).

Curvature Drift

A particle travelling along a geomagnetic field line, bouncing between two

mirror points, travels along a curve and thus experiences a centrifugal

force perpendicular to the magnetic field. In this situation, the Lorentz

force (Equation 1.5) perpendicular to the magnetic field can be simplified

to

F⊥ = qE⊥. (1.23)

We can use this to apply a centrifugal force to Equation 1.14 giv-

ing

V⊥F =
(F×B)

qB2 . (1.24)

This gives a velocity component perpendicular the the magnetic field and

centrifugal force with the direction dependent on the sign of the charged

particle. Therefore, under curvature drift, electrons will move eastward and

positive ions will move westward.
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1.2.2 Magnetohydrodynamics (MHD)

In some situations it is useful to model plasma as a magnetohydrodynamic

(MHD) fluid. MHD is based on the equations of hydrodynamics, with

the additional constraints of solving for evolution of the electromagnetic

field by incorporating Maxwell’s equations (Preist, 2020a). In 3-D ideal

MHD, where all dissipative processes (finite viscosity, electrical resistivity

and thermal conductivity) are neglected, there are eight MHD equations

that accompany the eight unknowns. These unknowns are mass density, ρ ,

the isotropic thermal pressure, P, the bulk velocity, v, and the magnetic

field B where v and B are three dimensional vectors. The equations are

∂ρ

∂ t
+∇ · (ρv) = 0, Mass continuity eqn.

ρ
∂v
∂ t

=−∇P− 1
µ0

B× (∇×B), Eqn. of motion

d
dt

(
P
ργ

)
= 0, Energy eqn.

∂B
∂ t

= ∇× (v×B), Induction eqn.

(1.25)

where γ is the ratio of specific heats which is 5/3 for an ideal gas.

The induction equation and the equation of motion are key to un-

derstanding the motion of a plasma that exists in an ideal MHD domain.

The induction equation relates the temporal changes in the magnetic field

to the presence of a velocity field. The equation of motion relates how

the plasma velocity varies with time to the forces placed on it. These

forces are the pressure gradient, magnetic pressure, and magnetic tension.

In an ideal plasma, the magnetic flux, ψ , through a surface which

moves with the plasma is conserved. We can see this by looking at a

surface, S, that is bound by a curve, C. We have that

ψ =
∫ ∫

S
B ·dS. (1.26)
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A temporal change in magnetic flux can be caused either by a change in

B with S fixed or by movement of the curve, C with the plasma. This

gives that the time derivative of the magnetic flux is

dψ

dt
=
∫ ∫

S

∂B
∂ t
·ds+

∮
C

B ·v×dl, (1.27)

where dl is a small increment parallel to C. The second term on the

right hand side can be transformed using Stokes’ theorem such that we

have
dψ

dt
=
∫ ∫

S

(
∂B
∂ t
−∇× (v×B)

)
·dS. (1.28)

From this it is easy to see that, by using the induction equation, the tem-

poral change in flux is zero so the flux is conserved. This is what gives

us the frozen-in flux theorem which shows that when plasma moves the

magnetic field is dragged with it and when the magnetic field is moved

so is the plasma.

1.3 Space Weather Impacts

Changes in the solar wind conditions near-Earth can give rise to space

weather impacts which has adverse effects on space- and ground-based

technologies. These impacts mainly cause damage and reliability issues to

technological systems but also pose a direct threat to human safety in cer-

tain circumstances such as solar energetic particle events or large galactic

cosmic rays (Tobiska et al., 2015; Wilson et al., 2003). Space weather im-

pacts are a relatively new hazard because it is only in approximately the

last 150 years that society’s technology has become susceptible to space

weather, as discussed by Hapgood (2010). Figure 1.12 shows a range of

space weather phenomena and their resulting impacts, several of which are

examined in this section. For a description of the impact on power sys-

tems see Section 2.3.
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Figure 1.12: A schematic showing a range of space weather phenomena and
their resulting impacts. Copyright ESA/Science Office, CC BY-SA 3.0 IGO

Solar energetic particles (SEPs) are high energy charged particles

due to solar activity. SEPs have the potential to cause malfunctions in

electronic equipment. One type of impact is single event upsets which

occur when a charged particle ionises a sensitive part of a circuit and

causes it to change state (Pulkkinen, 2007). Commonly this results in a

system reboot although can occasionally lead to more permanent damage.

Additionally on spacecraft, SEPs can degrade solar panels which can re-

duce their functionality and life span. SEPs can penetrate the Earth’s at-

mosphere, however many are filtered out by geomagnetic and atmospheric

shielding so this impact is more prevalent in aeroplanes and satellites than

devices on the ground. SEPs also pose a risk to the health of airline

crew and passengers (Malandraki and Crosby, 2018; Cannon et al., 2013).

In a single flight during a space weather event, passengers and crew could

receive 20 times the recommended annual dose of radiation, a particular

concern for crew and frequent flyers (Tobiska et al., 2015; Wilson et al.,
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2003). Reynolds et al. (2002) found a significant increase in melanoma

and breast cancer in flight attendants.

During a space weather event global navigation satellite systems (GNSS)

may become unusable (Sreeja, 2016). In ordinary conditions, GNSS al-

lows for ionospheric plasma to scatter and refract the signal between a

satellite and receiving device. However, during a space weather event the

ionospheric plasma density and temperature is enhanced and the degree to

which GNSS must account for it is unknown. This leads to unreliable lo-

cation services at best and a complete loss of the GNSS system at worst

(Skone, 2001). GNSS can be used to provide timing and synchronisation

for technological devices. This means that systems not usually considered

vulnerable to space weather can be interrupted if they depend on GNSS

timing to run. Cannon et al. (2013) recommended that all systems should

be able to operate for up to three days in the absence of GNSS. Miti-

gating this impact requires modelling the propagation of the signal through

the ionosphere (Allain and Mitchell, 2008).

Due either to solar X-rays or solar energetic particles, the bot-

tom layer of the ionosphere can experience an enhancement of tempera-

ture and density. High frequency radio communications transmitting through

the ionosphere can be disturbed with their path altered or blocked entirely

(Pulkkinen, 2007). The enhanced ionosphere acts to reflect some frequen-

cies of high frequency radio and absorbs waves at other frequencies. Sim-

ilarly, satellite communications, which typically use microwave frequency

signals experience scintillation as they pass through an enhanced ionosphere

(Elbert, 2008; Aol, Buchert and Jurua, 2020).

1.4 Space Weather Forecasting

Space weather forecasts are used to support activities affected by space

weather, particularly to give the opportunity to take mitigating action (Singer,
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Heckman and Hirman, 2001; Sharpe and Murray, 2017). Examples of such

mitigating action would be temporarily turning satellites off or into safe

mode and rescheduling maintenance on power grids to maximise the grid

capacity. For a forecast to enable mitigation decisions it needs to both be

skilful and give sufficient lead time. Here skill refers to a forecast out-

performing a reference forecast, commonly taken as climatology, and lead

time refers to how far ahead in time the forecast is made. What counts

as sufficient varies depending on the application, for example changing fre-

quencies for radio communications can be very fast but moving humans

on space flights to safety can take more time. Current operational ge-

omagnetic forecasts computed manually give a 3-4 day lead time (Mor-

ley, 2020; Sharpe and Murray, 2017). Oughton et al. (2019) considers

the benefits of a forecast enhanced through improved observations through

observational spacecraft on and off the Sun-Earth line and the use of a

heliospheric image. They found that the additional lead time possible (up

to a week) would allow for more comprehensive mitigating action for the

rarer events and increased confidence in the timing of events would allow

for clearer cost/benefit analyses for forecast end-users.

In general, forecast techniques can be either physics based or em-

pirically driven. The first relies on our understanding of the underlying

physics, and is commonly used for solar wind and magnetosphere fore-

casts. The models numerically solve a set of equations that govern the

properties of the system. These models work best when the input param-

eters are accurate, the physics is fully understood and there is access to

sufficient computational resources. On the other hand, empirically driven

models can thrive when these requirements are not met. With a suffi-

cient historical dataset, empirical models can account for consistent obser-

vational bias in input parameters, perform without knowledge of the rele-

vant physics and even help to discover unknown physics, and are generally

computationally cheap (Owens, Riley and Horbury, 2017a). An advantage

of being computationally cheap is that the model can be run as an en-
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semble with perturbed input parameters to give an estimate of uncertainly

of the forecast, useful for making decisions on mitigating action (Knipp,

2016; Knipp, Hapgood and Welling, 2018; Murray, 2018). While it is pos-

sible to do the same using physics based models, it is commonly compu-

tationally prohibitive to run large ensembles (Knipp, Hapgood and Welling,

2018). A counter example is a recent model from Owens et al. (2020)

who provided a 1-D MHD model for the solar wind which can realisti-

cally be run as a large ensemble (105−106 ensemble members).

The solar atmosphere and solar wind are constantly monitored for

the eruption and propagation of CMEs. Once observed, the evolution of

these transients are modelled to give a forecast of whether they will hit

Earth and what their properties would be in near Earth space. These prop-

erties can then be used as inputs to magnetospheric models that give a

forecast of geomagnetic activity, and from there decisions on mitigation

can be taken. It typically takes a CME between 1 and 5 days to reach

Earth meaning that forecast lead time is limited to this, less any computa-

tional time and other processing and data collection and retrieval. Predict-

ing the formation, eruption and evolution of CMEs is an active area of

research (Green et al., 2018; Chen, 2017) and outside the scope of this

thesis.

CIRs can be forecast using the knowledge that coronal holes, the

source of CIR causing fast solar wind, typically last longer than the 27-

day rotational period of the Sun (Richardson, 2018). Therefore, a 27-day

lead time forecast can be made using a recurrence model which predicts

that what happens now will repeat in 27-days (Owens et al., 2013). This

method performs better during solar minimum as at solar maximum the

corona is more dynamic and so the 27-day recurrence is less strong.

For forecasts of geomagnetic activity, magnetospheric models are used

with solar wind parameters as input. Several frameworks for this exist,

the majority of which numerically solve the MHD equations and iono-
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spheric electrodynamics in a gridded magnetosphere-ionosphere system (for

an overview of these frameworks see Welling, 2019). This is examined in

more detail in Section 2.4.
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Chapter 2

Background

With the focus of this thesis on space weather that leads to GICs, this

chapter aims to look at the relevant physics in the magnetosphere that

leads to GICs. Section 2.1 looks at the several magnetospheric currents

that are known to affect the ground level geomagnetic field. Section 2.3

looks at the processes driving GICs making the link between geomagnetic

field and GICs. Finally, Section 2.4 looks at the current forecasting ap-

proaches for ground geomagnetic field which would then be used for GIC

forecasts.

2.1 Magnetospheric Current Systems

Space plasmas, to a high degree of approximation, are electrically neu-

tral. This is because if significant space charge were to build up, ions

and electrons are free to move along field lines and thus to cancel out

the non-zero space charge. This “quasi-neutrality” means that currents are

divergence-free; i.e. the total current flowing into any volume equals the

total flowing out, because otherwise a space charge would build up. Such

current continuity means that currents always flow in loops with no sources

or sinks.
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The magnetosphere contains a network of current systems driven,

ultimately, by magnetospheric interaction with the solar wind. Through this

interaction, energy is transferred across the magnetopause. The locations

and even existence of these current systems varies depending on the state

of the solar wind. This Section outlines the main current systems in the

magnetosphere.

2.1.1 Ampère’s Law

To understand magnetospheric currents we first need to understand Am-

pere’s law. Ampere’s law applied to a plasma is

∇×B = µ0J (2.1)

where B is the magnetic field, J is current density and µ0 is the per-

meability of free space. Like the rest of Maxwell’s equations, it is an

expression of equivalence rather than causality. That is to say that the

curl of the magnetic field is described also by the product of the perme-

ability of free space and the current density but one does not ‘cause’ the

other.

Figure 2.1: A schematic showing a current layer with uniform current density
J with thickness w. The magnetic fields above and below the current layer are
of strengths Bt1 and Bt2 respectively. This figure has been adopted from Finch
(2007).
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In integral form Ampère’s law is

∮
C

Bd`=
∫

A
µ0JdA. (2.2)

As an illustration of Ampère’s law at work we look at Figure 2.1

in which there exists a thin sheet of current sandwiched between two non-

equal magnetic fields. Applying the integral form of Ampère’s law to a

small area in the current sheet, loop C, we get

Bt1dx+Bnw−Bt2dx−Bnw = µ0Jdxw, (2.3)

where Bn is the magnetic field normal to the current sheet, and dx and

w are as shown in Figure 2.1. By cancelling terms and factoring out dx

we have

Bt1−Bt2 = µ0J. (2.4)

This tells us that the magnitude of the current density is directly propor-

tional to the magnitude of magnetic shear. Magnetic shear appears in sev-

eral places in the magnetosphere and Ampere’s law shows us that currents

must be present.

2.1.2 Chapman-Ferraro Current

The boundary of the magnetosphere separates the plasmas of the solar

wind and the magnetspheric plasma. In the solar wind, plasma flow mo-

mentum is a dominant force whereas in the magnetosphere plasma it is

the magnetic field that dominates the total pressure. This difference creates

a magnetic shear and a current between the two that lies in the magne-

topause. The magnetopause current was conceived by Chapman and Ferraro

(1931) hence is often given the name Chapman-Ferraro current.

Figure 2.2 shows a schematic of the Chapman-Ferarro current. On

the dayside magnetopause the current flows dusk to dawn at the equator
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and loops around what is called the magnetic “cusp” in that hemisphere,

from where Earth’s magnetic field lines form a funnel-shaped region that

extend to earth slightly sunward of the poles.

Figure 2.2: A schematic of the Chapman-Ferraro currents on the dayside of the
magnetopause. The green ribbons show the path and direction of the current
which encircle the cusps in the northern and southern hemispheres. This figure
has been adopted from Ganushkina, Liemohn and Dubyagin (2018).

2.1.3 Ring Current

The concept of the ring current grew out of the work of Störmer (1912)

on how energetic particles move in Earth’s inner magnetosphere where the

magnetic field is approximately dipolar. Analysis of the effects of the

Lorentz force (see Section 1.2.1) on moving charged particles in a mag-

netic field shows that in converging field lines energetic particles following

helical paths along the field lines can “mirror” (i.e., their field-aligned ve-

locity is slowed and then reversed. See section 1.2.1). Hence a minimum

in the field between two regions of larger field form a “magnetic bottle”
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which can trap the particles between two such mirror points, Earth’s dipole

field forms precisely this geometry with a minimum at the magnetic equa-

tor and larger field at lower altitudes. This happens at all longitudes and

so particles trapped in this bottle bounce from hemisphere to hemisphere

and form a band that encircles the Earth and is centred on the equator.

A particle gyrating about a field line experiences higher field on the part

of its orbit closer to the Earth, so experience gradient drift and travelling

along a curved magnetic field line will cause curvature drift (Daglis et al.,

1999). A schematic of a ring current particle gyrating around a magnetic

field line and being mirrored is shown in Figure 2.3. The longitudinal

motions of the trapped ions and electrons in this band are different and

so there is a current in this band called the “ring current”. The result is

that a current runs in a band around the earth roughly above the equator

with an inner ring flowing eastward and an outer ring flowing westward

as in Figure 2.4.

Figure 2.3: A schematic of a particle in the ring current gyrating around a
magnetic field line. The particle drifts along this line and is reversed at the
mirror points. As it drifts along the field line it experiences the gradient and
curvature drifts. This figure has been adopted from Daglis et al. (1999).

The Active Magnetospheric Particle Tracer Explorers/Charge Compo-

sition Explorer (Krimigis et al., 1982) satellite gave the first comprehensive

in-situ measurements of the ring current. It obtained plasma pressure pro-

files in the radial direction from Earth giving a cross-sectional picture of
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Figure 2.4: A schematic of the ring current as viewed from the day-side above
the earth. The main current is the westward ring current in blue and there is
also an eastward current of less importance show in brown. A representation of
the split ring current is shown in yellow but this is outside the scope of this work
as its existence is still an active area of research (Ganushkina et al., 2015) that
is not the focus of this thesis. This figure has been adopted from Ganushkina,
Liemohn and Dubyagin (2018).

the pressure in the ring current. It was seen that plasma pressure peaks

at around 3 RE , as seen in Figure 2.5 for the reference and storm cases,

(e.g. Figure 2 of Lui, McEntire and Krimigis, 1987) meaning that a

pressure gradient, and hence a current, exists on either side of this peak.

Since the pressure gradient is of opposite sign either side of the peak

so is the current. Thus, we have an eastward and westward flowing ring

current. These are shown in Figure 2.4 as the brown and blue regions

respectively.

The westward ring current, located at approximately 3-8 RE , is caused

by charged particles in the magnetosphere experiencing the Lorentz force

F = q(E+v×B) (2.5)

where q is the charge of the particle, E is an electric field, B is a mag-
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Figure 2.5: The radial profiles of the pressure perpendicular to the magnetic
field for four passes of the satellite during a geomagnetic storm in 1984. The
solid line shows the readings and the dashed line shows the observations made
in a reference pass. The horizontal axis has unite of Earth radii. This figure
has been adopted from Lui, McEntire and Krimigis (1987)

netic field and v is the particle velocity. From this equation we see that

charged particles with a velocity not parallel to the magnetic field will

experience a force acting perpendicular to the magnetic field and the par-

ticles velocity. Hence the charged particle will gyrate around a magnetic

field line. If a charged particle has a velocity component parallel to the

magnetic field, this will remain unchanged and the particle will move in

a helix. The mirror effect that traps the particles into the ring current

is caused by the pitch of that helix decreasing and then changing sign

because of a field-aligned gradient in the magnetic field that means the

particle moves into higher field intensity as it moves along the field.

In a non-uniform magnetic field with field gradient perpendicular to

the magnetic field, as during times of geomagnetic activity, a particle will

experience a changing Lorentz force in different parts of its route along

the helix. This means that instead of the helix being a combination of the

motion along the field line (bouncing from hemisphere to hemisphere) and

a circular gyration, the orbit around the field has a smaller radius closer
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to the Earth where the field is larger. This will cause the particle to

drift perpendicular to both the magnetic field and the field gradient. The

direction of drift depends on the sense of gyration that, in turn depends

on the sign of the charge, thus oppositely charged particles drift opposite

directions creating a current. This is called gradient drift

In addition, there is a drift caused by curvature of magnetic field

lines. As a particle travels along a curved field line, a centripetal force

is experienced and the gyrating cyclotron motion increases away from the

centre. This movement through a magnetic field results in a force perpen-

dicular to the magnetic field and direction of motion. As with gradient

drift, the direction of drift depends on the charge of the particle so this

“curvature drift” creates a current.

In summary, the magnetic bottle effect, due to the convergence of

the magnetic field at lower latitudes, holds charged particles in an approx-

imate torus around the earth. Gradient drift and curvature drift work to-

gether in moving positively charge particles westward and negatively charged

particles eastwards giving the westward ring current.

There also exits an eastward ring current which is minor in com-

parison to the westward ring current, flows anticlockwise around the equa-

tor when looking down from the north and is located at approximately

2-3 RE . The anticlockwise current flow causes a magnetic field in the

same direction as the Earth’s (Ganushkina, Liemohn and Dubyagin, 2018)

meaning an enhancement in the eastward ring current would be measured

as a positive magnetic change on the ground. The eastward ring current

can undergo minor enhancements and shifts in location during geomagnetic

storms (Lui, McEntire and Krimigis, 1987).

If the ring current were the same at all longitudes around the Earth

it could be called “symmetric”, however, it has been shown that the cur-

rent densities are not the same at all magnetic local times and so is de-

scribed as being, in general, asymmetric. Liemohn et al. (2001) showed
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that the ring current is typically more symmetric during quiet time but is

partial during geomagnetic storms. In particular Liemohn et al. (2001) saw

that, during the main and early recovery phases of a storm, the ring cur-

rent closed through field aligned currents into the ionosphere and this is

the cause of the observed asymmetry.

During a geomagnetic storm there is significant and rapid intensi-

fication of the current. This is captured by the Dst index (see Section

2.2) as a decrease during the main phase of a geomagnetic storm. The

decrease is because, contrary to the eastward ring current, the clockwise

direction of the current causes a magnetic field with opposite polarity to

the Earth’s. An example of a Dst timeseries during a geomagnetic storm

is shown in Figure 2.6.

Figure 2.6: An example of a geomagnetic storm from February 1983 recorded
in the Dst index lasting for several days.

Figure 2.7 shows the current intensity in the ring current for differ-

ent levels of Dst, a geomagnetic index (see Section 2.2). Visible are the

eastward and westward ring currents with the westward ring current gen-

erally having greater intensity and width. The inner eastward current has

a much smaller effect on the magnetic field measured at the surface of

the Earth, the effect being almost always with a westward current as the
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intensity increase is greater (Le, Russell and Takahashi, 2004).

Figure 2.7: Intensity of the ring current as a function of magnetic local time
and distance from the dipole axis. This figure has been adopted from Le, Rus-
sell and Takahashi (2004).

2.1.4 Field Aligned Current Systems

In the E region of the ionosphere, ions and electrons collide with neu-

trals interrupting their gyration around a field line. In the presence of an

electric field, the ions and electrons diffuse along the electric field causing

currents perpendicular to the magnetic field. The currents perpendicular to

the magnetic and electric fields are called Hall currents and those perpen-

dicular to the magnetic field but parallel to the electric field are Pedersen

currents (Carlson and Egeland, 1995).

When the ionospheric conductivity is horizontally uniform, Hall cur-

rents form closed loops in the ionosphere as shown in Figure 2.8. There-
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fore, Pedersen currents, which flow perpendicular to Hall currents, cannot

form and so connect to field aligned currents that flow out into the mag-

netosphere.

Figure 2.8: A schematic of transpolar and auroral Pedersen currents closing
via field aligned currents in the presence of Hall currents. The origin of this
figure is unknown.

Transpolar Pedersen currents flowing dusk to dawn across the poles

connect to the so-called Region 1 field aligned currents. These flow up on

the dawn side and down on the dusk side and connect to the Chapman-

Ferraro current in the magnetosphere. This is shown by the left hand side

red ribbon in Figure 2.9. Ganushkina, Liemohn and Dubyagin (2018) ex-

plains that this current can be diverted during geomagnetically active times

to the cross-tail current sheet and close on the magnetopause, as shown

by the right hand side red ribbon in Figure 2.9. This will be explained

in Section 2.1.5.

Auroral Pedersen currents flow with opposite polarity to the trans-

polar Pedersen currents across the auroral region as shown by Figure 2.8.

These then connect to region 2 field aligned currents on the equatorward

edge of the auroral oval as shown in Figure 2.10. The region 2 field

aligned currents then close via the ring current in the magnetosphere.
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Figure 2.9: Two current flow loops in which field aligned currents connect
the Chapman-Ferraro currents in the magnetopause to ionospheric currents.
The left-hand loop shows the Region-1 field-aligned currents connecting to the
ionosphere near the boundary between the polar cap and the auroral oval.
These currents are always present but vary in strength. The right hand loop
shows the substorm current wedge that forms when the cross-tail current is
disrupted and field-aligned currents flow into the ionosphere and along the au-
roral oval in the auroral electrojet. This only happens in substorm expansion
phases. This figure has been adopted from Ganushkina, Liemohn and Dubya-
gin (2018).

2.1.5 Cross-tail Current and Substorm Current Wedge

The magnetotail stretches far into space. The field lines connect to Earth

near the poles meaning that those connecting to the northern hemisphere

are directed Earthward whereas those connecting to the southern hemi-

sphere are directed anti-Earthward creating a region of magnetic shear. As

dictated by Ampere’s law, separating the magnetic fields of opposite direc-

tion is an equatorial current sheet that stretches out into the magnetotail

as depicted in Figure 2.11 by the flat blue surface with the current run-

ning from dusk to dawn. The current is closed via the tail-ward section

of the magnetopause.

The location of the cross-tail current sheet varies during a geomag-

netic storm (McPherron, 1995). During the growth phase of a substorm
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Figure 2.10: A schematic of the region 1 and 2 field aligned currents. The
region 1 field aligned current connects the poleward side of the auroral oval
to the Chapman-Ferraro current. The region 2 field aligned current connects
the equatorward edge of the auroral oval to the night-side ring current. This
figure has been adopted from Lockwood (2019b)

there is a higher rate of creation of open field lines on the dayside mag-

netosphere than there is destruction in the magnetotail. This adds magnetic

flux to the tail and hence intensifies the cross tail current and moves it

closer to the earth.

In the expansion phase of a substorm, reconnection occurs in the

near-earth tail and the cross-tail current is interrupted as the substorm cur-

rent wedge is formed (McPherron, Russell and Aubry, 1973). The sub-

storm current wedge connects the cross-tail current to the highly conduct-

ing auroral ionosphere in both hemispheres. The section flowing in the

auroral ionosphere is called the auroral electrojet. The substorm current
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Figure 2.11: A schematic of the cross-tail current shown by the blue ribbons.
The current flows horizontally across separating opposite polarity of the mag-
netic field. The current closes through the magnetopause current. This figure
has been adopted from Ganushkina, Liemohn and Dubyagin (2018).

wedge system is depicted for the northern hemisphere in Figure 2.12 by

the pink ribbon. It shows that the cross-tail current sheet is interrupted

and rerouted into the auroral oval where it flows as the auroral electrojet

from dusk to dawn then returns to the cross-tail current sheet.

2.2 Geomagnetic Indices

The current systems discussed in this section all have an impact on the

ground level geomagnetic field. However, the magnetic effect of a current

measured is a function of distance to the measuring location. For exam-

ple, for a steady current, the contribution to the total magnetic field of

a current element is given by the Biot-Savart law, with a 1/r2 drop-off.

This means that close currents have the largest effect but further currents

can also be felt but to a much lesser extent. Therefore, indices do not
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Figure 2.12: A schematic of the substorm current wedge is shown in pink. The
cross-tail current is interrupted and the current is directed into the auroral
oval where it flows as the auroral electrojet. This figure has been adopted from
Ganushkina, Liemohn and Dubyagin (2018).

necessarily measure just one current system.

Geomagnetic indices use observations of the temporal change in mag-

netic field (dB/dt) measured with ground based magnetometers. These rel-

atively cheap pieces of equipment now have a good coverage of Earth’s

surface. A number of indices have been developed to quantify geomagnetic

activity. Each index uses a different combination of measurements and a

different network of observing stations to monitor different aspects of the

magnetospheric currents.

I here present an overview of four common indices.

• Dst (Disturbance Storm Time) is an index made from the hourly

means of four equatorial magnetometers available from 1957 onwards.

The low latitude of the stations means that Dst is primarily a mea-
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sure of the ring current, an equatorward magnetospheric current sys-

tem (see Section 2.1). The major disturbances of Dst are negative

as ring current intensification causes a decrease in the equatorial ge-

omagnetic field. This intensification is caused by the injection of

energetic particles into the inner magnetosphere by substorm expan-

sions and enhanced magnetospheric convection. They are seen in the

main phase of geomagnetic storms. However the equatorial stations

can also sense the Chapman-Ferraro currents flowing in the dayside

magnetopause and this can give a small positive perturbation ahead

of the main phase of the storm as enhanced solar wind, often in

the form of a coronal mass ejection, compresses the magnetosphere

and brings the currents in the magnetopause closer to Earth. For this

reason, it is common for a geomagnetic storm to cause a slight rise

in Dst before a sharp negative fall.

• The AE (auroral electrojet) index aims to measure the flow of the

auroral electrojet currents in the high-latitude ionosphere. For this

reason the measurements are taken from 12 high-latitude stations spaced

out longitudinally such that both the eastward and westward auroral

electrojets are measured at any given time. The stations are in the

northern hemisphere as in the southern hemisphere much of the au-

roral oval, where the stations need to be located, is over sea or

ocean. AU is defined as the maximum recorded positive disturbance

at any station and AL is the minimum recorded disturbance. AE is

a single measure of the electrojets defined as the difference between

AU and AL. Data is available from 1957 onwards at a 2.5 minute

resolution.

• am is a 3-hour range index available from 1959. It is compiled us-

ing data from approximately 24 stations across the mid-latitudes al-

though the exact stations used has varied through time. The mea-

sured K values (Bartels, Heck and Johnston, 1939), a quasi-logarithmic
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scale from 0-9 based on station specific look-up tables, are averaged

for each longitudinal sector and then the northern and southern hemi-

spheres to give a global measure of geomagnetic activity. Although

compiled from mid-latitude stations the range indices are mainly sen-

sitive to enhancements to the midnight auroral electrojet which moves

equatorward as well as growing in intensity during substorm expan-

sion phases and major storms.

• The aa index is a long running index available from 1868 to present.

It is compiled in a similar way to am but with only two approxi-

mately antipodal stations (UK and Australia). There have been three

stations in each country over the time period of the index. Lock-

wood et al. (2018a,b) corrected aa for the changing geographic lo-

cation of stations and the drift of the geomagnetic pole with time,

to produce aaH . Using a model of station response and sensitivity,

they also reduced the time-of-day and day-of-year effects which result

from creating a global index from stations with limited longitudinal

sampling.

2.3 GICs

Intensification of magnetospheric current systems resulting from geomag-

netic storms induce electric fields on the surface of the Earth which in

turn induce currents in systems containing long conductors such as power

grids and pipelines. These currents are named geomagnetically induced cur-

rents (GICs) (Ngwira and Pulkkinen, 2019). GICs flowing in technological

systems cause issues which, in mild cases, leads to increased maintenance

and, in extreme cases, to system failure (Rajput et al., 2021).

The variability in magnetospheric currents during a storm causes a

variation in the geomagnetic field at the surface of the Earth, with the

strength of the perturbation following an inverse distance squared law be-
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tween the current and the location where the geomagnetic field is ob-

served. This leads to currents being induced in all conductors experiencing

a changing magnetic field.

The task of estimating GICs can be separated into two components

(Pirjola, 2000; Ngwira and Pulkkinen, 2019). The first is the estimation of

the ground-level geoelectric field resulting from space weather. Faraday’s

Law of Induction links the activity in the magnetosphere and ionospheric

current systems with GICs at ground level. It is

∇×E =−∂B
∂ t

. (2.6)

This states that a time-varying magnetic field accompanies an electric field

through electromagnetic induction. Because magnetic field fluctuations are

more intense closer to current systems, it is expected, and observed, that

GICs of relevant magnitude are more likely to occur at latitudes in closer

proximity to them. Currents such as the auroral ovals and the substorm

current wedge occur at high latitudes and so we would expect GICs to

be a greater issue at high latitudes. However, it should be noted that dur-

ing strong geomagnetic storms the ring current intensifies over low-latitudes

meaning GICs could occur there (Abda et al., 2020; Lui, McEntire and

Krimigis, 1987; Mohd Anuar et al., 2019). Mathematically, this is shown

by the Biot-Savart law:

B =
µ0I
4π

∫ ds× r̂
r2 , (2.7)

where r is the radial distance between current and magnetic field location,

I is the current, and s is the path of the current. For such a magnetic

field observed at the Earth’s surface, temporal variations will be accom-

panied by an electric field. This can lead to a current flowing on the
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ground following Ohm’s law,

J = σE, (2.8)

where J is the current density related to I by the expression I = AJ,

where A is the cross-sectional area of the current, and σ is the con-

ductivity of the ground. Therefore, ground conductivity plays a key role

in the degree to which the geomagnetic field penetrates the earth and

induces an electric field. A more conductive ground allows the field to

penetrate deeper. The penetration depth also depends on the frequency of

the geomagnetic field variations with lower frequency variations penetrating

deeper. Because of the dependence on ground conductivity, which varies

with depth due to layers of different materials, full modelling of GICs

requires knowledge of the ground structure. Kelbert (2020) provides an

overview of the current capabilities in GIC and electric field modelling.

Magnetotellurics is a method that can determine the distribution of

the conductivity of the ground by simultaneously monitoring the ground

level magnetic and electric fields then processing the data. In the UK,

Beggan et al. (2021) used six months worth of uninterrupted magnetic and

electric field observations to derive the impedence of the Earth at three

sites (Lerwick, Eskdalemuir and Hartland). From this a magnetotelluric-

(MT-) transfer function was created to estimate the electric field from a

magnetic field at these three locations.

Other work has focused on creating 3-D models which give a more

comprehensive measure of the ground. This can either be done by using

MT-transfer functions at particular location then interpolating the electric

field or it can be done by interpolating the magnetic field on to a grid

and obtain an MT-transfer function at each gridpoint through MT-inversion

(Kelbert, 2020; Avdeev, 2005) However, these models are of limited avail-

ability and thus have limited applications at present. As examples, a list

of regional 3-D models for the US can be found in Table 8.2 of Kelbert,
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Bedrosian and Murphy (2019).

The next part in the GIC problem is the engineering step. This

takes the geoelectric field and estimates the level of GIC in a power grid.

This is completely dependent on the set up parameters of the grid and so

is usually carried out by engineers. GICs can be parameterised in terms

of

GIC(t) = aEx(t)+bEy(t) (2.9)

where a and b are grid set up parameters and Ex and Ey are the two

components of the horizontal electric field. a and b are unique to each

transformer and power line and depend on the resistance and geometry of

the system (Pirjola, 2000). Without specific knowledge of a and b, it is

the task of scientists to provide accurate geoelectric field estimates and

forecasts.

In power grids, GICs flow between the ground and the system

through earthing cables in transformer substations. This occurs particu-

larly in areas with low ground conductivity as the power grid offers a

path with significantly lower resistance. These currents have a very low-

frequency of 0.01–0.001 Hz (quasi DC) with average magnitudes of 10–15 A

and peaks of up to 100 A for 1–2 min (Heindl et al., 2011). These

low frequency currents behave similarly to a direct current (DC) in a 50

Hz alternating current (AC) system. In a transformer, this quasi-DC sig-

nal can lead to half-cycle saturation, where the maximum magnetic flux of

the transformer core is achieved every half-cycle. During saturation, excess

flux leaks out of the core and induces eddies in other components, causing

them to heat (Marti, Rezaei-Zare and Narang, 2013). Sustained heating can

lead to degradation and, in extreme cases, destruction of the transformer.

In addition to transformer heating, GIC effects can cause transformers to

operate in a non-linear regime, where current is no longer proportional

to voltage, resulting in relay trips, voltage instability and drops in power

causing blackouts (Pirjola, 2000).
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Transformer insulation damage is a cumulative process and can be

accrued over the course of many GICs. When systems fail, the cause

may be in conjunction with, and often attributed to other causes (Molin-

ski, 2002). Thus the cumulative processes may not have been given the

right level of importance. Studies have found that the Generator Step-Up

transformers in the north-eastern United States (the region of the US with

the highest GIC susceptibility) have a 60% higher failure rate than the rest

of the country, and a faster mean time-to-failure rate, indicating early age-

ing of the transformers (Kappenman, 1996). The failures appear to occur

in phase with the timing of geomagnetic storms, while the frequency of

failures in other regions can be represented with a normal distribution in

time (Kappenman, 1996). Forbes and St. Cyr (2004) investigated the elec-

trical power market in the year 2000, concluding that geomagnetic storms

increased the wholesale electricity price by a total of approximately $500

million.

Another factor in transformer damage is geomagnetic storm dura-

tion which plays a significant role in the potential for GIC damage. The

longer the geomagnetic field fluctuates at a great intensity, the longer the

consequent GIC is sustained in a power system, and given that said GIC

is of sufficient magnitude, the more potential there is for system instability

and/or damage. The risk of exposure to GICs is both a function of time

and magnitude (Kappenman, Ave and Suite, 2010).

Extreme space weather events are more likely to give rise to large

GICs. The 2003 Halloween event caused GICs that were likely the cause

of the failure of the Swedish high-voltage transmission system (Pulkkinen

et al., 2005) and damage to a South African transformer (Gaunt and Co-

etzee, 2007). An even more extreme event in 1989 lead to the collapse

of the Hydro-Quebec network in Canada (Boteler, 2001).

Forbes and St.Cyr (2017) investigated whether the UK power grid

is effected by GICs. They looked at the reliability of the electricity grid
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during the declining phase of solar cycle 23 using the net imbalance vol-

ume (NIV), a metric of electric grid stability. Their results suggested that

there was an impact on NIV due to GICs on National Grid operations.

Pulkkinen et al. (2017) reviewed the current understanding of GICs.

They concluded that the most likely result of a large GIC event is voltage

instability leading to blackouts rather than permanent transformer damage

on a large scale. That said, industry is not only interested in the most

probable events, but the combination of the probability and the severity.

For example, the power industry may be more concerned about permanent

transformer damage that takes months to replace than a few hours black-

out, even if its is much less probable.

Milder GIC events are also of interest because they occur more fre-

quently. Schrijver (2015) and Schrijver et al. (2014a) looked at the impact

of moderate space weather events using insurance claims data. In partic-

ular, Schrijver (2015) shows that high frequency, low impact events may

be comparable in cumulative economic cost to low frequency, high im-

pact events. Similarly, Schrijver et al. (2014a) identifies significant rises in

electrical equipment insurance claims on both the top 5% and top third

of geomagnetically active days. While these studies focused on geomag-

netic activity as a whole, it is reasonable to assume that this holds for

GICs specifically.

The conclusion of Pulkkinen et al. (2017) was that the key future

challenge is to be able to specify the spatiotemporal evolution of the geo-

electric field during extreme events. They also pointed to the need for

GIC forecasting with a multi-day lead time and for estimates of upper

limits of extreme GICs.
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2.4 GIC Forecast Capabilities

As discussed in the previous section, the science problem for forecasting

GICs is to forecast the ground level magnetic perturbations, ∆B, and con-

vert this into geoelectric field. The forecasting of ∆B can be achieved in

two ways. The first is using physics-based first-principles models, typically

MHD, to model the response of the magnetosphere to solar wind inputs

(Welling, 2019). The second is to use empirical models that link the solar

wind conditions directly to ∆B (Weimer, 2019). In the discussion in this

section the solar wind inputs are those observed at the L1 point meaning

that these forecasts have short lead times and are effectively nowcasts.

The MHD-model approach numerically solves the MHD equations

shown in Chapter 1 on temporal and spatial grid boxes roughly 0.1 to

1.2 Earth radii (El-Alaoui et al., 2012). Welling (2019) reviewed the va-

lidity of MHD models of the magnetosphere. They found that current

MHD models are good at reproducing the shape of the magnetosphere,

at reproducing large-scale ionospheric features and at capturing magneto-

spheric convection. However, they note that MHD models generally strug-

gle with properly capturing magnetotail dynamics, key to substorms. They

also found that a higher spatial grid resolution provides better results, as

seen in Pulkkinen et al. (2010) and Wiltberger et al. (2017). This must be

weighed up with the increased computational costs as halving the average

spacial scale creates a factor of eight increase in number of grid cells and

also an increase in temporal resolution due to the Courant–Friedrichs–Lewy

(CFL) condition (Courant, Friedrichs and Lewy, 1956).

Global MHD models typically have an inner boundary above the

ionosphere because B increases closer to the surface and hence the wave

speed increases requiring a prohibitaively high time resolution due to the

CFL condition. Therefore Biot-Savart integration is used to retrieve ground

level magnetic field from the model at particular locations. These so called

“virtual magnetometers” allow global MHD models to be directly validated
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against ground based observations and, in principle, to be used as forecasts

for GICs.

Pulkkinen et al. (2010) evaluated three configurations of the space

weather modelling framework (SWMF Tóth et al., 2005, 2012) and one

configuration of Open Global Generalized Circulation Model (OpenGGCM)

(Raeder, Berchem and Ashour-Abdalla, 1998) on their ability to produce

∆B using virtual magnetometers during four storm events. They made eval-

uations using prediction efficiency with all models coming out with a neg-

ative score in each event. They also examined the power spectra of ∆B

and found that the models lacked spectral power for some events, particu-

larly for frequencies between 10−3 to 10−2.

Empirical models have the advantage that they are computationally

efficient compared with MHD models and are thus cheaper and easier to

run in real time. This opens up the possibility for models to be run as

an ensemble to quantify forecast confidence based on observation uncer-

tainty. Another advantage is that, in settings where there is unknown or

unresolved physics, empirical models can (potentially) still perform well.

An example of an empirical model for predicting ∆B is the Weimer

model described in Weimer (2013). The model uses spherical cap har-

monic analysis (Haines, 1985) which determines the geomagnetic field at

a given location by fitting a spherical cap to the derivatives of a potential

function. The spherical cap is extended from the poles to the equator, thus

covering an entire hemisphere. In the equations for each of the vector

components of ground level magnetic perturbations are two parameters that

are empirically derived as functions of the solar wind parameters. These

parameters are observed by the DSCOVER spacecraft at the L1 Lagrange

point, meaning that the Weimer model can give an approximate 1-hour

lead time. The Weimer model was evaluated for its ability to forecast an

event from July 2004. At all 11 locations tested it well produced ∆B,

however, it lacked the high-frequency signal (Weimer, 2013). This can be
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seen in Figure 2.13 which shows the Weimer model output in blue and

the observations in red at the 11 locations.

Figure 2.13: The results of the Weimer model for the north-south magnetic
field component are shown for a July 2004 event at 11 different locations. The
blue line shows the model output and the red shows the observations. The
model does well at capturing the low resolution variations but struggles with
the high.

2.5 Thesis Objectives and Outline

The main aim of this thesis is to contribute towards space weather fore-

casting, particularly in a way that is operationally relevant to the power

industry. Ideally, infrastructure operators would be provided with a long

lead-time GIC forecast, however GIC forecasting is still in its infancy.

This thesis takes a two pronged approach towards improving our forecast

capability for the power industry.

The first prong is a focus on geomagnetic activity as measured by

geomagnetic indices (see Section 2.2). While forecasting indices is not

equivalent to forecasting GICs, geomagnetic indices are nevertheless a use-

ful proxy for magnetospheric activity and have long historical records al-

lowing for a statistical understanding and empirical forecast methods. In

Chapter 3 we examine the duration of geomagnetic storms in a geomag-
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netic index and establish a statistical relationship between duration and

peak intensity of the storm. A model based on log-normal distributions

is presented giving a probabilistic estimate of the duration of a storm for

a given peak storm intensity. It is hoped this is useful to infrastructure

operators, as they are better able to plan if they have an estimate of the

duration of the disruption. It also gives an insight into the level of trans-

former damage that could be done as this is a time integrated effect.

In Chapter 4 we use two pattern-matching forecast techniques, namely

the analogue ensemble (AnEn) and support vector machine (SVM). Both

methods are implemented to take the recent time history of the index as

input and give a prediction for up to a one week lead time.

The second prong focuses more specifically on GICs. Current GIC

forecast is limited by the resolution of operational magnetospheric models.

Typically, the magnetospheric models underestimate the power of the high

frequency variability in the geomagnetic field causing an underestimation

of the magnitude of corresponding geoelectric field which is needed to

forecast GICs. To address this problem, Chapter 5 presents a temporal

downscaling model of the geomagnetic field as a proof of concept study.

Employing the analogue ensemble technique, a time series of geomagnetic

field is downscaled from a 1-hour resolution to a 1-minute resolution.
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Chapter 3

The Variation Of Geomagnetic

Storm Duration With Intensity

This chapter presents the work of my first project during my PhD. The

study was conceptualised by my supervisors, however I had significant in-

put into the direction of the study as it moved from establishing a statis-

tical relationship to building and testing a model. I conducted all of the

data handling and analysis required and wrote the resulting paper. This

Chapter is published in Solar Physics as Haines et al. (2019).

C. Haines, M.J. Owens, L. Barnard, M. Lockwood, A. Ruffenach

Abstract

Variability in the near-Earth solar wind conditions can adversely affect a

number of ground- and space-based technologies. Such space weather im-

pacts on ground infrastructure are expected to increase primarily with ge-

omagnetic storm intensity, but also storm duration, through time-integrated

effects. Forecasting storm duration is also necessary for scheduling the re-

sumption of safe operating of affected infrastructure. It is therefore impor-
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tant to understand the degree to which storm intensity and duration are

correlated. The long-running, global geomagnetic disturbance index, aa, has

recently been recalibrated to account for the geographic distribution of the

component stations. We use this aaH index to analyse the relationship be-

tween geomagnetic storm intensity and storm duration over the past 150

years, further adding to our understanding of the climatology of geomag-

netic activity. Defining storms using a peak-above-threshold approach, we

find that more intense storms have longer durations, as expected, though

the relationship is nonlinear. The distribution of durations for a given in-

tensity is found to be approximately log-normal. On this basis, we provide

a method to probabilistically predict storm duration given peak intensity,

and test this against the aaH data set. By considering the average pro-

file of storms with a superposed epoch analysis, we show that activity

becomes less recurrent on the 27-day timescale with increasing intensity.

This change in the dominant physical driver, and hence average profile, of

geomagnetic activity with increasing threshold is likely the reason for the

non-linear behaviour of storm duration.
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3.1 Introduction

A geomagnetic storm is a significant disturbance in the Earth’s magnetic

field (e.g. Gonzalez et al., 1994) due to specific sets of conditions in

the near-Earth solar wind. Southward-orientated interplanetary magnetic field

(IMF) can reconnect with the geomagnetic field of the dayside magneto-

sphere resulting in the storage of energy in the lobes of the magnetotail

(Dungey, 1961). Reconnection associated with disturbances in the magne-

totail current sheet releases the stored energy and currents in the upper

atmosphere are enhanced. This can result in adverse effects in a num-

ber of ground- and space-based technologies, as well as posing a threat

to the health of astronauts and flight crew and passengers (Baker, 1998).

In particular, this substorm cycle of tail lobe energy storage and release

can result in enhanced ionospheric currents which can in turn lead to Ge-

omagnetically Induced Currents (GICs), a quasi-DC signal, flowing through

ground infrastructure such as power grids and pipelines (Patel et al., 2016;

Cannon et al., 2013). An induced DC current in AC power transformers

may create a half cycle saturation leading to degradation and breakdown.

Thus geomagnetic storms can affect today’s technologically centred soci-

ety to great disruption and at great cost (Eastwood et al., 2017a; Oughton

et al., 2017a; Riley et al., 2018; Cannon et al., 2013).

GICs result from rapidly varying local geomagnetic fields, on the

timescale of minutes or less. Therefore geomagnetic indices (e.g. Dst, AE

and K p), which summarise global geomagnetic variability on the timescale

of hours, do not directly relate to the GIC drivers. However, there is cou-

pling across these timescales and spacial scales, with the largest GICs oc-

curring during geomagnetic storms (Trichtchenko and Boteler, 2004, 2007).

Space-weather forecasting often focuses on estimating the onset and

intensity of geomagnetic storms (Abunina et al., 2013; Lundstedt, Gleis-

ner and Wintoft, 2003; Joselyn, 1995). But storm duration can also be an

important secondary factor through time-integrated effects (Mourenas, Arte-
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myev and Zhang, 2018; Balan et al., 2016). Indeed, Lockwood et al.

(2016) showed that the time-integrated value of solar wind forcing, which

measures the net geomagnetic disturbance, was influenced both by the am-

plitude and duration of storms. Therefore, a forecast of storm duration

would be beneficial in the development of mitigation plans for sensitive

infrastructure and services, in terms of estimating when normal operations

can resume. Thus it is important to quantify the relationship between

storm intensity and duration.

Surveys of the largest geomagnetic storms in the Dst index have

included estimates of storm duration (Echer, Gonzalez and Tsurutani, 2008;

Balan et al., 2016), though the relation with storm intensity was not ex-

plicitly quantified. Using the Dst index, Yokoyama and Kamide (1997)

showed that the average duration of main and recovery phases of storms

increased with storm intensity across three broad categories (weak, moder-

ate and strong) for 8 years of observations. A similar analysis was pre-

sented in Hutchinson, Wright and Milan (2011) for solar cycle 23 but

concluded that storm main phase duration increases with intensity to a

point, but then the relationship reverses for storms more intense than a

peak SY M−H index disturbance of −150nT . Recently, Walach and Gro-

cott (2019) analysed the SY M−H index between 2010 and 2016 in a

similar way to Hutchinson, Wright and Milan (2011) but concluded that

there was no clear ordering of intensity by storm duration. Conversely,

Lefevre et al. (2016) used the aa index to demonstrate an increase in av-

erage storm duration across five peak intensity levels. The weakest storms

had a median duration of 6 hours and the most intense storms 30 hours,

noting that the duration of the most intense storms ranged from 12 to

93 hours. Xie et al. (2008) showed that, for large storms, preconditioning

of the magnetospheric system by prior solar wind conditions can increase

storm duration but found no evidence that it increases peak amplitude.

The long-running, global geomagnetic disturbance index, aa (Mayaud,
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1971), has recently been recalibrated to account for the geographic distri-

bution of the component stations (Lockwood et al., 2018a). In this study,

we use this aaH index to analyse the relationship between geomagnetic

storm intensity and storm duration over the past 150 years, further adding

to our understanding of the climatology of geomagnetic activity. In partic-

ular, we construct and test a simple probabilistic forecast of storm duration

based on storm intensity.

3.2 Data

Changes in magnetospheric current systems can result in magnetic fluctu-

ations which can be measured at a number of stations around the world

with ground-based magnetometers. These measurements are compiled into

a variety of indices, including aa, kp, Dst and AE, which measure dif-

ferent properties of global geomagnetic activity. The aa index, created by

Mayaud (1971), is based on the k values devised by Bartels, Heck and

Johnston (1939). The k values are made by ranking the range of variation

in the observed horizontal or vertical field component (whichever gives the

larger value) in each 3-hour period into one of 10 categories. These cate-

gories are defined by quasi-logarithmic limits based on the station’s prox-

imity to the auroral oval and a k value of 0 to 9 is assigned. The aa

index is a combination of measurements taken from two mid-latitude sta-

tions, in the UK and Australia, since 1868 which, by virtue of being in

opposite hemispheres and roughly 10 hours apart in local time, provide a

quasi-global measure of geomagnetic activity with particular sensitivity to

the substorm current wedge (Lockwood, 2013).

The major disadvantage of aa is that it is compiled from just two

stations, but that is necessary in order to generate the series back to

1868, which is its major advantage. Lockwood et al. (2018a) and Lock-

wood et al. (2018b) corrected aa for a number of factors. Firstly they
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made allowance for the changing geographic location of the midnight sec-

tor auroral oval, due to the secular change in Earth’s intrinsic geomag-

netic field (giving different drifts of the geomagnetic poles in the two

hemispheres, as observed), which influences the proximity of the stations

to the most relevant current system, the nightside auroral electrojet of the

substorm current wedge. This improves the intercalibration of the differ-

ent stations needed to compile the aa series (three have been needed

in each hemisphere to make a continuous series since 1868). In addi-

tion, they allowed for the time-of-day/time-of-year response pattern of the

station (the “station sensitivity”) using a model of how it is influenced

by proximity to the auroral oval and by local ionospheric conductivity,

thereby reducing the errors introduced by using just two stations. The re-

sulting index, called the “homogeneous aa index”, aaH , has been tested

by Lockwood et al. (2019) against the am index, generated in a similar

way to aa but using rings of 24 mid-latitude stations in both hemispheres

(Mayaud (1981), http://isgi.unistra.fr/indices_am.php), and

was shown to perform considerably more uniformly in local time than the

original aa index. The analysis shown in the present paper uses the aaH

data but similar results have been achieved for the am index. The aaH in-

dex runs from 1868 to present and definitive am data currently runs from

1959 to 2013. Although am gives a more accurate representation of the

instantaneous state of global geomagnetic activity (Lockwood et al., 2019),

the advantage of aaH is that it provides an extra century of observations

which means that better statistics on large events are obtained.

3.3 Storm Definition

There are no universally-agreed upon criteria to classify geomagnetic storms

in geomagnetic time series, with definitions depending on the purpose of

the study (Riley et al., 2018). Lefevre et al. (2016) defined storms in the

3-hourly aa time series as events in which the maximum value exceeds
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one of a set of limits which we refer to here as the “upper threshold”.

They defined the start and end of a storm as the times when aa rose

above and fell below a threshold of twice the mean of the whole data-

set (40nT ): we here refer to this as the “lower threshold”. Thus in their

definition of an event, the start of the storm is where aa first exceeds

40nT prior to the peak, and the end is where it last exceeds 40nT after

the peak. Thus multiple upper threshold crossings can potentially consti-

tute a single storm (see also Figure 3.1). In the Lefevre et al. (2016)

definition, aa continuously exceeds the lower threshold in an event and so

even a brief drop below it means that a new event is counted as having

started. Only storms associated with a sudden storm commencement (SSC)

were considered - definitive SSCs are defined by visual searches for sud-

den increases in the northward component of the field measured at any

one of five low-latitude stations. This yielded a set of 2370 storms for

the lowest upper threshold they considered (50nT ). Kilpua et al. (2015)

used 3-hourly aa data, but with an upper threshold of 100nT and a lower

threshold of 50nT . This gave 2073 storms and performed analysis on cu-

mulatively binned categories of storms larger than a certain value, begin-

ning at 100nT and increasing in increments of 100nT up to 600nT . This

upper and lower threshold method of storm definition was also employed

by Riley and Love (2017) for the Dst index.

Other approaches include that of Hutchinson, Wright and Milan (2011)

who identified storms in SY M−H using a threshold approach of −80nT

and then proceeding to manually inspect individual storms using knowledge

of the characteristic storm trace and the solar wind data. This was feasi-

ble because the study included only 143 events from a single solar cycle,

a relatively small sample compared to that enabled by the aaH data set.

We follow a similar approach to Kilpua et al. (2015) and Lefevre

et al. (2016) for storm definition. However, we will follow a more data-

informed approach to threshold selection by following the percentile ap-
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proach (Gonzalez et al., 1994). When categorising Dst storms (in which

storms are negative perturbations), Gonzalez et al. (1994) defined the low-

est 25% of Dst values as a weak storm, the lowest 8% as a moder-

ate storm, and the lowest 1% as a strong storm. Of course, the issue

with this approach is that the percentile-based thresholds will change with

the interval considered. This variation will be greatest with short data se-

quences and very high thresholds (e.g., the top 1% or higher).

Since a strong aaH storm has a positive value, we define a storm

to start when the aaH value is greater than the 90th percentile of the full

1868-2017 3-hour data sequence. The end of the storm will be the last

value greater than the 90th percentile. The 90th percentile of aaH (1868-

2017) is 40.1nT , similar to that used in previous studies. For some parts

of the analysis, we have also used an upper threshold to select storms

of different peak intensity. As in previous studies, an event must have a

peak value over the upper threshold to be selected, but the storm duration

is nevertheless measured as the time spent over the lower threshold (i.e.,

the upper threshold determines whether an event is classed as a storm and

the lower threshold determines its duration). Upper and lower thresholds

are depicted in Figure 3.1.

A feature of this approach is that a single measurement that falls

just below the lower threshold brings an end to a storm. This is de-

picted in Figure 3.1 in which the tail at the end of the storm is cut off.

Another feature is that two events occurring close to each other with re-

spect to time will be classed as a single event if the index does not fall

back below the lower threshold in the interval between them. This dou-

ble peak effect is depicted in the plot on the right of Figure 3.1. While

this approach may sometimes disagree with the interpretation of a human

observer, it gives a set of objectively defined storms, making our analysis

reproducible and readily applicable to the entire dataset.
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Figure 3.1: Examples of geomagnetic storm definitions using 3-hourly aaH
data. The upper threshold determines if the event is included in the analysis.
A lower threshold determines the duration of the event. The period defined as
a storm, when using an upper and lower threshold, is shown in red. Left: A
slight dip below the lower threshold means what an individual observer may
regard as the tail of the storm has been cut off. Right: A double peak shape
suggests two storms may have been counted together as a single event.

3.4 Results

Figure 3.2: Left: The number of storms as a function of peak intensity on a
log-log scale. The data was grouped into equal sized bins of 10nT. Right: The
number of storms as a function of storm duration on a log-log scale plotted
using bin width of three hours, the resolution of aaH , meaning every possible
duration has a unique bin.

The number of storms in the aaH index can be seen in Figure

3.2 (Left). The data has been grouped into bins of width 10nT . The

log-log scale reveals that the distribution of storms follows an approximate

power law. This result is in agreement with that from Riley (2012) who

found a power law in the occurrence of geomagnetic storms in the Dst

index. The sharp drop off associated with a power law can be seen in

the probabilities of storm peak intensity revealed by the Complementary
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Figure 3.3: Complementary Cumulative Distribution Functions (CCDFs) of
peak intensity (left) and durations (right) for all storms in the aaH index.

Cumulative Distribution Function (CCDF) in Figure 3.3 (Left).

Similarly, the number of storms as a function of duration has a

sharp drop off. Figure 3.2 (Right) reveals that the decrease is slightly

less than a power law. The accompanying CCDF in Figure 3.3 (Right)

shows the drop off in a stepped fashion due to the quantisation of the

aaH index into 3-hour data-points.

The variation of mean storm duration with storm intensity, as mea-

sured by the upper threshold, is presented in Figure 3.4. As expected, the

general trend is that as the upper threshold is increased, the mean storm

duration also increases. Of course, if storms have a common recovery

timescale and thus similar saw-tooth-like profile (see Section 3.5), storm

duration would be expected to increase monotonically with peak intensity.

This result is in qualitative agreement with Hutchinson, Wright and Milan

(2011) and Lefevre et al. (2016), who noted an increase in storm duration

for increasing storm intensities.

We find the relation between intensity and duration to be non-linear,

with a plateau in mean duration towards higher thresholds, at a level

which selects approximately the top 50-100 storms. Yokoyama and Kamide

(1997) noted a similar effect in a set of Dst storms and state that storm

intensity increases more than linearly with duration.

The above analysis uses cumulative bins of storm intensity, so there
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Figure 3.4: Mean storm duration (red line and left axis) and number of storms
(blue line and right axis) as a function of increasing storm intensity, as defined
by the upper threshold value. Storms have been organised into cumulative
intensity bins for the upper threshold. The red line shows how the average
duration increases as the upper threshold is increased. Error bars are plus
and minus one standard error on the mean. The blue line and right-hand axis
show the number of storms in each bin on a log scale.

are common events within bins. We now separate events using differential

peak intensity bins of 70− 90nT , 90− 110nT , 110− 150nT , 150− 190nT ,

190−230nT , 230−300nT , 300−400nT , and above 400nT . The number of

storms in each bin can be seen in Figure 3.5 and decreases with intensity.

Figure 3.5 does not represent the distribution function due to unequal bin

widths (the distribution function is shown in Figure 3.2). The bins were

chosen to balance the granularity of intensities examined and the number

of events in each bin to ensure enough events for the following statistical

analysis.

The distribution of the storm durations in each intensity class broadly

resembles that of a lognormal distribution. This is shown for storms of all

intensity classes in Figure 3.6. A lognormal distribution is defined by the

mean of the logarithm of the values, µ , and the standard deviation of the

logarithm of the values, σ . These parameters were found from the ob-

served durations in each intensity class through Maximum Likelihood Esti-

65



Chapter 3. The Variation Of Geomagnetic Storm Duration With Intensity

Figure 3.5: The number of storms in each class of peak storm intensity. Due to
unequal bin size, this does not represent a distribution function.

mation (MLE) and used to create a lognormal distribution, plotted in Fig-

ure 3.6 in dark purple. The light purple distribution shows a histogram of

the observed data as an estimate of the probability density function (PDF).

By eye, the lognormal distribution provides a reasonable first-order match

at all intensity thresholds. However, statistical testing suggests the lognor-

mal distribution may not properly capture the high density of storms with

3-hour durations. As this study is primarily interested in larger intensity

storms, we focus on using the lognormal fits for the remainder of the

study.

We further note here the quantisation of the aaH dataset into 3-

hour intervals. The underlying physical phenomenon, that of storm dura-

tion, is of course continuous. This issue is commonplace in social and

medical science for longitudinal studies through discrete-time survival anal-

ysis (Allison, 1982; Singer and Willett, 1993; Carlin et al., 2005). These

methods will be investigated in future study. However, here we follow

the simpler lognormal approach described above. The reason is twofold.

Firstly, it would increase the complexity of the models presented here and

it is instructive to begin with this simple and well understood approach.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.6: Storm durations for each class of peak intensity. The observed
probability density function (PDF) of durations is shown in the histogram,
while a lognormal with the same mean and width parameters is shown as the
purple curve. The intensity classes represented are a) 70−90nT , b) 90−110nT ,
c) 110−150nT , d) 150−190nT , e) 190−230nT , f) 230−300nT , g) 300−400nT ,
and h) above 400nT , respectively.
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Secondly, for the purposes of the current study, we are not seeking phys-

ical understanding through the shape of the distribution function and only

require an estimate of the gross properties of the distribution for use as a

robust forecast tool.

Figure 3.7: Variation of best-fit lognormal parameters to the observed storm
duration PDF as a function of storm intensity. Best-fits curves accounting for
uncertainties in both variables are shown mean storm duration of the log-space
(left) and the standard deviation of the log-space (right). The uncertainty bars
for storm intensity are the 33rd and 67th percentile (i.e. the 1-sigma range)
around the median, for mean duration they are the standard error of the mean
and for standard deviation they are the standard error of the standard devia-
tion.

For each of the peak intensity classes, we have calculated the val-

ues of µ and σ for the lognormal fits to the duration distributions shown

as the black points in Figure 3.7. The intensity classes are plotted on the

x-axis at the median value of the intensity of storms in each class. It is

clear from the points in the left panel of Figure 3.7 that µ increases as

intensity increases, agreeing with the previous results in Figure 3.4 (i.e.,

duration increases as intensity increases). The parameter µ can be approx-

imated as a function of storm intensity by

µ(intensity) = A ln(B intensity−C), (3.1)

where A, B and C are free parameters. A least squares fit was im-

plemented, incorporating the 33rd and 67th percentiles (i.e. the 1-sigma

range) as the asymmetric uncertainty around the median of each intensity

bin and the standard error around µ . The coefficients A, B and C were
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found to be 0.455, 4.632, 283.143 respectively and this curve is plotted,

along with uncertainty bars, in Figure 3.7 (left). Although the fit is based

on weighted bin-centres of storm intensity, the equation can be used to

interpolate for a given value of intensity.

Given the error bars, σ can be approximated by a linear fit to give

σ as a function of the peak intensity. Figure 3.7 (right) shows the best

fit line which has a shallow gradient of −5.08× 10−4 and y-intercept at

0.659. The plot shows that the fit agrees with the points to within the

estimated errors for 5 out the 8 intensity ranges (i.e., 62.5%) which is

close to the 65% figure expected for the 1σ errors employed and hence

a linear fit is deemed acceptable for our purposes.

Figure 3.8: Comparison of observed and predicted storm durations. Plots show
the probability a storm will exceed a certain duration as a function of peak
intensity. The red line computes µ from Equation 3.1 and σ from the linear
expression and uses these to compute the relevant probabilities. The black line
is the observed probability from the training dataset for comparison. The aaH
data set was split into two equal-sized sets to avoid bias in the comparison.

The relations in Figure 3.7 can be used to produce an ideal log-

normal distribution of durations for a given storm peak intensity. This, in

turn, can be used to give an estimate of the probability of a storm of a
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given intensity exceeding a given duration. To test how well this simple

model works, we have made a comparison between the probability given

by the model and the observed frequency in the dataset. The aaH dataset

was split up into two equal-sized sets composed of alternating years; a

training dataset and a verification dataset. The training set was used to

derive coefficients for Equation 3.1 and the linear fit of σ and thus cre-

ate the model. The verification dataset was used to compute the observed

probabilities, thus ensuring an unbiased comparison. Figure 3.8 shows the

comparison for the probability of storms exceeding 12, 24, and 36 hours

as a function of peak intensity. The black line is the observed probabil-

ity from the verification aaH dataset. The red line is the result of im-

plementation of Equation 3.1 and expression for σ . It is seen that the

model gives a generally good match to the observed probability but there

are differences in detail. The largest storms (> 400nT ) are likely to last

longer than 24 hours and have a probability of approximately 0.4 of last-

ing longer than 36 hours. The smallest storms (< 100nT ) have a low

probability (0.2) of lasting longer than 12 hours. There is good agreement

with the observed occurrence frequencies.

To further quantify the agreement between the model and observa-

tions we consider the associated reliability diagrams (Jolliffe and Stephen-

son, 2003), which compare the model predicted probabilities with the ob-

served occurrence rates. We construct the reliability diagram by binning

storms according to the model probability, PM, of exceeding a given du-

ration. For each model probability bin, we then determine the observed

frequential probability, PO, as a fraction of events which were actually ob-

served to exceed the given duration. The model is reliable if PM = PO,

i.e., follows the y = x line on the reliability diagram. A reliability diagram

is shown in Figure 3.9 for storms exceeding durations of 12, 24 and 36

hours. A 5-fold cross validation has been implemented such that indepen-

dent test and training datasets have been split in five different ways and

the analysis carried out on each as shown by the red lines. For all three
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of the categories shown it is seen that the curves are generally slightly

above the y = x line showing a systematic underestimation of storm dura-

tion. However, for the analysis on 24 and 36 hour storms the reliability

curves become sporadic for larger values of the model probability. This

is due to a small sample size of events for which the model gives a

large probability of the storm having these durations and hence very few

observations with which to compute the frequential probability of the ob-

servations. On the whole, where there is sufficient sample size, the model

probability and observed probability are in reasonably good agreement. To

make this model more reliable it would require modest calibration. A sim-

ple approach to this would be to scale the predicted probability by a con-

stant to reduce the systematic underestimation.

Figure 3.9: Reliability diagrams comparing the model predicted probabilities
of storms exceeding 12, 24 and 36 hours with the observed occurrence fre-
quency. A 5-fold cross validation has been carried out and the result of each
shown in red. The grey line with a gradient of 1 shows the path of a truly
reliable prediction.
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Figure 3.10: A superposed epoch analysis for different storm intensities. The
trigger to start an epoch is the first measurement greater than or equal to the
lower threshold. The white line represents the median, the pink colour band
represents the inter-quartile range and the purple represents the 10th− 90th
percentile range. The horizontal dashed line marks the lower threshold. The
plots shown are for storms of peak intensity 40− 60nT (top left), 60− 80nT
(top right), 80−130nT (middle left), 130−200nT (middle right), 200−400nT
(bottom left) and 400+nT (bottom right).

3.5 Superposed Epoch Analysis

Though Yokoyama and Kamide (1997) and Hutchinson, Wright and Milan

(2011) previously conducted a superposed epoch analysis on geomagnetic

storms with the Dst dataset, a study using longer term aaH data is useful

to help understand the intensity-duration relations described in the previ-

ous sections. Figure 3.10 shows a superposed-epoch analysis of the storms

within each of the peak intensity classes. For each group, the t = 0 epoch

time is taken as the first data point which is on or over the lower thresh-

old.
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The tendency for more intense storms to have longer durations is

once again apparent. The duration of the median for the six bins from

least to most intense is 3, 6, 12, 21, 30, and 36 hours respectively. The

smallest storms are almost symmetric in their rise/decay, but with increas-

ing peak intensity the shape becomes increasingly “saw tooth” in nature,

with a sudden rise and a long decay. Similarly, the time of peak intensity

relative to the start of the storm varies with peak intensity. For the lower

intensity storms the peak of the median occurs at the same time as the

beginning of the storm. As the intensity class increases, the peak of the

median storm occurs later and exhibits a more gradual build up towards

peak intensity.

Figure 3.11: Superposed-epoch analysis of small (left) and large (right) storms
over a 33-day time window, to look for recurrent signatures. Left: Superposed
epoch analysis for storms with peak intensity 80−130nT showing signs of 27-
day repeat, indicating the presence of recurrent solar wind structures. Right:
Superposed epoch analysis for storms with peak intensities 300− 400nT with
no 27-day repeat, indicating a relative absence recurrence.

The 27-day solar rotation period (as observed from the Earth) is

visible in the superposed-epoch analysis when the time window is ex-

tended, as in Figure 3.11. For a peak intensity bin of less than 200nT ,

the 27-day repeating pattern is found albeit with a much lower intensity in

the repeat events. This is suggestive of corotating interaction regions (CIRs

Gosling and Pizzo, 1999), which are known to drive predictable recurrent

geomagnetic activity (e.g. Owens et al., 2013).
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3.6 Summary and Conclusions

In this study we have investigated the relationship between geomagnetic

storm intensity and duration. We defined storms in the aaH index by up-

per and lower thresholds where the upper threshold determines whether an

event is classed as a storm and the lower threshold determines its dura-

tion.

Using this definition, we found that, on average, storm duration in-

creases with storm intensity, as expected, but in a non-linear fashion. The

median durations for the storms with peak intensity in the classes 70−

90nT , 90− 110nT , 110− 150nT , 150− 190nT , 190− 230nT , 230− 300nT ,

300− 400nT , and above 400nT were found to be 6, 9, 15, 18, 21, 24,

27 and 33 hours respectively. This is similar to Lefevre et al. (2016) who

found in the aa index that the weakest storms have a median duration

of 6 hours and the strongest have a median duration of 30 hours. The

longest storm, beginning on 19th September 1951, was 75 hours which is

18 hours shorter that the 93 hour storm analysed by Lefevre et al. (2016).

The distribution of storm duration is approximately lognormal when

considering storms with peak intensity above around 150nT . The lognormal

parameters, µ and σ , computed for a number of storm intensity classes

revealed that µ increases monotonically with storm intensity. However this

is not the case for σ . Expressions for µ and σ as logarithmic and lin-

ear functions, respectively, of intensity were found, providing a method to

estimate these parameters for a given storm peak intensity. The obtained

lognormal distribution can then be used to find the probability of a storm

of given intensity lasting longer than a certain duration. This simple model

was compared to the observed occurrence probability. Good agreement is

found. As expected, more intense storms had a higher probability of last-

ing longer.

An analysis with reliability diagrams revealed that, while the model
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tends to underestimate the probability of a storm exceeding a given dura-

tion, the reliability curve follows the gradient of the y = x line reasonably

well. If the model was to be used operationally, the predicted probabilities

could be easily calibrated to match the observed occurrence frequency.

Finally, a superposed epoch analysis was presented shedding light

on the general shape of storms. More intense storms are shown to last

longer and have their peak intensity further into the storm. It was ob-

served that 27 day recurrent behaviour becomes less apparent in larger in-

tensity storms, most likely reflecting the sources of the solar wind driv-

ing the storm. This is likely the result of co-rotating interaction regions

(CIRs) formed by the interaction of fast and slow solar wind (Richard-

son, 2004). These structures can be long lasting and repeatedly impact the

magnetosphere for many solar rotations but do not cause the very largest

geomagnetic storms (Borovsky and Denton, 2006; Tsurutani et al., 2006).

For storms with a higher intensity, the repeating pattern disappears. This is

due to the dominant driver of very large geomagnetic storms being tran-

sient coronal mass ejections (CMEs) (Richardson, Cliver and Cane, 2001).

Future work could include a discrete-time survival analysis on storm

duration. Although this adds complexity, it would provide a more rigorous

structure on which to base the work. Another line of research will be

to investigate whether the time history of an event could provide further

information such as by using an analogue forecast approach.
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Chapter 4

Forecasting Occurrence and

Intensity of Geomagnetic Activity

with Pattern-Matching Approaches

This chapter is composed of the second project I worked on during my

PhD. I conceived the idea of forecasting a geomagnetic index using data

driven methods as a result of my previous work on geomagnetic storm

duration. My supervisor suggested the analogue ensemble and support vec-

tor machines as viable methods. I gave the main intellectual input into

adapting these methods for this application and the evaluation of the ap-

proaches. I executed the work and wrote the paper for publication. This

Chapter is published in the Journal of Space weather as Haines et al.

(2021b).

C. Haines, M.J. Owens, L. Barnard, M. Lockwood, A. Ruffenach,

K. Boykin and R. McGranaghan

Key points:

• Pattern-matching techniques are an effective way to forecast geomag-
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netic activity.

• The analogue ensemble and support vector machine outperform 27-

day recurrence and climatology.

• The best forecast approach for the end user will depend on their

need for probabilistic forecast information.

Abstract

Variability in near-Earth solar wind conditions gives rise to space weather

which can have adverse effects on space- and ground-based technologies.

Enhanced and sustained solar wind coupling with the Earth’s magneto-

sphere can lead to a geomagnetic storm. The resulting effects can inter-

fere with power transmission grids, potentially affecting today’s technology-

centred society to great cost. It is therefore important to forecast the in-

tensity and duration of geomagnetic storms to improve decision making ca-

pabilities of infrastructure operators. The 150-year aaH geomagnetic index

gives a substantial history of observations from which empirical predictive

schemes can be built. Here we investigate the forecasting of geomagnetic

activity with two pattern-matching forecast techniques, using the long aaH

record. The techniques we investigate are an Analogue Ensemble Forecast

(AnEn), and a Support Vector Machine (SVM). AnEn produces a proba-

bilistic forecast by explicitly identifying analogues for recent conditions in

the historical data. The SVM produces a deterministic forecast through de-

pendencies identified by an interpretable machine learning approach. As a

third comparative forecast, we use the 27-day recurrence model, based on

the synodic solar rotation period. The methods are analysed using several

forecast metrics and compared. All forecasts outperform climatology on the

considered metrics and AnEn and SVM outperform 27-day recurrence. A

Cost/Loss analysis reveals the potential economic value is maximised using

the AnEn, but the SVM is shown as superior by the true skill score. It
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is likely that the best method for a user will depend on their need for

probabilistic information and tolerance of false alarms.

Plain Language Summary

Space weather has the potential to disrupt society and the economy on a

large scale. One such major impact is on power grids which can be dam-

aged by disturbances in Earth’s magnetic field caused by space weather

events. As a result, it would be useful to have an accurate forecast of

space weather that can help power grid operators make decisions about

taking mitigating action. In this work, we test three forecasting tech-

niques which utilise long historical records to exploit patterns in the data

and hence predict future disturbances in Earth’s magnetic field. We find

that all three of the techniques provide valuable information and the best

method depends on the individual needs of the forecast user.
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4.1 Introduction

Geomagnetic storms present a significant threat to critical infrastructure both

in space and on the ground (Oughton et al., 2017a; Cannon et al., 2013).

Through solar wind energy input to the magnetosphere and the associated

substorm process (e.g. Pulkkinen, 2007; Lockwood, 2019a), Earth’s iono-

spheric current systems can be dramatically enhanced (Buonsanto, 1999).

Rapid fluctuations in these enhanced ionospheric currents can generate ge-

omagnetically induced currents (GICs. e.g. Boteler, 1994; Pirjola, 2000)

in ground-based conductors, posing a particular risk to power grids and

pipelines. To ensure that we minimise service disruption and mitigate eco-

nomic cost (e.g. Eastwood et al., 2017a), there is a need for forecasting

of both the intensity and duration of geomagnetic storms. Reliable fore-

casts improve the decision-making capabilities of operators of affected sys-

tems when taking mitigating action. However, current forecast capabilities

are limited (Cannon et al., 2013; Koskinen et al., 2017).

Geomagnetic indices, which combine measurements from multiple ground-

based magnetometers, are often used as a convenient measure of global

geomagnetic activity because of their ability to reduce large-scale physical

processes into a single time-series of observations. Commonly used mea-

sures include low latitude indices Dst and SYM-H, the mid-latitude range

index K p and high latitude auroral index, AE (e.g. Lockwood, 2013).

Current approaches to forecasting geomagnetic indices cover a spec-

trum of techniques from first principal, physics-based attempts (Pulkkinen

et al., 2013a) (although even these often incorporate some empirical as-

pects in practice), through more empirical approaches, which range from

those that still rely on domain-specific knowledge for their construction

(Burton, McPherron and Russell, 1975), to those that are almost entirely

data-driven (e.g. Gu et al., 2019).

Global Magnetohydrodynamic (GMHD) models simulate the magne-
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tosphere using solar wind data as the input. These provide a physics-

based representation of the magnetosphere which can be run in real time

(Eastwood et al., 2017b) and thus can be used operationally. Three of the

main GMHD models were tested by Pulkkinen et al. (2013a), with SWMF

(Tóth et al., 2005, 2012) found to provide the most accurate reconstruction

of dB
dt , which is related to GIC intensity.

Owens, Riley and Horbury (2017a) argued for the use of empirical

models for solar wind forecasting in conjunction with numerical physics-

based models. Empirical models can add value because they have the ad-

vantage of being computationally cheap, meaning that they can be read-

ily run in large ensembles to provide an estimate of uncertainty (Knipp,

2016). Empirical models can also parameterise unknown physics that a

first-principles based model does not capture and act as a useful baseline

with which to evaluate physics based models.

A range of empirical approaches have been attempted for geomag-

netic index forecasting. Recently, Chandorkar, Camporeale and Wing (2017)

developed a “one step ahead” forecast of the Dst index using an auto-

regressive Gaussian process approach. It was tested on a set of 68 storms

and concluded that for a 1-hour lead time, it out-preformed persistence

on the metrics considered (mean absolute error, root-mean-square error and

correlation coefficient). Zhang and Moldwin (2015) produced a probabilistic

forecast of SYM-H and AE using solar wind parameters to construct a cu-

mulative probability distribution that the index would exceed the given in-

tensity thresholds. A non-linear autoregressive with exogenous inputs (NARX)

approach was employed by Ayala Solares et al. (2016) for forecasting the

K p index. They found that, in general, the NARX approach gave good re-

sults for short and long lead times, however it failed to surpass the neural

network models of Wing et al. (2005), to which they were comparing.

Other empirical approaches include: that of O’Brien and McPherron

(2000) who employed a differential equation from Burton, McPherron and
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Russell (1975) which maps the evolution of the corrected Dst index, Dst∗;

that by Vassiliadis and Klimas (1995) who used a driven harmonic oscilla-

tor circuit analogy; Vassiliadis et al. (1995) who used linear and nonlinear

filters to predict the AL, AU and AE indices. Camporeale (2019) sum-

marised efforts using machine learning techniques to forecast geomagnetic

indices. The majority of approaches use neural networks, however other

machine learning techniques have been proposed. Lu et al. (2016) com-

pared the use of Support Vector Machines (SVMs, Burges, 1998; Cortes

and Vapnik, 1995), a machine learning approach that seeks to define a

hyper-plane separating two classes, with neural networks for predicting in-

tense storms in the Dst index using solar wind data as input parameters.

Lu et al. (2016) concluded that SVMs out-perform neural networks for

that application and can be improved further through the use of distance

correlation learning (Székely, Rizzo and Bakirov, 2007). Liemohn et al.

(2018) present an extensive list of works that forecast the behaviour of

Dst, SYM-H, K p, AE, AL and AU along with the metrics used to evalu-

ate them. They showed no single metric is capable of metering a model

for all applications. Therefore we must be rigorous in our application of

evaluative metrics. In this work we explore numerous metrics, taking guide

from Liemohn et al. (2018).

We here implement two-pattern matching forecasts, both requiring a

large dataset for training, and an additional recurrence forecast. The first

method is an analogue ensemble (AnEn) forecast, a purely empirical ap-

proach. This method assumes that previous observations provide a good

analogue for likely future variations (Delle Monache et al., 2013). Thus a

historical record that is sufficiently long and covers a large enough range

of behaviour of the system can be used to identify previous periods when

conditions are similar to the present. A forecast is constructed on the ba-

sis of the trajectories of the analogues forward in time. The “best” fore-

cast in a deterministic sense is typically taken to be the median of the

chosen analogues, but a large ensemble of analogues can provide prob-
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abilistic information. Probabilistic forecasting helps quantify the forecast

uncertainty, which benefits decision making, and can also be useful for

evaluating a forecasting method (Knipp, Hapgood and Welling, 2018). An

implementation of AnEn has been developed for this project in python and

is available in Haines (2021a).

AnEn has been used for a variety of parameters in terrestrial weather

forecasting (e.g., Van den Dool, 1989; Delle Monache et al., 2013), but

has been surpassed by physics-based models. This is largely due to the

inherently chaotic nature of the system, which means states can rapidly di-

verge with a small perturbation to the initial conditions. Recently Owens,

Riley and Horbury (2017b) and Riley et al. (2017) used an analogue fore-

cast for solar wind parameters and the Dst index with some success, find-

ing that it outperformed benchmarks of climatology and 27-day recurrence.

The second method investigated here is the Support Vector Machine

(SVM, Burges, 1998; Cortes and Vapnik, 1995), a supervised machine

learning method for two-group classification. The volume and quality of

data available, particularly in the aaH index (see Section 4.2), and capa-

bilities of modern computing means machine learning approaches are ripe

for forecasting geomagnetic activity. SVMs seek to define a hyperplane

which divides two classes (in this case ‘storm’ and ‘no storm’, for a

given definition) and optimise it by maximising the distance between it

and the closest data-points, called support vectors. To aid linear separa-

bility of the classes, the vector space of input parameters is mapped into

a higher dimension space using implicit mapping functions with a defined

kernel function (Burges, 1998). A brief overview of the SVM and ap-

plication to space-weather is given by McGranaghan et al. (2018). An

implementation of the SVM has been developed for this project in python

and is available in Haines (2021b).

Here we will implement an SVM but, unlike many previous works,

without the use of solar wind (exogenous) parameters as input and use
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solely the time history of observations before the time of forecast. This

gives a more direct comparison with AnEn and, importantly, allows the

best use of the 150-year aaH dataset, for most of which we do not have

simultaneous solar wind observations. Given that both the solar wind tran-

sit time (between the usual point of observation the L1 point, and the

magnetosphere), and the magnetospheric response time are small compared

the time resolution of the aaH dataset (3 hourly), this is not expected to

reduce forecast capability.

The third forecast type considered is 27-day recurrence, which im-

plicitly assumes the structure of the coronal magnetic field varies slowly

compared to the solar rotation period. Thus the same region of the Sun

is directed toward the Earth every 27-days. This assumption is generally

more valid during solar minimum and the late declining phase of the solar

cycle than during solar maximum periods. Near-Earth solar wind conditions

and the resulting geomagnetic activity have long been know to exhibit 27-

day recurrence (Chree and Stagg, 1928; Bartels, 1932, 1934; Owens et al.,

2013). The recurrence pattern is also present in the occurrence of moder-

ate storms in the aaH index (Haines et al., 2019, see also Section 4.2).

Watari (2011) used a 27-day recurrence forecast for the K p index, con-

cluding that it was a viable forecast method during the declining phase of

the solar cycle but not for other parts of the cycle.

Section 4.2 describes the aaH dataset. Section 4.3 describes our

storm definition, the forecast methods considered and benchmarks used in

this study. Section 4.4 compares the forecasts using metrics and techniques

adopted from terrestrial weather forecasting (Henley and Pope, 2017). Many

of the verification techniques are recommended by Liemohn et al. (2018)

with the addition of Taylor diagrams and reliability diagrams (described

below).
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4.2 Data

We use the aa index (Mayaud, 1971), with recent recalibrations (aaH Lock-

wood et al., 2018a,b). Using a single magnetometer station in each of the

UK and Australia, aa provides a quasi-global measure of geomagnetic ac-

tivity with particular sensitivity to the substorm current wedge (Lockwood,

2013; Ganushkina et al., 2015). In order to span 150 years back to 1868,

aa must be constructed from three different stations in each hemisphere,

which introduces issues of calibration. However, this results in the longest

available record of geomagnetic activity. The recent recalibrations account

for the variation of mean geographic location of the midnight sector auro-

ral oval, due to drifts of the Earth’s geomagnetic poles. They also allow

for time-of-day/time-of-year response pattern of the stations, thereby reduc-

ing uncertainties related to using just two stations. Lockwood et al. (2019)

showed aaH agrees well with am (Mayaud, 1981), a similar index but

with much greater suppression of longitudinal sampling effects achieved by

using multiple stations in each hemisphere. The disadvantage of am for

the present study, of course, is that the data sequence is much shorter

as the greater data requirement means it can only be constructed back to

1959.

Unfortunately, aaH is limited by its temporal resolution of 3-hours.

Space weather impacts such as GICs occur due to magnetic fluctuation on

a timescale of seconds and minutes. This means that a 3-hour range index

cannot give direct information on potential GICs but it can give an idea

of the low frequency variation in the magnetosphere. The 3-hour resolution

of aaH is more coarse than that of the 1-hour resolution of Dst. Because

of this resolution difference, Dst actually has more data points, despite the

record only being available for approximately 60 years. Although more

data points is useful for training models, aaH spans around eight more

solar cycles than Dst and so captures a more complete picture of the

space climate.
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A further limitation of aa, and hence aaH , is that it is derived

from K indices (Bartels, Heck and Johnston, 1939) which are based on

a quasi-logarithmic scale leaving quantisation in the dataset (Bubenik and

Fraser-Smith, 1977). The uncertainty created from quantisation is largest in

the larger values of aaH , but still present in the small.

Chapman, Horne and Watkins (2020) investigated the use of aaH in

characterising extreme geomagnetic activity. They made a comparison of

extreme aaH with Dst, finding that there is good correspondence between

the two indices and that it is possible to “read across” from extreme aaH

to extreme Dst.

4.3 Methodology

4.3.1 Storm definition

Various definitions of geomagnetic storms have been used, often depen-

dent on the purpose of the study (Riley et al., 2018).The most com-

mon method is to set a threshold in a particular geomagnetic index (e.g.

Lefevre et al., 2016) with values exceeding the threshold being defined

as part of a storm, and a storm ends once the value of the index falls

below the threshold. Kilpua et al. (2015) used a slight variation of this

in which the last point of a storm is the first point below the thresh-

old. Other approaches, such as that of Hutchinson, Wright and Milan

(2011), involve a manual inspection of the data, looking for characteristic

storm traces for each event more intense than a chosen threshold. While

a more nuanced approach than blindly applying a geomagnetic threshold,

it is labour-intensive to apply to a large dataset and is difficult to make

truly repeatable.

In this work we are concerned with the full spectrum of geomag-

netic activity which can lead to adverse impacts on infrastructure. We
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point to the work of Schrijver (2015) and Schrijver et al. (2014a) which

examine the impact of moderate space weather using insurance claims data.

Schrijver (2015) highlights that high frequency, low impact events may cu-

mulatively be comparable in economic cost to low frequency, high impact

events. Congruently, Schrijver et al. (2014a) examines insurance claims on

electrical equipment identifying significant rises on both the top 5% and

top third of geomagnetically active days. We therefore seek to choose a

storm definition that captures moderate geomagntic activity alongside the

more rare, extreme events.

With the work of Schrijver (2015) and Schrijver et al. (2014a) in

mind, we use the same storm definition as Haines et al. (2019). This ap-

proach uses a simple threshold, similar to Lefevre et al. (2016) and Kilpua

et al. (2015), but, as in Gonzalez et al. (1994), with a data-informed

threshold set at the 90th percentile of the dataset. For aaH , this is a

value of 40.1 nT . The start of the storm is the first point above the

threshold and the end of the storm is the last point over the threshold.

The effect of threshold on number of events is shown in Figure 2 of

Haines et al. (2019).

4.3.2 Analogue Ensemble

To illustrate the methodology for the AnEn forecast, Figure 4.1 shows an

event in the aaH index from 2017-12-05. The observed time series (black)

shows a storm, defined by exceeding a threshold of 40.1 nT, with storm

onset at t0. aaH continues to rise to a peak value of around 100 nT at

the next data point (3-hours later), then gradually falls back to non-storm

conditions (i.e., below 40.1 nT). We identify the N previous events in the

aaH dataset which most closely match the pattern of the observed time

series in the 24-hour time period before t0, as described in more detail

below. The time-series of these analogous periods are then projected for-

ward to provide a probabilistic forecast after t0. Also shown in Figure
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Figure 4.1: Left: An analogue ensemble forecast from 2017-12-05. The median
AnEn forecast is shown in red with individual analogues in grey. The observed
time-series of aaH is shown in black. The benchmark forecasts are shown in
yellow (27-day recurrence) and green (climatology). Right: The probability of
a storm occurrence from each forecast method.

4.1 is a 27-day recurrence forecast which can be used as a determinis-

tic forecast of storm intensity, or, using the storm-definition threshold, to

give a dichotomous storm forecast i.e. that there will be a storm or that

there will be no storm. The climatological mean value of aaH is 17.5

nT, shown in green in the left panel, while the climatological probabil-

ity of exceeding 40.1 nT is, by definition, 10% shown in green in the

right-hand panel.

There are a number of aspects of the AnEn that must be tuned

for the chosen application. The ensemble size, N, should be large enough

to give sufficient resolution as a probabilistic forecast but small enough

to ensure that the analogous periods are indeed analogous, particularly for

rarer events such as larger storms. Values of N have been varied in the

interval of [10,50] without significant difference in results. Therefore, for

clarity, we have selected a single ensemble size of 25 for the presentation

of results in the remainder of this study.

While the input data to the AnEn is simply the recent time his-

tory of observations (the previous 24 hours was shown in Figure 4.1), it

is to be expected that some of these observations will be more relevant

than others for predicting future behaviour. For a highly driven system like

88



Chapter 4. Forecasting Occurrence and Intensity of Geomagnetic Activity with
Pattern-Matching Approaches

Figure 4.2: F-scores of each 3-hour aaH data point in the 24-hours leading up
to the forecast time t0. The F-scores show the relevance of each parameter to
the data point immediately after t0

the magnetosphere, the most recent observations are more likely to contain

useful information about future evolution than observations from 24 hours

ago. We use the univariate F-score to determine the relevance of each in-

put parameter, i.e. each 3-hourly aaH data point in the previous 24 hours,

to the subsequent data point of aaH when forecasting with a 3-hour lead

time (Pedregosa et al., 2011). These F-scores are shown in Figure 4.2

and we see that the most recent observation is the most relevant as ex-

pected. The F-score is used as a weighting factor when selecting the best

analogues. The total level of agreement is then the inverse of the mean

of the weighted squared errors over the 24-hour training window. The N

analogues are then those with the lowest mean weighted squared error.

These analogues are shown in Figure 4.1 by the grey lines converging as

they approach t0, and diverging significantly after t0. Thus there is a wide

range of possible future behaviour on the basis of previous analogues to

recent conditions. In Figure 4.1 the median of these analogues is shown

in red. It matches the observations in the “training period”, i.e. -21 to 0

hours, but in this particular example, under-predicts the observed intensity

in the forecast window, i.e. 0 to 24 hours.
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The right-hand panel of Figure 4.1 shows the probabilistic nature of

AnEn, 27-day recurrence and climatology. The grey shaded region shows

when a storm was actually observed to occur and the coloured lines show

the probability of storm conditions from each forecast considered. In this

event the AnEn begins by predicting that a storm is likely with a prob-

ability of approximately 50%, which then drops over the next 12 hours

to around 25%. (i.e., 25% of the ensemble members are predicting aaH >

40.1 nT at that time). The deterministic 27-day recurrence forecast does

reasonably well in this particular example.

For analysing and testing the performance of the forecast methods,

we implement them here as hindcasts, predicting past events for which

we already have the observations of the predicted period. The whole aaH

dataset (excluding the 1-day prior, and 12.5-days subsequent, to t0, which

excludes the maximum extent of the training and evaluation windows) is

made available for computing analogues. We use the full timeseries so

that the results give an estimate of the predictive power of the model

that would be deployed. The hindcasts have been run with the hindcast

start time, t0, at every point in the aaH data set.

Due to the class imbalance between quiet and storm times, it is

possible for a forecast to be valuable on average but perform poorly dur-

ing storm times. For this reason we additionally select and validate hind-

casts during only the storm subset.

4.3.3 SVM

The SVM is a commonly used classification algorithm which we imple-

ment here to classify whether or not a storm will occur. Given a sample

of the input and the associated classification labels, the SVM will find

a function that separates these input features by their class label. This

is simple if the classes are linearly separable, as the function is a hy-

perplane. The samples lying closest to the hyperplane are called support
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vectors and the distance between these samples and the hyperplane is max-

imised.

Typically, the samples are not linearly separable so we employ Cover’s

theorem (Cover, 1965) which states that linearly inseparable classification

problems are more likely to be linearly separable when cast non-linearly

into a higher dimensional spaces. Therefore, a kernel function is used to

increase the dimensionality of the space. The Gaussian kernel is used for

this purpose. It has a single hyperparameter, γ , which serves as a width

parameter, determining the influence of a single data point on training. A

sensitivity analysis has shown that an appropriate value for γ is 0.01.

On the basis of the aaH values in the 24-hour training window, the

SVM predicts whether the next 3 hours will be either a storm or not. By

comparing this dichotomous hindcast with the observed aaH , the outcome

will be one of True Positive (TP, where a storm is correctly predicted),

True Negative (TN, where no storm is correctly predicted), False Positive

(FP, where a storm is predicted but not observed), or False Negative (FN,

where a storm is not predicted but is observed). This is shown in the

form of a contingency table in Figure 4.3 (top left).

For development of the SVM, the aaH data has been separated into

independent training and test intervals. These intervals are chosen to be

alternate years. This is longer than the auto-correlation in the data (choos-

ing, e.g. alternate 3-hourly data points, would not generate independent

training and test data sets) but short enough that we assume there will

not be significant aliasing with solar cycle variations.

Training is an iterative process, whereby a cost function is min-

imised. The cost function is a combination of the relative proportion of

TP, TN, FP and FN. Thus while training itself, an SVM attempts to clas-

sify labeled data i.e. data belonging to a known category, in this case

“storm” and “no storm” on the basis of the previous 24 hours of aaH .

If the SVM makes an incorrect prediction it is penalised through a cost
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function which the SVM minimises. The cost parameter determines the

degree to which the SVM is penalised for a mis-classification in training

which allows for noise in the data. A sensitivity analysis showed that an

appropriate value for cost parameter is 0.1. See also Section 4.4.3.

It is common that data with a class imbalance, that is containing

many more samples from one class than the other, causes the classifier

to be biased towards the majority class (Longadge, Dongre and Malik,

2013). In this case, there are far more non-storm intervals than storm

intervals. Following McGranaghan et al. (2018), we define the cost of

mis-classifying each class separately. This is done through the weight ratio

(Wstorm : Wno storm). Increasing the Wstorm increases the frequency at which

the SVM predicts a storm and it follows that it predicts “no storm” at a

reduced frequency, as seen in the left column of Figure 4.3. The same

results have been normalised to reveal more clearly how varying the class

weights effects the predictions, shown in the right column of Figure 4.3.

In this work we have varied Wstorm and kept Wno storm constant at 1.

A user of the SVM method for forecasting may wish to tune the class

weight ratio to give an appropriate ratio of false alarms and hit rate de-

pendent on their needs.

4.3.4 Bench marking

Similar to Owens, Riley and Horbury (2017b) and following the recom-

mendation of Liemohn et al. (2018), we use a benchmark hindcast method

to distinguish between times when the studied hindcasts perform poorly

and times when conditions are intrinsically more difficult to predict. For

this purpose, we use climatology defined by the mean intensity of the

entire dataset or, for a probabilistic hindcast of storms, the fraction of

measurements in the entire dataset which qualify as storm events. These

values are 17.5 nT and 10% respectively.
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Figure 4.3: Examples of contingency tables, sometimes called a confusion ma-
trix, for the SVM showing the number of occurrences (left) and normalised
frequencies (right) of true and false positives and negatives. Top: SVM trained
with a class weight of 10. Bottom: SVM trained with a class weight of 50.
Changing the class weight affects the ratios of TP, TN, FP and FN.

4.4 Results

4.4.1 AnEn deterministic intensity hindcast

In the present section we consider the deterministic performance of the

AnEn by reducing the ensemble to the median value. In this and Section

4.4.2 we present results for three subsets of the aaH data set. The subsets

are: the entire aaH dataset; the occasions on which a storm was observed

at a 3-hour lead time; the occasions on which a storm was predicted by

the AnEn median at a 3-hour lead time. The second subset includes only

true positives, whereas the third subset includes false negatives and true

positives. There are many more non-storm events than storm events in the

dataset so a hindcast always predicting no storm would fare well. These
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subsets of aaH help to distinguish whether a hindcast method has any

predictive power of storm events.

Figure 4.4 shows the mean absolute error (MAE) of the determinis-

tic hindcasts of aaH intensity compared to observations for lead times up

to 300 hours (12.5 days). Figure 4.4a shows the MAE when the hind-

casts are initiated from every time step in the aaH data-set. The gen-

eral pattern is for the AnEn median to produce the lowest MAE, followed

by 27-day recurrence and climatology with the highest. While the MAE

in the 27-day recurrence and climatology are relatively constant with lead

time, AnEn clearly displays higher accuracy for shorter lead times until

it plateaus at approximately 50 hours lead time. This suggests that the

usefulness of information in the preceding 24-hours to t0 is greatest for

short lead times. Figure 4.4b shows the error of hindcasts on which the

point immediately after t0 is classed as a storm, as defined by a thresh-

old of 40.1 nT. All hindcast methods have a high MAE for short lead

times which drops off for longer lead times. At long lead times, approx-

imately the same order of accuracy of the hindcasts exists for this storm

dataset as for the whole dataset. At shorter lead times, the storms are

in progress, and thus the observed aaH is high, and the same percentage

error leads to a higher MAE than non-storm times. This issue, as well

as that of storm conditions generally being more difficult to predict than

quieter times, can be addressed by computing the skill of the hindcasts

relative to a reference forecast. In essence, it allows discrimination be-

tween poor forecasts and periods which are inherently difficult to forecast.

Skill is computed as:

skill = 1− forecast error
reference error

, (4.1)

Thus skill can vary between −∞ and 1, where a more positive

value is more skilful, and zero is identical performance to the reference
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(a) Error on entire dataset

(b) Error on observed storms

Figure 4.4: A comparison of the mean absolute error (MAE) of AnEn median,
27-day recurrence and the intensity climatology for a range of lead times up to
300-hours. a) MAE when the hindcast is run for t0 at every point in the aaH
data set. b) MAE for t0 as the start of known storm events only.

hindcast. Figure 4.5 shows the skill of the AnEn median and 27-day re-

currence relative to climatology. This is done for the whole data-set in

Figure 4.5a. Both AnEn median and 27-day recurrence have positive skill

for all lead times. AnEn median achieves substantially higher skill, espe-

cially for shorter lead times. Figure 4.5b makes the same comparisons

considering only the time periods immediately following observed storm

onsets. We again see that AnEn median has positive skill, however skill

is reduced by approximately 10% compared to the whole dataset.
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(a) Skill on entire dataset

(b) Skill on observed storms

Figure 4.5: A comparison of skill for AnEn median and 27-day recurrence with
respect to climatology. a) The entire aaH dataset. b) Restricted to the period
following observed storms.

Figure 4.6 shows Taylor diagrams (Taylor, 2001; Owens, 2018) that

summarise the performance of a hindcast in terms of three metrics, visu-

alised on a single plot. These metrics are the standard deviation of the

hindcast, linear correlation coefficient between hindcast and observed inten-

sities, and the centred root-mean-squared distance (RMSD) between hind-

cast and observed intensities. These three metrics provide measures of

agreement in both statistical terms (standard deviations) and the correspon-

dence on a point-by-point basis (correlation and RMSD). A perfect hind-

cast would lie on the red dot, having a hindcast standard deviation match-
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ing that observed, correlation coefficient of 1, and centred RMSD of 0.

Put simply, the further a hindcast lies from the red dot, the worse the

forecast is, and the direction of displacement can help diagnose the prob-

lem with the forecast.

Figure 4.6a shows the three hindcast types for the whole 150 year

period of aaH data for a 3-hour lead time. AnEn median provides the

best hindcast by two of the three metrics considered but has a smaller

and reduced standard deviation than both climatology and 27-day recur-

rence compared to the observations (by the construction, this is expected:

both benchmarks are direct, unaveraged samples of the observations against

which they are tested. Conversely, by taking the median of the AnEn, the

variability will be reduced). Figure 4.6b shows the hindcasts run only for

observed storm onsets. The general pattern is similar to that of when the

hindcast is run on the whole dataset.

4.4.2 AnEn probabilistic dichotomous hindcast

In Section 4.4.1, the AnEn was reduced to a deterministic hindcast of in-

tensity by considering only the ensemble median. But the AnEn can be

used as a probabilistic hindcast. We here consider the probabilistic hind-

cast of (dichotomous) event occurrence, in this case the occurrence/non-

occurrence of storms, by considering all the ensemble members together

to form a probability distribution of future evolution. While a deterministic

intensity hindcast looks to minimise the error of the prediction, a proba-

bilistic dichotomous hindcast aims to predict event occurrence at the ob-

served frequency. That is to say if a hindcast makes a prediction with x%

certainty it is said to be reliable if, on average, an event is subsequently

observed x% of the time. Systematic bias in hindcast probability can be

quantified with a reliability diagram (Jolliffe and Stephenson, 2003; Sharpe

and Murray, 2017) which compares predicted and observed probabilities. A

perfectly reliable hindcast would follow the y = x line, as shown in Figure
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(a) Taylor diagram on entire dataset.

(b) Taylor diagram on observed storms

Figure 4.6: Taylor diagrams comparing the AnEn median hindcast to clima-
tology and 27-day recurrence for a 3-hour lead time. The diagrams summarise
the RMSD (root mean square deviation) (nT), correlation coefficient and stan-
dard deviation (nT) of the hindcast s. a) The entire aaH dataset. b) Restricted
to the period following observed storms.

4.7 by the light grey line. A forecast giving a reliability curve below this

line shows overestimation of event likelihood and a reliability curve over

the line shows underestimation of the likelihood of an event. Figure 4.7a

shows AnEn hindcast of storms from all data points in the aaH dataset

for a hindcast lead time of 3 hours. On the whole, the curve fits well to

y = x with a slight overestimate of storm probability for larger values of

hindcast probability. When considering only known storm events, the AnEn

98



Chapter 4. Forecasting Occurrence and Intensity of Geomagnetic Activity with
Pattern-Matching Approaches

is less reliable, as shown Figure 4.7b. While the curve largely follows the

y = x line, there is an underestimate of storms for low hindcast probability

and an overestimation for high.

This underestimate may be an indicator that there is insufficient in-

formation in the observed time-series leading up to t0 in order to differ-

entiate between storms and not storms, i.e. many of the analogues found

for the build up to a storm may be associated with only a small increase

in aaH because there are simply many more instances of smaller varia-

tions than larger. This would bias the hindcast towards predicting smaller

storms and thus underestimating the probability of an event.

4.4.3 SVM Classification

To evaluate the SVM and AnEn for storm classification we need a metric

that is robust to class imbalance. This is because using a storm defi-

nition of the 90th percentile means we have nine non-storm events for

every storm, so a prediction method that always predicts non-storm would

do very well under many metrics. The True Skill Score (TSS) is a com-

bination of TP, FP and FN only, meaning that it can handle imbalanced

classes, though it neglects a model’s ability to correctly predict non events,

which can be valuable in its own right. TSS has been recommended and

used in the space weather community (e.g. Bloomfield et al., 2012; Mc-

Granaghan et al., 2018).

TSS is defined as

T SS =
T P

T P+FN
− FP

FP+T N
(4.2)

which gives a score between − inf and 1 where 0 is a hindcast with no

skill and 1 is a perfect hindcast.

TSS has been computed for the SVM, AnEn median and 27-day

recurrence in Figure 4.8. Figure 4.8a shows TSS for SVMs with differ-
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(a) Reliability diagram on entire dataset

(b) Reliability diagram on observed storms

Figure 4.7: A reliability diagram of the analogue ensemble dichotomous storm
hindcast for a 3-hour lead time. The grey line represents the path of a perfectly
reliable hindcast, wherein events are forecast with a probability equal to the
observed occurrence rate. a) The entire aaH dataset. b) Restricted to the period
following observed storms.

ent class weights. A unique SVM has been trained for each value of

lead time. We see that using class weight 10 gives the best performance

with positive, reducing skill for the full 48 hours. The other SVMs per-

form considerably worse, particularly for lead times greater than 3-hours.

SVMs with class weight of 1 and 2 end up predicting no storm events

will occur at longer lead times and SVMs with class weights 25 and 50

predict storms always occur at longer lead times. SVM with class weight

10 seems to strike a good balance, as it approaches the proportions of

100



Chapter 4. Forecasting Occurrence and Intensity of Geomagnetic Activity with
Pattern-Matching Approaches

(a) TSS for SVMs of different class weights

(b) TSS for AnEn median, 27-day recurrence and
SVM with class weight 10

Figure 4.8: TSS for lead times of 3 to 48 hours. a) shows the TSS for the SVM
with a range of class weights. We see that using class weight 10 gives the best
skill. b) TSS for AnEn median, 27-day recurrence and SVM with class weight
10. We see that the SVM skill exceeds that of the other hindcasts.

storm and non-storm events in the dataset.

In Figure 4.8b we compare the TSS of SVM class weight 10 to

TSS of AnEn median and 27-day recurrence. Both SVM and AnEn me-

dian have a similar shape of diminishing skill with lead time, however

SVM has a far superior TSS at all lead times considered. The TSS of

27-day recurrence is a flat line since its lead time is, in essence, always

27 days. 27-day recurrence exceeds AnEn median at 9 hours and longer

and is approximately equivalent to SVM at 48 hours. It suggests that the
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AnEn median does not have predictive power for the storm class at longer

lead times and quickly goes back to predicting quiet-time.

Different forecast applications will have different tolerances for false

alarms and missed events. A limitation of TSS is that it treats FP and

FN the same and does not give useful information for users with an

unbalanced tolerance. To accommodate this, and as a further comparison

of the hindcasts, a Cost/Loss analysis (Murphy, 1977a; Richardson, 2000;

Owens, Riley and Horbury, 2017c) is implemented in Figure 4.9. A space-

weather example of how a Cost/Loss analysis is carried out is shown in

Figure 7 of Owens, Riley and Horbury (2017c). In short, C is the eco-

nomic cost associated with taking mitigating action when an event is pre-

dicted (whether or not it actually occurs) and L is the economic loss suf-

fered due to damage if no mitigating action is taken when needed. For

a deterministic method, such as the SVM, each time a storm is predicted

will incur a cost C. Each time a storm is not predicted but a storm oc-

curs a loss L is incurred. If no storm is predicted and no storm occurs

then no expense in incurred. By considering some time interval, the total

expense can be computed by summing C and L.

A particular forecast application will have a C/L ratio in the do-

main (0,1). This is because a C/L of 0 would mean it is most cost ef-

fective to take constant mitigating action and a C/L of 1 or more means

that mitigating action is never cost effective. In either case, no forecast

would be helpful. The power of a Cost/Loss analysis is that it allows

us to evaluate our methods for the entire range of potential forecast end

users without specific knowledge of the forecast application requirements.

End users can then easily interpret whether our methods fit their situation.

For a probabilistic forecast, a similar process is applied with the

difference that action is taken only when the forecast probability exceeds

C/L. See Owens, Lockwood and Barnard (2020) for more information.

Once total costs have been calculated, the potential economic value
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(PEV) is given by

PEV =
EC−E
EC−E0

, (4.3)

where EC is the total expense of using a probabilistic climatological fore-

cast, E is the total cost of the forecast under consideration and E0 is

the total cost of a perfect forecast. The PEV of a forecast is therefore

equivalent to climatology where PEV=0 and to a perfect forecast where

PEV=1. Note that a user’s Cost and Loss do not need to be computed in

financial terms, only the ratio of the two values is necessary: high C/L

suggests that false alarms should be avoided, whereas low C/L suggests

missed events would be more problematic.

Figure 4.9 shows the PEV of the SVM with a range of class

weights (CW), probabilistic AnEn and 27-day recurrence. Here a deter-

ministic Cost/Loss analysis has been implemented for SVM and 27-day

recurrence, and a probabilistic Cost/Loss for AnEn. The shaded regions

indicate which hindcast has the highest PEV for that Cost/Loss ratio. The

probabilistic AnEn has the highest PEV for the majority of the Cost/Loss

domain although SVM has higher PEV for lower Cost/Loss ratios. It is

possible that an increased resolution in the scan of class weights would

bring the SVM out on top for a larger part of the domain. However cer-

tain users may appreciate that the hindcasts generally have a similar PEV

for parts of the Cost/Loss domain and will find it more valuable to have

the probabilistic hindcast of the AnEn. It also highlights that the ‘best’

hindcast is dependent on the context in which it is to be employed.

4.5 Future directions

There are a number of possible ways the forecast schemes presented here

could be improved in the future. By taking the fraction of ensemble mem-

bers which result in a storm to be the AnEn hindcast probability of a

storm we are implicitly assuming that the analogues form a single distri-
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Figure 4.9: A Cost/Loss analysis showing the potential economic value of
the hindcasts relative to value of a perfect hindcast (PEV=1) and climatology
(PEV=0). The shaded areas indicate which hindcast type has the highest PEV
for that C/L ratio. Negative values of potential economic value are shown only
down to −0.1.

bution. This potentially throws away information about different modes of

behaviour. Clustering ensemble members together using K-means clustering

is a way in which we could use the data to extract a number of possi-

ble future scenarios. An example is shown in Figure 4.10. The observed

storm peaks at t = 21 hours, however this behaviour is not captured by the

median of the ensemble members or easily visible amongst the grey en-

semble member lines. However the scenario in which the storm has a late

peak is picked out as a possible mode of behaviour by the red cluster in

the right of Figure 4.10, identified by K-means clustering. Here, the clus-

tering algorithm aims to minimise the sum of the square error between

the ensemble member and the cluster it is in. The number of clusters

has been chosen by using an ”elbow plot” which identifies appropriate K

values by minimising both the sum of square errors and the number of

clusters.
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Figure 4.10: Left) An event from 27/2/1997 with an AnEn hindcast. Right)
Clusters from the ensemble members using K-means clustering.

4.6 Discussion & Conclusions

This study has considered the effectiveness of two pattern-matching meth-

ods in hindcasting the aaH index. These are an analogue ensemble (AnEn)

and a Support Vector Machine (SVM). We have additionally considered the

27-day recurrence hindcast for context. AnEn and 27-day recurrence can

be used as intensity hindcasts and AnEn can also give a probability dis-

tribution for dichotomous-event hindcast. SVM has only been implemented

as a deterministic dichotomous-event hindcast.

Reducing the AnEn to a deterministic intensity hindcast by taking

the median value, it outperformed the benchmark of climatology both when

applied to the whole aaH dataset and limited only to observed storm on-

sets. AnEn clearly outperformed the benchmark for absolute error and skill

for lead times up to a week. 27-day recurrence outperformed the bench-

mark but did not perform as well as AnEn.

When considering the AnEn as a probalistic hindcast of storm oc-

currence, it was found to be highly reliable when hindcasting each data

point in the aaH dataset, in that the predicted probability closely matches

the observed frequency of events. Reliability was found to drop slightly

when considering only storm events. In particular, the AnEn underestimates

storms when it had a low certainty of a storm and overestimates the prob-
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ability of a storm when it was reasonably certain. The underestimation

may be an indicator that there is insufficient information in the observed

time-series leading up to t0 in order to differentiate between storms and

not storms. I.e. many of the analogues found for the build up to a storm

may be associated with only a small increase in aaH because there are

simply many more instances of smaller variations than larger. This would

bias the hindcast towards predicting smaller storms and thus underestimat-

ing the probability of an event.

Finally, an SVM was implemented for a range of class weights

and compared to AnEn and 27-day recurrence using TSS and a Cost/Loss

analysis. The SVM was more skilful than AnEn by TSS, though nei-

ther hindcast had a conclusively higher potential economic value across the

Cost/Loss domain. It is likely that the best method for a user will depend

on their individual circumstances.
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Chapter 5

Towards GIC forecasting: Statistical

downscaling of the geomagnetic field

to improve geoelectric field forecasts

This Chapter contains my third project from my PhD. The idea of down-

scaling was discussed as part of the NERC Space Weather Impacts on

Ground Systems (SWIGs) highlight topic, and it was determined that I

could break initial ground in this area as part of the University of Read-

ing’s contribution. While the overarching goal had been envisioned, I was

responsible for determining an appropriate proof-of-concept scheme and im-

plementing the methodology. I provided the main intellectual input for the

evaluation of the methodology and I wrote the resulting paper. This work

is published in the Journal of Space Weather as Haines et al. (2021a).

C. Haines, M.J. Owens, L. Barnard, M. Lockwood, C.D. Beggan, A.W.P.

Thomson, N.C. Rogers

Key points:

• Operational global MHD models do not fully capture the ground-level

magnetic field variability important for modelling induction hazards
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• We provide a proof of concept model to statistically introduce re-

alistic, high-resolution perturbations with which to drive an impacts

model

• Our downscaling scheme outperforms a reference linear-interpolation

approach under a range of metrics

Abstract

Geomagnetically induced currents (GICs) are an impact of space weather

that can occur during periods of enhanced geomagnetic activity. GICs

can enter into electrical power grids through earthed conductors, potentially

causing network collapse through voltage instability or damaging transform-

ers. It would be beneficial for power grid operators to have a forecast of

GICs that could inform decision making on mitigating action. Long lead-

time GIC forecasting requires magnetospheric models as drivers of geo-

electric field models. However, estimation of the geoelectric field is sensi-

tive to high-frequency geomagnetic field variations which operational global

magneto-hydrodynamic models do not fully capture. Furthermore, an as-

sessment of GIC forecast uncertainty would require a large ensemble of

magnetospheric runs, which is computationally expensive. One solution that

is widely used in climate science is “downscaling”, wherein sub-grid varia-

tions are added to model outputs on a statistical basis. We present proof-

of-concept results for a method that temporally downscales low-resolution

magnetic field data on a 1-hour timescale to 1-minute resolution, with the

hope of improving subsequent geoelectric field magnitude estimates. An

analogue ensemble (AnEn) approach is used to select similar hourly av-

erages in a historical dataset, from which we separate the high-resolution

perturbations to add to the hourly average values. We find that AnEn out-

performs the benchmark linear-interpolation approach in its ability to accu-

rately drive an impacts model, suggesting GIC forecasting would be im-
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proved. We evaluated the ability of AnEn to predict extreme events using

the FSS, HSS, cost/loss analysis and BSS, finding that AnEn outperforms

the “do-nothing” approach.

Plain Language Summary

Forecasting space weather impacts on ground-based systems, such as power

grids, requires the use of computer simulations of the disturbance of the

Earth’s magnetic field by the solar wind. However, these computer simula-

tions are often too smooth, underestimating small and fast variations in the

Earth’s magnetic field which are important for modelling induction hazards

that may affect power grids. In this paper we present a proof-of-concept

scheme that attempts to introduce realistic high-frequency variations using

the idea of looking at how the field has previously behaved in histori-

cal events. We test the model and find that it allows for better impact

forecasting than if our scheme is not used.

5.1 Introduction

Intensification of magnetospheric and ionospheric current systems drives changes

in the geomagnetic field measured on the ground (dB
dt ) which induces an

enhanced geoelectric field, as expressed by the Maxwell-Faraday equation.

The induced geoelectric field drives currents within the Earth that can

enter grounded conducting networks as geomagnetically induced currents

(GICs) (Koskinen et al., 2017; Pulkkinen et al., 2017). GICs can flow

into the power grid through earthing points at substations (Oughton et al.,

2017b; Cannon et al., 2013), particularly in regions with high ground re-

sistance, as the geoelectric field is larger and the network provides a more

favourable path for GICs to flow. The quasi-DC signal introduced into an

AC grid system can lead to half cycle saturation in transformers causing
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degradation and, in extreme cases, destruction, failure and system collapse.

The geomagnetic field can be used as a proxy for potential ground ef-

fects and GIC studies commonly use the time derivative dB
dt to quantify

potential effects.

Nowcasting and advanced forecasting of geomagnetic disturbances is

generally achieved through global magnetohydrodynamic (MHD) models (Welling,

2019), driven with near-Earth solar wind observations or, for increased

lead time, the output of solar-wind simulations (Merkin et al., 2007). The

ground-level magnetic field, which is typically extrapolated from much higher

in the magnetospheric domain, is used to drive geoelectric field models.

Empirical models also exist (Weimer, 2013, 2019).

An example of a global MHD system is the Space Weather Model-

ing Framework (SWMF Tóth et al., 2005, 2012). Other widely used MHD

models include the Lyon-Fedder-Mobarry (LFM) model (Lyon, Fedder and

Mobarry, 2004) and the Open Global Generalized Circulation Model (OpenG-

GCM) (Raeder, Berchem and Ashour-Abdalla, 1998) (see Welling, 2019).

The SWMF consists of several numerical modules, such as the ideal MHD

solver BATS-R-US (Block Adaptive Tree Solar-wind Roe-type Upwind Scheme)

(Powell et al., 1999; De Zeeuw et al., 2000; Gombosi et al., 2002), the

Ridley Ionosphere Model (RIM) (Ridley et al., 2002), and the inner mag-

netosphere Rice Convection Model (RCM) (Toffoletto et al., 2003).

The operational magnetospheric MHD models underestimate the mag-

nitude of the perturbations across a wide frequency range, including the

sub-hourly variations important for GICs (Welling, 2019). Pulkkinen et al.

(2013b) examined dB
dt on a 1-minute timescale and found an underestima-

tion of magnitude between a factor of 2 and 10. Without accurate rep-

resentation of high-frequency variations of the geomagnetic field, resolution

of peak amplitudes in the derived surface geoelectric field and GICs may

be underestimated (Grawe et al., 2018).

However, a counter example is Raeder et al. (2001) who used an
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MHD model to simulate the Bastille day storm and compared their results

to observations. Using a power spectral density (PSD) analysis they found

that the model worked well for frequencies of 0-3 mHz and actually over-

estimated the power at higher frequencies. These results are likely due to

using a model configuration with a high grid resolution that would cur-

rently be prohibitive for operational forecasting, particularly if large ensem-

bles of magnetospheric runs are required to estimate forecast uncertainty.

Figure 5.1 shows an example of SWMF power spectrum at a broad

range of frequencies. The observed and modelled (using SWMF) horizon-

tal magnetic field, the magnetic field component most relevant to GICs, is

shown for the December 2006 CCMC test case (https://ccmc.gsfc.

nasa.gov/challenges/dBdt/) at the Newport magnetometer site. The

time series are shown in Figure 5.1 a) and the resulting power spectra

in Figure 5.1 b). The coloured lines represent different model configu-

rations. The power spectra shows that each configuration of the model

underestimates the power spectral density, however the magnitude of un-

derestimation is highly sensitive to model configuration with 12a SWMF,

the current operational configuration, performing best. These models are

giving an output at a 1-minute resolution but the timeseries is smoother

than that observed, meaning the amplitude of the higher frequency vari-

ations is reduced as shown by the power spectra. These simulation re-

sults have been provided by the Community Coordinated Modeling Center

at Goddard Space Flight Center for the 2013 Space Weather Workshop

and and an online interface is available for analysis of the model runs

(https://ccmc.gsfc.nasa.gov/challenges/dBdt/).

A general underestimation is in agreement with Pulkkinen et al.

(2013b), who show in their Figures 3 and 4 that SWMF underestimated
dB
dt . Although we here only show that SWMF exhibits this underestima-

tion, we note that this underestimation is a general feature of operational

models predicting geomagnetic perturbations (Pulkkinen et al., 2010, 2011,
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2013b).

Recent work from Dimmock et al. (2021) tested different spatial

resolution configurations of SWMF for the September 2017 event. They

found that the high resolution made a significant improvement to the PSD

and GIC forecasts. However, they noted that SWMF performs poorly in

substorms and increasing the resolution has limited benefit in these peri-

ods. They concluded that a skilful GIC forecast can be done with SWMF

but that computational power makes this operationally difficult. In contrast,

Haiducek et al. (2017) compared the performance of SWMF on an event

in 2005 using the resolution of the operational model and a higher reso-

lution. They used these configurations to estimate geomagnetic indices and

cross-polar cap potential (CPCP). They found that results were not sen-

sitive to resolution with the exception of predicting AL which may have

been improved. The discrepancy is possibly because Haiducek et al. (2017)

did not increase the resolution nearly as much as Dimmock et al. (2021).

Mukhopadhyay et al. (2020) also used the configurations of Haiducek et al.

(2017) finding that the high-resolution configuration performed generally bet-

ter under the Heidke skill score for predicting dB
dt .

Several further studies have shown that non-standard MHD model

configurations can achieve excellent results for small scale phenomena in

a statistical sense. Welling et al. (2021) modelled the magnetospheric re-

sponse to a hypothetical “perfect” coronal mass ejection and successfully

resolved high frequency phenomena. Realistic studies of ULF waves have

been made by MHD models (Hartinger et al., 2014; Claudepierre et al.,

2009) and small spatial and temporal features have been resolved by a

new MHD model (Sorathia et al., 2020). These studies show that MHD

models have the capability of properly capturing high frequency ground

perturbations relevant to GICs, but the model configurations required are

currently computationally prohibitive for operational real-time forecasting.

A viable operational alternative to increasing MHD model grid res-
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olution is through the use of a method that statistically relates variability

across temporal scales, namely a statistical downscaling approach. In ad-

dition to improving the geoelectic field reconstruction from a single mag-

netospheric model run, downscaling also has the potential to allow uncer-

tainty quantification without the need for a magnetospheric model ensem-

ble.

Figure 5.1: Geomagnetic field perturbations at Newport magnetometer station
in December 2006. Several configurations of the SWMF (coloured lines) are
compared with observations (black). a) shows the time series of the horizontal
magnetic field. b) shows the associated power spectra for periods of 2 min-
utes and less revealing that SWMF underestimated the variability. These plots
have been created and downloaded from the Community Coordinated Mod-
elling Centre (CCMC) (https://ccmc.gsfc.nasa.gov/challenges/
dBdt/.)
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This paper addresses the characterisation of high-frequency variabil-

ity in the magnetic field, B, through statistical downscaling. Downscaling

has been used in terrestrial weather forecasting to effectively increase the

temporal and spatial resolution of global climate models (GCMs)(Maraun

et al., 2010; Christensen and Christensen, 2003). For rainfall, this is done

because rainfall typically occurs on subgrid scales so cannot be accurately

captured with a GCM alone.

Maraun et al. (2010) classifies downscaling into three general cat-

egories: perfect prognosis approaches, model output statistics, and weather

generators. Perfect prognosis approaches statistically determine relationships

between low resolution predictors and the high resolution predictands. This

works if the predictors are realistic, such as from a perfect (low resolu-

tion) forecast model, i.e. a perfect prognosis. Model output statistics builds

a similar statistical relationship but with the aim of also correcting the

bias of the forecast model. As such, model output statistics are model-

specific. Finally, weather generators generate new high resolution time se-

ries that have the same statistical properties as observations, rather than

just a probability of a sub grid event. Weather generators can be either

perfect prognosis or model output statistics based.

As discussed by Morley (2020), statistical downscaling is relevant

to space physics, in particular, to solar wind parameters used as inputs to

magnetospheric models. Owens et al. (2014) considered temporal downscal-

ing of solar wind parameters for this purpose. This was done because the

magnetospheric models are sensitive to variability at a higher time resolu-

tion than is represented in numerical solar wind forecasts. Owens et al.

(2014) used a random noise generator that gave high temporal noise with

approximately correct statistical properties and added this noise onto the

baseline of the solar wind parameters. They found that even relatively

simple solar wind downscaling significantly increased the value of the sub-

sequent magnetospheric forecast.
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In this work we employ temporal downscaling to increase the vari-

ability of magnetic field time series on the ground. By developing a

model-independent perfect prognosis scheme, we are assuming that future

global MHD models will provide a perfect representation of the low res-

olution magnetic field variations and/or model biases can be corrected by

other means. However, the approach will be applicable to global MHD

models that return a skilful and unbiased representation of the low resolu-

tion magnetic field. As the high-frequency variations are sampled from an

ensemble of observations, an ensemble of geoelectric field estimates can

also be reproduced from a single magnetospheric model run.

In the future we hope to apply our downscaling methodology di-

rectly to forecasts provided by global MHD models and potentially as

a means for uncertainty estimation. However, it is important to develop

and test the downscaling scheme in isolation, and not to convolve it with

the performance of a specific magnetospheric model. Thus we adopt the

widely-used perfect prognostic approach and produce a perfect low-resolution

forecast time series by taking 1-hour boxcar means of B observed by

ground-based magnetometers. This 1-hour series is then linearly interpo-

lated to 1-minute resolution. This represents the undownscaled time se-

ries. As will be shown in Section 5.4, this undownscaled series effectively

removes all power in variations below 1 hour. Thus it is not a direct

proxy for high-resolution magnetospheric model output. However, we start

from this 1-hour linearly-interpolated undownscaled series for two reasons.

Firstly, we expect magnetospheric models to perform better than this but

it can be thought of as a ‘worst-case scenario’ for low-resolution magne-

tospheric models such as might be used for real-time forecasting in large

ensembles. Secondly, if the downscaling manages to successfully relate the

variability at 1-hour resolution to that at 1-minute resolution, it should be

more than adequate for use with magnetospheric model output.

The downscaling scheme attempts to reintroduce high-frequency per-

115



Chapter 5. Towards GIC forecasting: Statistical downscaling of the geomagnetic
field to improve geoelectric field forecasts

turbations onto the linearly-interpolated 1-hour time series to produce a

more realistic (in a statistical sense) B time series at the 1-minute res-

olution. By using observations as the undownscaled time series, rather

than model output, we removing model error from the process of develop-

ing and testing our methodology. Additionally, this approach allows us to

easily create a large database of low-resolution, undownscaled “forecasts”

with which to test our model, without requiring decades of magnetospheric

model output.

5.2 Data

The ground-based magnetometer measurements we use are provided by Su-

perMAG (Gjerloev, 2012) (http://supermag.jhuapl.edu), an inter-

national collaboration bringing together data from over 300 magnetometer

stations. The SuperMAG ground-level magnetic field perturbation data has

been homogenised in terms of coordinate system, processing technique and

file structure.

A ground-based magnetometer measures the magnetic field from all

sources in its vicinity. For studies on magnetic perturbations due to iono-

spheric and magnetospheric current systems, the magnetic baseline needs to

be subtracted from the measurements to remove effects from other mag-

netic sources such as the Earth’s intrinsic magnetic field. Gjerloev (2012)

describes the SuperMAG data-processing technique for removing the base

line, in which knowledge of typical timescales of variations of different

magnetic fields is used. These amount to a yearly trend, mainly due to

the secular variation in the Earth’s main field, and a diurnal trend due to

the Sq current system, the quiet day daily variation in ionospheric activity

due to solar radiation. These are subtracted from the magnetometer mea-

surements, leaving the prime source of variability as space-weather driven

activity.
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Of course, magnetometer measurements can occasionally have erro-

neous measurements. These usually take the form of a spike in activity

for a single data point during an otherwise quiet period. These errors

can sometimes get past the SuperMAG quality control and into the fi-

nal datasets. The data used for this analysis is a SuperMAG dataset that

has been cleaned for occasions where an error has exceeded the 99.97th

percentile in terms of the change in the magnetic field with time as de-

scribed in Rogers et al. (2020). The data may still have errors at lower

levels of activity.

In this study we primarily use data from the Eskdalemuir (ESK)

station located in southern Scotland with geographic coordinates of 55.314°N

and 356.794°E, operated by British Geological Survey. In principle, tem-

poral downscaling techniques are applicable to all locations but we first

test this one location where we have access to an established model for

converting local magnetic field variations to geoelectric field variations, ac-

knowledging the local ground conductivity conditions (Beggan et al., 2021).

From the ESK station we have 1-minute B measurements for approxi-

mately 30 years, from 1983-2016.

5.3 Methodology

5.3.1 Analogue Ensemble

The Analogue Ensemble (AnEn) approach was originally used for terres-

trial weather forecasting (e.g. van den Dool, 1989; Delle Monache et al.,

2013), but has been far surpassed by physics-based models for that ap-

plication. However, AnEn has more recently been employed in space and

magnetospheric physics where the physical models are less accurate, largely

due to the limited availability of observations to completely characterise

the necessary boundary conditions. In such a situation, empirical schemes
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can be valuable. Haines et al. (2021b), Owens, Riley and Horbury (2017d),

Riley et al. (2017) and Barnard et al. (2011) have experimented with

AnEn for forecasting the solar wind, geomagnetic activity and changes in

space climate. In each case AnEn outperformed the benchmarks considered.

The AnEn methodology exploits an extensive historical dataset for

forecasting purposes through analogy to past evolution of a given system.

Specifically, an AnEn examines the present state of the predictors, looks

in the historical dataset for analogous periods, then takes the predictand

from the most analogous period. By selecting multiple analogous periods,

an ensemble of predictands can be created, enabling a probabilistic forecast

of future evolution.

In this work, AnEn is used not for forecasting, but for temporal

downscaling to relate variations on long and short timescales. To demon-

strate that the downscaling framework works for ground-level B, we chose

1-hour and 1-minute for the long and short timescales somewhat arbitrar-

ily, as described in the previous section. They are intended as examples

rather than fixed parameters. At the high frequency, 1-minute makes sense

as that is the typically available resolution of long-term ground-based B

series and also the input resolution for many geoelectric field models. At

the low frequency, the time scale of interest will depend on the specific

model and the situation in which the model is being used. e.g., where

real-time forecasting is required and/or ensembles of magnetospheric mod-

els are being used, it may be necessary to reduce the model resolution.

As said, the low-resolution timescale of 1-hour is a tuneable parameter. If

the downscaling is able to successfully relate 1-hour and 1-minute vari-

ations, it should perform even better at relating, e.g., 20-minute and 1-

minute variations. Due to the perfect prognostic approach we can use the

low-resolution time series as predictors. Specifically, the predictors used are

the low-resolution values of the horizontal magnetic field at the start and

the end of the considered hour. Analogous periods of these are found and
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used to predict a 1-minute resolution time series.

The AnEn algorithm is outlined in Figure 5.2 and described in the

following points, in which the subscript H stands for 1-hour and M for

1-minute values:

1. Split the 1-minute SuperMAG data into two sets (D1M, D2M). D1M

is the test dataset containing the short period to be downscaled. D2M

is the independent training dataset comprised of the remaining data.

2. Compute low-resolution data using 1-hour box-car means, to give D1H

and D2H .

3. Using D1H , take the values at the start (t1) and end (t2) of the hour

being considered, as shown in Figure 5.2 a).

4. Search D2H for the N most similar consecutive values, by mean

squared error, to those at t1 and t2, as in Figure 5.2 b), where N

is the chosen number of analogues.

5. Remove the baseline value from the associated D2M leaving only the

higher frequency structure of the analogue interval, i.e. minute-scale

variations with the baseline removed, as in Figure 5.2 c). The base-

line is defined as the 60-minute rolling mean.

6. Add each D2M analogue onto D1H to produce an ensemble of down-

scaled values as in Figure 5.2 d).

7. Repeat this process for each hour in D1H .

The data is then repeatedly split into different test and training sets

so that the whole 34-year period can be downscaled using an independent

training set. Note that this procedure uses data from after the ‘forecast’

time, so is not strictly a hindcast. However, this approach uses the volume

of available historical data available to a forecast made today and thus

quantifies the current expected performance of downscaling.
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Figure 5.2: A schematic of the AnEn process. This process is repeated with the
N best analogous periods to give an ensemble of downscaled time series.

5.3.2 Reference model

We use a reference model, as suggested by Liemohn et al. (2018), as

a benchmark of comparison for the AnEn’s performance. As this is a

proof of concept study, we choose a reference model that represents a

“do-nothing” approach to downscaling. For this we downscale the 1-hour

time series of the magnetic field using a linear-interpolation, denoted as

the linear-interpolation approach. Through this, we end up with 1-minute

resolution time series without adding further high resolution structure.

As stated in Section 5.2, this 1-hour linear-interpolation series is not
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representative of ground-level B produced by typical state-of-the-art magne-

tospheric models, as can be seen from the power spectra in Figures 5.1

and 5.4. Instead, 1-hour can be seen more as a worst-case scenario –

most magnetospheric models would be expected to reasonably reproduce

the B-field fluctuation power at around 0.00028 Hz, even in real-time en-

sembles.

5.3.3 MT-transfer function

The goal of this work is not to recreate the high resolution magnetic field

on a point-by-point basis, but to add in realistic high-frequency variabil-

ity in a statistical sense. In particular, we are interested in the higher

frequency structure insofar as it improves the subsequent estimate of the

induced geoelectric field, which is the driver of GICs.

This can be tested with an “impacts” model. For this purpose we

use a magnetotelluric- (MT-) transfer function (Simpson and Bahr, 2020;

Beggan et al., 2021) produced for the ESK site by the British Geologi-

cal Survey (BGS). The MT-transfer function converts a time series of the

local magnetic field into a time series of local geoelectric field. The MT-

transfer function first makes a Fourier transform of the magnetic field,

then multiplies the result by an empirically determined matrix of coeffi-

cients which account for the local ground conductivity, and finally makes

an inverse Fourier transform to compute the geoelectric field in the time

domain. The matrix of coefficients is derived from simultaneous observa-

tions of the magnetic and geoelectric fields at ESK.

To quantify the performance of the downscaling scheme, we focus

on the magnitude of the estimated E-field. Each B-field ensemble member

was individually transformed with the MT-transfer function to result in an

associated E-field ensemble member. A ‘good’ outcome would be that the

|E| from the downscaled series is closer to the |E| obtained from using

the observed series, than the linear-interpolation approach. An ideal out-
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come would be that the observed |E| output falls within the spread of

the ensemble of |E| outputs obtained with the ensemble of downscaled se-

ries.

5.4 Evaluation

The AnEn downscaling approach has been applied to the entire 34-year

period (1983-2014) of observations using an ensemble of 100 members

built hour by hour as described above. Figure 5.3 shows an example span-

ning six-hours of heightened activity, with the x-component (east-west) in

5.3 a) and the y-component (north-south) in 5.3 b). This period was a

geomagnetic storm with a minimum Dst of -172 nT. The observed time

series is shown in red, the linear-interpolation series is shown in blue,

and the median of the AnEn series is shown in black, with colour bands

showing the 0th−100th, 10th−90th and 25th−75th percentiles. The linear-

interpolation approach is shown as a benchmark for the AnEn series to be

compared against.

For the interval shown in Figure 5.3, the 10th− 90th percentile

band captures some of the variability seen in the observations, however,

it seriously underestimates the variability on several occasions. Notably, to-

wards the middle of the period, when the event is at the peak, the en-

semble spread captures less of the variability. This suggests that the AnEn

will struggle with the larger events such as this. By the definition of

confidence, we would expect the observation to sit within the 0th−100th

percentile band 100%of the time, in the 10th− 90th percentile band 80%

of the time and in the 25th− 75th percentile band 50% of the time. In

actuality here, the percentage of observations in the 0th−100th, 10th−90th

and 25th−75th percentile bands for Bx are 83.4%, 40.3% and 20.3%, re-

spectively. For By this is 98.9, 51.8% and 21.3%, respectively for this

illustrative period.
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Figure 5.3: A six-hour time series from 1983-02-04 of the magnetic field at ESK
in the x (east-west) and y (north-south) directions in the geographic coordinate
system. The red line shows the observed 1-minute time series, the colour bands
show the spread of the AnEn series (the 10th-90th and 25th-75th percentiles)
with the median in black, and the blue line shows the linear-interpolation ap-
proach, taken to be the undownscaled magnetic field, as a reference.

Figure 5.4 shows the power spectra of the magnetic field from

observations and AnEn. Shown is the median and percentile bands of

the PSD’s achieved by all the ensemble members computed with Welch’s
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Figure 5.4: The power spectrum of the magnitude, Bx and By components of
the magnetic field from the whole 34-year period from observations and AnEn.
The yellow colour band shows the 10-90% range of the AnEn. The linear in-
terpolation approach is shown in blue, part of which has been cut from the plot
due to large differences in scale.
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method using the Hanning window without overlap. The AnEn ensemble

follows the observations closely with a general trend to slightly underes-

timate the power at lower frequencies (0-0.003) and slightly overestimate

the power for higher frequencies (0.007 and above). The 10-90% range of

the AnEn is very narrow at approximately 0.5 at the most, reflecting a

consistent performance across the whole ensemble. The linear-interpolation

approach is shown in blue but has been cut off because, as expected, the

power spectral density is very low and hence makes scaling the y-axis dif-

ficult. It is clear that AnEn provides a power spectrum much more similar

to that of the observations than the linear-interpolation approach achieves.

To measure the effectiveness of adding higher frequency structure

we use the B time series magnetic fields from the observations, AnEn

and the linear-interpolation approach to drive the MT-transfer function as

described in Section 5.3.3. The output of the MT-transfer model is shown

in Figure 5.5 for the same six-hour period shown in Figure 5.3. We see

that the AnEn captures some of the geoelectric field variability within its

spread but the observations lie outside the range of the analogue ensemble

on many occasions. The percentage of observations in the 0th− 100th,

10th−90th and 25th−75th percentile bands for Ex are 97.4%, 59.5% and

31.3%, respectively. For Ey this is 97.4%, 51.8% and 27.4%, respectively

for this illustrative period.

Figure 5.5 reveals that, as expected, the linear-interpolation series

yields very low geoelectric fields, without any significant variation. With

a large ensemble size, the AnEn median will tend toward a smooth line

despite variations in individual ensemble members. Therefore, the useful-

ness of AnEn is not in its median but rather in the spread of its ensem-

ble members for showing possible realisations of the timeseries. Because

of this it is not useful to directly compare AnEn median to the linear-

interpolation approach values. However we do see that the spread on the

analogue ensemble is of a more similar magnitude to that in observations
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than the linear-interpolation approach time series. In addition, AnEn pro-

vides an idea of the uncertainty in a forecast which is useful for making

decisions.

While this example period is illustrative, it is necessary to evalu-

ate AnEn as a downscaling model over the full 34-year period using a

set of metrics. In the following evaluation we have taken care to chose

metrics that are robust to timing errors, as we make the assumption that

the spectral properties of fluctuations and the magnitude of the peaks are

generally more important than the phasing for GIC impacts. This is also

relevant since operations require a lead time of possible occurrence and

an estimate of the severity of that occurrence as they cannot implement

system wide mitigation in real-time. When comparing data on a point-by-

point basis, timing errors, in which a defined event is correctly predicted

to occur but at slightly the wrong time, will incur a double penalty by

many common metrics (e.g. see Figure 8 of Owens, 2018). For ex-

ample, accuracy, which gives a fraction of correct predictions across the

whole dataset, will count the forecast as wrong when it predicts an event

that doesn’t occur at the exact time step and wrong when the forecast

does not predict an event that is observed, even if the time step is off

by just one step.

The sensitive values of GIC magnitude and timescales are depen-

dent on the set up of individual transformers and the power grid config-

uration. For example, the size of geoelectric field that will cause a sig-

nificant GIC is dependent on the ground conductivity in the region around

the transformer. We use horizontal geoelectric field as a practical solu-

tion to provide a general evaluation of the method (Beamish et al., 2002),

however transformers are sensitive to the individual Ex and Ey parameters,

depending on grid configuration (Orr, Chapman and Beggan, 2021).
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Figure 5.5: A six-hour time series from 1983-02-04 at ESK of the geoelectric
field computed from the magnetic field using the MT-transfer function. The
data is in the x (east-west) and y (north-south) directions in the geographic
coordinate system. The red line shows the time series computed from the 1-
minute observed time series, the colour bands show the spread of the geoelec-
tric field computed from the analogue ensemble with the median in black, and
the blue line shows geoelectric field computed from the linear-interpolation ap-
proach magnetic field.
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5.4.1 Threshold-exceedance prediction

In this subsection we evaluate each individual ensemble member within

AnEn for its ability to give a binary prediction of an event at individ-

ual time steps. We examine three levels of activity for event classification

using the magnitude of total horizontal geoelectric field, denoted |E|, from

the MT-transfer function. The magnitude of the total horizontal geoelec-

tric field is shown for an illustrative period in Figure 5.6. The chosen

thresholds for evaluation are the 99th, 99.9th and 99.99th percentiles of

the magnitude of the total horizontal geoelectric field from the MT-transfer

function driven by observed magnetic field time series over the period

1983 to 2016. These are 22.3, 58.8 and 171.9 mV/km respectively and

shown in Figure 5.6 by the horizontal dashed lines. For context, during

the March 1989 storm that lead to the Hydro-Quebec network collapse,

the peak geoelectric field magnitude for the March 1989 storm at ESK

was 411.4 mV/km as computed using the MT-transfer function. It is worth

noting that the system collapse experience during this geomagnetic storm

occurred before the peak due to the rapid onset of a substorm (Boteler,

2019).

In order to allow for timing errors at the minute scale, we eval-

uate AnEn using the fraction skill score (FSS) (Roberts and Lean, 2008;

Owens, 2018). The FSS is most commonly used to measure the fractional

occurrence of events in a given spatial window. Here, we use FSS with

a 60-minute temporal window and count the fraction of predicted time

points which are classified as events, and the fraction of observed time

points which are events, within the same time window. This is repeated

for each ensemble member for time windows covering the whole dataset

and the mean squared error (MSE) between the observed and predicted

fraction time series is computed. This is repeated for a reference fore-

cast, in this case the linear-interpolation series, and the FSS is taken as

1− (MSE f orecast/MSEre f erence). A perfect forecast would achieve FSS = 1,
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Figure 5.6: A six-hour time series from 1983-02-04 at ESK of the total mag-
nitude of the geoelectric field computed from the magnetic field using the MT-
transfer function. The red line shows the magnitude of time series computed
from the 1-minute observed time series, the colour bands show the spread of
the magnitude of geoelectric field computed from the analogue ensemble with
the median in black, and the blue line shows the magnitude of geoelectric field
computed from the linear-interpolation approach magnetic field.

a forecast with no skill compared to the reference would achieve FSS = 0

and a forecast performing worse than the reference will achieve a negative

score. FSS is most useful to end users who need to know if an event

will occur within a given time window without the need for exact (in this

case, to the minute) knowledge of when it will occur.

Figure 5.7 shows the FSS achieved for each of the 100 ensemble

members across the entire dataset for each of the three event thresholds.

Ensemble ID is ordered from best to worst analogues considered, where

best means the 1-hour values in the analogous periods are most similar

to present conditions by RMSE. For the 99th percentile threshold (panel

a) we see that each ensemble member has a positive FSS, with an av-
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erage value across the whole ensemble of 0.095, showing it outperforms

the reference method. When considering events over the 99.9th percentile,

Figure 5.7 b) again shows all ensemble members having a positive FSS

with an average across the ensemble of 0.17. We also see a clear trend

in which ensemble members based upon better analogues produce better

FSS scores. The increased visibility of the trend for the 99.9th percentile

compared to the 99th percentile suggests that at higher thresholds we are

inherently considering rarer events, which reduces the number of good ana-

logues available.

For events over the 99.99th percentile (panel c) the FSS is mainly

positive for the first 50 ensemble members and approximately zero for the

second 50. The mean FSS for the whole ensemble is 0.067. There is a

very stark decrease in the skill of the ensemble members as the ensem-

ble ID increases suggesting that for such a high threshold there are only

around 30 to 50 good analogues for AnEn to work with. This finding can

help inform a decision on an appropriate ensemble size for deployment. It

also suggests that it would be appropriate to weight ensemble members if

they are to be combined in any way.

5.4.2 1-hour mean value prediction

The impact of GICs on transformers can be dependent on time-integrated

effects, meaning that problems occur when GICs exceed a certain thresh-

old for a certain duration (Moodley and Gaunt, 2017). With this in mind,

we now evaluate the model using events classified using thresholds of the

1-hour mean value of |E| previously used. The hourly mean of the mag-

nitude of geoelectric field for an illustrative period is shown in Figure

5.8. We again consider thresholds at the 99th, 99.9th and 99.99th per-

centiles of the 1-hour means of the horizontal geoelectric field magnitude

from the observed time series. These values are 17.9, 47.0 and 139.0

mV/km respectively. These are shown on Figure 5.8 by the horizontal
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Figure 5.7: The fraction skill score (FSS) for each ensemble member. Ensem-
ble members are ordered from best to worst analogues considered. A FSS of 1
represents a perfect model FSS of 0 represents a model with no skill over the
reference. The time window for computing FSS is 60-minutes. a), b) and c)
show FSS for events over the 99th, 99.9th and 99.99th percentiles of the geo-
electric field.

dashed lines. For context, the peak hourly mean observed at ESK dur-

ing the March 1989 storm was 77.1 mV/km, suggesting that although the
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peaks of this storm were large, they were short lived. These metrics are

useful as impacts of a heightened geoelectric field are often caused by

sustained heightened values on approximately the tens of minutes to 1-

hour time scale (Pulkkinen et al., 2017). The metrics in this section are

useful to end users who need to know when periods of heightened activity

will occur and users who are impacted by time-integrated effects.

Figure 5.8: A time series from 1983-02-04 to 1982-02-05 at ESK of the 1-hour
box-car mean of the magnitude of the geoelectric field computed from the mag-
netic field using the MT-transfer function. The red line shows the 1-hour mean
of the magnitude of time series computed from the 1-minute observed time se-
ries, the colour bands show the spread of 1-hour mean magnitude of electric
field computed from the analogue ensemble with the median in black, and the
blue line shows the 1-hour mean of the magnitude of geoelectric field computed
from the linear-interpolation approach magnetic field.

Deterministic prediction

The first metric chosen is the Heidke skill score (HSS) (Jolliffe and Stephen-

son, 2003). HSS measures the accuracy of a model, taking into account
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the number of correct random forecasts. This allows for proper measure-

ment of skill in a situation where an event is rare. In fact, the rarer

the event considered, the less HSS takes into account correct predictions

of “no event”, which becomes the overwhelming majority class. HSS uses

the four categories on a standard contingency table: the number of true

positive (TP), true negative (TN), false positive (FP) and false negative

(FN) events. HSS is then given by:

HSS =
T P+T N− cr f

T P+T N +FP+FN− cr f
, (5.1)

where cr f , the number of correct random forecasts, is

cr f =
(T P+FP)(T P+FN)+(FP+T N)(FN +T N)

n
, (5.2)

where n is the total number of predictions.

HSS of AnEn is shown in Figure 5.9 for the three event thresholds

considered. HSS is has been computed for each ensemble member shown

by the yellow bars and HSS for the linear-interpolation approach is shown

by the black dashed horizontal line. AnEn clearly outperforms the linear-

interpolation approach and it generally achieves a good positive score with

the exception of some of the ensemble members based on weaker ana-

logues for the 99.99th percentile threshold. This again suggests that the

available dataset is too small for 100 analogues of more extreme events.

Probabilistic prediction

Next we evaluate AnEn in its ability to give a probabilistic prediction

of an event by counting how many of the ensemble members predict an

event and normalising by the size of the ensemble. This is evaluated us-

ing the Cost/Loss analysis (Murphy, 1977b; Richardson, 2000; Owens, Ri-

ley and Horbury, 2017d), which allows different end users of a forecast
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Figure 5.9: The Heidke skill score (HSS) for the three event thresholds on ap-
plied to 1-hourly |E| data. Ensemble members are ordered from best to worst
analogues considered. A perfect forecast has a score of 1, a forecast with no
skill over random prediction has a score of 0, and a forecast with every pre-
diction incorrect has a score of -1. HSS is shown for each ensemble member.
The black dashed horizontal line represents the HSS achieved by the linear-
interpolation approach for each event threshold
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to assess its value for their particular use case. The idea is that tak-

ing mitigating action due to a forecast incurs a Cost, C, of fixed value,

and experiencing an event without taking mitigating action incurs a Loss,

L, of fixed value. The Cost/Loss analysis sums these Costs and Losses

for acting on a particular forecast across a long time series and compares

the sum to that of a perfect forecast and a climatological forecast method

(which, at all times, predicts the probability of an event as the fraction

of time in which that event is experienced across the whole dataset). The

result is the potential economic value (PEV) which is 1 for a perfect fore-

cast, 0 for a forecast of equal ability to climatology, and negative for a

forecast with worse ability than the climatology. PEV is given as a func-

tion of the Cost/Loss ratio, C/L, which is between 0 and 1 for all end

users that may find a forecast valuable. In a probabilistic Cost/Loss analy-

sis that we employ here, mitigating action is taken if the probability given

by AnEn exceeds the Cost/Loss ratio of the end user. For more details

see Murphy (1977b); Richardson (2000).

Figure 5.10 shows the PEV for the Cost/Loss domain (0,1) for the

probabilistic downscaling from the AnEn and the linear-interpolation ap-

proach. We see that for all three event thresholds AnEn outperforms the

reference method. We also see that the PEV is highest for the lower end

of the Cost/Loss domain which means it will most benefit end users who

better tolerate false alarms (false positives) rather than missed events (false

negatives). This is because at the low end of the C/L domain the cost

of taking mitigating action is very low compared to the loss incurred due

to not taking action and an event happening. Therefore, these users would

generally prefer to take mitigating action on a false alarm than not take

action on a real event.

Finally we look at how AnEn performs under the Brier skill score

(BSS) (Jolliffe and Stephenson, 2003). Like Cost/Loss analysis, BSS can

compare probabilistic forecasts with deterministic ones, allowing direct com-
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Figure 5.10: A Cost/Loss analysis showing the potential economic value (PEV)
of the probabilistic AnEn downscaling method with respect to the undown-
scaled (linear-interpolation) reference method. A score of PEV = 1 represents
a perfect forecast and PEV = 0 represents no value with respect to the reference
method. a), b) and c) show PEV for events over the 99th, 99.9th and 99.99th
percentiles of the geoelectric field.
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parison of the probabilistic AnEn and the deterministic undownscaled se-

ries. BSS is useful to end users who wish to use the probabilistic in-

formation of AnEn. To compute BSS, the standard Brier score (BS) must

first be computed. The BS is the normalised sum of the square error be-

tween the probabilistic forecast and the observations over the whole time

series, where the observations takes a binary value of 0 or 1 depending

on whether an event occurs. Events are again taken to be hours exceeding

the 99th, 99.9th and 99.99th percentiles of observed |E|. BS is computed

for both AnEn and the reference model then combined into BSS by

BSS = 1−
BS f orecast

BSre f erence
. (5.3)

Similarly to the Cost/Loss and FSS, a perfectly skilful forecast re-

ceives BSS=1, a forecast with no skill relative to the reference receives

BSS=0, and a negative score signals the forecast method performs worse

than the reference.

BSS is shown for AnEn for the three event thresholds in Table 5.1.

It seems that the 100-member AnEn has skill over the linear-interpolation

approach for all considered thresholds but drops in skill for the 99.99th

percentile events. It is likely that this is the result of the limited span

of the dataset and hence number of analogous extreme events. A reduced

ensemble size or ensemble-member weighting would likely yield a better

BSS, particularly for the 99.99th percentile events. This is shown in the

third column of the table which gives BSS for a 20 member ensemble.

We see that the BSS of the 99.99th percentile events increases more in

line with the lower thresholds.
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Threshold
(percentile)

BSS
(100 members)

BSS
(20 members)

99th 0.30 0.32
99.9th 0.32 0.38
99.99th 0.15 0.31

Table 5.1: Brier skill score (BSS) for AnEn using the linear-interpolation ap-
proach as the reference. Three event thresholds are considered.

5.5 Discussion & Conclusions

Statistical downscaling of magnetic field data for the purposes of GIC

forecasting has been demonstrated in the form of a perfect prognostic ap-

proach. We employed the analogue ensemble (AnEn) methodology, finding

that with its spread and higher frequency contributions, a more accurate E-

field mapping is obtained than when compared to an E-field derived from

undownscaled B-field data.

To obtain a “low-resolution” dataset, ground-level magnetic field per-

turbation data was smoothed from high frequency (1-minute) to low fre-

quency (1-hour) resolution. High frequency structure was then reintroduced

into the low-resolution (1-hour) series using the AnEn approach. Both

the low frequency and the downscaled time series were then used in a

magnetotelluric-transfer function to compute the corresponding horizontal geo-

electric fields.

We presented the power spectrum of the observations, showing that

AnEn closely resembles the spectral properties of the observations and far

outperforms the linear-interpolation approach. Although AnEn has not been

applied to the output of a global MHD model, it can be seen that it has

the potential to improve the spectral properties of a forecast that has an

underestimation of spectral power at the high frequencies.

The method was validated using a range of methods to test differ-

ent aspects of the downscaling scheme. Specifically, we used the fraction

skill score (FSS), Heidke skill score (HSS), Cost/Loss analysis and Brier
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skill score (BSS). FSS was used to evaluate AnEn on the occurrence rate

of 1-minute events within 1-hour windows. The events were defined us-

ing three thresholds, namely, 99th, 99.9th and 99.99th percentile of the

entire dataset (1983 to 2016). AnEn had a positive FSS for all ensemble

members for the 99th, 99.9th percentile thresholds showing that AnEn out-

performed the undownscaled approach. For the 99.99th percentile threshold,

some of the weaker analogues achieved a negative FSS suggesting that the

ensemble size of 100 was too large for the current dataset to allow good

analogues of the most extreme events to be found. Nevertheless, the over-

all FSS was still positive.

Since impacts of GICs tend to require an elevated geoelectric field

over a sustained period, we also evaluated AnEn for its ability to predict

the hourly-mean value of geoelectric field. This was achieved by defining

events as the 1-hour mean value exceeding the thresholds of 99th, 99.9th

and 99.99th percentile of the hourly-means of the entire dataset. With this

event definition, HSS revealed that AnEn outperformed the undownscaled

series for all ensemble members in the three event thresholds, except for

a small number in the 99.99th percentile events.

This work has evaluated AnEn with an ensemble size of 100. The

ensemble size should be chosen large enough that a wide range of possi-

ble outcomes can be included, but small enough to ensure analogues are

of a good quality and are in fact analogous. The fraction skill score and

Heidke skill score revealed that better quality analogues downscaled more

skilfully. The number of good quality analogues available depends both on

the size of the historical dataset and on the rarity of event considered.

This was particularly evident when considering events above the 99.99th

percentile suggesting 100 members is too many to ensure all analogues

are of a good quality. A more appropriate ensemble size for this thresh-

old would be approximately 20 as shown by the BSS analysis. Future

implementations of this method should use these results to inform an ap-
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propriate ensemble size for the size of event of interest.

In this work the probabilistic prediction given by AnEn was made

by simple ensemble member voting. The impact of analogue quality could

be mitigated if, when converting to a probabilistic prediction from an en-

semble of predictions, the voting power of each member is dependent on

the quality of the analogue, as measure by the inverse of the RMSE

between analogue and period under consideration and normalising. This

would mean that members expected to have the most insight into the sit-

uation have greater sway in the overall prediction.

We implemented a probabilistic Cost/Loss analysis revealing that AnEn

has a higher potential economic value than the undownscaled approach and

that the value of the forecast was greater for end users who can tolerate

false alarms at the lower end of the Cost/Loss domain. Like the previous

metrics, AnEn performed better in the 99th and 99.9th percentile events.

A shortcoming of AnEn is that there is expected to be a lack of

good analogues for the most extreme events. To address this AnEn could

be improved by expanding the predictors used to include such things as

geomagnetic indices and estimates of current systems. This could allow

AnEn to be more aware of the drivers of geomagnetic activity and thus

allow the use of fewer-but-better-quality analogues in a reduced size en-

semble. Although this is a shortcoming, it is important to remember mod-

erate space weather events are problematic as well as the rarer, more

extreme events (e.g. Schrijver et al., 2014b; Schrijver, 2015). A further

way to increase ensemble member quality would be to create the training

dataset, D2M, using a rolling-mean rather than box-car as this would cre-

ate a more potential analogous periods and hence increase analogue quality

overall.

We used a perfect prognostic approach to downscaling which as-

sumes the low time resolution forecast given is a perfect forecast. This

allowed us to use historical observations as if they were forecast model
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Eskdalemuir Lerwick Hartland
99 99.9 99.99 99 99.9 99.99 99 99.9 99.99

Mean FSS 0.10 0.17 0.07 0.41 0.28 0.07 0.11 -0.06 -0.04
Mean HSS 0.31 0.32 0.12 0.54 0.34 0.13 0.27 0.17 0.03

BSS 0.30 0.32 0.15 0.51 0.35 0.14 0.26 0.15 0.04

Table 5.2: The mean FSS, mean HSS and BSS for the three thresholds at Es-
kdalemuir, Lerwick and Hartland.

outputs. However, this approach is limited because the models are not

perfect. It is expected that biases in the forecast model would not be

corrected but carried through by the downscaling methodology.

This paper has focused on the results for the Eskdalemuir station,

however, an equivalent analysis has been conducted for the Lerwick and

Hartland magnetometer stations in the UK. The AnEn downscaling method-

ology applied to these stations generally perform similarly to ESK, sup-

porting the claim that this methodology could be applied more broadly.

The achieved mean FSS, mean HSS and BSS for events above the three

thresholds are shown in Table 5.2 for Lerwick and Hartland. The results

for ESK are also shown for reference. AnEn is shown to perform to

a slightly better standard at Lerwick, particularly for the 99th percentile

threshold, and slightly worse at Hartland, particularly for the higher thresh-

olds.

In this work, AnEn has been used both to generate a downscaled

time series and to estimate the uncertainty of it by using many ensemble

members. It would be quite possible to remove the downscaling element

and just use the algorithm to provide probabilistic information for a fore-

cast that already has the correct spectral properties.

This work has given proof of concept that downscaling can be im-

plemented to improve a forecast that lacks realistic high-frequency struc-

ture. From here, research should be conducted to create downscaling schemes

that are optimised to perform better than AnEn when the downscaled data

is used to drive an “impacts” model. The optimisation could include find-
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ing different model configurations for specific space weather drivers. This

would take knowledge of the solar wind driving the magnetosphere and

restrict AnEn to choosing analogues from historical periods driven by the

same solar wind context. Once downscaling methods have been further in-

vestigated, the front runners will need to be manipulated to form a “bolt-

on” piece for a global MHD model. We finally note that the methods

developed here do not attempt to correct for any biases in the magne-

tospheric models. Thus it remains to be seen whether the improvements

demonstrated here translate directly to a forecasting situation, or where fur-

ther bias-correction of magnetospheric models is also required.

Acknowledgements

The authors thank the National Environmental Research Council (NERC)

for funding this work under grants NE/L002566/1 and NE/P016928/1.

For the ground magnetometer data we gratefully acknowledge: IN-

TERMAGNET, Alan Thomson; CARISMA, PI Ian Mann; CANMOS, Geo-

magnetism Unit of the Geological Survey of Canada; The S-RAMP Database,

PI K. Yumoto and Dr. K. Shiokawa; The SPIDR database; AARI, PI Oleg

Troshichev; The MACCS program, PI M. Engebretson; GIMA; MEASURE,

UCLA IGPP and Florida Institute of Technology; SAMBA, PI Eftyhia Zesta;

210 Chain, PI K. Yumoto; SAMNET, PI Farideh Honary; IMAGE, PI Li-

isa Juusola; Finnish Meteorological Institute, PI Liisa Juusola; Sodankylä

Geophysical Observatory, PI Tero Raita; UiT the Arctic University of Nor-

way, Tromsø Geophysical Observatory, PI Magnar G. Johnsen; GFZ Ger-

man Research Centre For Geosciences, PI Jürgen Matzka; Institute of Geo-

physics, Polish Academy of Sciences, PI Anne Neska and Jan Reda; Polar

Geophysical Institute, PI Alexander Yahnin and Yarolav Sakharov; Geolog-

ical Survey of Sweden, PI Gerhard Schwarz; Swedish Institute of Space

Physics, PI Masatoshi Yamauchi; AUTUMN, PI Martin Connors; DTU Space,

142



Chapter 5. Towards GIC forecasting: Statistical downscaling of the geomagnetic
field to improve geoelectric field forecasts

Thom Edwards and PI Anna Willer; South Pole and McMurdo Magne-

tometer, PI’s Louis J. Lanzarotti and Alan T. Weatherwax; ICESTAR; RAPID-

MAG; British Artarctic Survey; McMac, PI Dr. Peter Chi; BGS, PI Dr.

Susan Macmillan; Pushkov Institute of Terrestrial Magnetism, Ionosphere

and Radio Wave Propagation (IZMIRAN); MFGI, PI B. Heilig; Institute of

Geophysics, Polish Academy of Sciences, PI Anne Neska and Jan Reda;

University of L’Aquila, PI M. Vellante; BCMT, V. Lesur and A. Cham-

bodut; Data obtained in cooperation with Geoscience Australia, PI Andrew

Lewis; AALPIP, co-PIs Bob Clauer and Michael Hartinger; MagStar, PI

Jennifer Gannon; SuperMAG, PI Jesper W. Gjerloev; Data obtained in co-

operation with the Australian Bureau of Meteorology, PI Richard Marshall.

The SuperMAG data is available at https://supermag.jhuapl.edu/.

Simulation results have been provided by the Community Coordi-

nated Modeling Center at Goddard Space Flight Center through their pub-

lic Runs on Request system (http://ccmc.gsfc.nasa.gov). This work was car-

ried out using the SWMF and BATS-R-US tools developed at the Univer-

sity of Michigan’s Center for Space Environment Modeling (CSEM). The

modeling tools described in this publication are available online through

the University of Michigan for download and are available for use at the

Community Coordinated Modeling Center (CCMC). These simulation results

can be found from https://ccmc.gsfc.nasa.gov/challenges/dBdt/.

143

https://supermag.jhuapl.edu/
https://ccmc.gsfc.nasa.gov/challenges/dBdt/


Chapter 6. Discussion and Conclusion

Chapter 6

Discussion and Conclusion

The aim of this thesis was to improve understanding and forecasting of

space weather that could lead to geomagnetically induced currents (GICs).

This has been achieved by providing new methodologies to the field, es-

tablishing statistical relationships and utilising high quality datasets. The

three research chapters make advances in understanding duration as a pa-

rameter of geomagnetic storms, understanding and forecasting geomagnetic

activity and relating low temporal resolution to high resolution parameters

to aid GIC forecasting. Taken together, these research results have driven

forward our ability to skilfully forecast the physical phenomena related to

GIC, as summarised in more detail below

6.1 Summary

Chapter 3 focuses on predicting the duration of geomagnetic storms. Dura-

tion is a key parameter for geomagnetic storms as it informs on potential

time-integrated effects, such as transformer heating, and is also useful for

scheduling the resumption of operation of the affected equipment after a

storm. The previous literature contains a few mentions of storm duration

and some lists of geomagnetic storms contain duration as a storm param-
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eter. This was the first study to establish a statistical relationship between

storm duration and intensity by considering a long running measure of ge-

omagnetic activity.

Using a peak-over-threshold approach to defining storms, it was found

that more intense storms are expected to last longer, but not in a linear

fashion. For a given storm peak intensity, the expected duration followed

an approximate log-normal distribution. Based on this I created a method

to probabilistically predict the storm duration given peak intensity. This

model was evaluated and an analysis using reliability diagrams showed that

there is a slight underestimate of the probability of the storm exceeding a

given duration. Generally the model follows the gradient of the y = x line

well, showing that if the model predicts an x% chance of a storm then a

storm will occur approximately x% of the time.

To further understand storm duration, a superposed epoch analysis

was used. Storms were separated into six classes depending on their peak

intensity and overlayed to show the generalised profile of a storm. The

results indicated that more intense storms have a longer duration, with the

peak occurring longer after the start of the storm. This analysis also re-

vealed evidence of 27-day recurrence activity for the lower intensity events,

most likely caused by co-rotating interaction regions (CIRs). This was not

present for the more intense storms.

Chapter 4 looks at forecasting geomagnetic activity in the aaH in-

dex, the longest reliable index of global geomagnetic activity on a 3-

hourly timescale which extends back to 1868. The key result of this

Chapter is bringing a new empirical methodology (the analogue ensemble,

or AnEn, discussed further below) to the field of geomagnetic index fore-

casting and doing so in a way that provides probabilistic estimates. AnEn

has previously been used for terrestrial weather forecasting and more re-

cently for solar wind forecasting, but this is its first use for magneto-

spheric forecasting. It was found that, with a sufficient historical record,

145



Chapter 6. Discussion and Conclusion

it is possible to use AnEn to provide both a reliable and skilful forecast,

particularly for short lead times, of the order of hours.

Previous work in the literature has focused on using solar wind

drivers observed at L1 as predictors of geomagnetic indices. This choice

limits the amount of data available for model training as in-situ solar wind

plasma observations are only available at most for almost 60 years, de-

pending on the parameter of interest. Chapter 4 uses only the geomagnetic

index, a much more homogeneous dataset that extends for approximately

three times as long, as a predictor meaning that more data-intensive meth-

ods can be used.

The two main methods evaluated for this task were the analogue

ensemble (AnEn) and support vector machines (SVM) with 27-day recur-

rence as an additional comparison. AnEn is a “similar day” approach

which identifies analogous periods to current conditions in a historical dataset

and uses these to provide a forecast. The SVM is a machine-learning ap-

proach that seeks a hyper plane in the feature space to separate storm

events from non-storm periods. The SVM uses a kernel to increase the

dimensionality of the feature space to aid separability. 27-day recurrence

simply looks at the observations from 27-days ago and forecasts them to

occur again. All three of these methods outperformed climatology with

SVM and AnEn outperforming 27-day recurrence. Under the true skill

score (TSS, a metric robust to class imbalance which varies from − inf

to 1 with 0 at no skill to 1 at perfect skill), the AnEn, SVM and 27-

day recurrence achieved approximately 0.65, 0.31 and 0.12 respectively for

a three hour lead time. AnEn became less skilful than 27-day recurrence

for lead times of 9 hours or more whereas the SVM performed the best

under TSS for lead times up to 48 hours. When considering a range of

metrics, the main results were that AnEn and SVM performed similarly

and the best method for an end user depends on their need for proba-

bilistic information which AnEn can supply.
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Chapter 5 developed a methodology to relate the variability in the

geomagnetic (and hence geoelectric) fields across time scales. This was

achieved using a long historical data set (approximately 30 years of 1-

minute data). This is a necessary step to enable accurate GIC forecasting

and to enable efficient estimation of forecast uncertainty. Currently opera-

tional magnetospheric MHD models are limited in their ability to produce

the observed power spectrum of geomagnetic field variability, commonly

giving an underestimation. This is important because it is the high fre-

quency variation in geomagnetic field that induces the geoelectric field rel-

evant to GICs. It is also computationally prohibitive to run large ensem-

bles of MHD models in real time. Chapter 5 provides a proof-of-concept

methodology that statistically downscales a low-resolution time series on

a 1-hour resolution to a high-resolution forecast on a 1-minute resolution.

The methodology takes the 1-minute observed time series and smooths this

to a 1-hour resolution using a box-car mean. AnEn is then used to rein-

troduce perturbations on a 1-minute timescale.

Built on the AnEn methodology, the scheme successfully captures

the correct spectral properties of the geomagnetic field. To fully evalu-

ate the methodology, the downscaled time series was run through an MT-

transfer function which computes the geoelectric field, as this is the quan-

tity of concern. The same process was carried out for a reference ap-

proach to benchmark our method and for the observations. It was found

that the AnEn downscaling scheme outperforms the reference model on

a range of evaluation metrics providing proof that a downscaling scheme

can be effective in this context. On electric field events defined using

three thresholds, namely, 99th, 99.9th and 99.99th percentile of the entire

dataset (1983 to 2016), AnEn broadly achieved a positive fraction skill

score and outperformed the reference approach. However, for the highest

threshold, some of the weaker ensemble members achieved no or nega-

tive skill. On events of the hourly-mean electric field defined using 99th,

99.9th and 99.99th percentile of the entire hourly-mean dataset, AnEn per-
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formed well under the Hiedke skill score, a Cost/Loss analysis and the

Brier skill score outperforming the reference approach.

6.2 Overarching Conclusions

The three research chapters presented in this thesis form a cohesive piece

of research and as such there are certain conclusions to be made in the

context of them together. These are presented in the current section.

A key theme of this thesis has been the use of long-running homo-

geneous datasets. These datasets provide value for scientific understanding

by allowing robust statistical relationships to be established. They also al-

low empirical forecasting methods to be fully utilised as the dataset should

contain all but the rarest behaviour of the system assuming that it is a

time-stationary system, an assumption that would not be true, for example,

of annual maximum temperatures in the presence of climate change. The

long datasets used in this thesis are the aaH index, a 150-year record of

geomagnetic activity comprised of a combination of observations from the

UK and Australia, and 34-year records of the ground-level geomagnetic

field at three UK locations provided by SuperMAG. The AnEn method-

ology relies on the existence of analogous periods in a historical dataset

to gain insight into current/future variations. The likelihood of finding an

analogous period and the quality of that analogue is dependent on a long-

running dataset that has experienced all the events of interest. That is to

say that the dataset must have seen it before for the AnEn to be able to

succeed. While these two datasets have been running an impressively long

time, the number of solar cycles they have recorded is less impressive at

approximately 14 and 3, for aaH and the SuperMAG data, respectively. It

is therefore expected that there is rare behaviour that these datasets have

not observed which will limit the ability of AnEn to provide accurate pre-

diction for the largest of events. For this reason it is of high importance
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to ensure these observations are continued on into the future.

Chapters 4 and 5 both employed the analogue ensemble method.

While this method was developed for terrestrial weather forecasting this

thesis has shown it useful for magnetospheric activity also. One of the

main benefits of this method is that it provides a computationally cheap

ensemble of realistic predictions. The size of the ensemble has little im-

pact on computational efficiency but is, however, bounded by the number

of similar periods expected to be contained within the dataset. This is

a particular limit if the dataset is small in duration or if extreme events

are of particular interest. In Chapter 5 rare events were studied in the

form of high percentile thresholds. It was found that the 34-year record

was able to provide 20-30 good quality analogues for event of above the

99.99th percentile. However, sufficient analogues were available to have a

100 member ensemble for events above the 99.9th, 99th and, in Chapter

4, the 90th percentile for the aaH index.

A contribution of Chapters 3 and 4 was the identification of the

aaH index as a suitable dataset for geomagnetic activity studies. The aaH

index is a recent development of the aa index and this thesis is some of

the first work to use it. Although there are newer indices that have better

longitudinal coverage (e.g. am), aaH has an unrivalled length of 150 years.

The significance of this is that many of the empirical forecast techniques

previously used, such as neural networks, require a large historic database

to perform at their best. Having shown the usefulness and appropriateness

of aaH this work acts as a signpost for those in the field to experiment

with as a means to improve their own models.

Furthermore, aaH has allowed this thesis to exploit statistical fea-

tures of magnetospheric activity. Previous studies looking to do the same

would either have compromised on the quality of the dataset by using the

aa index or sacrificed almost a century of records by using an alternate

index. The large and high quality data was instrumental to the work in
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Chapter 4 as it enabled both of the forecasting techniques to work to

their potential. This was particularly the case for AnEn which needs a

large number of good quality analogues. The long aaH dataset helped the

work presented in Chapter 3 by increasing the certainty surrounding the

statistical link between storm duration and intensity.

6.3 Future Work

The availability of large data sets lends itself to the use of deep-learning

methodologies for predictive tasks such as nowcasting and forecasting, as

examined in Chapter 4. With more time I would look to implement a

long short-term memory (LSTM) neural network for this time series fore-

casting task. The LSTM is a type of recurrent neural network that has

been shown to work particularly well on timeseries data. I would hope

that the LSTM could capture non-linear relationships between the time his-

tory and the prediction that would be especially useful in predicting a

storm onset. I would also be interested in the ability of the LSTM to

take solar wind observations at L1 and provide a forecast for geomagnetic

activity in the aaH index. Further, it could give a forecast of ground-level

magnetic field as observed by a SuperMAG magnetometer. This forecast

would be of the same resolution as the observations and so could benefit

from downscaling.

The evaluation of the work in Chapter 5 was based on the im-

pacts of geomagnetic activity being proportional to the magnitude of the

geoelectric field. The evaluation would have benefited from looking at a

specific transformer with sufficient GIC observations alongside the set up

parameters of the transformer. It would then be possible to evaluate the

downscaling methodology on its ability to predict GICs. The main bar-

rier to this is the lack of availability of reliable GIC observations over a

sufficient time period.
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Chapters 4 and 5 used the AnEn method with 100 ensemble mem-

bers. As identified in Chapter 5 the appropriate number of analogues is

dependent on the rarity of events under consideration. For example, if a

very rare event is being considered then, by definition, there will not be

many analogous periods for the method to use. It would be useful for fu-

ture work to provide a model to estimate appropriate ensemble size given

event rarity and dataset length. This could be done by either estimating

the number of events in the historical dataset using the event amplitude,

or by only including analogues that have a normalised RMSE of a de-

termined value or less, rather than including a fixed number of best ana-

logues.

In this thesis, where AnEn has been used to give a determinis-

tic or probabilistic prediction, simple ensemble voting has been used with

each ensemble member given equal weight. This approach ignores infor-

mation on the quality of each analogue, i.e. how analogous the analogue

period really is. This quality is measured using RMSE inside the AnEn

algorithm. It is particularly evident in Figure 5.7 that those with a better

quality analogue (i.e. lower Ensemble Member ID) are producing a better

result. In the context of converting the ensemble into a deterministic or

probabilistic prediction, it would be beneficial to weight ensemble members

as they vote so that better quality members have more of a say.

In Chapter 3 it was established that storms in the aaH index have

statistically related durations and intensities. This relationship could be bet-

ter understood and characterised by examining other geomagnetic indices.

aaH was chosen because it is the longest running geomagnetic index and

would therefore show statistical relationship clearest. However, indices such

as Dst and K p have records for several solar cycles and should exhibit

this relationship. For the power industry concerned with GICs, it would

be useful to establish the duration-intensity relationship in the geoelectric

field. A good proxy for such a record could be computed from the ob-
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served geomagnetic field using an MT-transfer function as implemented in

Chapter 5.

The model built for predicting storm duration was shown to exhibit

a slight underestimation of the probability of storms exceeding certain du-

ration. Future work could focus on calibrating the model to adjust for

this underestimation and correct the reliability diagram. Since the reliabil-

ity diagram shows lines that are predominantly linear, a calibration could

be performed using a simple scaling and translation as a function of the

model probability. The underestimation may represent a second class of

storms that the model has not captured. Should this class exist, it may

be due to “compound” storms driven by a pile up of solar wind events.

Chapter 5 used an AnEn approach to provide a proof-of-concept

study into downscaling. While AnEn has been successful, there is no rea-

son (a priori) to believe it is the best approach available. Further ap-

proaches should be researched in future work and evaluated with the same

datasets and metrics to allow a like-for-like comparison. One possibility

would be to relate low-frequency variations to the parameters of the ob-

served high-frequency power spectrum. Once a relationship is established a

coloured noise generator could be used to produce a high frequency time-

series with the correct power spectral density.

The end-goal of downscaling is to create a “bolt-on” module for

use with global MHD models. Once various downscaling methods have

been investigated the front runners should be tested on global MHD mod-

els. The downscaling approach here took a perfect prognostic approach,

meaning that the forecast is assumed to be perfect. This assumption will

not hold for global MHD models, so the effect of model biases will need

to be evaluated to test whether downscaling is operationally viable without

using model output statistics, which need to be computed on a model-by-

model basis.
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