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Abstract
Accurately predicting weather and climate in cities is critical for safeguarding
human health and strengthening urban resilience. Multimodel evaluations can
lead to model improvements; however, there have been no major intercompar-
isons of urban-focussed land surface models in over a decade. Here, in Phase
1 of the Urban-PLUMBER project, we evaluate the ability of 30 land surface
models to simulate surface energy fluxes critical to atmospheric meteorologi-
cal and air quality simulations. We establish minimum and upper performance
expectations for participating models using simple information-limited mod-
els as benchmarks. Compared with the last major model intercomparison at
the same site, we find broad improvement in the current cohort’s predic-
tions of short-wave radiation, sensible and latent heat fluxes, but little or no
improvement in long-wave radiation and momentum fluxes. Models with a
simple urban representation (e.g., ‘slab’ schemes) generally perform well, par-
ticularly when combined with sophisticated hydrological/vegetation models.
Some mid-complexity models (e.g., ‘canyon’ schemes) also perform well, indicat-
ing efforts to integrate vegetation and hydrology processes have paid dividends.
The most complex models that resolve three-dimensional interactions between
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buildings in general did not perform as well as other categories. However, these
models also tended to have the simplest representations of hydrology and vegeta-
tion. Models without any urban representation (i.e., vegetation-only land surface
models) performed poorly for latent heat fluxes, and reasonably for other energy
fluxes at this suburban site. Our analysis identified widespread human errors
in initial submissions that substantially affected model performances. Although
significant efforts are applied to correct these errors, we conclude that human
factors are likely to influence results in this (or any) model intercomparison,
particularly where participating scientists have varying experience and first lan-
guages. These initial results are for one suburban site, and future phases of
Urban-PLUMBER will evaluate models across 20 sites in different urban and
regional climate zones.

K E Y W O R D S

benchmark, energy balance, intercomparison, model evaluation, urban climate, urban meteorology

1 INTRODUCTION

Over a decade has passed since the first Interna-
tional Urban Land Surface Model Comparison Project
(PILPS-Urban) evaluated 32 models at two urban sites
(Grimmond et al., 2010, 2011). Since then, new urban mod-
els have been developed, existing models have increased
capabilities, and a new generation of modellers are using
them. Expectations that urban schemes be integrated
within weather and climate models have also grown: simu-
lations are undertaken at finer spatial scales, and the wider
modelling community recognises the importance of sim-
ulating meteorological conditions within cities (Masson
et al., 2020; Sharma et al., 2021). Therefore, it is timely to
undertake a new evaluation of land surface models used in
meteorological simulations over urban areas.

This project, Urban-PLUMBER, focusses on the
local-scale (order 0.1–5 km) energy exchange between the
urban land surface and the atmosphere. The last intercom-
parison with a similar focus, PILPS-Urban (Grimmond
et al., 2010, 2011) established that knowledge of an urban
site’s surface cover fractions significantly improved model
performance. ‘Urban’ models can include impervious sur-
faces (e.g., buildings, roads) and pervious surfaces (e.g.,
vegetation, bare earth), but not all urban models include
both. In PILPS-Urban, models that neglected vegetation
or porous ground performed poorly in latent, sensible, and
radiant heat fluxes. This may have been expected at a sub-
urban site with about 40% vegetation fraction (Grimmond
et al., 2011); however, their performances were also poorer
at an urban site nearly devoid of vegetation (Grimmond
et al., 2010). PILPS-Urban concluded that models with

simpler urban geometry (i.e., with fewer parameters
describing built up areas) generally performed better than
more complex models, as simpler models were better
able to use provided site information. Further analysis
of the suburban-site results (Best and Grimmond, 2015)
concluded the dominant physical processes that urban
models should capture, by importance, are: (a) bulk sur-
face albedo during the day; (b) trapping of long-wave
radiation between urban structures at night; and (c)
evapotranspiration over diurnal and seasonal timescales.

Urban-PLUMBER builds on PILPS-Urban, which in
turn drew on the methods of PILPS (Project for the Inter-
comparison of Land Surface Parameterisation Schemes).
Since the 1990s, PILPS projects have undertaken land sur-
face model evaluation and comparison (Henderson-Sellers
et al., 1996, 1995; Slater et al., 2001; Bowling et al., 2003).
A coordinating group defines the project framework (the
protocol) and provides participating modelling groups
with both meteorological data to drive land surface models
and surface characteristics parameters to configure mod-
els. After running a model on their computers, participants
submit their outputs to coordinators. Coordinators analyse
outputs and communicate results. More generally, model
intercomparison projects (MIPs) have been undertaken
across all Earth system spheres, and have become a foun-
dational element of climate science (Eyring et al., 2016).
Together with PILPS-Urban, two additional MIPs have
been influential in the design of the current project.

PLUMBER (Protocol for the Analysis of Land Sur-
face Models Benchmarking Evaluation Project) (Best
et al., 2015) demonstrated the benefit of using bench-
marks to set the performance expectations for models. In
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LIPSON et al. 3

traditional modelcomparison, models are ranked by var-
ious error metrics for select observed outputs. Although
this helps identify outlying model performances it does
not help determine whether the cohort overall is perform-
ing well or poorly. Furthermore, it may lead to subjective
assessment of models being (un)fit for purpose and mis-
directing subsequent model development priorities (Best
et al., 2015). The benchmarks used in PLUMBER were
simple empirical and physically-based models with far
fewer inputs than the participating land surface mod-
els. Comparing models with benchmarks indicates the
strengths and weaknesses of the cohort and hence areas
for future development. Unsettlingly, PLUMBER found
very simple empirical models such as a linear regression
driven by short-wave radiation observed at other sites
(i.e., trained out-of-sample) outperformed all participat-
ing land surface models across a suite of standard metrics
when predicting sensible heat fluxes over 20 sites. The
authors of the PLUMBER project concluded that com-
plex and computationally expensive land surface models
were not effectively using the information available in the
forcing data when determining surface–atmosphere tur-
bulent fluxes, arguing this challenged broadly accepted
concepts used to model the surface energy balance. In
Urban-PLUMBER we adopt a similar benchmarking
approach but apply it for the first time in an urban setting.

ESM-SnowMIP (Earth System Model–Snow Model
Intercomparison Project) (Menard et al., 2021) found
widespread human errors affecting model performance
but, unlike some earlier comparisons, it encouraged
resubmissions where initial results showed unexpected
behaviour. As such, most modellers resubmitted their
results when errors were identified. Errors included incor-
rectly configuring model start times, using input data
from the wrong sites, incorrectly formatted model outputs
(variable name or sign), and hardcoded bugs (i.e., cod-
ing errors in model parameterisation). In the same way,
Urban-PLUMBER aims to reduce human errors via an ini-
tial assessment and resubmission process to better focus
on intended model functionality.

The Urban-PLUMBER project involves 30 mod-
els (Table 1, Appendix A1), 20 urban sites (Lipson
et al., 2022a), 50 site-years of meteorological observa-
tions, 200 site-years of synthetic data, and 55 model
output variables. Here, in Phase 1 of the project, we
focus on evaluating model performance of five observed
surface–atmosphere fluxes at one suburban site (Preston,
Melbourne, Australia) over 16 months. The same site
and observational data were used in PILPS-Urban (Grim-
mond et al., 2011), allowing direct comparison with those
results; hence, our objectives here are to (a) evaluate land
surface model performance in an urban setting using
a benchmarking methodology; and (b) assess how the

current cohort of models compare to earlier participants
of PILPS-Urban.

2 METHODS

2.1 Overview of modelling approaches

Many urban land surface models exist to parame-
terise urban surface–atmosphere exchanges (Grimmond
et al., 2009; Garuma, 2018; Nazarian et al., 2023) and are
developed for various purposes including to predict lower
boundary conditions for weather, climate or air quality
simulations; forecast environmental conditions within the
urban canopy (e.g., between buildings at pedestrian level);
test interventions intended to improve these conditions;
and predict anthropogenic feedbacks relating to energy
and water use or thermal comfort.

Although there is effectively a continuum of models
with different levels of complexity for different physical
processes (Figures 1 and 2, Appendix A1), here we broadly
classify models into one of five cohorts (Figure 2) based
on the representation of urban impervious surfaces (build-
ings, roads etc):

• Non-urban schemes (participants in cohort n= 2): Most
global and some regional weather and climate mod-
els lack an explicit urban scheme (Best, 2006; Oleson
et al., 2018; Daniel et al., 2019; Zhao et al., 2021). Rather
they simulate these areas using bare earth, rock or veg-
etation. Including models in this class helps determine
the importance of using an urban scheme at a suburban
site.

• One-tile (slab) schemes (n= 5): These treat built areas
as a homogenous flat surface with parameters modified
to represent the bulk influence of all urban elements.
Some one-tile urban schemes represent built urban ele-
ments only (buildings, paving, roads etc), while others
include the effects of vegetation and other surface types
(water, bare soil, etc). Therefore, optimal effective bulk
surface parameters are model-, site- and output-specific
(Salamanca et al., 2009). Methods to estimate effec-
tive surface parameters include tuning to appropri-
ately scaled observations (Best et al., 2006), from more
detailed models (Martilli et al., 2015), or from more
detailed input data (Wouters et al., 2016).

• Two-tile schemes (n= 5): These resolve two urban sur-
face facets (e.g., roofs and ‘street canyons’) with dif-
ferent thermal and radiative properties, and therefore
different surface energy balances. Best et al. (2006)
suggested two-tile schemes provide benefit because
one-tile heat capacity values could not be selected
which provide both the correct amplitude and phase
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4 LIPSON et al.

T A B L E 1 Participating models. Table 2 and Appendix A1 provide further details for each model

ID
Submission
name Urban land surface model

Vegetation land surface model
(if distinct from urban model)

01 ASLUMv2.0 Arizona State University single-layer urban
canopy model v2.0

(Integrated vegetation)

02 ASLUMv3.1 Arizona State University single-layer urban
canopy model v3.1

(Integrated vegetation)

03 BEPCOL Building effect parameterisation – column model Bare soil model based on regional atmospheric
modelling system (RAMS)

04 CABLE – Community atmosphere–biosphere land exchange
model

05 CHTESSEL – Carbon hydrology tiled ECMWF scheme for sur-
face exchanges over land (CHTESSEL)

06 CHTESSEL_U Urban scheme from CHTESSEL Tiled ECMWF scheme for surface exchanges over
land (CHTESSEL)

07 CLMU5 Community land model urban (Integrated vegetation)

08 CM Canopy model (Integrated vegetation)

09 CM-BEM Canopy model – building energy model (Integrated vegetation)

10 JULES_1T One-tile urban scheme from JULES Joint UK land environment simulator (JULES)

11 JULES_2T Two-tile urban scheme from JULES Joint UK land environment simulator (JULES)

12 JULES_MORUSES Met Office Reading urban exchange scheme Joint UK land environment simulator (JULES)

13 K-UCMv1 Klimaat urban canopy model (Integrated vegetation)

14 Lodz-SUEB Lodz SUrface energy balance (Integrated vegetation)

15 Manabe_1T One-tile urban scheme from JULES Manabe bucket

16 Manabe_2T Two-tile urban scheme from JULES Manabe bucket

17 MUSE Microscale urban surface energy model Bowen ratio method

18 NOAH-SLAB Slab urban scheme from Noah-LSM Noah land surface model (Noah-LSM)

19 NOAH-SLUCM Single-layer urban canopy model (SLUCM) Noah land surface model (Noah-LSM)

20 SNUUCM Seoul National University urban canopy model Noah land surface model (Noah-LSM)

21 SUEWS Surface urban energy and water balance scheme (Integrated vegetation)

22 TARGET The Air Temperature Response to
Green/blue-infrastructure Evaluation
Tool (TARGET)

(Integrated vegetation)

23 TEB-CNRM Town energy balance (TEB) with road canyon
hypothesis for radiation

ISBA (included in SURFEX)

24 TEB-READING Town energy balance (TEB) with road canyon
hypothesis for radiation

Simple partitioning using fixed Bowen ratio and
albedo

25 TEB-SPARTCS Town energy balance with SPARTACUS-urban for
radiative exchanges

ISBA (included in SURFEX)

26 TERRA_4.11 TERRA_URB TERRA (stand-alone version)

27 UCLEM Urban Climate and energy model (UCLEM) (Integrated vegetation)

28 UT&C Urban Tethys-Chloris (UT&C) (Integrated vegetation)

29 VTUF-3D Vegetated temperatures of urban facets (VTUF) MAESPA

30 VUCM Vegetated urban canopy model (VUCM) (Integrated vegetation)

Note: Section 2.1 provides an overview of urban modelling approaches and references.
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LIPSON et al. 5

T A B L E 2 Participating model information

ID
Submission
name Version(s) Scheme(s) Scale(s) Primary purpose(s)

Participating
author(s)

01 ASLUMv2.0 v2.0 U L/R CF/TA/TC/WS/SEB Wang, Wang

02 ASLUMv3.1 v3.1 U L/R CF/TA/TC/WS/SEB Wang, Wang

03 BEPCOL v1 U/V L TA/SEB Simón-Moral, Martilli

04 CABLE CABLE trunk r7025 V G CF De Kauwe

05 CHTESSEL CHTESSEL-IFS-CY47R1 V G CF McNorton, Boussetta

06 CHTESSEL_U CHTESSEL-IFS-CY47R1_URBAN U/V G CF McNorton, Boussetta

07 CLMU5 Release-clm5.0.34 U R/G CF Oleson

08 CM CM v2021 U R/G TA/SEB Takane, Kondo

09 CM-BEM CM-BEM v2021 U R/G TA/TC/SEB/E Takane, Kikegawa

10 JULES_1T GL9 U R/G CF/O Best

11 JULES_2T GL9 U R/G CF Best

12 JULES_MORUSES GL9 U R/G CF/O Hendry, Best

13 K-UCMv1 v1 U/V L TA/TC/SEB Beyers, Roth

14 Lodz-SUEB v3 U L SEB Fortuniak

15 Manabe_1T GL9 U/V L SEB/BM Best

16 Manabe_2T GL9 U/V L SEB/BM Best

17 MUSE V1.0 U M/L CF/TC/SEB Lee, Lee

18 NOAH-SLAB Noah-LSM v3.4.1 U/V L CF Steeneveld,
Tsiringakis

19 NOAH-SLUCM Noah-LSM v3.4.1 U/V L/R CF/TA/SEB Tsiringakis,
Steeneveld

20 SNUUCM SNUUCM+Noah-LSM v1.0 U/V L/R CF/AQ Park, Baik

21 SUEWS SUEWS v2020a U L TA/TC/WS/H/SEB Sun, Blunn

22 TARGET TARGET-Java v1.1 U/V L TA/TC/WS Nice

23 TEB-CNRM SURFEX v9 U R/G CF/TA/TC/WS/H/SEB/O Machado, de Munck,
Schoetter, Masson,
Lemonsu

24 TEB-READING TEB v4.1.0 U/V R CF/TA/SEB Meyer

25 TEB-SPARTCS SURFEX v9 U R/G CF/TA/TC/WS/H/SEB Machado, de Munck,
Schoetter, Masson,
Lemonsu

26 TERRA_4.11 v4.11 U/V L/R CF/AQ/TC/WS/SEB/O Demuzere, Varentsov

27 UCLEM CCAM r4909 U G CF/E Thatcher, Lipson

28 UT&C v1.0 U/V L/R TA/TC/WS/H/SEB Meili, Fatichi, Manoli,
Bou-Zeid

29 VTUF-3D Java v1.0 U M TA/TC/WS/SEB Nice

30 VUCM V1.0 U M/L CF/AQ/TA/TC/WS/H Lee, Han

Note: Model may include an U: urban and/or V: vegetation land surface scheme, scale developed for M: micro, L: local, R: regional, G: global; and intended
purpose to simulate CF: climate and weather forecasting, AQ: air quality, TA: temperature of air in canopy, TC: thermal comfort, WS: water-sensitive urban
design, E: energy consumption analysis, H: hydrological analysis, SEB: surface energy balance, O: operational model for numerical weather prediction, or as a
BM: benchmark for this study.
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6 LIPSON et al.

F I G U R E 1 Model schematics of the main built, hydrological and behavioural attributes for participating models. Here models are
categorised into five cohorts (left column) based on the geometric representation of buildings, with built, hydrological and behavioural
attributes used to refine a ‘total complexity’ (Figure 2). Block array, statistical distribution and building-resolved models are grouped together
into a ‘complex’ cohort in later analysis. [Colour figure can be viewed at wileyonlinelibrary.com]
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LIPSON et al. 7

F I G U R E 2 Participating model capabilities. Grouped into cohorts (non-urban, one-tile, two-tile, canyon, complex: defined by
approach to the built part of the urban area) and sorted from lower to higher ‘total complexity’ as calculated by assessing the included built,
hydrological and behavioural attributes of submissions (green cells). Blue cells indicate a model is capable of representing the process but was
not used in this submission. Frequency of approaches are indicated in right column. The ‘complexity score’ for each process is subjective. It is
intended to be indicative only, helping to distinguish models within cohorts. [Colour figure can be viewed at wileyonlinelibrary.com]
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8 LIPSON et al.

for observed sensible heat fluxes. While most two-tile
schemes have surface parameters constant through-
out a simulation, some parameterise the radiative
and thermal effects of canyons from sun angle and
morphology (e.g., MORUSES – Porson et al., 2010; CHT-
ESSEL_U – McNorton et al., 2021). In this project these
are classified as two-tile rather than canyon schemes, as
they resolve two surface energy balances only.

• Canyon schemes (n= 13): These resolve the energy bal-
ance for roof, wall and ground surfaces separately
(Masson, 2000). Radiation reflection and trapping are
simulated in two dimensions with an infinite canyon
assumption. The details of canyon schemes vary widely,
with single or multiple atmosphere layers, sub-facets
(e.g., multifaceted walls), fixed or averaged building
orientation, independent facet thermal and radiative
properties, constant or distributed building heights,
and those that include pervious ground, low vegetation
and/or street trees between buildings (Figures 1 and 2).

• More complex schemes (n= 5): These resolve
three-dimensional interactions between urban facets
using a variety of approaches. Repeated cuboids allow
for two perpendicular streets while retaining some of
the computational efficiency of a canyon approach
(Kanda et al., 2005). Statistical distributions can char-
acterise realistic urban environments and have been
used to determine three-dimensional radiative interac-
tions between buildings and urban vegetation similar
to three-dimensional radiative interactions between
clouds (Hogan, 2019a, 2019b). This allows complex
urban environments to be simulated in a computation-
ally efficient manner (Stretton et al., 2022). Building-
and tree-resolving models represent three-dimensional
interactions more explicitly, allowing microclimate
conditions to be resolved, but at a larger computational
cost.

Models can be further distinguished by how or if hydro-
logical and anthropogenic processes are addressed, again
with a large variety of approaches (Figure 1). How models
represent built, hydrological and anthropogenic processes
are used here to obtain a measure of each model’s ‘total
complexity’ (Figure 2). Participating model’s parameteri-
sations are individually summarised in Appendix A1.

2.2 Experiment design and data

2.2.1 Site description

Simulations are undertaken for the Preston area in Mel-
bourne, Australia (AU-Preston; Lipson et al., 2022a),
the same site used in PILPS-Urban Phase 2 (Grimmond
et al., 2011). The site area includes 1–2-storey detached

residential buildings, some row-style 1–2-storey com-
mercial buildings, and substantial tree and lawn cover
(Figure 3). The neighbourhood is classed as an open
low-rise (LCZ6) Local Climate Zone (Stewart and
Oke, 2012; Demuzere et al., 2022). The region is classified
as having a temperate oceanic climate (CfB) under the
Köppen–Geiger system (Beck et al., 2018).

The site parameter values (Table 3) provided to par-
ticipants are drawn from publications (Coutts, 2006;
Coutts et al., 2007a, 2007b; Grimmond et al., 2011;
Nice et al., 2018) or, when unavailable, estimated from
high-resolution global datasets (e.g., OpenLandMap soil
datasets; Hengl, 2018a, 2018b, 2018c).

2.2.2 Observational and forcing data

Observations for the AU-Preston site were gathered using
sensors mounted on a telecommunication tower 40 m
above ground to measure local-scale conditions (i.e., rather
than microscale; Coutts et al., 2007a). Measurement height
is 6.25 times mean building height (Table 3) and is thus
assumed to be within the constant flux layer and iner-
tial sub-layer. Raw data were obtained over 474.4 days (12
August 2003 to 28 November 2004) at high frequency
(1–10 Hz), which are then quality-controlled and aver-
aged to 30-min with period-ending timestamps. Quality
control removes periods unsuitable for eddy covariance
observations (e.g., strongly stable conditions or periods
subject to flow interference), along with significant out-
liers and unphysical values (Coutts et al., 2007a, 2007b;
Lipson et al., 2022a).

The site observations are split into: (a) forcing data:
provided to participants to drive models; and (b) analy-
sis data: withheld from participants and used to evalu-
ate model performances (Table 4). Analysis data are not
gap-filled; models are evaluated against observed data
only, and not analysed during periods with gap-filled
short-wave down (SWdown; except where SWdown = 0 at
night, which is assumed valid). SWup is not analysed at
night. After quality control and periods of equipment fail-
ure, remaining analysis data are well spread between day
and night, and across the four seasons (Table 4). Addi-
tional processing description, observational data and plots
are included in Lipson et al. (2022c).

The forcing dataset is gap-filled since it needs to
be continuous for models. Small gaps (≤2 hr) are filled
by linearly interpolating from available data. Larger
gaps are filled using ERA5 global reanalysis (Hersbach
et al., 2020) hourly data on single levels at 0.25◦ spatial
resolution (Hersbach et al., 2018). As gridded data dif-
fer from point observations (Martens et al., 2020), and
ERA5 does not use a model with urban climate effects
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LIPSON et al. 9

F I G U R E 3 Study area, AU-Preston: (a) location within Melbourne, Australia with the extent of the ERA5 (Hersbach et al., 2020) grid
cell used for gap-filling observations (red rectangle) (image: © OpenStreetMap contributors); and (b) aerial imagery around the flux tower
site (yellow cross with circle of 500 m radius) (image: © State of Victoria [Department of Environment, Land, Water and Planning]). [Colour
figure can be viewed at wileyonlinelibrary.com]

(McNorton et al., 2021), diurnal and seasonal adjustments
are applied to bias-correct ERA5 data using available site
observations and nearby rain gauges before gap-filling
(Lipson et al., 2022a).

Systematic and random errors are present in any obser-
vations used to force and evaluate models. Random errors
in flux observations over forested areas generally scale
with the magnitude of the flux (Hollinger and Richard-
son, 2005; Richardson et al., 2006). Flux observations at
urban sites have reported random and systematic uncer-
tainties in the same range as observed over vegetated
ecosystems (Järvi et al., 2018). At this site, daytime flux
errors have been estimated to be up to 10% (Best and Grim-
mond, 2015). Evaluating models over extended periods
reduces the effects of random errors. However, we can-
not account for systematic errors if they exist, nor can
we assess if surface energy closure is achieved with the
available observations.

Annualised rainfall during the analysis period
(682 mm) was near the long-term average. However, pre-
ceding drought conditions and ongoing restrictions on
domestic irrigation led to lower moisture availability
and higher Bowen ratios during the study period (Coutts
et al., 2007b). Conditions were otherwise reasonably repre-
sentative of typical local climatology (Lipson et al., 2022c).

2.2.3 Spin-up strategy

Soil wetness at the beginning of a simulation (the initial
conditions) can strongly influence the modelled surface

energy balance. Most land surface models require years
to reach a hydrological equilibrium when forced by local
meteorology (Yang et al., 1995; Best and Grimmond, 2014).
As soil states are model-dependent, initial conditions can-
not simply be transferred between models nor set to one
state across models (Koster et al., 2009). Ideally, each
model would reach their own equilibrium during a spin-up
period which is not analysed, with 10 years considered
generally sufficient across a wide range of land surface
models (Best et al., 2015; Best and Grimmond, 2016b).

As model-forcing observations are rarely available to
allow such a long spin-up at urban sites, past evaluation
strategies include discarding some initial observations as
spin-up (Grimmond et al., 2011), repeating a single year of
observations several times (Best et al., 2015), using global
reanalysis products such as ERA5 (Hersbach et al., 2020)
or reanalysis data with bias corrections applied from grid-
ded observations, such as WFDE5 (Cucchi et al., 2020).
Using reanalysis for spin-up represents interannual vari-
ability prior to the analysis period and allows observations
to be used for analysis. However, gridded reanalysis data
(with grid spacing of order 30 km or coarser) may be
unsatisfactory if local urban effects are not captured. To
address this, we use site-bias-corrected ERA5 time series
for 10 years prior to analysis (Lipson et al., 2022a). This
provides meteorology (precipitation, solar radiation, tem-
perature, wind etc.) over a sufficiently long period for
soil states to equilibrate with local conditions prior to the
analysis period. Of the 30 participating models, five did
not use the full spin-up period (ASLUMv2.0, ASLUMv3.1,
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10 LIPSON et al.

T A B L E 3 Site-descriptive metadata

ID Parameter Value Units Footprint Source

Baseline experiment parameters (1–9)

1 Latitude −37.7306 Degrees_north Tower (Coutts et al., 2007a)

2 Longitude 145.0145 Degrees_east Tower (Coutts et al., 2007a)

3 Ground height 93 m Tower (Coutts et al., 2007a)

4 Measurement height above ground 40 m Tower (Coutts et al., 2007b)

5 Impervious area fraction 0.62 1 500 m radius (Grimmond et al., 2011)

6 Tree area fraction 0.225 1 500 m radius (Grimmond et al., 2011)

7 Grass area fraction 0.15 1 500 m radius (Grimmond et al., 2011)

8 Bare soil area fraction 0.005 1 500 m radius (Grimmond et al., 2011)

9 Water area fraction 0 1 500 m radius (Grimmond et al., 2011)

Detailed experiment parameters (1–24)

10 Roof area fraction 0.445 1 500 m radius (Grimmond et al., 2011)

11 Road area fraction 0.13 1 500 m radius (Grimmond et al., 2011)

12 Other paved area fraction 0.045 1 500 m radius (Grimmond et al., 2011)

13 Building mean height 6.4 m 500 m radius (Grimmond et al., 2011)

14 Tree mean height 5.7 m 500 m radius (Nice et al., 2018)

15 Roughness length momentum 0.4 m 500 m radius (Coutts et al., 2007b)

16 Displacement height 7.92 m 500 m radius (Coutts, 2006, p. 228)

17 Canyon height width ratio 0.42 1 500 m radius (Grimmond et al., 2011)

18 Wall to plan area ratio 0.4 1 500 m radius (Grimmond et al., 2011)

19 Average albedo at midday 0.151 1 Radiometer view Median of observations

20 Resident population density 2,940 Person km−2 Suburb average (Coutts et al., 2007a)

21 Anthropogenic heat flux mean 11 W⋅m−2 500 m radius (Best and Grimmond, 2016a)

22 Topsoil clay fraction 0.18 1 250 m grid (Hengl, 2018a)

23 Topsoil sand fraction 0.72 1 250 m grid (Hengl, 2018b)

24 Topsoil bulk density 1,230 Kg m−3 250 m grid (Hengl, 2018c)

Note: Parameters 1–9 were provided to participants for use in the ‘baseline’ experiment, while the ‘detailed’ experiment allowed the use of all parameters. For
detailed definitions see Lipson et al. (2022a).

BEPCOL, K-UCMv1, TARGET) because a long spin-up
was not deemed necessary by those participants.

2.2.4 Baseline and detailed experiments

To assess how site-specific information impacts model per-
formance, two experiments are undertaken. First, as a
baseline, participants configured their models using only
land cover and location information (parameters 1–9,
Table 3) and their default model configurations. This is
designed to evaluate models configured with information
typically obtainable from global high-resolution land cover

datasets. Second, for a detailed submission, participants
could use all parameters in Table 3. This is designed to
evaluate if performance improves with parameters that
are more challenging to obtain and not typically globally
available (e.g., building height, canyon aspect ratio, and a
breakdown of hard surfaces into building, road and paved
fractions).

The previous intercomparison at the same site
(PILPS-Urban: Grimmond et al., 2011) included four
stages with increasingly detailed site information for par-
ticipants. The baseline experiment in the current project
is most similar to PILPS-Urban Stage 2, and the detailed
experiment to PILPS-Urban Stage 4 (for which model
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LIPSON et al. 11

T A B L E 4 Observational data description and availability

Variable Description Units Positive All Day Night DJF MAM JJA SON

a. Forcing data [%] [%] [%] [%] [%] [%] [%]

SWdown Downward short-wave radiation W⋅m−2 Downward 85.7 38.8 47.7 19.2 19.4 19.1 28.0

LWdown Downward long-wave radiation W⋅m−2 Downward 71.8 38.2 33.6 19.2 19.4 13.7 19.5

Tair Air temperature K - 100.0 52.3 47.7 19.2 19.4 23.5 37.9

Qair Specific humidity kg⋅kg−1 - 100.0 52.3 47.7 19.2 19.4 23.5 37.9

Psurf Station air pressure Pa - 86.3 46.0 40.2 19.1 19.1 16.4 31.7

Wind_N Northward wind component m⋅s−1 Northward 99.9 52.2 47.7 19.2 19.4 23.5 37.9

Wind_E Eastward wind component m⋅s−1 Eastward 98.9 51.7 47.3 18.8 19.4 23.4 37.2

Rainf Rainfall rate kg⋅m−2⋅s−1 Downward 100.0 52.3 47.7 19.2 19.4 23.5 37.9

Snowf Snowfall rate kg⋅m−2⋅s−1 Downward 0.0 0.0 0.0 0.0 0.0 0.0 0.0

b. Analysis data

SWup Upward short-wave radiation W⋅m−2 Upward 35.9 35.9 0.0 11.5 7.3 5.9 11.2

LWup Upward long-wave radiation W⋅m−2 Upward 66.2 35.1 31.1 19.0 15.8 13.4 18.0

Qle Latent heat flux W⋅m−2 Upward 43.1 19.8 23.4 11.3 9.3 11.5 10.9

Qh Sensible heat flux W⋅m−2 Upward 43.3 19.8 23.5 11.3 9.4 11.6 11.0

Qtau Momentum flux N⋅m−2 Downward 73.3 35.4 37.9 18.9 15.8 14.1 24.5

Note: Forcing data are gap-filled with bias-corrected reanalysis data (Lipson et al., 2022a). Analysis data are used for model evaluation without gap-filling.
DJF=December, January, February (summer); MAM: March, April May (autumn); JJA: June, July, August (winter); SON: September, October, November
(spring).

outputs are reanalysed and compared with the current
cohort in Section 3: Results).

2.2.5 Requested model outputs

Of the 55 variables participants are asked to return, here
we analyse four surface energy fluxes – upward short-wave
(SWup) and long-wave (LWup) radiation, sensible (Qh) and
latent heat flux (Qle) – as well as the momentum flux
(Qtau) (Table 4b). The additional 50 variables are collected
to undertake more detailed analysis in future studies and
for error checking purposes (e.g., to check input forcing
aligned with output time steps).

Variable names and formats follow the conventions
of the Assistance for Land-surface Modelling Activities
(ALMA) (Bowling and Polcher, 2001), as used in previous
PILPS projects to facilitate data exchange in (non-urban)
land surface model intercomparisons projects. Variables
requested include both the ALMA ‘mandatory’ and addi-
tional urban-specific variables [e.g., anthropogenic heat
(Qanth) and water (Qirrig) fluxes, storage heat flux (QStor),
roof, wall and road surface temperatures (RoofSurfT, Wall-
SurfT, RoadSurfT), bulk air temperature within buildings
and in street canyons (TairBuilding, TairCanyon), and urban
canopy albedo (UAlbedo)]. Outputs are further described in

the modelling protocol (Lipson et al., 2020). No submission
included all requested outputs (Figure 4).

2.2.6 Submission and feedback

Submissions were accepted through a web portal (https://
modelevaluation.org) that stores data and undertakes
comparison with observation (Abramowitz, 2018). Various
automatic and manual checks (Table 5) are undertaken
to diagnose human errors in model configuration and
outputs, as these cause poor performance that prevents
model design or parameterisation from being appropri-
ately assessed (Menard et al., 2021). On submission, imme-
diate feedback is provided to participants to inform of basic
file formatting errors. Subsequently, time series and energy
closure plots are provided to participants by project coor-
dinators. Short-wave radiation is chosen as a focus for
feedback because it is a relatively simple flux to model,
and has an instantaneous response, making timing issues
between forcing and outputs more obvious. Also, correctly
representing the bulk albedo is known to be important for
urban model performance, as the net short-wave radiation
dominates the energy balance (Best and Grimmond, 2015).

Following feedback, participants had an opportunity
to resubmit prior to more complete analysis and final
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12 LIPSON et al.

F I G U R E 4 Submitted variables. Variables analysed here are defined in Table 4, with others defined in the Urban-PLUMBER
modelling protocol (Lipson et al., 2020), following the ALMA naming conventions (Bowling and Polcher, 2001). Two models (CABLE and
CHTESSEL) submitted only the baseline experiment, as they could not use the detailed urban parameters (Table 3). [Colour figure can be
viewed at wileyonlinelibrary.com]

T A B L E 5 Submission error checks. Feedback was provided to participants, who were able to resubmit prior to final analysis

Check action Purpose Number affected

a) Immediate feedback from modelevaluation.org

Timestep number Ensure time step length and simulation period matched expectations Some

Included variables Check number of variables submitted All

Variable names Check submitted variables names are as requested Some

Variable units Check submitted variable units are as requested Some

Mean fluxes plots Provide feedback on sign and magnitude of mean fluxes Some

b) Feedback after manual checks (i.e., subsequent weeks): Plots include:

SWdown Ensure timestamps of submission matched expectations Some

SWdown (subset) Check if modelled SWdown matches forcing: Some using <30-min time steps
introduces

Interpolation errors Some

Energy closure Lack of surface energy balance closure may indicate incorrect partitioning, output
format or sign errors

Many

SWnet (average) Simulated midday albedo: Midday albedo provided for detailed experiment Some

Anthropogenic flux Simulated anthropogenic flux: Expect mean magnitude provided for detailed
experiment

Some
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LIPSON et al. 13

F I G U R E 5 Example benchmark diagrams. (a) Manabe_1T, (b) REG1-SWdown, (c) REG2-SWdown-Tair, (d) KM3-SWdown-Tair-RH with
cluster centroids (black crosses), and (e–h) predictions using corresponding (a–d) benchmarks. A two-week period of upward long-wave
radiation (LWup) is used as an example of benchmark output (coloured lines, with observations in black). Error statistics are calculated over
all available periods, for mean absolute error (MAE), mean bias error (MBE), normalised standard deviation (nSD) and the coefficient of
determination (r2), all defined in Table A1. [Colour figure can be viewed at wileyonlinelibrary.com]

error statistics being shared. The number of submissions
(including the first) varied from one to nine. Initial checks
identified human errors including incorrect start times,
mislabelling of outputs, variable sign errors, forcing inter-
polation errors (where model time step was shorter than
forcing) and errors in model source code causing unphys-
ical or unexpected behaviour. Results were presented to
participants through the project website (https://urban-
plumber.github.io/), including time series plots of all sub-
mitted variables and individual model results and meta-
data (archived in the supporting information).

2.3 Evaluation methods

2.3.1 Benchmarks

Following PLUMBER (Best et al., 2015), we use bench-
marks (Figure 5) to guide performance expectations that
are both physically (e.g., Manabe, 1969; bucket model)
and empirically based. The empirical benchmarks are
determined by statistical regressions using observational
data independent of the site (so-called ‘out-of-sample’),
meaning that data from the site being tested are not
used to establish regression parameters. PLUMBER used
out-of-sample benchmarks to provide a lower bound
on performance expectations. Here we include two

‘in-sample’ empirical benchmarks (i.e., derived using
test site data) to give an expected upper bound on
flux predictability. More complex empirical models with
lagged inputs can improve benchmarks further (Haughton
et al., 2017); however, the benchmarks described below
are sufficient for our analysis and allow direct comparison
with those used in PLUMBER.

The out-of-sample regressions are trained using mete-
orological data: downward short-wave radiation (SWdown),
air temperature (Tair), and relative humidity (RH) from
20 urban sites (Table A2). The sites are from Europe, the
Americas, Asia and Australia, and have different regional
climates, urban surface characteristics and observational
period (Lipson et al., 2022a). All empirical benchmarks
rely only on contemporaneous meteorological data (i.e., do
not draw on data from previous periods to make predic-
tions).

Six benchmarks are categorised into three groups. The
ALMA short-names (Table 4) are used to denote model
driving variables of empirical benchmarks.

Group one includes a single physically-based bench-
mark:

• Manabe_1T: A simple ‘slab and bucket’ model
(Figure 5a) based on physical principles (i.e., conserva-
tion of energy, mass and momentum). The impervious
(built) fraction is simulated using a one-tile slab scheme
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14 LIPSON et al.

(Best, 2005). For the pervious fraction a simple rep-
resentation allows precipitation to fill a store which
overflows when full, and otherwise freely evaporates
(Manabe, 1969). At each time step, the impervious and
pervious tile outputs are calculated and aggregated with
a weighted mean. Manabe_1T is configured using base-
line parameters (Table 3: parameters 1–9). Additionally,
Manabe_1T is treated as a participating model (i.e.,
evaluated against other benchmarks) through a sec-
ondary configuration using the detailed site parameters
(Table 3).

Group two has three out-of-sample empirical bench-
marks:

• REG1-SW down: Linear regression with one variable
(SWdown, Figure 5b) is used separately to predict SWup,
LWup, Qh, Qle, and Qtau. At night all predicted values are
constant because SWdown = 0 W⋅m−2.

• REG2-SW down-Tair: Two-variable (SWdown and Tair) lin-
ear regression (Figure 5c) provides some information at
night and provides benefit for variables strongly depen-
dent on temperature (e.g., LWup and Qh).

• KM3-SW down-Tair-RH: A piecewise multivariable
regression. Following PLUMBER’s conceptual argu-
ments, three predictor variables (SWdown, Tair and RH
data) are split into three groups (low, medium and
high) to create 33 = 27 clusters, for which independent
regressions are trained. k-means clustering (Pedregosa
et al., 2011) is used to partition training data unsuper-
vised (Figure 5d). To use this benchmark, at each time
step the proximity of the forcing data to one of the 27
training cluster centroids is determined, and then that
cluster’s regression is applied to form a prediction. This
benchmark equates to PLUMBER’s EMP3KM27 (Best
et al., 2015), which outperformed all participating land
surface models when predicting sensible and latent
heat fluxes across 20 sites based on common metrics.

Group three has two in-sample empirical benchmarks:

• KM3-IS-SW down-Tair-RH: Following the previous
k-means clustering method, but trained with in-sample
data only (i.e., AU-Preston). This will outperform an
equivalent out-of-sample model, but performance is
expected to degrade if applied to dissimilar conditions
(i.e., another site) because of overfitting.

• KM4-IS-SW down-Tair-RH-Wind: k-means is applied
incorporating a fourth variable (wind speed), increasing
the clusters to 34 following the above rationale. Wind
speed provides information to help predict turbulent
heat and momentum fluxes.

Benchmark time series data are openly available (Lip-
son and Best, 2022).

2.3.2 Error metrics

Following PLUMBER (Best et al., 2015), we use statistical
measures in three groups:

• Commonly used model comparison statistics: mean
absolute error (MAE) measures average error; mean
bias error (MBE) for overall bias; normalised standard
deviation (nSD) compares the variance of model out-
put to that of the observations; correlation coefficient (r)
measures pattern errors.

• Extremes of the observed distribution: absolute error at
the 5th and 95th percentile of observed and modelled
outputs.

• Shape of the distribution compared to observations:
skewness measures differences in symmetry of the dis-
tributions; kurtosis measures differences in the weight
of the tails of the distribution; overlap indicates the
closeness of fit across the two distributions.

We also separately use centred root-mean-square error
(cRMSE) as a measure which combines variance and pat-
tern errors, but does not capture bias errors (Taylor, 2001).
For aggregated scoring, error statistics (e.g., MBE) are rede-
fined into error metrics (mMBE) to be positive with perfect
score of zero (Table A1). For benchmark scoring, MAE
gives identical results to the normalised mean error (NME)
used in PLUMBER. All statistics and metrics are defined
in Appendix Table A1.

2.3.3 Benchmark scoring

PLUMBER used a simple rank-based score to evaluate
models and benchmarks (Best et al., 2015). However, sim-
ple ranking may give a false impression of difference where
metric results are nearly identical (Haughton et al., 2016).
Relative scoring allows relative performance to be shown
(Sabot et al., 2020). Furthermore, if global extrema are used
across all models and benchmarks, this ensures a single
benchmark has the same relative score across models.

Thus, our scoring differs from PLUMBER. For each
participating model i, variable v and metric m, a score S is
calculated for the i th model using the minimum and max-
imum metric result across all models and benchmarks for
that variable:

Si,v,m =
mi,v −min (mv)

max (mv) −min(mv)
(1)
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LIPSON et al. 15

This gives a score of 0 for the best-performing model
or benchmark, and 1 for the poorest, with all others
scaled relative to the range of results. Rescaling scores
between 0 and 1 ensures that no metric has greater weight
when aggregated with others. Different metric scores
(Section 2.3.1) are aggregated into groups with:

Si,v =
1

nm

nm∑

m=1
Si,v,m (2)

where nm is the number of metrics in group being aggre-
gated (e.g., for the extremes group nm = 2).

3 RESULTS

To build our understanding of the model’s perfor-
mance, we initially consider one error statistic, the MAE
(Section 3.1: Figure 6). Although no single measure can
fully characterise model skill (Jackson et al., 2019), MAE
provides a simple and unambiguous measure of average
error (Willmott and Matsuura, 2005) and allows compar-
ison of error magnitude across fluxes in natural units
(W⋅m−2). Subsequently, three statistics (for correlation,
variance and difference errors) are analysed in a Tay-
lor diagram (Taylor, 2001) (Section 3.2: Figure 7). Aggre-
gated benchmark performance scores (Section 2.3.3) are
then analysed in benchmarking diagrams, using common
error metrics (Section 3.3: Figure 8). Finally, all metrics
(common, extreme and distribution) are used to com-
pare models with benchmarks (Section 3.4: Figure 9). The
PILPS-Urban Phase 2 Stage 4 (Grimmond et al., 2011)
(hereafter G11) anonymised model outputs are reanalysed
here conforming to this project’s metrics and analysed
periods.

3.1 Assessment using the mean
absolute error

Individual model MAE results are combined into box-
plots (Figure 6) for three experiments (G11, baseline
and detailed) with results also analysed by model cohort
(Section 2.1). The performance of the ensemble mean (i.e.,
the mean of participating model outputs at each time
step; rightmost column) and the benchmarks (coloured
horizontal lines) are also shown (Figure 6).

For upward short-wave radiation (SWup), the detailed
site information (e.g., albedo) improved all cohort per-
formance where utilised (non-urban models did not sub-
mit detailed simulations). Most one-tile, two-tile and
canyon models outperform the physical and out-of-sample
benchmarks when given detailed information, whereas

complex models did not use this information as effec-
tively. The ensemble means perform similarly across the
three experiments (G11, baseline and detailed), matching
the best-performing individual models. The relatively low
MAE for all benchmarks (2.3–7.0 W⋅m−2) indicates this
flux can be well simulated with few inputs.

For upward long-wave radiation (LWup), providing
more detailed site information reduced the MAE for
one-tile models, but performance changed little for other
model types (in some cases becoming poorer). Most mod-
els outperform the physical benchmark but only some
beat the empirical benchmarks. The ensemble mean time
series outperforms the physical and out-of-sample bench-
marks. The LWup benchmark MAE values are larger (5.2
— 22.4 W⋅m−2) than for SWup, indicating the flux is more
challenging to predict with the information available to
benchmarks.

For sensible heat flux (Qh), providing detailed infor-
mation broadly improves performance, particularly for
two-tile, canyon and complex cohorts. Models with ini-
tially large baseline anthropogenic heat fluxes benefit-
ted from knowing this site’s relatively small flux mag-
nitude (11 W⋅m−2 annual mean). All cohort mean and
median MAE outperform the physical and out-of-sample
empirical benchmarks for the detailed simulations, with
the ensemble mean able to outperform all benchmarks
(including in-sample benchmarks). The larger benchmark
errors (18.5–32.9 W⋅m−2) indicates that the flux is more
challenging to predict than either radiative flux.

For latent heat flux (Qle), more detailed informa-
tion provided little benefit for reducing MAE, and per-
formance degrades slightly with more complex cohorts
(based on built geometry, not vegetation or hydrology
attributes). This suggests the more detailed information
(mostly related to urban morphology) may not be in a form
useful for models. However, the non-urban models do
most poorly as, without any impervious surface fraction,
they vastly overestimate evapotranspiration. The detailed
ensemble mean outperforms all individual models and the
in-sample empirical benchmarks. Qle has a relatively high
benchmark range (18.6–26.1 W⋅m−2), indicating a greater
challenge to predict than radiative fluxes.

In summary, the range of MAE is lower for the current
models than for the G11 models, indicating better perfor-
mance of urban models in the present intercomparison.
Differences in mean MAE for models in G11 and detailed
experiments (which have comparable site information) are
statistically significant for SWup, Qh and Qle, but not for
LWup (t-test, p< 0.05). The range of MAE for the detailed
simulations is generally smaller than for the baseline, indi-
cating models benefitted from additional site information.
The difference in the mean MAE for baseline and detailed
experiments reaches significance in SWup only.
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16 LIPSON et al.

F I G U R E 6 Mean absolute error (MAE) boxplot results. Individual models (dots) are split into cohorts (Section 2.1) with benchmarks
(horizontal lines) for four fluxes: upward short-wave radiation (SWup), upward long-wave radiation (LWup), sensible heat flux (Qh) and latent
heat flux (Qle). Boxplots are shown for model experiments (left to right in each column): (1) PILPS-Urban Phase 2 Stage 4 (G11: Grimmond
et al., 2011; grey); (2) Urban-PLUMBER baseline (blue); and (3) Urban-PLUMBER detailed (orange). The level of information in G11 (the
final stage of PILPS-Urban) is comparable to the detailed experiment in this project. Boxes show the 25th and 75th percentile, median
(horizontal line), full range (whiskers) and mean (open circle). [Colour figure can be viewed at wileyonlinelibrary.com]

3.2 Taylor diagram evaluation

A Taylor diagram (Taylor, 2001) combines three
error statistics: (a) a difference error metric (centred
root-mean-square error: cRMSE); (b) a variance error met-
ric (modelled standard deviation normalised by observed
standard deviation: �̃�); and (c) a correlation error met-
ric (Pearson’s correlation coefficient: r; all defined in
Table A1). Taylor diagrams use the centred RMSE (the
RMSE after mean bias is removed) because it has a geomet-
ric dependence with the other two (independent) metrics,
allowing the construction of the diagram (Figure 7). For
each model, a marker shows where the three metrics
intersect. The cRMSE of benchmarks is indicated by the
concentric dashed lines. A model that would perfectly
align with observations is indicated with a star at the
figure base. The G11 PILPS-Urban Phase 2 Stage 4 results
(small dots) are compared with the detailed experiments,
as the site information available in each is comparable.

For SWup, most Urban-PLUMBER (UP) models and
benchmarks are grouped tightly around the observation
star (Figure 7a). Some UP models (e.g., 22, 29) have high
correlations, but different variances than observed, indi-
cating errors in bulk albedo. Others (e.g., 09) captured
the observed variance well, but had lower correlation,
indicating a potential time-of-day issue with SWup (either

a time offset, or in this model’s case, an asymmetrical diur-
nal profile). Using cRMSE as a metric, 23 of 30 UP models
outperform at least one benchmark, while only 18 of 31
of the G11 models do (Table 6). The spread in �̃� and r
indicates G11 models had greater albedo and time-of-day
errors than UP models (Figure 7).

For LWup (Figure 7b), many participating models have
larger variance than observed because of an overprediction
in the diurnal range of LWup. Some UP models (e.g., 22, 20)
are high-end outliers, with �̃� of approx. 1.7 (i.e., 170% of
observations), greater than the cRMSE of all benchmarks.
G11 outliers are larger still (0.5 to 2.0). The LWup ensem-
ble mean in UP and G11 performs similarly, as do the
number of models that outperform benchmarks (Table 6).
In UP, one model (18: NOAH-SLAB) outperformed all
benchmarks in cRMSE.

For Qh (Figure 7c), correlation and variance statistics
(and hence cRMSE) improved substantially in UP com-
pared with G11. For UP, 28 of 30 models outperform
at least one benchmark in cRMSE (cf. 18 of 31 in G11,
Table 6). Twelve UP models outperform all out-of-sample
benchmarks (cf. six G11 models). One UP model (14:
Lodz-SUEB) outperforms the four-variable in-sample
benchmark, which is the upper limit of performance
expectations. The UP ensemble mean also performs very
well, outperforming all benchmarks nSD, R and cRMSE.
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LIPSON et al. 17

F I G U R E 7 Taylor
diagram combines the
normalised standard deviation
(�̃�), correlation coefficient (r)
and cRMSE (defined in
Table A1). Models (coloured
numbers) have better
performance if closer to star at
diagram base, with cohort
colours: non-urban (dark
greens), one-tile (blues),
two-tile (greens), canyon
(orange to reds), complex
(purples). Benchmarks models
(coloured symbols) with their
cRMSE contours (concentric
dashed lines), and the
PILPS-Urban Phase 2 Stage 4
(G11: small black circles).
[Colour figure can be viewed at
wileyonlinelibrary.com]
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18 LIPSON et al.

F I G U R E 8 Benchmarking assessment for ‘common’ set of metrics (MAE, MBE, nSD, R) showing benchmarks (coloured lines) and
models (black markers). Lower scores are better (Equation 1 and Equation 2). Model columns include up to three markers for different
experiment submissions (1, PILPS-Urban Phase 2 Stage 4 [G11]; 2, baseline; and 3, detailed). Colours at the base of each column indicate the
benchmarks a model outperforms per experiment (colour, lower legend). Models are ordered by nominally increasing complexity (Figure 2).
For Qtau, grey indicates no submission. [Colour figure can be viewed at wileyonlinelibrary.com]

The UP ensemble mean variance is nearly identical to
observations (�̃� = 1.00), while for G11, 26 models had
higher variance than observations and the ensemble mean
�̃� = 1.23. Higher variance in G11 models indicates an
overprediction in maximum Qh values or a general over-
estimation of the variability in Qh. As cRMSE is ‘cen-
tred’ it does not measure bias error (Taylor, 2001). For
Urban-PLUMBER, the MBE for Qh ensemble mean is
5.2 W⋅m−2 (cf. 12.1 W⋅m−2 in G11), indicating the UP
models have improved partitioning of available energy
into Qh.

Compared with other fluxes, the poorer cRMSE of the
six benchmarks for Qle (Figure 7d) indicates this flux is

more challenging to predict, or that it requires other inputs
to improve performance (e.g., precipitation, soil states
or vegetation characteristics). Most UP and G11 models
underestimate the variance of this flux. The ensemble
mean’s �̃� = 0.70 (i.e., 70% of observations standard devi-
ation). However, this is an improvement over the G11
ensemble mean (�̃� = 0.60). The G11 results exclude six
models that did not provide Qle output (i.e., some assumed
Qle = 0 W⋅m−2). The ensemble mean for Urban-PLUMBER
MBE (−4.1 W⋅m−2) is better than for G11 (−8.2 W⋅m−2

for G11 models that explicitly resolved Qle). Combined
with the improved ensemble mean Qh MBE, this indicates
the UP models are better at partitioning available energy
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LIPSON et al. 19

F I G U R E 9 All metric benchmarking results. Models are ordered nominally by increasing complexity (Figure 2) showing benchmark
scorecard of individual and aggregated metrics based on ability to outperform benchmarks (colour) for both the baseline (left) and detailed
(right) simulations. Note a single box indicates only one submission made. For Qtau, grey indicates no submission. [Colour figure can be
viewed at wileyonlinelibrary.com]

T A B L E 6 Number of models outperforming the cRMSE benchmarks for Urban-PLUMBER detailed simulations (UP) and
PILPS-Urban Phase 2 Stage 4 (G11) (Grimmond et al., 2011)

Flux SWup LWup Qh Qle Qtau

Project UP G11 UP G11 UP G11 UP G11 UP G11

Total models 30 31 30 31 30 31 30 25 11 11

Beat at least: 1 benchmark (physical or empirical) 23 18 28 28 28 18 22 16 9 10

2 benchmarks (physical or empirical) 22 18 20 16 15 6 10 7 9 10

3 benchmarks (physical or empirical) 22 18 4 6 12 6 8 5 9 10

All out-of-sample benchmarks (physical and empirical) 0 1 4 6 12 6 5 3 4 3

1 in-sample empirical benchmark 0 0 1 1 7 2 0 0 9 10

2 in-sample empirical benchmarks 0 0 1 1 1 0 0 0 0 0

Note: Models are executed for the same site with the same observations but different models (or versions). Higher number (bold) is better.
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20 LIPSON et al.

into Qh and Qle. No model in either project outperformed
in-sample empirical benchmarks for Qle (Table 6).

Eleven models provided the simulated momentum flux
(Qtau) from both Urban-PLUMBER and G11 (Figure 7e).
Performance in both projects is similar, cf. benchmarks
(Table 6). Benchmarks without wind information (i.e.,
one-, two- and three-variable empirical benchmarks)
did not perform well. All models ranked between the
three-variable and four-variable in-sample benchmarks,
and all were able to beat out-of-sample empirical bench-
marks.

3.3 Benchmarking evaluation:
Common metrics

We can evaluate model results relative to the bench-
marks for various experiments using the aggregated scores
(Equation 1 and 2) from four common metrics (MAE,
MBE, nSD, R). A lower relative score indicates better
performance (Figure 8). Of the 30 models in this project, 11
(in an earlier form) also participated in G11, so allow direct
comparison. In Figure 8, the models are ordered in increas-
ingly complex cohorts (Section 2.1), and within cohorts by
the ‘total complexity’ (Figure 2), which includes hydrology
and anthropogenic related characteristics.

For SWup, providing more detailed site information
consistently improves the aggregate scores. The models
in the simpler cohorts (one-tile, two-tile) benefit more
from the more detailed information (square marker in
each model column), where eight of 10 outperformed both
physical and out-of-sample empirical benchmarks (dark
green, model column base). Almost all canyon models
outperform a benchmark, and in the detailed experiment
three outperform all physically-based and out-of-sample
empirical benchmarks. Only one complex model outper-
forms a benchmark for SWup (excluding G11 results), indi-
cating the complex cohort have more difficulty using pro-
vided site information. The ensemble mean (last column)
for G11 and UP performs well, beating all out-of-sample
benchmarks (dark green) in the more detailed experi-
ments.

For LWup, additional site information does not always
improve performance, and sometimes degrades it. Per-
formances of cohorts are inconsistent, with some mod-
els in non-urban, one-tile, two-tile and canyon categories
outperforming all physical and out-of-sample empirical
benchmarks, but others beat none. The canyon and com-
plex models, and some two-tile models with radiation
parameterisations, should be able to improve their LWup
performance by utilising the detailed information pro-
vided on building morphology (e.g., representing canyon
long-wave trapping), but appear unable to do so. The

most complex urban schemes again are not able to effec-
tively use provided information, with none outperforming
a multivariate empirical benchmark. The ensemble mean
performance changes little between G11 and UP.

For Qh, the non-urban, and most one-tile, two-tile
and canyon models outperform all out-of-sample empir-
ical benchmarks (dark green). This is in stark con-
trast to PLUMBER (Best et al., 2015) when no model
outperformed even the one-variable linear regression at
non-urban sites. Again, fewer complex models are able
to beat empirical benchmarks, but all outperform the
physically-based benchmark. Some one-tile (14), two-tile
(11, 16) and canyon (01, 07, 19) models beat the
three-variable, but not the four-variable in-sample bench-
marks, which we consider as an upper performance expec-
tation. Providing additional site information more fre-
quently improves, rather than degrades, performance. The
biggest improvements occur in models that assumed ini-
tially large baseline anthropogenic heat fluxes (e.g., mod-
els 21, 24, 26), drawing on the detailed characteristic esti-
mates of mean anthropogenic flux. Substantial improve-
ment in the ensemble mean occurs from G11 to UP base-
line to detailed experiments, with the latter outperforming
all benchmarks, including those trained in-sample (pur-
ple). Qh is the only variable where the ensemble mean
beats all the benchmarks for common metrics.

Although additional site information degrades Qle
model performances as often as it improves it, the
improvements are larger in magnitude. Hence, the ensem-
ble mean improves across the three experiments, in each
case outperforming all the out-of-sample and physical
benchmarks. Non-urban models are unable to outperform
any benchmark because they overestimate Qle magni-
tudes. The three best-performing models in Qle (10, 11,
12) are all JULES-based models used with different urban
schemes. Some one-tile (10, 14, 18), two-tile (11, 12),
canyon (07, 13, 23, 27, 28) and complex (09, 25) models
outperform all physical and out-of-sample benchmarks in
detailed simulations. It is unclear at this stage why these
models are performing well in Qle, as they all differ in
their approaches in representing vegetation and hydrology
processes. Further analysis across multiple sites may be
informative. No detailed information for vegetation is pro-
vided that may have improved model performance further,
e.g., leaf area index (LAI) phenology or stomatal conduc-
tance.

The 11 models that submitted Qtau results perform
better for the detailed than the baseline simulations but
have a slightly degraded ensemble mean than for G11.
Of the benchmarks, the four-variable in-sample bench-
mark (i.e., including wind speed) performs best, fol-
lowed by the physically-based benchmark (Manabe_1T).
Other benchmarks, without lacking the critical wind speed
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LIPSON et al. 21

information for the momentum flux, perform poorly. No
clear pattern is evident by modelling approaches.

3.4 Benchmarking evaluation: All
metrics

The prior metrics (MAE, MBE, nSD, R and cRMSE) are
focussed on central tendency rather than the extremes
and/or the distribution. Ability to predict high-impact
weather events (historical, current, future climate) makes
performance skill for extremes important. We therefore
expand the ‘common’ benchmark scorecard results from
the base of Figure 8 with ‘extreme’ and ‘distribution’ error
metrics in Figure 9. Relative performances (as in Figure 8)
for metric groups are provided in the supporting informa-
tion (Figures S1–S3).

For Qh and Qle, some models outperform in-sample
benchmarks (purple), with many able to outperform all
out-of-sample benchmarks (green). An exception is that
all model cohorts find predicting the 95th percentile for
Qh challenging (white or blue) because they overestimate
the upper Qh tail. For Qtau, models generally perform very
well compared with in-sample empirical benchmarks,
although this flux is heavily reliant on instantaneous wind
information which is only provided in the most complex
benchmark (KM4-IS-SWdown-Tair-RH-Wind). Most mod-
els assessed for Qtau perform similarly to the simple
physically-based benchmark (Figure 8).

The ensemble mean time series performs strikingly
well across all fluxes, beating in-sample benchmarks for
many metrics in Qh, Qle and Qtau, and beating most
out-of-sample benchmarks in SWup and LWup. The abil-
ity of the ensemble mean to outperform even empirical
models trained in-sample suggests the participating mod-
els adequately span the range of uncertainty from the
parameterisation of processes.

4 DISCUSSION

PILPS-Urban established that correctly representing the
ratio of impervious to pervious surfaces is of first-order
importance for urban model performance (Grimmond
et al., 2011), so we do not investigate that here and provide
land fraction information in the first ‘baseline’ experiment
(Table 3a). We instead assess the impact of secondary infor-
mation (e.g., three-dimensional morphology, bulk albedo,
anthropogenic heat) in a ‘detailed’ experiment (Table 3b).
We also compare outputs from Urban-PLUMBER (UP)
models with those from PILPS-Urban Phase 2 Stage 4
(G11) (Grimmond et al., 2011), which used the same site
and observations.

Current models show reduced errors across four
energy fluxes (Figure 6), with a lower MAE range, and
lower mean MAE for both the baseline and detailed exper-
iments compared with G11 (however not reaching sta-
tistical significance for LWup). For cRMSE (Table 6), we
find broad improvement for upward short-wave (SWup),
sensible (Qh) and latent (Qle) heat fluxes, but little or no
improvement in upward long-wave (LWup) and momen-
tum (Qtau) fluxes. When assessing performance using
four common evaluation metrics (Figure 8), the ensem-
ble mean has clearly improved for Qh and Qle but is little
changed or slightly degraded for SWup, LWup and Qtau.

These results suggest the current generation of models
is performing better than the G11 models for Qh and Qle.
In the last decade considerable community effort has been
applied to improve existing and develop new models with
particular focus on better resolving vegetation and soil pro-
cesses after these were found to be highly important for
performances in previous intercomparisons (Grimmond
et al., 2010, 2011). This implies the better performance seen
here is from model development, but model application
(i.e., configuration) may have also improved. Compared
with G11, participants’ previous experience modelling the
site, the provision of more site-specific data (Table 3), the
additional rapid automatic feedback identifying human
errors, and/or improved spin-up strategy may also have
enhanced performance, rather than model parameterisa-
tion improvements alone.

The poorer correlation of G11 models compared with
current models (Figure 7) indicates time-of-day errors (i.e.,
human rather than model errors). However, when all mod-
els with SWup correlations below 0.99 are excluded from
the analysis (i.e., retaining only those with good timing),
G11 models still perform poorer for LWup, Qh and Qle com-
pared with the current cohort (Figure S4), implying other
factors have led to performance improvements.

Feedback provided to participants prior to final evalu-
ation (Table 5) significantly reduces SWup and LWup errors
for some models, and to a lesser degree also reduced Qh
and Qle errors (Figure S5). Models that resubmitted more
times are generally able to improve their performances
relative to their first submission but did not typically out-
perform those that submitted only once. When models are
categorised by previous experience modelling with this site
(e.g., via the G11 project), more experienced groups tend
to have lower errors, particularly in the initial submissions
(Figure S6). This suggests that resubmission helped ‘level
the playing field’ for those with less experience with the
application of a model at this site.

Those models that undertook the extended 10-year
spin-up tend to have better performance in detailed sim-
ulations than those that did not (Figure S7), however,
this effect was small. Models with a closed surface energy
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22 LIPSON et al.

budget have better performance in radiative fluxes, but
not in turbulent fluxes (Figure S8). Fully separating the
various influences (better models, more experienced mod-
ellers, better spin-up strategy) will require additional
investigation to assess their relative impacts. However, in
synthesis, urban model performance has improved since
the last major urban model intercomparison over a decade
ago.

Flux magnitudes and dominant processes vary diur-
nally, and so separately analysing day and night peri-
ods provides additional insight. Compared with standard
benchmarking scores (Figure 8), daytime only (Figure S9)
and nighttime only (Figure S10) results are presented in
the supporting information. For LWup most models’ day-
time results degrade in comparison with benchmarks,
with fewer outperforming the two-variable out-of-sample
regression. However, at night, most models beat all
out-of-sample benchmarks. The complex model cohort
benefits most at night, with all but one complex geometry
model beating all out-of-sample benchmarks, and nearly
matching the performance of the in-sample benchmarks.
Best and Grimmond (2015) found a similar result, con-
cluding that the more complex geometric representations
were able to account for nighttime long-wave trapping
between urban structures that simpler schemes could not.
In this project, some models in every cohort perform well
for LWup at night, but the most complex cohort was most
consistently improved, and had the best overall detailed
experiment results, implying they were better able to use
the additional morphology information provided at that
later stage. For Qh, Qle, and Qtau most models across all
cohorts perform very well at night, typically beating one or
both in-sample benchmarks, and nearly every model eas-
ily surpassing the out-of-sample empirical benchmarks.
For nighttime Qh, some models in the urban canyon and
complex categories performed better than all non-urban,
one-tile and two-tile models, again implying more com-
plex geometry is beneficial at night. The same consistent
benefit from more complex geometry was not apparent in
daytime periods, nor in the overall assessments.

The use of benchmarking helps to guide performance
expectations (Best et al., 2015). For example, without
benchmarking Qle appears to be poorly modelled accord-
ing to the Taylor plot statistics (Figure 7), as was concluded
in the earlier PILPS-Urban study (Grimmond et al., 2010,
2011). However, the benchmark results show that it is
more challenging for models to minimise the Qle errors
than, for example, SWup errors (Figure 7). Benchmark
assessment of extremes and distribution skill finds Qle to
be one of the better modelled fluxes, with models able to
outperform the in-sample empirical benchmarks in many
instances (Figure 9: purple). Likewise, Qh is well mod-
elled for the common (Figure 8) and other (Figure 9)

metrics, compared to benchmarks. Fewer models outper-
form benchmarks for LWup (Figures 7 and 8), particularly
in the daytime (Figure S9). More site information generally
degraded the ensemble mean skill in LWup (Figures 6 and
8), except for more complex models at night (Figure S10).
The overall poor performance in LWup compared with
benchmarks indicates an area for which model develop-
ment may prove beneficial. This may be difficult, as LWup
is dependent on surface temperature, itself a result of the
surface energy balance, so is sensitive to errors in all other
surface energy fluxes (and related parameterisations). The
evaluation of LWup is additionally complicated by the fact
that the footprints of radiative observations from a flux
tower differ from the footprint of the turbulent fluxes
(Schmid et al., 1991; Sailor, 2011), so may be poorly repre-
sented by site parameters, which were intended to capture
the larger turbulent-flux footprint.

A key PILPS-Urban (Grimmond et al., 2010, 2011) find-
ing was that simpler models generally performed as well
or better than more complex models. Similarly, we find the
‘complex’ models (Section 2.1) are often outperformed by
one-tile, two-tile and canyon models (Figures 6–9). How-
ever, model complexity needs to consider many aspects
of urban environments, including morphological, hydro-
logical, vegetation and anthropogenic influences. Some of
the most complex ‘built’ representations have the simplest
soil, water and vegetation approaches (Figure 2). The sim-
pler models within a cohort (i.e., left side of each cohort,
Figures 8 and 9) often had poorer intracohort results. Thus,
the hydrological and vegetation complexity is important.
Many simpler PILPS-Urban built schemes benefitted from
being coupled to more sophisticated vegetation land sur-
face models, performing well, as they do here. However,
the two participating non-urban models (with sophisti-
cated hydrology) significantly overpredict Qle, performing
worse than benchmarks and all other model cohorts in
this flux (Figures 6–8). This indicates the representation
of impervious surfaces is important even at this suburban
site. Canyon models have improved compared with ear-
lier evaluations, with some performing here as well as the
best one-tile and two-tile schemes. This implies that com-
munity efforts in model development over the last decade
have paid dividends, particularly the focus on integrating
soil hydrology and/or vegetation into canyon models.

In stark contrast with PLUMBER (Best et al., 2015),
this project’s submissions are often able to outperform
all out-of-sample empirical benchmarks for Qh and
Qle, and in some cases for the three- or four-variable
in-sample benchmarks (Figures 6–9). For common met-
rics, PLUMBER (Best et al., 2015) found no model able
to outperform a single-variable linear regression using
SWdown for Qh, or a three-variable regression for Qle in
applications (over non-urban terrain). An explanation
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such as Urban-PLUMBER simply having better models
than PLUMBER is unlikely as some models (CABLE, CHT-
ESSEL) or their vegetation components (NOAH, JULES)
participated in both projects. Analysis coding errors are
unlikely as we confirmed we could recreate the PLUMBER
results using their site, model data and aggregation meth-
ods. These results suggest models for urban areas per-
form better than those for non-urban areas when assessed
against the same empirical benchmarks.

Urban sites are highly diverse, and only one case is con-
sidered here. The AU-Preston site could be unrepresenta-
tive of other urban sites used for training, leading to poorer
performing regression using out-of-sample data. This is
supported by the fact that the out-of-sample three-variable
regression (KM3-SWdown-Tair-RH) performed poorer than
simpler regressions for Qh and Qle (Figures 6–8), indicating
overfitting. However, some models outperform the regres-
sions trained in-sample (i.e., using only AU-Preston data),
and therefore good model performances are not simply
related to the site’s (un)representativeness. Alternatively,
models may have performed well here because we provide
participants with more site-specific information (Table 3)
than in PLUMBER. For the latter, participants were pro-
vided with a single plant functional type descriptor (e.g.,
grassland). However, some Urban-PLUMBER models are
outperforming benchmarks in the ‘baseline’ experiment
when only minimal surface information is given, so bet-
ter model performance is not simply from the surface
descriptions provided in this project.

Ultimately, models participating in Urban-PLUMBER
are performing better against benchmarks than the
PLUMBER project land surface models were able to. This
implies the complexity of urban surfaces benefits from the
more complex modelling techniques used to address urban
areas, compared with the natural landscapes evaluated in
PLUMBER. A multisite evaluation is required to confirm
these initial results (now under way).

In Urban-PLUMBER, we focus on bulk local-scale
surface–atmosphere exchanges as these variables and
scale act as the lower boundary conditions for weather,
climate and air quality modelling. They may also act as
the upper boundary conditions for more detailed mod-
els used for applications in cities (e.g., pedestrian ther-
mal comfort). Some modellers using the latter type of
models declined to participate in this project as their
models require more detailed surface information than
we could provide, and are more computationally inten-
sive, making long (e.g., 10+ years) simulations unfeasi-
ble. Some models are not intended to predict the bulk
land–atmosphere exchanges assessed here, but for pre-
dicting other details within the urban canopy. Other
MIPs have encountered this challenge (bulk vs detail).
ESM-SnowMIP (Menard et al., 2021) found comparatively

complex models developed for specific purposes, and
tested rigorously for their intended use, are outperformed
by simpler bulk models when bulk variables are assessed.
Thus, intended model use is a key consideration when
evaluating performance.

Following ESM-SnowMIP (Menard et al., 2021) and
our earlier experience (e.g., Grimmond et al., 2010), that
human errors can be widespread in intercomparison
projects, we provide rapid automatic checks with feed-
back to participants, and follow up with manual checks
(Table 5). Allowing resubmission where human errors are
identified enables this evaluation to focus more closely
on intended model performance. Identified human errors
included: start times, output labels, variable sign, and forc-
ing interpolation errors. These, plus model source coding
mistakes, all impacted initial results. Our initial feedback
focussed on SWup to check that forcing and output tim-
ing aligned, and we link this to the net improvement
in SWup performance seen (cf. G11, Figure 6). Best and
Grimmond (2015) previously established that correctly
modelling the bulk surface albedo is critical for model per-
formance for all surface energy fluxes. Ensuring albedo
is simulated better in this project helps focus evaluation
on other aspects of model design, such as the impact of
hydrology, vegetation and anthropogenic influences.

While considerable efforts are undertaken to compare
models rather than users, the different application of mod-
els will impact results, and undoubtedly some human
errors remain. Hence, individual model results presented
here should be interpreted with caution. We highlight
broad patterns, but cannot untangle whether individual
model performances are a result of: (a) aspects of model
design; (b) user model configuration, or 3) model assess-
ment methods (e.g., variables, metrics, spatial and time
scales). A multisite evaluation will provide more certainty
for model performances.

Despite the limitations of any model comparison
project, they remain one of the foundational elements
of climate science (Eyring et al., 2016). Model intercom-
parisons help define common working practices amongst
disparate modelling groups, identify broad strengths and
weaknesses of different modelling approaches, build the
knowledge and skills of participating scientists and help
direct future community efforts to improve the skill and
application of models.

5 CONCLUSIONS

An international group of 45 scientists have evaluated
the performance of 30 land surface models at a subur-
ban site in Melbourne, Australia. Participating models vary
in the complexity of their built geometry, hydrology and
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anthropogenic representations. Ten error metrics are used
with both physically-based and empirical benchmarks to
assess the models performance.

Key study findings

• Compared to the earlier PILPS-Urban model compari-
son at the same site (Grimmond et al., 2011), there is
broad improvement in modelling upward short-wave
radiation (SWup), sensible (Qh) and latent (Qle) heat
fluxes, but little/no improvement in upward long-wave
radiation (LWup) and momentum (Qtau) fluxes.

• As in PILPS-Urban, the ensemble mean time series
performs very well across all fluxes, suggesting partici-
pating models adequately span the range of uncertainty
from the parameterisation of processes.

• As in PILPS-Urban, some one and two-tile urban
schemes (particularly when coupled to sophisticated
soil/vegetation land surface schemes), performed well
across all fluxes.

• Some canyon models also perform well, indicating the
integration of hydrology and vegetation into canyon
models after PILPS-Urban has paid dividends.

• ‘Complex’ urban models are generally outperformed
by others, but their overall performance is likely
penalised by having simpler hydrological and vegeta-
tion approaches.

• Schemes that do not represent impervious surfaces (i.e.,
non-urban models), as well as urban models with sim-
plistic hydrology/vegetation performed poorly in Qle,
confirming that representing both pervious and imper-
vious surfaces is important in suburban locations.

• Detailed site information broadly improves turbulent
heat fluxes but has little impact on daytime radiant
fluxes.

• A two-variable out-of-sample regression outperforms
most models for daytime LWup, thus indicating an area
for which future model development may prove benefi-
cial.

• Many models outperform the non-linear three-variable
empirical benchmarks for Qh, with some even beat-
ing in-sample non-linear benchmarks (i.e., exceeding
expected predictability using contemporaneous infor-
mation). This is in stark contrast to the PLUMBER (Best
et al., 2015) results where no model outperforms sim-
ple SWdown linear regression derived from 20 non-urban
sites for standard statistical metrics. It is not clear from
this study if model design, model configuration, spin-up
strategy and/or poorer performing benchmarks explain
this.

• The empirical benchmarks may be less effec-
tive in urban locations because of anthropogenic
(human behavioural) influences on fluxes, or
non-contemporaneous information (e.g., memory
effects of surface heat storage) being more important
at urban sites, particularly at night. This implies more
complex modelling techniques (i.e., land surface mod-
els rather than simple empirical models) may provide
greater benefit in urban landscapes.

• Results are based on a site previously used in evaluation
studies. When the details of a site are not known and not
previously modelled, we should not expect such a high
level of performance.

Recommendations and lessons learnt from this project:

• We recommend the use of benchmarks when evalu-
ating models to help guide performance expectations.
In this project, simple information-limited models set
minimum expectations, while more complex in-sample
empirical models helped indicate an upper bound for
performance expectations.

• Model evaluations traditionally consider observational
and modelling errors caused by parameterisation design
decisions but should also explicitly consider errors
caused by human factors (communication or coding
errors in model or postprocessing code).

• Human errors can be reduced (but probably not elim-
inated) by providing participants with initial feedback
and allowing resubmission prior to final analysis. We
recommend the use of web-based analysis portals (e.g.,
modelevaluation.org) that can provide immediate feed-
back to participants (plots and error statistics), particu-
larly:

– Indicating variables that exceed expected physical
limits, as well as checks on energy closure, as this
helps identify model numerical errors, or errors in
submitted variable’s identification, units or sign.

– Correlation of modelled vs observed short-wave radi-
ation, as this flux varies nearly linearly with forcing,
helping indicate time-of-day human errors.

• Model configuration files (e.g., parameter namelists)
and model revision numbers should be submitted with
model outputs to help ascertain why outputs have
changed between submissions, and allow submissions
to be reproducible.

• Participating in a model intercomparison project
can be time-consuming. However, intercompar-
isons are useful for improving our understanding of
model performances in general, as well as providing
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opportunities to build the experience and skills of those
who participate. Hence this project’s methods, data
and results could be used as a training tool for new
modellers, in addition to providing benchmarks to test
future model developments.

AFFILIATIONS
1Australian Research Council Centre of Excellence for Climate System
Science, Climate Change Research Centre, Level 4, Mathews Building,
UNSW Sydney, Sydney, New South Wales Australia
2Bureau of Meteorology, Sydney, New South Wales Australia
3Department of Meteorology, University of Reading, Reading, UK
4Met Office, Exeter, UK
5Australian Research Council Centre of Excellence for Climate
Extremes, Climate Change Research Centre, Level 4, Mathews Building,
UNSW Sydney, Sydney, New South Wales Australia
6School of Earth, Atmosphere and Environment, Monash University,
Melbourne, Australia
7School of Earth and Environmental Sciences, Seoul National
University, Seoul, South Korea
8Klimaat Consulting & Innovation Inc, Guelph, Ontario Canada
9Met Office, University of Reading, Reading, UK
10European Centre for Medium-Range Weather Forecasts, Reading, UK
11Department of Civil and Environmental Engineering, Princeton
University, Princeton, New Jersey USA
12School of Biological Sciences, University of Bristol, Bristol, UK
13CNRM, Université de Toulouse, Météo-France, CNRS, Toulouse,
France
14Urban Climatology Group, Department of Geography,
Ruhr-University Bochum, Bochum, Germany
15Department of Civil and Environmental Engineering, National
University of Singapore, Singapore, Singapore
16Department of Meteorology and Climatology, Faculty of Geographical
Sciences, University of Lodz, Lodz, Poland
17Department of Environment and Energy, Semyung University,
Jecheon, South Korea
18School of Science and Engineering, Meisei University, Hino, Japan
19Environmental Management Research Institute, National Institute of
Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
20Japan Weather Association, Tokyo, Japan
21Department of Atmospheric Science, Kongju National University,
Gongju, Republic of Korea
22School of Architecture, Civil and Environmental Engineering, Ecole
Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
23Department of Environment, CIEMAT, Madrid, Spain
24Department of Civil and Environmental Engineering, Imperial
College London, London, UK
25Transportation, Health and Urban Design Research Lab, Faculty of
Architecture, Building and Planning, University of Melbourne,
Melbourne, Australia
26Climate and Global Dynamics Laboratory, National Center for
Atmospheric Research, Boulder, Colorado USA
27School of Environmental Engineering, University of Seoul,
Dongdaemun-gu, South Korea

28TECNALIA, Basque Research and Technology Alliance (BRTA),
Derio, Spain
29Meteorology and Air Quality Section, Wageningen University,
Wageningen, The Netherlands
30Institute for Risk and Disaster Reduction, University College London,
London, UK
31CSIRO Environment, Commonwealth Scientific and Industrial
Research Organisation, Melbourne, Victoria Australia
32European Centre for Medium-Range Weather Forecasts, Bonn,
Germany
33Research Computing Center, Lomonosov, Moscow State University,
Moscow, Russia
34A.M. Obukhov Institute of Atmospheric Physics, Moscow, Russia
35School of Meteorology, University of Oklahoma, Norman, Oklahoma
USA
36Department of Geography and Environmental Sustainability,
University of Oklahoma, Norman, Oklahoma USA
37School of Sustainable Engineering and the Built Environment, Arizona
State University, Tempe, Arizona USA

ACKNOWLEDGEMENTS
The project’s coordinating team is supported by UNSW
Sydney, the Australian Research Council (ARC) Cen-
tre of Excellence for Climate System Science (grant
CE110001028), University of Reading, the Met Office UK,
the Bureau of Meteorology, Australia, the ARC Centre
of Excellence for Climate Extremes (grant CE170100023)
and ERC urbisphere (grant 855005). Computation sup-
port from National Computational Infrastructure (NCI)
Australia. G.J. Steeneveld and A. Tsiringakis acknowl-
edge support from the NWO VIDI grant ‘The Windy City’
under number 864.14.007. M. Demuzere acknowledges
support from the ENLIGHT project, funded by the German
Research Foundation (DFG) under grant No. 437467569.
Y. Takane acknowledges support from Japan Society for
the Promotion of Science (JSPS) KAKENHI Grand Num-
ber 20KK0096. Contributions by K.W. Oleson are sup-
ported by the National Center for Atmospheric Research
(NCAR), sponsored by the National Science Foundation
(NSF) under Cooperative Agreement No. 1852977. Com-
puting and data storage resources for CLMU5, including
the Cheyenne supercomputer (doi:10.5065/D6RX99HX),
were provided by the Computational and Information Sys-
tems Laboratory (CISL) at NCAR. K. Nice acknowledges
support from NHMRC/UKRI grant (1194959). J.-J. Baik
acknowledges support from the National Research Foun-
dation of Korea (NRF) under grant 2021R1A2C1007044.
E. Bou-Zeid was supported by the US National Science
Foundation under award number AGS 2128345 and the
Army Research Office under contract W911NF2010216.
Work with TERRA model performed by M. Varentsov was
supported by the Russian Science Foundation, grant no.
21-17-00249. S.-H. Lee acknowledges support from the

 1477870x, 0, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/qj.4589 by T
est, W

iley O
nline L

ibrary on [13/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



26 LIPSON et al.

Nuclear Safety and Security Commission (NSSC) of the
Republic of Korea (No. 2105036). M. De Kauwe acknowl-
edges support from the Natural Environment Research
Council (NE/W010003/1). N. Meili and S. Fatichi acknowl-
edge the support of the National University of Singapore
through the project ‘Bridging scales from below: The role
of heterogeneities in the global water and carbon budgets’,
Award No. 22-3637-A0001. T. Sun was supported by UKRI
NERC Independent Research Fellowship (NE/P018637/1
and NE/P018637/2). D.-I. Lee acknowledges support from
the Korea Meteorological Administration Research and
Development Program under grant KMI(KMI2021-03512).

We acknowledge the participants of the first urban
model comparison project (PILPS-Urban) and all those
involved in model development since then. We also
acknowledge all scientists involved in collecting and pro-
viding observations used to derive benchmarks in this
study. Thank you to Belinda Roux, Asiful Islam and
Vinod Kumar (Bureau of Meteorology) for reviewing this
manuscript. This project uses modified Copernicus Cli-
mate Change Service Information. Open access publishing
facilitated by University of New South Wales, as part of the
Wiley - University of New South Wales agreement via the
Council of Australian University Librarians.

DATA AVAILABILITY STATEMENT
Supporting information and associated model results
are available from https://urban-plumber.github.io/AU-
Preston/plots/ and archived at https://doi.org/10.5281/
zenodo.7388342 (Lipson et al., 2022b). Observation time
series data are openly available from https://doi.org/10.
5281/zenodo.7104984 (Lipson et al., 2022c). Benchmark
time series data are available from https://doi.org/10.5281/
zenodo.7330052 (Lipson and Best, 2022).

ORCID
Mathew J. Lipson https://orcid.org/0000-0001-5322-
1796
Sue Grimmond https://orcid.org/0000-0002-3166-9415
Gab Abramowitz https://orcid.org/0000-0002-4205-
001X
Jong-Jin Baik https://orcid.org/0000-0003-3709-0532
Lewis Blunn https://orcid.org/0000-0002-3207-5002
Elie Bou-Zeid https://orcid.org/0000-0002-6137-8109
Martin G. De Kauwe https://orcid.org/0000-0002-3399-
9098
Matthias Demuzere https://orcid.org/0000-0003-3237-
4077
Simone Fatichi https://orcid.org/0000-0003-1361-6659
Krzysztof Fortuniak https://orcid.org/0000-0001-7043-
8751
Margaret A. Hendry https://orcid.org/0000-0003-3941-
7543

Yukihiro Kikegawa https://orcid.org/0000-0002-5225-
653X
Sang-Hyun Lee https://orcid.org/0000-0002-7998-9194
Gabriele Manoli https://orcid.org/0000-0002-9245-2877
Naika Meili https://orcid.org/0000-0001-6283-2134
David Meyer https://orcid.org/0000-0002-7071-7547
Kerry A. Nice https://orcid.org/0000-0001-6102-1292
Keith W. Oleson https://orcid.org/0000-0002-0057-9900
Michael Roth https://orcid.org/0000-0001-6399-3693
Andrés Simón-Moral https://orcid.org/0000-0002-
2662-9750
Gert-Jan Steeneveld https://orcid.org/0000-0002-5922-
8179
Ting Sun https://orcid.org/0000-0002-2486-6146

REFERENCES
Abramowitz, G. (2018) Towards improved standardisation of model

evaluation using modelevaluation.org. H54A-06, 2018.
Balsamo, G., Beljaars, A., Scipal, K., Viterbo, P., van den Hurk, B.,

Hirschi, M. et al. (2009) A revised hydrology for the ECMWF
model: verification from field site to terrestrial water storage and
impact in the integrated forecast system. Journal of Hydrome-
teorology, 10, 623–643. Available from: https://doi.org/10.1175/
2008JHM1068.1

Beck, H.E., Zimmermann, N.E., McVicar, T.R., Vergopolan, N.,
Berg, A. & Wood, E.F. (2018) Present and future Köppen-
Geiger climate classification maps at 1-km resolution. Scientific
Data, 5, 180214. Available from: https://doi.org/10.1038/sdata.
2018.214

Best, M.J. & Grimmond, C.S.B. (2014) Importance of initial state and
atmospheric conditions for urban land surface models’ perfor-
mance. Urban Climate, 10, 387–406. Available from: https://doi.
org/10.1016/j.uclim.2013.10.006

Best, M.J. & Grimmond, C.S.B. (2015) Key conclusions of the first
international urban land surface model comparison project. Bul-
letin of the American Meteorological Society, 96, 805–819. Avail-
able from: https://doi.org/10.1175/BAMS-D-14-00122.1

Best, M.J. & Grimmond, C.S.B. (2016a) Investigation of the impact
of anthropogenic heat flux within an urban land surface
model and PILPS-urban. Theoretical and Applied Climatology,
126, 51–60. Available from: https://doi.org/10.1007/s00704-015-
1554-3

Best, M.J. & Grimmond, C.S.B. (2016b) Modeling the partitioning
of turbulent fluxes at urban sites with varying vegetation cover.
Journal of Hydrometeorology, 17, 2537–2553. Available from:
https://doi.org/10.1175/JHM-D-15-0126.1

Best, M.J. (2005) Representing urban areas within operational
numerical weather prediction models. Boundary-Layer Meteorol,
114, 91–109. Available from: https://doi.org/10.1007/s10546-004-
4834-5

Best, M.J. (2006) Progress towards better weather forecasts for city
dwellers: from short range to climate change. Theoretical and
Applied Climatology, 84, 47–55. Available from: https://doi.org/
10.1007/s00704-005-0143-2

Best, M.J., Abramowitz, G., Johnson, H.R., Pitman, A.J., Balsamo,
G., Boone, A. et al. (2015) The plumbing of land surface models:
benchmarking model performance. Journal of Hydrometeorology,

 1477870x, 0, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/qj.4589 by T
est, W

iley O
nline L

ibrary on [13/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://urban-plumber.github.io/AU-Preston/plots/
https://urban-plumber.github.io/AU-Preston/plots/
https://doi.org/10.5281/zenodo.7388342
https://doi.org/10.5281/zenodo.7388342
https://doi.org/10.5281/zenodo.7104984
https://doi.org/10.5281/zenodo.7104984
https://doi.org/10.5281/zenodo.7330052
https://doi.org/10.5281/zenodo.7330052
https://orcid.org/0000-0001-5322-1796
https://orcid.org/0000-0001-5322-1796
https://orcid.org/0000-0001-5322-1796
https://orcid.org/0000-0002-3166-9415
https://orcid.org/0000-0002-3166-9415
https://orcid.org/0000-0002-4205-001X
https://orcid.org/0000-0002-4205-001X
https://orcid.org/0000-0002-4205-001X
https://orcid.org/0000-0003-3709-0532
https://orcid.org/0000-0003-3709-0532
https://orcid.org/0000-0002-3207-5002
https://orcid.org/0000-0002-3207-5002
https://orcid.org/0000-0002-6137-8109
https://orcid.org/0000-0002-6137-8109
https://orcid.org/0000-0002-3399-9098
https://orcid.org/0000-0002-3399-9098
https://orcid.org/0000-0002-3399-9098
https://orcid.org/0000-0003-3237-4077
https://orcid.org/0000-0003-3237-4077
https://orcid.org/0000-0003-3237-4077
https://orcid.org/0000-0003-1361-6659
https://orcid.org/0000-0003-1361-6659
https://orcid.org/0000-0001-7043-8751
https://orcid.org/0000-0001-7043-8751
https://orcid.org/0000-0001-7043-8751
https://orcid.org/0000-0003-3941-7543
https://orcid.org/0000-0003-3941-7543
https://orcid.org/0000-0003-3941-7543
https://orcid.org/0000-0002-5225-653X
https://orcid.org/0000-0002-5225-653X
https://orcid.org/0000-0002-5225-653X
https://orcid.org/0000-0002-7998-9194
https://orcid.org/0000-0002-7998-9194
https://orcid.org/0000-0002-9245-2877
https://orcid.org/0000-0002-9245-2877
https://orcid.org/0000-0001-6283-2134
https://orcid.org/0000-0001-6283-2134
https://orcid.org/0000-0002-7071-7547
https://orcid.org/0000-0002-7071-7547
https://orcid.org/0000-0001-6102-1292
https://orcid.org/0000-0001-6102-1292
https://orcid.org/0000-0002-0057-9900
https://orcid.org/0000-0002-0057-9900
https://orcid.org/0000-0001-6399-3693
https://orcid.org/0000-0001-6399-3693
https://orcid.org/0000-0002-2662-9750
https://orcid.org/0000-0002-2662-9750
https://orcid.org/0000-0002-2662-9750
https://orcid.org/0000-0002-5922-8179
https://orcid.org/0000-0002-5922-8179
https://orcid.org/0000-0002-5922-8179
https://orcid.org/0000-0002-2486-6146
https://orcid.org/0000-0002-2486-6146
https://doi.org/10.1175/2008JHM1068.1
https://doi.org/10.1175/2008JHM1068.1
https://doi.org/10.1038/sdata.2018.214
https://doi.org/10.1038/sdata.2018.214
https://doi.org/10.1038/sdata.2018.214
https://doi.org/10.1016/j.uclim.2013.10.006
https://doi.org/10.1016/j.uclim.2013.10.006
https://doi.org/10.1175/BAMS-D-14-00122.1
https://doi.org/10.1007/s00704-015-1554-3
https://doi.org/10.1007/s00704-015-1554-3
https://doi.org/10.1007/s00704-015-1554-3
https://doi.org/10.1175/JHM-D-15-0126.1
https://doi.org/10.1007/s10546-004-4834-5
https://doi.org/10.1007/s10546-004-4834-5
https://doi.org/10.1007/s00704-005-0143-2
https://doi.org/10.1007/s00704-005-0143-2


LIPSON et al. 27

16, 1425–1442. Available from: https://doi.org/10.1175/JHM-D-
14-0158.1

Best, M.J., Grimmond, C.S.B. & Villani, M.G. (2006) Evaluation of the
urban tile in MOSES using surface energy balance observations.
Boundary-Layer Meteorol, 118, 503–525. Available from: https://
doi.org/10.1007/s10546-005-9025-5

Best, M.J., Pryor, M., Clark, D.B., Rooney, G.G., Essery, R.L.H.,
Ménard, C.B. et al. (2011) The joint UK land environment sim-
ulator (JULES), model description – part 1: energy and water
fluxes. Geoscientific Model Development, 4, 677–699. Available
from: https://doi.org/10.5194/gmd-4-677-2011

Bjorkegren, A.B., Grimmond, C.S.B., Kotthaus, S. & Malamud, B.D.
(2015) CO2 emission estimation in the urban environment:
measurement of the CO2 storage term. Atmospheric Environ-
ment, 122, 775–790. Available from: https://doi.org/10.1016/j.
atmosenv.2015.10.012

Boussetta, S., Balsamo, G., Beljaars, A., Panareda, A.-A., Calvet, J.-C.,
Jacobs, C. et al. (2013) Natural land carbon dioxide exchanges
in the ECMWF integrated forecasting system: implementation
and offline validation. Journal of Geophysical Research: Atmo-
spheres, 118, 5923–5946. Available from: https://doi.org/10.1002/
jgrd.50488

Bowling, L. & Polcher, J. (2001) The ALMA data exchange conven-
tion. https://www.lmd.jussieu.fr/&tilde;polcher/ALMA/

Bowling, L.C., Lettenmaier, D.P., Nijssen, B., Graham, L.P., Clark,
D.B., El Maayar, M. et al. (2003) Simulation of high-latitude
hydrological processes in the Torne–Kalix basin: PILPS phase
2(e): 1: experiment description and summary intercomparisons.
Global and Planetary Change, 38, 1–30. Available from: https://
doi.org/10.1016/S0921-8181(03)00003-1

Broadbent, A.M., Coutts, A.M., Nice, K.A., Demuzere, M., Krayen-
hoff, E.S., Tapper, N.J. et al. (2019) The air-temperature response
to green/blue-infrastructure evaluation tool (TARGET v1.0): an
efficient and user-friendly model of city cooling. Geoscientific
Model Development, 12, 785–803. Available from: https://doi.org/
10.5194/gmd-12-785-2019

Bueno, B., Pigeon, G., Norford, L.K., Zibouche, K. & Marchadier, C.
(2012) Development and evaluation of a building energy model
integrated in the TEB scheme. Geoscientific Model Development,
5, 433–448. Available from: https://doi.org/10.5194/gmd-5-433-
2012

Chen, F. & Dudhia, J. (2001) Coupling an advanced land
surface–hydrology model with the Penn State–NCAR MM5
modeling system. Part I: model implementation and sensitivity.
Monthly Weather Review, 129, 569–585. Available from: https://
doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2

Chen, F., Kusaka, H., Bornstein, R., Ching, J., Grimmond, C.S.B.,
Grossman-Clarke, S. et al. (2011) The integrated WRF/urban
modelling system: development, evaluation, and applications to
urban environmental problems. International Journal of Clima-
tology, 31, 273–288. Available from: https://doi.org/10.1002/joc.
2158

Chow, W. (2017) Eddy Covariance Data Measured at the CAP LTER
Flux Tower Located in the West Phoenix, AZ Neighborhood of
Maryvale from 2011-12-16 through 2012-12-31. Environmental
Data Initiative. Available from: https://doi.org/10.6073/PASTA/
FED17D67583EDA16C439216CA40B0669

Chow, W.T.L., Volo, T.J., Vivoni, E.R., Jenerette, G.D. & Ruddell,
B.L. (2014) Seasonal dynamics of a suburban energy balance
in Phoenix, Arizona. International Journal of Climatology, 34,
3863–3880. Available from: https://doi.org/10.1002/joc.3947

Christen, A., Coops, N.C., Crawford, B.R., Kellett, R., Liss,
K.N., Olchovski, I. et al. (2011) Validation of modeled
carbon-dioxide emissions from an urban neighborhood with
direct eddy-covariance measurements. Atmospheric Environ-
ment, 45, 6057–6069. Available from: https://doi.org/10.1016/j.
atmosenv.2011.07.040

Coutts, A.M. (2006) The Influence of Housing Density and Urban
Design on the Surface Energy Balance and Local Climates of Mel-
bourne, Australia, and the Impact of Melbourne 2030’s Vision,
Thesis PhD. Melbourne, Australia: Monash University.

Coutts, A.M., Beringer, J. & Tapper, N.J. (2007a) Characteristics
influencing the variability of urban CO2 fluxes in Melbourne,
Australia. Atmospheric Environment, 41, 51–62. Available from:
https://doi.org/10.1016/j.atmosenv.2006.08.030

Coutts, A.M., Beringer, J. & Tapper, N.J. (2007b) Impact of increasing
urban density on local Climate: spatial and temporal variations
in the surface energy balance in Melbourne, Australia. Journal
of Applied Meteorology and Climatology, 46, 477–493. Available
from: https://doi.org/10.1175/JAM2462.1

Crawford, B. & Christen, A. (2015) Spatial source attribution of mea-
sured urban eddy covariance CO2 fluxes. Theoretical and Applied
Climatology, 119, 733–755. Available from: https://doi.org/10.
1007/s00704-014-1124-0

Crawford, B., Grimmond, C.S.B. & Christen, A. (2011) Five years of
carbon dioxide fluxes measurements in a highly vegetated subur-
ban area. Atmospheric Environment, 45, 896–905. Available from:
https://doi.org/10.1016/j.atmosenv.2010.11.017

Cucchi, M., Weedon, G.P., Amici, A., Bellouin, N., Lange, S., Müller
Schmied, H. et al. (2020) WFDE5: bias-adjusted ERA5 reana-
lysis data for impact studies. Earth System Science Data,
12, 2097–2120. Available from: https://doi.org/10.5194/essd-12-
2097-2020

Daniel, M., Lemonsu, A., Déqué, M., Somot, S., Alias, A. & Masson,
V. (2019) Benefits of explicit urban parameterization in regional
climate modeling to study climate and city interactions. Cli-
mate Dynamics, 52, 2745–2764. Available from: https://doi.org/
10.1007/s00382-018-4289-x

Demuzere, M., Kittner, J., Martilli, A., Mills, G., Moede, C., Stew-
art, I.D. et al. (2022) A global map of local climate zones to
support earth system modelling and urban-scale environmen-
tal science. Earth System Science Data, 14, 3835–3873. Available
from: https://doi.org/10.5194/essd-14-3835-2022

Duursma, R.A. & Medlyn, B.E. (2012) MAESPA: a model to study
interactions between water limitation, environmental drivers and
vegetation function at tree and stand levels, with an example
application to [CO2] × drought interactions. Geoscientific Model
Development, 5, 919–940. Available from: https://doi.org/10.
5194/gmd-5-919-2012

ECMWF. (2020) IFS Documentation CY47R1 – Part IV: Physical
Processes. https://doi.org/10.21957/CPMKQVHJA

Eyring, V., Bony, S., Meehl, G.A., Senior, C.A., Stevens, B., Stouffer,
R.J. et al. (2016) Overview of the coupled model Intercomparison
project phase 6 (CMIP6) experimental design and organization.
Geoscientific Model Development, 9, 1937–1958. Available from:
https://doi.org/10.5194/gmd-9-1937-2016

Fatichi, S., Ivanov, V.Y. & Caporali, E. (2012) A mechanistic eco-
hydrological model to investigate complex interactions in cold
and warm water-controlled environments: 1. Theoretical frame-
work and plot-scale analysis. Journal of Advances in Modeling
Earth Systems, 4, M05002. Available from: https://doi.org/10.
1029/2011MS000086

 1477870x, 0, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/qj.4589 by T
est, W

iley O
nline L

ibrary on [13/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1175/JHM-D-14-0158.1
https://doi.org/10.1175/JHM-D-14-0158.1
https://doi.org/10.1007/s10546-005-9025-5
https://doi.org/10.1007/s10546-005-9025-5
https://doi.org/10.5194/gmd-4-677-2011
https://doi.org/10.1016/j.atmosenv.2015.10.012
https://doi.org/10.1016/j.atmosenv.2015.10.012
https://doi.org/10.1002/jgrd.50488
https://doi.org/10.1002/jgrd.50488
https://www.lmd.jussieu.fr/~polcher/ALMA/
https://doi.org/10.1016/S0921-8181(03)00003-1
https://doi.org/10.1016/S0921-8181(03)00003-1
https://doi.org/10.5194/gmd-12-785-2019
https://doi.org/10.5194/gmd-12-785-2019
https://doi.org/10.5194/gmd-5-433-2012
https://doi.org/10.5194/gmd-5-433-2012
https://doi.org/10.1175/1520-0493(2001)129%3C0569:CAALSH%3E2.0.CO;2
https://doi.org/10.1175/1520-0493(2001)129%3C0569:CAALSH%3E2.0.CO;2
https://doi.org/10.1175/1520-0493(2001)129%3C0569:CAALSH%3E2.0.CO;2
https://doi.org/10.1002/joc.2158
https://doi.org/10.1002/joc.2158
https://doi.org/10.6073/PASTA/FED17D67583EDA16C439216CA40B0669
https://doi.org/10.6073/PASTA/FED17D67583EDA16C439216CA40B0669
https://doi.org/10.1002/joc.3947
https://doi.org/10.1016/j.atmosenv.2011.07.040
https://doi.org/10.1016/j.atmosenv.2011.07.040
https://doi.org/10.1016/j.atmosenv.2006.08.030
https://doi.org/10.1175/JAM2462.1
https://doi.org/10.1007/s00704-014-1124-0
https://doi.org/10.1007/s00704-014-1124-0
https://doi.org/10.1016/j.atmosenv.2010.11.017
https://doi.org/10.5194/essd-12-2097-2020
https://doi.org/10.5194/essd-12-2097-2020
https://doi.org/10.1007/s00382-018-4289-x
https://doi.org/10.1007/s00382-018-4289-x
https://doi.org/10.5194/essd-14-3835-2022
https://doi.org/10.5194/gmd-5-919-2012
https://doi.org/10.5194/gmd-5-919-2012
https://doi.org/10.21957/CPMKQVHJA
https://doi.org/10.5194/gmd-9-1937-2016
https://doi.org/10.1029/2011MS000086
https://doi.org/10.1029/2011MS000086


28 LIPSON et al.

Flanner, M.G. (2009) Integrating anthropogenic heat flux with
global climate models. Geophysical Research Letters, 36,
L02801. Available from: https://doi.org/10.1029/2008GL036
465

Fortuniak, K. (2003) A slab surface energy balance model (SUEB)
and its application to the study on the role of roughness length in
forming an urban heat Island. Acta Universitatis Wratislaviensis,
2542, 368–377.

Fortuniak, K., Kłysik, K. & Siedlecki, M. (2006) New measurements
of the energy balance components in Łódź. In: Preprints, Sixth
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APPENDIX A1

Error metric definitions

T A B L E A1 Error statistics and metrics used to evaluate models

Metric/ statistic Abbreviation/symbol Formula Source

Statistical measures

Mean absolute error MAE
∑ |Mi−Oi|

n
–

Mean bias error MBE
∑ Mi−Oi

n
–

Pearson correlation coefficient r
∑(

Mi−M
)(

Oi−O
)

√
∑(

Mi−M
)2
√

∑(
Oi−O

)2
–

Standard deviation 𝜎X

√
∑(

Xi−X
)2

n−1
–

Normalised standard deviation �̃�
𝜎M
𝜎O

(Taylor, 2001)

Skewness 𝜇X
1
n

∑(
Xi−X
𝜎X

)3
(Best et al., 2015)

Kurtosis KX
1
n

∑(
Xi− X
𝜎X

)4
− 3 (Best et al., 2015)

Perkins skill score PSS
∑100

1 min
(

binM,k, binO,k
)

(Perkins et al., 2007)

Centred and normalisedroot-mean-square error cRMSE
√

1 + �̃�2 − 2�̃� ⋅ r (Taylor, 2001)

Common group metrics

Mean absolute error metric mMAE MAE –

Mean bias error metric mMBE |MBE| (Best et al., 2015)

Normalised standard deviation metric mSD |1 − �̃�| (Best et al., 2015)

Correlation coefficient metric mR 1 − r (Haughton et al., 2017)

Extremes group metrics

Absolute error at the fifth percentile m5 |M5 − O5| (Best et al., 2015)

Absolute error at the 95th percentile m95 |M95 − O95| (Best et al., 2015)

Distribution group metrics

Skewness metric mskewness
|||1 −

𝜇M
𝜇O

||| (Haughton et al., 2017)

Kurtosis metric mkurtosis
|||1 −

KM
KO

||| (Haughton et al., 2017)

Overlap metric moverlap 1 − PSS (Haughton et al., 2017)

Note: Metrics (m) used in group scores are normalised to be positive with 0 a perfect score. M represents modelled values, and O the observed values. An overbar
(e.g., O) indicates the mean of n samples. n varies with observational availability. X5 is value of X at the fifth percentile of its distribution. Note that for the
purposes of scoring models relative to benchmarks, the mean absolute error metric gives equivalent results to the normalised mean error metric used in
PLUMBER (Best et al., 2015).
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Benchmark observational data

T A B L E A2 Site locations of tower observational data used to generate the empirical benchmarks for this study

Sitename City Country Observed period Latitude Longitude References

AU-Preston Melbourne Australia Aug 2003–Nov 2004 −37.7306 145.0145 (Coutts et al., 2007a, 2007b)

AU-SurreyHills Melbourne Australia Feb 2004–Jul 2004 −37.8265 145.099 (Coutts et al., 2007a, 2007b)

CA-sunset Vancouver Canada Jan 2012–Dec 2016 49.2261 −123.078 (Christen et al., 2011; Crawford
and Christen, 2015)

FI-Kumpula Helsinki Finland Dec 2010–Dec 2013 60.2028 24.9611 (Karsisto et al., 2016)

FI-Torni Helsinki Finland Dec 2010–Dec 2013 60.1678 24.9387 (Nordbo et al., 2013; Järvi
et al., 2018)

FR-Capitole Toulouse France Feb 2004–Mar 2005 43.6035 1.4454 (Masson et al., 2008; Goret
et al., 2019)

GR-HECKOR Heraklion Greece Jun 2019–Jun 2020 35.3361 25.1328 (Stagakis et al., 2019)

JP-Yoyogi Tokyo Japan Mar 2016–Mar 2020 35.6645 139.6845 (Hirano et al., 2015; Ishidoya
et al., 2020)

KR-Jungnang Seoul South Korea Jan 2017–Apr 2019 37.5907 127.0794 (Hong et al., 2020, 2023)

KR-Ochang Ochang South Korea Jun 2015–Jul 2017 36.7197 127.4344 (Hong et al., 2019, 2020)

MX-Escandon Mexico City Mexico Jun 2011–Sep 2012 19.4042 −99.1761 (Velasco et al., 2011, 2014)

NL-Amsterdam Amsterdam Netherlands Jan 2019–Oct 2020 52.3665 4.8929 (Steeneveld et al., 2020)

PL-Lipowa Łódź Poland Jan 2008–Dec 2012 51.7625 19.4453 (Pawlak et al., 2011; Fortuniak
et al., 2013)

PL-Narutowicza Łódź Poland Jan 2008–Dec 2012 51.7733 19.4811 (Fortuniak et al., 2013, 2006)

SG-TelokKurau06 Singapore Singapore Apr 2006–Mar 2007 1.3143 103.9112 (Roth et al., 2017)

UK-KingsCollege London UK Apr 2012–Jan 2014 51.5118 −0.1167 (Kotthaus and Grimmond, 2014a,
2014b; Bjorkegren et al., 2015)

UK-Swindon Swindon UK May 2011–Apr 2013 51.5846 −1.7981 (Ward et al., 2013)

US-Baltimore Baltimore USA Jan 2002–Jan 2007 39.4128 −76.5215 (Crawford et al., 2011)

US-Minneapolis Minneapolis USA Jun 2006–May 2009 44.9984 −93.1884 (Peters et al., 2011; Menzer and
McFadden, 2017)

US-WestPhoenix Phoenix USA Dec 2011–Jan 2013 44.9984 −93.1884 (Chow et al., 2014; Chow, 2017)

Note: For the out-of-sample benchmarks, data from the AU-Preston site are not used to train the empirical models. For the in-sample benchmarks, only
AU-Preston data are used to train the model. Tower data are openly available (Lipson et al., 2022a, 2022c).

Participating model descriptions
For each model (Figures A1–A30) characteristics
(Figure 1) are summarised. Table 2 gives the version of

the model used in this paper. Diagrams are indicative
only. Individual models have attributes not represented in
diagrams.
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F I G U R E A1 ASLUMv2.0 (Arizona State University Single-Layer Urban Canopy Model) (Wang et al., 2021, 2013) is a single-layer
canyon model that analytically resolves surface temperatures and conductive heat fluxes based on Green’s function (Wang et al., 2011b), and
explicitly resolves subfacet heterogeneity and urban vegetation. ASLUMv2 incorporates detailed hydrology, multilayer soil/ground and roof
vegetation (via a multilayer green roof model), and enables simulations of irrigation, anthropogenic heat, and urban oasis effect (Yang
et al., 2015). [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E A2 ASLUMv3.1 (Wang et al., 2021, 2013) is the same as ASLUMv2.0 (Figure A1) plus additionally represents urban trees
with radiative exchange between trees and street canyons (Wang, 2014), shading, canopy transmittance, evapotranspiration, and root water
uptake (Wang et al., 2021). [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E A3 BEPCOL is a multilayer canyon model based on the building effect parameterization (BEP; Martilli et al., 2002) with
parameterizations for drag coefficient and the length scales used for turbulent transport and turbulence dissipation (Simón-Moral
et al., 2017). BEPCOL does not explicitly consider vegetation and the non-urban fraction is computed by the bare soil model from RAMS
(Tremback and Kessler, 1985). [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E A4 CABLE (Community Atmosphere–Biosphere Land Exchange model) (Kowalczyk et al., 2006; Wang et al., 2011a) is used
in regional and global climate models including ACCESS (Kowalczyk et al., 2013). CABLE has a one-layer, two-leaf canopy vegetation
scheme with up to five tiles (vegetation types, bare soil and ice) but no urban tile. In this project CABLE uses four soil layers, up to three
snow layers, and models impervious urban surfaces as bare soil. [Colour figure can be viewed at wileyonlinelibrary.com]
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F I G U R E A5 CHTESSEL (Carbon-Hydrology Tiled ECMWF Forecasts Scheme for Surface Exchanges over Land) is the land surface
model used in the Integrated Forecast System (IFS). This is used by ECMWF for weather forecast and to create reanalysis products (Balsamo
et al., 2009; Boussetta et al., 2013; ECMWF, 2020). CHTESSEL can tile up to six non-urban surfaces (high and low vegetation, bare soil,
intercepted canopy water, shaded and sunlit snow). It has four soil and one snow layer. Tile fractions in this project are based on global
surface cover databases as used in IFS products, i.e., without urban surfaces. [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E A6 CHTESSEL_U (Urbanised Carbon-Hydrology Tiled ECMWF Forecasts Scheme for Surface Exchanges over Land) a
two-tile (roof, canyon) urban scheme (McNorton et al., 2021) to CHTESSEL (Figure A5). It follows MORUSES’ (Figure A13) infinite canyon
assumptions for radiative effects. The urban surfaces (cf. CHTESSEL) have increased runoff and reduced soil infiltration. [Colour figure can
be viewed at wileyonlinelibrary.com]

F I G U R E A7 The CLMU (Community Land Model Urban) is a single-layer urban canopy model that consists of roofs, walls (sunlit
and shaded) and impervious and pervious canyon floor (Oleson et al., 2010; Oleson and Feddema, 2020). It features a simple building energy
model to explicitly represent space heating and air conditioning of building interiors and a pervious canyon floor to approximate evaporation
from vegetated surfaces within the urban canyon. Radiation parameterizations account for trapping of short-wave and long-wave radiation
inside the urban canyon. Roof and canyon floor hydrologic processes including snow accumulation and melt, liquid water ponding, and
runoff are simulated. CLMU is embedded within a global climate model, the Community Earth System Model (CESM), incorporating three
urban tiles or land units, categorized by density of development, within each model grid cell. Urban extent and thermal, radiative, and
morphological properties are prescribed from the global dataset of Jackson et al. (2010) as modified by Oleson and Feddema (2020). [Colour
figure can be viewed at wileyonlinelibrary.com]
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38 LIPSON et al.

F I G U R E A8 CM is a multilayer urban canopy model with roofs (impervious roof and vegetation), walls (impervious wall and
vegetation) and roads (impervious road and vegetation) (Kondo and Liu, 1998; Kondo et al., 2005). These impervious tiles consider water
content and ponding for the present comparison. CM considers an urban block in which buildings stand on a lattice array. This horizontal
arrangement of buildings is defined using the average length of the building and distance between buildings. CM accounts for building drag,
anthropogenic heat release (prescribed), and three-dimensional radiation interactions and distribution of the height of buildings. A new
parameterization for mixing length is introduced (Kondo et al., 2015). [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E A9 CM-BEM is CM (Figure A8) coupled to a building energy model (BEM) (Kikegawa et al., 2003, 2006). It is embedded
within WRF (WRF-CM-BEM: Kikegawa et al., 2014). It has three urban categories: office, and two residential types. The BEM, box-type heat
budget model, simulates heating, ventilation, and air conditioning (HVAC) system energy consumption and the resulting anthropogenic heat
release including sensible and latent heat components. BEM can consider whether the outdoor units are air-cooled or water-cooled.
CM-BEM can integrate social big data such as real-time population and estimate the impacts of human behaviour changes on urban
temperature and energy consumption (Takane et al., 2022). [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E A10 JULES_1T is a one-tile urban scheme (Best, 2005) within the Joint UK Land Environment Simulator (JULES) (Best
et al., 2011). JULES is a community land surface model forming part of the UK Met Office’s Unified Model (UM). JULES has nine non-urban
surface tiles (five vegetation types, inland water, bare soil and ice). Tiles can be covered with up to three snow layers. Soil
hydro-thermodynamics are modelled through four soil layers, with the top layer coupled to the urban tile through long-wave radiation only.
[Colour figure can be viewed at wileyonlinelibrary.com]
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LIPSON et al. 39

F I G U R E A11 JULES_2T is a two-urban tile (roof, canyon) (Best et al., 2006) version of JULES_1T (Figure A10). [Colour figure can be
viewed at wileyonlinelibrary.com]

F I G U R E A12 JULES_MORUSES, has the same two urban tiles (roof, canyon) as JULES_2T (Figure A11) but uses MORUSES (Porson
et al., 2010). MORUSES has only two facets (roof and canyon) but includes a parameterisation for canyon radiative effects which updates
canyon bulk values such as albedo, emissivity, heat capacity and aerodynamic resistance. This provides benefits of canyon schemes with a
computational efficiency gain important for use in operational numerical weather prediction. [Colour figure can be viewed at
wileyonlinelibrary.com]

F I G U R E A13 K-UCMv1 (Klimaat Urban Canopy Model v1) solves the local surface energy balance based on land cover input and
regional meteorological forcing. To calculate conduction, the urban facets (ground, roof, walls) have 10 layers. Effects of low vegetation are
accounted for in the surface energy balance without shadowing effects. Vegetation is perfectly watered and non-vegetation surfaces store no
water. [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E A14 Lodz-SUEB (Łódź SUrface Energy Balance model) (Fortuniak, 2003) is a bulk scheme that aggregates urban and natural
surfaces parameters based on surface fraction. The ground heat flux assumes a 12-layer slab. This is a single snow layer and any surface liquid
water or snow, if present, assumed to completely cover the slab. Moisture content on the slab is constrained between site-specific limits, with
excess leading to runoff and supply from deeper layers during dry periods. [Colour figure can be viewed at wileyonlinelibrary.com]
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40 LIPSON et al.

F I G U R E A15 Manabe_1T uses a one-tile urban scheme
(Best, 2005) with a simple Manabe bucket model for non-urban
fractions (Manabe, 1969). A Manabe bucket model has no heat
conduction into the soil and accumulates precipitation until it
freely evaporates or exceeds storage capacity as runoff
(Pitman, 2003). We use this ‘slab and bucket’ scheme as a
physically-based benchmark. [Colour figure can be viewed at
wileyonlinelibrary.com]

F I G U R E A16 Manabe_2T only differs from Manabe_1T
(Figure A15) in that it uses a two-tile urban scheme (roof, canyon)
(Best et al., 2006). [Colour figure can be viewed at
wileyonlinelibrary.com]

F I G U R E A17 MUSE (Microscale Urban Surface Energy) (Lee and Lee, 2020) is a building-resolving microscale urban surface model
for real urban meteorological and environmental applications. It represents urban buildings on a three-dimensional Cartesian grid and solves
urban physical processes of short-wave and long-wave radiative transfer, turbulent exchanges of momentum and heat, and conductive heat
transfer into urban subsurfaces. The effect of urban vegetation is parameterized based on a simple Bowen ratio method in calculating the
radiative and turbulent sensible/latent heat fluxes. [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E A18 NOAH-SLAB uses a bulk one-tile urban scheme (Liu et al., 2006) with the Noah land surface model (Noah-LSM) (Chen
and Dudhia, 2001). Separate urban and non-urban energy and water balances are simulated, then weighted by surface fraction. Although
Noah-LSM has up to 27 land-use tiles (including urban), here the urban and one dominant non-urban land-uses are used. For the non-urban
surface, parameters (e.g., albedo, roughness length) are set to urban values provided, allowing evaporation from vegetation for an otherwise
urban surface. [Colour figure can be viewed at wileyonlinelibrary.com]
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LIPSON et al. 41

F I G U R E A19 NOAH-SLUCM uses Noah-LSM as in NOAH-SLAB (Figure A18) but uses the Single-Layer Urban Canopy Model
(Kusaka et al., 2001; Chen et al., 2011) rather than the urban slab scheme. SLUCM separates the urban tile into three facets (roof, road, wall)
using a two-dimensional canyon approach but without street orientation or varying building heights. A diurnally varying anthropogenic heat
flux is prescribed. [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E A20 SNUUCM (Seoul National University Urban Canopy Model), a single-layer model, parameterises short-wave and
long-wave radiation absorption and reflection, energy and moisture turbulent exchanges between surfaces and adjacent air, and conductive
heat transfer through sublayers (Ryu et al., 2011). It calculates canyon wind speed using regression equations based on CFD model
simulations. Here the non-urban area fluxes are simulated by the Noah land surface model v3.4.1 (Chen and Dudhia, 2001). [Colour figure
can be viewed at wileyonlinelibrary.com]

F I G U R E A21 SUEWS (Surface Urban Energy and Water Balance Scheme) (Järvi et al., 2011; Ward et al., 2016) has two impervious
(buildings, paved areas) and five pervious (evergreen trees and shrubs, deciduous trees and shrubs, grass, bare soil and water) surface types,
underneath which is a single vertical layer for soil model with lateral flow between surfaces (except water tile). Storage heat fluxes can be
calculated using empirical relations with net all wave radiation (Grimmond et al., 1991) while the latent heat flux is calculated as the
integrated resistance network of all the surfaces. There is one snow layer but with clearance activities between surfaces. Anthropogenic heat
emissions, irrigation-related fluxes and snow-clearing are either modelled with empirical relations or prescribed with observed values. It has
a dynamic leaf area index model to allow phenology to change through the year and between years. [Colour figure can be viewed at
wileyonlinelibrary.com]
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42 LIPSON et al.

F I G U R E A22 TARGET (The Air temperature Response to Green/blue-infrastructure Evaluation Tool) (Broadbent et al., 2019) models
the canyon-to-block scale street-level air temperature impacts of green/blue infrastructure. Grid points are represented as idealised urban
canyons using width/height to define the geometry and an aggregate of land cover surface types (concrete, asphalt, grass, irrigated grass,
vegetation, and water). TARGET is designed to predict street-level conditions, not bulk surface–atmosphere fluxes. [Colour figure can be
viewed at wileyonlinelibrary.com]

F I G U R E A23 TEB-CNRM uses the multilayer version (Hamdi and Masson, 2008; Schoetter et al., 2017) of the urban canopy model
Town Energy Balance (Masson, 2000) and part of Météo-France’s SURFEX Land Surface Model (Masson et al., 2013; Le Moigne et al., 2018).
Here TEB buildings (roofs, walls), roads and urban vegetation on the ground (grass, shrubs) (Lemonsu et al., 2012) influence each other
directly. Wind effects are averaged assuming all street orientations exist. Water and snow can be present on roofs, roads and urban vegetation.
Street trees are treated as an elevated tree-foliage stratum that partially covers the ground and shadows walls and ground surfaces (Redon
et al., 2017). Soil hydrology is resolved in three soil compartments below vegetation, roads and buildings (Stavropulos-Laffaille et al., 2018,
2021). A Building Energy Model (BEM) is included with human behaviour (Bueno et al., 2012; Schoetter et al., 2017). [Colour figure can be
viewed at wileyonlinelibrary.com]

F I G U R E A24 TEB-READING uses the offline single-layer Town Energy Balance model (Masson, 2000) software (Meyer et al., 2020a)
version 4.1.0 (Masson et al., 2021). TEB 4.1.0 is similar to the single layer TEB used in SURFEX version 8.1 (Le Moigne et al., 2018) but with a
simple vegetation scheme and time-constant Bowen ratio, albedo, roughness, soil temperature and water availability (Meyer et al., 2020a,
2020b). This simplified vegetation scheme neglects heat conduction and assumes neutral conditions for friction velocity. The Building Energy
Model by Bueno et al. (2012) uses MinimalDX (Meyer and Raustad, 2020) to improve air conditioners’ modelling. [Colour figure can be
viewed at wileyonlinelibrary.com]
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F I G U R E A25 TEB-SPARTCS is builds on TEB-CNRM (Figure A23) by incorporating the SPARTACUS-Urban radiative transfer
within the urban canopy using a discrete ordinate method (Hogan, 2019a, 2019b), which assumes an exponential distribution of wall-to-wall
distances and allows varying building heights (Hogan, 2019a). In this project the buildings all have the same height and tree height is limited
to building height. [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E A26 TERRA_4.11 uses the bulk urban scheme TERRA_URB (Wouters et al., 2015, 2016) with TERRA-ML (Schulz
et al., 2016) for non-urban surfaces that are characterized by eight soil layers and a one-layer snow scheme. As the latter does not account for
urban features (e.g., urban pollution, snow removal or a change in effective albedo due to snow-free walls, roads), the urban fraction is
considered as completely snow-covered in the presence of snowfall. TERRA_URB uses the Semi-empirical URban canopy dependencY
algorithm (SURY) to condense the three-dimensional urban canopy information to a limited number of bulk properties (Wouters et al., 2016;
Varentsov et al., 2020). Aggregated diurnal and seasonal anthropogenic heat fluxes (traffic, industry, etc. combined) are prescribed by
equations proposed in Flanner (2009). The TERRA version used here is a standalone version, which differs from the official TERRA version
embedded in the recent COSMO(-CLM) version (Rockel et al., 2008; Garbero et al., 2021) (Rockel et al., 2008; Garbero et al., 2021). Where
possible, features from the online version are approximated using the same underlying data sources. For more information on this
submission see https://github.com/matthiasdemuzere/urban-plumber-terra-pub. [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E A27 UCLEM (Urban Climate and Energy Model), with integrated street vegetation and building energy/waste heat (Lipson
et al., 2018; Thatcher and Hurley, 2012), is used in the stretched grid global climate model CCAM (McGregor and Dix, 2008). The four urban
facets (roof, road, two walls) have four layers/ five nodes for heat conduction (Lipson et al., 2017), with single-layer snow on a fraction of roof
and road surfaces. Low (grass and shrub) canyon and roof vegetation use a reduced set of prognostic variables with a simple bucket hydrology.
Irrigation is assumed to occur when soil moisture approaches wilting point. [Colour figure can be viewed at wileyonlinelibrary.com]
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F I G U R E A28 UT&C: (Urban Tethys-Chloris) (Meili et al., 2020) combines an urban canyon approach with ecohydrological
principles of Tethys-Chloris (Fatichi et al., 2012). Vegetation can occur on roofs and within the canyon (i.e., ground vegetation and/or street
trees). Separate soil columns occur below impervious, bare and vegetated ground facets. Transpiration is modelled as a function of plant
photosynthetic activity and environmental conditions (Meili et al., 2021). Irrigation can be prescribed at the soil surface or through
preserving soil moisture in deep soil layers. Wall facets are split into upper and lower parts to partition their contribution to near surface heat
fluxes. Snow and water bodies are currently not modelled in UT&C v1.0. [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E A29 VTUF-3D (Vegetated Temperatures of Urban Facets in 3D) (Nice et al., 2018) resolves energy transfers in three
dimensions by combining TUF-3D (Krayenhoff and Voogt, 2007) with the MAESPA tree model (Duursma and Medlyn, 2012). The vegetation
shading and physiological processes are directly integrated with building and urban effects, allowing the role vegetation and water to be
assessed in human thermal comfort in urban areas. [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E A30 VUCM (Vegetated Urban Canopy Model) (Lee and Park, 2008; Lee, 2011; Lee et al., 2016) is the first mesoscale urban
canopy model that parametrizes radiative/dynamic/thermodynamic/hydrological processes of urban vegetated area (tree, grass, soil)
interactively with urban artificial surfaces (roof, wall, road), which has been developed based on an integrated framework of a
two-dimensional single canyon and a new single tree canopy concept. [Colour figure can be viewed at wileyonlinelibrary.com]
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