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Abstract 

The growing research and commercial pressures for novel therapeutics development accentuate 

why better strategies are needed for drug discovery. The costly nature of developing a 

pharmaceutical compound as well as the shrinking pool of ‘easy’ targets are some of the key 

reasons why there is a research paradigm shift towards integrative and systems biology driven 

approaches. Moreover, multifactorial aspects of many diseases require more innovative clinical 

strategies rather than just focusing on a single target. Cardiovascular diseases as well as associated 

immune components exemplify this complexity well. This thesis aimed to introduce a gradual and 

highly integrative analytical framework by incorporating a full range of studies from disease target 

selection to high-throughput virtual screening so that a cost-effective and efficient stratification of 

targets and associated compounds could be achieved. Heart failure served as a case study for 

complex diseases where the first in-depth omics study on cardiomyopathies helped to elucidate new 

therapeutic avenues. This research tied in with a development of a novel scoring function and 

integrated machine learning approach for multiple therapeutic target classification and exploration. 

Finally, all pieces of the introduced research were used to create a highly integrative in silico 

screening workflow. Some of the key results included the first reported molecular dynamics 

analyses for a complex immunotherapeutic target, c-Rel, as well as 15 new therapeutic compounds 

that could potentially modulate this transcription factor subunit. Thus, this dissertation provided 

several important improvements for target identification, validation, and drug discovery that could 

significantly advance current development strategies and accelerate new therapeutics production.
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Summary

Summary 

 Major advances in the pharmaceutical industry were primarily driven by the need to identify 

good therapeutic targets. However, it quickly became apparent that it is not enough to just screen 

multiple compounds or perform various genomic/phenotype screens for potential hit identification. 

As a result, there is an urgent need to develop new methods for biological data integration, network-

centric target exploration, and in silico drug discovery. Moreover, paradigms in drug discovery are 

beginning to shift from target- to network-centric approaches so that better therapeutic options can 

be found for complex diseases. This was also addressed in the first experimental chapter of the 

thesis demonstrating that current strategies in treating multifactorial diseases are not sufficient and 

more integrative solutions are needed. As a case study, heart failure (specifically, dilated and 

ischemic cardiomyopathies) was investigated through the combination of bulk and single cell RNA-

seq as well as the proteome and interactome datasets to reveal a high heterogeneity of various 

biological data resources. In addition, a scoring function was derived to better capture the 

interactome complexity and disease associations. This study also introduced a two-step machine 

learning pipeline to cluster and extract information on the targets that show favourable profiles for 

therapeutics development. The analysis revealed that despite the complex aetiology of heart failure, 

it is possible to elucidate metabolic and functional pathways that show therapeutic potential. This 

part of the research was accompanied by a development of a specialised software package to make 

such analyses more accessible to researchers (Chapter 3). The third experimental chapter of the 

dissertation aimed to address the need of better categorisation and exploratory approaches for 

multiple identified targets so that the data can be grouped based on physicochemical and structural 

features. For this purpose, a novel scoring system/methodology was devised helping to capture both 

local and distant topological as well as conformational features that can allow differentiating 

specific structural motifs in a protein. That is, the core goal of this analysis was to provide an 

effective method to characterise proteins prior to in silico screening by evaluating potentially 

dynamically active regions. The ability to categorise such highly dimensional data in an easy-to-

store-and-retrieve way could significantly fast-track drug screening studies. Finally, the 

demonstrated machine learning approaches can expand the analysis of multiple targets by extracting 

and defining structural elements and motifs of various proteins. In order to aid with the 

implementation of the introduced scoring and machine learning methods, a special software 
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Summary

package was developed supplementing this experimental chapter (Chapter 5). The final 

experimental chapter of the thesis introduced a pipeline for an efficient development of therapeutic 

agents by building on the previous studies. The human c-Rel protein, as a challenging 

immunotherapeutic target, was chosen to demonstrate the existing hurdles and how they can be 

overcome using an integrative analytical approach starting with a careful selection of a target, 

followed by the evaluation of its druggability potential, and finally performing a stepwise in silico 

screening. A compound library of an unprecedented size (34 M) was prepared from an even larger 

set of compounds (659 M) which after gradual screening led to the identification of 15 high-scoring 

drug-like structures that could be used for preclinical screens as potentially highly selective c-Rel 

inhibitors/modulators. In addition, state-of-the-art molecular modelling and dynamics analyses 

provided for the first time some hints at how the target protein might interact with the DNA 

sequence. A cheminformatics software package was also created to help with screening compound 

selection and assessment (Supplementary materials). 

 Overall, the innovative biophysical, computational biology, bioinformatics, and 

cheminformatics methods presented here could significantly improve target selection and pre-

screening analysis as well as accelerate pharmaceuticals development. Importantly, the developed 

highly integrative and network-centric approaches allow for a better understanding of pathological 

perturbations and can help deliver so much needed therapies faster and with a safer profile. 
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Introduction

1. Introduction 

1.1. Drug discovery and development: a historical perspective on how global R&D trends 

changed and shaped therapeutics development  

 The origins of the modern pharmaceutical industry can be traced back to the middle of the 

19th century when companies, such as Eli Lilly, Merck, and Roche, moved into large-scale 

production of drugs. Moreover, newly established pharmaceutical businesses, such as Bayer, ICI, 

Sandoz, as well as Pfizer, started developing research labs to focus on medical applications and 

scale-up their chemical production1. Early in the 20th century, major pharmacological advances in 

synthetic organic chemistry and new compound exploration transformed the drug industry into 

large-scale manufacturing to meet the increasing demands of newly introduced drugs, such as 

analgesics and antibiotics1. The expanding pharmaceuticals market also prompted governments to 

undertake research and introduce necessary regulatory steps to establish safety and distribution 

policies. Furthermore, turbulent 20th century history and economic changes created a perfect 

environment for a small number of very large multi-national companies to dominate the market by 

the end of the century. Growing pharmaceutical businesses took advantage of the extraordinary 

scientific progress that allowed to associate a specific gene with a disease which in turn led to the 

emergence of new premises in research and discovery (R&D)1–3. One such novel concept was a 

‘blockbuster’ drug that addressed a significant medical need and generated annual sales of at least 

$1 billion1,4. Particularly,  a ‘blockbuster’ is characterised by its market dominance for a specific 

indication, wide population use, and ability to achieve substantial profits. Such drugs typically 

represent a particular therapeutics class, e.g., statins1. In light of the growing number of potential 

therapeutic targets, this also marked the change from low-throughput studies to the development of 

high-throughput strategies as increasing production outputs became a necessity in both biology and 

chemistry to meet the demand of new drugs2,3,5–7. The abundance of data and funding allowed to 

identify obvious links between pathological phenotypes and the offending protein or proteins1,2. 

However, the era of 'low hanging fruit' in drug discovery started to dwindle towards the end of 20th 

century as accumulating costs, growing regulatory oversight, and the shrinking pool of ‘easy’ 

targets reduced companies’ outputs1–3,5,8. This became especially evident over the last twenty years 

when companies began to rethink old paradigms and search for innovative approaches to develop 

therapeutics2,8–12. Therefore, changing motivations of pharmaceutical companies as well as the 
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Introduction

undercurrents that shaped today’s R&D practices can be better understood when considering how 

drug discovery evolved during the turn of the century. 

 Revisiting the past 50 years of drug discovery, we can see how significant scientific 

advancements created both new opportunities and the vacuum space in R&D which may help 

explain current trends in the pharmaceutical industry. Since the 1980s, the scope, quality, and even 

the cost efficiency of the scientific and technological methods have markedly improved. 

Biopharmaceutical industry took full advantage of combinatorial chemistry by not only increasing 

the number of drug-like molecules that could be synthesised, but also scaling up considerably the 

size of chemical libraries7,13. Everything from sequencing to the fewer man-hours required to 

determine a three-dimensional protein structure facilitated the identification of lead compounds and 

targets13. High-throughput screening (HTS) of compound libraries against proteins of interest 

became ten times less expensive between mid-1990s and 20085. Overall, the introduction of new 

discovery tools, such as computational analyses and transgenic mice to model pathologies, not only 

improved the scientific understanding of disease mechanisms, but also helped to form target-guided 

strategies13. While such improvements should have guaranteed a higher reliability in therapeutics 

development, the contrasting uneconomical R&D management and low numbers of new 

therapeutics pointed to many overlooked aspects in research. Particularly, shortcomings in industrial 

research organisation as well as an insufficient appreciation of the complex chemical and biological 

space stood out13,14. The exhaustion of obvious druggable targets have also often been used to 

explain the decreasing numbers of new molecular entity (NME) approvals and growing R&D 

expenditures14. This observation is based on the predicted druggable biological space which is 

approximated to contain around 600–1500 ‘drug targets’ that could become the focus of industrial 

research14,15. Additional hurdles in improving NME outputs may also stem from the fact that the 

search for new targets often begins with basic academic research which is only later transferred to 

the industrial drug discovery setting14. Basic research in the context of pharmaceutical R&D is 

typically more risk-averse, while academic institutions tend to pursue novel and higher-risk targets 

with long-term investments in basic research13,14,16. This dichotomy may also explain the 

differences in the novelty of identified therapeutic targets and why pharmaceutical companies are 

now seeking to establish stronger partnerships with academia to identify potential therapeutic 

breakthroughs14,16. Finally, to better appreciate the changing landscape of R&D challenges and the 

low numbers of NMEs over the last decades, it is also important to consider the asymmetric 

situation caused by the patents system. Investments reaching billions in search for new drugs might 
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Introduction

not bring in profit if the pipeline fails. Yet, pharmaceuticals that succeed to reach the market can be 

priced excessively to withstand commercial pressures and cover R&D past and future expenditures. 

The global patenting systems enabled and are still enabling pharmaceutical business to exploit 

various pricing schemes because once a therapeutic is out of patent it can be sold as a ‘generic’ at a 

considerably lower cost1,10. Thus, opposing business models in pharma companies pursuing new 

drugs and those capitalising on generic pharmaceuticals also add to the creation of an uneven risk 

and cost distribution which further increases R&D pressures and product costs1. All these factors 

contribute towards present day R&D issues, as core strategies in drug development programs 

evidently did not catch up with growing market constraints and the shrinking space of viable targets 

that can move quickly and successfully through the pipeline. 

 In order to better appreciate the business and research models that have emerged during the 

past 50 years, it is also necessary to consider the research timelines and expenditure dynamics since 

discovery and development of a new drug can not only take decades to reach patients, but can also 

require significant investments2,10,13,17,18. It is estimated that there was a steady rise in drug 

development costs since the 1950s with a linear increase on a logarithmic scale in R&D spending 

for every newly approved drug19. Such a steep growth in R&D spending to develop a single drug 

can result in much higher actual production costs than usually quoted 1.6 billion US $ per drug 

successfully released into the market20. Considering not only the investment needed for drug 

development but also calculating in the attrition rates, i.e., failed compounds for a specific 

indication, the price for therapeutics production increases dramatically. Some estimates indicate that 

the cost of developing a drug and bringing it to the market was as high as 4 billion US $ or more 

between 1997 and 201117. Despite continuously increasing R&D expenditures, the number of new 

therapeutics has been in a steady decline20. Stagnation in NME development has been evident in the 

past decades with the overall approvals by the US Food and Drug Administration (FDA) remaining 

low since the 2000s after peaking in the mid!1990s14. These trends can be attributed to the high 

drop-out rates of candidate drugs during preclinical screening and later attrition in clinical testing 

phases due to safety or efficacy issues11,20,21. Late-stage attrition rates are estimated to be as high as 

75%20,22 representing one of the reasons for a high production and sale cost cycle. In addition, our 

prognostic abilities to predict the success or failure of a therapeutic candidate are not sufficient. In 

this context, only 13.8% of drug programs successfully progressed from Phase I to the final 

approval by the FDA (2000-2015)21,23–26. It was found that cancer drugs had the lowest success rate 

of 3.4%24–26. Similarly, drugs targeting the central nervous system also have poor success rates and 
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require longer development times when compared to other drug classes. Specifically, the success 

rate of neuropsychiatric drug candidates reaching the market is low (8.2%) and this trend can likely 

be explained by on average longer clinical development and trial time. Moreover, neurological 

agents typically fail during later clinical phases which also makes them a particularly expensive 

drug class to develop16. It is also important to note that clinical trial outcome tracking is dependent 

on the available information and statistical assessment methods which can introduce various 

discrepancies and biases in the reported statistics25. Such high failure rates lower investors’ 

confidence in pursuing new drug discovery programs or alternative therapies, especially since the 

process might take years before a program’s clinical potential is seen17,18,22. It has been argued that 

the industry needs to develop improved analytical frameworks for R&D pipelines; for example, 

early proof-of-concept screens, clinical risks identification, and a robust integration of risk 

evaluation with experimental medicine procedures have been listed as crucial factors to reform the 

discovery infrastructure2,10–13,18,27. However, it appears that boosting existing practices might not be 

enough as low success rates primarily reflect that the current understanding of selected targets and 

their tractability is insufficient2,8,10,22,28.  

 Considering the historical and economic context of the last half a century it becomes evident 

that innovating therapeutics development, accelerating R&D pipelines, and expanding the 

druggable target space can only be achieved if the fundamental approaches in drug discovery 

change11,13,17,18,22,27. Moreover, while one of the key research areas in current drug discovery 

remains finding better methods to identify unwanted toxicity or low efficacy as early in the pipeline 

as possible10, it is crucial to establish a more integrative approach towards drug discovery and take 

advantage of developments in the computational R&D space2,28. In other words, today’s fractioned 

R&D space, despite the overall science progress, highlights why seeing the ‘big picture’ of 

discovery pipelines and focusing on integrative holistic approaches can help with the current 

challenges. 

1.2. Shifting paradigms in drug discovery and development: from high-throughput target-

specific approaches to searching for new multi-network strategies  

 Developing new strategies for drug discovery rests on transforming the existing scientific 

and technological tools1. Specifically, rethinking some of the prevailing paradigms in target 

identification and tractability evaluation in early preclinical screens is believed to be necessary in 

order to improve the development of therapeutics and open the markets for more innovative 

17



Introduction

treatments9,13,18,19,27. Yet, this shift towards new approaches is gradual since recently introduced 

discovery and development protocols are also subject to regulatory validation1,8,10. Consequently, in 

order to understand the evolution from target-centric screening to disease network exploration, it is 

necessary to consider how preclinical strategies advanced during the past decades and how this 

affected R&D approaches1–3,6–8,29. 

 Broadly, drug development can be divided into several stages that build on early exploratory 

studies with increasingly complex assays and screens1–3,11. The process begins with disease-related 

genomics as well as target identification and validation studies. This is followed by lead discovery 

and optimisation studies which, if successful, conclude with clinical trials30 (Fig. 1). However, 

before a complete pipeline is outlined and decided on, identifying a new drug starts by defining a 

particular disease of interest which might be studied in academia or in a pharmaceutical company's 

basic science division2,5,14. Typically, only once the research narrows down a specific target whether 

it is a gene, protein, or any other biological element that can be modulated, can further discovery 

work begin to define chemical entities that have the potential to engage that target1. This is an 

iterative process with feedback loops from preclinical development and clinical trials where many 

discovery steps intertwine (Fig. 1). Although a preclinical drug discovery program aims to deliver at 

least one clinical candidate molecule with sufficient biological activity, most discovery programs 

are designed to generate more than one potential drug candidate to minimise safety, potency, 

kinetics, and other clinical risks1,2. Despite this R&D outline, there is no one blueprint for finding 

good clinical candidate molecules and an extensive collaboration of biology, chemistry, toxicology, 

and pharmacokinetics is paramount for tailoring a specific pipeline to ensure clinical success1,8,14,16 

(Fig. 1).  
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Figure 1. Drug discovery and development stages from the basic research to approval. This process can be 
focused on small molecules (NMEs) or biological molecules (NBEs). Throughout the process various 
feedback loops exist that are represented with green arrows. Blue arrows depict the timelines for quality 
assurance processes, such as good laboratory practice (GLP), good manufacturing practice (GMP), and good 
clinical practice (GCP). Other abbreviations: absorption, distribution, metabolism, and excretion (ADME); 
cytochrome P450 (CYP). Based on the information from Mohs et al., 2017 and Earm et al., 20142,16. 

 Until the 1990s, drug discovery and development largely followed a phenotypic or 

observation-based approach which was quite problematic as it was difficult to predict toxicity or 

understand the mode of action of a drug2. Moreover, before 1985, screening capacity was low and 

traditional biochemical as well as pharmacological drug discovery methods operated with, by 

today’s standards, large reaction volumes (1"ml) to test individual compounds3. Thus, laboratory 

assay capacity ranged from around 20 to 50 compounds per week and further limitations were 

imposed by a relatively small compound selection (averaging 3000) which could take 1-2 years to 

test3. The inadequacy of such approaches was further highlighted with the advent of the 

recombinant DNA technology that expanded new therapeutic target selection and underscored the 

need to quickly assess a more diverse chemical space3. Only after enough biological knowledge 

accumulated, was there a shift towards target-based approaches where screening became driven by 

selected targets2. Between 1985 and 2000, research pressures and the need for new technological 

solutions to automate, maximise, and multiplex screening capacity led to the development of HTS3. 

This period represents a fast growth in the screening scalability, cost reduction, and data integration 

as well as target-centric and toxicology-centric method creation3 (Fig. 2). This need to innovate also 

helped to overcome the technical limitations of biology and chemistry research so that more viable 

targets and candidate compounds could be identified and screened1,6,8.  
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Figure 2. Chronological sequence of key breakthrough developments describing the origin and evolution of 
high-throughput screening (HTS). The timeline depicts the first emergence of important concepts, HTS 
scaling, and new advances. Other abbreviations: reverse transcription-quantitative polymerase chain reaction 
(RT-qPCR), liquid chromatography–mass spectrometry (LC-MS), the National Institutes of Health (NIH). 
Adapted from Pereira & Williams, 20073. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

20

 Turn of the century was marked by a rapid adoption of new methods in R&D and the 

expanding cellular biology space that was studied. In order to appreciate the changing discovery 

philosophy, it is necessary to consider the technical innovations that created the basis for target- 

centric approaches. Pre-2000, target selection and validation depended on specifically designed 

assays to understand what cells express targets, what interactions exist, and what can be 

therapeutically exploited. Studying differential gene expression was one of the first crucial steps in 

drug discovery at that time since traditional techniques, such as Northern blot analysis, became 

gradually complemented and/or replaced by a number of newer methods, e.g., in situ hybridisation 

(ISH)1,6,8. Even with technical advancements, these methods were still very labour intensive. This 

pushed for further development of methods that could be expanded into a multi-assay format. 

Microarray gridding (GeneChip™) and TaqMan® polymerase chain reaction (PCR) became 

prominent in the high-throughput analysis of genes. In addition, microarrays, real time (RT)-PCR- 

based TaqMan assays, as well as Spotfire® data analysis helped to introduce a comprehensive 

framework where differential expression readouts were integrated and analysed1–3,7,8,31. While these 

methods could not pick-up low abundance genes and suffered from noise, next-generation 

sequencing (NGS) leveled out the field over the following 20 years with the earlier technologies 

paving the way for increased research robustness and speed31–34. Early in the post-Human Genome 

Project era, RNA-mediated post-transcriptional gene silencing (e.g., miRNA) has opened new 

possibilities for gene expression modulation in many organisms and cells35. These breakthroughs 

led to the formation of the functional genomics field that combined physiology and pharmacology 

allowing the integration of many new experimental approaches, e.g., in vivo imaging (i.e., magnetic 

resonance imaging), mass spectrometry (MS), and microarray hybridisation, to determine particular 

gene functions8. Consequently, around the 2000s, research began to change with growing 

capabilities to quickly parallelise and process multiple samples or experimental set-ups. As high- 

throughput drug discovery continued to progress with emphasis on the genome, it also began to 

expand into proteome and metabolome research1,8. This was primarily caused by the realisation that 

mRNA expression does not necessarily correlate with protein levels36 and that post-translational 

modifications or proteins resulting from alternative splicing might have different biological 

activities8. As a result, proteomic and metabolomic analysis permitted the capture of specific
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pathological profiles that could be modulated via therapeutic intervention. Even though microarrays 

dominated the assessment of gene expression via cDNA and RNA analysis, their applications were 

expanded to include, for example, protein arrays to capture enzyme-substrate, protein-protein, and 

DNA-protein interactions37,38. Similarly, metabolomics integration into discovery and development 

allowed to characterise new disease markers and metabolic patterns by nuclear magnetic resonance 

(NMR) spectroscopy, MS, and chromatographic analysis of cell extracts1,8,39. Thus, from mid-1995s 

to 2005, there was a steady replacement of laborious and less optimal methods with a growing HTS 

dominance allowing the discovery of novel molecular targets8,40.  

 This change in R&D throughput offered many new hit compounds (identified via HTS) and 

allowed the creation of more focused screening libraries to quickly progress from hit identification 

to lead generation8. Advances in robotics, automation, and data handling allowed applying diverse 

biochemical assays to large chemical libraries (50,000-100,000 samples in a day)1.  

With developments in ultra-high-throughput screening (UHTS), HTS efforts have shifted into high 

gear since 2010 as the processing power has increased to 1,000,000 samples a day1. Typically, any 

screening that generates lead compounds takes place in several stages from broad identification to 

more specialised assays to achieve better pharmacokinetic profiles, such as absorption, distribution, 

metabolism, and excretion (ADME). Thus, after hit identification and triage, the next step is lead 

optimisation to reduce the number of potential leads from around 10–15 to 3–41,41. It is important to 

highlight that this type of research is not linear and various new assays are explored to establish 

efficacy, bioavailability, as well as interaction characteristics. Similarly, compound modifications 

are also tested. This might take around 2-3 years since this time is also needed to design the process 

chemistry (to produce trial batches) and outline potential clinical trials1,16,41,42. Once activity 

characterisation is complete, a lead compound or compounds will move into clinical testing to 

establish if there is a usable pharmaceutical2. As can be seen, crystallisation of drug discovery and 

development principles required both the technological innovation and the broadening of our 

scientific understanding. This process is well reflected through the HTS evolution (Fig. 2) since 

target-centric discovery programs became paramount in the industrial research2,3,5,31. Furthermore, 

as R&D became centred around disease-targeting paradigms, companies tried to counteract market 

pressures with increased investments in their discovery platforms to produce more new leads1,2,20,43.  

 Yet, the significant technological progress and growing research interdisciplinarity did not 

result in larger therapeutics outputs. Increasing failure rates in clinical phases and the reduced 

number of first-in-class targets or compounds highlighted that disease-specific processes are more 

complex than anticipated10,13,24,44. In addition, more than two decades of the target-based approach 
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did not boost productivity levels in new drug development and many selected targets failed to be 

druggable1,2. Poor disease linkage, off-target effects, and toxicity underscored that biological 

processes cannot be solely defined by a single gene or a protein2. While discovery methods and 

technology evolved, companies failed to diversify their approaches and look ahead beyond the 

classical framework of drug searching for a single-target disease which was largely dictated by the 

existing HTS practices3,5,24,31. In other words, the reductionist approach for new drug identification 

has been dominating R&D pipelines and the complexity of disease biology has just relatively 

recently forced companies to change such attitudes and embrace systems biology ideas2,45,46.  

 To address R&D challenges, there has been increasingly more reliance on in silico 

approaches to evaluate targets and select the most optimal pharmacological intervention options 

where integrative and systems biology-based methods began to guide pipeline design and 

therapeutic decisions2,31,47–51. Various computational and biotechnological advances, including next-

generation sequencing, transcriptomics, metabolomics, and proteomics, started to be combined 

using systems biology principles. This new type of biological Big Data integration used to study 

complex biological interactions is known as ‘omics’2,46. Thus, ‘omics’ represents a new concept in 

research where the dynamic picture of the pathological mechanisms, genomic variability, 

pharmacological readouts, and drug screening outcomes become a prerequisite to decrease attrition 

rates. Here, bioinformatics, cheminformatics, systems biology, and computational biology have 

become critical in drug discovery and reforming R&D. These computational methods are now 

employed to provide cost-effective target and drug candidate selection, identify potential toxicity 

events early in the pipeline, and prepare large-scale information integration for present and future 

studies52. Furthermore, the growing data volumes in screening studies necessitate the development 

of rational selection and storage methods to organise hundreds of thousands of compounds, their 

targets, and associated activity readouts19,53–56. Similarly, historical data on its own can save 

resources in future screens by allowing mining of the existing data2,20. Bringing computational 

methods into drug development also helps to limit the use of animal models in pharmacological 

research and encourages the advancement of alternative high-throughput systems, such as organoids 

or induced pluripotent stem cell (iPSC) screening assays2,28. In other words, transferring aspects of 

medicinal chemistry and pharmacology into the computational space creates a flexible research 

environment where in vitro and in vivo studies can be complemented by in silico and fast data 

integration.  
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 Seeing the obvious benefits of highly integrative computational approaches, many 

pharmaceutical companies have opted to integrate in silico discovery platforms into their pipelines. 

Such investments are expected to help accelerate therapeutics discovery efforts and improve the 

overall success2,52. However, in order to significantly boost current drug discovery and development 

strategies, the fast-developing field of computational drug discovery needs structured and well-

defined methods to identify promising targets, characterise compound engagement, and store 

valuable information20,28,57–60. Successful drug target identification and prioritisation primarily 

depend on the establishment of a causal association between a target (or targets) and a specific 

disease1,15,24. Thus, in silico methods need to avoid repeating reductionist strategies that are still 

often seen in classical therapeutics research where the focus is directed towards a very narrow 

spectrum of targets or a single target is believed to completely alter the disease phenotype2. The 

reality is much more complicated because of complex disease aetiologies and the underlying 

pathological heterogeneity2,15,45,46,61,62. As a result, shifting towards network-centric approaches to 

better understand pathological perturbations, promoting early and advanced in silico screening, as 

well as the systematic analysis of the selected targets can be invaluable in addressing the current 

challenges in pharmaceuticals development2,45,46,63–67. In other words, the algorithms used in 

screening should move away from the notion of ‘a single target equals a disease’ to a network-

centric approach in order to capture the complexity of the full disease interactome. This 

appreciation should lead to a better analytical framework for studying cellular perturbations in a 

pathological state and assessing potential off-target effects2,45,46,66–71. Similarly, it is important to 

consider how a compound interacts with a target or targets by exploring the energetics of the 

interactions, binding dynamics, and molecular movements. Finally, all this information must be 

integrated into a format that allows to parse and categorise multiple targets so that valuable insights 

are not lost2,24,28,52,72. There are a growing number of highly integrated research examples where 

computational methods in drug discovery have already proven their value in urgent situations, such 

as the COVID-19 pandemic crisis73, or the changing landscape of chronic as well as emerging 

infections, namely tuberculosis and methicillin-resistant Staphylococcus aureus (MRSA)47,74.  

 While computational methodologies allow the expansion of the analytical space which 

undoubtedly helps to select relevant targets and their modulation approaches, further development 

of methods is necessary to improve today’s in silico strategies and create a more regulated research 

ecosystem2,28,52,70,75. Only by focusing on these questions and embracing a holistic discovery 

approach, can we begin to untangle the key elements in health and disease.  

23



Introduction

1.3. Novel R&D framework for complex diseases: rethinking therapeutics development with 

case studies on cardiomyopathies and inflammatory disease components 

 Understanding the full scope of the complex mechanisms underlying diseases is still 

challenging and a simplistic perspective of ‘one gene-one disease’ has proven to be 

unsuccessful2,45,76. Many diseases result not only from multiple genetic determinants, but also from 

regulatory and network interactions46,76. Thus, the multifactorial nature of many pathologies, such 

as depression, asthma, epilepsy, diabetes, rheumatoid arthritis, hypertension, or coronary artery 

disease, earn them a label of ‘complex disease’ where a combination of genetic, regulatory, or even 

environmental factors can all contribute at a varying degree77,78. Such stochastic aspects of diseases 

created new hurdles for drug discovery programs, especially considering what can be used as a 

good drug target2,15,78. While the human genome contains approximately 25,000 genes, only about a 

tenth of the expressed proteins are amenable to small-molecule modulation with less than a half of 

that subset believed to have any therapeutic potential15,60,61,79. Since the development of therapeutic 

compounds has a very low success rate with less than 2% of lead compounds reaching the market, 

generating effective pharmaceuticals might become especially challenging for immunotherapeutics 

or other complicated pharmacological categories1,25. These difficulties arise because a therapeutic 

entity can potentially have far reaching side effects through multiple interactions, such as 

homology-based or unspecific binding and conformation-dependent engagement61,80. Considering 

the growing need for methods to analyse intricate disease interactors and regulatory 

mechanisms2,28,45,46,52,53,78, this thesis will address how we can better investigate the underlying 

disease mechanisms and potential therapeutic targets when integrating different levels of biological 

data for both complex diseases and targets.  

 The first two experimental chapters (Chapter 2: Insights into therapeutic targets and 

biomarkers using integrated multi-#omics$%approaches for dilated and ischemic cardiomyopathies  

and Chapter 3: OmicInt package: exploring omics data and regulatory networks using integrative 

analyses and machine learning) will introduce new strategies to study complex diseases and identify 

promising targets. In order to address the lack of integrative and network-centric approaches in 

R&D, these chapters will focus on the development of an integrative analytical strategy that 

combines omics analyses for robust target classification and assessment with a special focus on 

complex and unmet need diseases. The following chapters (Chapter 4: Fi-score: a novel approach to 

characterise protein topology and aid in drug discovery studies and Chapter 5: Fiscore package: 

effective protein structural data visualisation and exploration) will describe newly developed 
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methods for multiple target investigation in preparation for functional analyses, target validation, 

and drug screening. In addition, limited options in protein structural and topological exploration as 

well as machine learning, classification, and relational data storage prompted addressing these 

questions through a first-of-its-kind scoring function and a user-friendly software package. The 

final experimental chapter (Chapter 6: In silico drug discovery for a complex immunotherapeutic 

target - human c-Rel protein) will tie together all the pieces of the research presented in this thesis 

by demonstrating a highly-parallelised and integrative in silico screening platform that was 

developed for accelerated drug discovery. Seeing existing limitations in computational chemistry 

strategies, such as disjoined analyses, limited analytical protocols, and the lack of solutions for 

complex targets, encouraged to devise this analysis and screening methodology. Heart failure (HF) 

and a complex immunological target were selected as case studies to illustrate the present 

challenges in drug discovery and use these models to formulate potential solutions. Particularly, HF 

represents a multifactorial disease with the treatment targeting only the symptoms based on the 

severity of left ventricle dysfunction81. The exploration of immunological disease components 

through complex immune regulators can also help create new and broadly applicable therapeutic 

strategies82–86. 

 Despite cardiovascular disease (CVD) being the dominating global cause of death, 

investments and efforts in CVD drug development are declining81,87. CVD progresses to a clinical 

syndrome (or HF) which can be caused by a broad spectrum of diseases affecting the pericardium, 

endocardium, myocardium, heart valves, and vessels. The underlying structural and/or functional 

heart dysfunction in HF results in impaired ventricular filling or blood ejection88. The statistics for 

HF are worrying with approximately 2% of the adult population being affected world wide89. Since 

HF is an age-dependent clinical syndrome, fewer than 2% of HF sufferers belong to the population 

younger than 60 years; however, this proportion increases five-fold for those older than 75 years89. 

Patients with HF usually present with symptoms, such as reduced exercise tolerance, dyspnea, 

breathlessness, pulmonary crackles, and fluid retention which manifests through pulmonary and 

peripheral oedema (Fig. 3). Regardless of the physiological compensatory mechanisms in HF, such 

as increased muscle mass, cardiac filling pressure, and heart rate, this pathophysiological condition 

progressively worsens88,89. 
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Figure 3. Summary for cardiovascular pathology progression with key features described as well as the 
anatomical feature depiction. The diagram on the left depicts cardiovascular disease (CVD) progression to 
heart failure (HF) with specific subtypes, classification criteria, causes, symptoms, and main risk factors. 
Specific disease aspects, such as left ventricular dysfunction and late stage HF, are also summarised. On the 
right, the dilated cardiomyopathy (DC) and ischemic cardiomyopathy (IC) (or cardiac ischemia) cases are 
shown next to the normal heart. Clinical illustrations were adapted from cidg.org.nz and omicsonline.org. 

 HF resulting from left ventricular dysfunction is further categorised according to left 

ventricular ejection fraction (LVEF) into HF with reduced ejection fraction (LVEF 40% or less), or 

HFrEF, and HF with preserved ejection fraction (HFpEF). While the exact definition of HFrEF is 

known to vary among different guidelines and studies, where LVEF cut-offs can be in a range of 

≤30%,  ≤35%, and ≤40%, many clinicians, in their routine practice, would consider EF <40% as a 

significant systolic dysfunction to warrant the designation of HFrEF88. Hypertension, ischemic 

cardiomyopathy (IC), and dilated cardiomyopathy (DC) precede late-stage HFrEF which 

encompasses a diverse pathological spectrum81,88,89. The progression of HFrEF can be influenced by 

a number of risk factors resulting in cardiac injury and a subsequent development of myocardial 

dysfunction. The risk factors are shared with coronary artery disease where obesity, hypertension, 

hypercholesterolaemia, diabetes, as well as a familial history of HF, or exposure to cardiotoxic 

agents (e.g., alcohol, amphetamines, and cancer treatment) can promote cardiac injury (Fig. 3). 

Even though the initial pathophysiological condition is asymptomatic, it gradually worsens leading 

to end-stage HF81,88,89. Moreover, HFrEF exemplifies well how a limited investigation into a 

complex disease can lead to a long-standing paradigm formation of a single common pathway 

where only a limited number of genes are used to explain the observed pathological 

heterogeneity2,81,90. Early high-throughput studies did not account for the technical and analytical 
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limitations and focused on a very generalised explanation for HF, which inevitably led to the 

oversimplification of the processes at a molecular level2,91. With the growing evidence of complex 

regulatory networks in cardiopathologies92–94, it became clear that several genes (as it is the case 

with a ‘single common pathway’ theory in heart disease) did not provide an adequate measure of 

pathology development or progression. Furthermore, by simplifying the pathological premise, we 

lost opportunities to develop new therapeutics as evidenced by the fact that most current therapies 

for HFrEF did not specifically focus on disease aetiology or in-depth differentiation81,87,95. DC, IC, 

or HFrEF are managed with oral diuretics to treat hypervolemia. Angiotensin I-converting enzyme 

(ACE) inhibitors, angiotensin II receptor blockers (ARB), and statins have also shown benefit in the 

treatment of HF88,96–98. Thus, the existing symptomatic management highlights why there is a need 

for new therapeutic insights and why an improved analysis of underlying HF mechanisms is still 

urgently needed81,87,91,95.  

 Limited research in the therapeutic area of cardiopathologies is typically attributed to the 

low tolerance for side-effects and a lack of good biomarkers95. Thus, a more in-depth understanding 

of the disease aetiology on a molecular level beyond symptomatic treatment would allow for a 

better monitoring of the pathology progression, treatment efficacy evaluation, or even the discovery 

of new therapeutic targets81,89,95,99. In addition, the lack of systematic studies to uncover underlying 

heterogeneous mechanisms on the genomic, transcriptional, and expressed protein scale signifies 

the need to shift the analytical paradigm towards network-centric and data mining 

approaches81,87,91,95,100,101. A growing number of RNA-seq and metabolomics studies create an 

excellent resource for an in-depth look into cardiomyopathies where gaps in datasets can be 

enriched with the information collected from similar studies81,102,103. Moreover, multi-omics 

approaches can help to uncover the intricate biological mechanisms of pathological processes by 

recreating the complex interactome. These techniques can also be applied to many different 

indications2,45,104,105. Current HF treatment options rely on targeting the symptoms associated with 

the left ventricular failure without taking into account the heterogeneity of underlying 

mechanisms81,87,88. Due to this lack of therapeutic diversity and the urgent need for improvements in 

HF treatment, the reported research (Chapter 2) focused on human left ventricular dysfunction  

(a clinically significant reduction in LVEF) and the development of a new methodology to uncover 

disease-associated genes.  

 The study of cardiomyopathy signatures and targets (Chapter 2) hinted at the immune 

system alterations via the NF-κB pathway (or NF-kappaB, nuclear factor kappa-light-chain-
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enhancer of activated B cells, pathway) (Fig. 4). The identified leukocyte migration signatures, such 

as CXCL10, and other inflammatory markers in IC suggested the involvement of major regulatory 

networks, such as the NF-κB pathway. The NF-κB pathway had already been linked to various 

hypertrophic, remodelling, and ischemic heart conditions86,106–108. Moreover, the exemplified need 

for novel immunotherapeutics that could be used for HF to improve treatment specificity and 

tolerability108-110 motivated to focus on the immune system and the exploration of potential 

pharmacological strategies for relevant target modulation. As a result, the NF-κB pathway was 

selected as an excellent opportunity to develop discovery pipelines because of a significant unmet 

need for drugs that could effectively target this complex (Chapter 6)86,111. Importantly, formulated 

pipelines and methods can be widely applied to other problematic targets. 

 

Figure 4. Simplified schematic representation of NF-κB signalling showing the canonical and non-canonical 
pathways; the illustration was adapted from Peng et al., 2020112. NF-κB hetero- or homo-dimers are formed 
by the Rel transcription factor family members: p50, p52, Rel A (p65), Rel B, and c-Rel. The canonical 
pathway (p65/p50) is inducible through TLRs, TNFRs, and IL-1R leading to the phosphorylation and 
degradation of the inhibitory protein IκB. This occurs primarily via the activation of the IκB kinase (IKK). 
IKK is composed of the catalytic IKKα and IKKβ subunits and a regulatory protein termed NEMO (NF-κB 
essential modulator) or IKKγ. After NF-κB is released from the IκB-containing complex the activated NF-κB 
complex translocates into the nucleus. The non-canonical pathway (p52/RelB) is activated by BAFFR, 
CD40, and RANK. This cascade results in the phosphorylation of the NF-κB inducing kinase (NIK) and 
IKKα. This is followed by the translocation of the activated p52-RelB heterodimer into the nucleus. NF-κB 
signalling regulates various cellular processes that may involve inflammation, apoptosis, and immune 
response. 
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 The NF-κB pathway illustrates well how far reaching immune-modulatory effects can be 

and why creating better immunotherapeutics can have a significant impact in many pathologies. 

NF-κB encompasses a broad spectrum of activities realised through the regulation of key genes in 

pro-survival and pro-apoptotic pathways (Fig. 4). NF-κB hetero- or homo-dimers are formed by the 

Rel transcription factor family members: p50, p52, Rel A (p65), Rel B, and c-Rel. It is important to 

note that due to post-translational processing the p50 and p52 proteins have no intrinsic ability to 

activate transcription as they lack the C-terminal transactivation domain in contrast to the other 

family members113,114. This multimeric transcription factor is regulated through the binding of κB 

inhibitor proteins, which are subjected to proteosomal degradation after the activation of the IκB 

kinase complex (IKK) leading to the release of NF-κB111-114. The complexity of this master gene 

regulator lies in the fact that different multimer compositions exist and that NF-κB can be activated 

either through the canonical or non-canonical pathway. The canonical pathway (p50 and p65 or p50 

and c-Rel heterodimers) controls multiple cellular functions including immune system activation 

and cellular survival, while the non-canonical pathway (mostly p52-RelB) is primarily involved in 

lymphoid organogenesis (Fig. 4)114–116. In addition, the NF-κB complexes containing either p65 or 

c-Rel are known to be involved in distinct biological roles, where multimers with p65 maintain 

cellular metabolism and inflammatory response regulation and c-Rel containing transcription 

factors play a role in a more specialised immune response and lymphoid development117,118. Even 

though NF-κB is at the nexus of multiple regulatory pathways and metabolic processes, so far no 

significant therapeutic advancements have been achieved to offer optimal pharmacological 

engagement119–121. Difficulties in establishing good drug candidates for NF-κB might be linked to 

the ubiquitous expression of NF-κB in multiple tissues, complex interaction dynamics, and a lack of 

understanding regarding various oligomer functions114–116,120,122. Nevertheless, these aspects of NF-

κB signalling can be exploited to advance our drug discovery efforts114,115,123. As NF-κB is 

assembled from different dimers that vary between tissues and pathologies, this signalling feature 

can be strategically capitalised on to increase specificity and reduce off-target effects. The efficacy 

of this approach has recently been demonstrated through the inhibition of c-Rel function to delay 

melanoma growth by impairing effector Treg-mediated immunosuppression121,124. Furthermore, as 

we begin to better understand NF-κB function, it becomes apparent that dimer-forming proteins are 

not equivalent and possess different characteristics which can be utilised to accommodate new drug 

design124. These observations are especially relevant for cardiopathologies because NF-κB activity 

is also increased in such states106,107,123,125,126 and there is evidence that the c-Rel subunit stimulates 

cardiac hypertrophy and fibrosis123. Gaspar-Pereira and colleagues demonstrated that c-Rel-
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deficient mice have smaller hearts and do not develop cardiac hypertrophy and fibrosis during 

chronic angiotensin II infusion. The authors also reported for the first time that c-Rel is highly 

expressed and localised in the nuclei of diseased adult human hearts, whereas in normal hearts       

c-Rel was restricted to the cytoplasm123. Other studies have also hinted at the complex regulatory 

network of NF-κB showing that transcriptional regulation can have far reaching effects, including 

the promotion of global changes in the chromatin landscape to control cellular calcium regulating 

genes and cardiac function106. The growing evidence strongly suggests that NF-κB plays a role in 

heart disease, where the development and progression of inflammation and cardiac as well as 

vascular damage seem to be orchestrated by this transcription factor127,128. Furthermore, the 

reported c-Rel-dependent signalling in cardiac remodelling and hypertrophy presents an interesting 

opportunity to explore a novel therapeutic strategy that could be expanded to other diseases with 

abnormal tissue growth, such as cancer and fibrosis. c-Rel can be used as a target model and the 

developed screening blueprint can be directly applied to any Rel family member if, for example, 

another subunit of NF-κB needed to be targeted to achieve a therapeutic effect. As a result, c-Rel, a 

promising target in many human inflammatory and oncological pathologies, was selected as a case 

study for the development of an effective in silico screening platform since the NF-κB transcription 

factor currently has no successful therapeutic inhibitors or modulators (Chapter 6). In addition, the 

established analytical and screening pipeline can be transferred and adapted to any therapeutically 

relevant target.  

 Cardiovascular diseases underpin the development of HF and are a leading cause of death 

worldwide; thus, there is an undeniable need to rethink therapeutic protocols and search for novel 

treatment options81,88,89,123,126-129. In order to formulate a novel discovery framework for complex 

diseases, cardiomyopathies and an inflammatory component/target were selected as case studies to 

develop and test new methodologies. As demonstrated in the present thesis (Chapters 2 and 3), 

employing multi-omics centred approaches allows to explore multifactorial diseases in-depth and 

identify new clinical avenues. In the case of cardiomyopathies, the introduced integrative strategy 

enabled capturing a subtle differentiation between ischemic and hypertrophic states. Moreover, 

recent reports suggesting a strong involvement of NF-κB in cardiac remodelling123,126-130 also 

motivated to find new disease targeting strategies to offer better clinical management options for 

patients (Chapter 6). The reported studies bridged multi-omics, computational biology, structural 

bioinformatics, as well as computational chemistry and helped to create an adaptable premise for 

future research since developed methodologies are robust and widely transferable. 
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1.4. Development of a network-centric and highly integrative discovery process: addressing 

R&D challenges and creating new opportunities  

 The growing research and commercial pressures for novel therapeutics accentuate why 

better strategies are needed for R&D and drug discovery2,11,13,17,18. The costly nature of developing 

a therapeutic compound as well as the shrinking pool of ‘easy’ targets are some of the key reasons 

why pharmaceuticals companies, research institutions, and researchers are shifting their focus 

towards integrative and systems biology driven approaches10,19,28,45,46,67,131. Moreover, multifactorial 

aspects of many diseases require more innovative treatment solutions rather than just focusing on a 

single target2,46,76,78. CVD as well as HF associated immune components demonstrate well how 

discerning network elements that contribute to a pathology might expedite the creation of better 

therapeutic solutions for patients86,89,95,101. As a result, to address major challenges in drug 

discovery, this thesis aimed to introduce a gradual and highly integrative analytical framework by 

incorporating a full range of studies from disease target selection to high-throughput virtual 

screening (HTVS) so that a cost-effective and efficient stratification of targets and associated 

compounds could be achieved. 

 Specifically, it was first necessary to develop a multi-omics based process to capture 

complex gene interaction patterns, establish disease association parameters, identify gene clusters of 

interest for the downstream analysis, and subsequently determine key interactors that could be used 

to build pathway maps (Chapters 2 and 3). In addition, creating a first-of-its-kind protein topology 

and conformational analysis function allowed not only to classify but also to identify therapeutically 

relevant features of selected targets for the downstream druggability analysis (Chapters 4 and 5). All 

this concluded with a demonstration of how existing drug discovery pipelines for in silico screening 

can be further improved with the expansion of compound screening strategies (Chapter 6). That is, 

the unification of molecular dynamics, modelling, topology, and physicochemical analyses provided 

solutions for challenging target investigation and led to the identification of potential therapeutic 

modulators. Thus, the outlined comprehensive and highly integrative analytical framework which 

builds on the network-centric and systems biology ideas offers new strategies for accelerating drug 

discovery and significantly reducing research costs and turnaround time. 

 In order to establish a network-centric premise for druggable target identification, it was 

necessary to build an integrative investigation framework. The developed methods will be 

introduced in the first experimental chapter of the thesis (Chapter 2) which will focus on the study 
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that showed for the first time how bulk and single cell RNA-sequencing as well as the proteomics 

analysis of the human heart tissue can be integrated to uncover specific networks. The explored HF 

regulome indicated how potential therapeutic targets or biomarkers can be studied for this 

multifactorial cardiac syndrome with limited therapeutic options81,87-89,95. Existing challenges in the 

in silico pharmacology field and the already laid out analytical groundwork in multi-network 

analyses also motivated to devise a highly integrative network-centric approach which could be 

used to build complex interaction pathways and extract information for shared expression patterns 

(Fig. 5). Moreover, the method introduced in this thesis is highly adaptable, which allows for 

further development as more data and algorithms become available. 

 Multi-omics research, that will be discussed in chapters 2 and 3, built on network 

pharmacology and systems biology where the disease causality is primarily believed to result from 

multiple players distributed unevenly throughout the transcriptome, expressome, and 

regulome45,67,132. Thus, phenotype modifications depend on a simultaneous modulation of multiple 

network nodes as outlined by the network biology theory2,45,105,132. The observed phenotypic 

robustness after gene deletion further confirms that polypharmacological modulation might be more 

successful than a highly selective drug engaging a single target since a disease phenotype is 

dependent on multiple genetic factors132–134. These observations were also supported by the network 

analysis studies where the exploration of links between drugs and drug targets revealed rich 

networks of polypharmacological interactions20,132–134. Moreover, similar systemic studies unveiled 

interesting patterns where drug targets were positioned between proteins that have overall more 

interactions than an average protein but less network connections than essential proteins132. 

Together, these findings encouraged researchers to consider how drug targets can be identified 

based on their position in the interactome20,132–135. These insights, however, also presented a 

challenge as merely mapping targets based on screening studies is unlikely to help recover more 

complex targets. Limitations in unifying the genomic, transcriptomic, proteomic, and metabolomic 

data can be traced back not only to analytical shortcomings, but also to the limited availability of 

high-quality data136,137. In other words, while the recent advances in multi-omics data acquisition 

introduced new platforms for studying complex diseases, comprehensive methods for multi-

dimensional readout integration are still lacking138. This was a key motivator for chapters 2 and 3 to 

not only integrate existing methods, but also expand and improve currently employed techniques. 

 To better understand the analytical premise and challenges in network pharmacology and 

systems biology, it is essential to examine the fundamental analytical methodologies employed in 

these fields. Methods used to reconstruct the underlying relationships and dependencies from the 
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observed data range from relatively simple estimations using correlation or mutual information to 

probabilistic graph models, such as Bayesian network inference, and machine learning54,138,139. 

Furthermore, pathway and network analyses are the most common methods currently employed to 

assess cellular perturbation events where data might be generated from transcriptome studies; these 

studies represent high-level analyses aimed to elucidate disease associated processes (Fig. 5)138,140. 

Typically, these analytical techniques, also known as pathway enrichment analyses, can be split into 

several categories based on the underlying analytical principles: over-representation analysis, rank-

based approaches, and topology-based methods138. Over-representation analysis is often listed as a 

first-generation approach and it is still widely used for various analyses because of its statistical 

simplicity achieved through hypergeometric distribution, chi-square, or Fisher’s exact statistics138. 

However, at the same time, the method suffers from the assumed significance for all inputs, need 

for arbitrary thresholds that might not be optimal, and a considerable variation in significance138,141. 

In contrast, network enrichment methods using rank-based evaluation can account for the over-

representation method limitations by including significance parameters in the calculations. Despite 

these improvements, this method is susceptible to the effects of a few highly significant markers 

and it also depends on the statistical analysis applied138,140-142. One of the more recent analytical 

techniques relies on the topology-based assessment where the pathway structure is an important 

component for the analysis. An example of this methodology is the EnrichNet tool which uses an 

enrichment score for every pathway via the estimated distance of that pathway to all other candidate 

genes in the network138,141. Overall, a shared shortcoming of all these techniques is the dependency 

on gene annotations to establish relevant associations where the available information can be 

influenced by the curation quality138. All this calls for new methodology that could help integrate 

several omics layers and subsequently incorporate the derived scores into machine learning or other 

classification pipelines. 

 To address this need, a highly integrative network-centric approach was developed 

(Chapters 2 and 3). One of the principal elements of this method is the determination of 

differentially expressed genes based on the negative binomial distribution to balance between the 

detection sensitivity and specificity143. Significantly changed genes in a selected condition are 

scaled based on their links to a specific disease where the association data is retrieved from 

database and text mining. Target-disease association consolidation was primarily calculated using 

the harmonic sum of scores dependent on data sources as previously described144,145. If omics 

datasets, such as protein expression levels or single cell expression data, are available for a specific 

study, they can also be incorporated to add additional weights to the score. Similarly, gene set 
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enrichment analysis (GSEA) was used as an intermediate quality control step to determine if any of 

the significantly changed genes show phenotypic or functional enrichment. GSEA estimates this by 

using ranked genes where the enrichment score is generated through a random walk using the 

weighted Kolmogorov-Smirnov-like statistic138,142. For each established gene that was significantly 

changed and potentially had a known association to a disease an interactor network was assigned. 

The interactor network was derived by retrieving threshold-regulated data from the STRING 

database that contains information on known protein interactions, indirect associations, as well as 

predicted links between proteins146,147. This new information layer allowed the integration of 

relevant data points, specifically the transcriptome, proteome, as well as regulome (Fig. 5). To 

identify meaningful clusters based on the network complexity (i.e., how many interactors a gene-

protein is expected to have) and the adjusted expression score, Gaussian mixture models (GMMs) 

were selected as a primary machine learning classifier. The strength of GMMs lies in the 

probabilistic model nature where all data points are assumed to be derived from a mixture of a finite 

number of Gaussian distributions with unknown parameters148. It becomes evident that the soft 

classification of GMMs where a data point has a probability of belonging to a cluster is much more 

suitable to assess biological parameters compared to other hard classification techniques in machine 

learning, such as k-means, which provide a strict separation between classes. In other words, GMM 

clustered genes have a degree of membership for every specific category which could be especially 

helpful when using the derived probability values with downstream analyses or other machine 

learning techniques to find pathway convergence points as well as elements belonging to several 

networks/regulatory systems. Incorporation of information criterion (i.e., evaluating the quality of a 

statistical model for a given dataset) in model building also allows to fine tune the expected number 

of clusters. In addition, GMM in combination with the expectation-maximisation algorithm models 

parameters to maximise the likelihood of data point assignments148–151. Overall, the devised method 

provides a means to connect the expression, disease association, and network complexity values. 

Depending on the model used for the differential gene expression analysis and inclusion of 

additional weights (e.g., single cell readouts), the weighted expression scoring might provide a way 

to probabilistically differentiate gene expression values if, for example, an identified gene has a 

strong disease association. Moreover, this method can help evaluate what clusters are formed based 

on the local interactome for genes that changed significantly to become either upregulated or 

downregulated. This classification approach can link disease-associated genes with new candidates 

and help establish seed points around which a relevant pathway can be recreated. The developed 
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methodology could be particularly useful for target selection and evaluation during the preclinical 

development stage. 

 

Figure 5. A schematic view of the integrative drug discovery process where different omics analyses are 
merged to establish disease, drug, and target links. The graph represents the considerations for the proposed 
integrative drug-discovery approach with different branches interlinked to capture relevant multi-omics 
aspects from target selection to pharmacological assessment. 

1.5. Biophysical and computational chemistry method development: streamlining complex 

target evaluation and therapeutics discovery 

 Since target evaluation and rational drug design rely on identifying and characterising small-

molecule binding sites on therapeutically relevant target proteins, developing a discovery process 

that incorporates both structural biology and computational chemistry becomes essential for the 

success of therapeutics screening15,152–154. In order to develop analytical solutions for target 

identification and successful screening implementation, this dissertation also introduced a newly 

developed method to investigate structural features and protein topology (Chapters 4 and 5). The 

presented approach can help to categorise multiple targets and extract core structural characteristics 
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during the pre-screening stage so that proteins of interest can be included in relational databases for 

a quick retrieval. Development of such approaches is critical for early research and discovery in a 

clinical pipeline as it is often possible to generate multiple potential targets that later need to be 

screened60,155,156. This was also reflected in the case study of HF (Chapter 2) showing that disease 

pathway and interactor investigation can generate a diverse set of therapeutic candidates. Such 

targets of interest would typically need to be further hierarchically ordered and prioritised based on 

their structural characteristics to facilitate the downstream screening and compound-based assays. 

Moreover, large compound library testing against a therapeutically relevant target poses a challenge 

of storing and keeping track of all the relevant readouts53,80,157. It is necessary not only to maintain 

the information of the physicochemical compound parameters or biochemical assay outputs but also 

to efficiently capture the key topological features for easier bi-directional clustering using 

compound and target information49,131,158. Seeing the existing limitations of structure-based data 

collection in the industry, one of the aims of the thesis was to address this need by introducing a 

topology and structure driven target categorisation (Chapters 4 and 5) that could be easily supplied 

to screening, data storage, or machine learning pipelines13,159,160.  

 To aid with pre-screening and screening preparation, a method was developed to classify 

multiple regions of interest within a target. It was hypothesised that having such information prior 

to the screening would enable the comparison and grouping of relevant topological characteristics. 

Such a classification system could be used to compare newly identified target proteins with a 

reference set of binding sites. If reference sites contained the information of known binders, then 

target biomolecules could be further classified based on the compound properties and identified 

pockets. In other words, this type of scoring provides an opportunity to easily integrate topological 

features of new proteins into relational databases68,161,162. Furthermore, in some instances a binding 

site might be conserved and it could be helpful to compare protein regions of interest across 

homologous and non-homologous protein sets163,164. Specifically, a topology-based scoring method 

could give insights into the conformation and not just the amino acid composition165–169. Finally, 

characterising protein sites through scoring could be used to compare proteins that have known 

drug binders with a newly identified target which has no known compounds. The described 

approach could be particularly useful in drug repurposing because protein sites that share similar 

characteristics could be used to infer drug binding in a new site based on already explored 

one55,69,70,105,170. Therefore, the established methodology to classify sites of interest could be 

extremely helpful in solving data organisation questions, reducing screening time and costs, as well 

as helping to achieve a faster turnaround28,49,50. 
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 Target pre-screening and evaluation primarily depend on establishing protein-ligand 

interactions which are exploited by most of the currently marketed small-molecule drugs and such 

interaction information is typically based on the crystallographic analysis154. Thus, computational 

modelling primarily uses X-Ray-based data to evaluate energetics, cavity geometry, and 

physicochemical properties of a potential binding pocket171. Despite the growing number of 

computational chemistry tools, there is not one universal algorithm developed to incorporate 

sequence, structural, and conformational features that could be used for comparative studies28,172. 

As a result, combining multiple levels of analysis to capture the key structural features, such as B-

factor values and dihedral angles, enabled establishing a comparative measure for physicochemical 

and spatial characteristics of a protein of interest. The established parameter could be used to 

analyse a single motif, binding site, or the whole protein. The usefulness of dihedral angle and B-

factor values can be appreciated when considering the high information content that they provide.  

Specifically, a dihedral angle is the angle between two intersecting planes or half-planes and in the 

case of a protein this geometric representation is the internal angle of polypeptide backbone at 

which two adjacent planes meet173,174. Two dihedral angles per residue (φ: C-N-Cα-C, and ψ: N-Cα-

C-N) can be used to describe the conformation of the backbone since the polypeptide chain is 

locked between a pair of juxtaposing Cα atoms in a single plane173,175. Consequently, protein 

dihedral angles contain the information on the local and global protein conformation as well as 

backbone restrains that result from the sequence composition175,176. B-factors, or oscillation 

amplitudes of the atoms around their equilibrium positions in the crystal structures, capture a 

decrease in the intensity of X-Ray diffraction because of the static as well as dynamic disorder 

where the latter is caused by the temperature-dependent atom vibrations. It has been shown that this 

parameter provides many additional layers of information, such as thermal motion paths, protein 

superimposition, packing, flexibility, and allows predicting the rotameric state of amino acids side-

chains177–183. Considering the above, it becomes apparent that B-factors carry a lot of information 

on the complex intramolecular relationships. By incorporating B-factor estimates with protein 

dihedral angle values, we can capture both the local and global mobility of Cα atoms as well as side 

chain influences. These observations led to the derivation of the Fi-score that fingerprints 

physicochemical and topological qualities of a region of interest taking into account conformation 

dependencies. Moreover, the scoring of any site can be subsequently visualised via distribution 

plots, 3D region visualisation, or integrated into machine learning to derive probability density 

distributions based on physicochemical properties.  
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 A streamlined analytical process from therapeutically promising target identification to a 

detailed characterisation can enable the creation of a discovery platform that connects the 

information derived from biological assays and other studies with pharmacologically relevant 

compounds (Chapter 6). The identified hits can be subsequently improved in hit-to-lead phase to 

ensure optimal bioavailability and toxicity profiles152. In order to develop a holistic screening 

framework, the NF-κB pathway served as a model since it was implicated in the introduced HF 

study (Chapter 2) and has known links to cardiomyopathies116,123,126-130,184,185. Specifically, the c-Rel 

protein, as a complex immunotherapeutic target, was selected to model the screening pipeline 

(Chapter 6). Prior to the study reported in this thesis (Chapter 6), there were no in-depth reports of 

c-Rel structure models, interactions, or physicochemical analyses aside from the insights generated 

through X-Ray crystallography or sequence analysis studies186,187. As a result, an exhaustive 

computational analysis of likely and/or unusual binding sites in this target protein was performed to 

reveal therapeutically relevant characteristics (Chapter 6). 

 The cheminformatics and structural bioinformatics toolbox provides multiple methods to 

explore targets of interest from sequence based analysis to complex molecular modelling that can 

unveil important information about what structural elements could be susceptible to 

pharmacological modulation28,159,188–193. Broadly, the computer-assisted chemistry methods 

integrate ligand- and structure-based drug design strategies. Structure-based drug design relies on 

homology modelling, molecular dynamics, molecular docking, and structure-based virtual 

screening to evaluate potential ligand-target interactions. Ligand-based drug design focuses on 

pharmacophore modelling (i.e., abstractions of important molecular features), quantitative structure-

activity relationships (QSAR), and ligand-based virtual screening to explore molecule databases 

where the focus of the analysis is to establish correlations between chemical features and 

pharmacological activity53,194,195. In the case of the c-Rel protein, the analytical process began with 

structure-based drug design where a focused analysis allowed to evaluate the physicochemical 

properties and determine potentially druggable sites. Using various molecular dynamics set-ups, 

comparative analyses, protein structure modelling, as well as GMMs148 for Fi-scores enabled a 

computational characterisation of this NF-κB subunit. These techniques also helped to address the 

common issue when the crystal structures do not reflect protein native conformations or when a 

target does not have a good structure to analyse168,196. Normal mode analysis was employed to 

model the conformational changes in c-Rel since this method provides a fast and simple calculation 

of vibrational modes and protein flexibility. That is, atoms in a protein (or sometimes Cα only) are 
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modelled as point masses connected by springs representing the interatomic force fields and this 

implementation (with possible variations in model types) is used to predict molecular motions197–

199. In addition, a more in-depth molecular dynamics simulation was performed using GROMACS 

software tools where a selection of force fields, solvation models, temperature gradients, and other 

restrictions were customised to capture more intricate movements within the protein193. 

Furthermore, ligand-based drug discovery was also utilised to select compounds from a large 

compound library (659 M drug candidates) and refine this diverse set of compounds based on their 

physicochemical features (34 M). This was achieved employing compound fingerprinting and 

classification where small molecules in a matrix-like representation were encoded with a fingerprint 

of the same type and length to create a searchable database of compound topological features158,200. 

All these analyses created a premise for a highly integrative screening platform conceptualisation 

(Fig. 5). 

 In order to create an analytical pipeline for binding site selection, compound docking, and 

interaction evaluation, computational chemistry analyses were done using Schrödinger 

cheminformatics suite201. This cheminformatics software offers the full range of HTVS options to 

screen hundreds of thousands of ligands and achieve higher enrichment of hits through GlideScore. 

Schrödinger’s empirical scoring function is designed to maximise discovery of strong binders since 

GlideScore accounts for the physics of the binding process using multiple parameters, including a 

lipophilic-lipophilic term, hydrogen bond terms, a rotatable bond penalty, and contributions from 

protein-ligand Coulomb-vdW energies. In addition, GlideScore takes into account hydrophobic 

enclosure which is the displacement of water molecules by a ligand201. To accommodate the 

screening of an unprecedented library size80,157, a hierarchical in silico high-throughput screening 

was combined with the binding site selection, similar target analysis (e.g., p65111-118), and structural 

characterisation. This parallelisation led to the discovery of 15 hit compounds specific for the 

human c-Rel protein as well as the identification of potential drug-protein interaction mechanisms. 

Specifically, compound binding poses and protein subdomain movements were assessed using 

cutting-edge molecular dynamics methods to explore a wider spectrum of interactions. This strategy 

permitted to identify hit compounds and infer potential action mechanisms (e.g., disorder induced 

degradation). In addition, the inclusion of other homologous target screening data could be 

employed to develop multi-target approaches where a compound modulates several targets at a 

varying degree (this was explored as a control step with p65 that has high similarity with                

c-Rel)68,70,76,116-121,124,132,134,202. Moreover, the first in-depth structural modelling exploration of the 
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c-Rel subunit offered hints at how highly dynamically this protein might engage its target DNA. 

The hit compounds were additionally tested with a different docking and compound binding 

evaluation program/algorithms – Autodock Vina203 and yielded similar results. The generated 

compounds and new target-ligand insights pave the way for the future development of highly 

selective human c-Rel inhibitors and/or modulators where therapeutics with novel action 

mechanisms could provide better options for pharmacological intervention in diseases, such as 

cardiomyopathies, since the current treatment is primarily based on the symptomatic 

management81,88,89,98,204. Broader applicability of this study also enables focusing not only on the 

druggable genome, but also on new target classes or polypharmacological approaches (i.e., working 

with complex targets). 

 Overall, creating a framework for a highly integrative target assessment and therapeutics 

development allowed highlighting that none of the R&D stages can be treated as separate entities 

but rather one step needs to inform the other2,28,45,202. To account for high attrition rates and the 

growing need to tackle complex targets, it is paramount to rethink present strategies and embrace 

holistic adaptable methods17,18,56,205,206. Moreover, the introduced analytical framework together 

with the screening pipeline showcases the potential of new network-centric methods where targets 

are seen as a part of the complex interactome with a multi-modulation potential2,105,202. 
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Experimental chapter

Integrative omics approaches for new target identification and therapeutics 

development  

2. Insights into therapeutic targets and biomarkers using integrated multi-
‘omics’ approaches for dilated and ischemic cardiomyopathies 

The experimental chapter is based on the following publication 

Kanapeckaitė A, Burokienė N. Insights into therapeutic targets and biomarkers using integrated 
multi-‘omics’ approaches for dilated and ischemic cardiomyopathies. Integrative Biology. 2021 
May;13(5):121-37; doi: 10.1093/intbio/zyab007. PMID: 33969404.* 

* The publisher’s error resulted in swapped Figures 2 and 3. The error has been reported and is being addressed by the 
publisher. 

Conclusion of this chapter 

Current strategies to treat heart failure mainly target symptoms based on the left ventricle 
dysfunction severity. There is a notable lack of systemic ‘omics’ studies for an in-depth analysis of 
heterogeneous disease mechanisms. This study, for the first time, demonstrated how bulk and single 
cell RNA-seq as well as the proteomics analysis of the human heart tissue can be integrated to 
uncover HF-specific networks and potential therapeutic targets or biomarkers for dilated and 
ischemic cardiomyopathies. Thus, my analysis allowed to reveal that despite a smaller number of 
samples which is often the case in some preclinical settings or smaller-scale studies, it is possible to 
discover new therapeutically relevant insights. Moreover, by devising a novel scoring system and 
applying machine learning methods, I was able to derive a method to untangle complex expression 
profiles to elucidate gene clusters that can be selected for downstream analyses. This study could be 
the first step towards a more systematic analysis that could be freely shared among researchers. 
Finally, my work helped to demonstrate that cardiopathology treatment can go beyond symptom 
management and that there are indeed distinct gene network and pathway profiles that could be of 
therapeutic interest. 

Contribution to this chapter (95%) 

• Methodology development which included equation and scoring function derivation as well as 
machine learning pipeline creation.

• Performed all the analytical, data mining, and experimental work as well as formulated 
conclusions.

• Conceptualised and wrote the manuscript, including the figure preparation.
• Corresponding author.
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Abstract

At present, heart failure (HF) treatment only targets the symptoms based on the left ventricle dysfunction severity; however,
the lack of systemic ‘omics’ studies and available biological data to uncover the heterogeneous underlying mechanisms
signifies the need to shift the analytical paradigm towards network-centric and data mining approaches. This study, for the
first time, aimed to investigate how bulk and single cell RNA-sequencing as well as the proteomics analysis of the human
heart tissue can be integrated to uncover HF-specific networks and potential therapeutic targets or biomarkers. We also
aimed to address the issue of dealing with a limited number of samples and to show how appropriate statistical models,
enrichment with other datasets as well as machine learning-guided analysis can aid in such cases. Furthermore, we
elucidated specific gene expression profiles using transcriptomic and mined data from public databases. This was achieved
using the two-step machine learning algorithm to predict the likelihood of the therapeutic target or biomarker tractability
based on a novel scoring system, which has also been introduced in this study. The described methodology could be very
useful for the target or biomarker selection and evaluation during the pre-clinical therapeutics development stage as well as
disease progression monitoring. In addition, the present study sheds new light into the complex aetiology of HF,
differentiating between subtle changes in dilated cardiomyopathies (DCs) and ischemic cardiomyopathies (ICs) on the single
cell, proteome and whole transcriptome level, demonstrating that HF might be dependent on the involvement of not only
the cardiomyocytes but also on other cell populations. Identified tissue remodelling and inflammatory processes can be
beneficial when selecting targeted pharmacological management for DCs or ICs, respectively.

Key words: target identification; biomarker discovery; dilated cardiomyopathy; ischemic cardiomyopathy; omics data
integration; machine learning for target prediction

INSIGHT BOX

First report of an integrated multi-omics analysis for DCs and ICs led to the identification of metabolic and regulatory
network differences for two types of cardiomyopathies. These findings revealed new therapeutic opportunities as well
as highlighted the need to focus on genetic networks in disease development. To achieve this, a new scoring system was
introduced allowing to evaluate genes/biomarkers based on the size of their network and disease association. Two-step
machine learning pipeline employed the scoring system to uncover the potential therapeutic target clusters. Gained
insights can be easily extended to other studies to take advantage of multi-omics approaches in therapeutic target
investigation.
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INTRODUCTION

Cardiovascular disease (CVD) is the leading cause of death glob-
ally; however, both investment and efforts in CVD drug develop-
ment are declining. This contrasts sharply with funding and drug
approvals for other indications, such as oncology [1, 2]. While
there are many factors contributing to this trend, low tolerance
for side effects and lack of good biomarkers are some of the
key challenges in implementing new therapies [2]. Thus, all of
these call to revisit currently used approaches in the therapy
development for CVD. Specifically, combining high-throughput
RNA-sequencing (RNA-seq), proteome analysis and biological
data mining could potentially facilitate the identification of
new therapeutic targets by deconvoluting complex pathways
involved in the pathological processes. Subsequently, gaining a
better understanding of the disease aetiology on the molecular
level could also be advantageous for a better monitoring of the
pathology progress and treatment efficacy.

CVD leads to a clinical syndrome, known as heart failure
(HF), which can be preceded by a structural and/or functional
heart dysfunction. HF can be caused by a broad spectrum of
diseases, involving the pericardium, endocardium, myocardium,
heart valves and vessels; this heart function dysregulation leads
to impaired ventricular filling or blood ejection [3].

HF affects approximately 40 million people globally as
recorded in 2015, and an estimated 2% of the adult population
is suffering from HF [4]. HF dominates in the elderly population,
with the incidence rate being 6–10% for those over 65 years
and more than 10% for the population older than 75 years[4,
5], with men showing a higher predisposition for CVD [6].
Most cardiomyopathies have complicated underlying causes
where chronic or poorly controlled hypertension can lead to
increased afterload resulting in higher cardiac workload, which
in turn can precipitate the hypertrophy of the left ventricle.
Decreased heart contractility and output in CVD can also
be caused by a direct ischemic damage to the myocardium,
which induces further scar formation and tissue remodelling
[1]. Hypertension, ischemic cardiomyopathy (IC) and dilated
cardiomyopathy (DC) precede later-stage HF with reduced
ejection (HFrEF) [1, 4]. HFrEF encompasses a diverse pathologic
spectrum and it is a good case example when long-standing
paradigms of a single common pathway [1, 7] do not provide an
adequate measure of the pathology development or progression.
That is, most current therapies for HFrEF do not specifically
focus on disease aetiology or in-depth differentiation [1, 2, 8];
thus, the heterogeneous nature of HF remains insufficiently
addressed. As a result, the need of new therapeutic insights
and an improved analysis of the underlying HF mechanisms
was the divining force behind this study to develop a novel
approach with integrated multi-‘omics’ and machine learning
methods.

The dramatic expansion of RNA-seq and metabolomics
screening capabilities provides an excellent resource for an in-
depth look into cardiomyopathies. Moreover, cardiac sample
collection cannot always be optimal and there are technical
variations, and this can become especially problematic in
clinical and small-scale studies when patient samples might be
limited in number. However, a robust growth in novel statistical
approaches allows researchers to better glean information from
noisy datasets and clean the data from technical errors or
batch effects. To address the discussed issues, we aimed to
emulate scenarios when only a limited number of samples
are available and to show that the statistical modelling and

enrichment with external resources can be a powerful method
to compensate for a lower sample number or sample drop-
out due to quality issues. It is, however, important to highlight
that while we selected a small sample size for the analysis, it
does not mean that small and large sample size groups can be
regarded as equivalent. Moreover, this study also does not aim
to provide a comparison between the outcomes of larger and
smaller sample studies as there are so many great resources
already addressing that [9–11]; the core aim is to demonstrate
how researchers who have a limited number of samples can
still successfully analyse their data to identify meaningful
gene expression patterns and changes. Thus, with this study,
we demonstrated how multi-‘omics’ approaches can help to
uncover the intricate biological mechanisms of pathological
processes.

As a result of the urgency to improve therapeutic solutions in
HF, we selected the human left ventricle as a case study. Current
HF treatment options rely on targeting the associated symptoms
with left ventricular failure without taking into account the
heterogeneity of the underlying mechanisms [1, 7] (Fig. 1;
Supplementary Tables S1 and S2). With our study, we introduced
an approach to uncover new genes that might be important
candidates in understanding the heterogeneous nature of HF.
That is, we wanted to highlight the fact that not all patients
with the same clinical condition share the same mutations
and the disease progression might have multiple converging
paths. Thus, using our proposed method to aggregate results,
we can explore how these genes are associated with more
dominant genetic factors which could lead to new therapeutic
insights.

METHODS

Sample selection

Publicly available datasets were used to randomly select 12
human left ventricular RNA-seq samples (PRJNA477855, EBI:
European Nucleotide Archive) [12] which were categorized to
form non-failing (healthy), DC and IC groups; similar sets of
samples were selected for the proteome analysis (PXD008934,
EMBL-EBI: PRIDE) [13] (Supplementary Tables S1 and S2) with
matched representation for all ages and sexes. RNA-seq and
proteome analysis samples represent a small biological set for
an independent analysis. Single cell RNA-seq of the murine
non-myocyte cardiac cellulome (E-MTAB-6173) was downloaded
from ArrayExpress databasea [14]. Human left ventricular
myocardium was downloaded from publicly available Visium
data from 10× Genomics [15].

RNA-seq data pre-processing and exploratory analysis

The number of reads per sample averaged 59 million. Reads were
filtered for quality and trimmed using Trimmomatic tool [16] and
were aligned to the human genome reference GRchr37/hg19 [17]
using HISAT2 [18] with a 95% average alignment rate. Ensembl
GRCH37/hg19 [17] GTF was used for featureCounts [19] tool to
count reads based on genomic features. Quality control was per-
formed both pre- and post-alignment using MultiQC [20]. Single
cell counts were acquired after the raw data were processed with
CellRanger version 1.3 (10× Genomics) [15].
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Figure 1. Diagram showing the steps for data processing and integration.

Differential expression analysis

RStudio 3.6 [21] environment was used for raw RNA-seq counts
pre-processing and quality control (Supplementary Fig. S2) and
further analysis was done using package DESeq2 [22] as well as
dependent packages for graphical processing and data manip-
ulation. Seurat R package [23] was used to analyse single cell
data maintaining mitochondrial DNA content at <5% for non-
cardiomyocyte samples and <40% for cardiomyocytes. R pack-
ages: SingleR [24], CellDex [25] and Clustermole [26] were used to
determine the cell types. Differential expression was established
based on disease status while controlling for gender differences.

Protein-level analysis

Protein abundance data were retrieved from earlier raw spec-
tra analyses using MaxQuant version 1.5.3.30 [27]. Label-free
quantification (LFQ) intensity values were used in lieu of protein
abundance and were pre-processed to remove proteins with
median distributions across all samples that were equal to 0
LFQ. LFQs were scaled by a factor of 10−6 prior to DESeq2-based
normalization and model fitting to find differences between
conditions while controlling for gender effects. For the protein
and gene set overlap per condition, only significantly changed
(P.adj < 0.05) genes and proteins were selected.

Gene enrichment and pathway modelling

ClusterProfiler [28] and DEGReport [29] as well as dependent
packages were used for gene ontology and pathway analysis.
Open Targets [30] and STRING (version 11, score_threshold = 200)

[31] were used for data mining to build interactor networks.
STRING database provides a source of known and predicted
protein–protein interactions which may include direct (physical)
and indirect (functional) associations, computational analysis-
based predictions as well as other interaction data aggregated
from primary databases [32]. Since STRING database does
not provide disease-specific links, another database, namely
Open Targets, was used to retrieve information on the human
gene and disease associations for target identification and
prioritization [30].

Machine learning and disease-centric scoring

For the initial clustering, Gaussian mixture models (GMMs) were
chosen since they function as a density estimator to estab-
lish cluster patterns. The probabilistic nature of GMM was best
suited to perform parameter separation [33]. Identified clus-
ters with GMM were isolated and subjected to agglomerative
hierarchical clustering [34] since this method is the most opti-
mal to find small sub-clusters determined by Silhouette and
Elbow methods [35, 36]. GMMs (with the following parameters:
max_iter = 1000, covariance_type=‘full’ or ‘spherical’, tol = 0.001,
random_state = 0) were implemented to cluster genes based on
their scaled log2 fold change (selected LFCScore > |1.5|) and the
number of interactors (i.e. expressed gene’s degree) (Supplemen-
tary Equation (1)). Scaling factor was determined by the cumula-
tive score of multiple mined resources (Open Targets) [30] where
a gene was assigned a value (from 0 to 1) based on its probabilis-
tic links to a specific disease (denoted as α in Supplementary
Equation (1)). The number of interactors was identified using
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Figure 2. Human left ventricle bulk RNA-seq gene count clustering and distribution analysis showing Spearman correlation calculated distances (A) and Euclidean

distances (B) for rlog-transformed counts; PCA plots provide grouping by condition (C) and gender (D).

the STRING database of known protein–protein interactions [31].
GMM clustering evaluation was performed using probabilistic
statistical measures quantifying the model performance for the
different number of clusters. Evaluation parameters were based
on Akaike information criterion (AIC) [37] and the Bayesian
information criterion (BIC) [37]. Python Scikit-Learn GMM (scikit-
learn 0.22.2) [38] was used to determine and project the Gaus-
sian mixture modelled density and distribution of selected gene
parameters.

Machine learning pipeline validation

Genome-wide association studies (GWAS) dataset of human
genetic variants [39] was cross-referenced against the identified
clusters retrieving the normalized association score for a CVD
category (set size 5551). Open Targets platform search (target set
screen: >28 000 genes) for cluster genes against any indications
related to heart disease (e.g. hypertension, cardiomyopathy and
HF) was also performed. Complete records of PubMed [40] (>30
million) were text-mined for CVD-associated terms retrieving
the number of articles/studies where the gene is mentioned in
the disease context. Scoring and machine learning analyses were
validated with an independent dataset of biopsies for dilated and
non-failing heart (GEO: GSE3585) [41] as well as diabetic HF and
healthy samples (GEO: GSE26887) [41] by selecting significantly
changed genes (P.adj > 0.05) in the disease.

Statistical analysis and graphs

Statistical analyses (including plots and graphs) were performed
in RStudio [21] environment. Machine learning and GMM plots
were done in Python [42] programming environment.

RESULTS

RNA-seq captured specific gene changes in dilated and
ischemic heart conditions

Exploratory analysis of the human left ventricle bulk RNA-seq
data (PRJNA477855) revealed that the sample count distribu-
tion and coverage depths were consistent (Supplementary Figs
S1–S3) without any marked batch effects. However, clustering
analysis (Fig. 2A and B) indicated that samples were relatively
homogenous based on their gene expression, with only the non-
failing (healthy) group showing the clearest separation. More-
over, dilated and ischemic groups were intertwined without min-
imal subdivision. This trend was also reflected in the principal
component analysis (PCA) (Fig. 2C), where the disease groups
not only had a marked overlap but the intra-sample variability
was also higher when compared to the healthy group. Employ-
ing pre-processing quality controls, such as batch effect, count
distribution, coverage depth and count correlation analyses as
well as PCA, allows to assess if the expected high patient sample
variability can be reasonably modelled with the downstream
statistical models. It is advised to start the analytical pipelines
with exploratory analyses as samples generated from patient
tissues tend to have a high variability.

Despite high homology between samples, it is possible to
identify biologically meaningful genes if they had a marked
upregulation or downregulation. This assumption was con-
firmed by the proportion of significantly changed genes for
dilated (11.1%) and ischemic (17.6%) pathological states when
contrasted to the healthy tissue (Supplementary Fig. S4).

Interestingly, the genes that changed significantly for each
investigated contrast showed some overlap, which can be
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attributed to the complex nature of the regulatory pathways
involved [1, 8]. Both unique and full sets of significantly
changed genes per contrast group (Supplementary Fig. S5)
were used to enrich for marker genes as it was necessary to
examine the shared and disease-specific expression patterns
in the pathology. Genes that had the most notable change
based on P-adjusted value when comparing DC versus healthy
samples showed a clear separation for these two conditions
(Supplementary Fig. S6A). However, the same set of genes did
not show such a pattern in ischemic disease. When selecting
genes based on the lowest P-adjusted value for the contrast of
IC versus healthy heart samples (Supplementary Fig. S6B), the
ischemic heart sample genes formed a separate cluster, while
the healthy and DC samples were dispersed and were relatively
similar in their expression values. Further investigation of the
most significantly changed genes in DC (Supplementary Fig.
S6A) revealed that the ribosomal protein S17 (RPS17) expression
is the most notably changed. While ribosomal proteins might
be a leftover due to the sample preparation, there is emerging
evidence of ribosomal protein expression and/or mutational
changes being involved in numerous diseases [43]. Since
there was no other over-representation for ribosomal genes,
it is possible that the observed expression levels might be
biologically meaningful. Other groups of genes, such as SLIT and
NTRK-like family member 4 (SLITRK4) and glycosyltransferase
8 domain containing 2 (GLT8D2), have been reported to have
links to tissue structural changes [30]. Upregulated myozenin-1
(MYOZ1), enolase 2 (ENO2) and bone morphogenetic protein
2 (BMP2) are all linked to heart tissue hypertrophy or were
identified as potential biomarkers in the disease [30, 44, 45].
These findings are especially interesting when compared to the
downregulated genes, specifically carbonic anhydrase 11 (CA11),
intercellular adhesion molecule 3 (ICAM3) and ELOVL fatty acid
elongase 2 (ELOVL2), as these molecules have been associated
with HF, vascular injury and changes in tissue metabolism
[30, 46, 47].

In contrast to the dilation of the heart, ischemic condi-
tions were found to be dominated by the immune system,
fibrosis- and cell proliferation-linked genes, namely, C-X3-
C motif chemokine ligand 1(CX3CL1), proto-oncogene c-Fos
(FOS), transmembrane protein 259 (TMEM259), REC8 meiotic
recombination protein (REC8) and formin homology 2 domain
containing 1 (FHOD1), that were significantly expressed and,
some of the genes, such as CX3CL1 and TMEM259, are candidate
genes for novel biomarkers and/or therapeutic targets for the
ischemic heart disease [30, 48–50]. The group of downregulated
genes in ischemia, for example, TAO kinase 1 (TAOK1) and
MINDY2 (lysine 48 deubiquitinase 2), is categorized as being
involved in some inflammatory processes [30].

Exploring uniquely and significantly changed genes in DC
or IC but ranking based on the fold change (Supplementary
Fig. S7), we can immediately see that DC showed interesting
metabolic patterns, such as the upregulation of 5-HT transporter
(serotonin transporter, SLC6A4), with dependence on sodium
and chloride movement across the membrane as well as an
increase in CYP3A5 expression; RPS17 also belonged to this LFC
ranked category. As in previous P-adjusted value categorization,
the ischemic heart tissue had a more pronounced signature of
immune process involvement, for example, major histocompat-
ibility complex, class I, C (HLA-C) and immunoglobulin lambda
variable 6-57 (IGLV6-57) (Supplementary Fig. S7). It was also
further demonstrated that the significantly changed genes for
the contrasts of interest showed no marked sex biases (Supple-
mentary Figs S8 and S9); thus, the following analyses focused

on the biological processes driving the observed changes in the
expression patterns.

RNA-seq revealed a clear pathological process
bifurcation for DCs and ICs

Emerging differences between the ischemic and dilated heart
were further cemented by exploring gene enrichment and
the associated biological processes. Not surprisingly, enriched
processes for the dilated heart (Fig. 3A and B) belonged to
myocardium remodelling, ventricular cardiac muscle tissue
morphogenesis and muscle tissue development. However,
a specific set of enriched process was found for the genes
that were only significantly changed in the dilated and not
ischemic heart (Fig. 3C and D); these genes are involved in
the microtubule, myofibril, sarcomere and contractile fibre
processes. There are 64 genes (Supplementary Table S3) that
were not only significantly changed when comparing the dilated
heart state with a healthy sample but were also clustered into
distinct cellular processes (Fig. 3C and D). Some of those genes,
namely, myosin light chain 1 (MYL1), dynein axonemal heavy
chain 6 (DNAH6), MYOZ1 and atypical chemokine receptor 2
(ACKR2), showed a significant upregulation in a disease state
and could be of interest as potential therapeutic targets or
biomarkers [30, 44].

Enrichment of the gene networks for ischemic conditions
revealed a specific involvement in heart ventricular cardiac
muscle tissue morphogenesis and broader metabolic functions,
such as GTPase activity-linked processes (Supplementary Fig.
S10A and B). While tissue remodelling is expectedly shared
between ischemic and DC, there were more subtle differences in
ischemic conditions that hint towards ER stress and inflamma-
tory processes (Supplementary Fig. S10C and D). For example,
spingomyelinase (SMPD3) has been previously implicated in
Golgi vesicular protein transport where the inactivation of
this enzyme disrupted proteostasis, leading to ER stress [30,
51]. At the intersection of the ER stress and immunological
processes, there was another significantly upregulated gene,
formyl peptide receptor 2 (FPR2), whose downregulation has
been shown to alleviate the oxidative and inflammatory burden
[52]. Intriguingly, there were a number of chemokine ligands
(e.g. CXCL11, CXCL10 and CCL5) that were highly expressed
as well as some chemokine receptors (e.g. CXCR3 and CCR7)
and other markers, such as CD2 (Supplementary Table S4).
While chemokine ligands can be expressed on a number of
cells [30, 48, 53], the receptor role is more associated with
T-cells and other lymphoid cells or tissues [48, 53]. CD2 marker
expression is very clearly ascribed to T-cells and complex
immune regulatory environment [54], and these findings likely
point to a heterogeneous nature of the heart samples with other
lymphoid cells infiltrating the affected tissues. Nevertheless,
there is a clear shift in the ischemic tissue state with an
increased inflammatory burden and with multiple regulatory
mechanisms engaged (e.g. CX3CL1) [48].

Proteome analysis highlighted underlying metabolic
differences in ischemic and hypertrophic heart states

Correlation between the expression levels of mRNA and protein
is relatively difficult to establish with poor predictive power for
the protein levels based on the gene expression [55]. Despite
that, it was necessary to establish if proteome from a myocardial
tissue-rich left human ventricle (Supplementary Fig. S11) could
complement the RNA-seq data.
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Figure 3. Enrichment analysis for all significantly changed genes in the DC versus healthy contrast group where enriched cellular processes (A) and the visualization

of the top highest ranking processes and corresponding genes (B) are provided in the distribution plots and network maps, respectively. Enrichment analysis for genes

that changed significantly in DC versus healthy but not in IC versus healthy are plotted as cellular processes distribution (C) and the visualization of the top highest

ranking processes and corresponding genes are shown in network maps (D). Gene set size that was enriched and P-adjusted value provided with the plots.

While investigating protein abundances, it became clear that
the samples were quite similar as was the case with RNA-seq
data (Fig. 2); yet, it was possible to see some sub-divisions for DC,
IC as well as the non-failing samples and pathological state sam-
ples varied less, showing a clear separation between ischemic
and hypertrophic conditions with no gender-dependent effects
(Supplementary Fig. S12).

The next step of the analysis was to investigate for protein
enrichment and compare with the data from RNA-seq study.
Proteome data had a substantially lower recovery of data points
(close to 3000) when compared to nearly 19 000 for RNA-seq
(Supplementary Figs S4 and S13). As expected, heart dilation
leads to not only increased strain over heart but also causes
subsequent muscle tissue remodelling (Fig. 4A). There were 13
genes that showed a significant change in the RNA-seq samples
as well as their matching counterparts on the protein level
in the same contrast category (Supplementary Tables S5 and
S6). For example, natriuretic peptides precursor A (NPPA), aortic
carboxypeptidase-like protein (AEBP1) and collagen type XIV
alpha 1 chain (COL14A1) genes as well as their corresponding
proteins showed a significant upregulation in DC; in a simi-
lar fashion, myosin heavy chain, α isoform (MYH6) and ADP-
ribosyltransferase 3 (ART3) were downregulated. All of these
genes point to the remodelling events within the tissue, how-
ever, only several genes that showed enrichment on the protein
level could be clustered based on their cellular role (Fig. 4C).
Interestingly, titin (TTN) expression levels dropped significantly,
but the reverse was true when evaluating for its protein levels
(Supplementary Tables S5 and S6; Supplementary Fig. S12). This
bifurcation might likely occur due to multiple factors, namely,
mRNA stability and protein half-life [55], which also demon-
strates that gene or protein expression values cannot be used
as sole measures, but rather a systematic approach is needed.

A completely different picture can be seen when looking
into ischemic heart transcriptome and proteome (Supplemen-
tary Tables S7 and S8) and, while functional enrichment in the
proteome study pointed towards lipid biogenesis and cellular
respiration processes, the overlap between transcriptome and
proteome only showed the enrichment for heart muscle hyper-
trophy, regulation of the heart rate as well as contraction force
(Fig. 4B and D). Trying to compare protein versus gene expres-
sion further complicated the picture (Supplementary Tables S7
and S8; Supplementary Fig. S14) as there was less agreement in
the expression changes. As a case example, myosin heavy chain
7 (MYH7) had a slight upregulation under ischemic conditions
on the gene expression level, but this was markedly reduced on
the protein level. This division in the expression values likely
points to the complex regulatory mechanism for MYH7 under
ischemic conditions as it is usually linked to the dilation and
hypertrophy of the heart [56]. Several other genes, specifically,
cytochrome C oxidase subunit 8A (COX8A) and coenzyme Q-
binding protein COQ10 homologue B (COQ10B), which are linked
to the ischemic injury and loss of mitochondrial integrity, [30,
46, 57] showed similar patterns in gene and protein LFC. Reverse
was true for some of the genes that are reportedly involved
in the HF kininogen 1 (KNG1) [58], retinol binding protein 4
(RBP4) [59] and, apolipoprotein B (APOB) [60] (Supplementary
Tables S7 and S8; Supplementary Fig. S14). This time, no immune
system-associated enrichment was found for myocardial tissue-
rich samples as compared to RNA-seq data (Fig. 4), which likely
confirms the complex composition of heart cellulome and the
presence of other cells that might be infiltrating tissues at dif-
ferent time points as the disease progresses. Overall, enrichment
data (Supplementary Fig. S10B and D) for ischemic cardiomyopa-
thy demonstrated metabolic changes involving lipid generation
and other proteins responsible for cellular respiration integrity.
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Figure 4. Enrichment analysis for all significantly changed proteins in DC and IC when compared to healthy samples with enriched cellular processes for DC versus

healthy (A) and enriched cellular processes for IC versus healthy in human left ventricle proteome (B). Gene names that are shared between significantly changed

proteome and transcriptome for DC (C) and IC (D) contrasts versus healthy tissue.

Single cell RNA-seq analysis of mice heart tissues
revealed intricate cellulome composition that shared
definitive markers with human heart RNA-seq data

To better appreciate the cellular composition of the heart, an
available single cell study on the murine non-myocyte cardiac
cellulom was analysed and integrated with earlier studies. While
differences between species are a hurdle, this initial analysis
aimed to get a better understanding of what cells can be found in
the heart, their relative proportions and associated marker genes
and to compare all of that with the findings in the human heart

samples. Earlier analyses hinted at the possibility of other cells
infiltrating the heart; thus, it was necessary to explore further
what cellular composition can be expected.

Mouse heart preparations with cardyomyocyte cell pop-
ulation mostly removed (Supplementary Fig. S15, and Table
S9) split the remaining cells between the matrix fibroblasts
and subtypes of fibroblasts (the largest proportion) as well as
various types of lymphocytes and leukocytes. Several interesting
subgroups, for example, axin2+ cells, displaying stem-like cell
properties and involved in fibrotic and regenerative events
[30] were found. Comparative analysis between human bulk
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RNA-seq significantly changed genes (either up- or down-
regulated) and mouse single cell RNA-seq markers revealed
a number of matches (Table 1). Most notably, DC conditions
were predominated by cardyomyocites and fibroblast-like cells
with some immune cell types. This was reversed in ischemic
conditions with a high immune cell infiltration (Table 1).
Comparing how different and non-cardiomyocyte-enriched
cells cluster in mice heart tissues (Fig. 5), we can see that the
separation was quite distinct where marker gene patterns
(Supplementary Figs S16 and S17) allowed to differentiate
this rich cellulome. Cross-referencing single cell sequencing
data with proteome analysis as well as bulk RNA-seq data
(DC) revealed two genes, ART3 and microfibril-associated
glycoprotein 4 (MFAP4), to be also matched with mice heart
cellulome markers. ART3 has been reported previously to be
expressed in the heart [30], but MFAP4 has several strong links
to the heart hypertrophy [30, 61]. Ischemic heart dataset analyses
did not reveal such an overlap between bulk and single RNA-seq
datasets as well as the proteome analysis.

Single cell RNA-seq analysis of the human heart left
ventricle indicated the existence of divergent cell types
for hypertrophic and ischemic tissue conditions

Single cell sequencing of the human left ventricle revealed a
complex mixture of cell types with expected cardiomyocytes,
myoblasts and heart smooth muscle cells comprising nearly 65%
of all cells and lymphoid cells adding up to more than a quarter
of all cell populations combined (Supplementary Figs S18 and
S19). These observations confirmed earlier findings (Figs 5 and
6) where gene expression patterns suggested the involvement
of immune and other cell types that might contribute to fibrotic
and remodelling events within the heart tissue. Specific marker
genes for the human left ventricle showed varying expression
patterns but a clear distinction between cardiomyocytes, heart
smooth muscle cells or myofibroblasts and required an elabo-
rate combination of multiple marker genes to differentiate the
groups precisely (Supplementary Figs S20 and S21).

Further exploration of the DC genes that changed signifi-
cantly and had corresponding markers in the human left ven-
tricle bulk RNA-seq identified a change in the expression for
genes likely involved in heart tissue remodelling; however, when
this set was cross-referenced with matching proteome anal-
ysis, it did not return any hits. Haemoglobin subunit alpha
and beta (HBA1/2, HBB) was significantly upregulated in human
bulk RNA-seq (contrast: DC vs. healthy) but showed a moderate
change in single cell myocyte/myoblast population when this
cell group was compared against the rest of heart cells (Table 1).
Alpha subunit expression of the said globins has been implicated
in the vascular tone and function maintenance [30]; together,
haemoglobin expression might suggest compensatory mecha-
nisms for the tissue undergoing contractile and remodelling
stress. Similarly, orphan nuclear receptor 4A1 (NR4A1) showed
a marked upregulation in the hypertrophic state, while in a
healthy left ventricle, it was low (Table 1). NR4A1 has recently
been described to play a role in cardiac stress responses and
hypertrophic growth [62]. As a complete contrast, DC showed a
marked loss in adipocyte signatures (Table 1), for example, fatty
acid-binding protein 4 (FABP4) has been shown to contribute
to cardiac metabolism [30, 63]; thus, observed alterations might
indicate a change in the energy metabolism of the heart.

Interestingly, ischemic heart tissue was very similar to the
hypertrophic state when compared to human left ventricle cel-
lulome. For example, a notable upregulation in most of the

genes, HBB, HBA1/2 and NR4A1, was matched between the dif-
ferent pathological states; however, lumican (LUM) and HBB
were also found to be significantly upregulated in the ischemic
heart proteome analysis. LUM has been shown to propagate
the pro-fibrotic events in the HF [64]. The downregulated genes
in ischemic conditions also followed similar patterns to the
hypertrophic heart observed earlier, notably, FABP4 and glycerol-
3-phosphate dehydrogenase 1 (GPD1) belong to the gene group
involved in lipid and amino acid metabolism [30]. While IC
downregulated genes are dominated by adipocyte-associated
markers in this cross-reference analysis, TTN was also found
to be downregulated under myoblast/myocytes group. TTN has
been linked to remodelling and changes in the ischemic heart
[65], which based on the present study findings, could be used to
differentiate between hypertrophic and ischemic changes.

New scoring system to evaluate genes using a two-step
machine clustering approach revealed sets of
disease-specific interactors

The richest data available are from bulk RNA-seq experiments;
thus, a scoring system was devised to take the advantage of
RNA-seq data and match with the data mined from multiple
resources. That is, our derived scoring equation, LFCscore (Supple-
mentary Equation (1)) scales LFC value for a given contrast (e.g.
disease vs. healthy state) by a total association score (denoted
as α in Supplementary Equation (1)) retrieved from the Open
Targets platform [66]. The score takes into consideration mul-
tiple data resources and evidence for a given gene (e.g. clini-
cal precedence, reports in literature and/or known interactors).
LFCscore introduces an important concept of adding weights to
contrast LFC values based on known links to diseases or relevant
phenotypes.

Two hundred and twenty-nine associations were retrieved for
IC, and a far larger number of gene scores (3521) was downloaded
for DC [30].

To identify the potential links between significantly changed
genes in a given contrast, a two-step machine learning approach
was employed using GMMs to identify gene clusters with the
highest probability to share similar expression patterns, number
of interactors (e.g. the gene’s degree in our interaction network)
and, subsequently, each cluster can be further analysed using
agglomerative hierarchical clustering to achieve a better refine-
ment between associations. To estimate the impact of expres-
sion changes as evaluated by LFC Score and the protein network
size, an assumption was made that if a protein is known to
have multiple interactions, then it is likely that more cellular
processes will be perturbed when compared to a smaller and
isolated network. GMM-based clustering revealed approximately
the same number of features across DC and IC groups (Fig. 6). To
test the impact of the LFC Score, the analysis was compared with
a regular LFC. In the case of DC, there was a notable difference in
the identified cluster distributions; by contrast, IC did not show
such a noticeable difference primarily because the association
scores were few and very low for this cardiopathology (IC mean
for association score: 0.00023; max value: 0.01960; DC mean for
association score: 0.07050; max value: 1). It became apparent
that the more associations are used as weights, the better is the
resolution in clustering that can be achieved.

This was followed by the extraction of identified clusters
and a downstream hierarchical clustering. For example, a gene
set from one of the bigger GMM clusters—cluster 0 (Fig. 7;
Supplementary Table S10) for DC was probed further to
reveal subtle variations between genes. A case example of
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Table 1. Combined marker genes.

Significantly unregulated genes in DC versus healthy that had matching markers in human heart single cell RNA-seq

Symbol Base mean Log2 fold

change

lfcSE Stat P-value P.adj Single cell

cluster

Type P_val_adj avg_logFC

ALAS2 9.880762 3.658381 0.9682434 3.778369 1.578586e-04 3.595666e-03 4 Myoblast/myocytes 1.768096e-28 0.1815624

CD74 15295.999951 1.396172 0.4761631 2.932130 3.366455e-03 3.194793e-02 5 Lymphoid

cells/macrophages

1.959989e-17 0.3724019

HBA1 127.857722 4.147787 0.6848996 6.056051 1.395042e-09 4.125772e-07 4 Myoblast/myocytes 7.535268e-128 1.4673468

HBA2 321.183281 3.855863 0.5223493 7.381772 1.561965e-13 1.494525e-10 4 Myoblast/myocytes 2.312018e-135 1.4857391

HBB 1783.859396 4.697214 0.6945263 6.763191 1.349853e-11 8.444890e-09 4 Myoblast/myocytes 3.858435e-141 1.5070114

LUM 8659.295482 1.059213 0.3698468 2.863924 4.184283e-03 3.705038e-02 1 Smooth

muscles/adipocyte- and

fibroblast-like cells

8.399361e-30 0.2002449

NR4A1 1352.267936 1.607393 0.2756688 5.830884 5.513446e-09 1.318849e-06 2 Myofibroblasts 1.293227e-76 0.7037670

Significantly downregulated genes in DC versus healthy that had matching markers in human heart single cell RNA-seq

Symbol Base mean Log2 fold

change

lfcSE stat P-value P.adj Cluster Type P_val_adj avg_logFC

FABP4 3699.5330 −1.2801910 0.20011132 −6.397394 1.580509e-10 6.121084e-08 6 Adipocytes 1.618486e-23 1.3383664

G0S2 1384.9720 −1.8636480 0.48482019 −3.843998 1.210458e-04 3.010598e-03 6 Adipocytes 3.875007e-09 1.0612945

GPD1 386.2192 −1.7924675 0.40377314 −4.439294 9.025461e-06 4.192406e-04 6 Adipocytes 3.141539e-26 0.8650561

S100A8 212.1838 −1.2542770 0.42169215 −2.974390 2.935715e-03 2.920633e-02 4 Myoblast/myocytes 1.000000e+00 0.1923214

Significantly upregulated genes in DC versus healthy that had matching markers in mouse heart single cell RNA-seq

Symbol Base mean Log2 fold

change

lfcSE Stat P-value P.adj Cluster Names P_val_adj avg_logFC

CCN2 2930.87706 1.444716 0.4096894 3.526370 4.212979e-04 7.368635e-03 5 Fibr reticular cells/Con.

tissue fibr

2.497010e-204 1.0816956

CD74 15295.99995 1.396172 0.4761631 2.932130 3.366455e-03 3.194793e-02 6 Macr

activated/monocytes

0.000000e+00 2.7764279

COMP 357.97479 4.500956 1.1484004 3.919326 8.879678e-05 2.399283e-03 3 Activated fibr 3.683388e-232 1.9834490

CXCL2 141.19737 1.377606 0.4822002 2.856918 4.277768e-03 3.769349e-02 6 Macr

activated/monocytes

5.346760e-71 2.1222650

EGR1 1125.64888 1.934639 0.4455200 4.342429 1.409161e-05 6.016120e-04 1 Con. tissue

fibr/adipocytes

1.872001e-249 0.9102685

FMOD 2086.27650 2.208960 0.7861859 2.809718 4.958497e-03 4.160662e-02 3 Activated fibr 0.000000e+00 1.9923917

HSD11B1 77.58577 1.182886 0.3795059 3.116911 1.827567e-03 2.081737e-02 0 Matrix fibr 3.150651e-149 0.8352948

LPL 44 694.70260 1.321233 0.2591931 5.097484 3.441981e-07 3.413857e-05 0 Matrix fibr 2.054064e-163 0.6813763

MFAP4 3545.32414 1.184731 0.3634084 3.260055 1.113907e-03 1.496186e-02 5 Fibr reticular cells/Con.

tissue fibr

1.956096e-207 1.4763358

PI16 1678.73870 2.389334 0.5017015 4.762461 1.912466e-06 1.269721e-04 4 Skin-like fibr/axin2+
cells

1.567072e-116 0.7149607

VTN 1746.66613 1.226781 0.3230142 3.797917 1.459171e-04 3.434858e-03 10 Pericytes/cardiomyocytes 0.000000e+00 3.2261843

Significantly downregulated genes in DC versus healthy that had matching markers in mouse heart single cell RNA-seq

Symbol Base mean Log2 fold

change

lfcSE Stat P-value P.adj Cluster Names P_val_adj avg_logFC

ART3 2301.6166 −1.0665936 0.3073363 −3.470444 5.195979e-04 8.695246e-03 10 Pericytes/cardiomyocytes 0.000000e+00 2.2127282

DBI 5957.5961 −1.1071120 0.1736465 −6.375667 1.821688e-10 6.891065e-08 15 Oligodendrocytes/glia-

like

cells

3.093461e-105 2.3971686

FABP4 3699.5330 −1.2801910 0.2001113 −6.397394 1.580509e-10 6.121084e-08 8 Vascular endo cells 0.000000e+00 3.6800042

S100A8 212.1838 −1.2542770 0.4216922 −2.974390 2.935715e-03 2.920633e-02 18 Lymphocytes/neutrophils 4.135267e-134 5.8014206

S100A9 553.8739 −1.2624115 0.4214594 −2.995333 2.741451e-03 2.794013e-02 18 Lymphocytes/neutrophils 4.414938e-164 5.5492214

Significantly upregulated genes in IC versus healthy that had matching markers in human heart single cell RNA-seq

Symbol Base mean Log2 fold

change

lfcSE Stat P-value P.adj Cluster Type P_val_adj avg_logFC

CD74 15 296.0000 1.924495 0.4761500 4.041783 5.304634e-05 1.013193e-03 5 Lymphoid

cells/macrophages

1.959989e-17 0.3724019

FOS 552.7522 2.433294 0.4614677 5.272945 1.342517e-07 8.238896e-06 2 Myofibroblasts 4.594938e-92 0.8547702

HBA1 127.8577 3.458750 0.6857723 5.043584 4.568919e-07 2.177241e-05 4 Myoblast/myocytes 7.535268e-128 1.4673468

HBA2 321.1833 3.467975 0.5225764 6.636303 3.216483e-11 8.491005e-09 4 Myoblast/myocytes 2.312018e-135 1.4857391

HBB 1783.8594 3.862919 0.6946055 5.561314 2.677515e-08 2.137861e-06 4 Myoblast/myocytes 3.858435e-141 1.5070114

JUNB 1004.2035 1.196043 0.3565928 3.354087 7.962727e-04 7.967078e-03 2 Myofibroblasts 3.138348e-93 0.7437075

LUM 8659.2955 1.082989 0.3698410 2.928255 3.408707e-03 2.320516e-02 1 Smooth

muscles/adipocyte- and

fibroblast-like cells

8.399361e-30 0.2002449

NR4A1 1352.2679 1.134481 0.2758204 4.113114 3.903568e-05 8.076799e-04 2 Myofibroblasts 1.293227e-76 0.7037670

PTN 1172.3506 1.240390 0.3404728 3.643141 2.693317e-04 3.524197e-03 1 Smooth

muscles/adipocyte- and

fibroblast-like cells

3.016167e-15 0.1970879

(Continued)
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Table 1. Continued.

Significantly unregulated genes in DC versus healthy that had matching markers in human heart single cell RNA-seq

Symbol Base mean Log2 fold

change

lfcSE Stat P-value P.adj Single cell

cluster

Type P_val_adj avg_logFC

Significantly downregulated genes in IC versus healthy that had matching markers in human heart single cell RNA-seq

Symbol Base mean Log2 fold

change

lfcSE Stat P-value P.adj Cluster Type P_val_adj avg_logFC

FABP4 3699.53303 −1.0361608 0.19998439 −5.181208 2.204529e-07 1.255600e-05 6 Adipocytes 1.618486e-23 1.3383664

GPD1 386.21920 −1.7856639 0.40352890 −4.425120 9.638855e-06 2.593913e-04 6 Adipocytes 3.141539e-26 0.8650561

MGST1 331.26691 −1.6291823 0.53631060 −3.037759 2.383446e-03 1.795248e-02 6 Adipocytes 2.222223e-19 1.1258766

RBP4 51.50649 −3.0112881 0.80596479 −3.736253 1.867829e-04 2.658098e-03 6 Adipocytes 3.371234e-200 1.1091309

TTN 26 0372.84301 −1.1102638 0.14893528 −7.454673 9.009087e-14 6.590030e-11 4 Myoblast/myocytes 2.237662e-21 0.2690609

Significantly upregulated genes in IC versus healthy that had matching markers in mouse heart single cell RNA-seq

Symbol Base mean Log2 fold

change

lfcSE Stat P-value P.adj Cluster Names P_val_adj avg_logFC

CCL3 21.12713 2.193338 0.8185624 2.679500 7.373228e-03 4.046710e-02 14 Lymphocytes 1.108071e-21 1.7594966

CCL5 120.60019 2.805093 0.7345592 3.818744 1.341331e-04 2.082883e-03 16 T/NK cells 1.515124e-71 4.2358648

CD74 15 295.99995 1.924495 0.4761500 4.041783 5.304634e-05 1.013193e-03 6 Macr

activated/monocytes

0.000000e+00 2.7764279

CD79A 11.17099 4.595454 1.3925479 3.300033 9.667345e-04 9.224189e-03 12 B cells: memory, naive,

mature

0.000000e+00 3.0975730

EGFL7 2239.74334 1.112055 0.1924802 5.777502 7.581777e-09 7.461096e-07 8 Vascular endo cells 0.000000e+00 2.4291359

EGR1 1125.64888 2.589524 0.4453014 5.815216 6.055571e-09 6.324236e-07 1 Con. tissue

fibr/adipocytes

1.872001e-249 0.9102685

HCST 80.97730 1.980339 0.6233735 3.176809 1.489050e-03 1.279152e-02 16 T/NK cells 1.892737e-273 1.5809485

IGHM 1109.34675 6.381438 1.5602478 4.090015 4.313446e-05 8.611875e-04 12 B cells: memory, naive,

mature

0.000000e+00 2.8022132

JUNB 1004.20349 1.196043 0.3565928 3.354087 7.962727e-04 7.967078e-03 1 Con. tissue

fibr/adipocytes

8.491950e-212 0.9091541

MS4A1 12.48049 3.681749 1.2067727 3.050905 2.281524e-03 1.732604e-02 12 B cells: memory, naive,

mature

0.000000e+00 2.0164658

NKG7 46.03626 2.189070 0.6864901 3.188786 1.428714e-03 1.239486e-02 16 T/NK cells 0.000000e+00 2.6245828

PI16 1678.73870 1.637016 0.5018133 3.262201 1.105506e-03 1.023131e-02 4 Skin-like fibr/axin2+
cells

1.567072e-116 0.7149607

SMOC2 1903.44520 1.314703 0.3295271 3.989667 6.616609e-05 1.205266e-03 0 Matrix fibr 9.428873e-297 0.9696528

TRBC2 120.39393 2.705592 0.7875605 3.435408 5.916620e-04 6.389565e-03 16 T/NK cells 0.000000e+00 2.0733703

Significantly upregulated genes in IC versus healthy that had matching markers in mouse heart single cell RNA-seq

Symbol Base mean Log2 fold

change

lfcSE Stat P-value P.adj Cluster Names P_val_adj avg_logFC

ART3 2301.6166 −1.7021963 0.3075560 −5.534590 3.119575e-08 2.413100e-06 10 Pericytes/cardiomyocytes 0.000000e+00 2.2127282

FABP4 3699.5330 −1.0361608 0.1999844 −5.181208 2.204529e-07 1.255600e-05 8 Vascular endo cells 0.000000e+00 3.6800042

Filtering parameters: LFC < |1|; P.adj < 0.005. Bulk RNA-seq samples (PRJNA477855) were categorized to form: non-failing (healthy), DC and IC groups; similar sets of
samples were selected for proteome analysis (PXD008934) with matched representation for ages and sexes. Single cell RNA-seq of the murine non-myocyte cardiac
cellulome (E-MTAB-6173) was used to identify additional markers for the heart.

one of the sub-clusters, SMAD7, syntaxin-1B (STX1B) and
transcription factor SOX-17 (SOX17), show how genes with
similar expression and network profile can be grouped and,
in this case, these genes belong to the different branches of
a complex network regulating tissue morphogenesis, vesicle
docking and growth [30, 31]. Some of the IC sub-cluster
members, such as tumour necrosis factor receptor superfam-
ily member 11B (TNFRSF11B) and serine/threonine-protein
kinase pim-2 (PIM2), showed a convergence of two signalling
branches via Myc proto-oncogene protein (MYC) [31] (Fig. 7;
Supplementary Table S11).

To achieve a better organization of identified clusters and to
cross-reference the findings, GWAS dataset of human genetic
variants was searched against the identified clusters, retrieving
associations for a CVD category (set size 5551). In order to expand
the search for all known heart diseases, taking into account
text mining, expression data as well as clinical evidence, Open
Targets platform was used to retrieve the association scores for
cluster genes; by parsing the platform, it was possible to retrieve
the values for more than 28 000 genes [30]. Finally, for the most

up-to-date analysis of complete PubMed records PubMed [40]
(>30 million), a text-mining based search was performed for
any CVD-associated term, retrieving the number of articles/s-
tudies where the gene is mentioned in the disease context. This
analysis returned two comprehensive tables for DCs and ICs
(Supplementary Tables S10 and S11), where each cluster had
a number of genes linked to cardiovascular pathologies either
based on all or some of the parameters (i.e. GWAS association,
Open Targets knowledge-base association or the number of pub-
lications where gene appears in the context of cardiopathology).
What is especially useful is that genes which have sparser or
even no known links to the disease belong to clusters with better-
defined members. This could lead to the identification of new
biomarkers or a better understanding of their function since
they were classified based on their interaction network complex-
ity and expression. For example, the mentioned SMAD7, SNCA
and SOX17 have clearly established links to heart pathology;
however, their cluster (number 0) has some less well-defined
members, such as SLC6A12 or SPNS3, and these carriers/trans-
porters could be interesting candidates for further exploration
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Figure 5. Mouse non-cardiomyocyte single cell RNA-seq cellulome UMAP decomposition showing relative distances and the uncovered clusters of different cells. Some

longer names were abbreviated; for full names, please refer to Supplementary Table S9.

Figure 6. Human heart left ventricle bulk RNA-seq GMM clustering showing specific grouping based on either LFC or LFC Score against known or predicted number of

interactions for that gene. Colour bar shows the specific cluster number and colour association.

based on their grouping. As can be seen, our approach helps
to uncover new genes that might be important candidates in
understanding the heterogeneous nature of HF; such findings
point to the fact that not all patients with the same clinical
condition share the same mutations, disease progression might
have multiple converging paths and using aggregated results we

can explore how these genes are associated with more dominant
genetic factors.

The genes that are shared between two conditions, namely
DC and IC, when the initial clustering was performed via
GMM were extracted (to find the overlap) and that over-
lap alone was clustered further to see underlying patterns
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Figure 7. Human heart left ventricle bulk RNA-seq GMM analysis identified

multiple clusters which were further subjected to hierarchical clustering (dendro-

gram panels). Representative clusters are shown where the gene distribution for

DC versus healthy (cluster 0) can be seen in the dendrogram (A) and distribution

plot (B), similarly IC versus healthy (cluster 2) gene distribution is shown in the

dendrogram (C) and distribution plot (D). All dot plots (C and D) show grouped

gene distribution for z-score scaled parameters on which the sub-clustering was

performed.

(Supplementary Fig. S22). Some of the juxtaposed groups
(coloured branches) are matched between two pathologies
based on the gene–disease association, LFC and the degree
number that the expressed protein has. For example, one such
shared group of protein Wnt-9a (WNT9A), HBB and F-box and
leucine-rich repeat protein 16 (FBXL16) belong to the same large
network of interactors [31] likely playing a role in tissue function
and local signalling events. The described analysis could be very
useful in understanding the potential convergence points for
diseases and how shared genes are grouped per disease profile.

Validation of machine learning approach

In order to assess if our developed analysis can uncover gene
groups that have similar expression and network size profiles,
two independent RNA-seq studies were analysed to test the
analytical pipeline and explore whether the identified gene
clusters allowed to group well-defined genes with unknown new
candidates or provided new insights based on the network size
and expression changes.

Differentially expressed genes (P.adj > 0.05) derived from the
first dataset consisting of DC and healthy tissue biopsies [67]
were introduced into the previously described pipeline. In the
same manner, the second dataset was tested; the samples of this
dataset were comprised of heart tissue from diabetic patients
affected by post-ischemic HF as well as healthy tissue [68]. GMM-
identified clusters (Supplementary Fig. S23) were subjected to
cross-referencing with Open Targets, GWAS and PubMed records
to retrieve the records associated with heart disease.

Interestingly, while selected pathologies have different
underlying causes, every cluster had a number of genes
associated with CVD when cross-referenced against different
databases (Supplementary Tables S12 and S13). For example,
significantly changed genes in DC biopsies formed nine clusters
(Supplementary Fig. S23; Supplementary Table S12) via GMM
of which some gene groups pointed to epigenetically active
biomarkers, namely, H2AFZ and H1F0 (cluster 0), that are
relatively newly linked to the disease. However, when newly
identified genes cluster closely with other more established
candidate genes, it is possible to use that information either
for targeted screens or for trying to deconvolute the involved
pathways. Another example from genes that were significantly
changed in diabetic patients affected by post-ischemic HF
revealed similar patterns in terms of cluster formation (Sup-
plementary Fig. S23; Supplementary Table S13).

By juxtaposing the complexity of the interaction network as
well as expression changes, it is possible to establish groups of
similar patterns which can be further hierarchically clustered to
refine the relationships within a selected group. This refinement
can aid when selecting specific genes for testing panels because
selections can be spread out through clusters, avoiding picking
all candidate genes from the same group. It is also worth men-
tioning that the choice to use a more diverse set of public records
for validation was aimed at reducing any inherent biases and at
representing a broader spectrum of information available on the
heart disease.

DISCUSSION

DC is an important cause of HF, which is characterized by the
ventricular enlargement and subsequent systolic dysfunction.
By contrast, IC is a clinical manifestation with a complex causal-
ity ranging from coronary artery disease to other changes in the
heart muscle which decrease the nutrient and oxygen supply. A
wide spectrum of etiologies, including inherited, inflammatory
and/or infectious diseases, can predispose the heart to this
pathological remodelling [1, 4, 30, 69, 70].

Studying the cardiac impairment resulting from heart dila-
tion or ischemia is complicated by the mixture of known as
well as idiopathic causes. Moreover, integrating a complex tran-
scriptional landscape might be difficult as evident in the past
studies reporting on experimental or meta-analyses [1, 71]; this
is because, collected tissues for experiments differ to some
extent and a sample population might introduce various other
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confounding factors (e.g. treatment and co-morbidities). In addi-
tion, depending on the statistical assumptions made and the
model selection, the results may vary. This becomes especially
evident when analysing smaller sample sets, which is often the
case in the clinical and smaller-scale studies. Our study goal was
to emulate these scenarios and show that the statistical mod-
elling and enrichment with external resources can be a powerful
method to compensate for a lower sample number or sample
drop-out due to quality issues. We also want to stress that while
our study used a small sample size for the analysis, it does not
mean that small and large sample size groups can be regarded
as equivalent; there are many excellent works discussing the
sample size effects and associated analytical complexities [9–
11]. As a result, we wanted to demonstrate how researchers who
have a limited number of samples can still successfully analyse
their data to identify meaningful gene expression patterns and
changes. Furthermore, we explored how the different ‘omics’
resources for cardiomyopathy can be used to study the differ-
ential gene expression and functional processes as well as what
we could learn from integrating such datasets.

The first part of the analysis focused on the human left
ventricle tissue bulk RNA-seq analysis for two indications:
DC and IC. By analysing significantly changed genes, it was
possible to see a subtle separation between hypertrophic
and ischemic heart conditions. For example, DC tissue had a
number of significantly upregulated genes (BMP2, MYOZ1and
ENO2) that showed strong associations with myocardial tissue
remodelling and structural changes when compared to the
healthy samples [30, 44, 45]. Some other genes, such as RPS17,
SLITRK4 and GLT8D2, belong to newer additions of potentially
valuable genes and have just recently been implicated in
DC. These genes are involved in protein synthesis and post-
translational modifications as well as cell growth control [30,
43]. An opposing group of genes that were downregulated
(CA11, ICAM3 and ELOVL2) hints at the metabolic perturbations
[30, 46, 47] spanning the spectrum from cellular respiration
changes to the potential loss of the membrane integrity in
the tissue that is actively being remodelled. When contrasting
these findings with ischemic heart conditions, there was a
notable change in the upregulation of the pro-inflammatory
and pro-fibrotic genes. For example, CX3CL1 is an especially
intriguing gene as it encodes an atypical chemokine which
can exist in either a membrane-bound form or as a soluble
chemokine; the membrane-integrated form is largely expressed
on the endothelial cells in myocardial ischemia and HF [30, 48,
53]. Another candidate gene and potential biomarker of note,
TMEM259, has some associations with ischemic conditions as
well as ER protein degradation pathways [30, 72]. A number of
other genes, FOC, REC8, FHOD1 as well as TAOK1 and MINDY2,
are involved in the modulation of cell proliferation, immune
signalling and protein turnover [30, 49, 73]. These findings
provided the first hints of the potential exacerbation of ER
stress as well as inflammation-induced damage propagating the
ischemia and tissue fibrosis cycle. Managing the exacerbation of
the inflammation might be helpful in preserving the heart tissue
function. In addition, gene expression changes comprising the
broad spectrum of cellular metabolism and growth processes
were more pronounced in DC, and further exploration would
help to determine if targeting energy metabolism could suppress
the hypertrophy.

The differences between DC and IC were further highlighted
when clustering genes based on their involvement in cellular
processes. Myocardium remodelling, ventricular cardiac muscle
tissue morphogenesis and muscle tissue development as

well as other tissue structure- and integrity-related processes
were enriched for DC (Figs 3 and 4). With a further refine-
ment—uniquely and significantly changed genes showed a
specific clustering under microtubule, myofibril, sarcomere
and contractile fibre process group (Figs 3 and 4). Some of
those genes, MYL1, DNAH6, MYOZ1 and ACKR2, could be of a
special interest as potential therapeutic targets or biomarkers
because of their reported roles in heart muscle function. For
example, MYL1, DNAH6 and MYOZ1 were named in various
reports linking them to hypertrophy, changes in contractility
and myocardium cell function [30, 44, 75]. Tissue overgrowth
mediated by these genes could be targeted to reduce the
excessive strain on the myocardium in the early stages of the
disease development. ACKR2 has been demonstrated to reduce
inflammation and vascular remodelling after myocardium
injury, and this identified upregulation might indicate the
compensatory mechanism for the tissue remodelling [30, 53].
Thus, enhancing or stimulating this protective signalling might
be a valuable therapeutic option (Supplementary Table S3).

In contrast to hypertrophic heart muscle, ischemic heart-
enriched gene networks had clear links to ER stress; for exam-
ple, SMPD3, TMEM259, epidermal growth factor (EGF) and APOB
have been shown to lead to ER stress when their normal func-
tion is perturbed [30, 51, 60, 72]. In addition, FPR2 as well as
CX3CL1 interlink inflammatory processes with higher ER protein
turnover burden [48, 52] (Supplementary Fig S6, Table S4 and
Figure S10). Under ischemic conditions, perturbations in oxygen
and nutrient supply as well as undergoing cellular stress can lead
to mitochondrial and proteome stability changes which likely
propagate fibrotic remodelling events [46, 69]. Thus, pharmaceu-
tical management of poor tissue oxygenation and inflammation
could be a useful therapeutic approach to limit tissue injury.

It was intriguing to find that the levels of chemokine lig-
ands (e.g. CXCL11, CXCL10 and CCL5), chemokine receptors (e.g.
CXCR3 and CCR7) as well as other markers, such as CD2, were sig-
nificantly changed under myocardial ischemia (Supplementary
Table S4). This, however, might be likely attributable to the T-cells
and other lymphoid cells infiltrating heart tissue as can also be
seen in a mouse left ventricle non-myocardial cellulome study
(Supplementary Figs S15 and S16). A significant proportion of
fibroblast and fibroblast-like cells can also be found in a healthy
human heart (Supplementary Fig. S18; Table 1), and this popula-
tion, under myocardial stress conditions, can change its propor-
tions further by propagating pro-inflammatory and pro-fibrotic
environment. Moreover, normal subpopulations of immune cells
identified in the heart, such as monocytes, macrophages, mast
cells, eosinophils, neutrophils B cells and T-cells, can also be
activated and lead to a pro-inflammatory state [53, 75]. These
considerations need to be taken into account when analysing
data at different resolution levels where different types of cells
can show a varying degree of contribution in the bulk transcrip-
tome.

This was especially evident when juxtaposing enriched pro-
tein groups to the corresponding gene values from the RNA-seq
studies. As proteome data had about six times lower recovery
than bulk RNA-seq (Fig. 3; Supplementary Fig. S14), it became
clear that it is only possible to identify genes and their networks
that are above the detection level and show substantial abun-
dance. Despite these limitations, important marker molecules
associated with DC were found; that is, NPPA, AEBP1, MFAP4 and
COL14A1 were upregulated both on the gene and protein levels.
All of these genes and their readouts on a protein level could
potentially be used as biomarkers since there is experimental
and clinical evidence for their role in the dilated left ventricle
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remodelling [30, 61, 76, 77]. MFAP4 was also matched to the
mice heart cellulome fibroblast markers; this target is quite
interesting as it reoccurred in all three types of ‘omics’ datasets
and it not only has several strong links to the heart hypertro-
phy but has also been investigated as a potential therapeutic
target [61].

In the case of downregulated genes and their proteins, MYH6
and ART3 form a unique group; while MYH6 mutations are
linked to hereditary cardiomyopathies [30, 71, 77], ART3 function
remains to be defined, but it was found in cardiac proteome
profiling [30]. The present study also identified ART3 as a per-
icyte/cardiomyocyte marker from a single cell study for mouse
heart cellulome with most myocytes removed. This not only
confirms that ART3 expression allows it to be associated with
cardiomyocytes and differentiated from other cells but could
also suggest that the reversal of this downregulation might be
a new therapeutic opportunity. In addition, TTN had a con-
trasting pattern where gene expression levels were decreased
and the protein expression was upregulated (Supplementary
Fig. S14). TTN mutations are well-documented for DC; however,
while mutated and truncated TTN proteins lead to the disease
parthenogenesis, the higher expression role is not clear [30,
65]. In addition, TTN was also found to be of low expression
under myoblast/myocytes group in the human left ventricle
single cell RNA-seq (Table 1). It is possible to hypothesize that
as the heart muscle remodelling progresses, some of the com-
pensatory mechanisms might increase the contractile fibre and
associated protein production; at the same time, RNA expression
levels drop by secondary regulatory mechanisms to reduce the
protein production burden. More in-depth experimental studies
investigating TTN and its expression dynamics are necessary to
understand whether there is any prognostic or therapeutic value.

Ischemic heart transcriptome and proteome (Supplementary
Tables S7 and S8; Supplementary Fig. S14) overlap only showed
the enrichment for heart muscle hypertrophy, regulation of
the heart rate as well as contraction force (Fig. 4B and D). For
example, while MYH7, COX8A, COQ10B had a slightly increased
gene expression, protein expression values were markedly
suppressed. MYH7 is a well-known driver of cardiac tissue hyper-
trophy [30, 56, 77]; thus, lack of nutrients reaching heart might
prevent tissue growth and dampen related pathways. Moreover,
decrease in COX8A might be a protective mechanism to reduce
oxidative metabolism [30]. However, other perturbations, such
as the loss of COQ10B ensuring mitochondrial integrity [57]
likely overcome measures against oxidative stress, leading to
the ischemic tissue injury propagation (Supplementary Tables
S7 and S8; Supplementary Fig. S14). Other gene products,
namely, APOB, RBP4 and KNG1, playing the role in the HF were
overexpressed despite reduced mRNA levels, which could give a
glimpse into the perturbed energy metabolism and tissue blood
perfusion [30, 58–60]. This sharp contrast could hint towards
potential therapeutic avenues to inhibit RBP4-based signalling
and APOB-induced ER stress that are likely contributing to
further tissue injury and remodelling. While the heart left
ventricle proteome did not capture strong immune associations
as previously shown in bulk RNA-seq, it is noteworthy that
lipid metabolism-associated proteins had a clear presence
(Supplementary Tables S7 and S8; Supplementary Fig. S14).
Moreover, cardiomyocytes are not a homogenous group of cells
as can be seen in bulk and single cell RNA-seq, and this is
also true on the protein level where a small subset of proteins
show variability between cardiomyocytes in a mosaic pattern
and can likely be further altered under pathological conditions

[30, 74, 77]. This analytical direction of comparing the RNA-
seq and proteome set overlap could be further developed in
the future studies to increase the analysis resolution; that is, a
potential next avenue of such an analysis could be establishing
the significance of the overlap to assess how the differentially
expressed gene levels translate to the protein expression. This
kind of evaluation could be tested by performing additional
statistical tests to capture what LFC as well as P.adj value
thresholds lead to the most significant overlap.

In parallel, all of the above findings were also compared to the
human left ventricle single cell RNA-seq. While the majority of
cells were mostly cardiomyocytes and other muscle tissue cells,
more than a quarter was comprised of various immune cells
(Table 1, Supplementary Figs S18–S21). One of the most inter-
esting findings was a matched significant upregulation between
bulk and single cell RNA-seq as well as the proteome data that
returned LUM and HBB genes for the ischemic heart conditions.
Experiments with LUM demonstrated its ability to increase the
levels of lysyl oxidase, collagen type I alpha 2 and transforming
growth factor-β1 and to decrease the activity of the collagen-
degrading enzyme matrix metalloproteinase-9; thus, these pro-
fibrotic events are associated with a higher potential for HF
[30, 64]. Targeting LUM might help control the fibrotic tissue
transformation in the heart and it could also be used as a
prognostic marker. Yet, the expression dynamics of LUM are not
entirely clear as more recent reports indicate that LUM might be
involved in compensatory and counterbalancing functions dur-
ing active HF [78]. Such contradictions reaffirm the complexities
of the underlying pathology mechanisms, and further research
is needed to understand at what HF stages these expression
changes occur and when it is best to have a pharmacologi-
cal intervention. Furthermore, alpha subunit expression of the
globins has been implicated in vascular tone and function main-
tenance [30, 79]; thus, it is possible that beta subunit expression
might be involved in similar compensatory mechanisms for the
tissue undergoing ischemic stress, but again, further research
would help to establish the therapeutic potential of HBB and
other globins.

Another interesting candidate target was identified for the
DC, namely, NR4A1. This orphan receptor showed a marked
upregulation in the hypertrophic state, while in a healthy left
ventricle, its expression remained low (Table 1). NR4A1 has
recently emerged as one of the key players in cardiac stress
responses and hypertrophic growth [62]. Also, hypertrophic
tissue state showed a marked loss in adipocyte signatures
(Table 1), and some of the downregulated genes followed similar
patterns in the ischemic heart observed earlier—notably, FABP4
and glycerol-3-phosphate dehydrogenase 1 (GPD1). FABP4 has
been suggested to influence the cardiac size and myocardial
function under pathological states, and it might indicate
changes in the energy metabolism of the heart [63]. GPD1 is
known to play a role in oxidative stress responses as well as
affect lipid and amino acid metabolism [30], and it is possible
that the observed downward shift in GDP1 expression is a
compensatory mechanism and could be a valuable marker.

All of these observations clearly delineate the need to appre-
ciate the different levels of ‘omics’ datasets. While bulk and
single cell transcriptome as well as proteome analyses [1, 71, 74]
provide us with varying degrees of resolution in cases of complex
tissue and more so, in cases of wide spectrum pathologies, it
might become difficult to integrate such variable datasets. Thus,
to address the main challenge of biological data integration, a
scoring system that would take the advantage of bulk RNA-seq
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data and match with the data mined from multiple resources for
each gene was devised and introduced in this study. As demon-
strated earlier, the richest biological data are still only available
from bulk RNA-seq experiments, and all other resources, such as
proteomics or single cell RNA-seq, had only a very small overlap
with the genes identified from bulk sequencing (Supplemen-
tary Tables S5–S8); moreover, regular RNA-seq is still a more
universal research choice to untangle transcriptional profiles.
As a result, a scoring system was used to capture the level of
gene expression change (LFC) along with any mined disease
associations for that gene so that it was possible to supply this
information to machine learning pipelines and group existing
data points to predict biologically meaningful gene expression
patterns. Specifically, our devised LFCscore method allows to
evaluate how a gene participates in the network and to what
extent it can cause a perturbation if the gene function is dis-
rupted. Such grouping is the first step to integrate LFC, differ-
entially expressed genes and protein–protein interactions when
recreating a signalling network. This could be especially useful if
researchers enriched the scoring with additional weights to add
new information for the clustering.

Our two-step machine learning approach returned multiple
subgroups which showed similar multi-profile characteristics;
for example, SMAD7, STX1B and SOX17 not only belonged to the
same sub-cluster [31] (Supplementary Fig. S15) but are also a part
of a complex network regulating tissue morphogenesis, vesicle
docking and growth in DC significantly changed genes [30, 77].
Similarly, TNFRSF11B, PIM2 converged via MYC in the network
[30] linked to angiogenesis and anti-apoptotic pro-growth effects
in IC group (Supplementary Fig. S15). While genes belonging to
the same cluster hint towards interesting target candidates, they
are not necessarily direct interactors, and the observed degree
of separation for these genes could be useful when building
network models or using them as seed points to predict the
extent of local network perturbations. Moreover, newly iden-
tified genes that could potentially be important candidates in
driving the pathological state can be found using aggregated
results where we can explore how these genes are associated
with more dominant genetic factors. This strategy can be very
useful when selecting genes for downstream screening studies
and when prioritizing new targets. Another application of this
method is to cluster genes that are shared between two patholo-
gies. As we demonstrated in this study, gene subsets that show
similar profiles in different conditions can be further clustered
and assessed. For example, WNT9A, HBB and FBXL16 were both
clustered to the same group for dilated and IC when a pool of 160
shared genes was subjected to agglomerative hierarchical clus-
tering. This could be very useful in understanding the potential
convergence points for diseases, establishing shared expression
patterns and selecting therapeutic targets that are substantially
unique.

To further verify the scoring and machine learning method,
all of the identified clusters were extensively cross-referenced
with the GWAS dataset of human heart disease genetic variants
[39], clinical/experimental evidence from Open Targets platform
[30] as well as complete PubMed [40] records for any cardiovascu-
lar pathologies. This analysis revealed that the proposed method
allows to juxtapose rarer or newly discovered targets with more
known genes linked to the DCs and ICs (Supplementary Tables
S10 and S11). The extensive search on disease parameters (i.e.
GWAS association, Open Targets knowledge-base association,
PubMed records) allowed to capture genes with different lev-
els of information. Moreover, the same trend was verified for
two additional datasets of cardiopathologies where genes with

sparser or even no known links to the disease belonged to clus-
ters with better-defined members. This strategy could lead to
the identification of new biomarkers or a better understanding
of their function because the proposed analysis is based on
the gene interaction network complexity and expression. Most
importantly, researchers can adjust the scoring system based
on their in-house data and known associations to perform a
more focused analysis prior to selecting targets for downstream
screens and to avoid selecting groups of genes that belong to the
same effector network.

Current strategies to treat the HF mainly target symptoms
based on the left ventricle dysfunction severity. There is a
notable lack of systemic ‘omics’ studies for an in-depth analysis
of heterogeneous disease mechanisms. This study, for the first
time, demonstrated how bulk and single cell RNA-seq as well
as the proteomics analysis of the human heart tissue can
be integrated to uncover HF-specific networks and potential
therapeutic targets or biomarkers for DCs and ICs. Thus, we
showed that despite a smaller number of samples which is often
the case in some pre-clinical settings or smaller-scale studies,
it is possible to discover new therapeutically relevant insights.
Moreover, by applying the novel scoring system and machine
learning methods, we can untangle complex expression
profiles to elucidate gene clusters that can be selected for
downstream analyses. This study could be the first step towards
a more systematic analysis that could be freely shared among
researchers. Finally, it was demonstrated that cardiopathology
treatment can go beyond symptom management and that there
are indeed distinct gene network and pathway profiles that
could be of therapeutic interest.
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Experimental chapter

Integrative omics approaches for new target identification and therapeutics 

development  

3. OmicInt package: exploring omics data and regulatory networks using 
integrative analyses and machine learning 

The experimental chapter is based on the published software package and publication in 
preparation 

1. Kanapeckaitė A. OmicInt: Omics Network Exploration. CRAN. 2021 Oct. 15. Version 1.1.7; 
https://cran.r-project.org/web/packages/OmicInt/index.html 

2. Kanapeckaitė A. OmicInt package: exploring omics data and regulatory networks using 
integrative analyses and machine learning. Accepted and in preparation. 

Conclusion of this chapter 

My developed OmicInt package provides a unique combination of functions and tools for 
researchers to explore gene expression data sets. A special focus of the package is also making 
machine learning, specifically Gaussian mixture models, more accessible to the researchers that do 
not have a background in the ML/AI field. In addition, advanced functions for epigenomics analysis 
permit the exploration of the epigenetic regulatory layer. This might be helpful when identifying 
genes that may depend on the epigenetic regulation. Specifically, if a CpG island containing gene 
changed expression during treatment or disease progression, this might indicate a dependence on 
the epigenetic regulation. Similarly, exploring a gene’s miRNA network could hint at other 
interacting genes which might not have been picked up by the differential expression analysis. 
Exploring miRNA networks could also help prepare for RNA interference studies. Moreover, 
miRNA interactome analysis provides the first in-depth look into what genes are controlled by the 
same set of miRNAs. Thus, OmicInt offers a comprehensive, evolving, and adaptable platform for 
gene expression analysis in the context of the transcriptome, proteome, and epigenome. 

Contribution to this chapter (100%) 

• Methodology development which included equation and scoring function derivation as well as 
machine learning pipeline creation.

• Developed new programmatic features to accompany the related publication.
• Performed software package development and testing.
• Conceptualised and wrote the documentation files, vignettes, and manuscript, including the figure 

preparation.
• Corresponding author and maintainer.
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a b s t r a c t 

OmicInt is an R software package developed for a user-friendly and in-depth exploration of significantly changed 

genes, gene expression patterns, and the associated epigenetic features as well as the related miRNA environment. 

In addition, OmicInt offers single cell RNA-seq and proteomics data integration to elucidate specific expression 

profiles. To achieve this, OmicInt builds on a novel scoring function capturing expression and pathology associa- 

tions. The developed scoring function together with the implemented Gaussian mixture modelling pipline helps 

to explore genes and the linked interactome networks. The machine learning pipeline was designed to make the 

analyses straightforward for the non-experts so that researchers could take advantage of advanced analytics for 

their data evaluation. Additional functionalities, such as protein type and cellular location classification, provide 

useful assessments of the key interactors. The introduced package can aid in studying specific gene networks, 

understanding cellular perturbation events, and exploring interactions that might not be easily detectable other- 

wise. Thus, this robust set of bioinformatics tools can be very beneficial in drug discovery and target evaluation. 

OmicInt is designed to be freely accessible to involve a larger bioinformatics community and continuously improve 

the developed algorithmic methods. 
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. Introduction 

OmicInt is an R software package developed for an in-depth explo-

ation of significantly changed genes, gene expression patterns, and the

ssociated epigenetic features as well as the related miRNA environ-

ent. The package helps to assess gene clusters based on their known in-

eractors (proteome level) using several different resources, e.g., UniProt

nd STRING DB [1–3] . Moreover, OmicInt provides an easy Gaussian

ixture modelling [4–6] pipeline for an integrative analysis that can

e used by a non-expert to explore gene expression data. Specifically,

he package builds on a previously developed method to explore gene

etworks using significantly changed genes, their log-fold-change val-

es (LFC), and the predicted interactome complexity [5] . This approach

an aid in studying specific gene networks, understanding cellular per-

urbation events, and exploring interactions that might not be easily

etectable otherwise [5] . To this end, the package offers many different

tilities to help researchers quickly explore their data in a user-friendly

ay where machine learning is made easily accessible to non-experts

 Figs. 1 and 2 ). It is also important to highlight that the lack of freely

vailable tools to explore complex expressome data motivated the cre-

tion of this set of tools. For example, commercial solutions, such as

larivate analytics [7] , are almost inaccessible to individual users be-

ause of the very expensive software. Freely available tools, namely
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eneMANIA or Cytoscape platforms [8–11] , while very useful, do not

ermit machine learning applications or complex regulome integration.

hus, seeing the existing need for omics dedicated tools that could evolve

s more bioinformaticians get involved encouraged creating the OmicInt

ackage. 

Machine learning which offer effective methods to assess multi-

imensional biological data is also a very important part of the devel-

ped package. For the purpose of biological data evaluation, Gaussian

ixture models (GMMs) were selected as they employ a probability

ased classification where each data point assignment has a different

robability of belonging to one of the clusters [4–6] . The probabilistic

ature of GMM relies on the assumption that the data can be explained

y a finite mixture of Gaussian distributions with unknown parameters

4] . As a result, this is a soft classification method that is more suit-

ble to assess biological parameters in comparison to hard classification

echniques (e.g., k-means) [4–6] . This is because gene or protein inter-

ction networks are dynamic systems and probabilistic feature separa-

ion allows for more flexibility in defining boundaries between groups

5] . Moreover, the extracted probability values can be incorporated into

ther analytical pipelines to further refine the data. The developed GMM

ipeline automates the assessment of the information criterion to opti-

ise the number of clusters for modelling and also predicts the best

uited model for the expectation-maximisation (EM) algorithm which
ticle under the CC BY-NC-ND license 
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Fig. 1. Examples for the required data formats which include the normalised gene expression values, log fold change (LFC) values, and the meta data file. 

Fig. 2. Schematic representation of package functions and specific analyses. 
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elps to maximise the likelihood of data point assignments [ 4 , 12 ]. As a

esult, the users do not need to have an extensive knowledge to fine-tune

heir GMM parameters as the process is streamlined for them. 

The key analytical parameter in the machine learning pipeline and

xploratory analyses is a specific score, namely LFC score , which can have

 different derivation depending on the selected parameters Eqs. (1) –
2 

61
3) . The user has several options to select from since the equations

ere expanded with additional data based on the earlier derivation of

he multi- omics Eq. (5) . The score 𝛼 values are downloaded automati-

ally from curated database images which were generated via text min-

ng to retrieve, update, and integrate data in an easier-to-use format

i.e., database image) for the analyses. Databases used include Disgenet,
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niprot, and STRING DB [ 1 , 3 , 13 ]. For example, 𝛼asoc score allows to in-

er how strongly a gene is linked to a disease or pathological phenotype

anging from 0 (no link) to 1 (the strongest association) Eq. (1) [13] .

imilarly, 𝛼spec captures how specific a gene is when describing the

athology Eq. (2) [13] . Association scores are based on different curated

esources as described earlier [13] . The user can choose from different

ypes of scores ( “association_score ”, “specificity_score ”, or the geomet-

ic mean of both) when selecting the type of the equation for LFC score .

cores 𝛽cell and 𝛾prot are the scaled values for single cell and proteome

ata, respectively. That is, 𝛽cell has to be provided by the user if they

ave such experimental information integrated where a gene value from

 single cell data cluster is extracted using a pseudo-bulk differential

ene expression approach. The LFC scores from pseudo-bulk data need

o be scaled according to the Eq. (4 ). The same approach should be ap-

lied when calculating 𝛾prot for protein (corresponding gene) values.

F C score = LFC 

(
1 + αasoc + βcell + γprot 

)
(1)

FC score equation where LFC - Log Fold Change, base 2; 𝛼asoc - a disease

ssociation score; 𝛽cell - scaled single cell LFC; 𝛾prot - scaled proteome

FC. 

F C score = LFC 

(
1 + αspec + βcell + γprot 

)
(2)

FC score equation where LFC - Log Fold Change, base 2; 𝛼spec - a disease

pecificity score; 𝛽cell - scaled single cell LFC; 𝛾prot - scaled proteome

FC. 

F C score = LFC 

( 

1 + 

√ (
𝛼soc 𝛼spec 

)
+ βcell + γprot 

) 

(3)

FC score equation where LFC - Log Fold Change, base 2; 𝛼asoc and 𝛼spec 

re integrated using a geometric average score; 𝛽cell - scaled single cell

FC; 𝛾prot - scaled proteome LFC. 

F C scaled = LF C gene ∕ LF C median (4)

cell or 𝛾prot scaling example where LFC gene - a gene specific value and

FC median - a median value for all available LFC values per specific con-

ition and gene set. 

OmicInt provides many other valuable tools to map the interac-

ome using information on the target cellular location or protein

lass/function type. In addition, density functions allow for an exhaus-

ive assessment of gene distributions which may hint at potential func-

ions or dominant processes within a specific condition. Epigenetic fea-

ure (CpG islands, GC%) and miRNA exploration tools also provide ad-

itional information on the epigenome and non-coding regulome which

ight be relevant for some genes and conditions, especially if a higher

nrichment of these patterns can be found. Currently, the analyses are

nly available for human data sets. The software package is freely dis-

ributed via Github and CRAN repositories to make the analyses acces-

ible to researchers [ 14 , 15 ]. Github environment also provides oppor-

unities to submit requests or suggestions and participate in further al-

orithm development [14] . 

. Methods 

OmicInt package architecture ( Fig. 2 ) is divided into gene expression,

ene cluster/pattern, and epigenetic feature/regulatory network analy-

is with a detailed vignette to guide the user [ 14 , 15 ]. Machine learning

ipeline is based on Gaussian mixture models which is designed to in-

lude the optimal cluster number (Bayesian information criterion), auto-

atic model fitting during the expectation maximisation phase of clus-

ering, model-based hierarchical clustering, as well as density estimation

nd discriminant analysis [ 4 , 12 ]. The package enables advanced options

o perform a user-specified clustering to use the data in other workflows.

micInt also retrieves data from multiple databases by generating com-

ined and curated database images for easier use [ 1 , 3 , 13 ]. The pack-

ge was built using functional programming principles and the analyses

ere benchmarked using the following studies distributed via NCBI GEO

atabase [16] : GSE160145, GSE3585, GSE26887, and GSE116250. 
3 
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. Results 

.1. Data preprocessing 

Before starting the analysis the user must ensure that the supplied

ata is in the right format. There are several different options to prepare

 data frame (CSV format) that contains all the relevant experimental

nformation Fig. 1 ; Eqs. (1) –(4) . Depending on the selection, the down-

tream analyses will provide interactive graphs and maps ( Fig. 2 ). Con-

istent data preparation and integration allow for a stable processing

orkflow which enables an efficient organisation of data sets. 

Data pre-processing relies on the score_genes function that collects

ata from the STRING database and other disease association data sets

o scale and prepare additional score integration [ 3 , 13 ]. Several key pa-

ameters should be provided; the data parameter requires a data frame

ontaining gene names as row names and a column with LFC values.

he example is provided in Fig. 1 ; the parameter alpha ( 𝛼) has a default

alue set as “association ” which gives a score from 0 to 1 based on how

trongly a gene is associated with a pathological phenotype; other op-

ions are “specificity ” - to give values based on how specific a gene is

hen describing a disease and “geometric ” - to give a geometric mean

core of both association and specificity. The 𝛼 score is calculated au-

omatically for the genes in the data set. In addition, it is possible to

dd weighted single cell and proteomics data by selecting additional

arameters. The parameter beta is set to have a default value as FALSE;

f TRUE, the user needs to supply data with a column beta that contains

nformation on gene associations from single cell studies. Similarly, pa-

ameter gamma has a default value FALSE; if TRUE, the user is required

o supply data with a column gamma that contains information on gene

ssociations from proteome studies. The function returns a data frame

or the downstream analyses. 

.2. Exploratory analyses 

Function density_plot plots a density plot for gene expression data

repared by the score_genes function. The plots can be used for a quick

ssessment and summarisation of the overall parameters ( Fig. 3 ). Specif-

cally, the plots allow the evaluation of how key parameters, such as LFC,

FC score , and disease association or specificity scores, associate with the

ighest frequency protein classes and cellular locations. For example,

he most frequent protein classes may have specific distribution patterns

inting at predominant cellular processes. Similarly, examining distri-

utions for cellular locations might highlight the most involved and/or

ffected cellular strictures. 
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Fig. 3. Density plot examples for different parameters. 
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Function feature_distribution also provides a way to visualise main

eature distributions through density plots combined with LFC score and

nteractor number scatter plots ( Fig. 4 ). These plots allow to quickly

ssess if there are any dependencies between LFC score and the interactor

umbers. Such plots also help to see if any obvious gene clusters emerge.

n early analyses this can aid in understanding whether the expression

s dependent on any cellular site or protein class which could suggest a

pecific functional enrichment. This function might issue a warning if

he data points were missing or too few for density plotting; however,

t does not affect the overall visualisation. 

Function plot_3D_distribution allows to explore 3D distributions be-

ween the number of interactors, LFC score , and p.adj values. In addition

o providing a data parameter, the user can select how to color data

oints depending on the association or specificity score (e.g., selecting

specificity ”) ( Fig. 5 ). This analysis can help identify specific clusters
4 

63
or the expression patterns and interactors based on the significance of

ow the gene expression changed in a given condition. In addition, data

oint coloring based on gene association or specificity in the context of

iseases can help capture additional patterns in the data. 

Function class_summary provides analysis on main protein classes

here a barplot helps to visualise the class distribution. Similarly, the

unction location_summary summarises the location distribution data

 Fig. 6 ). Assessing this information can highlight if there are any spe-

ific biases in data for target location or function which might indicate

nderlying cellular perturbations or changes in the function. 
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Fig. 4. Feature distribution plot examples. 

Fig. 5. Interactive 3D feature distribution. 
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Function location_map allows the visualisation of how the highest and

owest LFC score genes cluster based on the protein cellular location data

 Fig. 7 ). The user can specify the number of the top and lowest genes to

onsider. The function returns a dendogram generated based on LFC score 

alues. The “euclidean ” method is used for distance calculation and the

Ward.D2 ” method - for hclust generation. Gene labels are colored to

ndicate major clusters where the hclust generated cluster number is

oubled to select for more subgroups. In addition, to achieve a finer sep-

ration of lower dendogram branches the following equation is used to

et the height for the color differentiation of different branches Eq. (5) .
5 

64
his equation takes the mean value for hclust function height calcula-

ion and multiplies by the dendrogram cluster number scaled twice. The

lot also provides cellular location visualisation for each gene ( Fig. 7 ).

 dendogram = 

(
hclus t height ∕hclus t n 

)
⋅ dendogra m clust er _ number ⋅ 2 (5)

The height calculation for the color differentiation of different den-

ogram branches. 
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Fig. 6. Location and class summary plots; NA – no classification available. 

Fig. 7. Dendogram with mapped cellular locations where coloured gene symbols represent the identified clusters and coloured branches show smaller subclusters. 

(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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Similarly, the function class_map provides a visualisation of how the

ighest and lowest LFC score genes cluster based on protein class. In addi-

ion to a data frame generated by score_genes , the function also requires

 num parameter to specify the number of genes to consider from the

op upregulated and downregulated genes, if this option is not selected

ll genes will be used ( Fig. 8 ). 

HK_genes function provides a convenient overview of the house-

eeping genes and allows to check if these genes varied through-

ut conditions. Depending on the number of conditions separate

lots will be generated ( Fig. 9 ). Inspecting housekeeping genes can

elp understand if there was any significant variation between sam-

le groups which might have arisen from biological or technical

ariation. 

.3. Gene cluster and expression pattern analyses 

Function cluster_genes helps to select an optimal number of clusters

nd a model to be fitted during the EM phase of clustering for GMM. The

unction provides summaries and helps to visualise gene clusters based

n generated data using score_genes function. Weighted gene expression
6 
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s clustered based on the interactome complexity, i.e., the number of

nown interactors according to the STRING database [3] , with a cut-

ff of 700 for the score threshold. The threshold is set automatically to

ontrol for the reliability of the interactions [ 2 , 3 ]. The function also pro-

ides scatter and dimension reduction plots to analyse the clusters and

eatures in the data ( Fig. 10 ). Required parameters include a data frame

ontaining a processed expression file from score_genes with LFC score and

 max_range number for cluster exploration during the model selection

the default value is 20 clusters). The clusters parameter can be provided

or the number of clusters to test when the cluster number estimation

s not based on the best BIC output (the user then also needs to supply

odelNames ). This option allows users to perform GMM for a specific

umber of clusters. The modelNames parameter can only be supplied

hen the clusters value is also specified. This option will model the data

ased on the user parameters for the cluster assignment ( Fig. 10 ) which

an be helpful if a different number of clusters helps to explain the data

etter. The function not only provides a summarised modelling output

nd plots but also returns a data frame with assigned clusters which can

e used by more advanced users in other machine learning pipelines

r data comparison studies. For example, gene set clustering based on

he interactome size provides insights on the emerging patterns for gene

xpression changes and the size of the involved network. Selecting spe-

ific genes can help build signalling networks based on the identified

eed points. Feature distribution analysis also helps to assess the emerg-

ng trends in the data based on the variability. That is, gene variation

atterns in the experiment might indicate functionally related groups

hich could be used to reconstruct relevant pathways ( Fig. 10 ). The

ser is advised to set seed before using the function to get reproducible

esults. 
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Function cluster_links provides the same Gaussian mixture modeling

ipeline as cluster_genes ; however, instead of the interactor number clus-

ering, the user can select a specific disease score type (the default selec-

ion is “association ”). This parameter can define either the association

r specificity for a disease, i.e., if the gene has known links to disease
ig. 8. Dendogram with mapped protein functions where coloured gene symbols rep

For interpretation of the references to color in this figure legend, the reader is referr

7 
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henotypes and how specific it is when describing a pathology. The func-

ion also provides scatter and dimension reduction plots to analyse the

lusters and features in the data. An additional output is a model report

ummarising the cluster assignments which can be used in other mod-

lling analyses. This information can be used to compare association

nd network size influences for different clusters and gene expression

atterns. 

Function pattern_search explores the occurrences of specific patterns

n gene sets. That is, it searches each condition for emerging patterns

e.g., if multiple conditions are provided) to group genes that changed

n a similar manner ( Figs. 11 and 12 ). The search algorithm works by

rst generating potential patterns to search depending on the number of

ubclasses. For example, if a condition has several subclasses as in the

ase example, where Condition 1 has healthy, hypertensive, and chronic

idney disease (CKD) groups, then potential pattern scenarios are gen-

rated, e.g., “up-up-up ” or “down-up-down ”. Following this, the overall

xpression for each gene is calculated using geometric mean across all

onditions, this gives a basal line against which an individual gene ex-

ression value is weighed to deduce if it is in a ‘up’ or ‘down’ state. Com-

aring against a baseline is a more universal approach than performing

 pair wise comparisons which may not be effective for multiple sub-

lasses or complex interactions. In addition, averaging expression using

 geometric mean method provides a baseline for comparisons taking

nto account all the extreme values which might result either from bio-

ogical or technical effects. It is important to note that taking a geometric

ean might not be optimal in all cases, but in a balanced experiment

t should provide additional information for the downstream analyses.

he function returns a summary of how many genes are identified for

ach pattern type across conditions. 
resent the identified clusters and coloured branches show smaller subclusters. 

ed to the web version of this article.) 



A. Kanapeckaite Artificial Intelligence in the Life Sciences 1 (2021) 100025 

Fig. 9. An example of the housekeeping gene distribution. The red marker indicates the mean for the group and violin plots allow to assess global distribution 

patterns. CKD – chronic kidney disease patient group, healthy – healthy population group, and hypertension – hypertensive patient group. (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 10. GMM analysis examples showing the Bayesian information criterion (BIC) evaluation and model type prediction, clustering analysis, as well as the dimension 

reduction analysis based on the intrinsic variability within the data. 

8 

67



A. Kanapeckaite Artificial Intelligence in the Life Sciences 1 (2021) 100025 

Fig. 11. Gene distribution patterns for a specific expression pattern subset where mean values (signified with a red point) are connected to highlight the pattern 

features with respect to the mean value (the example is from a “down-up-down ” pattern group). CKD – chronic kidney disease patient group, healthy – healthy 

population group, and hypertension – hypertensive patient group. (For interpretation of the references to color in this figure legend, the reader is referred to the web 

version of this article.) 

Fig. 12. Individual gene distributions when selecting a specific expression pattern and range (the example is from a “down-up-down ” pattern group). CKD – chronic 

kidney disease patient group, healthy – healthy population group, and hypertension – hypertensive patient group. 
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Fig. 13. Cluster heatmap examples where known interactors are connected via 

the red squares. (For interpretation of the references to color in this figure leg- 

end, the reader is referred to the web version of this article.) 
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The returned gene list contains groups of genes for the different types

f patterns. A pattern of interest can be selected to further explore the

enes that changed their expression in a specific manner. 

This analysis can be followed by pattern_plots which allows to ex-

lore distributions for a selected pattern group. The user must pro-

ide a subsetted data frame and low/high parameters to select a spe-

ific range. The selection is needed because in some instances the

xpression values might differ significantly and visualising all data

oints will prevent exploring any meaningful subsets. The outputs al-

ow to evaluate how genes distribute in a subset for different conditions

 Fig. 11 ) and how individual gene values vary in a selected subgroup

 Fig. 12 ). 

Function cluster_heatmap uses the information mined from the

TRING database [3] to map experimental, referenced, and inferred in-

eractions to see if there are any interactors in the set of significantly

hanged genes. This heatmap function provides a clustered visualisa-

ion of all the genes that have shared interactions ( Fig. 13 ). This infor-

ation allows to quickly assess how many genes in a specific condition

hat changed significantly might be part of the same regulatory cluster.

uch data can help select specific targets depending on the therapeutic

trategy. 

Function interactor_map helps to visualise the information mined

rom the STRING database [3] and map direct and referenced interac-

ions to see if there are any interactors in the set of significantly changed

enes and how they are linked. This visual network is an alternative for

 heatmap with additional information on the functional gene features

 Fig. 14 ). 
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.4. Epigenomics data integration and analysis 

Function CpG_summary provides information on the gene CpG island

nd GC content. The function checks genes against known CpG islands

nd provides various plots to assess emerging data features. CpG islands

ere retrieved from the data available with the Genome Reference Con-

ortium (Human Build 38) [17] , this information was cross-referenced

ith the Ensembl database [18] to retrieve overlaps between CpG is-

ands and genes. The function provides a number of analytical plots to

ssess whether the CpG profile (via GC %) has any influence on the

ene expression, interactor number, disease specificity, and disease as-

ociations ( Figs. 15 and 16 ). All this information is provided in the con-

ext of the assigned protein classes/functional groups. This analysis of-

ers additional insights into the complex interplay between the genome,

ranscriptome, and epigenome [19] . In addition, the function outputs a

ata table that contains genomic locations and gene information based

n the Ensembl database [18] so that the user can perform additional

nalyses. 

Function miRNA_summary_validated allows to check how many of

he differentially expressed genes have known miRNAs ( Figs. 17 and

8 ). The information on validated/known miRNAs is collected from

ining multiple databases, namely miRecords , TarBase , miRTarBase ,

henomiR , miR2Disease , Pharmaco-miR . The function also returns a

ata table with miRNA information that can be used for designing RNA

nterference experiments. 

http://c1.accurascience.com/miRecords/
https://carolina.imis.athena-innovation.gr/diana_tools/web/index.php?r=tarbasev8\0452Findex
https://mirtarbase.cuhk.edu.cn/~miRTarBase/miRTarBase_2022/php/index.php
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2847718/
https://pubmed.ncbi.nlm.nih.gov/18927107/
http://www.pharmaco-mir.org/
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Function miRNA_summary_predicted is similar to the earlier func-

ion; however, it allows to check how many of the differentially ex-

ressed genes have predicted miRNAs. The information is collected from

ining multiple databases that use algorithms to infer likely miRNAs.

he databases include miRTarBase , PITA , PicTar , miRecords , miRanda ,

IANA-microT , miRDB , TarBase , TargetScan , MicroCosm , and ElMMo .

he function also returns a data table with miRNA information that can

e used in designing RNA interference experiments. 

Fig. 14. Intera
11 
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Function miRNA_network allows to examine if a gene set has shared

egulatory miRNAs ( Fig. 19 ).This function could be especially useful as

t could help exploring the non-coding layer of the regulatory network.

his information can aid in studying how some genes are controlled by

everal miRNAs and detect additional links between genes that changed

xpression. Moreover, using miRNA analyses can be applied in design-

ng RNA interference studies to select the most optimal interference se-

uences. miRNA content information can be access through the func-

ion’s output. 

. Discussion 

OmicInt package provides a unique combination of functions and

ools for researchers to explore gene expression data sets. A special focus

f the package is also making machine learning, specifically Gaussian

ixture models [4–6] , more accessible to the researchers that do not

ave a background in the ML/AI field. In addition, the lack of tools for

he exploration of the complex expressome data highlighted the need for

uch a set of bioinformatics tools. For example, commercial solutions,

uch as Clarivate analytics [7] , are very expensive and cannot be easily

sed by individual researchers. Freely available tools, namely GeneMA-

IA or Cytoscape platforms [ 9–11 , 20 ], do not permit machine learning

pplications or complex regulome integration. As a result, the OmicInt

ackage was developed for advanced and user-friendly omics analyses. 

https://mirtarbase.cuhk.edu.cn/~miRTarBase/miRTarBase_2022/php/index.php
https://genie.weizmann.ac.il/pubs/mir07/mir07_prediction.html
https://pictar.mdc-berlin.de/
http://c1.accurascience.com/miRecords/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5187787/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3692048/
http://mirdb.org/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1370898/
http://www.targetscan.org/vert_72/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3293225/
https://academic.oup.com/nar/article/44/1/24/2499630
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Fig. 15. CpG summary examples where the GC% content distribution is shown for different protein classes. 

Fig. 16. CpG summary examples where GC% profiles are shown for different genes and their corresponding protein classes. Summary density plots and histograms 

are also shown for different parameters. 
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Fig. 17. Validated miRNA summary examples where distribution profiles are shown for different genes and their corresponding protein classes. Summary density 

plots and histograms are also shown for different parameters. 

Fig. 18. Validated miRNA summary examples where miRNA content distribution is shown for different protein classes. 
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Fig. 19. miRNA network plot example where genes and miRNAs are mapped using a heatmap so that shared links are highlighted in red. (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version of this article.) 
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The developed scoring functions and GMM pipeline enables exhaus-

ive analysis of the expressome and the associated interactome com-

lexity. The automated processing takes care of the machine learning

odel optimisation making this analysis easily adaptable to individual

esearcher’s needs. The implementation of probabilistic modelling cre-

tes opportunities for new insights based on gene expression changes,

isease associations, and the size of the network for a specific gene. Ex-

racting this information can establish relevant seed points to recreate

omplex signalling pathways or use this data to select genes that should

e subjected to downstream in vitro studies ensuring that a diverse se-

ection is made. 

In addition, advanced functions for epigenomics analysis permit the

xploration of the epigenetic regulatory layer. This might be very helpful

hen identifying genes that may depend on epigentic regulation [19] .

pecifically, if a CpG island containing gene changed expression during

reatment or disease progression, it might suggest that there is an epige-

etic component controlling the expression levels. Similarly, exploring

 gene’s miRNA network could hint at other interacting genes which

ight not have been picked up by the differential expression analysis

r help prepare for RNA interference studies. Moreover, miRNA interac-

ome analysis provides the first in-depth look into what genes are con-

rolled by the same set of miRNAs. 

Additional functionalities of the package create an analytical envi-

onment to summarise gene functional classes or infer what cellular

ompartments are typically associated with the gene/protein. Such as-

essments in the context of expression changes or disease association can

ighlight emerging patterns in specific cellular states under the investi-

ation. A specially designed function to extract gene pattern profiles can

id in a further refinement of causal gene networks when considering a

pecific phenotype or a condition. 

Thus, OmicInt offers a comprehensive, evolving, and adaptable plat-

orm for gene expression analysis in the context of the transcriptome,

roteome, and epigenome. The analyses are made freely available to all

esearchers where further contributions and algorithmic development

re also made possible. 
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Experimental chapter

Integrative omics approaches for new target identification and therapeutics 

development  

4. Fi-score: a novel approach to characterise protein topology and aid in 
drug discovery studies 

The experimental chapter is based on the following publication 

Kanapeckaitė A, Beaurivage C, Hancock M, Verschueren E. Fi-score: a novel approach to 
characterise protein topology and aid in drug discovery studies. Journal of Biomolecular Structure 
and Dynamics. 2020 Dec 7:1-1; doi: 10.1080/07391102.2020.1854859; PMID: 33297860. 

Conclusion of this chapter 

This chapter introduces a new method that I developed helping to characterise proteins prior to in 
silico screening by evaluating potentially dynamically active regions or predicting sites that share 
similar qualities in the side chain distribution and movement. Incorporating the Fi-score with other 
physicochemical parameters, such as hydrophobicity, could greatly improve detecting multiple 
functionally relevant sites within a target or capturing similar profiles across different proteins. The 
detected sites could be subjected to docking studies. Moreover, my developed analytical pipeline 
helped to show that using machine learning approaches expands the analytical scope by extracting 
and defining structural elements or motifs of various proteins. Thus, Fi-score focused analysis can 
aid in primary target selection studies and also advance drug or biologics formulation methods by 
evaluating potential binding sites or interaction surfaces. This innovative biophysical analysis 
method could significantly improve target selection, pre-screening analysis and speed up biologics 
engineering. 

Contribution to this chapter (95%) 

• Derived the scoring equation and machine learning pipeline.
• Performed all the analytical, data mining, and experimental work as well as formulated 

conclusions.
• Performed benchmarking and comparative analyses.
• Conceptualised and wrote the manuscript, including the figure preparation.
• Corresponding author.
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Fi-score: a novel approach to characterise protein topology and aid in drug
discovery studies

Aust _e Kanapeckait _ea , Claudia Beaurivageb,c, Matthew Hancocka and Erik Verschuerena

aGalapagos NV, Mechelen, Belgium; bGalapagos BV, Leiden, The Netherlands; cDepartment of Biomedical Science, Faculty of Science,
University of Sheffield, Sheffield, UK

Communicated by Ramaswamy H. Sarma

ABSTRACT
Target evaluation is at the centre of rational drug design and biologics development. In order to suc-
cessfully engineer antibodies, T-cell receptors or small molecules it is necessary to identify and charac-
terise potential binding or contact sites on therapeutically relevant target proteins. Currently, there are
numerous challenges in achieving a better docking precision as well as characterising relevant sites.
We devised a first-of-its-kind in silico protein fingerprinting approach based on the dihedral angle and
B-factor distribution to probe binding sites and sites of structural importance. Our derived Fi-score can
be used to classify protein regions or individual structural subsets of interest and the described scor-
ing system could be integrated into other discovery pipelines, such as protein classification databases,
or applied to investigate new targets. We further demonstrated how our method can be integrated
into machine learning Gaussian mixture models to predict different structural elements. Fi-score, in
combination with other biophysical analytical methods depending on the research goals, could help
to classify and systematically analyse not only targets but also drug candidates that bind to specific
sites. The described methodology could greatly improve pre-screening stage, target selection and
drug repurposing efforts in finding other matching targets.

HIGHLIGHTS

! Description and derivation of a first-of-its-kind in silico protein fingerprinting method using B-factors
and dihedral angles.

! Derived Fi-score allows to characterise the whole protein or selected regions of interest.
! Demonstration how machine learning using Gaussian mixture models on Fi-scores captures and
allows to predict functional protein topology elements.

! Fi-score is a novel method to help evaluate therapeutic targets and engineer effective biologics.

Abbreviations: AIC: Akaike information criterion; BIC: Bayesian information criterion; HTS: high-
throughput screening; PLI: target protein–ligand interactions

ARTICLE HISTORY
Received 24 August 2020
Accepted 17 November 2020
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information; protein site
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Introduction

The identification of lead compounds showing pharmaco-
logical promise is the focal point of early-stage drug discov-
ery. While large libraries of compounds against a
therapeutically relevant target are subjected to high-through-
put screening (HTS) to select new lead compounds, this
method becomes more and more supplemented or preceded
by in silico HTS within the pharmaceutical industry. This shift
in the paradigm can be attributed to the high costs and
time-consuming nature of the design and completion of HTS
screens (Dias & de Azevedo, 2008). In contrast, early stage in
silico screening offers not only a better understanding of
relevant biological topology, potential active sites but also
allows a progressive optimisation of the pharmacological
properties and potency of selected compounds. Yet, structur-
ally complex sites or sites with a wide dynamic range pose a

challenge; especially, when selecting between a family of tar-
gets or targets with similar topology (Gangadharan
et al., 2017).

While the human genome contains approximately 25,000
genes, only about 10% of the expressed proteins are amen-
able to small-molecule modulation and less than a half of
that subset has therapeutic potential. In addition, the devel-
opment of therapeutic compounds have a very low success
rate as less than 2% of lead compounds succeed to get to
the market (Dias & de Azevedo, 2008; Gangadharan et al.,
2017; Knapp, 2016; Santos et al., 2017).The picture gets even
more complicated for immunotherapeutics development as
lead compounds can have potentially far reaching side
effects and the identification and validation of disease-spe-
cific targets is also complicated by the fact that numerous
proteins can undergo significant conformational changes

CONTACT Aust _e Kanapeckait _e austekan@gmail.com Galapagos NV, Zernikedreef 16, 2333CL, Mechelen, Belgium
Supplemental data for this article can be accessed online at https://doi.org/10.1080/07391102.2020.1854859.
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throughout their immune cycle (Gangadharan et al., 2017;
Knapp, 2016). Consequently, we theorise that having the
means to compare multiple regions of interest within the tar-
get prior to the screening would be extremely beneficial. For
example, if a reference set of binding sites that are known to
bind compounds can be classified based on their topology
and physicochemical properties, this information could be
used to compare and evaluate new sites of interest for the
compound binding after these new sites are scored on the
same parameters. That is, such scoring could be easily inte-
grated into a relational database of protein targets in a dis-
covery pipeline. Moreover, in some instances a binding site
might be conserved and it could be useful to compare pro-
tein regions of interest between multiple homologous pro-
teins using a scoring method that could give insights into
the conformation and not just the amino acid composition.
Another example could be characterising a protein site with
a score that has known binders and comparing it to a score
of a new target which has no known binding compounds.
This could be especially helpful in drug repurposing because
protein sites of similar characteristics would potentially allow
to infer drug binding in a new site based on already
explored one. The compound could then be docked in silico
or subjected to in vitro studies and if the investigational
pipeline has multiple new targets such a pre-screening strat-
egy could help to prioritise. Thus, we believe that establish-
ing an effective methodology to classify sites of interest
could be extremely beneficial in terms of the screening cost
reduction and faster turnaround.

Most currently marketed small-molecule drugs are devel-
oped to target protein–ligand interactions (PLI) (Fuller et al.,
2009) and this information is primarily provided by the crys-
tallographic analysis. Crystallographic structure analysis has
revealed that PLI sites are hydrophobic pockets concave in
shape with more complex topological features than those
found on protein surfaces, but they can also be relatively flat
and large (Buckle et al., 1996; Fauman et al., 2011; Fuller
et al., 2009; Mann & Hermans, 2000; P!erot et al., 2010). As a
result, computational analysis to probe potential binding
sites of proteins exploits these features to evaluate energet-
ics, cavity geometry and physicochemical properties of a
potential binding pocket. However, there are additional chal-
lenges as the selected sites might be topologically con-
strained and because of growing computational costs
broader conformational changes may not be incorporated
into the binding grid analysis. Furthermore, there is not one
universal algorithm developed that could be suitable for all
scenarios; therefore, we aimed to combine multiple levels of
analysis, capturing B-factor values and the dihedral angle
structure to establish a comparative measure of physico-
chemical characteristics of a protein of interest that could be
used to analyse a single motif, expanded to a site or the
whole protein (Siglioccolo et al., 2010). We here describe a
method to derive a score for a site of interest which could
be visualised via distribution plots, 3D region visualisation or
integrated into machine learning to derive probability dens-
ity distributions based on physicochemical properties; all of

these applications of a site score could be used to infer char-
acteristics of a region under investigation.

Protein dihedral angles contain information on the local
protein conformation in such a way that a protein backbone
conformation can be highly accurately rebuilt based on the
native dihedral angles. Extracting this information can facili-
tate in narrowing down the conformational space, which in
turn can be superimposed on specific physicochemical prop-
erties of the region of interest (De Juan et al., 2013; Faraggi
et al., 2009; Heffernan, 2015; Schlessinger & Rost, 2005).
While Ramachandran basin allows a holistic description of
conformation, this approach lacks statistical description with
a focus on the torsion angle distributions of specific
sequence and thus, in consideration of the circular nature of
angles, traditional parametric or non-parametric density esti-
mation methods cannot work properly to approximate
Ramachandran distributions; this is also supported by the
findings of the current study. As a result, all of this calls for a
more unified approach in analysing local protein regions and
extracting the high information content from dihedral angle
distribution. By extension, capturing sequence information
content can facilitate current efforts to build improved pre-
dictive models for dihedral angle and protein three-dimen-
sional structure determination as well as target evaluation
for drug screens (Faraggi et al., 2009; Heffernan, 2015). To
achieve this additional parameter, the oscillation amplitudes
of the atoms around their equilibrium positions (B-factors) in
the crystal structures were used; this relationship is described
in the first equation.

B ¼ 8ðp2Þu2 (1)

Equation (1): B-factor evaluation, where oscillation ampli-
tude is u.

While B-factors are used in the atomic form factor calcula-
tion to measure scattering amplitude (Eq. (2)), B-factors have
a much more complex influence on atoms and the overall
structure because of their dependence on conformational
disorder, dynamic alterations of the sequence seen via the
changes in the positional dispersion of B-factors (Fauman
et al., 2011; Tang et al., 2019).

f ¼ fo % exp&
B % sin 2h

k2

! "
(2)

Equation (2): Scattering amplitude evaluation, where B is
the B-factor, fo is the atomic form factor, and k is the X-
ray wavelength.

In addition, B-factors provide means to gain insight into
many aspects of molecular dynamics, such as thermal motion
paths, protein superimposition and predict the rotameric
state of amino acids side-chains (Carugo, 2018; Carugo &
Argos, 1999; Carugo & Eisenhaber, 1997; Weiss, 2007). B-fac-
tors were shown to be related to protein packing and
depend on the three-dimensional structure (Heffernan, 2015;
Parthasarathy & Murthy, 1997; Vihinen 1987; Weiss, 2007; Yin
et al., 2011) and there are numerous other studies investigat-
ing protein flexibility through B-factors (Bornot et al., 2011;
Liu et al., 2014; Parthasarathy & Murthy, 1997; Vihinen et al.,
1994). Moreover, B-factors allow the capture of differences
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between crystal packing sites and biologically relevant pro-
tein-protein interaction sites (Liu et al., 2014). It becomes
apparent that B-factors carry a lot of information on both
local and distant protein topologies and by incorporating B-
factor estimates we include additional information on the
local mobility of a Ca atom. This leads to our derived equa-
tion (Eq. (4)) that provides a fingerprint score or Fi-score
through the cumulative sum of standard deviation normal-
ised dihedral angles and scaled B-factors divided by the
amino acid residue number of a selected region of interest.
The fingerprint value captures physicochemical qualities of a
region of interest dependent on conformation; moreover, by
normalising and scaling we can effectively compare regions
of different targets.

Bi&norm ¼ Bi&minðBÞ
maxðBÞ &minðBÞ

(3)

Equation (3): Min-max normalisation and scaling of B-fac-
tor where Bi-norm is scaled B-factor, Bi is the B-factor for Ca,
Bmax is the largest B-factor value for the total protein B-fac-
tors for all Ca, Bmin is the smallest B-factor value for the
total protein B-factors for all Ca. B-factor normalisation is
based on the full length protein.

Fiscore ¼
1
N

X

i

/iwi

r/i
rwi

Bi&norm (4)

Equation (4): Fi-score evaluation where N is the total num-
ber of atoms for which dihedral angle information is avail-
able, u and w values represent dihedral angles for an Ca
atom, ru and rw represent corresponding standard devia-
tions for the torsion angles and Bi-norm is a normalised B-
factor value for the Ca atom. B-factor, ru and rw normalisa-
tion are based on the full length protein.

The described methodology could be of great pharma-
ceutical interest to identify families of targets that are
affected by drug treatment and to characterise binding sites
after mutational studies. For example, when a signalling pro-
tein family contains known drug targets, fingerprinting can
define additional druggable family members without relying
on the sequence similarity alone but actually measuring
physicochemical parameters (Brazhnik et al., 2002). That is,
Fi-score can be employed to capture a region of interest in a
single value form and the generated scores of multiple such
sites could be clustered to enrich based on the similarity
between profiles. This could be useful in building relational
databases since it is still difficult to capture protein region or
domain information in a meaningful and concise way.
Moreover, Fi-score visualisation can also aid to accurately
evaluate the score distribution of different regions along the
protein sequence. For example, domain alignment algorithms
rely on the direct amino acid sequence, while dihedral angles
and B-factors capture both local and distal information as
their distribution is dependent not only on the immediate
sequence but also on the stearic hindrances as well as the
conformation of other protein regions. As a result, Fi-score
could be applied in machine learning to cluster Fi-scores so
that dynamically similar sites can be grouped and evaluated
prior to computationally expensive in silico HTS.

In summary, we aimed to devise an equation to capture
selected protein site properties that could be used to evalu-
ate structural motifs. This can be achieved either focusing on
individual amino acids and inspecting Fi-score distributions
or selecting a region of interest to generate a single value to
classify sites.

Methods

Protein set selection and analysis

A total of 3352 proteins structures were downloaded directly
from RCSB Protein Data Bank (RCSB PDB, n.d.) by first select-
ing proteins based on their features using Pfam 32.0 (Pfam,
n.d.) and Structural Classification of Proteins (SCOP) data-
bases (SCOP, n.d.) (Table 1, Supplementary material). This
diverse set of randomly selected proteins was used for com-
parative studies of secondary structure elements (50,043 in
total) (Figure 1, supplementary material). We then proceeded
to select the representative examples (Table 1, PDB IDs in
bold) which were analysed using protein BLAST (BLAST: Basic
Local Alignment Search Tool, n.d.) to find good candidates
to form protein pairs that showed a varying degree of simi-
larity (Table 1, PDB IDs not highlighted). From this initial
pool, candidate proteins were selected maintaining diversity
of resolution and R-factor. All paired proteins were subjected
to local alignment to identify regions with as much diversity
as possible in their identity and similarity scores. These
regions were extracted and sequences were globally aligned
to get the final score on the identity, similarity and gaps
since only that region of interest will be used for Fi-scoring.
The alignment and testing was performed with the following
tools and parameters MSA (MUSCLE algorithm, default
parameters; UGENE software version 1.32 (Okonechnikov
et al., 2012), pairwise alignment (Smith-Waterman algorithm-
Water (EMBOSS), matrix: BLOSSUM62; gap opening: 10; gap
extension: 0.5) , global pairwise alignment (Needleman-
Wunsch algorithm- Needle (EMBOSS), matrix: BLOSSUM62;
gap opening: 10; gap extension: 0.5) (EMBOSS programs,
EMBL-EBI, n.d.) and Protein-Blast/PSI-Blast analyses using
default settings were employed to assess the sequences
(BLAST: Basic Local Alignment Search Tool, n.d.).

Protein dihedral angle analysis and site scoring

Protein dihedral angles were analysed using R package:
Bio3D (Grant et al., 2006) with specific modifications to allow
dihedral angle retrieval, fingerprint calculation and visualisa-
tion (R studio, version 1.1.463) (RStudio, n.d.). Additional
functionalities were introduced to better capture dihedral
angle and B-factor distribution. Hydrophobicity scoring for a
selected site was calculated based on Kyte-Doolittle scale (R
package: Peptides) (Osorio et al., 2015). We selected Kyte-
Doolittle scale since it is a widely used hydrophobicity scale
and has been previously successfully employed in various
algorithms predicting protein secondary structure elements
and their distribution (Kyte & Doolittle, 1982; Zhao &
London, 2006).
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Protein visualisation and structural analysis

PyMOL (Molecular Graphics System, Version 2.0 Schr€odinger,
LLC) (Delano, 2002) was used for protein visualisation and
superimposition studies (RMSD calculations) as well as struc-
tural analysis integrating python code for robust parsing.

Protein feature capture

Gaussian mixture models (GMMs) (with the following param-
eters: max_iter ¼ 1000, covariance_type¼‘full’ or ‘spherical’,
tol ¼ 0.001, random_state ¼ 0) were implemented to cluster
Fi-score profiled protein sequences. Model selection and
evaluation was performed using probabilistic statistical meas-
ures that are used to quantify the model performance. We
opted for Akaike information criterion (AIC) (Vrieze, 2012)
and the Bayesian information criterion (BIC) (Vrieze, 2012)
since AIC provides an estimate of in-sample error prediction
and information loss, while BIC helps to evaluate for poten-
tial overfitting using the likelihood function to estimate the
number of parameters. The number of components for clus-
tering and correction of the over-fitting was established
using AIC and BIC where the smallest difference between
YAIC and YBIC information criterion values was used to
determine a component number (usually spanning the inflec-
tion point of both curves). Python Scikit-Learn GMM (scikit-
learn 0.22.2) (scikit-learn, n.d.) was used for the above analy-
ses where Gaussian mixture and expectation-maximisation
algorithms where defined by Eqs. (5)–(7) to estimate the
density and distribution of Fi-scores for amino acids.

pðXnÞ ¼
XK

k¼1

pðXnjZÞpðZÞ ¼
XK

k¼1

pkNðXnjlk ,RkÞ (5)

Equation (5): Equation defining a Gaussian Mixture; where
Rk-covariance for the Gaussian, K is the number of clusters
of the dataset, lk-cluster centre, pk-mixing probability, z - a
latent variable defining a probability that data point comes
from the Gaussian.

Qðh', hÞ ¼ E ln pðX, Zjh'Þ
# $

¼
X

z

pðZjX , hÞ ln pðX , Zjh'Þ (6)

Equation (6): Expectation step defining the equation
where the current value of the parameters h' is used to find
the posterior distribution of the latent variables given by
P(ZjX,h').

h' ¼ arg maxhQðh', hÞ (7)

Equation (7): Maximisation step defining the equation to
find the expectation under the posterior distribution of the
latent variables with a new estimate for the parameters.

Results

Fi-score derivation

We developed a method allowing to capture the side chain as
well as the mean atomic displacement distribution in a single
fingerprint score or ‘Fi-score’. Fi-score equation through the
use of standard deviation normalised dihedral angle values
and scaled B-factor using min-max method allows to

Table 1. Characterisation and scoring of different target protein regions.

Protein name
Protein
PDB ID Chain

Amino
acid number Fi-score

Hydrophobicity
score Alignment scores RSMD DFi-score

Human GABA-A receptor,
subunit beta-2

6D6U A 209–300 0.04467536 0.7630435 Identity: 58/96 (60.4%)
Similarity: 75/96 (78.1%)
Gaps: 4/96 (4.2%)

1.148 0.07702

Human glycine receptor
alpha-3

5CFB A 211–306 &0.03234241 0.8642857

Interleukin-1 beta
mutant F146Y

1TWM A 5–100 &0.2749203 &0.5885417 Identity: 15/109 (13.8%)
Similarity: 27/109
(24.8%)
Gaps: 57/109 (52.3%)

11.407 0.58062

Therapeutical antibody
fragment of canakinumab

4G5Z H 151–215 &0.8555358 &0.08

Therapeutical antibody
fragment of canakinumab

4G5Z H 12–214 &0.574754 &0.1655172 Identity: 64/210 (30.5%)
Similarity: 95/210
(45.2%)
Gaps: 22/210 (10.5%)

2.535 0.21784

Therapeutical antibody
fragment of canakinumab

4G5Z L 13–207 &0.7925909 &0.4451282

Catalytic antibody 21H3
with hapten

1UM4 L 103–212 &0.4737261 &0.5027273 Identity: 109/110 (99.1%)
Similarity: 109/110
(100.0%)
Gaps: 0/110 (0.0%)

0.416 0.5890659

Therapeutical antibody
fragment of canakinumab

4G5Z L 101–210 &1.062792 &0.5027273

Heat shock protein 90-HSP90 2QF6 A 20–220 &0.1866865 &0.2333333 Identity: 207/207
(100.0%)
Similarity: 207/207
(100.0%)
Gaps: 0/207 (0.0%)

0.023 0.04451
Heat shock protein 90-HSP90 2QF6 B 20–220 &0.2311956 &0.2333333

p53 Tetramers, conserved DNA
binding site

2AC0 A 249–262 &0.434457 0.3285714 Identity: 5/14 (35.7%)
Similarity: 7/14 (50.0%)
Gaps: 0/14 (0.0%)

0.679 0.3655604

HDM2 in complex with a beta-
hairpin, SWIB/
MDM2 domain

2AXI A 29–42 &0.0688966 0.1857143

Src homology 2 (SH2) domain 4EIH A 239–261 &0.1131818 0.2391304 Identity: 6/23 (26.1%)
Similarity: 13/23 (56.5%)
Gaps: 1/23 (4.3%)

0.212 0.0608529
Rad18 ubiquitin ligase RING

domain structure
2Y43 A 66–87 &0.0523289 &0.4409091

'DFi-score—an absolute value of the difference in Fi-scores; PDB IDs in bold—proteins selected initially for screen that were matched to another protein in the
pair based on different similarity and identity values.
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effectively compare the resulting score across different targets
or sites. We looked into how conformational criteria can be
extracted from the backbone torsion angles (w,u) that follow a
very specific local geometry to avoid steric clashes (Figure 2,
Supplementary material); this led us to adopt a standard devi-
ation normalisation for the observed torsional angles. While
several different normalisation approaches exist for dihedral
angles (Shen et al., 2018; Tosatto & Battistutta, 2007), the
mathematical techniques directly depend on the parameter
incorporation into further equations which, in our case,
needed to be formulated in a way to preserve Ramachandran
plot directionality based on positive and negative value so
that multiplication operation allowed to predict either
b-sheet/strand type of conformation (negative) or a-helix
(positive) for the most predominant secondary structure ele-
ments (Figures 1 and 2, Supplementary material). When the
cumulative score is calculated the ultimate value can indicate
the predominance of the said structures and in rarer situations
a less dominant conformations, such as a left-handed a-helix.
Similarly, B-factor values needed to be scaled since values may
be on different scales owing to dissimilar refinement proce-
dures (Figures 3 and 4, Supplementary material) (Carugo,
2018; Carugo & Argos, 1998; Parthasarathy & Murthy, 1997;
Yuan et al., 2003); we applied scaling specifically to take that
into account where scale normalised values of B-factors
ranged from 0 to 1 allowing them to be conceptually inte-
grated into the fingerprint score equation (Figure 3, supple-
mentary material). Finally, dividing the cumulative sum by the
number of residues we can measure an average value for the
region or Fi-score.

Protein characterisation and Fi-score
performance testing

A diverse set of 3352 randomly selected proteins was used for
the comparative studies (Figure 1 and Table 1, supplementary

material) which allowed us to contrast varied regions of target
proteins based on their Fi-score values. After seeing that Fi-
score differentiated between different structural motifs of
50,043 element test set (Figure 1, supplementary material), we
further probed Fi-score, normalised B-factor as well as dihedral
angle distributions and sequence alignment data of selected
proteins (Figure 1, Table 1; Figure 3, supplementary material).
In addition, the selected region was scored for hydrophobicity
and a RMSD value was identified for two target sequences.
Target sequences that share higher similarity have closer Fi-
score values which also correspond to a more similar distribu-
tion profile (Figure 2), for example, a sequence from human
GABA-A receptor, subunit beta-2 (PDB ID: 6D6U) sharing 78.1%
similarity with human glycine receptor alpha-3 (PDB ID: 5CFB)
differ by 0.07702 in their Fi-scores. When compared to a case
of 100% similarity as is for the chain A and B of human heat
shock protein 90, DFi-score value drops to 0.04451. However,
the sequence similarity alone does not play a defining role as
illustrated by catalytic antibody 21H3 with hapten (PDB ID:
1UM4) and therapeutical antibody fragment of canakinumab
light chains (PDB ID: 4G5Z) that although share 100%
sequence similarity have almost a half of Fi-score difference
between them; this is because the Fi-score captures the 3D
distribution of the amino acids, side chain orientation and the
predicted atom movements. The slight shifts in the amino acid
and their side change orientation (Figure 1) will have a notice-
able effect on the Fi-score. Moreover, protein regions that
have large structural differences as showcased by the interleu-
kin-1 beta mutant F146Y (PDB ID: 1TWM) and therapeutical
antibody fragment of canakinumab (PDB ID: 4G5Z) will have
large corresponding differences between the Fi-score and
RMSD values (RMSD ¼ 11.407Å) (Table 1). In many cases
smaller DFi-score values will mean that protein regions have
similar structural and physicochemical profiles but in more
ambiguous cases hydrophobicity analysis should be included
as it indirectly captures the nature of amino acid composition

Figure 1. Superimposition of representative examples of human protein regions listed in Table 1 where PDB ID and colour is specified next to the structure.
Images rendered with PyMol.
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in the selected region as illustrated by the representative cases
(Table 1). This information can be especially useful as it allows
to compare protein regions of similar mobility or amino acid
composition that have a matching structural profile, for
example, the conserved DNA binding site of p53 (PDB ID:
2AC0) is quite similar to a region of SWIB/MDM2 domain (PDB
ID: 2AXI) and a similar profile can be seen for the heavy and
light chains of therapeutic antibody fragment of canakinumab
(PDB ID: 4G5Z) (Figure 1, Table 1). These examples illustrate
that depending on the 3D organisation of a region of interest,
conservative substitutions of amino acids, dihedral angle and
B-factor values will have an impact on the individual Fi-score
values for amino acids and the overall cumulative score. There
are many studies that support these findings as it has been
established that B-factors can be used to identify flexibility in
proteins and can also be linked to hydrophilicity as well as
absolute net charge (Kuczera et al., 1990; Liu et al., 2014;
Radivojac et al., 2004; Schlessinger & Rost, 2005; Vihinen et al.,
1994). B-factors can also aid in identifying biologically active
small molecules for a site of interest (Bornot et al., 2011; Li
et al., 2017; Liu et al., 2014; Smith et al., 2003).

Another important criterion is the region size selected for
the analysis since the Fi-score encapsulates conformational
information and does not rely on sequence values alone

(where sequence influence arises in a form of dihedral angle
and B- factor distribution) (Pang, 2016; Radivojac et al., 2004;
Weiss, 2007; Yang et al., 2016; Yuan et al., 2003).

Selected window size for the analysis will have an effect
on what information is contained within the Fi-score. A
smaller window size of approximately 20–50 amino acids can
reflect the profile of an average motif in a protein (Figure 2);
however, larger window sizes averaging 100 or more amino
acids reveal the averaged physicochemical information of
that larger window size (Figure 1). This is especially evident
when looking at individual Fi-score values per amino acid
(Figure 2) where the Fi-score distribution captures different
protein regions not easily recognised by looking at the dihe-
dral angle or B- factor distribution alone (Figure 2; Figures 2
and 3, supplementary material).

Verification of Fi-score’s ability to capture structural
topology features

These observations prompted us to investigate a varied set
of proteins with various structural elements ranging from
b-sheets/strands to a-helices as well as mixed or disordered
regions (Table 2, Figure 3). By narrowing down to a unique
structural motif we can capture not only its physicochemical

Figure 2. Dihedral angle and Fi-score distribution, respectively left and right panels, where u dihedral angle is represented in red and w—blue. Blue region delin-
eates the protein section that was used to calculate Fi-score and in Table 1, supplementary material. Right panels of the corresponding protein structure are colour
coded in arbitrary increments of 50 amino acids. 3D molecule images rendered with PyMol and tables created with R/RStudio.
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properties but also reliably categorise it to either a-helix or
b-sheets/strands -like structures. However, structures that are
a mixture of several components, e.g. PDB ID: 6S34 (Table 2),
might have opposite sign values or values closer to 0 for Fi-
scores because some less predominant structures of a-helices
and b-sheets occupy negative and positive basins,
respectively.

The higher absolute Fi-score value, the more flexible the
region is likely to be, for example, the outer a-helix of DNA-
binding domain of p53 (chain A, PDB ID: 6RZ34; Table 2, col-
our - red) might appear untethered and relatively flexible;
however, based on the low absolute Fi-score value and a fur-
ther inspection on the inter-chain H-bond formation (Figure

4, supplementary material), this structure is accurately pre-
dicted to be of a limited dynamic range. Other a-helices
complexes within the chain B of the inhibitor of apoptosis-
stimulating protein of p53 (iASPP; chain B, PDB ID: 6RZ34;
Table 2) are of varying flexibility because they are at the con-
tact point between two chains, specifically: a shorter a-helix
(chain B) is less constrained by the polar contacts and inter-
action surface than the other participating elements of this
contact site. Similar patterns can be observed in a-helices
and their complexes of annexin A2 (PDB ID: 1W7B, Table 2,
Figure 3) where flexibility and the Fi-score value depends on
the conformation. In the case of b-strands and b-sheets,
these secondary structure elements have the same trend of

Figure 3. Representative protein structural motifs and regions from Table 2 are colour coded for specific amino acids. 3D molecule images rendered with PyMol.

Table 2. Structural motif and domain physicochemical characterisation for selected protein structural elements and motifs.

Protein PDB ID Description Amino acid number Fi-score Hydrophobicity score

6S34 a-helix with disordered linker 2–19 &0.1727632 0.3277778
6S34 Iregular C-end a-helix 11–17 0.6483593 &0.7
6RZ3, A Single outer a-helix of cellular tumour antigen p53 278–290 0.06747168 &2.646154
6RZ3, B Outer a-helix surrounded by smaller helices and

unstructured regions of the carboxyl-terminal conserved
region of inhibitor of apoptosis-stimulating protein of
p53 (iASPP)

741–752 0.1493196 0.175

6RZ3, B Four a-helices with long stretches of disordered linkers of
the carboxyl-terminal conserved region of inhibitor of
apoptosis-stimulating protein of p53 (iASPP)

661–715 &0.02906267 0.4854545

1W7B Contorted a-helix joining two separate a-helices 154–176 &0.4146927 &0.1521739
1W7B Contorted a-helix joining three separate a-helices 238–276 0.02634468 &0.4
1W7B Single outer a-helix 187–200 0.0995633 &1.264286
1W7B Single region of left handed a-helix like structure 89–93 &1.233356 0.72
1DEE, G Protein A ImG binding domain, a-helical motif, chain G 1810–1852 0.122619 &0.7627907
1QCF Antiparallel b-strands 183–207 &0.8710873 &1.108
1QCF Antiparallel b-strands 266–296 &0.2612031 &0.4129032
1A0S, R b-barrel, with three random coil motifs 76–476 &0.3455974 &0.4897756
1A0S, R Three antiparallel b-sheets; outer pore region 351–401 &0.3455974 &0.4960784
1A0S, R Three antiparallel b-sheets connected via a-helix; inner

pore region
91–146 &0.2178924 &0.5375

8TIM TIM barrel 11–241 &0.04860643 &0.1311688
8TIM TIM barrel motif of two b-sheets and a-helix 6–41 &0.1594032 &0.09166667
1DEE, E ImG Fab b-sheet, chain E 2006–2076 &0.6376855 &0.2239437
1DEE, A ImG Fab b-sheet, chain A 6–76 &0.2326242 &0.2239437
6RZ3, B A single stretch of b-sheet strand 806–811 &1.700738 &1.016667
6RZ3, B Disordered region of a protein 764–781 &0.7002029 &0.5944444
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higher flexibility associated with higher Fi-score values
(iASPP; PDB ID: 6RZ34, chain B; Table 2, Figure 3). More com-
pact sites have minimal space of side chain and motif move-
ment as can be seen in triose phosphate isomerase (PDB ID:
8TIM, chain A; Table 2, Figure 3). Finally, disordered regions
or regions that combine several secondary structure ele-
ments might have a sign value depending on the dominat-
ing structural sub-motif. All of the above findings are
supported by earlier studies showing that B-factors can act
as indicators of the relative vibrational motion of atoms
where low values belong to a well-ordered site, and the
highest values come from the most flexible regions (Li et al.,
2017; Obradovic et al., 2003; Pang, 2016; Siglioccolo et al.,
2010; Tang et al., 2019; Yuan et al., 2003).

Fi-score classification to capture and predict topological
features using machine learning

Based on the findings that the Fi-score captures and allows
to differentiate among varied protein regions, we wanted to
check if applying clustering would allow us to categorise Fi-
score values as we have already observed clear distribution
patterns (Figure 1). However, some protein regions might be
in transition states and thus, have similar or overlapping Fi-
score values and in order to address that we selected
Gaussian mixture models (GMM) (Dubey, 2004; Mann &
Hermans, 2000; Parthasarathy & Murthy, 1997; Zhang et al.,
2017). GMM is often categorised as a clustering algorithm,
but it has much broader implications functioning as a dens-
ity estimator. Since fundamentally GMM is a generative

probabilistic model, this algorithm was chosen to describe
the distribution of the Fi-scores.

The covariance type for the fits of the majority of studied
cases was left to be modelled as an ellipse of an arbitrary
orientation for each cluster and the optimal number of com-
ponents for a given dataset was determined using AIC and
BIC approaches to avoid overfitting. Fi-score clustering
revealed that GMM allows not only to capture different sec-
ondary structure elements (Figure 4) but at the same time
group them into physicohemically similar units based on the
dihedral angle determined side chain orientation and B-fac-
tor predicted amino acid oscillations amplitude. In the case
study of catalytic antibody 21H3 with hapten (PDB ID: 1UM4,
chains H and L; Figure 4; Figure 6, supplementary material)
we can see that the Fi-score evaluation and clustering suc-
cessfully determined complementarity determining region
b-turns and different b-strands in the immunoglobulin fold.
The heavy and light chain contact sites are also captured
through different chain topology and relevant atomic move-
ment. Another case study of triose phosphate isomerase
(PDB ID: 8TIM) demonstrated how a Fi-score based method
allows to differentiate secondary structure elements of a-heli-
ces and loops at the C-terminal ends of the b-barrel which
are known to be involved in catalytic activity (Reardon &
Farber, 1995). Similarly, N-terminal loops performing a stabil-
ising function were also distinguished from the surrounding
structural elements. This ubiquitous enzyme fold can be fur-
ther resolved into different motifs of interchanging a-helices
and b-strands forming the structure’s core (Figure 4).

As illustrated, Fi-score centered analysis can be a powerful
tool to gain insight into structural topology of a target of
interest. Furthermore, by including density estimation

Figure 4. Representative proteins and their fi-score clustering based on density estimation GMM where colours of the clusters as well as density lines match struc-
tural element colours of a protein on the right. 3D molecule images rendered with PyMol and tables created with R/RStudio.

8 A. KANAPECKAITĖ ET AL.

82

https://doi.org/10.1080/07391102.2020.1854859


contours we can predict the changes of a protein region if,
for example, the structure is not in a crystal but in a solution
(Bryn Fenwick et al., 2014; Powers et al., 1993). This method
could also be expanded to estimate effects of mutations and
what changes in the Fi-score value are the most optimal.
Finally, drug screening studies can benefit from classifying
target sites and cross-referencing with known binders which
could reduce off-target effects as well as allow to address
and better understand cases of unspecific binding or
dynamic instability.

Discussion

In silico target evaluation and compound screening have
become a focal point in drug discovery studies
(Gangadharan et al., 2017); this paradigm shift from in vitro
to computational setting during early stages of pilot studies
represents a need to establish reliable approaches in select-
ing targets and evaluating pharmacological intervention
strategies. The druggability of a protein of interest can be
defined as the likelihood that the target will be amendable
to functional modulation by a compound. This concept can
be also extended to biologics and new therapeutic modal-
ities where the main therapeutic requirement is that there is
an active binding spot to be engaged by the said modulator
(Dias & de Azevedo, 2008; Huang & Dixit, 2016). Thus, our
research aim was to devise an effective way to capture struc-
tural and physicochemical features and use that to not only
investigate sites of interest but also to classify the protein
features providing a scalable way to compare proteins under
investigation.

Protein conformation determination and capturing of the
physicochemical properties remain one of the most import-
ant topics in drug discovery (Huang & Dixit, 2016; Yang
et al., 2016). That is, defining protein regions that share simi-
lar dynamic range is a significant challenge and in order to
address that we developed a method to capture the side
chain as well as mean atomic displacement distribution to
provide a value that can aid in comparing and characterising
regions of interest which we call a fingerprint score or ‘Fi-
score’. We showed that the Fi-score can capture both local
and distal information via dihedral angle and B-factor distri-
bution which allows us to evaluate potential physicochemical
properties and also extract information on structural motifs
(Figures 1–3; Tables 1 and 2; Table 1, supplementary mater-
ial). Numerous past reports (Hartmann et al., 1982; Kuczera
et al., 1990; Liu et al., 2014; Radivojac et al., 2004;
Schlessinger & Rost, 2005; Vihinen et al., 1994) have already
established that B-factors can be employed to define protein
region hydrophobicity, flexibility or can even be used for
small molecule search against a target site (Bornot et al.,
2011; Li et al., 2017; Liu et al., 2014; Smith et al., 2003); simi-
larly, dihedral angles (De Juan et al., 2013; Faraggi et al.,
2009; Heffernan, 2015; Schlessinger & Rost, 2005) are used
for protein structure modelling and interaction predictions.
However, despite these insights, to our knowledge, there
have been no attempts to capture this information in a uni-
fied way. As a result, we, for the first time, demonstrate that

the information of both, B-factors and dihedral angles, can
be successfully combined in a single equation.

One of the main challenges of successful therapeutics
development is the establishment of the binding site profile
that could be compared to other sites in a target or other
proteins with similar features (Dias & de Azevedo, 2008;
Fauman et al., 2011; Fuller et al., 2009; Gangadharan et al.,
2017; Hartmann et al., 1982; Knapp, 2016; Li et al., 2017;
P!erot et al., 2010; Santos et al., 2017). This is especially
important when trying to minimise off-target effects or
designing high-throughput virtual screenings with multiple
hot spots in proteins (Bryn Fenwick et al., 2014; Powers
et al., 1993). Our described method provides a solution by
allowing to inspect the differences in dihedral angle and B-
factor distributions as well as score individual motifs and
compare them across all sites of interest. As illustrated, the
Fi-score can provide valuable insights into structural profiles
across different target groups (Figures 2–4). By applying
machine learning approaches we can get density estimation
contours which can then be used to predict the changes in
a specific protein region (Figure 4).

The described methodology could aid in the identification
of target families that are affected by drug treatment since
fingerprinting does not rely on the scanning of sequence
similarity but actually measures physicochemical properties
of the binding site. Fi-score visualisation provides a way to
capture amino acid interactions over a selected span of a
protein sequence and the clustering of Fi-scores can reveal
dynamically similar sites.

This strategy can become especially relevant in the future
as the pharmaceutical industry is shifting toward more com-
plex targets and protein complexes and this requires a sys-
temic approach that could be easily applied to many
different proteins and would not rely on just the sequence
information but would also take into account multidimen-
sional distributions (Brazhnik et al., 2002; Huang &
Dixit, 2016).

All of this could help reduce costs and the time needed
in computationally expensive screenings by helping to priori-
tise targets, their sites as well as estimate potential off-target
effects. In addition, topological feature based evaluation
could allow to predict compound action by juxtaposing simi-
lar sites based on the Fi-score when one site has known
interactors and the other does not. Finally, our work sets the
ground for protein feature scoring that could be used in a
relational way across multiple targets and we aim with our
future research to deliver a robust R package so that a scien-
tific user could quickly test their Fi-score for a
selected target.

Conclusion

We provide a new method to characterise proteins prior to
in silico screening by evaluating potentially dynamically
active regions or predicting sites that share similar qualities
in the side chain distribution and movement. Incorporating
the Fi-score with other physicochemical parameters, such as
hydrophobicity, could greatly improve detecting valuable

JOURNAL OF BIOMOLECULAR STRUCTURE AND DYNAMICS 9

83

https://doi.org/10.1080/07391102.2020.1854859
https://doi.org/10.1080/07391102.2020.1854859


multiple sites within a target or capturing similar profiles
across different targets which in turn could be subjected to
docking studies. Moreover, we showed that by using
machine learning approaches we can expand the analysis of
multiple targets by extracting and defining structural ele-
ments and motifs of various proteins. Fi-score focused ana-
lysis can aid in not only primary target selection studies but
also advance drug or biologics formulation methods by eval-
uating potential binding sites or interaction surfaces. In sum-
mary, this innovative biophysical analysis method could
significantly improve target selection, pre-screening analysis
and speed-up biologics engineering.
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Experimental chapter

Integrative omics approaches for new target identification and therapeutics 

development  

5. Fiscore package: effective protein structural data visualisation and 
exploration 

The experimental chapter is based on the published software package and publication in 
preparation 

1. Kanapeckaitė A. Fiscore: Effective Protein Structural Data Visualisation and Exploration. 
CRAN. 2021 Sep. 02. Version 0.1.3; https://cran.r-project.org/web/packages/Fiscore/index.html 

2. Kanapeckaitė A. Fiscore: effective protein structural data visualisation and exploration. 
Accepted and in preparation. 

Conclusion of this chapter 

My goal when developing the Fiscore package was to allow a user-friendly exploration of PDB 
structural data and the integration of that information into various machine learning methods. The 
package was benchmarked through several analytical stages that involved a diverse set of proteins 
(3352) to assess scoring principles and package functionalities (1337 structures). With a number of 
helpful functions, including distribution analyses or hydrophobicity assessment in the context of 
structural elements, Fiscore enables the exploration of new target families and comprehensive data 
integration since the described fingerprinting captures protein sequence and physicochemical 
properties. Such analyses could be very helpful when exploring therapeutically relevant proteins. 
Similarly, Fiscore could aid in drug repurposing studies when a chemical compound needs to be 
juxtaposed to a number of potential targets. This was also demonstrated during a native ligand 
search for the Nur77 protein. Thus, the Fiscore package provides an extensive analytical 
environment where in-depth analyses are streamlined for non-experts.

Contribution to this chapter (100%) 

• Methodology development, equation and scoring function derivation, as well as machine learning 
pipeline implementation.

• Developed new programmatic features expanding various structural analyses.
• Performed software package development and testing.
• Conceptualised and wrote the documentation files and vignettes, including the figure preparation.
• Conceptualised and wrote the manuscript, including the figure preparation.
• Corresponding author and maintainer.
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Fiscore package: Effective protein structural data visualisation and 

exploration 

Auste Kanapeckaite 
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. Introduction 

Fiscore R package was developed to quickly take advantage of protein

opology/conformational feature assessment and perform various anal-

ses allowing a seamless integration into relational databases as well as

achine learning pipelines [1] . The package builds on protein structure

nd topology studies which led to the derivation of the Fi-score equa-

ion capturing protein dihedral angle and B-factor influence on amino

cid residues (Eqs. (1) and (2)) [1] . The introduced tools can be very

eneficial in rational therapeutics development where successful engi-

eering of biologics, such as antibodies, relies on the characterisation

f potential binding or contact sites on target proteins [1,2] . Moreover,

ranslating structural data into scores can help with target classification,

arget-ligand information storage, screening studies, or integration into

achine learning pipelines [1,2] . As a result, Fi-score, a first-of-its-kind

n silico protein fingerprinting approach, created a premise for the devel-

pment of a specialised and freely distributed R package to assist with

rotein studies and new therapeutics development [1] . 

Fiscore package allows capturing dihedral angle and B-factor effects

n protein topology and conformation. Since these physicochemical

haracteristics could help with the identification or characterisation of a

inding pocket or any other therapeutically relevant site, it is important

o extract and combine data from structural files to allow such informa-

ion integration [1,3,4] . Protein dihedral angles were selected as they

ontain information on the local and global protein structural features

here protein backbone conformation can be highly accurately recre-

ted based on the associated dihedral angles [1,4] . Furthermore, since

amachandran plot, which provides a visualisation for dihedral angle

istributions, namely 𝜙 (phi) and 𝜓 (psi), allows only a holistic descrip-

ion of conformation and cannot be integrated with traditional para-
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etric or non-parametric density estimation methods, a specific trans-

ormation was required to use this data. An additional parameter, specif-

cally the oscillation amplitudes of the atoms around their equilibrium

ositions (B-factors) in the crystal structures, was also used. B-factors

ncompass a lot of information on the overall biomolecule structure;

or example, these parameters depend on conformational disorder, ther-

al motion paths, and the rotameric state of amino acids side-chains.

-factors also show dependence on the three-dimensional structure as

ell as protein flexibility [1,4] . Normalised dihedral angles (standard

eviation scaling to account for variability and distribution) and scaled

-factors (min-max scaling) (Eq. (1)) were integrated into the Fi-score

quation (Eq. (2)). It is important to highlight that B-factors need to be

caled so that different structural files can be compared and that the di-

edral angle normalisation transforms angular data into adjusted values

ased on the overall variability [1] . Thus, combining dihedral angle and

-factor values into a single parameter provides a way to extract infor-

ation on individual residues, residue clusters, motifs, and structural

eatures. This information can be efficiently transferred into machine

earning to detect data characteristics not easily identifiable otherwise. 

𝐵 𝑖 − 𝑛𝑜𝑟𝑚 = 

𝐵 𝑖 − 𝐵 min 
𝐵 max − 𝐵 min 

Equation 1 . Min-max normalisation and scaling of B-factors where

 𝑖 − 𝑛𝑜𝑟𝑚 is a scaled B-factor, 𝐵 𝑖 - B-factor for a selected 𝐶 𝛼 atom in a chain,

max - the largest B-factor value for all 𝐶 𝛼 B-factors in a protein, Bmin

 the smallest B-factor value for all 𝐶 𝛼 B-factors in a protein. B-factor

ormalisation is based on the full length protein. 

𝐹 𝑖 𝑠𝑐𝑜𝑟𝑒 = 

1 
𝑁 

∑
𝑖 

𝜙𝑖 𝜓 𝑖 

𝜎𝜙𝑖 
𝜎𝜓 𝑖 

𝐵 𝑖 − 𝑛𝑜𝑟𝑚 

Equation 2 . Fi-score evaluation where N is the total number of atoms

or which dihedral angle information is available, 𝜙 and 𝜓 values rep-

esent dihedral angles for a specific 𝐶 𝛼 atom, 𝜎𝜙 and 𝜎𝜓 represent cor-
ticle under the CC BY-NC-ND license 
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esponding standard deviations for the torsion angles and 𝐵 𝑖 − 𝑛𝑜𝑟𝑚 is a

ormalised B- factor value for the 𝐶 𝛼 atom. B-factor, 𝜎𝜙𝑖 and 𝜎𝜓 𝑖 nor-

alisation is based on the full length protein. 

In order to identify meaningful clusters based on the structural com-

lexity, Gaussian mixture models (GMM) were selected as a primary

achine learning classifier [1] . The strength of GMM lies in the proba-

ilistic model nature since all data points are assumed to be derived from

 mixture of a finite number of Gaussian distributions with unknown

arameters [1,5] . Consequently, the soft classification of GMM where

 data point has a probability of belonging to a cluster is much more

uitable to assess biological parameters compared to other hard classifi-

ation techniques in machine learning, such as k-means, which provide

nly a strict separation between classes. GMM pipeline offers a number

f benefits to categorise protein structural features and the information

an be used to explore amino acid grouping based on their physico-

hemical parameters. The designed GMM implementation takes care of

he information criterion assessment to fine tune the number of clusters

or modelling and predicts the best suited model for the expectation-

aximisation (EM) algorithm to maximise the likelihood of data point

ssignments [1,5] . As a result, protein residues can be grouped based on

heir Fi-scores where this information can be used to identify emerging

atterns in the protein conformation or topology. 

Nur77 protein was used as a case example to demonstrate various

ackage functionalities. Nuclear receptor subfamily 4 group A member

 (NR4A1), also known as Nur77/TR3/NGFIB, is a member of the nu-

lear receptor superfamily and regulates the expression of multiple tar-

et genes [6] . This nuclear receptor is classified as an orphan receptor

ince there are no known endogenous ligands. Nur77 has the typical

tructure of a nuclear receptor which consists of N-terminal, DNA bind-

ng, and ligand-binding domains. This regulatory protein plays many po-

entially therapeutically relevant roles regulating cell proliferation and

poptosis [6] . Consequently, the Nur77 protein is an excellent example

o highlight how in-depth structural analysis and classification could be

sed in better understanding protein functions and finding druggable

inding sites or identifying ligands. 

Based on the need to develop integratable and specialised tools for

rotein analyses, the Fiscore package was developed to assist with a

ide spectrum of research questions ranging from exploratory analy-

es to therapeutic target assessment ( Fig. 1 ). The introduced set of new

ools provides an interactive exploration of targets with an easy integra-

ion into downstream analyses. Importantly, the package and associated

ools are written to be easy to use and freely available facilitating anal-

ses for non-specialists in structural biology or machine learning. 

. Methods 

Fiscore package architecture is divided into exploratory and ad-

anced functions ( Fig. 1 ). Several key packages, such as ggplot2 [7] ,

io3D [8] , plotly [9] , and mclust [10] , are also employed to create an

asy-to-use analytical environment where a user-friendly machine learn-

ng pipeline of GMM [1] allows for a robust structural analysis. GMM

mplementation is designed to include the optimal cluster number eval-

ation (Bayesian information criterion; BIC), automatic model fitting

n the EM phase of clustering, model-based hierarchical clustering, den-

ity estimation, as well as discriminant analysis [1,11] . Researchers also

ave an option to perform advanced exploratory studies or integrate the

ackage into their development pipelines. Fiscore also takes care of raw

ata pre-processing and evaluation with optional settings to adjust how

he analyses are performed. The package was built using functional pro-

ramming principles with several R S3 methods to create objects for PDB

les [12] . Fiscore is accompanied by documentation and vignette files

o help the users with their analyses [11] . Since PDB files are typically

arge, the documentation provides a compressed testing environment

s well as a detailed tutorial. Additional visualisations were generated

ith PyMol [13] . Proteins were retrieved from the Protein Data Bank

atabase [14] . Protein sequence alignments were performed with PSI-
2 
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LAST using default parameters and a single iteration [15] . Hydropho-

icity plots for Nur77 functional analysis were generated with the fol-

owing parameters: window = 15,weight = 25, model = “exponential ”.

tudent’s t -test (two-sided, unpaired, sig. level = 95%) was performed in

he R programming environment. 

. Results 

.1. Data preparation 

The workflow begins with the PDB file pre-processing and prepara-

ion. The user should also generally assess if the structure is suitable for

he analysis; that is, the crystallographic data provides a good resolution

nd there are no or a minimal number of breakages within the reported

tructure. Function PDB_process takes a PDB file name which can be

xpressed as 6KZ5.pdb or path/to/the/file/6KZ5.pdb. One of the func-

ion’s dependencies is package Bio3D [8] , this useful package provides

everal tools to begin any PDB file analysis. In addition, the PDB_process

unction can take a path parameter which can point to a directory where

o split PDB files into separate chain files (necessary for the downstream

nalysis). If this option is left empty, a folder in the working directory

ill be created automatically. If the user splits multiple PDB files in a

oop, they will be continuously added to the same folder. After the pro-

essing, the function PDB_process returns a list of split chain names. It is

mportant to highlight that PDB files need to be split for the downstream

rocessing so that separate chains can be analysed independently. 

After a file or files are pre-processed the function PDB_prepare can be

sed to prepare a PDB file to generate Fi-score and normalised B-factor

alues as well as secondary structure designations. The function takes

 PDB file name that was split into separate chains, e.g., 6KZ5_A.pdb,

here a letter designates a split chain. The file is then cleaned and

nly the complete entries for amino acids are kept for the analysis, i.e.,

mino acids from the terminal residues that do not contain both dihe-

ral angles are removed. The function returns a data frame with pro-

ein secondary structure information ‘ Type ’, Fi-score values per residue

 Fi_score ’, as well as normalised B-factor values for each amino acid 𝐶 𝛼
 B_normalised ’ ( Fig. 2 ). Extracting protein secondary structure informa-

ion, i.e., ‘ Type ’, helps to prepare a data object so that the information

bout a target can be supplied into cheminformatics or other bioinfor-

atics pipelines where structural features are important to assess pro-

ein sites and amino acid composition. These features are new and ex-

end structural file exploration possibilities compared to, for example,

ther software packages, such as Bio3D [8] . 

Function calls are simple and user-friendly: 

#General function for pre-processing raw PDB files 

pdb_df < -PDB_process(pdb_path) 

#Cleaning and preparation of PDB file 

pdb_df < -PDB_prepare(pdb_path) 

#Explore the output 

head(pdb_df) 

#The package allows to call test data directly

for the Nur77 example file 

pdb_path < - system.file( “extdata ”, “6kz5.pdb ”, package = “Fiscore ”) 

.2. Exploratory analyses 

The scope of the exploratory analyses provides options to evaluate

hysicochemical parameters, such as dihedral angles, B-factors, or hy-

rophobicity scores, and visualise their distribution ( Fig. 1 ). 
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Fig. 1. Schematic visualisation of the package features. 

Fig. 2. PDB file processing output. 
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Basic analyses are accessed through simple function calls to ex-

lore how dihedral angles and B-factors are distributed. These anal-

ses offer interactive and easy visualisations of key parameters that

re currently not offered in any other package. For example, while

io3D [8] has many useful functionalities for the exploration of PDB

les, ‘ Fi_score ’ extends exploratory analyses by allowing a simplified

nd in-depth look into the key physicochemical parameters, such as B-

actor value visualisation or generation of Ramachandran plots. Simi-

arly, other freely available tools (distributed as an online service), such

s Expasy ProtScale [16,17] , provide only one dimensional assessment

ithout incorporating structural features and do not process PDB files.

 Fi_score ’, however, combines sequence, structural, and physicochemical

nalyses in simple function calls to quickly explore the user data. 
3 
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#Calling a Ramachandran plot function 

phi_psi_plot(pdb_df) 

#Visualisation of dihedral angle juxtaposed distributions 

phi_psi_bar_plot(pdb_df) 

#B plot value visualisation 

B_plot_normalised(pdb_df) 

#Interactive plot to map amino acids via 2D distribution 
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Fig. 3. Hydrophobicity plot with secondary structure superimposition. 
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Fig. 4. Nur77 protein where magenta highlights are used to define a likely dis- 

ordered region between 50 and 70 amino acids and the cyan color indicates a 

region between 127 and 140 amino acids. 

r  

s  

d  

n  

1  

i  
#to precisely see what parameters an individual amino acid has 

phi_psi_interactive(pdb_df) 

#3D visualisation of dihedral angles and B-factor values 

phi_psi_3D(pdb_df) 

An especially useful functionality is the hydrophobicity visualisation

ith the superimposed secondary structure elements. To the author’s

nowledge, there are currently no tools implementing such a visuali-

ation ( Fig. 3 ). In contrast to Expasy ProtScale [16,17] , it is possible

o visualise hydrophobicity values and their corresponding secondary

tructure elements as extracted from the PDB file. Such an assessment

rovides a direct way to compare structural features based on their affin-

ty to water. This can be very helpful in evaluating or predicting poten-

ial binding sites as well as bioengineering new proteins. 

The package provides an easy to use wrapper: 

#Alternatively an exponential model can be selected 

hydrophobicity_plot(pdb_df,window = 9,weight = 25,model = ’’ex-

onential’’) 

The nuclear receptor was assessed to provide a case example for the

ntroduced hydrophobicity analysis. The evaluation revealed an overall

ynamic profile for the protein. Moreover, Nur77 evidently contains a

1  

4 

90
elatively large number of right-handed alpha helices with the majority

howing a hydrophobic profile, i.e., the larger the score, the more hy-

rophobic the region. Some likely disordered regions can be seen span-

ing 50–70 amino acids ( Fig. 4 ). Another interesting region is around

26–136 amino acids since these amino acids undergo significant shifts

n their hydrophilicity and hydrophobicity. Similarly, the region around

80–210 amino acids appears to be actively changing preferences from
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Fig. 5. Fi-score distribution for Nur77. 

Fig. 6. Gaussian mixture modelling output show- 

ing Bayesian information criterion evaluation. 
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i  
ittle solvent to being solvent exposed. This might suggest that the site

ndergoes considerable movements or actively engages other proteins

r the DNA sequence. The disordered elements in this sequence stretch

lso imply that the region has to likely accommodate various rearrange-

ents. Thus, studying these sites could provide hints at functionally im-

ortant protein domains or subdomains ( Figs. 3 and 4 ). Finally, evalu-
5 

91
ting N and C terminal sites for the purpose of protein engineering, we

an see that a histidine tag would not significantly disrupt the confor-

ation of the molecule and the C-terminus is probably the best site for

he tag. 

It is worth commenting on the derivation of the hydrophobicity scor-

ng since the algorithmic nature of the process provides several impor-
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Fig. 7. Output table for Gaussian mixture modelling evaluation. 
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ant analytical angles. The function builds on the Kyte-Doolittle hy-

rophobicity scale [1,18] to detect hydrophobic regions in proteins.

egions with a positive value are hydrophobic and those with neg-

tive values are hydrophilic. This scale can be used to identify both

urface-exposed as well as transmembrane regions, depending on the
Fig. 8. The Nur77 protein cluster identificat

6 
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indow size used. However, to make comparisons easier, the original

cale is transformed from 0 to 1 (similar scaling is also implemented

n Expasy ProtScale [16,17] ). The function requires a PDB data frame

enerated by PDB_prepare and the user needs to specify a window pa-

ameter to determine the size of the window for hydrophobicity cal-

ulations. The selection must be any odd number between 3 and 21

ith the default being 21. Another parameter is weight that needs to

e supplied to the function to establish a relative weight of the window

dges compared to the window center (%); the default setting is 100%.

inally, a model parameter provides an option for weight calculation;

hat is, the selection determines whether weights are calculated linearly

 𝑦 = 𝑘 ⋅ 𝑥 + 𝑏 ) or exponentially ( 𝑦 = 𝑎 ⋅ 𝑏 𝑥 ); the default model is ‘linear’.

he function evaluates each amino acid in a selected window where a

ydrophobic influence from the surrounding amino acids is calculated

n. While the terminal amino acids cannot be included into the window

or centering and weighing, they are assigned unweighted values based

n the Kyte-Doolittle scale [18] . The plot values are all scaled from 0

o 1 so that different proteins can be compared without the need to

onvert. 

Thus, the hydrophobicity analysis can be especially useful when

reparing to engineer proteins for various expression systems as the

uperimposition of structural features and hydrophobicity scores can

elp deciding if a protein region or domain is likely to be solvent ex-

osed or prefer hydrophobic environments. For example, assessing the

ydrophobicity and structural milieu of the N or C terminal amino acids

an help selecting which terminal site should be tagged (as was demon-

trated with Nur77). Moreover, this tool could be broadly applied in

rug discovery studies involving the assessment of protein-protein in-

eractions, protein-nucleic acid interactions, and membrane association

vents based on physicochemical characteristics. 
ion with secondary structure elements. 
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Fig. 9. Nur77 cluster identification. 

Fig. 10. Dimension reduction plot for the iden- 

tified clusters. 
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.3. Advanced analyses 

Advanced analyses provide an opportunity to evaluate Fi-score dis-

ributions and take advantage of a streamlined GMM pipeline ( Fig. 1 ).

he main impetus for the development of this pipeline was the need

or functions and data modelling tools that could be made freely
7 
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ccessible to non-experts. By contrast, commercial solutions, namely

chr ȵ dinger chemical simulation software [19] , or non-commercial/

emi-commercial solutions, including PSIPRED, AutoDock, MGLtools,

nd Expasy [16,20–22] , lack a simple software platform to summarise

nd assess protein structural data that can be integrated into machine

earning. While the mentioned software suites or online workbenches
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Fig. 11. Protein cluster density plots. 
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rovide many useful functionalities, there is no one solution to use ma-

hine learning based inferences on the user’s structural data. ‘ Fi_score ’

nables researchers to quickly extract, assess, and summarise key fea-

ures of their data and incorporate that information into downstream

nalyses or custom pipelines. That is, more advanced users are also given

pportunity to supply custom parameters for the GMM workflow and

xtract probabilities from the output to use scores in other analyses or

ntegrate the values in their own discovery pipelines. 

#Fi-score distribution plot to explore scores for correspond-

ng amino acids 

Fi_score_plot(pdb_df) 

#Fi-score for a selected region 

#this value for multiple sites can be stored in relational databases 

Fi_score_region(pdb_df,50,70) 

#Plot of Fi-score values with superimposed secondary structures 

Fiscore_secondary(pdb_df) 

For example, a Fi-score distribution plot captures several interesting

egions in Nur77 around the 50, 130, and 180 amino acids ( Fig. 5 ) that

oincide with the Fi-score shifts and mirroring patterns. Some other re-

ions are also picked up which should be studied in more detail based on

he amino acid composition and 3D conformations. The uncovered char-

cteristics can be juxtaposed to other similar sites to better understand
8 

94
nteraction mechanisms. Such approaches are especially useful when

omparing known structures with the newly identified or investigating

otential structural outliers. 

Extracted Fi-score values can be used in machine learning modelling

nd this is enabled through the function cluster_ID . This function groups

tructural features using the Fi-score and Gaussian mixture modelling

here an optimal number of clusters and a model to be fitted during the

M phase of clustering for GMM are automatically selected ( Fig. 6 ). The

utput of this analytical tool summarises cluster information and also

rovides plots to visualise the identified clusters based on the cluster

umber and BIC value ( Fig. 7 ). These outputs can be used to better

ssess model performance for the select parameters if the users chose to

ustomise their model building. 

#User selected parameters 

df < -cluster_ID(pdb_df,clusters = 5, modelNames = ’’VVI’’) 

The users are advised to set seed for more reproducible results when

nitiating their projects. cluster_ID takes a data frame containing a pro-

essed PDB file with Fi-score values as well as a number of clusters to

onsider during model selection; by default 20 clusters (‘max_range’) are

xplored. In addition, a ‘secondary_structures’ parameter is needed to

efine whether the information on secondary structure elements from

he PDB file needs to be included when plotting; the default value is

RUE. Researchers also have an option to select a cluster number to

est ‘clusters’ together with ‘modelNames’. However, it is important to

tress that both optional entries need to be selected and defined, if the
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Fig. 12. Fi-score distribution plots with the Nur77 ligand binding domain (PDB ID:6KZ5), retinoic acid receptor alpha (PDB ID: 1FBY), and estrogen-related receptor 

gamma (PDB ID: 6KNR). Rainbow spectrum of the Nur77 structure allows to visualise the sequence from N-terminal (blue) to C-terminal (red). (For interpretation 

of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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ser wants to test other clustering options that were not provided by the

utomated BIC output. This is an advanced option and the user should

ssess the BIC output to decide which model and what cluster number

e or she wants to try out. It is important to note that cluster_ID offers

 user-friendly implementation of GMM where most technical decisions

re already incorporated automatically. 

A dimension reduction method for the visualisation of clustering is

lso automatically provided ( Fig. 10 ). Dimension reduction is a use-

ul technique to explore multi-dimensional biological data through key

igenvalues that define the largest information content of the explored

eatures [10] . In other words, one can infer how well the explored char-

cteristics define the data and if the classification is sufficient for down-

tream analyses. For example, in the case of Nur77 Fi-score clustering,

his analysis allowed assessing how well the number of clusters separates

ata points based on their distribution features. Nur77 has six clusters

hich might indicate functionally and structurally distinct regions in

he target protein. It appears that the data points are well separated into

roups accounting for the different variability. The dimension reduction

pproach could also help deciding if a different number of clusters might

etter classify Fi-scores. One of the goals of building this software pack-

ge was not only to provide accessible and easy-to-use functions but also

o generate additional plots allowing to assess model performance and

ata point distribution. 

In addition, one of the most valuable features of this set of functions

s to generate clusters with secondary structure information ( Figs. 8 and

 ).The produced interactive plots enable researchers to explore struc-

ural characteristics of a protein of interest ( Figs. 8 and 9 ). Thus, the

ubdivision of a protein structure based on the physicochemical features
9 
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ffers a new way to detect and explore functional sites or structural el-

ments. Figs. 9 and 10 clearly indicate that some structural elements in

ur77 are likely similar in their function and physicochemical charac-

eristics. For example, different types of helices as well as beta sheets in

ome cases overlap in their Fi-score characteristics and the assigned clus-

er type. This detailed capture of structural elements can help evaluate

onformational outliers or infer similarities for different motifs. More-

ver, it can be clearly seen that the region around the 50 amino acid is

et to be distinct from the other two sites around 130 and 180 amino

cids which could suggest overall different motion and interaction pro-

les. These findings also correspond with the earlier observations for

he hydrophobicity features ( Fig. 3 ). A similar trend can be seen for N

nd C terminus clusters which form distinct groups and might indicate

ites where the receptor mediates specific functions [6] . GMM guided

nalyses offer a novel way to extract patterns that might not be observ-

ble using other methods dependent on sequence based analytics, e.g.,

xpasy [16,17] . 

All previous analyses tie in with the function density_plots which pro-

ides a density plot set for 𝜙/ 𝜓 angle distributions, Fi-scores, and nor-

alised B-factors. 3D visualisation of dihedral angle distribution for ev-

ry residue is also included. These plots can be used for a quick as-

essment of the overall parameters as well as to summarise the obser-

ations. Density plots are very useful when evaluating how well the

elected features or scores separate protein structural elements and if a

rotein structure is of good quality (i.e., dihedral angles, B-factors, or Fi-

cores provide reasonable separation between elements). The function

lso gives another reference point to establish if the selected number

f clusters differentiates residues well based on the secondary structure



A. Kanapeckaite Artificial Intelligence in the Life Sciences 1 (2021) 100016 

Fig. 13. PyMol generated plots to visualise protein structures where blue colors indicate the region identified through Fi-score patterns where cis-9 retinoic acid is 

highlighted in red. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

e  

s

3

 

w  

c  

r  

h  

i  

n  

r  

a  

e  

u  

s  

t  

(  

p  

o  

t  

a  

r  

b  

p  

e  

a  

d  

f  

b  

p  

b  

h  

i  

T  

w  

u  

n  
lements. In order to get this information, the user is only required to

upply the output from the cluster_ID function ( Fig. 11 ). 

Data summary and evaluation 

density_plots(pdb_df) 

Data summary and evaluation including GMM outputs 

cluster_IDs < -cluster_ID(pdb_df) 

density_plots(cluster_IDs) 

.4. Case study: exploring potential ligands for the Nur77 orphan receptor 

To demonstrate some of the Fiscore applications, potential ligands

ere searched for the Nur77 receptor which can be considered as a

omplex target since no endogenous ligands are known for this orphan

eceptor [6] . The first analysis step involved searching for other similar

uman proteins that did not belong to the Nuclear receptor subfam-

ly 4. PSI-BLAST alignment analysis led to several candidate proteins,

amely the retinoic acid receptor alpha (PDB ID: 1FBY) and estrogen-

elated receptor gamma (PDB ID: 6KNR) [15] . These proteins showed

 good alignment to the Nur77 ligand binding domain sequence (av-

rage percent identity 31.68%; Suppl. Table 1) and were subsequently
10 
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sed for the structural and functional exploration. Comparing Nur77 Fi-

cores with the retinoic acid receptor alpha and estrogen-related recep-

or gamma Fi-score distributions revealed several interesting patterns

 Fig. 12 ). The shaded blue region highlights a matching distribution

attern for all the proteins and the Student’s t -test confirmed that none

f the distributions differed significantly ( Fig. 12 ; Suppl. Table 2). In-

riguingly, this region is involved in mediating interactions with retinoic

cid in the retinoic acid receptor alpha ( Fig. 13 ). Similarly, the estrogen-

elated receptor gamma (PDB ID: 6KNR) has a known inverse agonist

inding to the same cavity created by paired alpha-helices, an anti-

arallel beta sheet, and disordered stretches [23] . The inverse agonist

xhibits several structural features, such as the scaffold size/orientation

nd key aromatic groups, that are similar to retinoic acid. Moreover,

espite the different amino acid composition, the key physicochemical

eatures are preserved in this site across the investigated proteins as can

e seen from the superimposition studies ( Fig. 13 ). These observations

oint to the fact that this region might be essential in accommodating

inding events. Importantly, machine learning exploration ( Fig. 8 & 9 )

elped to classify Fi-scores around this region which revealed a repeat-

ng pattern very different from a surrounding N- and C-terminal regions.

his further implies a site of special functional importance where data

as grouped based on emerging probabilistic patterns in data point val-

es. This case study suggests an interesting possibility that Nur77 with

o known ligands might bind to chemical entities similar to retinoic
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cid [6] . This is also supported by the alignment data and hydrophobic-

ty plots (Suppl. Figs. 1 –3) where Nur77 and the retinoic acid receptor

lpha show substantial structural and physicochemical overlaps for this

nteractor site. Further molecular modelling and docking studies could

id in better understanding binding energetics and emerging interac-

ions. 

Overall, this example reveals that extracting patterns through scor-

ng and machine learning could help identify proteins that have shared

nd functionally related features. Thus, Fiscore allows an easy implemen-

ation of protein structural data mining and classification without nec-

ssarily performing multiple visual inspections of the structures. These

nalytical principles can also be applied to explore other proteins of

nterest and their potential ligands. 

. Discussion 

Fiscore package was developed to address the need for a simple-to-

se, freely available, and adaptable set of tools for protein physicochem-

cal feature exploration via machine learning. By contrast, other com-

ercial, semi-commercial, or free software tools lack machine learn-

ng pipeline implementation to explore structural features and in most

ases users need special knowledge to employ these pieces of software

8,16,19–22] . 

Fiscore package ( Fig. 1 ) allows a user-friendly exploration of PDB

tructural data and integration with various machine learning methods.

he package was benchmarked through several analytical stages that

nvolved a diverse set of proteins (3352) to assess scoring principles

1] and package functionalities (1337 structures) [11] . With a number

f helpful functions, including distribution analyses or hydrophobicity

ssessment in the context of structural elements, Fiscore enables the ex-

loration of new target families and comprehensive data integration

ince the described fingerprinting captures protein sequence and physic-

chemical properties. Such analyses could be very helpful when explor-

ng therapeutically relevant proteins. In addition, provided tutorials and

ocumentation should guide researchers through their analysis and al-

ow adapting the package based on individual project needs [1] . Fiscore

ould also aid in drug repurposing studies when a chemical compound

eeds to be juxtaposed to a number of potential targets. This was demon-

trated during a native ligand search for Nur77 where a case study of a

uclear receptor revealed the usefulness of the introduced scoring and

hysicochemical data capturing via GMM. Furthermore, the novel scor-

ng system as well as machine learning applications can lead to inter-

sting insights about sites of structural and functional importance. The

etrieved information could be used in comparative studies to search for

ther proteins that share similar features. For example, some of the shifts

n Fi-score values coincide or precede post-translational modifications

n Nur77 ( Fig. 5 ) [24] . This information could be included in the fu-

ure studies together with fingerprinting to better understand structural

haracteristics of this receptor. 

Another important aspect of the Fiscore package is the simplification

f complex analytical steps so that the researchers without an exten-

ive background in structural bioinformatics or machine learning could

till use the tools for their analyses, such as protein engineering, pro-

ein assessment, and data storage based on specific target sites. Thus,

he interactive analytical and visualisation tools could become espe-

ially relevant in the pharmaceutical research and drug discovery stud-

es as more complex targets and protein-protein interactions need to

e assessed in a streamlined fashion. In other words, ability to trans-

ate structural data into parameters could accelerate target classifica-

ion, target-ligand studies, or machine learning integration. Since target

valuation is paramount for rational therapeutics development, there is

n undeniable need for specialised analytical tools and techniques that

an be used in R&D or academic research. Implementing these novel

pproaches could significantly improve our ability to assess new targets

nd develop better therapeutics. As a result, the Fiscore package was de-

eloped to aid with therapeutic target assessment and make machine
11 
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earning techniques free-to-use and more accessible to a wider scientific

udience. 
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Experimental chapter

Integrative omics approaches for new target identification and therapeutics 

development  

6. In silico drug discovery for a complex immunotherapeutic target - 
human c-Rel protein 

The experimental chapter is based on the following publication 

Kanapeckaitė A, Beaurivage C, Jančorienė L, Mažeikienė A. In silico drug discovery for a complex 
immunotherapeutic target-human c-Rel protein. Biophysical Chemistry. 2021 Sep 1;276:106593; 
doi: 10.1016/j.bpc.2021.106593. Selected as the issue cover. 

Conclusion of this chapter 

In this chapter I introduce my work on the efficient development of therapeutic agents through an 
early in silico analysis which can reduce both the costs and time needed to discover promising lead-
like compounds. My developed screening methodology is an efficient drug screening approach 
when no crystal structure exists for a target of interest. This variant of in silico screening can 
become central in drug discovery and can be used to better understand the molecular basis of target 
interactions prior to performing costly in vitro screens. By using computational methods and the 3D 
structural information of c-Rel, it was possible to investigate the differences in ligand-c-Rel binding 
and validate that with HTVS. Computational analysis resulted in the identification of 15 promising 
compounds that could be further tested in vitro for the c-Rel protein inhibition or modulation. 
Finally, my research helped to demonstrate that immunotherapies can be developed by relying more 
on discovering new drug candidates in silico which could be more quickly and cost-efficiently 
translated into in vitro screens. 

 

Contribution to this chapter (95%) 

• Devised the methodology and screening pipeline.
• Performed all the analytical, data mining, molecular modelling, screening, and experimental work 

as well as formulated conclusions.
• Performed benchmarking and comparative analyses.
• Conceptualised and wrote the manuscript, including the figure preparation.
• Corresponding author.
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c-Rel protein 
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A B S T R A C T   

Target evaluation and rational drug design rely on identifying and characterising small-molecule binding sites on 
therapeutically relevant target proteins. Immunotherapeutics development is especially challenging because of 
complex disease etiology and heterogenous nature of targets. c-Rel protein, a promising target in many human 
inflammatory and cancer pathologies, was selected as a case study for an effective in silico screening platform 
development since this transcription factor currently has no successful therapeutic inhibitors or modulators. This 
study introduces a novel in silico screening approach to probe binding sites using structural validation sets, 
molecular modelling and describes a method of a computer-aided drug design when a crystal structure is not 
available for the target of interest. In addition, we showed that binding sites can be analysed with the machine 
learning as well as molecular simulation approaches to help assess and systematically analyse how drug can-
didates can exert their mode of action. Finally, this cutting-edge approach was subjected to a high through-put 
virtual screen of selected 34 M drug-like compounds filtered from a library of 659 M compounds by identifying 
the most promising structures and proposing potential action mechanisms for the future development of highly 
selective human c-Rel inhibitors and/or modulators.   

1. Introduction 

High-throughput screening (HTS) of large compound libraries 
against a therapeutically-relevant target allows to identify compounds 
showing pharmacological promise and select new hit compounds that 
could be further optimised in hit-to‑lead phase. In order to reduce costs 
and delivery time many leading pharmaceutical companies have their 
HTS preceded by in silico screens. The main advantage of the preparatory 
computational analysis is increased resource savings and a better un-
derstanding of relevant biological activity. As a result, a varied assort-
ment of computational platforms are used for early stage screening 
studies to successfully identify candidates and narrow down the chem-
ical search space [1–5]. With the advance of new computational 
methods, it is possible to achieve a more accurate and robust optimi-
sation of the pharmacological properties of selected compounds which 
leads to the overall improvement of in vitro HTS. This study aimed to 
combine the best existing practices of high through put virtual screening 

(HTVS) and introduce additional analytical and control approaches to 
formulate an effective HTVS pipeline for complex immunotherapy 
targets. 

The human genome contains about 25,000 genes, but only about a 
tenth of expressed proteins is amenable to small-molecule modulation 
[6–9]. In addition, less than 5% of proteins that can be pharmacologi-
cally targeted show any therapeutic potential and drug development is 
further complicated by a very low success rate since less than 2% of lead 
compounds successfully reach the marketing stage [6,10]. Immuno-
therapeutics development is made even more difficult by a complex 
network of interactors that might share a varying degree of similarity 
which can lead to off-target effects and limit disease-specific therapeutic 
approaches. Consequently, knowing the binding sites and physico-
chemical properties of any complex target prior to the screening or 
optimisation of lead compounds would be extremely beneficial in terms 
of cost reduction and faster turnover. In addition, introducing molecular 
dynamics analyses for the target site characterisation permits 
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researchers to better evaluate large-scale motions in molecules and 
predict compound binding effects. For example, conformational flexi-
bility can have a significant influence on the structure–function rela-
tionship where the flexibility is the key structural determinant for 
binding partner interactions [11,12]. This type of analyses can shed new 
light on how binding events evolve, what potentially new sites for 
compound binding are formed and how introduced mutations can alter 
the site and interactions. Normal mode analysis (NMA) is one of the 
major simulation techniques that can be used to address the above 
questions as it takes advantage of the small oscillations physics to 
describe flexible states in a protein at an equilibrium [13–16]. The 
central idea of this method is that when a macromolecule is in an energy 
minimum confirmation, even if it is slightly perturbed, the restoring 
forces return the system to its equilibrium. This biophysical concept 
allows the integration of other methods to further enhance the pre-
dictiveness of NMA. Moreover, machine learning techniques applied to 
probe structural characteristics can reveal additional features that could 
be used to understand protein topology [17]. In other words, combi-
nation of biophysical, cheminformatics and machine learning ap-
proaches can greatly enhance our ability to analyse potential 
therapeutic targets. As a result, we focused our efforts on NF-kB as an 
excellent candidate for such a study because of a significant unmet need 
for drugs that could effectively target this complex. 

The transcription factor NF-kB plays a multitude of roles through the 
regulation of key genes in pro-survival and pro-apoptotic pathways. As a 
master regulator, NF-kB, consists of hetero- or homo-dimers formed by 
the Rel transcription factor family members: p50, p52, Rel A (p65), Rel 
B, and c-Rel - all of which share N-terminal homology with the v-Rel 
oncogene [18–20]. The regulation of NF-kB is achieved through the 
binding of kB inhibitor proteins which can be proteolytically degraded 
after the engagement of IkB kinase complex (IKK). This results in the 
release of NF-kB allowing Rel dimers to translocate to the nucleus [20]. 
NF-kB can be activated through two pathways, the canonical and the 
non-canonical, where the former pathway is mainly involved in the 
immune system activation and cellular survival, while the non-canonical 
pathway is primarily functional in lymphoid organogenesis. The ca-
nonical pathway induction results in p50 and p65 or p50 and c-Rel 
heterodimer formation. In contrast, the non-canonical pathway signal-
ling is achieved only though p52-RelB heterodimers [21,22]. The sig-
nalling has additional layers of complexity since NF-κB complexes 
containing either p65 or c-Rel are known to be involved in distinct 
biological roles; for example, NF-κB complexes formed with p65 play a 
role in cellular metabolism and inflammatory response regulation, such 
as glutamine homeostasis and cytokine production, respectively. How-
ever, NF-κB complexes containing c-Rel are involved in a more speci-
alised immune response and lymphoid development. This is supported 
by deletion experiments where a germline deletion of p65 leads to em-
bryonic lethality but there are no effects on viability and only limited 
immunological defects when c-Rel expression is eliminated [23,24]. 

Although NF-kB is at the nexus of multiple signals, so far no signif-
icant strides have been made in developing specific therapeutics that 
would have minimal side effects [20,24,25]. This difficulty can mainly 
be attributed to the wide expression of NF-kB in multiple tissues; yet, 
one aspect of the NF-kB signalling pathway can be exploited to achieve 
better therapeutic characteristics. That is, NF-kB is assembled from 
different dimers that vary between tissues and pathologies and thus, 
targeting a specific partner of the dimer pair could increase specificity 
and reduce off-target effects. For example, it has been recently demon-
strated that the pharmacological inhibition of c-Rel function delayed 
melanoma growth by impairing effector Treg-mediated immunosup-
pression. This immunotherapy approach was even further potentiated 
when combined with anti-PD-1 treatment proving that the inhibition of 
NF-κB c-Rel is a viable therapeutic target [21,26,27]. Furthermore, 
targeting c-Rel to modulate Treg activity in cancer revealed that c-Rel, 
but not p65, was susceptible to pentoxifylline, an FDA-approved drug. 
Specifically, it was reported that pentoxifylline caused a selective 

degradation of c-Rel without affecting p65 [27]. All of these earlier 
analyses provided an incentive to perform a first in-depth structural 
modelling analysis as well as a focused preclinical in silico screening of 
likely human c-Rel inhibitors and modulators as a way to control NF-kB 
in cancer pathologies when p65 and c-Rel play the driving role. 

Most small-molecule drugs currently on the market were developed 
to target protein–ligand interactions [28]. These interaction sites are 
usually concave with complex topological features which contrasts with 
the sites normally found on protein surfaces [29–32]. Computational 
analysis of likely and/or unusual binding sites, especially on protein 
surfaces, helps to evaluate their physicochemical properties and deter-
mine if the protein of interest is druggable. We employed NMA [14–16], 
GROMACS [33] molecular dynamics as well as Gaussian mixture models 
[34] based algorithm [17] to characterise the target and address the 
common issue with the crystal structures of not being able to assess how 
a protein behaves in vitro and what natural conformational states these 
macromolecules can poses [35,36]. In order to evaluate, alternate con-
formations and capture the range of motions, it was necessary to go 
beyond a snapshot structure conformation. In addition to this, we used 
SiteMap, developed by Schrödinger, to identify potential binding sites 
since this tool makes use of linking together “site points” that are likely 
to contribute to tight protein–ligand or protein–protein binding 
[37–39]. However, it is necessary to note that there is not one universal 
algorithm that could suit all drug discovery scenarios; therefore, this 
study combined multiple levels of analysis, namely sequence, structure, 
dihedral angle distribution machine learning assessment as well as 
physicochemical characteristics, and incorporated those findings into 
Schrödinger Maestro suite for the screening of the drug-like library of 34 
M compounds. This library was prepared by filtering 659 M chemical 
entities to generate a diverse compound set for the final rounds of 
docking. As a result, the characterisation of binding sites and potential 
drug-protein interaction mechanisms led to the discovery of 15 hit 
compounds specific for the human c-Rel protein. These hit compounds 
were additionally tested with a different docking program – Autodock 
Vina [40] and yielded similar results. 

While the experimental validation was beyond the scope of this study 
and there are many other reports employing only the in silico strategy 
[5,41–43], the authors would like to highlight that the identified hit 
compounds should be further explored in an appropriate in vitro and 
biophysical assay set-up. For example, over-expression or knock-down 
phenotypic studies of c-Rel could potentially allow to better evaluate 
any pharmacological intervention effects. Furthermore, the mode of 
action, such as inhibition or promotion of degradation, should also be 
investigated. We would also like to advise to combine both tran-
scriptome and proteome analysis to uncover the real kinetics of the 
pathway in the context of an active drug-like molecule. 

With this research we aimed to set the computational groundwork 
for a focused analysis of complex targets. In silico techniques demon-
strated here could greatly enhance the discovery process and ensure that 
only the most promising candidates reach the expensive wet-lab testing 
pipelines. Finally, we hoped to address the growing need of clearly 
defined bioinformatics and cheminformatics methods that could aid in 
the immune therapeutics development. 

2. Methods 

2.1. Target identification and characterisation 

Structures of chicken c-Rel (PDB:1GJI, 2.85 Å, 281 amino acids) and 
mouse p65 (PDB: 5U01, 2.50 Å, 291 amino acids) as well as additional 
good quality PDB structures were downloaded directly from RCSB 
Protein Data Bank (PDB) [44]detailed information on all structures used 
for the analysis can be found in Sup. Table 1; bound DNA fragments were 
removed. Multiple sequence alignment (MSA) (MUSCLE algorithm, 
default parameters) [45] was used for structure superimposition studies 
using Bio3D package [46]. Protein Blast [47], T-coffee [48] MSA 
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analyses (default parameters) as well as Gaussian mixture models based 
Fi-score [17] were employed to further assess sequence and corre-
sponding structure characteristics to determine potential binding sites 
and sites of interest for in silico modelling. MSA analyses were perfomed 
in JalView environment using corresponding amino acid sequences of 
the selected PDB structures (Sup. Table 1) which approximate the first 
300 amino acids capturing the RHD. Colombic electrostatic potential 
and hydrophobicity based on Kyte-Doolittle scale [49] were visualized 
using Chimera-X platform [50],the same platform was used for the 
structure superimposition via Needleman-Wunsch global alignement 
(matrix-Blosum 62) [51]. 

2.2. Homology modelling and structure validation 

Selected human c-Rel sequence (capturing RHD, NCBI:NP_002899.1) 
was subjected to homology-threading and ab initio structure modelling 
using Phyre2 intensive mode [52]. Generated models were validated by 
Phyre2 [52] and independently with Schrödinger Maestro protein 
structure validation tool (Schrödinger Release 2019–2: Protein Prepa-
ration Wizard, Schrödinger [53]). Modelled and crystal structure simi-
larity was assessed with an independent t-test for phi (Φ) and psi (Ѱ) 
torsion angles. After confirming consistency between templates, the 
modelled structures were used for the protein docking preparation and 
subsequent grid generation followed by HTVS. 

2.3. Molecular dynamics and normal mode analysis 

Molecular dynamics analysis was performed using GROMACS [33] 
suite and the following parameters (using TIP3P water model, 
Amber99sb-ildn force field, dodecahedron 1 Å box, adding neutralizing 
Na and Cl ions concentration at 0.1 mM, simulation time 1 ns; all 
parameter files are provided with the supplementary materials). Normal 
mode analysis was done using Bio3D R suite [46] with calpha forcefield 
to employ a spring force constant allowing the differentiation between 
the nearest-neighbour pairs along the protein backbone and all other 
pairs [54]. The parametrization was achieved by fitting a local minimum 
of a crambin model using AMBER94 force field. 

2.4. Compound selection 

Compound structures (659 M; 2 < logP<4; 300 < MW < 500) were 
downloaded from ZINC5 database of commercially-available com-
pounds for virtual screening [55]. The downloaded set of compounds 
(SDF format) was fingerprinted (type: FP2, a path-based fingerprint that 
indexes fragments of a small molecule using linear segments of up to 7 
atoms; ChemmineR package [56–58]), an add-on package fmcsR was 
used to identify maximum common substructures (MCSs) for structure 
similarity search and cluster based analysis. Based on this evaluation, 
similar compounds were removed from the set to generate a diverse set 
of molecules. This was followed by a structure and activity based search 
against PubChem database [59] to select candidate compounds that 
were the most drug-like; this selection resulted in 34 M compounds 
(LogP≤3; 300 < MW ≤375, standard reactivity, default pH = 7.4) that 
were used for the HTS in silico screen. 

2.5. Virtual screening and molecular docking 

Both crystal and simulated structures of proteins were prepared 
using Protein Preparation Wizard and every protein was divided into 
five regions and their binding sites were predicted using SiteMap with 
shallow site identification allowed (Schrödinger Release 2019–2: Site-
Map and Protein Preparation Wizard, Schrödinger [53]). These sites 
were ranked using SiteScore and Dscore, three highest ranking regions 
were selected for a further evaluation with Poisson-Boltzmann (APBS) 
method for their electrostatic surface (solute diaelectric constant: 1.0, 
solvent diaelectric constant: 80.0, solvent radius: 1.4 Å, temperature: 
298.0 K, radius: 5.0 Å). Selected top scoring sites were used to generate a 
grid with the grid size chosen sufficiently large to include all residues 
potentially involved in ligand binding per site (Extra Precision (XP) 
mode) (Schrödinger Release 2019–2: Glide, Schrödinger [53]). A com-
bination of site scores (SiteMap) as well as docking and glide scores 
(Glide) were used as an empirical scoring functions to evaluate and 
predict free energy for ligand binding to the selected site. In addition, 
the predicted area of a protein that could mediate binding was also 
evaluated in comparison to other respective sites on the same protein 
and homologous proteins. LigPrep module (Schrödinger Release 
2019–2: Maestro, Schrödinger [53] ) was used in preparation for virtual 
screening to evaluate the ligand library (LogP≤3; 300 < MW ≤375, 
standard reactivity, default pH = 7.4, charges = default (all allowed), 
total screened compounds 34 million) and confirm its suitability for 
docking and screening. All ligand conformers were docked to each re-
ceptor grid using Glide (Schrödinger Release 2019–2: Glide, Schrödinger 
[53]). High-Throughput Virtual Screening (HTVS) mode with default 
settings was initially used to filter out unlikely ligands (cut-off for 
binding interactions ΔG < -2 kJ/mol); compounds that were hits in both 
mouse p65 and chicken c-Rel were removed from the next stages to 
increase the specificity of hits to c-Rel. This was followed by re-docking 
of the highest-ranking compounds from HTVS using Glide SP (Standard- 
Precision Glide with default settings, cut-off for binding interactions ΔG 
< -2 kJ/mol). Finally, the top ranking fragments from Glide SP were 
docked using Glide XP (Extra-Precision Glide, cut-off for binding in-
teractions ΔG < -3 kJ/mol) for extra precision. All of the screening steps 
were of increasing stringency for binding interactions (Sup. Table 2). In 
silico ADME (absorption, distribution, metabolism, and excretion) of top 
hits was evaluated with QikProp (Schrödinger Release 2019–2: QikProp, 
Schrödinger [28]). Additional validation of the top scoring compounds 
per site were analysed with an alternative docking program AutoDock 
Vina [40]. 

2.6. Statistical analysis 

Graphs and statistical analysis (unpaired t-test, two-tailed) per-
formed with R studio (Version 1.1.463 [60]). Data filtering was per-
formed with BASH (Ubuntu 18.04.2 LTS [61]). 

Table 1 
SiteMap analysis for the chicken c-Rel protein (PDB: 1GJI) when dividing the protein into 5 regions.  

Name SiteScore Size, Å2 Dscore Volume, Å3 Exposure Enclosure Phobic Philic 

Site 1 0.877 881 0.991 460.649 0.822 0.359 0.095 0.504 
Site 2 0.887 445 1.003 268.569 0.815 0.37 0.131 0.49 
Site 3 0.887 430 0.99 261.709 0.727 0.393 0.154 0.57 
Site 4 0.887 242 1.013 122.794 0.809 0.352 0.167 0.425 
Site 5 0.881 216 0.981 122.108 0.749 0.392 0.07 0.594  
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Table 2 
Top five compounds for each chicken c-Rel (PDB:1GJI) and modelled human c-Rel site. Each row provides the location of the compound followed by the interaction 
descriptions.*  

Site Structure Compound ΔG MW QPlogPw QPlogPo/w RuleOfFive 

1GJI 
1 ZINC000085569496 − 4.679 370.358 15.792 1.335 0 

1 ZINC000095909670 − 4.527 372.374 14.63 1.757 0 

1 ZINC000003785475 − 4.411 355.436 12.062 2.604 0 

1 ZINC000098052562 − 3.976 362.338 15.214 1.529 0 

1 ZINC000064744186 − 3.973 358.362 15.668 1.898 0 

2 ZINC000014824074 − 7.582 350.373 12.659 3.424 0 

2 ZINC000064744186 − 7.552 N/A N/A N/A 0 

(continued on next page) 
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Table 2 (continued ) 

Site Structure Compound ΔG MW QPlogPw QPlogPo/w RuleOfFive 

2 ZINC000095920801 − 5.155 363.375 14.473 2.018 0 

2 ZINC000012495519 − 4.977 352.47 12.964 2.786 0 

2 ZINC000043772464 − 4.97 366.453 13.283 2.514 0 

3 ZINC000029041971 − 7.428 360.406 11.337 2.806 0 

3 ZINC000038794072 − 6.571 360.406 12.388 2.512 0 

(continued on next page) 
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Table 2 (continued ) 

Site Structure Compound ΔG MW QPlogPw QPlogPo/w RuleOfFive 

3 ZINC000072320355 − 6.432 354.486 13.236 2.198 0 

3 ZINC000065748825 − 6.333 360.725 15.148 0.384 0 

3 ZINC000031163554 − 6.269 372.374 13.045 2.671 0 

Human modelled c-Rel 
1 ZINC000514288546 − 5.651 357.452 12.569 0.769 0 

1 ZINC000098052562 − 4.083 362.338 15.043 1.418 0 

(continued on next page) 
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Table 2 (continued ) 

Site Structure Compound ΔG MW QPlogPw QPlogPo/w RuleOfFive 

1 ZINC000001542905 − 3.777 371.53 14.057 2.234 0 

1 ZINC000095909670 − 3.418 372.374 14.538 1.749 0 

1 ZINC000003785475 − 3.359 355.436 12.539 2.814 0 

2 ZINC000072320354 − 7.209 354.486 12.876 1.953 0 

2 ZINC000043772464 − 4.869 366.453 12.861 2.103 0 

2 ZINC000027647260 − 4.252 350.454 12.244 3.124 0 

2 ZINC000012495519 − 3.936 352.47 12.864 2.511 0 

(continued on next page) 
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Table 2 (continued ) 

Site Structure Compound ΔG MW QPlogPw QPlogPo/w RuleOfFive 

2 ZINC000014824074 − 3.898 350.373 12.652 3.447 0 

3 ZINC000029041971 − 4.851 360.406 11 2.619 0 

3 ZINC000038794072 − 4.264 360.406 12.413 2.568 0 

3 ZINC000065748825 − 4.201 360.725 15.198 0.398 0 

3 ZINC000100388550 − 3.717 351.404 15.954 0.477 0 

3 ZINC000031163554 − 3.427 372.374 13.032 2.611 0  

* QPlogPw- predicted water/gas partition coefficient; QPlogPo/w - predicted octanol/water partition coefficient; MW- molecular weight, ΔG- Gibbs free energy, kJ/ 
mol; RuleOfFive - number of violations of Lipinski’s rule of five; N/A - need to be determined experimentally.  
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3. Results 

3.1. Rel family protein sequence and structure analysis revealed that the 
c-Rel protein is an excellent immunotherapeutic target with a potential for 
high specificity and selectivity 

The main structural feature of c-Rel is the Rel homology domain 
(RHD) (300 amino acids) which is reported to form a contact surface 
with a single turn of the major groove of double-stranded DNA [62,63]. 
RHD consists of two immunoglobulin-like (Ig-like) domains, where the 
N-terminal domain contains the first Ig-like structure (approximately 
160–210 amino acids) followed by a short flexible linker of 10 amino 
acids. C-terminal dimerisation domain of RHD spans about 100 amino 
acids adopting the second Ig-like fold and this sequence also contains a 
nuclear localisation signal element [62,64,65] (Fig. 1). Preliminary 
analysis of the whole c-Rel protein identified that the C-terminal region 
outside of the RHD is disordered and unstable; thus, from a drug 
developing perspective, it is unreliable to model the full structure and it 
may not be a good anchoring point for a small molecule. In contrast, the 
RHD, as an ordered structure, offers an easier target for crystallisation 
studies which could help to understand compound binding and could 
also complement computational screens. Furthermore, the Rel homol-
ogy domain is the main domain mediating protein-protein as well as 
protein-DNA interactions making it the most likely target for drug-like 
compounds that are able to disrupt such interactions or affect c-Rel 
promoting its degradation [62,63,66,67]. Considering all of the above, a 
more defined region, such as the RHD (300 amino acids), with already 
existing homologous crystal structures was selected for the in silico 
analysis and subsequent HTVS. 

In preparation for the modelling, an in-depth sequence and structure 
analysis was performed (Sup. Table 1). That is, structure superimposi-
tion and sequence studies allowed to answer several questions: how 
similar and/or dissimilar the RHD is among the selected species for the 
same protein, how the RHD amino acids distribute in MSA when 
aligning REL family proteins and how a structural analysis can help 
evaluate closely related proteins for drug discovery. Specifically, it was 
also necessary to explore how similar p65 would be to c-Rel since the 
aim of the screening was to select compounds with the highest selec-
tivity for human c-Rel that would not otherwise affect p65. Previous 
crystallography studies of p65 and other Rel proteins [66,68] prompted 
us to pinpoint potential regions within RHD at around 30–75, 90–130 
and 150–220 amino acids which we deemed to be likely involved in 
mediating protein-protein as well as DNA-protein contacts. We reasoned 
that such sites might be more susceptible to drug-like compound inter-
ference. This was an arbitrary selection in order to have some indexing 
within the sequence around which we could compare binding events, if 

such happened. 
To establish a better structural understanding of the selected Rel 

family sequences (Sup. Table 1), both sequence and structure based 
multiple alignments were performed (Sup. Fig. 1 & Fig. 2). T-Coffee 
sequence alignment using default settings revealed ordered regions of 
higher identity and the most prominent consensus stretches around the 
RHD (Sup. Fig. 1). Since full sequences were aligned, it was interesting 
to observe that p50 and p52 show some alignment to cRel and p65 to-
ward the C-terminus as full length p50 (p105) and p52 (p100) undergo a 
C-terminus directed proteolytic processing [69]. The seen motifs that 
align when analysing full sequences might indicate that for p50 and p52 
function analogous regions need to be removed when pairing occurs. 
This would be an interesting structural analysis avenue to explore 
further. Moreover, it was necessary to explore amino acid distributions 
for the RHD to identify both highly and less conserved regions that 
might hint toward unique function or binding activities. Selecting only 
regions that form mature structures (Fig. 2), the RHD alignment 
captured conserved motifs across different REL family members which 
also originated from different species. REL family sequences are ho-
mologous and highly-conserved across different organisms [70]; thus, 
while the majority of structures are non-human, they can still be used for 
the analyses. Furthermore, it can be seen that specific gaps in the 
alignment or lower identity/conservation sequences can be exploited for 
pharmacological targeting. These observations were followed by a more 
in-depth structural analysis. 

3.2. c-Rel structural analysis and molecular dynamics offered new 
insights into potential binding sites and interactions 

Multiple sequence and structure alignment for specific regions 
revealed how c-Rel regions showing the most variability or situated in 
close proximity to mediate protein-DNA or protein-protein interactions 
could be good targets to not only increase specificity but also disrupt the 
dimer formation (Fig. 2 & Sup. Fig. 2). The most interesting sites for the 
pharmaceutical intervention are around the regions that ensure the DNA 
binding and contact points between the dimers (Fig. 3, A). This was 
confirmed when we mapped MSA results on the structure (Fig. 3, B) by 
highlighting some of the secondary structure elements. Moreover, 
superimposing multiple structures via alignment (Fig. 3, C) allowed us to 
show how REL family proteins have the most structural differences 
around C-terminus helixes and N-terminus beta-strands with some 
variation in the hinge region. The conventional structural superimpo-
sition relies on the root mean square difference superimposition for sets 
of residues and while we performed such an analysis (Sup. Fig. 3, C), we 
additionally used another method to get a fuller evaluation of the 
rearrangements of c-Rel domains [12]. The method developed by 
Romanowska et al. provides means to assess the true atomic displace-
ment by anchoring the most invariant region; in other words, it provides 
a sub-structure superimposition to capture relevant domain rearrange-
ment. Analysing c-Rel domain rearrangements maintaining restrained 
motion volume (≤1 Å3) for the anchored superimposition, we found that 
across all superimposed structures the most invariant region was the one 
mediating the dimer contact formation toward the C terminus (Fig. 3, 
D). This early observation hinted toward likely differences in functional 
dynamics for the protein sub-domains around the hinge region. 

To supplement this analysis and better understand the topological 
landscape, we performed a hydrophobicity and electrostatic charge 
distribution evaluation for the c-Rel protein investigating these specific 
sites. Exploring Colombic charge distributions as well as hydrophobic 
regions on the c-Rel surface (Sup. Fig. 2) revealed that contact sites 
responsible for the dimerisation have alternating positively and nega-
tively charged regions with a hydrophobic patch. As expected (Sup. 
Fig. 2, A&B) the c-Rel site that clamps the negatively charged DNA also 
has mostly positive residues that could be targeted to disrupt this 
interaction. 

While physicochemical and structure characterisation are incredibly 

Fig. 1. The NF-κB family members. NF-kB family members are represented 
with their specific domains where TAD, transactivation domain; RHD, the Rel- 
homolgy domain; NLS, nuclear localisation signal; LZ, leucine zipper; Ankyrin, 
ankyrin repeats. 

A. Kanapeckaitė et al.                                                                                                                                                                                                                         

107



Biophysical Chemistry 276 (2021) 106593

10

valuable tools when selecting potential binding sites or deciding on a 
therapeutic compound mode of action, molecular dynamics and normal 
mode analyses become widely employed to understand atomic and 
corse-grained domain motions. NMA was used to capture the nature of c- 
Rel motions prior to the screening with the aim to prioritize binding 
sites. NMA predicted fluctuations per residue matched the earlier 
identified sites around 30–75, 90–130 and 150–220 amino acids (Sup. 
Fig. 3, A). These sites also showed the most variability in MSA (Fig. 2 & 
Sup. Fig. 1). Visualisation of motions at different frequencies revealed 
how different movement modes undergo complex spatiotemporal 
movements within a protein as it forms contact sites with the DNA (Sup. 
Fig. 3, B). This observation also offers a new perspective on how dimers 
recognise DNA sequences (e.g., sweeping motions) and how binding 
partners initiate and maintain their contact which might not be a clamp 
but rather a dynamic gear-like rotation around DNA to maintain the 
thermodynamic binding equilibrium. Both movies (mode_7.pdb – high 
frequency (0.004 s) and mode_12.pdb-low frequency (0.0015 s)) for the 
structure movements are provided with the supplementary materials 
and can be visualized with PyMOL [71]. Such observations highlight the 
value of the molecular dynamics analyses as they provide new per-
spectives for the pharmaceutical design. 

Cross-correlation analysis provided interesting insights into locally 

and globally correlating and anti-correlated regions in the protein 
(Fig. 4, A&B). Hints of domain organized movement can be seen at C and 
N termini as well as around the hinge region (Fig. 4, B). That is, a 
globular-like domains connected through a hinge have an anti- 
correlating motion when referenced against each other (Fig. 4 A). 
However, sub-domain groups of interacting secondary structures have a 
closely coordinated positive and highly correlating movements. This 
provides additional clues that targeting the hinge region can potentially 
destabilize not only the dimers but also disrupt DNA binding as 
harmonized movements are likely necessary to ensure a proper function. 

Domain and protein region correlation assessment was followed by a 
deformation analysis which allowed to measure the local flexibility of 
the structure. This analysis relies on measuring atomic motion relative to 
the surrounding atom groups. It is important to stress that this type of 
analysis differs from root mean square fluctuations (RMSF) which only 
provide amplitudes of the absolute atomic motion. We can see that the 
hinge region accommodated the largest deformation shifts in the protein 
structure (Fig. 4, C) and atomic fluctuations were the most significant for 
protein termini (Fig. 4, D). All of this points to the specific functions of 
these regions where inherently different motions can accommodate 
precise interactions to other co-binders when the transcription regula-
tory complex is formed. 

Fig. 2. T-Coffee structure sequence alignment using default settings where the higher identity percentage is represented with a more intense blue colour; additional 
parameters, such as the alignment quality score, conservation score, occupancy and consensus sequence are also provided with the alignment. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 3. c-Rel DNA-protein and protein-protein contact sites are highlighted in red (A). T-coffee multiple sequence alignment identified regions of interest are 
provided in a colour coded manner (B). Additional features are shown for the secondary structure alignment based on Needleman-Wunsch algorithm (C) and the 
invariant region based on anchored superimposition (≤1 Å3 volume motion) (D). (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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Finally, domain analysis was used to identify regions of c-Rel moving 
as rigid parts (Sup. Fig. 3, C). This method relies on generating a 
conformational ensemble by using interpolation of the eigenvectors of 
the first 5 normal modes from NMA. We were able to show that while 
two clear domain sections stood out, especially around C-terminus 
which already had been shown to have a tendency of lower fluctuations 
(Fig. 3), they are dependent on the coherent movement of much smaller 
sub-domains. 

3.3. Fi-score distribution analysis and dihedral angle analysis for 
modelled structures provided alternative means to assess the functional 
domains 

Dihedral angle as well as associated B-factor distribution can be used 
to better understand both 3D conformation of the structure and local 
Calpha atom mobility. Capturing these parameters allows to establish a 
comparative measure of physicochemical characteristics of a protein of 
interest and we used our earlier devised Fi-score to comprehensively 
capture these parameters [17]. c-Rel (PDB ID: 1GJI, chain B) was 
assessed using dihedral angle and Fi-score distributions to uncover 
potentially interesting regions that show unique motion potential and 
map that information onto the structure (Fig. 5). This analysis can 
further supplement protein topology and molecular dynamics analysis 
by clustering protein sub-domains or regions that show similar Fi-score 
distributions. Moreover, the size of Fi-score change going from one re-
gion to another can indicate local mobility and dominating secondary 
structures [17]. 

While a robust and precise method for protein-ligand complex 

investigation is usually based on existing crystal structures, lack of 
available 3D structures for some targets has hindered efforts to design 
drug-like compounds. Homology modelling is rapidly becoming the 
method of choice for modelling protein structures [72] that can be 
exploited in HTVS even when the experimental data is lacking. This 
study aimed to build and investigate a model for human c-Rel using 
Phyre2 algorithm [52]. 

To find an alternative way to investigate binding pocket dynamics 
and quickly compare modelled and crystal structures, we looked into the 
combinations of φ/ψ angles in chicken c-Rel and compared that to the 
modelled human structure. Unpaired t-test revealed that the observed 
variation for φ/ψ angles between two types of structures was not sig-
nificant (unpaired t-test for φ: two-tailed p > 0.8642, t = 0.1711, N =
271; unpaired t-test for ψ: two-tailed p > 0.4792, t = 0.7081, N = 271). 
As an additional control, no significant differences between 1GJI 
homodimer chains A and B were found and the observed deviations are 
similar to those of the crystal and modelled structures (unpaired t-test 
for φ: two-tailed p > 0.7467, t = 0.3232, N = 273; unpaired t-test for ψ: 
two-tailed p > 0.7565, t = 0.3102, N = 273). It is also important to 
highlight that even very similar structures might have dihedral angle 
shifts in critical regions and it is necessary to capture all small changes to 
understand the dynamics of the binding site. Thus, appropriate test 
steps, as discussed above, should always be implemented. 

3.4. 34 M drug library screening reveals potential therapeutic targets for 
human c-Rel and hints toward possible interaction mechanisms 

Molecular docking and the establishment of ligand and target 

Fig. 4. c-Rel protein (PDB ID: 1GJI) normal mode analysis (NMA) was used to determine correlated and anti-correlated residues which are depicted with red and 
blue lines, respectively (A). All cross-correlation graphic (B) provides full 2D view of the interactions. NMA mode deformation (C) and fluctuation (D) analyses 
provided as colour and size spectrum based on the value size ranging fro low- blue to red-high. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 

A. Kanapeckaitė et al.                                                                                                                                                                                                                         

109



Biophysical Chemistry 276 (2021) 106593

12

interactions are at the centre of in silico drug discovery [73]. In this 
screening, selected two available high resolution crystal structures, 
namely chicken c-Rel (2.85 Å) and mouse p65 (2.50 Å), as well as a 
respective model of human c-Rel were used to screen against a 34 
million drug-like compound library from ZINC15 [74]. 

Each protein was analysed with SiteMap allowing the detection of 
even shallow binding sites. Initially predicted five binding sites in each 
protein were ranked and three highest scoring regions were selected for 
drug screening. This selection was aided by previous structural and 
normal mode analyses. Grid generation for docking of the selected sites 
was achieved using Glide in XP mode. All binding sites for chicken c-Rel 
were ranked by SiteScore and Dscore to evaluate which sites are the 
most likely candidates for ligand-protein interactions (Table 1, Sup. 
Fig. 4), as can be seen all predicted sites for chicken c-Rel have SiteScore 
close to 0.9 and the druggability score (Dscore) of about 1 which suggest 
a high potential for ligand-protein interactions. While similar values 
were found for mouse p65 sites (Sup. Table 2, Sup. Fig. 5), this was not 
surprising given protein homology and the structural similarity. How-
ever, more subtle differences were observed based on the site size and 
amino acid composition in terms of hydrophobicity and hidrophylicity. 
For the purpose of the current analysis, three selected sites were ana-
lysed again with Poisson-Boltzmann (APBS) method to compare 
different binding pockets and their electrostatic surfaces (Sup. Fig. 6&7). 
Clear shifts could be observed accentuating the more electrostatically 
positive areas around the hinge regions for both c-Rel proteins; however, 
the outer side of the hinge regions that is exposed to the cytosol and does 
not interact with DNA was more electronegative. Interestingly, the N- 
terminal part of the c-Rel proteins was also highly electropositive. 
Mouse p65 showed a more dispersed profile with less distinct bound-
aries of electrostatically positive and negative regions (Sup. Fig. 7). 
These findings were in agreement with earlier sequence and structural 
analyses (Fig. 1-4) revealing that even small differences in the binding 
pocket amino acid composition can be fundamental in establishing 
target specificity and the mode of ligand-protein interaction. 

Electrostatic distribution and site scoring allowed a rational selection 

of three top sites based on the SiteMap parameters (Table 1). In addition, 
it was necessary to maintain diversity across the selected regions for 
chicken c-Rel (Sup. Fig. 4, Table 1) and mouse p65 (sup. Fig. 5, Sup. 
Table 2) so that it was possible to capture different binding modes and 
perform an in-depth screening. Again, it can be observed that these sites 
differed between the c-Rel and p65 proteins which was overall prom-
ising for the in silico drug screening as a way to increase compound 
binding specificity and minimise off-target effects. 

Overall HTVS strategy was first to screen the compound library using 
HTVS mode for both chicken c-Rel and mouse p65 proteins, remove any 
hits that were identified to bind both proteins or were below the set 
threshold of − 2 kJ/mol, ΔG. Resulting unique hits for each chicken c-Rel 
site were resubmited for SP screening mode. SP screening top scoring 
compounds were subsequently submitted for a final refinement with XP 
screening mode to ensure a gradually increasing stringency in the 
screening (Sup. Table 3). This strategy allowed to determine five most 
promising compounds for each site of chicken c-Rel (Fig. 5, Table 2). As 
predicted in the earlier analyses, three regions of c-Rel around 30–75, 
90–130 and 150–220 amino acids appear to be important in the binding 
of the majority of compounds; intriguingly these regions coincided with 
shifts in protein mobility as well as showed distinct features for the 
dihedral angle shifts (Fig. 4&5, Sup. Fig. 3). 

One of the core aims of this study was to find a way to reduce a large 
compound library to an effective size for a focused screen and extract 
compound characteristics allowing to capture the most information. 
That is, by performing initial filtering to remove similar compounds, we 
reduced the set of the compounds to only the representative members 
for that group. This enabled us to explore a wider set of chemical groups 
and address any binding mechanisms without the need to screen a huge 
number of similar or very similar compounds. As predicted, all of the 
identified compounds had a diverse set of structural features; hetero-
cyclic and/or aromatic groups, hydrogen donors/acceptors in combi-
nation with aliphatic groups allowed anchoring of the ligand through 
hydrophobic, dipole mediated or hydrogen bond interactions (Fig. 6, 
Table 2). For example, compounds with aliphatic and aromatic groups 

Fig. 5. Phi/Psi angle value distribution for c-Rel (PDB ID: 1GJI, chain B) where red bars represent phi angles and the blue - psi angles (A); structure elements of 
marked Fi-score shifts are colour code for amino acid clusters (B). Fi-Score (C) and Fi-score GMM distributions (D) are also provided revealing 17 distinct clusters 
based on Fi-Score values. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 6. Top two compounds for each chicken c-Rel (PDB ID:1GJI) site. Each row of panels provides an overall location of the compound followed by the binding 
region visualisation and schematic representation of the observed interactions. 
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Fig. 7. Top two compounds for each modelled human c-Rel site. Each row of panels provides an overall location of the compound followed by the binding region 
visualisation and schematic representation of the observed interactions. 

A. Kanapeckaitė et al.                                                                                                                                                                                                                         

112



Biophysical Chemistry 276 (2021) 106593

15

such as, ZINC000095909670 (Fig. 6, site 1) and ZINC000038794072 
(Fig. 6, site 3) provide anchoring points to orient other functional groups 
for better positively charged or hydrophobic interactions. This diverse 
set of compounds allows to associate specific amino acids with varied 
functional groups and establish privileged structures that could be used 
to build lead compounds (Fig. 6, Table 2). In addition, based on the 
described strategic sectioning of the c-Rel protein it is possible to pro-
pose potential mechanisms of action of these compounds. For example, 
conformational instability could be achieved by compound binding to 
Site 3 where compounds dock closely to the N-terminus of RHD, this 
could destabilize the Ig-like fold and expose hydrophobic amino acids to 
the overall highly electropositive environment which in turn could 
promote the destabilisation of the protein. Site 2 that engulfs the outer 
region of c-Rel (opposite to the hinge region) consists of a number of 
hydrophobic residues and displacing these amino acids could promote 
protein unfolding, aggregate formation and subsequent degradation. 
Finally, a compound binding to Site 1 embedded around the hinge re-
gion can dislodge the protein from interacting with DNA and/or its 
binding partner. As a result, the exposure of the electropositive core 
could increase solvation surface leading to conformational instability. 
The loss of structural stability is especially likely around Site 1 since the 
hinge region is loop-based without any other stabilising interactions 
within the protein and the majority of the stabilisation comes from 
protein-protein as well as DNA-protein interactions (Fig. 4). 

The docking exercise of the top scoring compounds per site was 
subjected to a different docking approach using Autodock Vina [40]; 
however, the returned binding energies were very similar to the iden-
tified earlier (Sup. Fig. 8). To investigate if there were any exclusion 
volumes due to the side chain movements, we performed a 1-ns-long 
GROMACS dynamics analysis which did not reveal any restrictions 
locally (Sup. Fig. 9). 

All of this further underlines that complex targets do not receive 
enough attention or dedicated computational solutions. c-Rel as well as 
other similar targets could benefit from our described analytical 
approach to establish varied sets of promising compounds that could be 
screened in vitro. 

All of the chicken c-Rel XP screening compounds were then docked 
using Glide XP docking mode with the respective sites of human 
modelled c-Rel which again identified a new set of compounds that 
showed the highest specificity for human c-Rel (Fig. 7, Table 2). As 
predicted due to amino acid variation, top hits changed from chicken to 
human c-Rel; nevertheless, ΔG remained consistent with a high binding 
capacity as observed for chicken cRel. Interestingly, there was a number 
of compounds that were matched between the sites of the crystal 
structure and modelled c-Rel protein. For example, three compounds 
were found to dock Site 1 in both proteins, namely ZINC000095909670, 
ZINC000003785475 and ZINC000098052562. The most shared com-
pounds for both sites had Site 3 where 4 drug-like hits 
(ZINC000029041971, ZINC000038794072, ZINC000065748825, 
ZINC000031163554) were identified while Site 2 had only two shared 
compounds (ZINC000012495519, ZINC000014824074) (Table 2). 
These findings highlight the efficacy of this methodology where com-
pounds can be tested for homologous structures and good quality models 
can be successfully used to uncover potential hit compounds. 

Nearly 40% of drug candidates fail in clinical trials because of 
unfavourable ADME properties; thus the detection of problematic can-
didates is essential in early screening stages [75–79]. Computer-based 
methods are becoming more widely used as initial means to eliminate 
compounds that would likely present poor pharmacokinetic and toxicity 
profiles. This strategy accentuates how in silico approaches can reduce 
the high costs of drug discovery by evaluating candidates before sub-
mitting them to expensive in vitro testing. For the final validation of c-Rel 
screened compounds QikProp was used to predict the widest variety of 
pharmaceutically relevant properties and determine favourable ADME 
characteristics. At this stage the compounds were evaluated only using 
computational models and should be further assessed with ADME assays 

to establish how hit compounds perform in vitro. For selected lead 
compounds, the partition coefficient (QPlogPo/w) and water solubility 
(QPlogS) was within the permissible range of − 2.0 to 6.5 and − 6.5 to 
0.5, respectively. Lipinski’s rule of five for the physicochemical prop-
erties of drug likeness had no violations (Table 2). Thus, the in silico 
screened compounds showed not only a high binding capacity to the 
target but also in silico ADME profiling confirmed the ‘drug-likeness’ 
properties of the hits. This demonstrates that before embarking into 
costly wet-lab set-ups compounds should be filtered and analysed 
employing already existing knowledge bases and models. This approach 
could facilitate capturing any features linked to toxicity or poor phar-
macokinetics and could further refine the hit compound set to be tested 
in vitro. 

4. Discussion 

Despite the potential of c-Rel, as a therapeutic target, no potent and 
selective inhibitors for c-Rel have been developed at present 
[21,65,66,80,81]. As a first step toward discovering both potent and 
specific inhibitors and/or modulators of this transcription factor a 
detailed analysis of the sequences, structural features and relevant do-
mains was initiated in preparation to an in silico high-throughput 
screening. This was done to address the common issue of not having a 
crystal structure of a target protein. By evaluating existing differences of 
closely related target proteins, this study demonstrated that capturing 
the biophysical properties of selected regions can translate into binding 
pocket identification, site characterisation and the improved detection 
of the most promising hits from the screen. With this study we showed 
how machine learning can be applied to assess protein topology features 
using dihedral angles and B-factors and we integrated this information 
with a molecular dynamics and biophysical parameter assessment, such 
as the electrostatic potential, hydrophobicity and predicted mobility. 
Thus, the described method of an in silico target analysis using structural 
controls as well as the biophysical characterisation of a protein of in-
terest could be a helpful addition in building compound screening 
pipelines and prioritising compounds for the downstream analyses to 
reduce a large chemical space. Such practices have been increasingly 
employed where only in silico studies are the focal point of the analysis to 
refine the screening libraries or identify new therapeutic compounds 
[1,5,41–43].That is, the central idea of the screening is not to identify 
binding affinities (as such might depend on other in vitro factors that are 
difficult to simulate) but provide a ranking of compounds to offer a 
directed approach for screening efforts that can help with the fast- 
tracking therapeutics development [1,5,40,43,77,82–86]. 

A virtual library of 34 million drug-like compounds was docked 
against the high-resolution chicken c-Rel protein and the highest scoring 
compounds after two rounds of refinement were docked to the corre-
sponding sites of the high-resolution human modelled c-Rel. In total 15 
hits with 6 overall being the highest scoring compounds were identified; 
all of which showed favourable ADME characteristics when analysed 
using in silico predictors for pharmacokinetics. Based on the analysis of 
binding regions it was possible to further predict potential mode of ac-
tion of the identified hits. Moreover, this analysis provides a specifically 
selected diverse set of compounds which allows to both capture different 
molecules and use them as a guide to build hit-to‑lead structures. That is, 
these results of the first extensive in silico analysis for the c-Rel and p65 
proteins illustrate the key interactions between potential therapeutic 
compounds and c-Rel and can be used as a basis for a rational drug 
design when performing a focused large scale in vitro screen. 

We also demonstrated how NMA based approaches can be used to 
explore the full scope of molecular movements [16] and connect this 
information with both the sequence and binding site characteristics. For 
example, the c-Rel protein was captured to have swinging motions and 
these observations invite further studies to investigate how DNA-protein 
and protein-protein interactions occur in this specific dimerisation 
event. That is, the transcription regulating complex might function via 
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alternating motions to expose DNA bases and alter torsional constraints 
[87]. Molecular dynamics and other analyses will likely become an 
inseparable part of the drug discovery and docking studies as they offer a 
spatiotemporal evaluation for the sites of interest [13,88]. 

Finally, the current report reveals that modelled structures in com-
bination with NMA, machine learning and molecular dynamics can be 
used as a useful emulation when crystallographic data is not available. 
Our designed HTVS study identified promising compounds that may be 
considered as good candidate leads for further development of highly 
selective c-Rel inhibitors/modulators. We wanted to highlight the need 
to rethink current paradigms in drug discovery and especially in im-
munotherapeutics development because a computer-aided target vali-
dation and screening can facilitate the designing of better in vitro screens 
with minimal early investments. We would very much welcome the 
scientific community partaking in this analysis and exploring our 
discovered structures further. 

5. Conclusion 

Efficient development of therapeutic agents can be successfully 
achieved through an early in silico analysis which can reduce both costs 
and time needed to discover promising lead-like compounds. Our re-
ported method is an efficient drug screening approach when no crystal 
structure exists for a target of interest. This variant of in silico screening 
can become central in drug discovery and can be used to better under-
stand the molecular basis of target interactions prior to performing 
costly in vitro screens. By using computational methods and the 3D 
structural information of c-Rel, it was possible to investigate the dif-
ferences in ligand-c-Rel binding and validate that with HTVS. Compu-
tational analysis resulted in the identification of 15 promising 
compounds that could be further tested in vitro for the c-Rel protein 
inhibition or modulation. Finally, this work shows that immunother-
apies can be developed by relying more and more on discovering new 
drug candidates in silico which could be more quickly and cost- 
efficiently translated into in vitro screens. 
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7. General discussion 

7.1. Towards new R&D strategies: cardiomyopathies study revealed how to improve complex 

disease analyses and find new therapeutic avenues 

 Mounting research and commercial pressures for novel therapeutics highlight why better 

strategies are needed for R&D and drug discovery2,13,17,18,22. This need becomes especially evident 

when considering how older target-centric or ‘one gene equals a disease’ approaches fail to explain 

multifactorial aspects of many pathologies and do not offer effective treatment options2,10,13,25. As a 

result, the first experimental chapter of the thesis (Chapter 2: Insights into therapeutic targets and 

biomarkers using integrated multi-‘omics’ approaches for dilated and ischemic cardiomyopathies) 

addressed the lack of integrative, omics-driven, and network-centric approaches in drug  

discovery2,10,13,45,46,132. The chapter focused on developing a highly integrative multi-omics and ma-

chine learning analytical system to probe relevant gene expression patterns and associate the identi-

fied changes with pathways and cellular processes. The main rationale for selecting cardiomy-

opathies as a case study was the fact that this multifactorial cardiac syndrome accurately illustrates 

complex diseases. This can be appreciated when considering the stochastic nature of this pathology 

with many predisposing elements, including genetic, epigenetic, familial, and environmental fac-

tors207 (Fig. 3). Moreover, limited treatment options also provided a motivation to explore how bet-

ter we could help patients88,95,208,209. Thus, CVD (specifically, HF with left ventricular dysfunction) 

served as a model to build a multi-omics analytical framework that could also be applied to other 

complex diseases and provide new insights to improve therapeutic outcomes88,208.  

 The introduced approaches for dilated and ischemic cardiomyopathies underscored how het-

erogenous diseases can be explored to identify new targets or biomarkers by employing different 

datasets, encompassing bulk RNA-seq, single cell RNA-seq, and proteomics. A new scoring system 

was also developed that can be easily adapted based on individual researcher’s needs. Moreover, 

this scoring system can be integrated with machine learning pipelines to unveil novel links within 

the interactome. The introduced research revealed that dilated and ischemic cardiomyopathies are 

driven by a nexus of shared and diverging pathways, namely oxidative stress, metabolic perturba-

tions, and immune system modulators. In addition, the cellulome of cardiac tissue was found to 

maintain a complex heterogeneity of infiltrating immune and pro-fibrotic cells. This, in line with 

the expressome data, suggested that these cell populations and their proportions depend on the car-

diac tissue state91-99,101-103,209. Another important aspect of this study was to address a common issue 
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in clinical studies when there are a limited number of samples that can be analysed207. HF analysis 

demonstrated that multi-omics based enrichment, multiple data points integration, and data mining 

can aid in uncovering disease associated pathways even with smaller sample sets. In addition, ma-

chine learning can be applied to further deconvolute complex expression features81,89,91-99,101-103. To 

complement this work, an R software package was created to make these analyses more readily 

available to researchers so that it is possible to quickly explore and integrate lab generated expres-

sion and omics data. This software tool set offers an expanded range of functionalities and scoring 

functions with a possibility to take advantage of machine learning.   

 Building this analytical architecture involved many different datasets and provided a wealth 

of interesting findings. However, several key therapeutically relevant highlights demonstrate why a 

holistic research approach is needed and why such strategies can lead to new clinical applications. 

The first part of the multi-omics analysis explored the bulk RNA-seq data of the human left ventri-

cle tissue for two indications: DC and IC. The identified significantly changed genes allowed the 

uncovering of subtle differences between hypertrophic and ischemic heart conditions. Specifically, 

the studied DC samples revealed a number significantly upregulated genes (e.g., BMP2, MYOZ1, 

and ENO2) that have strong links to myocardial tissue remodelling and structural changes not seen 

in the healthy samples (Fig. 6)81,91,145,210–217. Other genes, such as RPS17, SLITRK4, and GLT8D2, 

represent a group of genes only recently implicated in DC, where these genes play a role in protein 

synthesis, post-translational modifications, and growth control145,202,218–221. Intriguingly, genes that 

were significantly downregulated (e.g., CA11, ICAM3, and ELOVL2) are responsible for a wide 

spectrum of metabolic functions from cellular respiration to membrane integrity145,217,222–225. By 

contrast, ischemic heart conditions showed a marked upregulation of pro-inflammatory and pro-fi-

brotic genes where CX3CL1 is an especially intriguing gene as it encodes an atypical chemokine. 

This chemokine can exist as either a membrane-bound or soluble protein and the membrane-associ-

ated form is largely expressed on endothelial cells in myocardial ischemia and HF91,145,226–228. 

Moreover, a number of identified chemokine ligands (e.g., CXCL11, CXCL10, and CCL5), some 

chemokine receptors (e.g., CXCR3 and CCR7), as well as other markers, such as CD2, were also 

found to be significantly changed under myocardial ischemia. Subsequently, these findings led to 

hypothesise that the inflammatory gene upregulation might be precipitated by a significant infiltra-

tion of immune and immune system-linked cells81,83,85,91,145,210,229,230. This was supported by the 

finding that a significant proportion of fibroblasts and fibroblast-like cells populated a healthy hu-

man heart in addition to various immune cells (based on the single cell RNA-seq analysis). Under 

myocardial stress conditions, these cell types can be repopulated to promote a pro-inflammatory 
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and pro-fibrotic environment91,125,218,230-232. The presence of immune cell populations was also 

found in an additional/control analysis of the mouse left ventricle non-myocardial cellulome (single 

cell RNA-seq). As a result, normal subpopulations of immune cells identified in the heart, such as 

monocytes, macrophages, mast cells, eosinophils, neutrophils, B and T cells, have the potential to 

become activated and propagate the inflammatory state107,125,218,230-234. This study highlighted that 

analysing datasets without considering the full omics landscape can potentially lead to the misinter-

pretation of the results. Thus, bulk RNA-seq or proteomics data should always be weighed against 

the possibility of mixed cell populations in the tissue. These findings also underscored the short-

comings of some previous studies that attempted to explore the pathological milieu of heart disease. 

The limited statistical and technical exploration in the earlier studies resulted in missing the com-

plexity of the cellular makeup which subsequently restricted new therapeutic target discovery81,90. 

Furthermore, the research discussed in this thesis also revealed that proteomics data juxtaposed with 

bulk RNA-seq does not always share the same expression patterns. One such example of contrast-

ing expression patterns was the titin protein (encoded by the TTN gene) with the downregulated 

gene expression and upregulated protein expression levels. While TTN mutations are well-docu-

mented for DC and mutated or truncated TTN proteins lead to the disease parthenogenesis, the role 

of the higher protein expression is not clear235. In the case of IC, a similar expression profile could 

be found for APOB where this protein was also overexpressed despite the reduced mRNA levels. 

Thus, further investigation into the APOB expression variation across the transcriptome and expres-

some could provide a glimpse into the perturbed energy metabolism and compensatory  

mechanisms236–240. These observations of different biological readouts and their cross-referencing 

could be exploited in building omics biomarker panels (Fig. 6 and 7).  
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Figure 6. Summary of the key findings for the cardiopathologies study listing the main observations. The 
circular graph captures the types of data used for the analyses and the network analysis provides an example 
of how the introduced methodology can help build pathways and interactor networks. The cluster identified 
by machine learning (SOX17, SMAD7, and STX1B) was searched against known interactors. Various func-
tional connections were established (Networks - legend) demonstrating how specific clusters can be analysed 
through data mining when building regulatory networks. The network map was generated using the Gene-
MANIA software tool; Warde-Farley et al., 2010241. 

 This study also aimed to explore how different data points can be integrated into a single 

analytical framework to generate further pathology-related inferences. In order to address the main 

challenge of biological data integration and current limitations in combining different omics 

datasets45,131-136,138,140, a scoring system was devised with a focus on bulk RNA-seq enriched with 

the data mined from multiple resources that combined proteome, experimental, clinical, and predic-

tive readouts. Specifically, the derivation of LFCscore allowed the evaluation of how a gene partici-

pates in the expressome network and to what extent it can cause perturbations if the gene function is 

disrupted. Such clustering is the first step to integrate LFC, differentially expressed genes, and pro-

tein-protein interaction-based networks when recreating a signalling interactome. Moreover, this 

strategy could be especially useful if researchers enriched the scoring with additional weights de-

rived from their experimental work to add new information during clustering. To provide this spe-

cific option, a complimentary software package, OmicInt, was developed (Chapter 3: OmicInt pack-
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age: exploring omics data and regulatory networks using integrative analyses and machine 

learning). OmicInt facilitates further data integration and analysis so that researchers can take ad-

vantage of their experimental readouts, database mining, and machine learning in a single seamless 

application. LFCscore and the introduced machine learning approach were further tested with two 

additional cardiopathology datasets as well as cross-referenced with text or database mined re-

sources for cardiovascular pathologies, such as the GWAS dataset of human heart disease genetic 

variants242, clinical/experimental evidence from Open Targets platform144,145, as well as complete 

PubMed records160 (>30 M). This analysis allowed to verify that the proposed method juxtaposes 

rarer or newly discovered targets with more known genes linked to dilated and ischemic cardiomy-

opathies144,145,160,241,242 (Fig. 6).  

 The discussed research highlighted the importance of capturing different levels of omics 

datasets and pursuing integrative analyses, such as data mining, in order to reconstruct complex 

networks. Currently, omics studies are only just beginning to make inroads into R&D space and of-

ten such research is still very narrow without exploring robust statistical, enrichment, and classifica-

tion methods45,46,81,132,138,202. Moreover, ‘big picture’ strategies, for example, publication, experi-

mental, or clinical evidence mining, are not incorporated into building new models to consolidate 

many different types of experimental readouts2,45,46,81,132. This is evident from the current pathway 

and network analyses which are most commonly employed to assess cellular perturbation events 

using high-level analytical approaches, involving over-representation, rank-based, and topology-

based methods138–141,243. These strategies do not provide additional insights from other clinical and 

experimental resources and do not include probabilistic models for feature prediction, such as  

GMM148,150. While useful, these compartmentalised analyses provided the motivation to develop a 

more integrative approach that could evolve depending on the research needs (Fig. 7). Furthermore, 

to anticipate potential shortcomings of the proposed analytical strategy, a software package was de-

veloped to provide more freedom with data integration and scoring. The versatility and adaptability 

of the introduced methodology allow researchers to adjust the scoring system based on their in-

house data and known disease associations. Performing this scoring-based analysis prior to choos-

ing targets for downstream screens can help avoid selecting groups of genes that belong to the same 

effector network. Of course, the success of this method and other less integrative approaches always 

depends on the quality of the experimental data and available resources to perform data  

enrichment138–142. 

 The second chapter of the thesis not only provided an overview of the present challenges in 

treating HF, but also demonstrated the urgent need to rethink current therapeutic paradigms for the 
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treatment of left ventricle dysfunction. While systematic omics studies and in-depth analyses of het-

erogeneous disease mechanisms are lacking, this study, for the first time, demonstrated how bulk 

and single cell RNA-seq, as well as the proteomics analysis of the human heart tissue can be inte-

grated to uncover heart failure specific networks and potential therapeutic targets or biomarkers for 

dilated and ischemic cardiomyopathies207 (Fig. 7). Importantly, focusing on metabolic changes as 

well as inflammatory signatures could open new avenues for a targeted pharmacological interven-

tion rather than the currently practised symptomatic management. 

 

Figure 7. Multi-omics analytical framework depicting integration, analysis, and modelling principles. Sever-
al key steps are shown: omics data collection (top level), data integration/quality control (QC) (left bottom 
section), and the integrative analysis (right bottom section). 
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7.2. Implementing a streamlined target evaluation and classification: new solutions for 

discovery pipelines 

 The fourth chapter of the thesis (Fi-score: a novel approach to characterise protein topology 

and aid in drug discovery studies) provided a new method for the exploration of a protein topologi-

cal and conformational organisation where an in-depth structural feature capture was achieved using 

structural bioinformatics and machine learning methods. The paradigm shift from in vitro to  

in silico in early pilot studies underscores the need to establish reliable approaches for target selec-

tion and the evaluation of pharmacological intervention options13,20,43,244. In other words, the critical 

steps in R&D are to assess the druggability of a protein of interest and to estimate the likelihood 

that the target will be amenable to pharmacological modulation50,54,244,245. Thus, establishing robust 

computational analysis principles is essential for the growth of this field and successful preclinical 

studies22,49,246,247. As demonstrated in the second chapter, the search for a therapeutic target or tar-

gets can generate a whole set of likely candidates which after filtering and classification still need to 

be evaluated from a structural perspective in order to establish their druggability153,154,169,246,247.  

Consequently, it became necessary to devise an effective way to capture structural and physico-

chemical features of multiple targets so that it was possible to stratify these proteins prior to screen-

ing. Moreover, the introduced methodology allows not only the investigation of sites of interest but 

also the classification of protein features which could be implemented through relational databases. 

All these developments are integratable and scalable to support downstream analyses (Fig. 8). 
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Figure 8. Fi-score equation and associated analyses. Fi-score equation includes: N - the total number of 
atoms for which dihedral angle information is available, φ and ψ values - dihedral angles for the Cα atom, σφ 
and σψ - corresponding standard deviations for the torsion angles and Bi-norm - a normalised B - factor value 
for the Cα atom. B-factor, σφ, and σψ normalisation is based on the full-length protein. Plots provide informa-
tion on dihedral angle and Fi-score distributions as well as Fi-score clustering using Gaussian mixture  
modelling. Provided structure represents the Nur77 protein (PDB ID: 6KZ5) highlighting some of the identi-
fied clusters (with matched colours, bottom right plot).  

 Protein conformation determination and capturing of physicochemical properties are some 

of the most important research aspects in drug discovery28,195,248,249. Protein features that have both 

structural and composition variability can present a significant challenge in identifying good bind-

ing pockets70,248. As a result, successful therapeutics development depends on the establishment of a 

binding site profile that can be contrasted with other known binding pockets in a protein or other 

targets169,250-252. This is especially relevant for homologous or highly similar targets where structural 

classification approaches are still lacking248,249,253,254. To address structural assessment and classifi-

cation challenges, one of the central aims of this thesis was to develop a method to capture amino 

acid residue distributions providing a value that could be used to compare and characterise either 

regions of interest or entire structural elements. This topological fingerprinting technique or  

‘Fi-score’ offers an integrative approach to capture both local and distal information via dihedral 

angle and B-factor distribution. Specifically, the Fi-score helps to evaluate residue physicochemical 

properties and extract information on structural motifs174 (Fig. 8). There have been extensive studies 

showing that both dihedral angles and B-factors carry a lot of information that can be used to assess 

protein backbone orientation. B-factors can, for example, help quantify protein region flexibility or 

even hydrophobicity177-183,255–257. However, despite these insights, there have been no previous at-

tempts to capture this information in a unified way so that a quantifiable parameter could be com-

pared across different structures177-183,258,259. Furthermore, the Fi-score study demonstrated for the 

first time that the combination of dihedral angle values and B-factors into a single equation enables 

capturing structural and functional elements that might not be distinguished by analysing B-factors 

or dihedral angles alone174-183. Moreover, probabilistic density analysis, such as the implementation 

of Gaussian mixture modelling, permits a probability-based classification of features (or amino 

acids) to unveil conformational elements that depend on amino acid composition, flexibility, and 

other physicochemical parameters172-183,260. Thus, the described method offers a new way to inspect 

the differences in dihedral angle and B-factor distributions which can be, through scoring, linked to 

structural motifs or used to classify multiple targets174-176,189,256,261–266 (Fig. 8). It is important to 

note, however, that the accuracy of the scoring is dependent on the quality of the available crystal-

lographic data.  
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 To enable access for such an assessment, the R software package was developed where re-

searchers can explore their structures of interest in-depth (Chapter 5: Fiscore package: effective 

protein structural data visualisation and exploration). Importantly, Fiscore can be integrated into 

other analytical architectures and aid in studies where the expertise in machine learning is lacking 

since this package provides a user-friendly GMM exploration of any appropriate target267. Addi-

tional features, namely hydrophobicity-secondary structure plots or Fi-score-secondary structure 

plots as well as many other interactive graphs, build a highly integrative analytical framework that 

could help to quickly evaluate proteins prior to downstream analyses. 

 Thus, the introduced scoring system and machine learning applications could help to reduce 

not only costs but also the time needed to select targets and prioritise screening strategies. Specifi-

cally, developing more comprehensive R&D pipelines could improve drug discovery success rates 

and allow to target complex proteins as well as disease-causing networks. In addition, topological 

feature-based evaluation could advance drug repurposing efforts where known drug hotspots are 

searched against newly discovered targets133,170,175,176,180,181,268,269. Overall, the introduced research 

sets the ground for future studies to analyse structural characteristics in-depth and integrate this in-

formation with drug discovery pipelines. Implementation of these new strategies could greatly re-

duce the multi-dimensional complexity of therapeutics screening and target selection. 

7.3. Highly integrative in silico screening pipeline: a better method to explore targets and 

capture potential hit compounds 

 The final part of the thesis integrates the previous chapters’ research by introducing a newly 

developed and highly integrative drug discovery pipeline focusing on a complex  

immunotherapeutic target (Chapter 6: In silico drug discovery for a complex immunotherapeutic 

target - human c-Rel protein). As discussed earlier, the growing R&D costs and decreasing new 

therapeutics outputs underline why it is imperative to rethink current discovery and development 

strategies17-24,51,52,151,174,270,271. Moreover, risk-averse approaches in the pharmaceutical industry lim-

it novel therapies development and lead to increasing patient care costs70,105,170,270,271. This was also 

exemplified in a cardiomyopathies case study (Chapter 2) where current therapeutic options are 

only limited to symptomatic management with declining investments in the exploration of the alter-

natives11,13,17,22,244,270,271. Thus, these discovery and clinical challenges motivated the development 

of new HTVS strategies using holistic and integrative methods in computational biology and chem-

istry that could speed up the search of drug-like compounds and expand the screening space. Since 
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earlier omics analyses hinted at the potential involvement of the NF-κB pathway in cardiopatholo-

gies, a subunit of this transcription factor, the c-Rel protein, was selected as a complex im-

munotherapeutic target for the development of a HTVS pipeline2,123,125-129,244,272 (Fig. 9). 

 Despite the potential of c-Rel, as a therapeutic target, there are no potent and selective in-

hibitors for this protein81,89,91,123,273. c-Rel has been implicated in many different diseases ranging 

from immunopathologies to cardiomyopathies115,116,121–129,274. Thus, studying this transcription fac-

tor subunit could help devise multi-modulatory strategies (e.g., homologous targets are engaged at a 

varying degree) as well as discover new mode of action highly specific therapeutics86,106,114,123. 

Therefore, the first step towards discovering both potent and specific inhibitors and/or modulators 

of NF-κB or any similar complex target relies on a detailed analysis of target sequences and struc-

tural features as well as the identification of relevant domains for protein-drug interactions121-129,274-

276. Considering the above, a novel strategy of hierarchical analysis was developed in preparation 

for an in silico high-throughput screening that could serve as a blueprint for complex target HTVS 

(Fig. 9). Moreover, in-depth structural analysis and molecular modelling demonstrated how to over-

come the common issue of not having a crystal structure for a target protein, as no X-Ray structures 

are currently resolved for human c-Rel115,116,121-130,273-278. The study focused on the evaluation of 

existing differences between closely related target proteins (e.g., c-Rel and p65)61,121-130,154,250–

252,279–281 and in combination with structural bioinformatics, molecular modelling, and machine 

learning it was possible to capture the biophysical properties of selected c-Rel regions. The identi-

fied sites were ranked based on the ligand binding probability and expected drug modes of action. 

Various studies have stressed the need to focus on binding pockets but little methodology has been 

developed to combine structural bioinformatics with computational chemistry168,195-197,278,282,283. 

Specifically, commercial platforms, such as Schrödinger201, or open-source tools, including 

Autodock Vina203, primarily focus on the computational chemistry without considering the structur-

al bioinformatics component. Moreover, screening strategies still lack well-defined protocols and 

the developed methodologies are not made easily accessible for further development and testing. 

These limitations span library selection strategies, target selection and assessment, screening re-

finement, and result validation28,68,69,80,279,284. The current study expanded on the missing pieces in 

computational chemistry research by providing a detailed analysis strategy and showed how ma-

chine learning can be applied to assess protein topology and conformational features (Fig. 9). In ad-

dition, it was outlined how this information can be integrated with a molecular dynamics and bio-

physical parameter assessment, such as the electrostatic potential, hydrophobicity, and predicted 

mobility, to prepare for HTVS. This study also demonstrated how NMA and similar coarse grained 
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molecular modelling approaches can be used to explore the relevant scope of molecular move-

ments53,131,170,197-199,285 and how the incorporation of this information together with sequence and 

binding site characteristics can offer new insights into molecular dynamics. NMA revealed that  

c-Rel can potentially have winging motions which suggests that DNA-protein and protein-protein 

interactions are complex creating and opening new binding sites which go beyond a simple clamp-

ing seen via X-Ray crystallography studies113,118,119,187,275. The introduced strategies of an in silico 

target analysis could assist in selecting relevant targets and building compound screening pipeli-

nes28,286-292. 

 It is also important to highlight that the central idea of the in silico screening is not to  

identify exact binding affinities (i.e., to match experimental readouts) or to replace in vitro screens 

but to provide a ranking of potential hit compounds in order to fast-track therapeutics  

development28,68-70,278. Limitations of HTVS depend on the quality of target structures, selected li-

braries, and platform design68,69,255. The aim of the presented research was to create a framework 

that is adaptable and can evolve as better algorithms become available. Importantly, the developed 

pipeline combines both bioinformatics and cheminformatics tools to prepare for the screening 

which is expected to improve the detection of therapeutically promising compounds. 

 The results of the first extensive in silico analysis for the c-Rel protein outlined key protein-

drug interactions and the developed analytical framework could be used as a basis for rational drug 

design in preparation for large-scale in vitro screens of complex targets278. Furthermore, this  

screening introduced a diverse set of compounds which can be used as a chemical guide to build 

improved hit-to-lead structures for c-Rel. Thus, this analytical map could be incorporated into ther-

apeutic pipelines for the NF-κB pathway targets (Fig. 9). Considering the above, this study allowed 

to appreciate that drug discovery and complex target analysis can rely more on discovering new 

drug candidates through in silico methods. This type of search for new drugs could be more quickly 

and cost-efficiently translated into in vitro and in vivo screens. 
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Figure 9. Integrative in silico pipeline protocol for high-throughput virtual screening and drug discovery. 
The analytical schema highlights the synergy of structure- and ligand-based methods. In addition, the itera-
tive screening provides many different opportunities to further optimise and adapt any compound library. 
The process concludes with hit compound selection, optimisation, and early validation studies. ADMET - 
absorption, distribution, metabolism, excretion, and toxicity. 
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7.4. Programmatic approaches and data management: maintaining and designing robust 

workflows 

 Workflow development can become a key component in a successful in silico discovery 

pipeline enabling many different research aspects, including managing data flow and merging virtu-

al analyses with in vitro or in vivo assessments292. Establishing good workflow building, mainte-

nance, and use practices guarantees better research reproducibility and resource savings since data 

curation and retrieval can be automated or semi-automated processes293,294. Part of the research 

aims of this thesis was to develop software packages, namely OmicInt and Fiscore, and make the 

introduced analytical approaches more available to other researchers (Fig. 10). Moreover, it was 

necessary to create an interactive and user-friendly environment where machine learning analyses 

could be easily implemented by non-experts. In the case of cheminformatics, Schrödinger suite201  

provides a fully customisable set of tools and the user can easily adapt the protocol introduced in 

this thesis. To assist with early compound library preparation, a Chemexpy software package was 

also introduced for the Python programming environment. Together, these pieces of software and 

protocols create an adaptable set of research tools that can facilitate target evaluation and new drug 

discovery. 

 OmicInt is an R software package developed for an in-depth exploration of significantly 

changed genes, gene expression patterns, and the associated methylome as well as the miRNA envi-

ronment. This piece of software accompanies the second chapter of the thesis focusing on omics 

analyses. The package helps to assess gene clusters based on their known or predicted interactors 

from several different resources, e.g., UniProt295 and STRINGdb146,147. Moreover, OmicInt provides 

an easy Gaussian mixture modelling148,150,296 pipeline for integrative analysis that can be used by a 

non-expert to explore gene expression datasets. Specifically, the package expands the LFCscore func-

tionality by allowing single-cell and proteome experimental data integration. In addition, many oth-

er package functionalities can aid in studying specific gene networks, understanding cellular pertur-

bation events, and exploring interactions that might not be easily detectable otherwise.  

 Lack of bioinformatics tools for a quick assessment of protein conformational and topologi-

cal features motivated to create an integrative and user-friendly R software package - Fiscore246,297–

300. This package complements the fourth chapter of the thesis. One of the key features of the Fis-

core package is Gaussian mixture modelling to allow a probabilistic evaluation of complex struc-

tural features. The package builds on the mathematical formulation of protein physicochemical 

properties that can be easily visualised and explored with interactive plots. 
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 All pieces of software are accompanied by vignettes and supporting documentation which 

are provided to guide the user through detailed tutorials and use cases267,301–304. In addition, 

Github305 provides an opportunity to actively make suggestions for additional features.  

 R software packages are distributed as a part of the CRAN network306 and the python chem-

informatics package is on the PyPi platform307. All software tools promote open science practices 

and make research more accessible. With community inputs and suggestions, it is possible to ex-

pand the analytical scope and ensure the quality of programmatic solutions. 

129



General discussion

Figure 10. Fiscore (top) and OmicInt (bottom) package architecture visualisation with function organisation 
and sample outputs. 
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7.5. Thesis overview and conclusion 

 Drug discovery and development depends on our ability to identify therapeutically relevant 

targets and match that information with a complex chemical space that can lead to potential drug 

candidates15,23,152. However, in the last few decades the continued decline in new drug discovery 

and growing R&D expenditures prompted many companies to rethink their discovery strategies and 

begin focusing on computational methods17,18,22,244. As a result, computational biology, bioinformat-

ics, and cheminformatics have made significant inroads into the pharmaceutical industry where in 

silico approaches now not only accelerate the exploration of new therapeutic candidates but also 

help to reduce R&D costs and the likelihood of missing relevant hits55,131,308. Despite many  

advancements in computational biology, bioinformatics, system biology, and computational chem-

istry, there is still a significant lack of end-to-end solutions for the right target identification and se-

lection of the most promising compounds43,59,60,281. Considering the above challenges and the need 

for improved R&D strategies, this thesis aimed to introduce multi-omics and highly integrative ana-

lytical frameworks for a more streamlined target and therapeutics discovery approach. 

 The research began by developing an analytical strategy for studying complex diseases 

through multi-omics approaches to identify new therapeutically relevant targets. A case study of 

cardiomyopathies allowed to demonstrate how omics data integration, data enrichment, and ma-

chine learning can aid in better understanding multifaceted disease aetiologies. These insights pro-

vided an impetus to develop a protein structural and topological classification methodology so that 

multiple targets can be evaluated, grouped, and analysed based on structural and functional features.  

The final experimental chapter of the thesis combined the earlier analyses by introducing a novel 

hierarchical HTVS pipeline and comprehensive target analysis to reveal potential drug candidates 

for a challenging immunotherapeutic target. A case study target, the human c-Rel protein, was  

selected to build this analytical environment comprising structural bioinformatics, molecular mod-

elling, cheminformatics, and machine learning. 15 new hit compounds were discovered after com-

bining structure- and ligand-based approaches to parse an unprecedented size chemical library  

(659 M chemical entities)80,157,278. The devised screening blueprint can be applied to study complex 

targets and accelerate compound selection. 

 In summary, the outlined studies create a holistic research strategy for drug discovery in the 

computational space. Proposed solutions and novel insights in therapeutics development can signif-

icantly improve the current R&D strategies by reducing screening time, costs, and  
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turnaround2,13,17,18,28. Importantly, the introduced highly integrative and network-centric approaches 

offer a better understanding of pathological perturbations and can help deliver so much needed clin-

ical solutions faster and with a safer profile. 
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8. Future work 

 New therapeutics development faces a number of challenges and, while some are the 

commercial pressures to maintain market dominance, the bigger issue is the constantly shrinking 

pool of easy-to-identify and viable targets2,4,15,140,169. The change in research strategy brought about 

by the use of in silico, ML/AI, and data mining is likely to continue to grow in popularity for 

preclinical research and development2,28,49,244,281,286. Thus, reducing associated R&D costs and the 

time needed to produce new pharmaceuticals will depend on how well we can take advantage of 

existing methodologies and continue evolving the in silico field.  

 The future work within the scope of drug discovery will continue to build on the findings 

and newly developed methodologies described in this thesis. The planned research trajectories 

could be divided into several themes. The first will focus on continuing to establish disease network 

and perturbation event exploratory analyses where significantly changed genes can be explored in a 

broader context of mined proteomics, single cell, and regulatory data. Specifically, creating 

mathematical and systems biology methods to better classify and prioritise the expressome patterns 

should enable a more sensitive and specific detection of causal gene networks. This work will tie in 

with the second major research theme of protein structural analysis where the main focus will be to 

improve conformational modelling and feature prediction to assist with drug discovery. For 

example, multiple homologous and non-homologous proteins could be screened using different 

scoring windows to predict which scoring approach is the best for various target site comparisons. 

Similarly, known-binding pocket survey could help gain additional insights into druggable 

proteome characteristics. The third theme will continue to be ligand- and structure-based drug 

discovery as well as HTVS protocol improvement juxtaposing in silico readouts with in vitro 

binding studies. Building such a screening library should be a valuable reference for both statistical 

analyses and machine learning based modelling. The exploration of therapeutic intervention options 

for the NF-κB pathway will remain an important future research aspect because understanding     

NF-κB targeting principles could greatly enhance our ability to engage other challenging proteins or 

complexes. Finally, any newly developed software packages or tools will be made freely available 

to other researchers so that the methods can evolve and improve. 
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Supplementary Figures and Data

                   LFCScore=LFC(1+α) 

Equation 1.  Log2 Fold ChangeScore equation defines a scaled LFC (log2 fold change) value for a given contrast where α 
is a value showing the strength of disease association for a given gene (the α value is retrieved from Open Targets 
disease association scoring). 
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BA

Supplementary Figure 1. Raw (A) and log2+1 normalised (B) sample count distributions for human left ventricle bulk RNA-seq (PRJNA477855).  
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A B

Supplementary Figure 2. Density distribution of log2+1 transformed sample counts (A) and MA plots for log2+1 transformed counts (B) where the red line indicates average differences. 

158



Supplementary Figure 3. Log2+1 transformed counts for samples plotted against each other to evaluate count distribution and sequencing depth. Representative combinations 
are shown. 
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Supplementary Figure 4. Human 
left ventricle bulk RNA-seq 
(PRJNA477855) significantly 
changed gene count Volcano plots 
where FDR p-adjusted<0.00001 
and LFC>|2|. 
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DC vs Healthy
IC vs Healthy

DC vs IC

Supplementary Figure 5. Venn diagram for significantly changed genes when comparing changed genes across different contrast groups: DC vs Healthy, IC vs Healthy and DC vs IC. 
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Supplementary Figure 6. Heatmap for significantly changed genes (ranking the top genes based on the p-adjusted value) that are 
unique for the contrasts: DC vs healthy samples (A) and IC vs healthy samples (B) where values are shown for all conditions. Reported 
counts are rlog transformed and mean standardised per gene.
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Genes that are uniquely and significantly changed in DC vs healthy

Genes that are uniquely and significantly changed in IC vs healthy

Supplementary Figure 7. Log10 scaled gene counts that changed significantly in a specific contrast groups: DC vs Healthy (top 
panels), IC vs Healthy (bottom panels) and belonged to the largest log fold change group.
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Supplementary Figure 8. Scaled gene counts that changed significantly in DC vs Healthy samples and where expression 
patterns formed distinct expression clusters across different human heart tissue states when comparing for both genders. 
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Supplementary Figure 9. Scaled gene counts that changed significantly 
in IC vs Healthy samples and where expression patterns formed distinct 
expression clusters across different human heart tissue states when 
comparing for both genders. 
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A

B

C

D

Supplementary Figure 10. 
Enrichment analysis for all 
significantly changed genes in the 
IC vs Healthy contrast group where 
enriched cellular processes (A) and 
the visualisation of the top highest 
ranking processes and 
corresponding genes (B) are 
provided in the distribution plots 
and network maps, respectively.  
Enrichment analysis for genes that 
changed significantly in IC vs 
Healthy but not in DC vs Healthy 
are plotted as cellular processes 
distribution (C) and the visualisation 
of the top highest ranking 
processes and corresponding 
genes are shown in network maps 
(D). Gene set size that was 
enriched and p-adjusted value 
provided with the plots. 
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Supplementary Figure 11. Protein sample main 
characteristics: normalised (log2+1 transformed) protein 
abundance/count (LFQ) values for human left ventricle 
proteome (PXD008934) (A), density plots of protein 
samples distribution (B) and shared proteins by different 
contrast groups are visualised via Venn diagram (C). 
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Supplementary Fig. 12. Human left ventricle bulk proteome (PXD008934) abundance clustering and distribution analysis showing 
Spearman correlation calculated distances (A) and euclidean distances (B) for rlog transformed abundance values (LFQ) using 
complete-linkage hierarchical clustering method; sample distributions across top two principal components are shown in the PCA plot 
grouping by condition (C) and gender (D). 
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Supplementary Figure 13. 
Volcano plot for human left 
ventricle proteins 
(PXD008934) that changed 
significantly in specific 
contrasts, FDR p-
adjusted<0.00001 and Log 
fold change (LFC)>|2|.  
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Supplementary Figure 14. 
Gene and protein LFC  
values for different 
contrasts where gene LFC 
values were generated from 
bulk RNA-seq 
(PRJNA477855) and 
protein LFCs were derived 
from proteome analysis 
(PXD008934). 
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Supplementary Figure 15. Mouse non-cardiomyocyte single cell RNA-seq (E-MTAB-6173) cellulome composition. *Some longer 
names were abbreviated; for full names, please refer to Supplementary Table 9. 
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Supplementary Figure 16. Mouse non-
cardiomyocyte single cell RNA-seq (E-
MTAB-6173) cellulome marker gene 
clusters for the uncovered cell types. 
Please note: image needs to be zoomed 
in for proper viewing. 
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Supplementary Figure 17. 
Mouse non-cardiomyocyte 
single cell RNA-seq (E-
MTAB-6173) cellulome marker 
gene heatmap for the 
uncovered clusters of different 
cells. *Some longer names 
were abbreviated, for full 
names; please refer to 
Supplementary Table 9. 
Please note: image needs to 
be zoomed in for proper 
viewing. 
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Supplementary Figure 18. Human heart left ventricle cellulome composition. 
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Supplementary Figure 19. Human heart left ventricle cellulome UMAP decomposition showing relative distances and the uncovered clusters of different cells. 
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Supplementary Figure 20. Human heart left ventricle cellulome marker gene clusters for the uncovered cell types. 
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Supplementary Figure 21. 
Human heart left ventricle 
cellulome marker gene 
heatmap for the uncovered 
clusters of different cells. 
Please note: image needs to 
be zoomed in for proper 
viewing. 
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Supplementary Figure 22. Human 
heart left ventricle bulk RNA-seq shared 
significantly changed gene (n=160) set 
between dilated and ischemic 
cardiomyopathy contrast groups 
(disease vs healthy state) 
agglomerative hierarchical clustering 
based on Log2 Fold Change Score and 
known interactors returned the shared 
dendrogram. Coloured branches signify 
similar clustering patterns. Please note: 
image needs to be zoomed in for 
proper viewing. 
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Figure 23. GMM clustering showing specific 
grouping based on Log2 Fold Change Score 
against known or predicted number of 
interactions for that gene where significantly 
changed genes in biopsies of dilated heart 
(GEO: GSE3585) (DC validation) as well as 
diabetic heart failure samples (GEO: 
GSE26887) (Diabetic IC validation) were used 
for clustering. DC (dilated cardiomyopathy); IC 
(iscemic cardiomyopathy; ischemic tissue 
pathology). 
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Supplementary Table 1. Randomly selected samples of 
PRJNA477855 RNA-seq for the heart failure in human left ventricles

Sample ID Sex Age Condition

SRR7426784 Male 43 Non-failing

SRR7426785 Male 54 Non-failing

SRR7426786 Female 41 Non-failing

SRR7426787 Female 56 Non-failing

SRR7426798 Male 38 Dilated 
cardiomyopathy

SRR7426799 Male 66 Dilated 
cardiomyopathy

SRR7426801 Female 66 Dilated 
cardiomyopathy

SRR7426807 Female 51 Dilated 
cardiomyopathy

SRR7426835 Male 63 Ischemic 
cardiomyopathy

SRR7426836 Male 56 Ischemic 
cardiomyopathy

SRR7426840 Female 57 Ischemic 
cardiomyopathy

SRR7426841 Female 60 Ischemic 
cardiomyopathy

 1
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Supplementary Table 2. Randomly selected proteome samples 
(PXD008934 ) of the heart failure in human left ventricles

Sample ID Sex Age Condition

1085 Female 54 Non-failing

1356 Female 51 Non-failing

1383 Male 59 Non-failing

1325 Male 53 Non-failing

1535 Female 58 Dilated 
cardiomyopathy

1304 Female 63 Dilated 
cardiomyopathy

1467 Male 67 Dilated 
cardiomyopathy

1290 Male 65 Dilated 
cardiomyopathy

1311 Female 56 Ischemic 
cardiomyopathy

1195 Female 64 Ischemic 
cardiomyopathy

1427 Male 62 Ischemic 
cardiomyopathy

1004 Male 58 Ischemic 
cardiomyopathy

 1

181



Supplementary Table 3. DC vs Healthy significantly and uniquely expressed genes that cluster into functional processes

Gene Function baseMean log2FoldChange lfcSE stat pvalue padj

MYL1 myosin light chain 1 14.364641 3.5442291 0.6937477 5.108816 3.241839e-07 3.309117e-05

DNAH6 dynein axonemal heavy chain 6 8.166608 2.6515123 0.8483073 3.125651 1.774122e-03 2.042312e-02

MYOZ1 myozenin 1 67.628563 2.5242075 0.5377578 4.693949 2.679814e-06 1.651131e-04

ACKR2 atypical chemokine receptor 2 23.264701 2.1723989 0.6590295 3.296361 9.794617e-04 1.366374e-02

CPEB1 cytoplasmic polyadenylation eleme
nt binding protein 1

20.604908 1.6807667 0.4578147 3.671282 2.413373e-04 4.872401e-03

SPOCK1 SPARC (osteonectin), cwcv and kaz
al like domains proteoglycan 1

2038.957418 1.4382561 0.4926295 2.919549 3.505379e-03 3.280854e-02

CCDC181 coiled-coil domain containing 181 41.082447 1.0713172 0.3905919 2.742804 6.091696e-03 4.805408e-02

CLSTN2 calsyntenin 2 181.705133 1.0150829 0.3411624 2.975366 2.926394e-03 2.918652e-02

SCN3B sodium voltage-
gated channel beta subunit 3

121.951613 0.9871886 0.3396407 2.906567 3.654184e-03 3.382980e-02

MTCL1 microtubule crosslinking factor 1 399.153170 0.9570641 0.3243318 2.950879 3.168705e-03 3.080823e-02

SPACA9 sperm acrosome associated 9 92.324392 0.9510539 0.2954235 3.219290 1.285087e-03 1.653543e-02

STIM1 stromal interaction molecule 1 1423.623159 0.9285644 0.2951181 3.146416 1.652845e-03 1.943749e-02

DBN1 drebrin 1 1080.662131 0.7704495 0.2669485 2.886135 3.900043e-03 3.528259e-02

DPYSL2 dihydropyrimidinase like 2 3633.965755 0.7582409 0.2235979 3.391091 6.961502e-04 1.069271e-02

DPYSL3 dihydropyrimidinase like 3 2359.704732 0.7366823 0.2315744 3.181190 1.466713e-03 1.802526e-02

DYNC2H1 dynein cytoplasmic 2 heavy chain 1 180.805018 0.7031502 0.2276818 3.088302 2.013039e-03 2.232452e-02

DYNC2LI1 dynein cytoplasmic 2 light intermedi
ate chain 1

266.016147 0.6649107 0.1777337 3.741050 1.832531e-04 4.011862e-03

STMN1 stathmin 1 1394.640523 0.6131505 0.1939413 3.161527 1.569443e-03 1.880988e-02

KIF13B kinesin family member 13B 748.045214 0.5869961 0.1823980 3.218216 1.289905e-03 1.656006e-02

ARHGEF9 Cdc42 guanine nucleotide exchang
e factor 9

2062.960977 0.4829104 0.1541420 3.132894 1.730918e-03 2.006620e-02

BEX4 brain expressed X-linked 4 1429.322911 0.4552700 0.1443430 3.154085 1.610021e-03 1.910182e-02

EMD emerin 1216.220897 0.4175931 0.1428686 2.922918 3.467680e-03 3.265488e-02

GRIN2A glutamate ionotropic receptor NMD
A type subunit 2A

573.703544 -2.7942514 0.7787652 -3.588054 3.331555e-04 6.236027e-03

CKAP2L cytoskeleton associated protein 2 li
ke

11.961873 -2.6685788 0.8531485 -3.127918 1.760491e-03 2.030932e-02

BIRC5 baculoviral IAP repeat containing 5 21.241373 -2.2754492 0.7494786 -3.036043 2.397053e-03 2.525290e-02

MYL7 myosin light chain 7 18087.277809 -2.2153761 0.7113916 -3.114144 1.844793e-03 2.089653e-02

GRIN3A glutamate ionotropic receptor NMD
A type subunit 3A

64.115114 -1.9192671 0.5051655 -3.799284 1.451149e-04 3.428558e-03

WDR62 WD repeat domain 62 892.755862 -1.5955712 0.4224322 -3.777106 1.586614e-04 3.599424e-03

TPX2 TPX2 microtubule nucleation factor 62.949467 -1.5698211 0.5693498 -2.757217 5.829562e-03 4.696565e-02

DAB1 DAB adaptor protein 1 150.512063 -1.4456068 0.5159792 -2.801677 5.083781e-03 4.238482e-02

SLC6A9 solute carrier family 6 member 9 46.797095 -1.3703820 0.4704159 -2.913128 3.578276e-03 3.331668e-02

XIRP2 xin actin binding repeat containing 
2

24918.002954 -1.3193753 0.3904855 -3.378807 7.280109e-04 1.105679e-02

RAPGEF4 Rap guanine nucleotide exchange f
actor 4

431.263667 -1.1737832 0.2944133 -3.986856 6.695474e-05 1.962003e-03

NAV3 neuron navigator 3 149.225690 -1.1374313 0.3527139 -3.224798 1.260614e-03 1.629980e-02

SYT7 synaptotagmin 7 758.842852 -1.0877793 0.2804863 -3.878191 1.052361e-04 2.704219e-03

CASQ1 calsequestrin 1 1625.708040 -0.9884939 0.3025740 -3.266950 1.087130e-03 1.470147e-02

CKAP2 cytoskeleton associated protein 2 263.132918 -0.9700421 0.2016049 -4.811599 1.497275e-06 1.049771e-04

CSRP2 cysteine and glycine rich protein 2 246.791278 -0.9263227 0.3090644 -2.997183 2.724870e-03 2.785318e-02

CAVIN4 caveolae associated protein 4 2065.005630 -0.9151393 0.2894771 -3.161353 1.570381e-03 1.880988e-02

RACGAP1 Rac GTPase activating protein 1 140.665811 -0.9059803 0.3151308 -2.874934 4.041121e-03 3.621779e-02

HAUS8 HAUS augmin like complex subunit 
8

76.137586 -0.8579109 0.2293639 -3.740391 1.837339e-04 4.016956e-03

ADGRL1 adhesion G protein-
coupled receptor L1

598.092664 -0.8145279 0.2114153 -3.852739 1.168038e-04 2.936524e-03

LMOD3 leiomodin 3 7566.814823 -0.7681449 0.2451851 -3.132918 1.730779e-03 2.006620e-02

HOMER1 homer scaffold protein 1 1455.505991 -0.7475483 0.2050636 -3.645447 2.669277e-04 5.269231e-03

TPM2 tropomyosin 2 17977.301514 -0.7375223 0.1857629 -3.970235 7.180183e-05 2.063478e-03

TUBG1 tubulin gamma 1 778.972242 -0.7280100 0.2135228 -3.409518 6.507779e-04 1.015888e-02

PLS1 plastin 1 62.528767 -0.7257692 0.2465286 -2.943955 3.240467e-03 3.122597e-02

TWF1 twinfilin actin binding protein 1 221.217600 -0.7146674 0.2287339 -3.124450 1.781379e-03 2.049216e-02

DVL1 dishevelled segment polarity protei
n 1

2161.904668 -0.5868644 0.1575715 -3.724431 1.957560e-04 4.213721e-03

PRKCZ protein kinase C zeta 354.010016 -0.5829840 0.1401274 -4.160386 3.177105e-05 1.122829e-03

TBCE tubulin folding cofactor E 653.400540 -0.5807267 0.2080410 -2.791405 5.247982e-03 4.333182e-02

LZTS3 leucine zipper tumor suppressor fa
mily member 3

634.659755 -0.5485539 0.1959767 -2.799077 5.124887e-03 4.260661e-02

ARHGEF25 Rho guanine nucleotide exchange f
actor 25

637.517291 -0.5294155 0.1675045 -3.160605 1.574418e-03 1.882395e-02

PSEN2 presenilin 2 445.233639 -0.4988028 0.1707856 -2.920638 3.493160e-03 3.280585e-02

CALM3 calmodulin 3 8389.100991 -0.4961853 0.1478749 -3.355439 7.923901e-04 1.164319e-02
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WDR1 WD repeat domain 1 6316.830591 -0.4824212 0.1769203 -2.726771 6.395744e-03 4.963415e-02

NEDD1 NEDD1 gamma-
tubulin ring complex targeting facto
r

493.649478 -0.4821382 0.1636056 -2.946953 3.209216e-03 3.101170e-02

HAUS6 HAUS augmin like complex subunit 
6

284.843278 -0.4344779 0.1511268 -2.874922 4.041270e-03 3.621779e-02

YWHAZ tyrosine 3-monooxygenase/
tryptophan 5-
monooxygenase activation protein 
zeta

3386.395776 -0.4324969 0.1315951 -3.286573 1.014145e-03 1.401537e-02

MYO9B myosin IXB 1680.830140 -0.4021050 0.1393136 -2.886329 3.897646e-03 3.528053e-02

NPTN neuroplastin 4830.323592 -0.3672508 0.1320114 -2.781962 5.403129e-03 4.434208e-02

WASL WASP like actin nucleation promoti
ng factor

1388.656537 -0.3639156 0.1255122 -2.899444 3.738247e-03 3.435385e-02

MYO1C myosin IC 6923.937386 -0.2748624 0.0937564 -2.931666 3.371490e-03 3.197706e-02

Gene Function baseMean log2FoldChange lfcSE stat pvalue padj
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Supplementary Table 4. IC vs Healthy significantly and uniquely expressed genes that cluster into functional processes

Gene Function baseMean log2FoldChange lfcSE stat pvalue padj

IGHV4-34 immunoglobulin heavy variable4-34 46.175900 9.1273257 2.79946948 3.260377 1.112642e-03 1.028591e-02

IGHV3-9 immunoglobulin heavy variable3-9 33.303123 7.3619659 2.34733350 3.136310 1.710882e-03 1.406509e-02

IGKV2-30 immunoglobulinkappavariable2-30 12.548717 6.7281601 1.81938084 3.698049 2.172627e-04 2.978809e-03

HLA-C majorhistocompatibilitycomplex,classI,C 58.412783 6.4450762 2.46816217 2.611286 9.020254e-03 4.673391e-02

IGHM immunoglobulin heavy constantmu 1109.346750 6.3814377 1.56024785 4.090015 4.313446e-05 8.611875e-04

IGKV3-15 immunoglobulinkappavariable3-15 34.046892 5.8891336 2.26006724 2.605734 9.167768e-03 4.720071e-02

IGLV6-57 immunoglobulin lamda variable6-57 17.218947 5.7905202 1.59281575 3.635399 2.775511e-04 3.594990e-03

IGLV2-14 immunoglobulin lamda variable2-14 42.539114 5.7834533 1.76037108 3.285360 1.018520e-03 9.629910e-03

IGHV4-39 immunoglobulin heavy variable4-39 23.994505 5.3459247 1.80178927 2.967009 3.007123e-03 2.129960e-02

LAMP3 lysosomal associated membraneprotein3 16.302660 5.1466230 1.36461187 3.771492 1.622743e-04 2.392538e-03

IGHA1 immunoglobulin heavy constantalpha1 2443.532712 5.1407396 1.32273578 3.886445 1.017230e-04 1.685016e-03

IGKV1-5 immunoglobulinkappavariable1-5 112.983246 4.6976531 1.61221023 2.913797 3.570622e-03 2.391583e-02

IGKV3-20 immunoglobulinkappavariable3-20 62.627803 4.6014836 1.48521977 3.098184 1.947107e-03 1.542016e-02

CXCL9 C-X-Cmotifchemokineligand9 913.960195 4.5990793 1.47405748 3.120014 1.808427e-03 1.461932e-02

IGHV3-49 immunoglobulin heavy variable3-49 5.965469 4.5368830 1.74620542 2.598138 9.373076e-03 4.796419e-02

IGKV4-1 immunoglobulinkappavariable4-1 110.768233 4.5232171 1.55603104 2.906894 3.650370e-03 2.425527e-02

IGHV1-18 immunoglobulin heavy variable1-18 20.877473 4.4452646 1.50479891 2.954059 3.136241e-03 2.190526e-02

CCL22 C-Cmotifchemokineligand22 7.957771 4.3738857 1.23279685 3.547937 3.882609e-04 4.655491e-03

IGLV2-8 immunoglobulin lamda variable2-8 41.688621 4.2705233 1.42892513 2.988626 2.802346e-03 2.018442e-02

CCR7 C-Cmotifchemokinereceptor7 16.270529 4.2070196 1.15634803 3.638195 2.745555e-04 3.575672e-03

IGLV1-40 immunoglobulin lamda variable1-40 23.419365 4.1822933 1.23504016 3.386362 7.082584e-04 7.257142e-03

IGLV2-11 immunoglobulin lamda variable2-11 19.128619 4.1416331 1.38691320 2.986224 2.824459e-03 2.029096e-02

CCL24 C-Cmotifchemokineligand24 8.324075 4.1391190 1.17488714 3.522993 4.267028e-04 4.969534e-03

SIRPG signalregulatoryproteingamma 9.277391 4.1372090 1.50304550 2.752551 5.913298e-03 3.457949e-02

TNFRSF18 TNFreceptorsuperfamilymember18 6.137487 4.1211102 1.49236900 2.761455 5.754440e-03 3.391286e-02

IGLV2-23 immunoglobulin lamda variable2-23 29.117633 3.9435233 1.21315995 3.250621 1.151532e-03 1.056906e-02

JCHAIN joiningchainofmultimericIgAandIgM 777.145189 3.8890048 1.41118545 2.755842 5.854119e-03 3.436634e-02

CD1E CD1emolecule 13.516190 3.8875102 1.33380078 2.914611 3.561323e-03 2.390440e-02

IGLL5 immunoglobulin lambda like polypeptide 5 78.973895 3.8517529 1.41422220 2.723584 6.457781e-03 3.681843e-02

CXCL11 C-X-Cmotifchemokineligand11 62.101707 3.7301417 1.40623421 2.652575 7.988037e-03 4.266187e-02

CXCL10 C-X-Cmotifchemokineligand10 215.444156 3.6992948 1.37792875 2.684678 7.259974e-03 4.008053e-02

CXCR3 C-X-Cmotifchemokinereceptor3 17.585516 3.5336855 1.09658404 3.222448 1.271001e-03 1.137675e-02

IGHA2 immunoglobulin heavy constantalpha2(A2mmarker) 169.686781 3.4444847 1.25399405 2.746811 6.017779e-03 3.504261e-02

SYTL1 synaptotagminlike1 37.139142 3.0402394 0.67412463 4.509907 6.485606e-06 1.879131e-04

CD1C CD1cmolecule 36.442241 2.9629920 0.85679532 3.458226 5.437447e-04 6.004660e-03

CCL5 C-Cmotifchemokineligand5 120.600192 2.8050933 0.73455924 3.818744 1.341331e-04 2.082883e-03

CD2 CD2molecule 65.872598 2.7316791 0.89080190 3.066539 2.165523e-03 1.675108e-02

ABCC11 ATP binding cassette subfamily C member11 5.339165 2.7308018 0.92742095 2.944512 3.234647e-03 2.236549e-02

TRBC2 Tcell receptor beta constant2 120.393934 2.7055916 0.78756045 3.435408 5.916620e-04 6.389565e-03

RHOH ras homolog family member H 18.654429 2.5931203 0.99399776 2.608779 9.086596e-03 4.697528e-02

SMPD3 sphingomyelinphosphodiesterase3 14.827849 2.5648910 0.99179402 2.586113 9.706521e-03 4.920451e-02

LCK LCKproto-oncogene,Srcfamilytyrosinekinase 53.963402 2.5544172 0.87630383 2.914990 3.556995e-03 2.390440e-02

CCL8 C-Cmotifchemokineligand8 35.291840 2.5517122 0.88916665 2.869779 4.107582e-03 2.650881e-02

TBC1D10C TBC1domainfamilymember10C 59.102377 2.5039043 0.69261306 3.615156 3.001668e-04 3.813655e-03

CD3E CD3emolecule 77.928499 2.4005368 0.88044373 2.726508 6.400841e-03 3.660674e-02

ZAP70 zeta chain of Tcell receptor associated 
proteinkinase 70

61.210586 2.3199826 0.72600368 3.195552 1.395636e-03 1.218416e-02

CD48 CD48molecule 86.079633 2.3082654 0.78227812 2.950697 3.170582e-03 2.208122e-02

LAG3 lymphocyteactivating3 21.310969 2.2867201 0.80174834 2.852167 4.342230e-03 2.756322e-02

CD6 CD6molecule 35.444640 2.2724584 0.74097799 3.066837 2.163371e-03 1.674222e-02

CCL3 C-Cmotifchemokineligand3 21.127129 2.1933377 0.81856241 2.679500 7.373228e-03 4.046710e-02

ABCC6 ATP binding cassette subfamily Cmember6 18.061060 2.1686285 0.61750385 3.511927 4.448701e-04 5.120162e-03

CARD11 caspase recruitment domain family member11 38.304206 2.0987357 0.73959088 2.837698 4.544012e-03 2.837832e-02

ZP3 zona pellucida glycoprotein3 32.803384 2.0761913 0.76308278 2.720794 6.512527e-03 3.700370e-02

GZMA granzymeA 42.765519 1.9748701 0.70833314 2.788053 5.302593e-03 3.191727e-02

FPR2 formylpeptid ereceptor2 15.548507 1.8722902 0.63758011 2.936557 3.318780e-03 2.276508e-02

RARRES2 retinoic acid receptor responder2 212.750256 1.8125028 0.60737989 2.984134 2.843825e-03 2.041246e-02

ACAP1 ArfGAPwithcoiled-
coil,ankyrinrepeatandPHdomains1

108.506544 1.7419962 0.54888261 3.173714 1.505021e-03 1.288878e-02

ADAM8 ADAM metallopeptidase domain8 98.869433 1.7036468 0.57298825 2.973266 2.946485e-03 2.099528e-02

SELL selectin L 119.443633 1.6517917 0.51594712 3.201475 1.367260e-03 1.199942e-02

RTN4R reticulon 4 receptor 34.829720 1.5979149 0.47073653 3.394499 6.875419e-04 7.133194e-03

SPN sialophorin 114.624826 1.4235531 0.43250105 3.291444 9.967435e-04 9.461667e-03

THBS4 thrombospondin4 11145.458291 1.4034856 0.35709402 3.930297 8.484094e-05 1.459174e-03

SFRP1 secreted frizzled related protein1 2353.776080 1.3669175 0.47295760 2.890148 3.850605e-03 2.522230e-02

LAT linkerforactivationofTcells 89.104364 1.3538948 0.41915336 3.230070 1.237598e-03 1.115583e-02

KIT KITproto-oncogene,receptortyrosinekinase 114.866777 1.2394858 0.39910218 3.105685 1.898385e-03 1.516429e-02

AGRN agrin 1199.474245 1.2294127 0.31404098 3.914816 9.047316e-05 1.536935e-03

PLCE1 phospholipaseCepsilon1 1338.872595 1.1128473 0.41459473 2.684181 7.270772e-03 4.009053e-02

PLEKHG4 pleckstrin homology and RhoGEF domain 
containingG4

44.592923 1.0963012 0.34716566 3.157862 1.589308e-03 1.336288e-02
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SLC30A2 solute carrier family30member2 374.964976 1.0776259 0.37753688 2.854359 4.312375e-03 2.746864e-02

DAPK3 death associated protein kinase3 2335.661715 1.0478415 0.25986152 4.032307 5.523191e-05 1.042312e-03

ARHGAP22 RhoGTPasea ctivating protein22 130.296969 1.0351433 0.39050095 2.650809 8.029931e-03 4.282979e-02

ICAM1 intercellular adhesion molecule1 713.444287 0.8942768 0.33776778 2.647608 8.106335e-03 4.308612e-02

TCIRG1 Tcell immunere 
gulator1,ATPaseH+transportingV0subunita3

815.555957 0.8889976 0.26126382 3.402682 6.672794e-04 7.010439e-03

CX3CL1 C-X3-Cmotifchemokineligand1 975.457095 0.8857654 0.17435314 5.080295 3.768491e-07 1.882095e-05

TNFRSF14 TNFreceptorsuperfamilymember14 558.697451 0.8715396 0.27090885 3.217095 1.294956e-03 1.154149e-02

ARHGAP33 RhoGTPaseactivatingprotein33 266.575908 0.8554598 0.28821651 2.968115 2.996322e-03 2.125025e-02

ATG16L2 autophagyrelated16like2 471.761412 0.7881138 0.28642815 2.751523 5.931879e-03 3.463942e-02

SLC26A11 solute carrier family26member11 179.839122 0.7772683 0.24638687 3.154666 1.606820e-03 1.343684e-02

ATP1B2 ATPaseNa+/K+transportingsubunitbeta2 256.866844 0.7678534 0.28310518 2.712255 6.682719e-03 3.776262e-02

EFNA5 ephrinA5 627.289860 0.7426469 0.17187356 4.320891 1.554007e-05 3.837880e-04

C5AR1 complementC5areceptor1 191.001370 0.7159740 0.26896233 2.661986 7.768104e-03 4.192730e-02

MAP3K11 mitogen-activatedproteinkinasekinasekinase11 1200.883867 0.7011078 0.14632121 4.791566 1.654843e-06 6.297871e-05

OBSCN obscurin,cytoskeletalcalmodulinandtitin-
interactingRhoGEF

22219.858775 0.6689645 0.18069928 3.702087 2.138331e-04 2.946362e-03

SIPA1 signal-inducedproliferation-associated1 765.861455 0.6598632 0.16729570 3.944293 8.003585e-05 1.398352e-03

WDR24 WDrepeatdomain24 257.388518 0.6269852 0.16503574 3.799088 1.452298e-04 2.209805e-03

MAP1LC3A microtubule associated protein 1light chain 3alpha 935.008140 0.6118128 0.19667237 3.110822 1.865673e-03 1.496047e-02

ARHGEF1 Rho guanine nucleotide exchange factor1 1157.662608 0.5977079 0.20110861 2.972065 2.958041e-03 2.104157e-02

SDC2 syndecan2 2026.476299 0.5915831 0.18514513 3.195240 1.397148e-03 1.218456e-02

ITM2C integral membrane protein 2C 968.913915 0.5684845 0.18187985 3.125605 1.774399e-03 1.442688e-02

CDC42EP1 CDC42effectorprotein1 692.111050 0.5682077 0.20925602 2.715371 6.620157e-03 3.748717e-02

RIN3 RasandRabinteractor3 494.967490 0.5616817 0.19863837 2.827660 4.688961e-03 2.905583e-02

RHOG ras homolog family memberG 558.357588 0.5481124 0.20339103 2.694870 7.041612e-03 3.918001e-02

LAMTOR4 lateendosomal/
lysosomaladaptor,MAPKandMTORactivator4

779.714674 0.5446591 0.14505332 3.754889 1.734183e-04 2.514247e-03

AP5B1 adapto rrelated protein complex 5 subunit beta1 308.921609 0.5397804 0.15987982 3.376163 7.350424e-04 7.463059e-03

LLGL1 LLGL scribble cell polarity complex component1 463.398907 0.5385923 0.18048487 2.984141 2.843755e-03 2.041246e-02

TRAPPC4 trafficking protein particle complex4 594.237028 0.5364898 0.14186903 3.781585 1.558330e-04 2.332726e-03

SPHK2 sphingosinekinase2 206.692143 0.5251151 0.17332988 3.029571 2.449016e-03 1.831366e-02

INF2 invertedformin,FH2andWH2domaincontaining 1408.986050 0.5228602 0.17525174 2.983481 2.849901e-03 2.044647e-02

ESAM endothelial cell adhesion molecule 1854.382839 0.5061595 0.19303821 2.622069 8.739776e-03 4.575192e-02

TBC1D17 TBC1domainfamilymember17 1397.410589 0.5016635 0.14206912 3.531123 4.137994e-04 4.856221e-03

SGSM3 small Gprotein signaling modulator3 1217.047279 0.4972390 0.10830284 4.591191 4.407229e-06 1.372596e-04

CDIP1 cell death inducing p53target1 1557.631401 0.4904338 0.14176772 3.459418 5.413437e-04 5.983994e-03

TMEM175 transmembraneprotein175 483.882475 0.4902202 0.11872998 4.128866 3.645563e-05 7.684330e-04

SCRIB scribble planar cell polarityp rotein 1145.041278 0.4875877 0.16550830 2.946002 3.219107e-03 2.230423e-02

SLC15A4 solute carrier family15member4 530.775194 0.4867267 0.13938940 3.491849 4.796900e-04 5.419649e-03

CLCN7 chloridevoltage-gatedchannel7 1314.817865 0.4848339 0.10409008 4.657830 3.195600e-06 1.048245e-04

ATP6V1H ATPaseH+transportingV1subunitH 1142.814507 0.4637430 0.16298028 2.845393 4.435659e-03 2.797476e-02

HSD3B7 hydroxy-delta-5-steroiddehydrogenase,3beta-
andsteroiddelta-isomerase7

229.861506 0.4631949 0.17078468 2.712157 6.684694e-03 3.776262e-02

ULK1 unc-51likeautophagyactivatingkinase1 2336.237042 0.4546957 0.15884349 2.862539 4.202612e-03 2.692359e-02

BORCS7 BLOC-1relatedcomplexsubunit7 733.629837 0.4481911 0.14951078 2.997717 2.720097e-03 1.977290e-02

BORCS6 BLOC-1relatedcomplexsubunit6 287.931465 0.4457790 0.17077191 2.610376 9.044263e-03 4.682912e-02

SLC2A8 solute carrier family2member8 294.535985 0.4370628 0.16434909 2.659356 7.829010e-03 4.205923e-02

LAPTM4B lysosomalproteintransmembrane4beta 7994.693640 0.4364742 0.13917967 3.136049 1.712407e-03 1.406761e-02

SYDE1 synapsedefectiveRhoGTPasehomolog1 602.363179 0.4247276 0.16037455 2.648348 8.088629e-03 4.301950e-02

BORCS8 BLOC-1relatedcomplexsubunit8 190.478550 0.4218507 0.14680246 2.873594 4.058302e-03 2.629280e-02

CD81 CD81molecule 11597.009572 0.4183444 0.15704346 2.663877 7.724590e-03 4.178533e-02

ABCA2 ATP binding cassette subfamily Amember2 1754.426524 0.4114990 0.14537293 2.830644 4.645442e-03 2.884821e-02

TBC1D13 TBC1domainfamilymember13 834.053744 0.4100646 0.09897961 4.142920 3.429115e-05 7.302126e-04

TRAPPC5 traffickingproteinparticlecomplex5 529.558791 0.4023173 0.15440179 2.605652 9.169953e-03 4.720071e-02

AP1M1 adaptor related protein complex1subunit mu1 1130.811690 0.3965961 0.11650630 3.404074 6.638865e-04 6.988035e-03

ABCD4 ATP binding cassette subfamily Dmember4 687.530857 0.3815700 0.12593828 3.029817 2.447018e-03 1.830695e-02

PLEKHG3 pleckstrin homology and RhoGEF domain 
containingG3

540.113877 0.3768760 0.14063074 2.679898 7.364459e-03 4.043523e-02

CD47 CD47molecule 1813.099249 0.3739061 0.09996234 3.740470 1.836766e-04 2.626592e-03

SGSM2 smallGproteinsignalingmodulator2 1437.659314 0.3610841 0.12970495 2.783889 5.371146e-03 3.220171e-02

TMEM138 transmembraneprotein138 247.067246 0.3400481 0.12808123 2.654941 7.932231e-03 4.239788e-02

ARFGAP1 ADPribosylationfactorGTPaseactivatingprotein1 1012.452064 0.3344690 0.10713441 3.121957 1.796533e-03 1.456050e-02

GGA1 golgiassociated,gammaadaptinearcontaining,ARFbi
ndingprotein1

1005.115325 0.3159003 0.10951263 2.884602 3.919092e-03 2.560032e-02

VAPA VAMP associated proteinA 3670.660390 0.3090737 0.11386404 2.714410 6.639385e-03 3.757047e-02

LZTR1 leucine zipper like transcription regulator1 1142.755538 0.3014826 0.08607600 3.502517 4.608848e-04 5.264406e-03

GPS1 Gprotein pathway suppressor1 1800.451045 0.2705263 0.10171599 2.659624 7.822787e-03 4.205923e-02

MTOR mechanistic target of rapamycinkinase 2386.202543 -0.2403381 0.09182295 -2.617408 8.860047e-03 4.619168e-02

RANBP9 RANbindingprotein9 1389.777831 -0.2740819 0.08577810 -3.195243 1.397129e-03 1.218456e-02

EXOC1 exocyst complexc omponent1 1174.187133 -0.2826886 0.09862890 -2.866185 4.154519e-03 2.667096e-02

PDCD6IP programmed cell death 6 interacting protein 3471.602008 -0.3168946 0.10555600 -3.002147 2.680829e-03 1.956335e-02

SNX9 sortingnexin9 1985.538134 -0.3202141 0.10209180 -3.136531 1.709593e-03 1.406145e-02

Gene Function baseMean log2FoldChange lfcSE stat pvalue padj
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WDR44 WD repeat domain44 663.541154 -0.3318733 0.10515439 -3.156057 1.599175e-03 1.340909e-02

ZC3H15 zincfingerCCCH-typecontaining15 1244.736696 -0.3350394 0.10852343 -3.087254 2.020150e-03 1.584770e-02

CLEC16A C-typelectindomaincontaining16A 972.411399 -0.3376316 0.11838414 -2.852001 4.344502e-03 2.756712e-02

M6PR mannose-6-phosphatereceptor,cationdependent 1959.760078 -0.3435663 0.12889634 -2.665446 7.688620e-03 4.167843e-02

ADAM10 ADAM metallopeptidase domain10 1288.069375 -0.3475807 0.13186984 -2.635786 8.394255e-03 4.430493e-02

SPAG9 sperm associated antigen9 2750.499732 -0.3552854 0.10231630 -3.472422 5.157850e-04 5.757061e-03

GAPVD1 GTPaseactivatingproteinandVPS9domains1 1221.676997 -0.3627798 0.12122054 -2.992725 2.764986e-03 2.001854e-02

LARS1 leucyl-tRNAsynthetase1 3110.365778 -0.3650385 0.11414568 -3.198006 1.383815e-03 1.211275e-02

NF1 neurofibromin1 2316.006017 -0.3667890 0.13310729 -2.755589 5.858659e-03 3.438086e-02

ERC1 ELKS/RAB6-interacting/CASTfamilymember1 2207.649441 -0.3737131 0.11727010 -3.186772 1.438701e-03 1.246736e-02

SBF2 SETbindingfactor2 1164.923561 -0.3759591 0.10757202 -3.494952 4.741466e-04 5.371616e-03

RALGAPB RalGTPase activating protein non-catalytic 
betasubunit

1947.492914 -0.3845592 0.10014837 -3.839895 1.230872e-04 1.947728e-03

RANBP2 RANbindingprotein2 2647.912204 -0.3854343 0.12328510 -3.126366 1.769814e-03 1.441419e-02

ARHGAP44 RhoGTPase activating protein44 297.393044 -0.3870483 0.11746065 -3.295132 9.837549e-04 9.365099e-03

CHM CHMR abescortprotein 562.143574 -0.3974689 0.13172382 -3.017441 2.549183e-03 1.888671e-02

NCKAP1 NCK associated protein1 6686.567394 -0.3987882 0.11668330 -3.417697 6.315339e-04 6.715499e-03

RAB3GAP2 RAB3 GTP aseactivatingnon-catalytic protein 
subunit2

1099.547705 -0.4053384 0.12436687 -3.259215 1.117210e-03 1.032240e-02

MIOS meiosis regulator for oocyte development 708.243866 -0.4121173 0.14181654 -2.905989 3.660946e-03 2.429577e-02

Gene Function baseMean log2FoldChange lfcSE stat pvalue padj
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Supplementary Table 5. Significantly changed genes DC vs Healthy that also matched significantly changed proteins in 
the same comparison

Gene baseMean log2FoldChange lfcSE stat pvalue padj

NPPA 64750.650 5.9694452 1.2395293 4.815897 1.465403e-06 1.034987e-04

AEBP1 3010.071 1.6207095 0.4774258 3.394684 6.870794e-04 1.059340e-02

COL14A1 1428.224 1.4920775 0.4377406 3.408589 6.529987e-04 1.016981e-02

MFAP4 3545.324 1.1847313 0.3634084 3.260055 1.113907e-03 1.496186e-02

ARHGAP1 4615.860 1.1231660 0.2429495 4.623043 3.781511e-06 2.228625e-04

PFKL 1919.688 0.4922763 0.1252458 3.930481 8.477615e-05 2.329339e-03

YWHAQ 4124.617 0.3505814 0.1240680 2.825720 4.717449e-03 4.013505e-02

MYH6 98127.708 -3.3541422 0.6566385 -5.108050 3.255003e-07 3.309117e-05

ART3 2301.617 -1.0665936 0.3073363 -3.470444 5.195979e-04 8.695246e-03

TTN 260372.843 -0.8533805 0.1489343 -5.729914 1.004818e-08 2.068908e-06

UQCRB 17654.412 -0.8025549 0.2124250 -3.778062 1.580537e-04 3.595666e-03

PDCD5 1259.482 -0.7584922 0.1943986 -3.901736 9.550525e-05 2.533361e-03

PGP 1117.789 -0.3333979 0.0871767 -3.824392 1.310951e-04 3.196992e-03
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Supplementary Table 6. Significantly changed proteins in DC vs Healthy that had matching significantly changed genes 
in the same comparison

Gene baseMean (LFQs) log2FoldChange lfcSE stat pvalue padj

NPPA 914.25858 4.9582743 1.4719756 3.368449 7.559246e-04 2.226691e-02

AEBP1 308.52135 2.7175458 0.7334202 3.705305 2.111365e-04 8.414409e-03

COL14A1 850.48807 2.5608028 0.7600312 3.369339 7.534869e-04 2.226691e-02

TTN 6750.06204 2.0204337 0.4615007 4.377964 1.197929e-05 1.082129e-03

MFAP4 600.37964 1.7467693 0.4873160 3.584470 3.377640e-04 1.207024e-02

PFKL 638.20791 1.3175970 0.4050131 3.253221 1.141047e-03 3.064628e-02

ARHGAP1 1621.36699 0.8639123 0.2052113 4.209867 2.555214e-05 1.753841e-03

YWHAQ 2490.18602 0.5970173 0.1543780 3.867243 1.100725e-04 5.326724e-03

ART3 17.04353 -8.3910270 2.5795193 -3.252942 1.142168e-03 3.064628e-02

MYH6 757.81447 -4.5902735 0.8151147 -5.631445 1.787061e-08 5.619916e-06

UQCRB 7093.72840 -0.6990583 0.1739609 -4.018480 5.857480e-05 3.239545e-03

PDCD5 386.59121 -0.6471055 0.1712485 -3.778750 1.576174e-04 7.002346e-03

PGP 542.65220 -0.4856027 0.1332880 -3.643260 2.692066e-04 1.027535e-02
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Supplementary Table 7. Significantly changed genes IC vs Healthy that also matched significantly changed proteins in 
the same comparison

Gene baseMean log2FoldChange lfcSE stat pvalue padj

NPPA 6.475065e+04 3.9810476 1.23953548 3.211725 1.319404e-03 1.171543e-02

HBB 1.783859e+03 3.8629190 0.69460549 5.561314 2.677515e-08 2.137861e-06

CD2 6.587260e+01 2.7316791 0.89080190 3.066539 2.165523e-03 1.675108e-02

APOA1 1.178621e+03 1.9361251 0.40586255 4.770396 1.838640e-06 6.918194e-05

COL14A1 1.428224e+03 1.2246810 0.43777999 2.797480 5.150288e-03 3.123794e-02

LUM 8.659295e+03 1.0829886 0.36984100 2.928255 3.408707e-03 2.320516e-02

ARHGAP1 4.615860e+03 1.0633638 0.24294435 4.376985 1.203321e-05 3.097899e-04

VTN 1.746666e+03 0.9346608 0.32306629 2.893093 3.814683e-03 2.506350e-02

CLU 4.735043e+03 0.8458807 0.23042274 3.670995 2.416081e-04 3.245706e-03

IVD 3.218196e+03 0.8084392 0.15739534 5.136360 2.801102e-07 1.469563e-05

MYH7 7.525063e+05 0.7733415 0.21174226 3.652278 2.599246e-04 3.425361e-03

HPRT1 5.044695e+02 0.6328641 0.15518421 4.078147 4.539599e-05 8.977178e-04

MAP4 3.104889e+04 0.6234824 0.16175430 3.854503 1.159651e-04 1.863396e-03

TOM1L2 1.069734e+04 0.6189644 0.16401201 3.773897 1.607173e-04 2.382254e-03

CYB5R1 4.584060e+03 0.6171857 0.19505292 3.164196 1.555120e-03 1.318878e-02

C11orf68 1.018369e+03 0.5994157 0.14194986 4.222729 2.413623e-05 5.516179e-04

BCAT2 1.219605e+03 0.5912492 0.12562024 4.706640 2.518330e-06 8.780368e-05

CIRBP 7.594636e+03 0.5801297 0.15453285 3.754087 1.739747e-04 2.515976e-03

COQ10B 1.087776e+03 0.5566569 0.11665225 4.771935 1.824648e-06 6.881115e-05

COX8A 6.443199e+03 0.5551769 0.16765060 3.311512 9.279342e-04 8.925665e-03

PPP1R12C 6.316688e+03 0.5216105 0.16114937 3.236813 1.208724e-03 1.099687e-02

PCCB 2.797731e+03 0.5040773 0.18752495 2.688055 7.186961e-03 3.982884e-02

ADH5 3.836706e+03 0.4782080 0.15132423 3.160155 1.576852e-03 1.330036e-02

PIN1 1.222749e+03 0.4749581 0.14016051 3.388673 7.023181e-04 7.218944e-03

COPA 4.892705e+03 0.4479092 0.11160183 4.013458 5.983574e-05 1.111875e-03

MDH1 3.480311e+04 0.3933002 0.15007853 2.620630 8.776757e-03 4.582928e-02

GANAB 5.108525e+03 0.2048065 0.07563721 2.707748 6.774143e-03 3.815129e-02

KNG1 8.708153e+00 -3.5015224 1.08620148 -3.223640 1.265725e-03 1.134650e-02

RBP4 5.150649e+01 -3.0112881 0.80596479 -3.736253 1.867829e-04 2.658098e-03

APOB 1.457905e+03 -1.5096292 0.47412967 -3.184001 1.452547e-03 1.254273e-02

ITGA1 1.115450e+03 -1.2382714 0.18964214 -6.529516 6.598244e-11 1.463139e-08

AZGP1 1.877860e+03 -1.2162029 0.39720311 -3.061917 2.199246e-03 1.694431e-02

AR 2.921452e+02 -0.8772186 0.21534517 -4.073547 4.630254e-05 9.102335e-04

ATP2A2 8.817315e+04 -0.8740325 0.25647264 -3.407897 6.546551e-04 6.903975e-03

EFEMP1 2.269356e+03 -0.8453065 0.29247421 -2.890191 3.850073e-03 2.522230e-02

GPD1L 1.258384e+04 -0.7786781 0.24681414 -3.154917 1.605438e-03 1.343684e-02

YBX1 1.054430e+04 -0.7242123 0.17099695 -4.235235 2.283125e-05 5.289279e-04

APOBEC2 3.872554e+03 -0.6568878 0.17472567 -3.759538 1.702276e-04 2.479032e-03

COX17 1.173502e+03 -0.6481779 0.21244572 -3.051028 2.280591e-03 1.732604e-02

BCL2L13 2.965080e+03 -0.6436776 0.21650708 -2.973009 2.948953e-03 2.099776e-02

RYR2 6.533920e+04 -0.6349861 0.23220520 -2.734590 6.245794e-03 3.604226e-02

FUNDC2 4.125040e+03 -0.5920042 0.17621592 -3.359539 7.807266e-04 7.836007e-03

AGL 3.089582e+03 -0.5735931 0.20218325 -2.836996 4.554016e-03 2.841945e-02

IPO7 6.043559e+03 -0.5725417 0.08874020 -6.451887 1.104660e-10 2.161364e-08

PCCA 1.412112e+03 -0.4819731 0.14928290 -3.228589 1.244025e-03 1.119880e-02

KPNB1 4.499068e+03 -0.3279287 0.09265001 -3.539435 4.009848e-04 4.749842e-03

COPB2 2.886423e+03 -0.3072504 0.09912805 -3.099530 1.938276e-03 1.537186e-02

 1

189



Supplementary Table 8. Significantly changed proteins in IC vs Healthy that had matching significantly changed genes in 
the same comparison

Gene baseMean (LFQs) log2FoldChange lfcSE stat pvalue padj

NPPA 914.25858 9.1124837 1.47053427 6.196716 5.765328e-10 8.223178e-08

C11orf68 30.10522 8.0450829 2.31548897 3.474464 5.118752e-04 7.498280e-03

CIRBP 19.18828 4.8415669 1.71840704 2.817474 4.840306e-03 3.892353e-02

RBP4 642.66213 3.1977299 0.46911446 6.816524 9.326971e-12 1.944315e-09

COL14A1 850.48807 2.5239521 0.76005018 3.320770 8.976937e-04 1.131512e-02

APOB 294.86064 2.4233619 0.58952286 4.110717 3.944316e-05 1.047951e-03

CLU 953.82664 1.9906723 0.31753242 6.269194 3.629220e-10 5.463992e-08

EFEMP1 232.92261 1.9321612 0.53140885 3.635922 2.769879e-04 4.633563e-03

LUM 3848.36226 1.7901360 0.23272311 7.692128 1.447073e-14 6.535946e-12

APOA1 23146.90214 1.5286333 0.40335221 3.789823 1.507549e-04 2.877083e-03

KNG1 1152.33142 1.4994651 0.34613139 4.332069 1.477145e-05 5.375421e-04

HBB 33276.88959 1.4745615 0.37755310 3.905574 9.400207e-05 2.071103e-03

VTN 1499.20573 1.2952025 0.28740491 4.506543 6.589243e-06 2.834420e-04

PPP1R12C 392.50775 1.2166470 0.41922320 2.902146 3.706155e-03 3.236944e-02

AZGP1 1692.67977 1.1895091 0.33963208 3.502346 4.611803e-04 6.904964e-03

PIN1 230.29457 1.0057528 0.31692409 3.173482 1.506224e-03 1.697622e-02

ARHGAP1 1621.36699 0.7214863 0.20529862 3.514326 4.408712e-04 6.712141e-03

TOM1L2 302.42573 0.6670240 0.15862253 4.205102 2.609640e-05 8.036504e-04

MAP4 3892.63803 0.6374412 0.08327922 7.654266 1.944198e-14 7.526824e-12

HPRT1 326.56634 0.5910349 0.18565923 3.183439 1.455366e-03 1.664153e-02

GANAB 3187.22455 0.4980595 0.13148731 3.787890 1.519318e-04 2.879268e-03

IVD 2814.55937 0.4809352 0.16882698 2.848687 4.390004e-03 3.629784e-02

ITGA1 37.93977 -7.4551057 1.62593307 -4.585125 4.537157e-06 2.049283e-04

COQ10B 25.76960 -3.6614749 1.29380219 -2.830011 4.654635e-03 3.788006e-02

COX8A 64.50582 -2.6965948 0.90325909 -2.985406 2.832025e-03 2.631100e-02

APOBEC2 538.25566 -2.3421796 0.68625970 -3.412964 6.426044e-04 8.979876e-03

MYH7 88222.32260 -2.3050101 0.69301991 -3.326037 8.809010e-04 1.117543e-02

MDH1 407.38258 -2.2105751 0.54704881 -4.040910 5.324416e-05 1.299925e-03

COX17 1153.03912 -1.6439617 0.29010619 -5.666758 1.455244e-08 1.516812e-06

FUNDC2 513.78221 -1.2744822 0.44303215 -2.876726 4.018240e-03 3.413614e-02

AR 166.10200 -1.2114963 0.29385106 -4.122824 3.742555e-05 1.038568e-03

COPA 250.12756 -1.1591848 0.40092386 -2.891284 3.836712e-03 3.300791e-02

IPO7 218.44644 -1.1471134 0.30505643 -3.760332 1.696882e-04 3.107128e-03

BCL2L13 719.29730 -0.9852841 0.21774942 -4.524853 6.043751e-06 2.641704e-04

YBX1 322.24257 -0.8710506 0.31688830 -2.748762 5.982075e-03 4.605518e-02

ATP2A2 7610.93019 -0.7945678 0.20407720 -3.893467 9.882178e-05 2.108717e-03

CD2 350.17987 -0.7332133 0.20579326 -3.562864 3.668314e-04 5.813527e-03

AGL 4127.01725 -0.6915786 0.22552103 -3.066581 2.165218e-03 2.165218e-02

COPB2 255.90592 -0.6275670 0.21901525 -2.865403 4.164786e-03 3.494294e-02

RYR2 4712.06417 -0.6041580 0.16349346 -3.695304 2.196242e-04 3.839881e-03

PCCB 2030.25586 -0.5911669 0.17026574 -3.472025 5.165485e-04 7.526056e-03

PCCA 1974.73516 -0.5708371 0.14609801 -3.907220 9.336412e-05 2.071103e-03

CYB5R1 4097.81450 -0.5375065 0.18367777 -2.926356 3.429582e-03 3.067382e-02

ADH5 4526.81439 -0.5213994 0.10674114 -4.884709 1.035818e-06 7.017665e-05

GPD1L 4495.10495 -0.5011858 0.17553792 -2.855142 4.301752e-03 3.575997e-02

BCAT2 2208.84041 -0.4337632 0.12991373 -3.338856 8.412426e-04 1.090798e-02

KPNB1 1752.28069 -0.3584892 0.12872289 -2.784968 5.353294e-03 4.205051e-02
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Supplementary table 9. Cell cluster full names

Full names Abbreviations

Matrix like fibroblasts  Matrix fibr 

 Connective tissue like fibroblasts/ adipose tissue like cells   Con.tissue fibr/adiposcytes  

Thymic fibroblasts/Fibroblasts/adipose tissue like cells  Thymic fibr/Fibr/adipocytes 

Activated fibroblasts   Activated fibr 

Skin like fibroblasts/Axin2+ like cells Skin like fibr/Axin2+ cells 

Mesenteric Lymph Node Fibroblastic Reticular cells/
Connective tissue like fibroblasts 

 Fibr Reticular cells/Con.tissue fibr  

Macrophages/Macrophages activated/Monocytes   Macr activated/Monocytes  

Dendritic cells/steady state macrophages/fibroblast like cells  Dendritic cells/steady state macr/fibr like cells

Vascular endothelial cells  Vascular endo cells

Fibroblast like cells/adipocyte like cells   Fibr/adipocyte like cells 

Pericytes/cardiomyocytes Pericytes/cardiomyocytes 

Activated fibroblasts/progenitor like adipocytes Activated fibr/progenitor adipocytes 

B cells/B cells memory/B cells naive  B cells:memory,naive,mature  

 Myofibroblast/Smooth muscle cell   Myofibroblast/Smooth muscle cell

 Lymphocytes   Lymphocytes  

 Oligodendrocytes/glia like cells  Oligodendrocytes/glia like cells 

T cells/T memory cells/NK cells  T/NK cells 

Macrophages/Monocytes/ Activated fibroblast like cells    Macr/Monocytes/ Activated fibr cells  

Lymphocytes/ Neutrophils  Lymphocytes/ Neutrophils 

 Activated macrophages/immature macrophages Activated and immature macr 

Vascular endothelial cell/Heart endothelial cells  Vascular and heart endothelial cells  

 Plasma cells/ B cells    Plasma cells/ B cells    
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Supplementary table 10. DC vs healthy cluster cross-referencing with disease association databases and datasets

Log2 Fold Change 
Score

Scaled interactor 
number

Cluster labels Gene symbol Ensembl Association 
overall score - OT

Disease 
association - OT

PubMed Report 
number

GWAS 
standardised 
association score

Description

12 1.99478364466176 7.11894107272351 0 ANKRD34C ENSG00000235711       0    ankyrin repeat 
domain 34C

45 1.53232136042079 5.90689059560852 0 C9ORF24 ENSG00000164972       1       

49 1.58694124507355 6.06608919045777 0 CCDC168 ENSG00000175820       0    coiled-coil domain 
containing 168

86 1.61142971071955 8.59245703726808 0 EDA2R ENSG00000131080       2    ectodysplasin A2 
receptor

92 1.65761213697529 8.37937836707126 0 F2RL2 ENSG00000164220       2    coagulation factor II 
thrombin receptor 
like 2

116 1.73235007216511 7.56224242422107 0 GPR85 ENSG00000164604       0    G protein-coupled 
receptor 85

149 1.60576050583933 7.78135971352466 0 KLHDC9 ENSG00000162755       0    kelch domain 
containing 9

153 1.69973389666383 6.37503943134692 0 LCN12 ENSG00000184925       0    lipocalin 12

156 1.68590224332899 7.49185309632967 0 LRRC24 ENSG00000254402       0    leucine rich repeat 
containing 24

191 1.8481036595783 7.18982455888002 0 NUP62CL ENSG00000198088       0    nucleoporin 62 C-
terminal like

239 1.82647897553963 8.21431912080077 0 SLC6A12 ENSG00000111181       4    solute carrier family 
6 member 12

250 1.57879018657951 7.27612440527424 0 SPNS3 ENSG00000182557       1    sphingolipid 
transporter 3 
(putative)

267 1.78393398468577 6.4594316186373 0 TMEM54 ENSG00000121900       0    transmembrane 
protein 54

189 1.83699438551428 8.76155123244448 0 NTNG2 ENSG00000196358 0.00620275403100
288

Abnormality of the 
cardiovascular 
system

2    netrin G2

164 1.56451197201855 8.70390357344466 0 MDK ENSG00000110492 0.33458109026254
6

arterial disorder 69    midkine

58 1.97239361439505 7.8008998999203 0 CHAC1 ENSG00000128965 0.0165 cardiovascular 
disease

7    ChaC glutathione 
specific gamma-
glutamylcyclotransf
erase 1

66 1.89302147069627 9.85174904141606 0 CNR1 ENSG00000118432 1 cardiovascular 
disease

73    cannabinoid 
receptor 1

71 1.68076668444065 8.47167521439204 0 CPEB1 ENSG00000214575 0.20696477929323
5

cardiovascular 
disease

5    cytoplasmic 
polyadenylation 
element binding 
protein 1

88 1.50411782671912 10.3106127816595 0 ENO2 ENSG00000111674 0.07225302036017
24

cardiovascular 
disease

11    enolase 2

138 1.93955070368889 7.62935662007961 0 IL17D ENSG00000172458 0.13214006905985
2

cardiovascular 
disease

3    interleukin 17D

183 1.50577624877796 9.2807707701306 0 NR0B2 ENSG00000131910 0.19023333333333
3

cardiovascular 
disease

5    nuclear receptor 
subfamily 0 group 
B member 2

184 1.60739277448007 9.29691620687929 0 NR4A1 ENSG00000123358 0.09189873379524
24

cardiovascular 
disease

153    nuclear receptor 
subfamily 4 group A 
member 1

235 1.70256448962541 7.76818432477693 0 SIK1 ENSG00000142178 0.97141331294228
2

cardiovascular 
disease

31    salt inducible 
kinase 1

244 1.76305284200499 9.57364718749332 0 SMAD7 ENSG00000101665 1 cardiovascular 
disease

290    SMAD family 
member 7

263 1.69896226113721 7.03342300153745 0 TM6SF2 ENSG00000213996 0.35823114824711
3

cardiovascular 
disease

73    transmembrane 6 
superfamily 
member 2

269 1.84680590375758 9.13442632022093 0 TNFRSF11B ENSG00000164761 0.34143860883608
8

cardiovascular 
disease

366    TNF receptor 
superfamily 
member 11b

278 1.58114171030336 8.04439411935845 0 UCN ENSG00000163794 0.08609269753628
22

cardiovascular 
disease

192    urocortin

283 1.83916521322178 8.84235034341381 0 WNT10B ENSG00000169884 0.0068 congenital heart 
disease

20    Wnt family member 
10B

105 1.87848706873852 8.98299357469431 0 FRZB ENSG00000162998 0.05697310994867
9

dilated 
cardiomyopathy

15    frizzled related 
protein

207 1.90562977070203 6.4594316186373 0 PPDPF ENSG00000125534 0.01441970241767
82

dilated 
cardiomyopathy

0    pancreatic 
progenitor cell 
differentiation and 
proliferation factor

82 1.55673898054257 6.84549005094437 0 DNAAF3 ENSG00000167646 0.40833333333333
3

Familial isolated 
dilated 
cardiomyopathy

4    dynein axonemal 
assembly factor 3

220 1.68793785794021 8.34429590791582 0 RUNDC3A ENSG00000108309 0.19824 Familial progressive 
cardiac conduction 
defect

0    RUN domain 
containing 3A

15 1.53327011453769 9.44294349584873 0 APLP1 ENSG00000105290 0.02772 gastric cardia 
carcinoma

4    amyloid beta 
precursor like 
protein 1

260 1.77613185639517 8.2807707701306 0 TCEAL2 ENSG00000184905 0.01256261040530
31

gastric cardia 
carcinoma

0    transcription 
elongation factor A 
like 2

75 1.77534852029847 7.05528243550119 0 CRISPLD1 ENSG00000121005 0.0252 heart failure 2    cysteine rich 
secretory protein 
LCCL domain 
containing 1

107 1.70087992664471 8.0389189892923 0 GADD45G ENSG00000130222 0.0244 heart failure 10    growth arrest and 
DNA damage 
inducible gamma

55 1.56302025572538 9.32867492732795 0 CDKN1C ENSG00000129757 0.3 Heart murmur 74    cyclin dependent 
kinase inhibitor 1C

119 1.86957990174048 9.24555270625568 0 GRIA3 ENSG00000125675 0.7027 hypertension 3    glutamate 
ionotropic receptor 
AMPA type subunit 
3

232 1.81225534180803 7.71424551766612 0 SEZ6L2 ENSG00000174938 0.00073312683590
9663

hypertensive heart 
disease

1    seizure related 6 
homolog like 2

245 1.7841393659965 10.7846348455575 0 SNCA ENSG00000145335 1 intrinsic 
cardiomyopathy

54    synuclein alpha

115 1.60729060356563 8.01680828768655 0 GPR27 ENSG00000170837 0.00761771373267
391

ischemic 
cardiomyopathy

1    G protein-coupled 
receptor 27

222 1.82420947931998 7.99435343685886 0 SCAMP5 ENSG00000198794 0.09902884159237
15

mean arterial 
pressure

3    secretory carrier 
membrane protein 
5
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130 1.96294664806162 8.876516946565 0 HES5 ENSG00000197921 0.04065455555555
56

pulmonary arterial 
hypertension

38    hes family bHLH 
transcription factor 
5

248 1.66032903700229 9.24555270625568 0 SOX17 ENSG00000164736 1 pulmonary arterial 
hypertension

125    SRY-box 
transcription factor 
17

159 1.59988565205825 7.52356195605701 0 LTC4S ENSG00000213316 0.14194161072373
4

resting heart rate 16    leukotriene C4 
synthase

29 1.56273663451547 10.2419831496943 0 BMP2 ENSG00000125845 1 short stature, facial 
dysmorphism, and 
skeletal anomalies 
with or without 
cardiac anomalies

678    bone 
morphogenetic 
protein 2

137 1.5027625796532 7.2667865406949 0 IER2 ENSG00000160888 0.50753352046012
9

venous 
thromboembolism

2    immediate early 
response 2

185 1.75250441317526 8.40514146313634 0 NR4A3 ENSG00000119508 0.19224 Glycogen storage 
disease due to 
muscle and heart 
glycogen synthase 
deficiency

77 0.049508 nuclear receptor 
subfamily 4 group A 
member 3

199 1.57076151056769 9.35974956032233 0 PDIA2 ENSG00000185615 0.29202651232481 cardiovascular 
disease

8 0.049702 protein disulfide 
isomerase family A 
member 2

160 1.54629170035045 8.1548181090521 0 LY6E ENSG00000160932 0.33050296230430
4

familial 
cardiomyopathy

4 0.056197 lymphocyte antigen 
6 family member E

256 1.93282627668144 8.52356195605701 0 STC1 ENSG00000159167 0.0532 cardiotoxicity 35 0.057459 stanniocalcin 1

290 1.9631556962664 7.65821148275179 0 ZNF365 ENSG00000138311 0.09193088371375
36

cardiovascular 
disease

4 0.058627 zinc finger protein 
365

53 1.59645473634056 6.16992500144231 0 CD163L1 ENSG00000177675       1 0.062029 CD163 molecule 
like 1

223 1.85608019769944 8.2240016741981 0 SCN11A ENSG00000168356 1 cardiovascular 
disease

12 0.068964 sodium voltage-
gated channel 
alpha subunit 11

44 1.76968025471781 7.65105169117893 0 C6 ENSG00000039537       2024 0.0699 complement C6

69 1.8171397161506 8.12928301694497 0 COL9A1 ENSG00000112280 0.0199 dilated 
cardiomyopathy

5 0.085871 collagen type IX 
alpha 1 chain

146 1.56553436797438 7.73470962022584 0 KCNT2 ENSG00000162687 0.00013794721906
1734

hypertensive 
retinopathy

15 0.102913 potassium sodium-
activated channel 
subfamily T 
member 2

163 1.60416423336695 7.60733031374961 0 MCF2L2 ENSG00000053524       0 0.158409 MCF.2 cell line 
derived 
transforming 
sequence-like 2

257 1.67407017460917 9.61654884377899 0 STX1B ENSG00000099365 0.06409791857004
17

hypertension 3 0.30863 syntaxin 1B

282 1.95101798871725 7.4594316186373 0 WDR66 ENSG00000158023 0.00048441137951
8669

cardiac arrhythmia 0 0.49309 WD repeat domain 
66

24 1.63653938521082 7.53915881110803 0 BCAS4 ENSG00000124243       0 0.575039 breast carcinoma 
amplified sequence 
4

251 1.8152214086476 8.38801728534514 0 SPOCK1 ENSG00000152377 0.02352 gastric non-cardia 
carcinoma

5 1.24289 SPARC 
(osteonectin), cwcv 
and kazal like 
domains 
proteoglycan 1

31 1.9266385270553 9.65999589242998 0 BRSK1 ENSG00000160469 0.00142081870334
878

systolic heart failure 4 1.98052 BR serine/threonine 
kinase 1

8 1.62070948373321 7.82017896241519 0 AEBP1 ENSG00000106624 0.18258 Familial progressive 
cardiac conduction 
defect

30 AE binding protein 
1

37 -1.5445275574212
8

7.32192809488736 1 C1QL1 ENSG00000131094       1    complement C1q 
like 1

54 -1.8574001880059
3

8.43462822763673 1 CDCA3 ENSG00000111665       1    cell division cycle 
associated 3

117 -1.5418882581767
1

9.03066713624694 1 GPSM2 ENSG00000121957       4    G protein signaling 
modulator 2

125 -1.7415211970995
2

8.67948009950545 1 GSTT2 ENSG00000099984       9    glutathione S-
transferase theta 2 
(gene/pseudogene)

179 -1.5596652536575
8

9.55266909751427 1 NCAPH ENSG00000121152       0    non-SMC 
condensin I 
complex subunit H

205 -1.7840646287159
4

8.61470984411521 1 POLR2J2 ENSG00000267645       0    RNA polymerase II 
subunit J2

213 -1.7979100668267 7.6724253419715 1 PYGO1 ENSG00000171016       3    pygopus family 
PHD finger 1

242 -1.5220892822109
5

7.94251450533924 1 SLC9C1 ENSG00000172139       1    solute carrier family 
9 member C1

264 -1.6548081776658
1

7.467605550083 1 TMEM132B ENSG00000139364       0    transmembrane 
protein 132B

133 -1.6561356842739
4

7.98868468677217 1 HOOK1 ENSG00000134709 0.183 Aicardi-Goutières 
syndrome

4    hook microtubule 
tethering protein 1

94 -1.5384011866924
3

9.86108690599539 1 FAIM2 ENSG00000135472 0.45302030444145
2

arterial stiffness 
measurement

16    Fas apoptotic 
inhibitory molecule 
2

273 -1.5698211048197
5

9.4093909361377 1 TPX2 ENSG00000088325 0.0244 Arteritis 13    TPX2 microtubule 
nucleation factor

176 -1.5668621018310
2

8.15987133677839 1 MYOT ENSG00000120729 1 cardiomyopathy 32    myotilin

6 -1.8636156397350
9

9.19967234483636 1 ADRA1B ENSG00000170214 1 cardiovascular 
disease

104    adrenoceptor alpha 
1B

84 -1.6625379707147
6

9.32418054661874 1 DSP ENSG00000096696 1 cardiovascular 
disease

522    desmoplakin

93 -1.5248099313577
4

9.35535109642481 1 FABP4 ENSG00000170323 0.31231330372580
2

cardiovascular 
disease

366    fatty acid binding 
protein 4

113 -1.8372791995641
1

9.4858293087019 1 GPD1 ENSG00000167588 0.25423022644842
7

cardiovascular 
disease

19    glycerol-3-
phosphate 
dehydrogenase 1

204 -1.5386854548307
9

7.67948009950545 1 PLN ENSG00000198523 1 cardiovascular 
disease

558    phospholamban

187 -1.6328402466491
9

7.43462822763672 1 NSG1 ENSG00000168824 0.05042785778641
7

congenital heart 
disease

0    neuronal vesicle 
trafficking 
associated 1

131 -1.5572025895760
7

8.5077946401987 1 HEY2 ENSG00000135547 0.33640826518739
6

Genetic cardiac 
anomaly

163    hes related family 
bHLH transcription 
factor with YRPW 
motif 2

Log2 Fold Change 
Score

Scaled interactor 
number

Cluster labels Gene symbol Ensembl Association 
overall score - OT

Disease 
association - OT

PubMed Report 
number

GWAS 
standardised 
association score

Description
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281 -1.5955711845298
9

8.3037807481771 1 WDR62 ENSG00000075702 0.29338235555555
6

Genetic cardiac 
anomaly

5    WD repeat domain 
62

208 -1.6438270827103
4

7.79441586635011 1 PPP1R1A ENSG00000135447 0.0266 heart failure 2    protein 
phosphatase 1 
regulatory inhibitor 
subunit 1A

241 -1.6183388708806
4

8.12928301694497 1 SLC6A9 ENSG00000196517 0.0405 hypertension 9    solute carrier family 
6 member 9

165 -1.5090800613611
4

7.05528243550119 1 MEGF9 ENSG00000106780 0.00385124278181
082

ischemic 
cardiomyopathy

1    multiple EGF like 
domains 9

147 -1.6721299701192
4

9.09803208296053 1 KIAA0754 ENSG00000127603 0.21645329892635
3

peripheral arterial 
disease

1    KIAA0754

215 -1.5322118890134
2

9.32192809488736 1 RAPGEF4 ENSG00000091428 0.33226283756803
9

cardiovascular 
disease

34 0.047135 Rap guanine 
nucleotide 
exchange factor 4

56 -1.6542631778053
4

9.21916852046216 1 CENPF ENSG00000117724 0.03948535130566
5

heart disease 7 0.047372 centromere protein 
F

99 -1.7742459974491
1

9.51569983828404 1 FGF7 ENSG00000140285 0.04447222222222
22

pulmonary arterial 
hypertension

54 0.048529 fibroblast growth 
factor 7

287 -1.7530206870971
9

7.69348695749933 1 XIRP2 ENSG00000163092 0.32604057977100
3

cardiomyopathy 23 0.049661 xin actin binding 
repeat containing 2

142 -1.5511467630484 10.270295326472 1 ITGB1 ENSG00000150093 0.29604338437263
8

cardiomyopathy 46 0.058312 integrin subunit 
beta 1

200 -1.8039602204495
6

8.19475685442225 1 PHACTR3 ENSG00000087495       2 0.087486 phosphatase and 
actin regulator 3

61 -1.8730668069956
7

9.52552080909507 1 CHL1 ENSG00000134121 9.23637951231764
e-05

congenital anomaly 
of cardiovascular 
system

13 0.191441 cell adhesion 
molecule L1 like

89 -1.5965866279621
2

9.48179943166575 1 EPHB1 ENSG00000154928 0.01455555555555
56

heart disease 16 0.505894 EPH receptor B1

20 -1.8650575816900
5

8.13442632022093 1 ATP6V1C2 ENSG00000143882       0 0.520142 ATPase H+ 
transporting V1 
subunit C2

5 -1.5365126493018
1

7.73470962022584 1 ADAMTS12 ENSG00000151388 0.10959168753079
4

cardiovascular 
disease

8 0.657565 ADAM 
metallopeptidase 
with 
thrombospondin 
type 1 motif 12

288 -1.8745808736105
1

8.69348695749933 1 XRCC4 ENSG00000152422 0.0104 hypertension 16 0.696042 X-ray repair cross 
complementing 4

210 -1.7599819709811
3

9.64565843240871 1 PPP2R2C ENSG00000074211       3 0.827715 protein 
phosphatase 2 
regulatory subunit 
Bgamma

276 -1.7067610214954
5

10.0042204663182 1 TTN ENSG00000155657 1 cardiovascular 
disease

612 1.33249 titin

219 6.94802064808872 9.53915881110803 2 RPS17 ENSG00000182774       6    ribosomal protein 
S17

271 6.61799049327818 8.54303182025524 2 TNNI1 ENSG00000159173       29    troponin I1, slow 
skeletal type

132 10.3077145444924 9.40087943628218 2 HLA-A ENSG00000206503 0.57063135542674
9

cardiovascular 
disease

501    major 
histocompatibility 
complex, class I, A

240 5.86144980575564 9.38370429247405 2 SLC6A4 ENSG00000108576 1 cardiovascular 
disease

232    solute carrier family 
6 member 4

182 5.06890170624402 8.38801728534514 2 NPPB ENSG00000120937 0.73362927273845
1

cardiovascular 
disease biomarker 
measurement

301    natriuretic peptide 
B

70 5.89925569841038 8.37068740680722 2 COMP ENSG00000105664 0.31294441496913
6

dilated 
cardiomyopathy

9109    cartilage oligomeric 
matrix protein

25 5.32107294422745 8 2 BEX1 ENSG00000133169 0.03491944444444
44

heart disease 5    brain expressed X-
linked 1

216 5.54937873653375 7.83289001416474 2 RHCG ENSG00000140519 0.26201388888888
9

Infantile 
hypertrophic 
cardiomyopathy 
due to MRPL44 
deficiency

30    Rh family C 
glycoprotein

180 7.29293557064031 9.05528243550119 2 NGEF ENSG00000066248       3 0.150671 neuronal guanine 
nucleotide 
exchange factor

181 8.04397728581946 8.78135971352466 2 NPPA ENSG00000175206 1 cardiovascular 
disease

437 0.170989 natriuretic peptide 
A

9 3.65838110652292 8.85174904141606 3 ALAS2 ENSG00000158578 0.25561338888888
9

cardiomyopathy 22  5'-aminolevulinate 
synthase 2

19 3.9904844305577 7.65821148275179 3 ATP1B4 ENSG00000101892       1    ATPase Na+/K+ 
transporting family 
member beta 4

59 3.05220716699847 9.8008998999203 3 CHD5 ENSG00000116254       9    chromodomain 
helicase DNA 
binding protein 5

96 4.47462568183603 9.64024493622235 3 FBXL16 ENSG00000127585       2    F-box and leucine 
rich repeat protein 
16

136 4.27481065712663 7.34872815423108 3 HYAL4 ENSG00000106302       1    hyaluronidase 4

174 3.54422913321816 9.4093909361377 3 MYL1 ENSG00000168530       13    myosin light chain 1

188 3.37289023262111 6.83289001416474 3 NSG2 ENSG00000170091       0    neuronal vesicle 
trafficking 
associated 2

217 3.91409704429358 8.47167521439204 3 RIMS4 ENSG00000101098       0    regulating synaptic 
membrane 
exocytosis 4

259 3.82373483620928 7.90689059560852 3 SYTL5 ENSG00000147041       0    synaptotagmin like 
5

270 3.13563868733179 7.49185309632967 3 TNMD ENSG00000000005       11    tenomodulin

279 4.85085048889719 8.0389189892923 3 UNC80 ENSG00000144406       1    unc-80 homolog, 
NALCN channel 
complex subunit

286 3.6360341169916 6.5077946401987 3 XG ENSG00000124343       105    Xg glycoprotein (Xg 
blood group)

128 3.92488314747514 8.40087943628218 3 HBA2 ENSG00000188536 0.2 Aicardi-Goutières 
syndrome

33    hemoglobin subunit 
alpha 2

48 3.60375108954229 9.61470984411521 3 CALCA ENSG00000110680 1 cardiovascular 
disease

360    calcitonin related 
polypeptide alpha

78 4.74954598736633 8.54303182025524 3 CYP3A5 ENSG00000106258 0.31213193995270
3

cardiovascular 
disease

820    cytochrome P450 
family 3 subfamily A 
member 5

198 3.25962475538462 8.29462074889163 3 PDE6A ENSG00000132915 1 cardiovascular 
disease

2    phosphodiesterase 
6A
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284 4.23206856642375 9.13955135239879 3 WNT9A ENSG00000143816 0.76199177081137
9

cardiovascular 
disease

9    Wnt family member 
9A

177 3.01403702527681 7.97727992349992 3 MYOZ1 ENSG00000177791 0.19295166666666
7

dilated 
cardiomyopathy

13    myozenin 1

129 4.81030163762285 9.53138146051631 3 HBB ENSG00000244734 0.02701909139812
37

gastric cardia 
carcinoma

79    hemoglobin subunit 
beta

77 3.0347905629289 8.96000193206808 3 CYP11A1 ENSG00000140459 0.20298821201814
1

hypertension 103    cytochrome P450 
family 11 subfamily 
A member 1

63 3.56971747678817 8.08214904135387 3 CHRNE ENSG00000108556 1 intracranial 
hypertension

3    cholinergic receptor 
nicotinic epsilon 
subunit

4 5.19892875253399 6.3037807481771 3 ADAM18 ENSG00000168619 5.95769433378641
e-05

Polyarteritis 
Nodosa

0    ADAM 
metallopeptidase 
domain 18

21 3.18051500085422 8.01122725542325 3 ATRNL1 ENSG00000107518 0.00231788439106
461

Paroxysmal 
supraventricular 
tachycardia

2 0.063339 attractin like 1

237 3.66291878761574 8.00562454919388 3 SLC16A9 ENSG00000165449 0.00209062141407
026

Arterial stenosis 8 0.067287 solute carrier family 
16 member 9

17 3.87318554341421 7.14974711950468 3 AQP10 ENSG00000143595       4 0.097956 aquaporin 10

127 4.22203194733031 8.40514146313634 3 HBA1 ENSG00000206172 0.2 Aicardi-Goutières 
syndrome

9105 0.105576 hemoglobin subunit 
alpha 1

209 3.31598118062034 9.8073549220576 3 PPP2R2B ENSG00000156475 0.30358700156945
6

heart disease 5 0.12928 protein 
phosphatase 2 
regulatory subunit 
Bbeta

186 3.49986748217821 9.43879185257826 3 NRG1 ENSG00000157168 0.83886823701539
8

cardiovascular 
disease

202 0.302508 neuregulin 1

201 2.98945841800273 8.92184093707449 3 PHF21B ENSG00000056487       0 0.536388 PHD finger protein 
21B

67 2.97181911688648 8.11374216604919 3 COL22A1 ENSG00000169436       6 0.546152 collagen type XXII 
alpha 1 chain

231 3.42460515913005 8.89784545600551 3 SEZ6L ENSG00000100095 0.20494458079338
1

arterial stiffness 
measurement

3 0.858397 seizure related 6 
homolog like

18 3.74908488063969 6.71424551766612 3 ARMS2 ENSG00000254636 0.16117210891668
7

cardiovascular 
disease

37 0.95488 age-related 
maculopathy 
susceptibility 2

62 3.34234394901801 8.97441458980553 3 CHRNA3 ENSG00000080644 1 cardiovascular 
disease

36 1.23034 cholinergic receptor 
nicotinic alpha 3 
subunit

22 -1.9229040243932 7.33091687811462 4 B3GALT2 ENSG00000162630       0    beta-1,3-
galactosyltransferas
e 2

64 -2.6685787845017
8

8.25266543245025 4 CKAP2L ENSG00000169607       1    cytoskeleton 
associated protein 
2 like

80 -2.0319659017006
2

7.15987133677839 4 DISP2 ENSG00000140323       0    dispatched RND 
transporter family 
member 2

106 -1.8636480003918
1

7.79441586635011 4 G0S2 ENSG00000123689       26    G0/G1 switch 2

118 -2.5465678927184
6

8.51569983828404 4 GRB7 ENSG00000141738       8    growth factor 
receptor bound 
protein 7

144 -2.5999051763314
1

8.01680828768655 4 KANK4 ENSG00000132854       2    KN motif and 
ankyrin repeat 
domains 4

150 -2.1237678709178
1

6.78135971352466 4 KLHL32 ENSG00000186231       1    kelch like family 
member 32

154 -2.1748955218304
4

7.48381577726426 4 LINC00842 ENSG00000285294       0    long intergenic non-
protein coding RNA 
842

157 -2.3155866731757
5

8.3264294871223 4 LRRN3 ENSG00000173114       6    leucine rich repeat 
neuronal 3

202 -2.3214367225808 7.24792751344359 4 PI15 ENSG00000137558       86    peptidase inhibitor 
15

226 -1.8976644222455
3

7.56985560833095 4 SEC14L5 ENSG00000103184       0    SEC14 like lipid 
binding 5

230 -2.0036643968696
4

6.8073549220576 4 SERTM1 ENSG00000180440       1    serine rich and 
transmembrane 
domain containing 
1

258 -2.2876023153023
1

8.6582114827518 4 SYT13 ENSG00000019505       0    synaptotagmin 13

274 -1.9525022480234 8.29462074889163 4 TROAP ENSG00000135451       0    trophinin 
associated protein

152 -1.8997285285517
4

8.61102479730735 4 LAMB3 ENSG00000196878 0.06964468210935
59

arterial stiffness 
measurement

6    laminin subunit 
beta 3

167 -2.4400914124205
3

9.78953364497036 4 MKI67 ENSG00000148773 0.84597325325012
2

arterial stiffness 
measurement

958    marker of 
proliferation Ki-67

266 -1.6770088230723 6.39231742277876 4 TMEM40 ENSG00000088726 0.08144596964120
86

cardiac edema 1    transmembrane 
protein 40

151 -2.7895159691291
7

7.79441586635011 4 LAD1 ENSG00000159166 0.28340542316436
8

cardiac troponin T 
measurement

8    ladinin 1

74 -2.6008205989016
1

8.49185309632967 4 CRHR2 ENSG00000106113 0.31575403368998 cardiovascular 
disease

27    corticotropin 
releasing hormone 
receptor 2

108 -2.8082330698868 9.0389189892923 4 GATA5 ENSG00000130700 1 cardiovascular 
disease

120    GATA binding 
protein 5

218 -2.5709896267765
5

8.74146698640115 4 RNASE2 ENSG00000169385 0.03142421601450
5

cardiovascular 
disease

2    ribonuclease A 
family member 2

228 -2.2376202032975
7

8.73470962022584 4 SERPINA3 ENSG00000196136 0.21430372023863
7

cardiovascular 
disease

29    serpin family A 
member 3

254 -1.9332473523470
5

9.05528243550119 4 SSTR2 ENSG00000180616 1 cardiovascular 
disease

52    somatostatin 
receptor 2

114 -1.9831615099723
6

7.79441586635011 4 GPR22 ENSG00000172209 0.26373237371444
7

coronary artery 
disease

6    G protein-coupled 
receptor 22

227 -2.0407301088736
8

6.53915881110803 4 SERF1B ENSG00000205572 0.1986 coronary artery 
disease, autosomal 
dominant 2

0    small EDRK-rich 
factor 1B

145 -2.1852568478239
5

8.60362634498619 4 KCNA7 ENSG00000104848 0.0334 Familial progressive 
cardiac conduction 
defect

6    potassium voltage-
gated channel 
subfamily A 
member 7

272 -2.2249645459212
6

10.7047682393626 4 TOP2A ENSG00000131747 0.03168 gastric cardia 
carcinoma

153    DNA 
topoisomerase II 
alpha
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97 -2.3801510256228
4

8.18487534290828 4 FCGBP ENSG00000275395 0.03037979364224
62

gastric non-cardia 
carcinoma

5    Fc fragment of IgG 
binding protein

175 -2.2935788301116 9.23840473932508 4 MYL7 ENSG00000106631 0.93872443695874
4

heart failure 46    myosin light chain 7

148 -2.2990510330379
7

9.72451385311995 4 KIF20A ENSG00000112984 0.22041195072233
7

heart rate 9    kinesin family 
member 20A

229 -2.2419067558796
5

8.51569983828404 4 SERPINA5 ENSG00000188488 0.032291 hypertension 7    serpin family A 
member 5

195 -1.9748134270663
7

7.29462074889163 4 PCDH20 ENSG00000280165 0.0136 portal hypertension 2    protocadherin 20

268 -2.1293097433092
1

7.34872815423108 4 TMEM63C ENSG00000165548       2 0.046791 transmembrane 
protein 63C

166 -2.2739259549760
9

7.66533591718518 4 MFAP2 ENSG00000117122 0.1864 Aicardi-Goutières 
syndrome

6 0.048463 microfibril 
associated protein 
2

211 -1.9409102231534
3

6 4 PRELID2 ENSG00000186314       2 0.048756 PRELI domain 
containing 2

32 -2.6442112097475
3

10.1774195379892 4 BUB1B ENSG00000156970 0.18596 Aicardi syndrome 13 0.050256 BUB1 mitotic 
checkpoint serine/
threonine kinase B

280 -1.8875156914396
3

6.10852445677817 4 VASH2 ENSG00000143494 0.0308 pulmonary arterial 
hypertension

12 0.052454 vasohibin 2

275 -2.7516865269040
8

8.40514146313634 4 TRPC4 ENSG00000133107 0.07101274885991
04

cardiovascular 
disease

155 0.053665 transient receptor 
potential cation 
channel subfamily 
C member 4

13 -2.0586199577696
5

9.27612440527424 4 ANLN ENSG00000011426 0.0142 cardiovascular 
disease

6 0.056363 anillin actin binding 
protein

162 -2.0809291617371
6

7.59245703726808 4 MARVELD2 ENSG00000152939 0.01737777777777
78

heart disease 6 0.057293 MARVEL domain 
containing 2

98 -2.5989330770387
2

7.10852445677817 4 FER1L6 ENSG00000214814       1 0.060283 fer-1 like family 
member 6

60 -2.7007893437764
9

8.24317398347295 4 CHDH ENSG00000016391 1 cardiovascular 
disease

8 0.063677 choline 
dehydrogenase

190 -2.4976416985120
6

9.38154295118458 4 NUF2 ENSG00000143228       0 0.079543 NUF2 component 
of NDC80 
kinetochore 
complex

238 -2.4902182990596
7

8.09803208296053 4 SLC38A4 ENSG00000139209       9 0.109267 solute carrier family 
38 member 4

291 -2.5755829600461
4

7.89481776330794 4 ZNF385B ENSG00000144331 0.87389784808688
7

cardiovascular 
disease

2 0.179581 zinc finger protein 
385B

109 -2.2748625242820
1

8.18487534290828 4 GDA ENSG00000119125 0.06372901360544
22

myocardial 
infarction

562 0.501181 guanine deaminase

143 -2.4529687655744
7

8.9915218460757 4 ITGB6 ENSG00000115221 0.77290636301040
6

arterial stiffness 
measurement

11 0.503822 integrin subunit 
beta 6

120 -2.7942514273930
9

9.99859042974533 4 GRIN2A ENSG00000183454 1 heart disease 8 0.528284 glutamate 
ionotropic receptor 
NMDA type subunit 
2A

197 -2.4101798090259
2

8.1548181090521 4 PDE11A ENSG00000128655 0.0104 pulmonary arterial 
hypertension

16 0.556685 phosphodiesterase 
11A

122 -2.9084532890197
5

8.85486838326024 4 GRIP1 ENSG00000155974 0.2 Congenital 
vertebral-cardiac-
renal anomalies 
syndrome

24 0.621951 glutamate receptor 
interacting protein 1

27 -2.3091258323439
3

10.1459321458205 4 BIRC5 ENSG00000089685 0.0139 hypertension 232 0.634612 baculoviral IAP 
repeat containing 5

285 -2.1426687826019
3

8.65105169117893 4 WWC1 ENSG00000113645       13 0.663947 WW and C2 
domain containing 
1

91 -2.0047420773043
8

8.85798099512757 4 EYA4 ENSG00000112319 1 heart disease 20 0.677699 EYA transcriptional 
coactivator and 
phosphatase 4

121 -1.9192670887331
5

8.61838550225861 4 GRIN3A ENSG00000198785 1 Abnormality of 
cardiovascular 
system morphology

7 1.38272 glutamate 
ionotropic receptor 
NMDA type subunit 
3A

168 -2.1855670081464
8

8.81057163474115 4 MLXIPL ENSG00000009950 0.51904393899899
4

cardiovascular 
disease

66 1.74508 MLX interacting 
protein like

34 2.45333728185443 4.16992500144231 5 C19ORF81 ENSG00000235034       0       

43 1.61832055802933 5.39231742277876 5 C2ORF27A ENSG00000197927       0       

249 1.51789304332459 5.08746284125034 5 SPATA6L ENSG00000106686       0    spermatogenesis 
associated 6 like

289 1.52813344556675 5.12928301694497 5 ZMYND12 ENSG00000066185       0    zinc finger MYND-
type containing 12

292 2.12860078365148 5.08746284125034 5 ZNF385C ENSG00000187595       0    zinc finger protein 
385C

161 1.91129556374842 5 5 MAP3K7CL ENSG00000156265 0.0104 coronary artery 
disease

3 0.673055 MAP3K7 C-terminal 
like

100 -2.6373548926517
9

6.61470984411521 6 FIBCD1 ENSG00000130720       0    fibrinogen C 
domain containing 
1

255 -3.1159079765231
2

6.4757334309664 6 STAC2 ENSG00000141750       2    SH3 and cysteine 
rich domain 2

261 -2.7262271714906 5.28540221886225 6 TCF24 ENSG00000261787       0    transcription factor 
24

30 -3.6304400616964
9

9.84862294042934 6 BMP7 ENSG00000101144 0.32747561057554
9

cardiovascular 
disease

188    bone 
morphogenetic 
protein 7

50 -3.2339108293811
1

9.04439411935845 6 CCL11 ENSG00000172156 0.09580471928353
06

cardiovascular 
disease

186    C-C motif 
chemokine ligand 
11

155 -3.3933052613818
6

8.04984854945056 6 LIPG ENSG00000101670 0.31041485533540
7

cardiovascular 
disease

158    lipase G, 
endothelial type

252 -4.3644792936164
3

10.1910592145317 6 SPP1 ENSG00000118785 0.33332460548253
5

cardiovascular 
disease

603    secreted 
phosphoprotein 1

134 -3.4491436720522
6

8.20945336562895 6 HOPX ENSG00000171476 0.29528502222222
2

familial 
cardiomyopathy

29    HOP homeobox

36 -2.9030307630022
5

6.84549005094437 6 C1ORF116 ENSG00000182795 0.02744 gastric non-cardia 
carcinoma

0       

39 -2.4277740056418
4

5.70043971814109 6 C1QTNF9 ENSG00000240654 0.2 Infantile 
hypertrophic 
cardiomyopathy 
due to MRPL44 
deficiency

4    C1q and TNF 
related 9
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40 -2.4277740056418
4

5.70043971814109 6 C1QTNF9 ENSG00000240654 0.2 Infantile 
hypertrophic 
cardiomyopathy 
due to MRPL44 
deficiency

4    C1q and TNF 
related 9

41 -2.4277740056418
4

5.70043971814109 6 C1QTNF9 ENSG00000240654 0.2 Infantile 
hypertrophic 
cardiomyopathy 
due to MRPL44 
deficiency

4    C1q and TNF 
related 9

72 -3.0524926269486 8.31288295528435 6 CPLX3 ENSG00000213578 0.28104930790141
2

mean arterial 
pressure

5    complexin 3

126 -3.1957473616927
3

8.67948009950545 6 GSTT2B ENSG00000133433 0.0116 primary 
hypertension

2    glutathione S-
transferase theta 
2B (gene/
pseudogene)

104 -3.4898901104115
4

10.1510165388922 6 FOXM1 ENSG00000111206 0.22402388888888
9

pulmonary arterial 
hypertension

74    forkhead box M1

139 -2.8444165539460
4

7.55458885167764 6 IL17RB ENSG00000056736 0.29761689739624 cardiovascular 
disease

7 0.09034 interleukin 17 
receptor B

47 -3.7309109728357
8

9.3037807481771 6 CACNA1E ENSG00000198216 1 cardiovascular 
disease

18 0.096871 calcium voltage-
gated channel 
subunit alpha1 E

7 -3.2430258319898
9

9.24317398347295 6 ADRB1 ENSG00000043591 1 cardiovascular 
disease

3218 1.46277 adrenoceptor beta 
1

3 2.17239888037922 8.66533591718518 7 ACKR2 ENSG00000144648       3    atypical chemokine 
receptor 2

11 2.33159459960859 7.73470962022584 7 ANKRD24 ENSG00000089847       0    ankyrin repeat 
domain 24

23 2.8390579645635 7.85798099512757 7 BAAT ENSG00000136881       11    bile acid-
CoA:amino acid N-
acyltransferase

26 2.83410764057654 7.82654848729092 7 BEX2 ENSG00000133134       2    brain expressed X-
linked 2

28 2.25819152816438 8.13442632022093 7 BIRC7 ENSG00000101197       2    baculoviral IAP 
repeat containing 7

33 2.7882117058921 5.28540221886225 7 C16ORF89 ENSG00000153446       0       

68 2.04370806561401 8.10328780841202 7 COL8A2 ENSG00000171812       9    collagen type VIII 
alpha 2 chain

85 2.45912929047215 8.15987133677839 7 DUSP15 ENSG00000149599       1    dual specificity 
phosphatase 15

95 2.69672465800296 6.06608919045777 7 FAM133A ENSG00000179083       1    family with 
sequence similarity 
133 member A

112 2.06856921948313 9.35974956032233 7 GNG8 ENSG00000167414       1    G protein subunit 
gamma 8

123 2.18658728720147 9.08480838780436 7 GRM2 ENSG00000164082       3    glutamate 
metabotropic 
receptor 2

135 2.70496590387546 7.8008998999203 7 HS6ST2 ENSG00000171004       3    heparan sulfate 6-
O-sulfotransferase 
2

140 2.04211140038593 8.36194377373524 7 IRX2 ENSG00000170561       8    iroquois homeobox 
2

141 2.32368296222266 8.61102479730735 7 IRX6 ENSG00000159387       3    iroquois homeobox 
6

192 2.15994536225414 7.43462822763672 7 NXNL1 ENSG00000171773       0    nucleoredoxin like 1

196 2.07145169757637 6.85798099512757 7 PCDHAC2 ENSG00000243232       0    protocadherin alpha 
subfamily C, 2

214 2.08843489809424 6.44294349584873 7 RADX ENSG00000147231       0    RPA1 related single 
stranded DNA 
binding protein, X-
linked

225 2.64071738403249 8.49984588708321 7 SDSL ENSG00000139410       8    serine dehydratase 
like

234 2.45340214703444 7.11894107272351 7 SHISA2 ENSG00000180730       1    shisa family 
member 2

243 2.77407803349657 7.14974711950468 7 SLITRK4 ENSG00000179542       1    SLIT and NTRK like 
family member 4

247 1.99842293442822 8.08746284125034 7 SOX15 ENSG00000129194       3    SRY-box 
transcription factor 
15

65 2.74213431922183 8.85798099512757 7 CLEC12A ENSG00000172322 0.0172 Cardiofaciocutaneo
us syndrome

2    C-type lectin 
domain family 12 
member A

158 2.14758188141638 7.49185309632967 7 LTBP4 ENSG00000090006 0.59443280361179 cardiomyopathy 28    latent transforming 
growth factor beta 
binding protein 4

14 2.60318351020564 8.16992500144231 7 AOC1 ENSG00000002726 0.05694397358186
56

cardiovascular 
disease

1    amine oxidase 
copper containing 1

38 2.23835982235031 7.5077946401987 7 C1QTNF4 ENSG00000172247 0.09157050036191
94

cardiovascular 
disease

0    C1q and TNF 
related 4

51 2.61231268356798 9.91288933622996 7 CCN2 ENSG00000118523 0.91116925758589
8

cardiovascular 
disease

512    cellular 
communication 
network factor 2

87 2.32732201943461 10.4356702609366 7 EGR1 ENSG00000120738 0.32622864962218
1

cardiovascular 
disease

473    early growth 
response 1

111 2.52619359939856 9.04984854945056 7 GDF15 ENSG00000130513 0.31018284691744 cardiovascular 
disease

357    growth 
differentiation factor 
15

233 2.78001529946862 8.63299519714296 7 SFRP4 ENSG00000106483 0.06436420291233
44

cardiovascular 
disease

40    secreted frizzled 
related protein 4

262 2.07884254987272 10.4136279290242 7 TLR9 ENSG00000239732 0.73292997986785
5

cardiovascular 
disease

262    toll like receptor 9

224 2.02490336151523 7.74819284958946 7 SCUBE2 ENSG00000175356 1 Cerebral 
arteriovenous 
malformation

12    signal peptide, CUB 
domain and EGF 
like domain 
containing 2

46 2.26253496058751 8.4262647547021 7 CA3 ENSG00000164879 0.05379948309339
32

dilated 
cardiomyopathy

555    carbonic anhydrase 
3

171 2.43136020592352 7.23840473932508 7 MSS51 ENSG00000166343 0.24938641334292
7

dilated 
cardiomyopathy

1    MSS51 
mitochondrial 
translational 
activator

178 2.79780422637274 9.06608919045777 7 NAP1L3 ENSG00000186310 0.00912202178593
987

dilated 
cardiomyopathy

1    nucleosome 
assembly protein 1 
like 3

265 2.01088731554769 7.82017896241519 7 TMEM30B ENSG00000182107 0.02548 gastric non-cardia 
carcinoma

1    transmembrane 
protein 30B
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57 2.33247392487416 8.54689445988764 7 CERS1 ENSG00000223802 1 Genetic cardiac 
anomaly

5    ceramide synthase 
1

103 2.26346939129182 9.17741953798924 7 FOSB ENSG00000125740 0.19224 Glycogen storage 
disease due to 
muscle and heart 
glycogen synthase 
deficiency

87    FosB proto-
oncogene, AP-1 
transcription factor 
subunit

203 2.38933360816303 7.06608919045777 7 PI16 ENSG00000164530 0.02357212951752
51

heart disease 113    peptidase inhibitor 
16

277 2.73795505232141 9.55458885167764 7 UCHL1 ENSG00000154277 0.05413367277270
73

heart disease 111    ubiquitin C-terminal 
hydrolase L1

193 2.83256720412549 8.91587937883577 7 OGDHL ENSG00000197444 0.018 heart failure 6    oxoglutarate 
dehydrogenase like

81 2.68794201573077 9.19475685442225 7 DMC1 ENSG00000100206 0.07204315811395
65

heart rate 8    DNA meiotic 
recombinase 1

79 2.15056200073272 7.65105169117893 7 DACT2 ENSG00000164488 0.0152 heart valve disease 2    dishevelled binding 
antagonist of beta 
catenin 2

253 2.02242252664875 7.68650052718322 7 SRCIN1 ENSG00000277363 0.11589753627777
1

hypertension 3    SRC kinase 
signaling inhibitor 1

110 2.26628746205277 8.48784003382305 7 GDF10 ENSG00000266524 0.48624944686889
6

mean arterial 
pressure

6    growth 
differentiation factor 
10

52 2.14900226103209 9.94544383637791 7 CCNA1 ENSG00000133101 0.0104 pulmonary arterial 
hypertension

8    cyclin A1

10 2.63243069266142 8.37068740680722 7 AMHR2 ENSG00000135409 0.227225 X-linked intellectual 
disability - 
cardiomegaly - 
congestive heart 
failure

8    anti-Mullerian 
hormone receptor 
type 2

169 2.0977751395693 7.8703647195834 7 MMP24 ENSG00000125966 0.08568452632353
22

venous 
thromboembolism

6 0.046945 matrix 
metallopeptidase 
24

101 2.2208162398181 8.99717948093762 7 FMOD ENSG00000122176 0.048 heart failure 20 0.047068 fibromodulin

236 2.5068639956886 7.56224242422107 7 SLC16A6 ENSG00000108932       1 0.053712 solute carrier family 
16 member 6

246 2.43023639207744 7.12928301694497 7 SOHLH2 ENSG00000120669       0 0.056217 spermatogenesis 
and oogenesis 
specific basic helix-
loop-helix 2

76 2.51277615136713 8.25266543245025 7 CRTAC1 ENSG00000095713 5.52463753426618
e-05

systolic heart failure 1 0.067116 cartilage acidic 
protein 1

170 2.56701185551708 7.25738784269265 7 MRAP2 ENSG00000135324 0.2 Infantile 
hypertrophic 
cardiomyopathy 
due to MRPL44 
deficiency

3 0.078202 melanocortin 2 
receptor accessory 
protein 2

102 2.03193300733518 8.24317398347295 7 FNDC1 ENSG00000164694 0.00365269911261
096

ischemic 
cardiomyopathy

5 0.078697 fibronectin type III 
domain containing 
1

194 2.71824192123292 7.71424551766612 7 P3H2 ENSG00000090530 0.01015615307710
77

pulmonary arterial 
hypertension

2 0.093045 prolyl 3-
hydroxylase 2

212 2.5594447978589 6.39231742277876 7 PRR7 ENSG00000131188       0 0.095411 proline rich 7, 
synaptic

206 2.6684099880871 7.92481250360578 7 POU6F2 ENSG00000106536       0 0.147318 POU class 6 
homeobox 2

73 2.4984340890349 9.04712391211403 7 CRB1 ENSG00000134376 1 Pigmented 
paravenous 
retinochoroidal 
atrophy

15 0.152504 crumbs cell polarity 
complex 
component 1

2 2.49452675179688 9.68999797141945 7 ABCG2 ENSG00000118777 0.31473139412114
4

cardiovascular 
disease

501 0.33998 ATP binding 
cassette subfamily 
G member 2 (Junior 
blood group)

83 2.65151226952674 8.57364718749332 7 DNAH6 ENSG00000115423       3 0.669849 dynein axonemal 
heavy chain 6

1 2.07462783317426 9.64745842645492 7 ABCC8 ENSG00000006071 1 cardiovascular 
disease

170 0.820721 ATP binding 
cassette subfamily 
C member 8

221 1.98246051844236 9.01402047031493 7 RYR3 ENSG00000198838 0.71729254722595
2

arterial stiffness 
measurement

3292 1.19919 ryanodine receptor 
3

16 2.5112833068297 9.90989308377004 7 APOA1 ENSG00000118137 1 cardiovascular 
disease

1162 1.67707 apolipoprotein A1

42 -1.801558816913 1.58496250072116 8 C20ORF202 ENSG00000215595       0       

124 -5.3467777273569
2

7.10852445677817 8 GRXCR2 ENSG00000204928       0    glutaredoxin and 
cysteine rich 
domain containing 
2

172 -3.6159279370914
7

5.16992500144231 8 MTRNR2L1 ENSG00000256618       1    MT-RNR2 like 1

90 -5.4301572754370
2

8.37068740680722 8 EREG ENSG00000124882 0.61541724205017
1

coronary artery 
calcification

23    epiregulin

35 -2.6959507990438
7

3.4594316186373 8 C1ORF105 ENSG00000180999 0.00491658424315
499

dilated 
cardiomyopathy

1       

173 -6.7082843436473
4

10.0953970227926 8 MYH6 ENSG00000197616 1 heart disease 329 0.386648 myosin heavy chain 
6
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Supplementary table 11. IC vs healthy cluster cross-referencing with disease association databases and datasets

Log2 Fold Change 
Score

Scaled interactor 
number

Cluster labels Gene symbol Ensembl Association 
overall score - OT

Disease 
association - OT

PubMed Report 
number for a gene 
in the context of 
any 
cardiovascular 
indication

GWAS 
standardised 
association score 
for cardiovascular 
indication

Description

8.58916673230264 9.40087943628218 0 HLA-A ENSG00000206503 0.57063135542674
9

cardiovascular 
disease

501   major 
histocompatibility 
complex, class I, A

6.44507620464629 9.20945336562895 0 HLA-C ENSG00000204525     162 0.047144 major 
histocompatibility 
complex, class I, C

6.02101846831308 9.05528243550119 0 NGEF ENSG00000066248     3 0.150671 neuronal guanine 
nucleotide 
exchange factor

-3.4115257065987 7.79441586635011 1 LAD1 ENSG00000159166 0.28340542316436
8

cardiac troponin T 
measurement

8   ladinin 1

-3.8353002641217
6

8.74146698640115 1 RNASE2 ENSG00000169385 0.03142421601450
5

cardiovascular 
disease

2   ribonuclease A 
family member 2

-2.3958639183925
2

6.84549005094437 1 C1ORF116 ENSG00000182795 0.02744 gastric non-cardia 
carcinoma

0   Chromosome 1 
Open Reading 
Frame  116  

-3.0629412379373
1

6.61470984411521 1 FIBCD1 ENSG00000130720     0   fibrinogen C 
domain containing 
1

-2.2976858372368
7

6.61470984411521 1 GMNC ENSG00000205835     1   geminin coiled-coil 
domain containing

-3.6517929608650
2

7.10852445677817 1 GRXCR2 ENSG00000204928     0   glutaredoxin and 
cysteine rich 
domain containing 
2

-2.2435391340162
5

6.78135971352466 1 KLHL32 ENSG00000186231     1   kelch like family 
member 32

-2.4416174494234
5

5.90689059560852 1 PRR32 ENSG00000183631     0   proline rich 32

-3.0253840881229
9

6.4757334309664 1 STAC2 ENSG00000141750     2   SH3 and cysteine 
rich domain 2

-3.4046826448841
7

7.10852445677817 1 FER1L6 ENSG00000214814     1 0.060283 fer-1 like family 
member 6

-4.0149598309641
3

7.55458885167764 1 IL17RB ENSG00000056736 0.29761689739624 cardiovascular 
disease

7 0.09034 interleukin 17 
receptor B

1.77825191279389 7.2667865406949 2 IER2 ENSG00000160888 0.50753352046012
9

venous 
thromboembolism

2   immediate early 
response 2

1.98073116652793 6.84549005094437 2 DNAAF3 ENSG00000167646 0.40833333333333
3

Familial isolated 
dilated 
cardiomyopathy

4   dynein axonemal 
assembly factor 3

1.78389349940921 7.03342300153745 2 TM6SF2 ENSG00000213996 0.35823114824711
3

cardiovascular 
disease

73   transmembrane 6 
superfamily 
member 2

1.87633203648745 9.13442632022093 2 TNFRSF11B ENSG00000164761 0.34143860883608
8

cardiovascular 
disease

366   TNF receptor 
superfamily 
member 11b

1.67178546711004 8.70390357344466 2 MDK ENSG00000110492 0.33458109026254
6

arterial disorder 69   midkine

1.84864059104871 7.68650052718322 2 SRCIN1 ENSG00000277363 0.11589753627777
1

hypertension 3   SRC kinase 
signaling inhibitor 1

1.82447862050096 7.99435343685886 2 SCAMP5 ENSG00000198794 0.09902884159237
15

mean arterial 
pressure

3   secretory carrier 
membrane protein 
5

1.7580858151407 8.04439411935845 2 UCN ENSG00000163794 0.08609269753628
22

cardiovascular 
disease

192   urocortin

1.65649608205296 8.98299357469431 2 FRZB ENSG00000162998 0.05697310994867
9

dilated 
cardiomyopathy

15   frizzled related 
protein

1.63540918814715 9.55458885167764 2 UCHL1 ENSG00000154277 0.05413367277270
73

heart disease 111   ubiquitin C-terminal 
hydrolase L1

1.82954960414151 8.876516946565 2 HES5 ENSG00000197921 0.04065455555555
56

pulmonary arterial 
hypertension

38   hes family bHLH 
transcription factor 
5

1.8775345761873 7.82017896241519 2 TMEM30B ENSG00000182107 0.02548 gastric non-cardia 
carcinoma

1   transmembrane 
protein 30B

1.870710784994 7.05528243550119 2 CRISPLD1 ENSG00000121005 0.0252 heart failure 2   cysteine rich 
secretory protein 
LCCL domain 
containing 1

1.63701588887323 7.06608919045777 2 PI16 ENSG00000164530 0.02357212951752
51

heart disease 113   peptidase inhibitor 
16

1.74734220905837 6.4594316186373 2 PPDPF ENSG00000125534 0.01441970241767
82

dilated 
cardiomyopathy

0   pancreatic 
progenitor cell 
differentiation and 
proliferation factor

1.77564128003123 8.76155123244448 2 NTNG2 ENSG00000196358 0.00620275403100
288

Abnormality of the 
cardiovascular 
system

2   netrin G2

1.83006456780087 7.71424551766612 2 SEZ6L2 ENSG00000174938 0.00073312683590
9663

hypertensive heart 
disease

1   seizure related 6 
homolog like 2

1.7036467612626 8.74483383749955 2 ADAM8 ENSG00000151651     19   ADAM 
metallopeptidase 
domain 8

1.51151884766014 8.85486838326024 2 CCR10 ENSG00000184451     16   C-C motif 
chemokine receptor 
10

1.70481177683683 7.17990909001493 2 C2CD4B ENSG00000205502     5   C2 calcium 
dependent domain 
containing 4B

1.57341687739654 8.08214904135387 2 CTRL ENSG00000141086     507   chymotrypsin like

1.51445670155185 6.49185309632967 2 CSKMT ENSG00000214756     0   citrate synthase 
lysine 
methyltransferase

1.60166024187191 8.67595703294175 2 CLDN5 ENSG00000184113     335   claudin 5
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1.61966432520463 9.64745842645492 2 CISH ENSG00000114737     20   cytokine inducible 
SH2 containing 
protein

1.88669814815387 8.15987133677839 2 DUSP15 ENSG00000149599     1   dual specificity 
phosphatase 15

1.83107874393234 8.57742882803575 2 DUSP2 ENSG00000158050     30   dual specificity 
phosphatase 2

1.66283492831171 9.71596199025514 2 EGR2 ENSG00000122877     43   early growth 
response 2

1.61180157396318 7.98299357469431 2 ESM1 ENSG00000164283     134   endothelial cell 
specific molecule 1

1.93987798162356 6.06608919045777 2 FAM133A ENSG00000179083     1   family with 
sequence similarity 
133 member A

1.77496392805853 7.83289001416474 2 GJC2 ENSG00000198835     6   gap junction protein 
gamma 2

1.90318060375825 7.20945336562895 2 HSH2D ENSG00000196684     6   hematopoietic SH2 
domain containing

1.65385281506948 7.27612440527424 2 HAPLN3 ENSG00000140511     4   hyaluronan and 
proteoglycan link 
protein 3

1.75563330268562 8.49585502688717 2 HAPLN4 ENSG00000187664     0   hyaluronan and 
proteoglycan link 
protein 4

1.57265175225769 7.78135971352466 2 KLHDC9 ENSG00000162755     0   kelch domain 
containing 9

1.85988995760642 6.61470984411521 2 LIME1 ENSG00000203896     1   Lck interacting 
transmembrane 
adaptor 1

1.957991175897 7.49185309632967 2 LRRC24 ENSG00000254402     0   leucine rich repeat 
containing 24

1.6882853556259 7.3037807481771 2 METRN ENSG00000103260     2   meteorin, glial cell 
differentiation 
regulator

1.59882727818822 7.34872815423108 2 NXPH4 ENSG00000182379     1   neurexophilin 4

1.56449154233014 8.6724253419715 2 NME3 ENSG00000103024     1   NME/NM23 
nucleoside 
diphosphate kinase 
3

1.57889743289431 7.10852445677817 2 NUAK2 ENSG00000163545     6   NUAK family kinase 
2

1.56100690338488 7.18982455888002 2 NUP62CL ENSG00000198088     0   nucleoporin 62 C-
terminal like

1.94727223532423 7.14974711950468 2 ODF3B ENSG00000177989     0   outer dense fiber of 
sperm tails 3B

1.92195119273719 8.96289600533726 2 PIM2 ENSG00000102096     16   Pim-2 proto-
oncogene, serine/
threonine kinase

1.7049732246303 9.07681559705083 2 PSD ENSG00000059915     736   pleckstrin and Sec7 
domain containing

1.94091146411242 7.64385618977472 2 PTPRCAP ENSG00000213402     1   protein tyrosine 
phosphatase 
receptor type C 
associated protein

1.65752923832695 7.62935662007961 2 RAB26 ENSG00000167964     2   RAB26, member 
RAS oncogene 
family

1.81668934398203 8.96866679319521 2 RAB39B ENSG00000155961     5   RAB39B, member 
RAS oncogene 
family

1.59791485332862 9.06069593168755 2 RTN4R ENSG00000040608     25   reticulon 4 receptor

1.81250275355728 7.83289001416474 2 RARRES2 ENSG00000106538     29   retinoic acid 
receptor responder 
2

1.64741023238842 7.94836723158468 2 RIPOR2 ENSG00000111913     0   RHO family 
interacting cell 
polarization 
regulator 2

1.66211684567822 8.67948009950545 2 SEMA4A ENSG00000196189     11   semaphorin 4A

1.53943855669945 6.04439411935845 2 SAP25 ENSG00000205307     0   Sin3A associated 
protein 25

1.9584767133935 6.85798099512757 2 SLC44A5 ENSG00000137968     1   solute carrier family 
44 member 5

1.56111051002513 8.21431912080077 2 SLC6A12 ENSG00000111181     4   solute carrier family 
6 member 12

1.94405411985434 7.27612440527424 2 SPNS3 ENSG00000182557     1   sphingolipid 
transporter 3 
(putative)

1.73929790537712 8.08746284125034 2 SOX15 ENSG00000129194     3   SRY-box 
transcription factor 
15

1.51780876824547 9.56605403817109 2 SOD3 ENSG00000109610     188   superoxide 
dismutase 3

1.59158568931887 7.94251450533924 2 SNAP47 ENSG00000143740     1   synaptosome 
associated protein 
47

1.59908215942757 8.8703647195834 2 TAS1R3 ENSG00000169962     6   taste 1 receptor 
member 3

1.75252826177825 8.96000193206808 2 TNFRSF4 ENSG00000186827     55   TNF receptor 
superfamily 
member 4

1.60440909460327 7.56985560833095 2 TLL2 ENSG00000095587     3   tolloid like 2

1.50000332104457 7.62205181945638 2 TMC8 ENSG00000167895     0   transmembrane 
channel like 8
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1.69140609297117 7.70043971814109 2 TMEM160 ENSG00000130748     0   transmembrane 
protein 160

1.57543206088795 8.30833903013941 2 TFF3 ENSG00000160180     38   trefoil factor 3

1.60057601039814 7.56985560833095 2 YJEFN3 ENSG00000250067     1   YjeF N-terminal 
domain containing 
3

1.63967837037471 8.21916852046216 2 ZMYND15 ENSG00000141497     0   zinc finger MYND-
type containing 15

1.51580485440068 6.71424551766612 2 ZNF467 ENSG00000181444     1   zinc finger protein 
467

1.84132132816538 7.74819284958946 2 SCUBE2 ENSG00000175356 1 Cerebral 
arteriovenous 
malformation

12   signal peptide, CUB 
domain and EGF 
like domain 
containing 2

1.96129035869361 7.8703647195834 2 MMP24 ENSG00000125966 0.08568452632353
22

venous 
thromboembolism

6 0.046945 matrix 
metallopeptidase 
24

1.90232738951891 7.56224242422107 2 SLC16A6 ENSG00000108932     1 0.053712 solute carrier family 
16 member 6

1.68608250252302 7.74146698640115 2 MED12L ENSG00000144893     1 0.057872 mediator complex 
subunit 12L

1.59556390963892 6.16992500144231 2 CD163L1 ENSG00000177675     1 0.062029 CD163 molecule 
like 1

1.89986442667647 8.49984588708321 2 FCHO1 ENSG00000130475     1 0.064527 FCH and mu 
domain containing 
endocytic adaptor 1

1.61323056601836 9.47370574961942 2 ACAN ENSG00000157766     33 0.103645 aggrecan

1.59990636957686 8.51569983828404 2 ST8SIA2 ENSG00000140557     7 0.187574 ST8 alpha-N-
acetyl-neuraminide 
alpha-2,8-
sialyltransferase 2

1.67865865957693 9.61654884377899 2 STX1B ENSG00000099365 0.06409791857004
17

hypertension 3 0.30863 syntaxin 1B

1.59097015341644 7.53915881110803 2 BCAS4 ENSG00000124243     0 0.575039 breast carcinoma 
amplified sequence 
4

1.828273505362 7.51569983828404 2 YIPF7 ENSG00000177752     0 1.41518 Yip1 domain family 
member 7

1.64504223507478 7.24792751344359 2 BEGAIN ENSG00000183092     1 1.42467 brain enriched 
guanylate kinase 
associated

1.74199618941906 8.43879185257826 2 ACAP1 ENSG00000072818     1 1.48732 ArfGAP with coiled-
coil, ankyrin repeat 
and PH domains 1

4.66346172781133 6.3037807481771 3 ADAM18 ENSG00000168619 5.95769433378641
e-05

Polyarteritis 
Nodosa

0   ADAM 
metallopeptidase 
domain 18

4.41985828826816 9.13955135239879 3 WNT9A ENSG00000143816 0.76199177081137
9

cardiovascular 
disease

9   Wnt family member 
9A

3.36624549439879 7.83289001416474 3 RHCG ENSG00000140519 0.26201388888888
9

Infantile 
hypertrophic 
cardiomyopathy 
due to MRPL44 
deficiency

30   Rh family C 
glycoprotein

3.46797527489724 8.40087943628218 3 HBA2 ENSG00000188536 0.2 Aicardi-Goutières 
syndrome

33   hemoglobin subunit 
alpha 2

3.38413790258724 8 3 BEX1 ENSG00000133169 0.03491944444444
44

heart disease 5   brain expressed X-
linked 1

3.86291902068675 9.53138146051631 3 HBB ENSG00000244734 0.02701909139812
37

gastric cardia 
carcinoma

79   hemoglobin subunit 
beta

4.66893434553611 8.74146698640115 3 ANKRD22 ENSG00000152766     1   ankyrin repeat 
domain 22

3.29841457303366 8.04984854945056 3 ALOX15 ENSG00000161905     290   arachidonate 15-
lipoxygenase

4.37388573441346 8.64024493622235 3 CCL22 ENSG00000102962     61   C-C motif 
chemokine ligand 
22

4.13911903907623 8.29462074889163 3 CCL24 ENSG00000106178     39   C-C motif 
chemokine ligand 
24

2.83538834414389 10.3106127816595 3 CCL5 ENSG00000271503     849   C-C motif 
chemokine ligand 5

4.20701962044626 10.0279059965699 3 CCR7 ENSG00000126353     235   C-C motif 
chemokine receptor 
7

3.69929482744647 10.2033480029798 3 CXCL10 ENSG00000169245     604   C-X-C motif 
chemokine ligand 
10

3.73014173837633 9.3151495622563 3 CXCL11 ENSG00000169248     138   C-X-C motif 
chemokine ligand 
11

3.53368547181941 9.78953364497036 3 CXCR3 ENSG00000186810     329   C-X-C motif 
chemokine receptor 
3

3.6143805573298 8.84549005094438 3 CXCR6 ENSG00000172215     50   C-X-C motif 
chemokine receptor 
6

2.96299198694532 9.2807707701306 3 CD1C ENSG00000158481     25   CD1c molecule

4.00758613260115 9.32418054661874 3 CD27 ENSG00000139193     159   CD27 molecule

3.3494223929254 9.5018371849023 3 CD5 ENSG00000110448     210   CD5 molecule

4.59545403131854 9.00281501560705 3 CD79A ENSG00000105369     86   CD79a molecule

2.82001066780688 10.0714623625566 3 CENPA ENSG00000115163     9   centromere protein 
A

5.45850527668581 7.33985000288462 3 CLC ENSG00000105205     353   Charcot-Leyden 
crystal galectin
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2.96541301513508 9.8008998999203 3 CHD5 ENSG00000116254     9   chromodomain 
helicase DNA 
binding protein 5

4.6286593032555 9.64024493622235 3 FBXL16 ENSG00000127585     2   F-box and leucine 
rich repeat protein 
16

4.49114925854412 10.4304525516655 3 FOXP3 ENSG00000049768     1157   forkhead box P3

3.38404700177082 8.43462822763673 3 GBP5 ENSG00000154451     4   guanylate binding 
protein 5

3.54225315258536 7.34872815423108 3 HYAL4 ENSG00000106302     1   hyaluronidase 4

3.8517528547932 9.13955135239879 3 IGLL5 ENSG00000254709     2   immunoglobulin 
lambda like 
polypeptide 5

3.88900475747716 8.16992500144231 3 JCHAIN ENSG00000132465     0   joining chain of 
multimeric IgA and 
IgM

3.25929839493768 10.8462739113499 3 MMP9 ENSG00000100985     1863   matrix 
metallopeptidase 9

3.16404681887002 8.71424551766612 3 P2RY10 ENSG00000078589     1   P2Y receptor family 
member 10

4.34564662728636 8.21431912080077 3 PLD4 ENSG00000166428     0   phospholipase D 
family member 4

3.11105059227519 8.47167521439204 3 RIMS4 ENSG00000101098     0   regulating synaptic 
membrane 
exocytosis 4

3.3990947758927 7.11894107272351 3 SHISA2 ENSG00000180730     1   shisa family 
member 2

4.13720898139726 7.59245703726808 3 SIRPG ENSG00000089012     1   signal regulatory 
protein gamma

3.24858513810853 8.21431912080077 3 SLAMF7 ENSG00000026751     5   SLAM family 
member 7

3.56462654658549 7.62205181945638 3 TIGIT ENSG00000181847     16   T cell 
immunoreceptor 
with Ig and ITIM 
domains

5.00031965421217 7.33985000288462 3 TIFAB ENSG00000255833     15   TIFA inhibitor

4.1211102189943 8.4178525148859 3 TNFRSF18 ENSG00000186891     14   TNF receptor 
superfamily 
member 18

4.09232165722855 8.54303182025524 3 TNNI1 ENSG00000159173     29   troponin I1, slow 
skeletal type

3.89731476566711 8.0389189892923 3 UNC80 ENSG00000144406     1   unc-80 homolog, 
NALCN channel 
complex subunit

3.68174924277724 8.51175265376738 3 MS4A1 ENSG00000156738     6 0.049694 membrane 
spanning 4-
domains A1

3.98882416759078 10.0265234425198 3 KCNQ2 ENSG00000075043     77 0.050996 potassium voltage-
gated channel 
subfamily Q 
member 2

3.16428626125551 8.93663793900257 3 IL4I1 ENSG00000104951     2 0.062012 interleukin 4 
induced 1

3.23391662011405 8.01122725542325 3 ATRNL1 ENSG00000107518 0.00231788439106
461

Paroxysmal 
supraventricular 
tachycardia

2 0.063339 attractin like 1

4.59907931228781 9.7279204545632 3 CXCL9 ENSG00000138755     232 0.064711 C-X-C motif 
chemokine ligand 9

3.96379615514885 7.14974711950468 3 AQP10 ENSG00000143595     4 0.097956 aquaporin 10

3.88751021323304 8.4178525148859 3 CD1E ENSG00000158488     1 0.10505 CD1e molecule

3.45875021625014 8.40514146313634 3 HBA1 ENSG00000206172 0.2 Aicardi-Goutières 
syndrome

9105 0.105576 hemoglobin subunit 
alpha 1

5.14662295313744 7.70043971814109 3 LAMP3 ENSG00000078081     5 0.113373 lysosomal 
associated 
membrane protein 
3

3.47028864029895 8.83920378809694 3 ATP1A4 ENSG00000132681     4 0.160226 ATPase Na+/K+ 
transporting 
subunit alpha 4

4.031017177612 8.78135971352466 3 NPPA ENSG00000175206 1 cardiovascular 
disease

437 0.170989 natriuretic peptide 
A

3.65426159155283 8.11374216604919 3 COL22A1 ENSG00000169436     6 0.546152 collagen type XXII 
alpha 1 chain

3.16400178024719 8.89784545600551 3 SEZ6L ENSG00000100095 0.20494458079338
1

arterial stiffness 
measurement

3 0.858397 seizure related 6 
homolog like

4.44972762183788 6.71424551766612 3 ARMS2 ENSG00000254636 0.16117210891668
7

cardiovascular 
disease

37 0.95488 age-related 
maculopathy 
susceptibility 2

2.12859741368208 10.4136279290242 4 TLR9 ENSG00000239732 0.73292997986785
5

cardiovascular 
disease

262   toll like receptor 9

2.58952386769066 10.4356702609366 4 EGR1 ENSG00000120738 0.32622864962218
1

cardiovascular 
disease

473   early growth 
response 1

2.27933629363019 8.96000193206808 4 CYP11A1 ENSG00000140459 0.20298821201814
1

hypertension 103   cytochrome P450 
family 11 subfamily 
A member 1

2.1243635558976 9.19475685442225 4 DMC1 ENSG00000100206 0.07204315811395
65

heart rate 8   DNA meiotic 
recombinase 1

2.42313166343161 9.06608919045777 4 NAP1L3 ENSG00000186310 0.00912202178593
987

dilated 
cardiomyopathy

1   nucleosome 
assembly protein 1 
like 3

1.99197993602313 8.84235034341381 4 WNT10B ENSG00000169884 0.0068 congenital heart 
disease

20   Wnt family member 
10B
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2.43252828749429 9.09539702279256 4 BCL11B ENSG00000127152     26   BAF chromatin 
remodeling 
complex subunit 
BCL11B

2.19333767492198 9.71596199025514 4 CCL3 ENSG00000277632     320   C-C motif 
chemokine ligand 3

2.39797392158601 9.54882190845875 4 EOMES ENSG00000163508     42   eomesodermin

1.8722902241498 9.52552080909507 4 FPR2 ENSG00000171049     97   formyl peptide 
receptor 2

2.04596655162998 9.65642486327778 4 GABRD ENSG00000187730     7   gamma-
aminobutyric acid 
type A receptor 
delta subunit

1.61472493343347 10.0098286173681 4 GLI1 ENSG00000111087     133   GLI family zinc 
finger 1

2.16895096221027 9.08480838780436 4 GRM2 ENSG00000164082     3   glutamate 
metabotropic 
receptor 2

1.97487007888453 9.15987133677839 4 GZMA ENSG00000145649     21   granzyme A

2.3632607166297 9.36194377373524 4 ITK ENSG00000113263     55   IL2 inducible T cell 
kinase

1.65680103277328 10.7481928495895 4 JAK2 ENSG00000096968     1308   Janus kinase 2

2.55441722403153 10.4008794362822 4 LCK ENSG00000182866     92   LCK proto-
oncogene, Src 
family tyrosine 
kinase

2.07090406658569 9.93957921431469 4 MYCN ENSG00000134323     69   MYCN proto-
oncogene, bHLH 
transcription factor

2.00205286950728 9.39016895620018 4 KCNJ4 ENSG00000168135     30   potassium inwardly 
rectifying channel 
subfamily J 
member 4

2.01772710125384 9.51766938813381 4 PENK ENSG00000181195     47   proenkephalin

2.18472670005788 8.876516946565 4 RAB33A ENSG00000134594     0   RAB33A, member 
RAS oncogene 
family

2.59312029528846 9.93663793900257 4 RHOH ENSG00000168421     7   ras homolog family 
member H

1.65179174325754 10.0927571409199 4 SELL ENSG00000188404     372   selectin L

1.60675773129877 9.94104760634058 4 SH3GL2 ENSG00000107295     5   SH3 domain 
containing GRB2 
like 2, endophilin 
A1

1.52964785010498 10.4125698468052 4 SNORD10 ENSG00000238917     0   small nucleolar 
RNA, C/D box 10

1.79211481293725 10.4125698468052 4 SNORA48 ENSG00000209582     0   small nucleolar 
RNA, H/ACA box 
48

2.31330510199597 9.18239435340453 4 S1PR4 ENSG00000125910     11   sphingosine-1-
phosphate receptor 
4

2.35555813379308 9.96866679319521 4 SOCS1 ENSG00000185338     129   suppressor of 
cytokine signaling 1

2.31998259919929 9.9901039638575 4 ZAP70 ENSG00000115085     50   zeta chain of T cell 
receptor associated 
protein kinase 70

1.78324278068274 10.7846348455575 4 SNCA ENSG00000145335 1 intrinsic 
cardiomyopathy

54   synuclein alpha

1.84453344921156 9.35974956032233 4 PDIA2 ENSG00000185615 0.29202651232481 cardiovascular 
disease

8 0.049702 protein disulfide 
isomerase family A 
member 2

1.92449488199414 9.53138146051631 4 CD74 ENSG00000019582     73 0.053395 CD74 molecule

2.00928683354396 8.99435343685886 4 FGF17 ENSG00000158815     3 0.055413 fibroblast growth 
factor 17

2.30826538071208 9.23122118071119 4 CD48 ENSG00000117091     35 0.056212 CD48 molecule

2.09873574959031 9.44086916761087 4 CARD11 ENSG00000198286     10 0.058737 caspase 
recruitment domain 
family member 11

2.39521253524188 9.8073549220576 4 PPP2R2B ENSG00000156475 0.30358700156945
6

heart disease 5 0.12928 protein 
phosphatase 2 
regulatory subunit 
Bbeta

2.50581286771842 9.82813648419411 4 STAT4 ENSG00000138378     98 0.186037 signal transducer 
and activator of 
transcription 4

2.06110718380973 9.65284497300198 4 NRXN2 ENSG00000110076     3 0.326205 neurexin 2

2.3966740284543 9.68999797141945 4 ABCG2 ENSG00000118777 0.31473139412114
4

cardiovascular 
disease

501 0.33998 ATP binding 
cassette subfamily 
G member 2 (Junior 
blood group)

2.28231349841461 9.66533591718518 4 PROM1 ENSG00000007062     375 0.532281 prominin 1

2.40053684125791 9.11113567023471 4 CD3E ENSG00000198851     17 0.611353 CD3e molecule

2.21165821415797 9.56985560833095 4 DLGAP1 ENSG00000170579     3 0.835216 DLG associated 
protein 1

2.38680312197609 9.71596199025514 4 CD69 ENSG00000110848     252 1.08731 CD69 molecule

2.39229448702134 9.01402047031493 4 RYR3 ENSG00000198838 0.71729254722595
2

arterial stiffness 
measurement

3292 1.19919 ryanodine receptor 
3

2.33129483975196 8.97441458980553 4 CHRNA3 ENSG00000080644 1 cardiovascular 
disease

36 1.23034 cholinergic receptor 
nicotinic alpha 3 
subunit

1.93612514117864 9.90989308377004 4 APOA1 ENSG00000118137 1 cardiovascular 
disease

1162 1.67707 apolipoprotein A1
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1.78769934778717 9.65999589242998 4 BRSK1 ENSG00000160469 0.00142081870334
878

systolic heart failure 4 1.98052 BR serine/threonine 
kinase 1

-3.3407222345927
5

3.4594316186373 5 C1ORF105 ENSG00000180999 0.00491658424315
499

dilated 
cardiomyopathy

1   Chromosome 1 
Open Reading 
Frame  105  

-2.1324779704172
1

4.16992500144231 5 C11ORF91 ENSG00000205177     0   Chromosome 1 
Open Reading 
Frame  91  

-4.2828610417836
9

4.16992500144231 5 FAM9C ENSG00000187268     0   family with 
sequence similarity 
9 member C

-5.2506541187330
2

5.55458885167764 5 IGSF23 ENSG00000216588     0   immunoglobulin 
superfamily 
member 23

-4.2269421470993 5.16992500144231 5 MTRNR2L1 ENSG00000256618     1   MT-RNR2 like 1

-6.8533789212804
9

7.68650052718322 6 CALCB ENSG00000175868     6   calcitonin related 
polypeptide beta

-3.4579419377000
6

9.78790255939143 6 MRAP ENSG00000170262     86   melanocortin 2 
receptor accessory 
protein

-4.0857485097844
5

9.50977500432694 6 PCK1 ENSG00000124253     32   phosphoenolpyruva
te carboxykinase 1

-4.9833551942381 9.3037807481771 6 CACNA1E ENSG00000198216 1 cardiovascular 
disease

18 0.096871 calcium voltage-
gated channel 
subunit alpha1 E

-4.9352681994321 9.49785183695112 6 SAA1 ENSG00000173432     82 0.187328 serum amyloid A1

-4.3030152232787
6

10.0953970227926 6 MYH6 ENSG00000197616 1 heart disease 329 0.386648 myosin heavy chain 
6

-3.3772232927365
2

10.429406741514 6 CFTR ENSG00000001626     649 0.944108 CF transmembrane 
conductance 
regulator

-5.2590141108931
6

8.58496250072116 6 CSMD1 ENSG00000183117     17 1.11779 CUB and Sushi 
multiple domains 1

-3.5015223722018
6

10.140829770773 6 KNG1 ENSG00000113889     25 1.48714 kininogen 1

3.07823523365618 8.38801728534514 7 NPPB ENSG00000120937 0.73362927273845
1

cardiovascular 
disease biomarker 
measurement

301   natriuretic peptide 
B

2.44735451122472 8.48784003382305 7 GDF10 ENSG00000266524 0.48624944686889
6

mean arterial 
pressure

6   growth 
differentiation factor 
10

2.0432196840163 7.52356195605701 7 LTC4S ENSG00000213316 0.14194161072373
4

resting heart rate 16   leukotriene C4 
synthase

2.22785548237289 7.5077946401987 7 C1QTNF4 ENSG00000172247 0.09157050036191
94

cardiovascular 
disease

0   C1q and TNF 
related 4

2.59750111489656 8.63299519714296 7 SFRP4 ENSG00000106483 0.06436420291233
44

cardiovascular 
disease

40   secreted frizzled 
related protein 4

2.31201995863113 8.16992500144231 7 AOC1 ENSG00000002726 0.05694397358186
56

cardiovascular 
disease

1   amine oxidase 
copper containing 1

2.45908415282001 8.91587937883577 7 OGDHL ENSG00000197444 0.018 heart failure 6   oxoglutarate 
dehydrogenase like

2.19083910125356 7.8008998999203 7 CHAC1 ENSG00000128965 0.0165 cardiovascular 
disease

7   ChaC glutathione 
specific gamma-
glutamylcyclotransf
erase 1

2.08601590327918 8.01680828768655 7 GPR27 ENSG00000170837 0.00761771373267
391

ischemic 
cardiomyopathy

1   G protein-coupled 
receptor 27

1.99977230020041 8.20945336562895 7 A1BG ENSG00000121410     9   alpha-1-B 
glycoprotein

2.37825033900611 7.73470962022584 7 ANKRD24 ENSG00000089847     0   ankyrin repeat 
domain 24

2.64995001552377 7.11894107272351 7 ANKRD34C ENSG00000235711     0   ankyrin repeat 
domain 34C

2.73080184353521 7.49984588708321 7 ABCC11 ENSG00000121270     6   ATP binding 
cassette subfamily 
C member 11

2.16862846288355 8.36194377373524 7 ABCC6 ENSG00000091262     241   ATP binding 
cassette subfamily 
C member 6

2.66537790842335 8.13442632022093 7 BIRC7 ENSG00000101197     2   baculoviral IAP 
repeat containing 7

2.55171219020732 8.33539035469392 7 CCL8 ENSG00000108700     56   C-C motif 
chemokine ligand 8

2.73167905780424 9.65999589242998 7 CD2 ENSG00000116824     617   CD2 molecule

2.68158107901429 9.38586240064146 7 CD3D ENSG00000167286     4   CD3d molecule

2.67965066853657 8.12928301694497 7 CD8B ENSG00000172116     3   CD8b molecule

2.93130193432858 8.33985000288462 7 CMA1 ENSG00000092009     31   chymase 1

2.25838495303674 6.8073549220576 7 DNASE1L2 ENSG00000167968     1   deoxyribonuclease 
1 like 2

2.56560233530115 7.49984588708321 7 DNAJC22 ENSG00000178401     0   DnaJ heat shock 
protein family 
(Hsp40) member 
C22

2.93351746219208 8.63662462054365 7 GZMM ENSG00000197540     2   granzyme M

1.98033877931149 8.73131903102506 7 HCST ENSG00000126264     11   hematopoietic cell 
signal transducer

2.64995984668322 7.8008998999203 7 HS6ST2 ENSG00000171004     3   heparan sulfate 6-
O-sulfotransferase 
2

2.22312815576303 8.61102479730735 7 IRX6 ENSG00000159387     3   iroquois homeobox 
6

2.612273191131 8.76818432477693 7 KLRB1 ENSG00000111796     15   killer cell lectin like 
receptor B1
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2.67003597903346 7.96578428466209 7 LYPD1 ENSG00000150551     2   LY6/PLAUR domain 
containing 1

2.28672005195914 8.40514146313634 7 LAG3 ENSG00000089692     24   lymphocyte 
activating 3

2.60042807443691 8.17990909001493 7 LY9 ENSG00000122224     3   lymphocyte antigen 
9

2.16200370996885 7.49185309632967 7 MT1G ENSG00000125144     5   metallothionein 1G

2.18907040029136 8.70043971814109 7 NKG7 ENSG00000105374     5   natural killer cell 
granule protein 7

2.21952311686212 6.83289001416474 7 NSG2 ENSG00000170091     0   neuronal vesicle 
trafficking 
associated 2

2.25824566322869 7.43462822763672 7 NXNL1 ENSG00000171773     0   nucleoredoxin like 1

2.75548969313356 8.72451385311995 7 PLCH2 ENSG00000149527     0   phospholipase C 
eta 2

2.56389951825518 8.49984588708321 7 SDSL ENSG00000139410     8   serine dehydratase 
like

2.34968484331985 7.32192809488736 7 SPTSSB ENSG00000196542     0   serine 
palmitoyltransferas
e small subunit B

2.22310254848053 6.75488750216347 7 SUSD3 ENSG00000157303     0   sushi domain 
containing 3

3.04023939928333 7.876516946565 7 SYTL1 ENSG00000142765     1   synaptotagmin like 
1

2.82788546999612 7.90689059560852 7 SYTL5 ENSG00000147041     0   synaptotagmin like 
5

2.50390426134064 8.2045711442492 7 TBC1D10C ENSG00000175463     6   TBC1 domain 
family member 10C

3.05666300604057 7.49185309632967 7 TNMD ENSG00000000005     11   tenomodulin

2.40916087210493 7.93663793900257 7 VSX1 ENSG00000100987     5   visual system 
homeobox 1

2.2935954176009 6.85798099512757 7 WFIKKN1 ENSG00000127578     0   WAP, follistatin/
kazal, 
immunoglobulin, 
kunitz and netrin 
domain containing 
1

2.07619129212165 7.876516946565 7 ZP3 ENSG00000188372     11   zona pellucida 
glycoprotein 3

2.14796638558075 8.54689445988764 7 CERS1 ENSG00000223802 1 Genetic cardiac 
anomaly

5   ceramide synthase 
1

2.04090525022728 8.08214904135387 7 CHRNE ENSG00000108556 1 intracranial 
hypertension

3   cholinergic receptor 
nicotinic epsilon 
subunit

2.0240899183422 8.29462074889163 7 PDE6A ENSG00000132915 1 cardiovascular 
disease

2   phosphodiesterase 
6A

3.04263727921997 8.55842071326866 7 NELL2 ENSG00000184613     2 0.049539 neural EGFL like 2

2.63756499283572 8.90388184573618 7 LHCGR ENSG00000138039     16 0.049653 luteinizing 
hormone/
choriogonadotropin 
receptor

3.06950375830231 8.41362792902417 7 GZMK ENSG00000113088     4 0.053505 granzyme K

2.95156742360353 7.12928301694497 7 SOHLH2 ENSG00000120669     0 0.056217 spermatogenesis 
and oogenesis 
specific basic helix-
loop-helix 2

2.75597082192817 8.88569637333939 7 IL21R ENSG00000103522     78 0.062337 interleukin 21 
receptor

2.2724583876066 8.24317398347295 7 CD6 ENSG00000013725     23 0.063987 CD6 molecule

2.72197205469988 8.67595703294175 7 SLC4A1 ENSG00000004939     26 0.067153 solute carrier family 
4 member 1 (Diego 
blood group)

3.01332661491172 8.00562454919388 7 SLC16A9 ENSG00000165449 0.00209062141407
026

Arterial stenosis 8 0.067287 solute carrier family 
16 member 9

2.38660226019745 8.43462822763673 7 MMP25 ENSG00000008516     4 0.076349 matrix 
metallopeptidase 
25

2.63889469798875 8.24317398347295 7 FNDC1 ENSG00000164694 0.00365269911261
096

ischemic 
cardiomyopathy

5 0.078697 fibronectin type III 
domain containing 
1

2.3590838856802 8.96289600533726 7 NEURL1 ENSG00000107954     7 0.085472 neuralized E3 
ubiquitin protein 
ligase 1

2.33253171672164 8.12928301694497 7 COL9A1 ENSG00000112280 0.0199 dilated 
cardiomyopathy

5 0.085871 collagen type IX 
alpha 1 chain

2.91112461231459 8.45121111183233 7 SCG5 ENSG00000166922     4 0.102619 secretogranin V

2.17387463883333 7.4594316186373 7 WDR66 ENSG00000158023 0.00048441137951
8669

cardiac arrhythmia 0 0.49309 WD repeat domain 
66

2.3344924836178 8.92184093707449 7 PHF21B ENSG00000056487     0 0.536388 PHD finger protein 
21B

2.56489104266801 7.467605550083 7 SMPD3 ENSG00000103056     23 0.799531 sphingomyelin 
phosphodiesterase 
3

2.68506839447976 7.74819284958946 7 CD96 ENSG00000153283     3 1.06777 CD96 molecule

3.00103776412044 8.41362792902417 7 UBASH3A ENSG00000160185     3 1.14885 ubiquitin associated 
and SH3 domain 
containing A

2.3408208648566 7.4178525148859 7 MALRD1 ENSG00000204740     1 1.25609 MAM and LDL 
receptor class A 
domain containing 
1

2.70990324049768 5.28540221886225 8 C16ORF89 ENSG00000153446     0   Chromosome 16 
Open Reading 
Frame  89  
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2.64138640019292 4.16992500144231 8 C19ORF81 ENSG00000235034     0   Chromosome 19 
Open Reading 
Frame  81  

2.69394412190213 6.32192809488736 8 ANO9 ENSG00000185101     0   anoctamin 9

1.8886180395277 4.4594316186373 8 CCDC154 ENSG00000197599     0   coiled-coil domain 
containing 154

3.81217232635013 4.64385618977472 8 DCANP1 ENSG00000251380     0   dendritic cell 
associated nuclear 
protein

2.29323689155923 5.55458885167764 8 FAM180B ENSG00000196666     0   family with 
sequence similarity 
180 member B

1.84728904210943 0 8 FAM229A ENSG00000225828     0   family with 
sequence similarity 
229 member A

2.43329398752359 11.0821490413539 8 FOS ENSG00000170345     2928   Fos proto-
oncogene, AP-1 
transcription factor 
subunit

2.49471525478438 6.37503943134692 8 LCN12 ENSG00000184925     0   lipocalin 12

2.9607658928758 6.10852445677817 8 PVRIG ENSG00000213413     1   PVR related 
immunoglobulin 
domain containing

1.68452668286034 5.08746284125034 8 SPATA6L ENSG00000106686     0   spermatogenesis 
associated 6 like

2.10620412217147 6.5077946401987 8 XG ENSG00000124343     105   Xg glycoprotein (Xg 
blood group)

2.02854724940606 5.08746284125034 8 ZNF385C ENSG00000187595     0   zinc finger protein 
385C

2.85382787755512 6.4757334309664 8 ZNF683 ENSG00000176083     1   zinc finger protein 
683

1.98277004045982 4.70043971814109 8 ANKRD33B ENSG00000164236     0 0.061642 ankyrin repeat 
domain 33B

2.13192409303079 6.39231742277876 8 PRR7 ENSG00000131188     0 0.095411 proline rich 7, 
synaptic

2.62859428543533 6.5077946401987 8 ADGRG5 ENSG00000159618     0 0.10612 adhesion G protein-
coupled receptor 
G5

1.55056935674004 5 8 MAP3K7CL ENSG00000156265 0.0104 coronary artery 
disease

3 0.673055 MAP3K7 C-terminal 
like

-2.4516805469563 8.37068740680722 9 EREG ENSG00000124882 0.61541724205017
1

coronary artery 
calcification

23   epiregulin

-2.4702936282815
5

10.1910592145317 9 SPP1 ENSG00000118785 0.33332460548253
5

cardiovascular 
disease

603   secreted 
phosphoprotein 1

-2.7050326270616
7

9.84862294042934 9 BMP7 ENSG00000101144 0.32747561057554
9

cardiovascular 
disease

188   bone 
morphogenetic 
protein 7

-3.0193218749733
3

8.20945336562895 9 HOPX ENSG00000171476 0.29528502222222
2

familial 
cardiomyopathy

29   HOP homeobox

-2.123437544963 9.72451385311995 9 KIF20A ENSG00000112984 0.22041195072233
7

heart rate 9   kinesin family 
member 20A

-3.0790581708199
6

8.84235034341381 9 SERPINA3 ENSG00000196136 0.21430372023863
7

cardiovascular 
disease

29   serpin family A 
member 3

-2.6363895317574
1

8.60362634498619 9 KCNA7 ENSG00000104848 0.0334 Familial progressive 
cardiac conduction 
defect

6   potassium voltage-
gated channel 
subfamily A 
member 7

-2.2576832677687
3

8.51569983828404 9 SERPINA5 ENSG00000188488 0.032291 hypertension 7   serpin family A 
member 5

-2.3984951474537
5

7.56985560833095 9 PCDH20 ENSG00000280165 0.0136 portal hypertension 2   protocadherin 20

-2.4257177445985 8.2807707701306 9 CNGA1 ENSG00000198515     5   cyclic nucleotide 
gated channel 
subunit alpha 1

-2.0461218135242
7

8.68299458368168 9 DNAH3 ENSG00000158486     1   dynein axonemal 
heavy chain 3

-2.3149287217580
5

8.01122725542325 9 ESRP2 ENSG00000103067     2   epithelial splicing 
regulatory protein 2

-2.1183927265089 8.32192809488736 9 GNMT ENSG00000124713     8   glycine N-
methyltransferase

-2.6228652610473
9

8.3264294871223 9 LRRN3 ENSG00000173114     6   leucine rich repeat 
neuronal 3

-2.138342830372 7.48381577726426 9 LINC00842 ENSG00000285294     0   long intergenic non-
protein coding RNA 
842

-2.9335371825788 7.6724253419715 9 PYGO1 ENSG00000171016     3   pygopus family 
PHD finger 1

-3.0112881387502
7

8.19967234483636 9 RBP4 ENSG00000138207     258   retinol binding 
protein 4

-2.2746953773596
5

7.467605550083 9 TMEM132B ENSG00000139364     0   transmembrane 
protein 132B

-2.7196488857335
4

9.03617361255349 9 TMEM151B ENSG00000178233     0   transmembrane 
protein 151B

-2.2539993198529
8

7.18982455888002 9 ZBED6 ENSG00000257315     5   zinc finger BED-
type containing 6

-2.1370022250427
7

9.0389189892923 9 GATA5 ENSG00000130700 1 cardiovascular 
disease

120   GATA binding 
protein 5

-1.9919366366480
8

8.15987133677839 9 MYOT ENSG00000120729 1 cardiomyopathy 32   myotilin

-2.3484233497453
3

9.51569983828404 9 FGF7 ENSG00000140285 0.04447222222222
22

pulmonary arterial 
hypertension

54 0.048529 fibroblast growth 
factor 7
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-2.3395229798865
4

8.40514146313634 9 TRPC4 ENSG00000133107 0.07101274885991
04

cardiovascular 
disease

155 0.053665 transient receptor 
potential cation 
channel subfamily 
C member 4

-3.0833978539900
8

8.91587937883577 9 WSCD2 ENSG00000075035     0 0.055893 WSC domain 
containing 2

-2.4530828452856
3

9.35535109642481 9 PCSK1 ENSG00000175426     27 0.056497 proprotein 
convertase 
subtilisin/kexin type 
1

-1.9597910425883
7

8.24317398347295 9 CHDH ENSG00000016391 1 cardiovascular 
disease

8 0.063677 choline 
dehydrogenase

-2.2704240038220
5

8.19475685442225 9 PHACTR3 ENSG00000087495     2 0.087486 phosphatase and 
actin regulator 3

-3.0425114971795 8.93369065495223 9 LRRC7 ENSG00000033122     0 0.094918 leucine rich repeat 
containing 7

-2.7797614745942
6

8.09803208296053 9 SLC38A4 ENSG00000139209     9 0.109267 solute carrier family 
38 member 4

-2.5082879360299
5

8.09803208296053 9 MARCO ENSG00000019169     2982 0.111059 macrophage 
receptor with 
collagenous 
structure

-2.3372273764265
6

9.52552080909507 9 CHL1 ENSG00000134121 9.23637951231764
e-05

congenital anomaly 
of cardiovascular 
system

13 0.191441 cell adhesion 
molecule L1 like

-2.4360248195933
1

8.68299458368168 9 TAOK1 ENSG00000160551     5 0.259799 TAO kinase 1

-2.8338117842314
5

8.18487534290828 9 GDA ENSG00000119125 0.06372901360544
22

myocardial 
infarction

562 0.501181 guanine deaminase

-2.4658598361509
3

8.9915218460757 9 ITGB6 ENSG00000115221 0.77290636301040
6

arterial stiffness 
measurement

11 0.503822 integrin subunit 
beta 6

-3.1607445031284 8.85486838326024 9 GRIP1 ENSG00000155974 0.2 Congenital 
vertebral-cardiac-
renal anomalies 
syndrome

24 0.621951 glutamate receptor 
interacting protein 1

-1.9755312172268
1

8.65105169117893 9 WWC1 ENSG00000113645     13 0.663947 WW and C2 
domain containing 
1

-1.9736926036901
3

8.69348695749933 9 XRCC4 ENSG00000152422 0.0104 hypertension 16 0.696042 X-ray repair cross 
complementing 4

-2.5470132784986
9

9.31288295528435 9 ITGA2 ENSG00000164171     48 0.984909 integrin subunit 
alpha 2

-2.7065649593002
6

8.98868468677217 9 LRP1B ENSG00000168702     18 1.28906 LDL receptor 
related protein 1B

-2.5462562518139 8.81057163474115 9 MLXIPL ENSG00000009950 0.51904393899899
4

cardiovascular 
disease

66 1.74508 MLX interacting 
protein like

-1.7856639147395
9

9.4858293087019 10 GPD1 ENSG00000167588 0.25423022644842
7

cardiovascular 
disease

19   glycerol-3-
phosphate 
dehydrogenase 1

-1.8947520608397
7

9.09803208296053 10 KIAA0754 ENSG00000127603 0.21645329892635
3

peripheral arterial 
disease

1   KIAA0754

-1.5584865258408
2

7.98868468677217 10 HOOK1 ENSG00000134709 0.183 Aicardi-Goutières 
syndrome

4   hook microtubule 
tethering protein 1

-1.7383282004538
9

7.08746284125034 10 ART4 ENSG00000111339     4   ADP-
ribosyltransferase 4 
(Dombrock blood 
group)

-1.7451821130384
2

8.48784003382305 10 ADH1A ENSG00000187758     2   alcohol 
dehydrogenase 1A 
(class I), alpha 
polypeptide

-1.8092941323118
9

8.04984854945056 10 ANKRD36 ENSG00000135976     3   ankyrin repeat 
domain 36

-1.7712908370051
9

7.33091687811462 10 B3GALT2 ENSG00000162630     0   beta-1,3-
galactosyltransferas
e 2

-1.5347028314915
8

9.71252700043982 10 BLM ENSG00000197299     168   BLM RecQ like 
helicase

-1.8008986616792
6

7.32192809488736 10 C1QL1 ENSG00000131094     1   complement C1q 
like 1

-1.6279995546234
4

6.62935662007961 10 CXXC4 ENSG00000168772     0   CXXC finger protein 
4

-1.6053029879769 8.59245703726808 10 CDKL5 ENSG00000008086     11   cyclin dependent 
kinase like 5

-1.5506469842893
8

8.78463484555752 10 POLQ ENSG00000051341     0   DNA polymerase 
theta

-1.6780975941214
6

8.29920801838728 10 ELK4 ENSG00000158711     9   ETS transcription 
factor ELK4

-1.9268730479915
6

8.17990909001493 10 FAM83D ENSG00000101447     1   family with 
sequence similarity 
83 member D

-1.9055816512911
2

7.8073549220576 10 GYG2 ENSG00000056998     5   glycogenin 2

-1.8642855293338
9

8.97441458980553 10 KNL1 ENSG00000137812     0   kinetochore 
scaffold 1

-1.6291822970867
4

8.37503943134693 10 MGST1 ENSG00000008394     8   microsomal 
glutathione S-
transferase 1

-1.9249476206148
5

10.0014081943928 10 MYSM1 ENSG00000162601     0   Myb like, SWIRM 
and MPN domains 
1

-1.6707743942261 9.50977500432694 10 MYO9A ENSG00000066933     4   myosin IXA

-1.7159425175967
5

8.2336196767597 10 KCNK3 ENSG00000171303     95   potassium two pore 
domain channel 
subfamily K 
member 3
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-1.5354282823892
5

9.11113567023471 10 PDCD1 ENSG00000188389     221   programmed cell 
death 1

-1.7975869993435
3

7.82017896241519 10 SNORA40 ENSG00000210825     0   small nucleolar 
RNA, H/ACA box 
40

-1.6761572856110
3

7.91288933622996 10 SMTNL2 ENSG00000188176     2   smoothelin like 2

-1.8505127324921
3

6.82017896241519 10 TMEM178B ENSG00000261115     1   transmembrane 
protein 178B

-1.9496179358509
8

8.29462074889163 10 TROAP ENSG00000135451     0   trophinin 
associated protein

-1.9033368315716
5

9.05528243550119 10 SSTR2 ENSG00000180616 1 cardiovascular 
disease

52   somatostatin 
receptor 2

-1.6092644920219
3

9.19967234483636 10 PROX1 ENSG00000117707     162 0.046901 prospero 
homeobox 1

-1.6981228636811
9

9.21916852046216 10 CENPF ENSG00000117724 0.03948535130566
5

heart disease 7 0.047372 centromere protein 
F

-1.8178291265678
5

7.66533591718518 10 MFAP2 ENSG00000117122 0.1864 Aicardi-Goutières 
syndrome

6 0.048463 microfibril 
associated protein 
2

-1.8026674039869
1

10.4051414631363 10 TFRC ENSG00000072274     51 0.048463 transferrin receptor

-1.9343286442857 6 10 PRELID2 ENSG00000186314     2 0.048756 PRELI domain 
containing 2

-1.6165689862665
1

10.1774195379892 10 BUB1B ENSG00000156970 0.18596 Aicardi syndrome 13 0.050256 BUB1 mitotic 
checkpoint serine/
threonine kinase B

-1.6489840183584
6

6.10852445677817 10 VASH2 ENSG00000143494 0.0308 pulmonary arterial 
hypertension

12 0.052454 vasohibin 2

-1.9085621522062
5

9.27612440527424 10 ANLN ENSG00000011426 0.0142 cardiovascular 
disease

6 0.056363 anillin actin binding 
protein

-1.7683135988466
1

7.59245703726808 10 MARVELD2 ENSG00000152939 0.01737777777777
78

heart disease 6 0.057293 MARVEL domain 
containing 2

-1.5619604203699
7

7.76818432477693 10 ANKRD36B ENSG00000196912     0 0.061468 ankyrin repeat 
domain 36B

-1.5870924910331
6

10.1811522568656 10 CDKN3 ENSG00000100526     6 0.064123 cyclin dependent 
kinase inhibitor 3

-1.7020965949574
2

8.44708322620965 10 OLFM4 ENSG00000102837     22 0.072193 olfactomedin 4

-1.6328088116115
3

7.85798099512757 10 RNF157 ENSG00000141576     1 0.106906 ring finger protein 
157

-1.6568187087991
1

7.84549005094437 10 RNF152 ENSG00000176641     0 0.10847 ring finger protein 
152

-1.6853046709455 9.54303182025524 10 CAMK1D ENSG00000183049     6 0.516361 calcium/calmodulin 
dependent protein 
kinase ID

-1.9396630794701
6

8.13442632022093 10 ATP6V1C2 ENSG00000143882     0 0.520142 ATPase H+ 
transporting V1 
subunit C2

-1.5130648836499
8

8.97727992349992 10 CACNB2 ENSG00000165995     76 0.543523 calcium voltage-
gated channel 
auxiliary subunit 
beta 2

-2.0149953965182
8

7.06608919045777 10 FAM81A ENSG00000157470     0 0.609717 family with 
sequence similarity 
81 member A

-1.5990890723534
1

7.73470962022584 10 ADAMTS12 ENSG00000151388 0.10959168753079
4

cardiovascular 
disease

8 0.657565 ADAM 
metallopeptidase 
with 
thrombospondin 
type 1 motif 12

-1.7401284582139
6

7.49185309632967 10 CD5L ENSG00000073754     14 0.760137 CD5 molecule like

-1.7021962887373
2

8.37068740680722 10 ART3 ENSG00000156219     8 0.923572 ADP-
ribosyltransferase 3

-1.6648270605802
8

9.4655664048094 10 CACNA1D ENSG00000157388     136 0.979092 calcium voltage-
gated channel 
subunit alpha1 D

-1.5096291862901
9

10.4019461239765 10 APOB ENSG00000084674     6214 2.72011 apolipoprotein B
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Supplementary table 12. Dilated vs non-failing heart (GSE3585) contrast cluster cross-referencing with disease association databases and datasets

Log2 Fold Change 
Score

Scaled interactor 
number

Cluster labels Gene symbol Ensembl Association 
overall score - OT

Disease 
association - OT

PubMed Report 
number for a gene 
in the context of 
any 
cardiovascular 
indication

GWAS 
standardised 
association score 
for cardiovascular 
indication

Description

-0.9224655988163
16

11.2461467746359 0 STAT3 ENSG00000168610 1 cardiovascular 
disease

2576 0.057388 signal transducer 
and activator of 
transcription 3

-0.57928944 10.1811522568656 0 CDKN3 ENSG00000100526 0.02948333333333
33

hypertension 6 0.064123 cyclin dependent 
kinase inhibitor 3

-0.6129675 9.40087943628218 0 PPL ENSG00000118898 0.21007086386695
5

cardiovascular 
disease

217 0.064408 periplakin

-0.5685973984364
09

10.4706588740606 0 ICAM1 ENSG00000090339 0.22875 Aicardi-Goutières 
syndrome

8986 2.73394 intercellular 
adhesion molecule 
1

-0.787274825148 9.70217268536555 0 IDH2 ENSG00000182054 1 cardiovascular 
disease

50 isocitrate 
dehydrogenase 
(NADP(+)) 2

-0.60028744 10.6882503091332 0 H2AFZ ENSG00000164032 0.004 cardiac hypertrophy 2
H2A.Z Variant 
Histone 1


-0.61079216 9.67771964164101 0 H1F0 ENSG00000189060 3 H1.0 Linker Histone

0.6517401 6.04439411935845 1 FAM216A ENSG00000204856 0 1.96048 family with 
sequence similarity 
216 member A

0.87767694095147
8

6.4594316186373 1 PPDPF ENSG00000125534 0.01441970241767
82

dilated 
cardiomyopathy

0 pancreatic 
progenitor cell 
differentiation and 
proliferation factor

0.4288969 7.15987133677839 1 RSBN1 ENSG00000081019 0.2 coronary artery 
disease, autosomal 
dominant 2

1 round spermatid 
basic protein 1

0.336524 7.08746284125034 1 TMEM231 ENSG00000205084 4 transmembrane 
protein 231

0.5514841 7 1 HMGN2 ENSG00000198830 8 high mobility group 
nucleosomal 
binding domain 2

0.4214306 7.17990909001493 1 ZSCAN18 ENSG00000121413 1 zinc finger and 
SCAN domain 
containing 18

1.2905462562525 8.93369065495223 2 KLHL3 ENSG00000146021 1 hypertension 77 0.067048 kelch like family 
member 3

1.6075773 8.39231742277876 2 ID4 ENSG00000172201 0.18308 Heart-hand 
syndrome type 3

15 0.107028 inhibitor of DNA 
binding 4, HLH 
protein

1.81482103301306 9.15228484230658 2 CFH ENSG00000000971 0.34164494161763
2

cardiovascular 
disease

168 0.38501 complement factor 
H

1.766592503139 8.38801728534514 2 SPOCK1 ENSG00000152377 0.02352 gastric non-cardia 
carcinoma

5 1.24289 SPARC 
(osteonectin), cwcv 
and kazal like 
domains 
proteoglycan 1

1.24378905805 9.41996017784789 2 ODC1 ENSG00000115758 0.05575769755483
53

cardiovascular 
disease

7 ornithine 
decarboxylase 1

1.2341019575186 10.0389189892923 2 MYH10 ENSG00000133026 0.32816138639532 dilated 
cardiomyopathy

28 myosin heavy chain 
10

1.9229517 7.62205181945638 2 PHLDA1 ENSG00000139289 0.55866403383537
5

cardiovascular 
disease

9 pleckstrin 
homology like 
domain family A 
member 1

0.48857117 7.88874324889826 3 NCKIPSD ENSG00000213672 3 0.051454 NCK interacting 
protein with SH3 
domain

0.5544902656692 7.71424551766612 3 CHST3 ENSG00000122863 0.0304 pulmonary arterial 
hypertension

11 0.052944 carbohydrate 
sulfotransferase 3

0.39712238 8.37068740680722 3 TULP4 ENSG00000130338 0.0104 congenital heart 
disease

2 0.082924 TUB like protein 4

0.61286736 8.29001884693262 3 ROR1 ENSG00000185483 0.014 ischemic 
cardiomyopathy

19 0.082936 receptor tyrosine 
kinase like orphan 
receptor 1

0.81835365 8.61838550225861 3 LTBP1 ENSG00000049323 0.31710620789300
6

Genetic cardiac 
anomaly

35 0.179172 latent transforming 
growth factor beta 
binding protein 1

0.81306063504 8.44294349584873 3 EXT1 ENSG00000182197 26 0.636995 exostosin 
glycosyltransferase 
1

0.74196243 9.07681559705083 3 LAMB1 ENSG00000091136 0.28659658804301
7

cardiovascular 
disease

11 0.739348 laminin subunit 
beta 1

0.87712765 7.99435343685886 3 NAV2 ENSG00000166833 0.64134904928936
6

cardiovascular 
disease

9 0.942098 neuron navigator 2

0.50399685 8.9915218460757 3 SEC31A ENSG00000138674 0.10989486426115 hypertension 4 1.33 SEC31 homolog A, 
COPII coat 
complex 
component

0.56628895 8.3264294871223 3 SPRED2 ENSG00000198369 0.04434481863097
49

cardiovascular 
disease

9 1.75078 sprouty related 
EVH1 domain 
containing 2

0.72861004 8.74819284958946 3 ATP13A3 ENSG00000133657 1 pulmonary arterial 
hypertension

6 ATPase 13A3

1.09076859307525 7.81378119121704 3 SSPN ENSG00000123096 1 cardiovascular 
disease

17 sarcospan

0.42609978 7.85798099512757 3 CAMSAP2 ENSG00000118200 0.00036354689943
2006

Arteritis 1 calmodulin 
regulated spectrin 
associated protein 
family member 2

0.77229977 8.83605035505807 3 KIDINS220 ENSG00000134313 0.00267462982497
156

heart disease 8 kinase D interacting 
substrate 220

0.7625923 8.54303182025524 3 ETV5 ENSG00000244405 0.0308 hypertension 29 ETS variant 
transcription factor 
5
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0.75123596 7.94251450533924 3 SLC30A1 ENSG00000170385 0.0518 congenital heart 
disease

16 solute carrier family 
30 member 1

0.52015495 8.62570884306447 3 CBFB ENSG00000067955 0.1864 Aicardi-Goutières 
syndrome

10 core-binding factor 
subunit beta

0.600883209491 8.56985560833095 3 CLK1 ENSG00000013441 0.19572 Autosomal 
dominant 
progressive 
nephropathy with 
hypertension

4 CDC like kinase 1

0.50695592608 8.7279204545632 3 OGA ENSG00000198408 0.22168307596895
5

cardiovascular 
disease

166 O-GlcNAcase

0.7160044 8.0389189892923 3 SLK ENSG00000065613 0.61355344392359
3

mean arterial 
pressure

104 STE20 like kinase

0.6053648 8.66533591718518 3 ASMTL ENSG00000169093 3 acetylserotonin O-
methyltransferase 
like

0.8135338 8.2240016741981 3 PRSS23 ENSG00000150687 4 serine protease 23

0.5490122 7.92481250360578 3 RNF38 ENSG00000137075 4 ring finger protein 
38

0.51859474 7.97154355395077 3 TRMT5 ENSG00000126814 2 tRNA 
methyltransferase 5

0.42307377 8.40087943628218 3 KMT5B ENSG00000110066 1 lysine 
methyltransferase 
5B

0.72925186 8.93957921431469 3 HNRNPH3 ENSG00000096746 0 heterogeneous 
nuclear 
ribonucleoprotein 
H3

0.5101156 8.07146236255662 3 AP3M2 ENSG00000070718 0 adaptor related 
protein complex 3 
subunit mu 2

3.09602461642729 8.78135971352466 4 NPPA ENSG00000175206 1 cardiovascular 
disease

437 0.170989 natriuretic peptide 
A

4.82623160625593 8.38801728534514 4 NPPB ENSG00000120937 0.73362927273845
1

cardiovascular 
disease biomarker 
measurement

302 natriuretic peptide 
B

3.49044522241284 9.91288933622996 4 CCN2 ENSG00000118523 0.91116925758589
8

cardiovascular 
disease

513 cellular 
communication 
network factor 2

-0.33780430272 8.65105169117893 5 RNF5 ENSG00000204308 0.01783688888888
89

cerebral artery 
occlusion

1 0.071333 ring finger protein 5

-0.52831745 8.16490692667569 5 MAPKAPK3 ENSG00000114738 0.0104 myocardial 
infarction

11 0.099883 MAPK activated 
protein kinase 3

-0.749969368 8.60362634498619 5 IMPA2 ENSG00000141401 0.19651874380610
9

heart disease 0 0.540609 inositol 
monophosphatase 
2

-0.9175482 8.18487534290828 5 FCGBP ENSG00000275395 0.03037979364224
62

gastric non-cardia 
carcinoma

5 Fc fragment of IgG 
binding protein

-0.82914543 7.43462822763672 5 NSG1 ENSG00000168824 0.05042785778641
7

congenital heart 
disease

0 neuronal vesicle 
trafficking 
associated 1

-0.7863024544326
05

7.3037807481771 5 APOBEC2 ENSG00000124701 0.2 Early-onset 
myopathy with fatal 
cardiomyopathy

9 apolipoprotein B 
mRNA editing 
enzyme catalytic 
subunit 2

-0.5532818 8.16490692667569 5 CES2 ENSG00000172831 0.2008 hypertension 10 carboxylesterase 2

-0.686458019125 7.81378119121704 5 STEAP3 ENSG00000115107 0.240445 Dilated 
cardiomyopathy 
with ataxia

2 STEAP3 
metalloreductase

-0.5734087034931 8.32192809488736 5 GNMT ENSG00000124713 0.28782815 cardiomyopathy 8 glycine N-
methyltransferase

-0.7077122 8.73470962022584 5 HIST1H1C ENSG00000187837 1 H1.2 Linker 
Histone, Cluster 
Member

-2.2874527 7.23840473932508 6 RARRES1 ENSG00000118849 0.05284639820456
5

hypertension 3 0.075029 retinoic acid 
receptor responder 
1

-0.7333927 6.79441586635011 6 MTUS2 ENSG00000132938 1 0.136346 microtubule 
associated scaffold 
protein 2

-0.9536581 6.91886323727459 6 MID1IP1 ENSG00000165175 0 MID1 interacting 
protein 1

0.42668915 9.39446269461032 7 SYT11 ENSG00000132718 3 0.070328 synaptotagmin 11

0.5339651 9.65642486327778 7 DLG5 ENSG00000151208 0.0128 congenital heart 
disease

4 0.082071 discs large MAGUK 
scaffold protein 5

0.76095386534305
2

10.3026389237876 7 INSR ENSG00000171105 1 cardiovascular 
disease

142 0.558493 insulin receptor

0.89853739385821
6

9.64385618977473 7 IGFBP3 ENSG00000146674 1 cardiovascular 
disease

562 insulin like growth 
factor binding 
protein 3

0.64386364825664
4

10.7739633684336 7 XPO1 ENSG00000082898 1 cardiovascular 
disease

14 exportin 1

0.476755493656 9.05799172275918 7 ARHGAP1 ENSG00000175220 0.2 Familial avascular 
necrosis of femoral 
head

5 Rho GTPase 
activating protein 1

0.3976755 9.27844945822048 7 YEATS2 ENSG00000163872 0.22185464203357
7

mean arterial 
pressure

1 YEATS domain 
containing 2

0.3478861 9.73978060977326 7 GTF2B ENSG00000137947 0.53277034461597
6

cardiovascular 
disease

1 general 
transcription factor 
IIB

0.31162643 9.36413465500805 7 RPL17-C18ORF32 ENSG00000215472 0 RPL17-C18orf32 
Readthrough

-1.2389373377320
5

3.4594316186373 8 C1ORF105 ENSG00000180999 0.00491658424315
499

dilated 
cardiomyopathy

1 Chromosome 1 
Open Reading 
Frame  105  

Log2 Fold Change 
Score

Scaled interactor 
number

Cluster labels Gene symbol Ensembl Association 
overall score - OT

Disease 
association - OT

PubMed Report 
number for a gene 
in the context of 
any 
cardiovascular 
indication

GWAS 
standardised 
association score 
for cardiovascular 
indication

Description
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Supplementary table 13. Diabetic post-ischemic heart failureda vs healthy dataset (GSE26887) cluster cross-referencing with disease association databases and datasets

Log2 Fold Change 
Score

Scaled interactor 
number

Cluster labels Gene symbol Ensembl Association 
overall score - OT

Disease 
association - OT

PubMed Report 
number for a gene 
in the context of 
any 
cardiovascular 
indication

GWAS 
standardised 
association score 
for cardiovascular 
indication

Description

0.9454193 7.82017896241519 0 AOC3 ENSG00000131471 0.07508353762151
28

cardiovascular 
disease

90 0.046885 amine oxidase 
copper containing 3

0.944643 7.83920378809694 0 DEPTOR ENSG00000155792 0.29255145788192
7

heart rate response 
to exercise

13 0.047463 DEP domain 
containing MTOR 
interacting protein

0.73079014 8.33539035469392 0 CC2D2A ENSG00000048342 0.30713980463592
8

Genetic cardiac 
anomaly

7 0.05095 coiled-coil and C2 
domain containing 
2A

0.9590473 8.41362792902417 0 GZMK ENSG00000113088 0.0324 Myocardial 
Ischemia

4 0.053505 granzyme K

0.75933266 7.70043971814109 0 HEG1 ENSG00000173706 0.23475 Genetic cardiac 
anomaly

23 0.056119 heart development 
protein with EGF 
like domains 1

1.0282478 7.8073549220576 0 CDH6 ENSG00000113361 0.48390492796897
9

resting heart rate 7 0.058737 cadherin 6

1.1346464 7.90689059560852 0 ECM2 ENSG00000106823 0.00895328337197
348

dilated 
cardiomyopathy

3 0.059947 extracellular matrix 
protein 2

0.7281332 8.00562454919388 0 SLC16A9 ENSG00000165449 0.00209062141407
026

Arterial stenosis 8 0.067287 solute carrier family 
16 member 9

0.7169552 8.38370429247405 0 DCLK2 ENSG00000170390 1 0.079181 doublecortin like 
kinase 2

0.91115 8.07681559705083 0 RGS5 ENSG00000143248 0.10420172806711
4

cardiovascular 
disease

122 0.101839 regulator of G 
protein signaling 5

1.0446882 8.30833903013941 0 MEOX2 ENSG00000106511 0.29664609444444
5

cardiovascular 
disease

55 0.1062 mesenchyme 
homeobox 2

0.84842205 7.84549005094437 0 RNF152 ENSG00000176641 0 0.10847 ring finger protein 
152

0.7298918 7.93663793900257 0 COLGALT2 ENSG00000198756 0.05601697787642
48

arterial stiffness 
measurement

0 0.137666 collagen beta(1-
O)galactosyltransfer
ase 2

0.60214615 8.21431912080077 0 AFF3 ENSG00000144218 7 0.157888 AF4/FMR2 family 
member 3

0.7879982 7.84549005094437 0 ITGA11 ENSG00000137809 0.1927 Cardiodysrhythmic 
potassium-sensitive 
periodic paralysis

9 0.165139 integrin subunit 
alpha 11

0.83326626 7.97154355395077 0 CABLES1 ENSG00000134508 0.25027393747915
7

cerebrovascular 
disorder

2 0.182713 Cdk5 and Abl 
enzyme substrate 1

0.6383791 8.4757334309664 0 ANKRD6 ENSG00000135299 0.00311155714688
393

hypertensive renal 
disease

2 0.229583 ankyrin repeat 
domain 6

0.6755018 8.2336196767597 0 OSBPL10 ENSG00000144645 0.79018843173980
7

arterial stiffness 
measurement

3 0.501504 oxysterol binding 
protein like 10

0.86116314 7.4757334309664 0 PLA2R1 ENSG00000153246 0.02880555555555
56

vasculitis 31 0.50389 phospholipase A2 
receptor 1

0.86438084 8.00562454919388 0 FREM1 ENSG00000164946 0.58658787667272 cardiovascular 
disease

4 0.515734 FRAS1 related 
extracellular matrix 
1

0.7468443 8.03342300153745 0 PLAGL1 ENSG00000118495 0.32088733871252
2

Genetic cardiac 
anomaly

25 0.594847 PLAG1 like zinc 
finger 1

0.7954359 8.39231742277876 0 PLXNA4 ENSG00000221866 0.23015 neurodevelopmenta
l disorder with or 
without anomalies 
of the brain, eye, or 
heart

6 0.647016 plexin A4

0.6967001 7.90086680798075 0 APBB2 ENSG00000163697 1 0.713752 amyloid beta 
precursor protein 
binding family B 
member 2

0.773921 8.37068740680722 0 PLCH1 ENSG00000114805 1 0.810892 phospholipase C 
eta 1

0.91536427 8.4093909361377 0 FBLN5 ENSG00000140092 1 cardiovascular 
disease

73 1.12478 fibulin 5

0.7004652 7.97154355395077 0 SASH1 ENSG00000111961 0.00265413697168
782

cardiac arrhythmia 9 SAM and SH3 
domain containing 
1

0.6522541 8.33091687811462 0 AMOT ENSG00000126016 0.0104 chronic venous 
hypertension

26 angiomotin

0.95543957 7.8073549220576 0 SULT1C2 ENSG00000198203 0.05346 gastric non-cardia 
carcinoma

0 sulfotransferase 
family 1C member 
2

0.91058826 8.22881869049588 0 PFKFB2 ENSG00000123836 0.183 Aicardi-Goutières 
syndrome

8 6-phosphofructo-2-
kinase/
fructose-2,6-
biphosphatase 2

1.007905 8.17492568250068 0 LPAR4 ENSG00000147145 0.27031527777777
8

familial 
cardiomyopathy

9 lysophosphatidic 
acid receptor 4

0.7229271 7.65105169117893 0 RIMKLB ENSG00000166532 0.80779838562011
7

hypertension 0 ribosomal 
modification protein 
rimK like family 
member B

0.74335194 7.73470962022584 0 ABHD4 ENSG00000100439 0 abhydrolase 
domain containing 
4

0.97845936 8.07146236255662 0 AP3M2 ENSG00000070718 0 adaptor related 
protein complex 3 
subunit mu 2

0.68469715 7.72109918870718 0 DNALI1 ENSG00000163879 0 dynein axonemal 
light intermediate 
chain 1

0.8126869 8.00562454919388 0 EFHC1 ENSG00000096093 2 EF-hand domain 
containing 1

1.1073303 7.91886323727459 0 MNS1 ENSG00000138587 1 meiosis specific 
nuclear structural 1

1.0136509 7.78790255939143 0 MUC3A ENSG00000169894 1 mucin 3A, cell 
surface associated
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0.61905193 8.09275714091985 0 RBM43 ENSG00000184898 3 RNA binding motif 
protein 43

0.8707514 8.05528243550119 0 SLC16A4 ENSG00000168679 16 solute carrier family 
16 member 4

0.665926 7.6724253419715 0 SNX33 ENSG00000173548 0 sorting nexin 33

0.92883825 7.95419631038687 0 UGT2B10 ENSG00000109181 3 UDP 
glucuronosyltransfe
rase family 2 
member B10

0.9945507 8.02236781302845 0 XAF1 ENSG00000132530 6 XIAP associated 
factor 1

-1.6356926 9.01122725542325 1 GFPT2 ENSG00000131459 0.0104 myocardial 
infarction

4 0.046953 glutamine-
fructose-6-
phosphate 
transaminase 2

-1.0795231 9.51569983828404 1 FGF7 ENSG00000140285 0.06254523144815
83

vascular disease 55 0.048529 fibroblast growth 
factor 7

-1.3777046 8.70735913208088 1 DHCR24 ENSG00000116133 0.02156 gastric non-cardia 
carcinoma

25 0.049039 24-
dehydrocholesterol 
reductase

-1.7015754952152
9

9.27379559921426 1 CD163 ENSG00000177575 0.20731981001516
8

cardiovascular 
disease

493 0.051225 CD163 molecule

-1.15938 9.46964181723952 1 CTSC ENSG00000109861 0.0487 hypertension 27 0.056076 cathepsin C

-0.7794523 9.04439411935845 1 PDE4D ENSG00000113448 1 cardiovascular 
disease

164 0.175166 phosphodiesterase 
4D

-1.0942574 8.61470984411521 1 STXBP6 ENSG00000168952 0.00259810056034
269

Tachycardia 0 0.178052 syntaxin binding 
protein 6

-0.78551674 9.47167521439204 1 CD59 ENSG00000085063 0.32436241797324
7

cardiovascular 
disease

322 0.622682 CD59 molecule 
(CD59 blood group)

-1.3563299 8.49984588708321 1 SSR3 ENSG00000114850 0 0.917442 signal sequence 
receptor subunit 3

-1.523037 9.71938882094208 1 SELE ENSG00000007908 0.21369482902360
7

cardiovascular 
disease

258 1.45274 selectin E

-0.8557415 8.77478705960117 1 FADS1 ENSG00000149485 0.61045786220166
4

heart rate 106 3.7884 fatty acid 
desaturase 1

-1.0573473 9.13185696060879 1 ATP1A1 ENSG00000163399 1 cardiovascular 
disease

174 ATPase Na+/K+ 
transporting 
subunit alpha 1

-1.0763518930157
6

9.0389189892923 1 TUBB6 ENSG00000176014 1 vascular disease 1 tubulin beta 6 class 
V

-1.3581958 8.85174904141606 1 TUBA3E ENSG00000152086 0.004 cardiomyopathy 0 tubulin alpha 3e

-0.936636 8.74146698640115 1 RNASE2 ENSG00000169385 0.03142421601450
5

cardiovascular 
disease

2 ribonuclease A 
family member 2

-1.1835241 9.3151495622563 1 FPR1 ENSG00000171051 0.04356627204585
54

cardiovascular 
disease

45 formyl peptide 
receptor 1

-1.2813988 9.13442632022093 1 DUSP5 ENSG00000138166 0.06193354438478
17

cardiovascular 
disease

22 dual specificity 
phosphatase 5

-1.5813951 8.48784003382305 1 CNN1 ENSG00000130176 0.0708 dilated 
cardiomyopathy

34 calponin 1

-1.9903517 9.4178525148859 1 S100A8 ENSG00000143546 0.08881689575793
26

cardiovascular 
disease

202 S100 calcium 
binding protein A8

-0.8386812 9.1548181090521 1 POLD2 ENSG00000106628 0.1 vasculitis 0 DNA polymerase 
delta 2, accessory 
subunit

-1.0181141 9.60547951806167 1 TUBA4A ENSG00000127824 0.1864 Aicardi-Goutières 
syndrome

4 tubulin alpha 4a

-1.4041185 8.84549005094438 1 FGF18 ENSG00000156427 0.19036 Lethal 
faciocardiomelic 
dysplasia

16 fibroblast growth 
factor 18

-1.1663303 9.01959072835788 1 HAS2 ENSG00000170961 0.2 Familial progressive 
cardiac conduction 
defect

167 hyaluronan 
synthase 2

-1.3903275 9.37937836707126 1 KRT8 ENSG00000170421 0.28314666666666
7

cardiomyopathy 10 keratin 8

-1.1936855 9.04165915163721 1 DLK1 ENSG00000185559 0.29413622943436
6

heart disease 119 delta like non-
canonical Notch 
ligand 1

-1.2158594 8.62205181945638 1 PDPN ENSG00000162493 0.29550122380952
4

Familial dilated 
cardiomyopathy

146 podoplanin

-1.9087296 9.2667865406949 1 KCNIP2 ENSG00000120049 0.50019161548454
8

heart disease 106 potassium voltage-
gated channel 
interacting protein 2

-1.0804825 9.32192809488736 1 C5AR1 ENSG00000197405 0.75 anti-neutrophil 
antibody 
associated 
vasculitis

66 complement C5a 
receptor 1

-0.845314 8.72109918870719 1 FOSL2 ENSG00000075426 0.81066093991792
4

cardiovascular 
disease

29 FOS like 2, AP-1 
transcription factor 
subunit

-2.168395 8.72109918870719 1 ANKRD2 ENSG00000165887 31 ankyrin repeat 
domain 2

-0.6821213 9.04439411935845 1 KLC2 ENSG00000174996 0 kinesin light chain 2

-0.72124004 9.10328780841202 1 SRM ENSG00000116649 413 spermidine 
synthase

0.7420349 10.5774288280357 2 BMP4 ENSG00000125378 0.34218392413094 cardiovascular 
disease

626 0.050781 bone 
morphogenetic 
protein 4

1.3373194 10.5077946401987 2 ACTA2 ENSG00000107796 1 vascular disease 649 0.057922 actin alpha 2, 
smooth muscle

0.7945099 10.2691266791494 2 MAPK10 ENSG00000109339 0.05970552171293
54

cardiovascular 
disease

13 0.063156 mitogen-activated 
protein kinase 10

0.8908138 10.6741922681457 2 NTRK2 ENSG00000148053 0.25227849092384
3

cardiovascular 
disease

60 0.114019 neurotrophic 
receptor tyrosine 
kinase 2

Log2 Fold Change 
Score

Scaled interactor 
number

Cluster labels Gene symbol Ensembl Association 
overall score - OT

Disease 
association - OT

PubMed Report 
number for a gene 
in the context of 
any 
cardiovascular 
indication

GWAS 
standardised 
association score 
for cardiovascular 
indication

Description
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0.99096696947985
1

10.1305705628054 2 ACE ENSG00000159640 1 cardiovascular 
disease

21262 0.497336 angiotensin I 
converting enzyme

1.4016085 9.9901039638575 2 SLC6A1 ENSG00000157103 0.03689049391798
23

arterial disorder 10 1.02476 solute carrier family 
6 member 1

0.75250566232200
8

10.5877775163282 2 CD34 ENSG00000174059 1 heart rate 5335 CD34 molecule

1.7582741 9.85642552862553 2 HSPA2 ENSG00000126803 0.0088 hypertrophic 
cardiomyopathy

12 heat shock protein 
family A (Hsp70) 
member 2

0.9782324 10.0389189892923 2 MYH10 ENSG00000133026 0.32816138639532 dilated 
cardiomyopathy

28 myosin heavy chain 
10

-1.4075699 8.21431912080077 3 PCDH7 ENSG00000169851 0.00070484901650
8335

retinal vascular 
disease

8 0.049753 protocadherin 7

-1.1952381 7.61470984411521 3 SLCO4A1 ENSG00000101187 3 0.058586 solute carrier 
organic anion 
transporter family 
member 4A1

-0.945035 7.49185309632967 3 PHTF2 ENSG00000006576 0 0.061346 putative 
homeodomain 
transcription factor 
2

-0.66311646 8.18487534290828 3 TNIK ENSG00000154310 0.88342785835266
1

arterial stiffness 
measurement

4 0.116986 TRAF2 and NCK 
interacting kinase

-0.62101555 7.93663793900257 3 COBL ENSG00000106078 4 0.166725 cordon-bleu WH2 
repeat protein

-1.0535727 7.876516946565 3 RDH10 ENSG00000121039 0.26294097222222
2

Conotruncal heart 
malformations

3 0.522865 retinol 
dehydrogenase 10

-0.6300564 7.36632221424582 3 METTL22 ENSG00000067365 0 0.683452 methyltransferase 
like 22

-1.5639668 8.17492568250068 3 ELL2 ENSG00000118985 0.006 Cognitive 
impairment-coarse 
facies-heart 
defects-obesity-
pulmonary 
involvement-short 
stature-skeletal 
dysplasia syndrome

1 1.42467 elongation factor 
for RNA 
polymerase II 2

-1.4786786891813
5

7.82017896241519 3 ABRA ENSG00000174429 0.00477660653187
586

ischemic 
cardiomyopathy

40 actin binding Rho 
activating protein

-1.5306215 8.37503943134693 3 MGST1 ENSG00000008394 0.0136 congenital heart 
disease

8 microsomal 
glutathione S-
transferase 1

-1.2137728 7.48381577726426 3 MT1A ENSG00000205362 0.0346 cardiovascular 
disease

15 metallothionein 1A

-1.1985159 7.6724253419715 3 PXYLP1 ENSG00000155893 0.10342387855052
9

heart rate 0 2-phosphoxylose 
phosphatase 1

-0.9634384018017
2

8.29462074889163 3 LYVE1 ENSG00000133800 0.19355751574039
5

arterial stiffness 
measurement

105 lymphatic vessel 
endothelial 
hyaluronan receptor 
1

-0.82270336 8.45532722030456 3 COTL1 ENSG00000103187 0.1948 Autosomal 
dominant 
progressive 
nephropathy with 
hypertension

2 coactosin like F-
actin binding 
protein 1

-0.9445839 7.78790255939143 3 JPH1 ENSG00000104369 0.47252985835075
4

pericarditis 4 junctophilin 1

-1.0970469 7.94251450533924 3 CENPV ENSG00000166582 1 centromere protein 
V

-0.9231758 7.33091687811462 3 CSRNP1 ENSG00000144655 4 cysteine and serine 
rich nuclear protein 
1

-1.3482113 8.09275714091985 3 RAB15 ENSG00000139998 4 RAB15, member 
RAS oncogene 
family

-0.8705368 8.43462822763673 3 SLA ENSG00000155926 164 Src like adaptor

-1.1591511 7.97154355395077 3 SLC7A2 ENSG00000003989 20 solute carrier family 
7 member 2

-0.7479849 7.89481776330794 3 SRPX ENSG00000101955 5 sushi repeat 
containing protein 
X-linked

2.50118031365848 7.54689445988764 4 DSC1 ENSG00000134765 0.19942447524312
1

dilated 
cardiomyopathy

9 0.051188 desmocollin 1

3.59476301520953 8.78135971352466 4 NPPA ENSG00000175206 1 cardiovascular 
disease

437 0.170989 natriuretic peptide 
A

2.472353 8.67948009950545 4 NEB ENSG00000183091 0.30221543416152
5

cardiomyopathy 219 0.681983 nebulin

2.497488 8.98299357469431 4 FRZB ENSG00000162998 0.05697310994867
9

dilated 
cardiomyopathy

15 frizzled related 
protein

2.759101 8.63299519714296 4 SFRP4 ENSG00000106483 0.06436420291233
44

cardiovascular 
disease

40 secreted frizzled 
related protein 4

1.9342127 6.98868468677217 4 KLHL38 ENSG00000175946 0 kelch like family 
member 38

-1.3976002 10.4051414631363 5 TFRC ENSG00000072274 0.31493474827473
8

cardiovascular 
disease

51 0.048463 transferrin receptor

-0.67367744 10.7960396088298 5 TLR2 ENSG00000137462 0.33833897115914
8

cardiovascular 
disease

961 0.065383 toll like receptor 2

-0.6312599 9.66711154207503 5 PHB ENSG00000167085 0.0404 pulmonary arterial 
hypertension

122 0.067672 prohibitin

-1.4020166 10.6211361132746 5 CDKN1A ENSG00000124762 1 cardiovascular 
disease

547 0.139652 cyclin dependent 
kinase inhibitor 1A

-1.4020166 10.6211361132746 5 CDKN1A ENSG00000124762 1 cardiovascular 
disease

547 0.139652 cyclin dependent 
kinase inhibitor 1A

-0.9807377 9.77313920671969 5 TUBB4B ENSG00000188229 1 heart disease 3 2.58984 tubulin beta 4B 
class IVb
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-1.2778980074388
9

11.5211096436513 5 IL6 ENSG00000136244 1 cardiovascular 
disease

2787 interleukin 6

-0.78205204 9.7176764230664 5 FASN ENSG00000169710 0.05188481355282
78

cardiovascular 
disease

430 fatty acid synthase

-0.71807957 10.1623913287569 5 GLUL ENSG00000135821 0.05816622502855
04

cardiovascular 
disease

20 glutamate-
ammonia ligase

-0.7444143 10.0647427647503 5 AIF1 ENSG00000204472 0.32258339591753
5

cardiovascular 
disease

270 allograft 
inflammatory factor 
1

-0.8504858 9.65999589242998 5 EIF3I ENSG00000084623 1 eukaryotic 
translation initiation 
factor 3 subunit I

-0.6790819 9.65642486327778 5 TUBG1 ENSG00000131462 1 tubulin gamma 1

0.71650280738393
9

7.13955135239879 6 MTURN ENSG00000180354 0.01680749072977
85

dilated 
cardiomyopathy

0 0.048052 maturin, neural 
progenitor 
differentiation 
regulator homolog

0.71768475 7.09803208296053 6 CPXM2 ENSG00000121898 0.0124 cardiotoxicity 2 0.048572 carboxypeptidase 
X, M14 family 
member 2

0.66207695 7.4093909361377 6 SH3TC2 ENSG00000169247 0.88820654153823
9

hypertension 3 0.069967 SH3 domain and 
tetratricopeptide 
repeats 2

1.2451935 7.4178525148859 6 PAMR1 ENSG00000149090 8 0.186925 peptidase domain 
containing 
associated with 
muscle 
regeneration 1

0.8537178 6.88264304936184 6 CCDC113 ENSG00000103021 0 0.497276 coiled-coil domain 
containing 113

0.9098177 7.27612440527424 6 CCDC3 ENSG00000151468 2 0.528913 coiled-coil domain 
containing 3

0.81960773 7.10852445677817 6 THSD7A ENSG00000005108 0.03583888888888
89

hypertension 17 0.531226 thrombospondin 
type 1 domain 
containing 7A

1.223135 7.07681559705083 6 CFAP61 ENSG00000089101 1 0.637975 cilia and flagella 
associated protein 
61

0.9419317 6.76818432477693 6 FAM13C ENSG00000148541 0 0.669442 family with 
sequence similarity 
13 member C

0.702137 7.4262647547021 6 TANGO2 ENSG00000183597 1 cardiovascular 
disease

10 0.670464 transport and golgi 
organization 2 
homolog

0.73056316 6.90689059560852 6 JCAD ENSG00000165757 1 cardiovascular 
disease

35 junctional cadherin 
5 associated

1.34472127978344 6.2667865406949 6 TMEM140 ENSG00000146859 0.00534632110033
744

ischemic 
cardiomyopathy

0 transmembrane 
protein 140

0.8866329 6.5077946401987 6 C1QTNF7 ENSG00000163145 0.0076 coronary artery 
disease

0 C1q and TNF 
related 7

1.3952188 6.85798099512757 6 SLC44A5 ENSG00000137968 0.00936438763471
833

cardiovascular 
disease

1 solute carrier family 
44 member 5

1.0713959 7.05528243550119 6 CRISPLD1 ENSG00000121005 0.0252 heart failure 2 cysteine rich 
secretory protein 
LCCL domain 
containing 1

0.736742 6.55458885167764 6 ZNF704 ENSG00000164684 0.12039463967084
9

arterial stiffness 
measurement

2 zinc finger protein 
704

0.8174572 6.6724253419715 6 APBB3 ENSG00000113108 1 amyloid beta 
precursor protein 
binding family B 
member 3

1.1442862 7.08746284125034 6 ART4 ENSG00000111339 4 ADP-
ribosyltransferase 4 
(Dombrock blood 
group)

0.8407326 7.33091687811462 6 BCL6B ENSG00000161940 4 BCL6B 
transcription 
repressor

0.6358671 6.61470984411521 6 BTN3A1 ENSG00000026950 0 butyrophilin 
subfamily 3 
member A1

0.66088676 6.22881869049588 6 CCDC171 ENSG00000164989 0 coiled-coil domain 
containing 171

0.95116615 7.23840473932508 6 CDR1 ENSG00000184258 15 cerebellar 
degeneration 
related protein 1

0.7051039 6.52356195605701 6 CEP126 ENSG00000110318 0 centrosomal protein 
126

1.0097842 7.09803208296053 6 KRTAP21-1 ENSG00000187005 0 keratin associated 
protein 21-1

1.0780964 6.18982455888002 6 NRK ENSG00000123572 114 Nik related kinase

0.79331493 7.06608919045777 6 PCDH12 ENSG00000113555 5 protocadherin 12

1.0529556 6.79441586635011 6 PIK3IP1 ENSG00000100100 4 phosphoinositide-3
-kinase interacting 
protein 1

0.7104025 7.04439411935845 6 RANBP3L ENSG00000164188 2 RAN binding 
protein 3 like

1.1970367 7.33985000288462 6 SESN3 ENSG00000149212 10 sestrin 3

1.2122259 7.04439411935845 6 SULT1C4 ENSG00000198075 0 sulfotransferase 
family 1C member 
4

0.87745094 7.4594316186373 6 YPEL1 ENSG00000100027 1 yippee like 1

1.6721287 8.99717948093762 7 FMOD ENSG00000122176 0.048 heart failure 20 0.047068 fibromodulin

Log2 Fold Change 
Score

Scaled interactor 
number

Cluster labels Gene symbol Ensembl Association 
overall score - OT

Disease 
association - OT

PubMed Report 
number for a gene 
in the context of 
any 
cardiovascular 
indication

GWAS 
standardised 
association score 
for cardiovascular 
indication

Description

 4

214



1.15573458676483 8.24317398347295 7 FNDC1 ENSG00000164694 0.00365269911261
096

ischemic 
cardiomyopathy

5 0.078697 fibronectin type III 
domain containing 
1

1.3211765 8.29920801838728 7 DPT ENSG00000143196 0.35748687386512
8

arterial stiffness 
measurement

345 0.0808 dermatopontin

1.7052364 8.14974711950468 7 COL14A1 ENSG00000187955 0.41214135289192
2

heart rate response 
to exercise

12 0.083512 collagen type XIV 
alpha 1 chain

1.8713417 8.10852445677817 7 NPR 3,00 ENSG00000113389 1 cardiovascular 
disease

58 0.101712 natriuretic peptide 
receptor 3

1.5688696 7.92481250360578 7 SVEP1 ENSG00000165124 1 cardiovascular 
disease

13 0.112483 sushi, von 
Willebrand factor 
type A, EGF and 
pentraxin domain 
containing 1

1.30003064704471 8.15987133677839 7 SMOC2 ENSG00000112562 0.01822979749962
83

vascular disease 13 0.147347 SPARC related 
modular calcium 
binding 2

1.33498466496198 8.34429590791582 7 LTBP2 ENSG00000119681 0.19906355555555
6

heart disease 26 0.184024 latent transforming 
growth factor beta 
binding protein 2

1.5091677 8.45532722030456 7 KCNJ3 ENSG00000162989 0.2723875 cardiac arrhythmia 36 0.57039 potassium inwardly 
rectifying channel 
subfamily J 
member 3

1.4191274692 8.62935662007961 7 PDE5A ENSG00000138735 1 cardiovascular 
disease

380 0.917442 phosphodiesterase 
5A

1.3353043 7.99435343685886 7 HTR4 ENSG00000164270 1 acute myocardial 
infarction

11 1.09022 5-
hydroxytryptamine 
receptor 4

1.98462521436403 8.3037807481771 7 PRELP ENSG00000188783 0.0256 heart failure 7 proline and arginine 
rich end leucine 
rich repeat protein

1.5719681 7.76818432477693 7 FAXDC2 ENSG00000170271 0.11292352341115
5

electrocardiography 0 fatty acid 
hydroxylase domain 
containing 2

1.22277252337422 8.4757334309664 7 SLC40A1 ENSG00000138449 0.2 coronary artery 
disease, autosomal 
dominant 2

18 solute carrier family 
40 member 1

1.6482477 8.56985560833095 7 P2RY14 ENSG00000174944 0.29213693333333
3

heart disease 4 purinergic receptor 
P2Y14

2.0397625 8.59991284218713 7 ENPP2 ENSG00000136960 0.32104693638164 cardiovascular 
disease

18 ectonucleotide 
pyrophosphatase/
phosphodiesterase 
2

1.7696838 8.10852445677817 7 IGSF10 ENSG00000152580 1 immunoglobulin 
superfamily 
member 10

-0.8760967 5.58496250072116 8 LBH ENSG00000213626 0.01834575426283
09

cerebrovascular 
disorder

72 LBH regulator of 
WNT signaling 
pathway

-1.5134276201999
5

6.89481776330794 8 FCN3 ENSG00000142748 0.0623 heart failure 11 ficolin 3

-0.6520672 6.49185309632967 8 C19orf47 ENSG00000160392 0.10749028623104
1

resting heart rate 0 chromosome 19 
open reading frame 
47

-1.0985508 4.8073549220576 8 CDRT15 ENSG00000223510 0 CMT1A duplicated 
region transcript 15

-0.79782104 6.89481776330794 8 JAGN1 ENSG00000171135 2 jagunal homolog 1

-1.3613062 7.12928301694497 8 MEDAG ENSG00000102802 0 mesenteric 
estrogen 
dependent 
adipogenesis

-1.238616 6.84549005094437 8 RTL9 ENSG00000243978 0 retrotransposon 
Gag like 9

0.8970251 8.62570884306447 9 TIE1 ENSG00000066056 0.26124611111111
1

hypertrophic 
cardiomyopathy

120 0.049117 tyrosine kinase with 
immunoglobulin like 
and EGF like 
domains 1

1.0541258 8.48784003382305 9 ANO1 ENSG00000131620 0.44306275248527
5

aortic root size 91 0.053002 anoctamin 1

1.178196 8.76818432477693 9 CPE ENSG00000109472 0.2 coronary artery 
disease, autosomal 
dominant 2

280 0.056875 carboxypeptidase E

0.8587904 8.74483383749955 9 SEMA6A ENSG00000092421 0.11948752698898
3

Anti-neutrophil 
cytoplasmic 
antibody-
associated 
vasculitis

14 0.059624 semaphorin 6A

1.0189104 9.39660478118186 9 PRDM1 ENSG00000057657 0.2 Genetic cardiac 
anomaly

32 0.061484 PR/SET domain 1

0.96929158248 9.47167521439204 9 MME ENSG00000196549 1 cardiovascular 
disease

84 0.100575 membrane 
metalloendopeptida
se

0.8499718 8.88874324889826 9 SMAD9 ENSG00000120693 1 vascular disease 34 0.108775 SMAD family 
member 9

0.77372265 8.74483383749955 9 CENPC ENSG00000145241 0.02327953671565
7

cardiomyopathy 0 0.112658 centromere protein 
C

1.0676622 8.59991284218713 9 HMCN1 ENSG00000143341 0.201 dilated 
cardiomyopathy

4 0.153732 hemicentin 1

0.81258965 8.61838550225861 9 LTBP1 ENSG00000049323 0.31710620789300
6

Genetic cardiac 
anomaly

35 0.179172 latent transforming 
growth factor beta 
binding protein 1

0.79587173 8.90989308377004 9 ARHGEF28 ENSG00000214944 0.03598713995968
76

vascular disease 0 0.230931 Rho guanine 
nucleotide 
exchange factor 28

0.74583626 9.05528243550119 9 LDB2 ENSG00000169744 14 0.235095 LIM domain binding 
2
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1.1536655 8.75822321472672 9 PLCE1 ENSG00000138193 1 cardiovascular 
disease

17 0.242876 phospholipase C 
epsilon 1

0.71289444 9.04712391211403 9 PCSK5 ENSG00000099139 0.33408480711221
5

cardiovascular 
disease

15 0.279217 proprotein 
convertase 
subtilisin/kexin type 
5

0.9334259 9.43879185257826 9 NRG1 ENSG00000157168 0.83886823701539
8

cardiovascular 
disease

202 0.302508 neuregulin 1

0.9914799 8.59991284218713 9 KCNN3 ENSG00000143603 1 cardiovascular 
disease

95 0.324822 potassium calcium-
activated channel 
subfamily N 
member 3

0.61952114 9.38801728534514 9 HLA-B ENSG00000234745 0.93699167773614
8

cardiovascular 
disease

567 0.336932 major 
histocompatibility 
complex, class I, B

0.85855675 8.94251450533924 9 BMP6 ENSG00000153162 0.018 congenital heart 
disease

72 0.510348 bone 
morphogenetic 
protein 6

0.8962126 8.58871463558226 9 PREX2 ENSG00000046889 1 Cerebral 
arteriovenous 
malformation

2 0.580283 phosphatidylinositol
-3,4,5-
trisphosphate 
dependent Rac 
exchange factor 2

1.1325579 8.58871463558226 9 ITGA8 ENSG00000077943 0.2 Congenital 
vertebral-cardiac-
renal anomalies 
syndrome

11 0.660239 integrin subunit 
alpha 8

0.69878006 9.24792751344359 9 MYO10 ENSG00000145555 0.1948 Autosomal 
dominant 
progressive 
nephropathy with 
hypertension

7 0.670943 myosin X

0.67784977 8.91288933622996 9 MECOM ENSG00000085276 1 cardiovascular 
disease

23 0.77375 MDS1 and EVI1 
complex locus

1.0650034 8.88569637333939 9 SGIP1 ENSG00000118473 0.99123363196849
8

heart rate 2 1.04846 SH3GL interacting 
endocytic adaptor 1

0.90437603 9.55074678538324 9 SLIT3 ENSG00000184347 0.29800086099773
2

Familial dilated 
cardiomyopathy

28 1.18762 slit guidance ligand 
3

1.0028601 8.38801728534514 9 SPOCK1 ENSG00000152377 0.02352 gastric non-cardia 
carcinoma

5 1.24289 SPARC 
(osteonectin), cwcv 
and kazal like 
domains 
proteoglycan 1

0.7893839 9.14974711950468 9 ENTPD1 ENSG00000138185 0.33920916817299
7

cardiovascular 
disease

32 1.61717 ectonucleoside 
triphosphate 
diphosphohydrolas
e 1

0.83325577 9.14974711950468 9 TIMP2 ENSG00000035862 0.10286148848058
8

cardiovascular 
disease

294 1.87707 TIMP 
metallopeptidase 
inhibitor 2

0.6729946 9.00281501560705 9 FZD4 ENSG00000174804 1 retinal vascular 
disease

57 frizzled class 
receptor 4

0.8965254 9.20945336562895 9 KCNA5 ENSG00000130037 1 cardiac arrhythmia 235 potassium voltage-
gated channel 
subfamily A 
member 5

0.7015095 9.40087943628218 9 VEGFC ENSG00000150630 1 cardiovascular 
disease

490 vascular endothelial 
growth factor C

0.7166195 9.52552080909507 9 CCNG2 ENSG00000138764 0.00753244040668
435

dilated 
cardiomyopathy

3 cyclin G2

0.85201322664913
2

9.06608919045777 9 NAP1L3 ENSG00000186310 0.00912202178593
987

dilated 
cardiomyopathy

1 nucleosome 
assembly protein 1 
like 3

1.14453691610264 8.53915881110803 9 LMO3 ENSG00000048540 0.0104 hypertension 4 LIM domain only 3

1.00368299364409 8.70390357344466 9 FZD7 ENSG00000155760 0.01280774321349
22

ischemic 
cardiomyopathy

14 frizzled class 
receptor 7

1.03604149258193 8.60362634498619 9 TM7SF2 ENSG00000149809 0.04442673809523
81

cardiovascular 
disease

3 transmembrane 7 
superfamily 
member 2

1.0330381 9.09539702279256 9 IGFBP5 ENSG00000115461 0.04847570372736
93

vascular disease 29 insulin like growth 
factor binding 
protein 5

1.1550779 8.90989308377004 9 P2RY13 ENSG00000181631 0.06144633333333
33

cardiovascular 
disease

12 purinergic receptor 
P2Y13

0.6970482 9.05799172275918 9 ARHGAP1 ENSG00000175220 0.2 Familial avascular 
necrosis of femoral 
head

5 Rho GTPase 
activating protein 1

0.76843166 9.41362792902417 9 EFNB2 ENSG00000125266 0.34091348206392
7

cardiovascular 
disease

63 ephrin B2

0.8135996 9.55074678538324 9 TCF4 ENSG00000196628 0.49844723939895
6

heart rate response 
to exercise

131 transcription factor 
4

0.7375641 8.58496250072116 9 TP53INP1 ENSG00000164938 0.55979144946163
2

cardiovascular 
disease

10 tumor protein p53 
inducible nuclear 
protein 1

0.6842003 8.9915218460757 9 HEY1 ENSG00000164683 115 hes related family 
bHLH transcription 
factor with YRPW 
motif 1
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10.2. Fi-score: a novel approach to characterise protein topology and aid in 
drug discovery studies
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Supplementary materials

Supplementary Figure 1. 3352 protein test set (total 50,043 secondary structure elements, Suppl. 
Table 1) was scored based on the Fi-score capturing α-helices and β-sheets as well as rarer 
structural elements. Summary table for the dot plot shows the main distribution parameters for the 
investigated Fi-scores and structure sizes. Graph and summary table were created with with R/
RStudio.
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Supplementary Figure 2. Representative examples of Ramachandran plots for representative 
proteins PDB ID: 6D6U(A chain), 5CFZ (A chain), 4G5Z (L chain), 2QF6 (chain B). Graphs 
created with with R/RStudio.

Supplementary Figure 3. Representative examples of normalised B-factor value distribution (from 
0 to 1) for proteins PDB ID: 1TWM (chain A), 4G5Z (H chain),6D6U (A chain), 5CFZ (A chain), 
where shaded blue region represents analysed regions (Table 1). Graphs created with with R/
RStudio.
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Supplementary Figure 4. Representative examples of torsion angle and B-factor value distribution 
for human GABA-A receptor, subunit beta-2 (PDB ID: 6D6U, chain A) and human glycine receptor 
alpha-3 (PDB ID: 5CFB, chain A) where a colour scale represents B-factor value without 
normalisation. Graphs created with with R/RStudio.
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Supplementary Figure 5. Region of a single outer α-helix of cellular tumour antigen p53 (PDB 
ID: 6RZ3, chain A) (top panel) and a contact site between the outer α-helix of cellular tumour 
antigen p53 (PDB ID: 6RZ3, chain A) and the carboxyl-terminal conserved region of inhibitor of 
apoptosis-stimulating protein of p53 (iASPP) (PDB ID: 6RZ3, chain B) where yellow dotted lines 
represent interchain polar contacts (bottom panel). 3D molecule images rendered with PyMol.
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Supplementary Figure 6. Catalytic antibody 21H3 with hapten (PDB ID: 1UM4, chain H and L) 
where N-terminal heavy and light chain contact site are shown in a close-up with polar contacts 
depicted in a dashed yellow line.  3D molecule images rendered with PyMol.
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10.3. Fiscore package: effective protein structural data visualisation and 
exploration
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PDB ID Description Scientific Name Max 
Score 

Total 
Score  

Query 
Cover 

E value  Per. 
Ident 

Acc. Len Accession

3KMR, 
1FBY

retinoic acid 
receptor alpha 
isoform 1 [Homo 
sapiens] 

Homo sapiens 96.7 96.7 80% 4E-23 32.64% 462 NP_000955.1 

2GPU, 
6KNR

estrogen-related 
receptor gamma 
isoform 1 [Homo 
sapiens] 

Homo sapiens 83.2 83.2 85% 2E-18 30.73% 458 NP_001429.2 

Supplementary Table 1. PSI-BLAST alignment results.
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Fi-score 
distribution 1

Fi-score 
distribution 2

T-value p-value

Nur77 Retinoic acid receptor 
alpha

0.62868 0.5367

Nur77 Estrogen-related receptor 
gamma

-0.49413 0.6279

Estrogen-related receptor 
gamma

Retinoic acid receptor 
alpha

-0.55116  0.5891

Supplementary Table 2. Student T-test (two-sided, unpaired) results.
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Supplementary Figure 1. Nur77 ligand binding domain PSI-BLAST alignment with the retinoic acid receptor alpha.
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Supplementary Figure 2. Nur77 ligand binding domain PSI-BLAST alignment with the estrogen-related receptor gamma.
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Supplementary Figure 3. Hydrophobicity plots.

228



Supplementary materials

Integrative omics approaches for new target identification and therapeutics 

development  

10.4. In silico drug discovery for a complex immunotherapeutic target - 
human c-Rel protein
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m
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n

ta
ry

 Fig
u

re
 1. T-Coffee  sequence alignm

ent for REL proteins using default settings w
here 

the higher identity percentage is represented w
ith a m

ore intense blue colour; additional param
eters, 

such as the alignm
ent quality score, conservation score, occupancy and consensus sequence are also 

provided w
ith the alignm

ent.
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ry

 Fig
u

re
 2. c-Rel protein (PD

B ID
: 1G

JI) dim
er and m

onom
er visualization (A

&
B) 

w
here red-blue spectrum

 represents Coulom
bic electrostatic potential ranging from

 negative to 
positive, respectively. The m

onom
er coloring ranges from

 dark cyan for the m
ost hydrophilic  

region through w
hite to dark golden for the m

ost hydrophobic site (C). Protein sequence panel (D
) 

show
s helix regions in yellow

, beta-strands in blue and selected dim
er lock region in green w

hich 
is also contoured around contact sites (B&

C).
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 Fig
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re
 3

. c-Rel protein (PD
B ID

: 1G
JI) atom

ic m
ovem

ent 
fluctuations per residue (A

) and snapshots of the highest frequency (0.004) 
m

ovem
ents  (B) based on the norm

al m
ode analysis (N

M
A

); atom
ic 

m
ovem

ent sim
ilarity m

atrix (A
M

SM
) provides a specific dom

ain assignm
ent 

(C).
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 Fig
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 4

. Surface distribution for chicken c-Rel (PD
B ID

: 1G
JI) of 

selected three sites. Top panels represent contact  surface of hydrogen-bond donor 
(blue), hydrogen-bond acceptor (red), hydrophobic sites are coloured in yellow
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. Poisson-Boltzm
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PBS) electrostatic surface 
distribution for the chicken c-Rel (PD

B ID
: 1G

JI) and hum
an m

odelled c-Rel 
protein. Scale for each distribution provided individually, arrow

s indicate 
rotation direction; blue colour represents m

ore electropositive, w
hile red 

m
ore electronegative regions.
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Supplementary Table 1. REL family structures and sequence informa5on 

Supplementary Table 2. SiteMap analysis for the mouse p65 (PDB:5U01) protein dividing the 
protein into 5 regions. 

Name SiteScore size, Å2 Dscore volume, 
Å3 exposure enclosure phobic philic

Site 1 0.886 674 1 360.493 0.783 0.373 0.119 0.504

Site 2 0.877 570 0.999 277.487 0.838 0.347 0.119 0.458

Site 3 0.895 304 1.023 178.017 0.832 0.359 0.164 0.406

Site 4 0.879 293 0.991 184.534 0.774 0.367 0.062 0.519

Site 5 0.882 289 0.999 161.896 0.797 0.362 0.107 0.484

239



Supplementary Table 3. Chicken c-Rel (PDB ID:1GJI) site screening results showing the number of 

compounds entering each round of the screening. 

HTVS screening mode 
ΔG<-2 kJ/mol

SP screening mode 
ΔG<-2 kJ/mol

XP screening mode 
ΔG<-3 kJ/mol

Site 1

34 M 338 11

Site 2

34 M 163 33

Site 3

34 M 1007 206

240



Supplementary materials

Integrative omics approaches for new target identification and therapeutics 

development  

10.5. Chemexpy documentation 

The supplementary chapter is based on the published software package 

Kanapeckaitė A. Chemexpy: Cheminformatics package for compound feature evaluation. PyPi. 
2021 Oct. 07. Version 1.0.10; https://pypi.org/project/chemexpy/ 

Conclusion of this chapter 

My developed Chemexpy package provides a user-friendly and organised approach to explore 
chemical libraries and identify key features. The information generated by the package functions 
can be easily integrated into other pipelines or downstream processing. The package provides 
exploratory plots as well as compound similarity assessment allowing to search for similar 
compounds. Moreover, there are several additional functions helping to easily extract chemical 
descriptors and evaluate chemical libraries.

Contribution to this chapter (100%) 

• Developed new programmatic features to accompany the related publication and make 
cheminformatics analyses more streamlined.

• Performed software package development and testing.
• Conceptualised and wrote the documentation files and vignettes, including the figure preparation.
• Corresponding author and maintainer.
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Chemexpy documentation

Documentation for the Chemexpy package 

Package version: v1.0.10 
Date: 10/06/2021 
Author: Auste Kanapeckaite 

The package contains the following functions: 
1. data_prep

2. molecule_check

3. scatter_plot

4. correlation_plot

5. feature_plot

6. normality_check

7. feature_check

8. feature_violinplots

9. similarity_search

10. similarity_dendogram

11. similarity_heatmap


Dependencies: 

rdkit, pandas, numpy, scipy, seaborn, matplotlib, collections


Introduction. 

Chemexpy package provides a user-friendly and organised approach to explore chemical libraries 
and identify key features. The information generated by the package functions can be easily 
integrated into other pipelines or downstream processing. The package provides exploratory 
plots as well as compound similarity assessment allowing to search for similar compounds. 
Moreover, there are several additional functions helping to easily extract chemical descriptors and 
evaluate chemical libraries.


Function Description. 

1. Function data_prep 

    Function call example: data_prep(data,*args)


  

    #Function provides a snapshot of the input data as well as returns a processed data file 
to include information on chemical descriptors, atomic composition, chemical structure 
features.
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    #Input values: path to a csv file that contains compound ID 'CID' and smiles 'SMILES' 
columns. These columns have to be named as described above.

Additional columns can be passed as arguments if, for example, the data file contains 
other columns of interest.

    #Output values: data frame with added chemical descriptors. The output could be 
integrated into downstream analyses and  databases or used to visualise the structures.


2. Function molecule_check 

    Function call example: molecule_check(data,*args)


    #Function allows to visualise molecules of interest as well as returns a  data frame that 
contains information on the  selected list of molecules. It is recommended not to select 
more than 20 molecules at a time to draw the structures.


    #Input values: data frame with "CID" (compound ID) and "SMILES" (smiles column). 
Please note, the IDs for columns need to match the examples.


    #Additional input: arguments for "CID", e.g., "2821293". If none is selected first 10 
structures will be drawn. Names for compounds have to be in a string format.


    #Output values: structure visualisation and a data frame that can be used for further 
visualisations.


3. Function scatter_plot 

    Function call example: scatter_plot(data,var1=None,var2=None)


    #Function takes the data file provided by the data_prep function and plots analytical 
scatter plots for selected variables.


    #Input values: data frame generated by the data_prep function, as well as variables to 
plot, e.g. "MW" and "TSPA".


    #Output values: scatter plot.
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4. Function correlation_plot 

    Function call example: correlation_plot(data,*args)


    #Function takes the data file provided by the data_prep function and plots a correlation 
heatmap.

    #Input values: data frame generated by the data_prep function, as well as variables to 
calculate correlation and plot selected values, e.g., "MW" and "TSPA".

  If the user does not select args, the default values will be used: 
"Atom_number","MW","TSPA","HBD_count","HBA_count","Rotatable_bond_count","MolL
ogP","Ring_number","AP".

    #Output values: plot for correlation visualisation and a data frame with correlation 
values.





5. Function feature_plot 

    Function call example: feature_plot(data,*args)


    #Function takes the data file provided by the data_prep function and plots analytical 
scatter plots for multiple features.

    #Input: data frame generated by the data_prep function, as well as variables for feature 
ploting, e.g. "MW" and "TSPA".

    #If the user does not select args, the default values will be used: 
"Atom_number","MW","TSPA","HBD_count","HBA_count",   
"Rotatable_bond_count","MolLogP","Ring_number","AP".
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    #Output: scatter plot of multiple feature visualisation.
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6. Function normality_check 

    Function call example: normality_check(data,var=None)


    #Function takes the data file provided by the data_prep function and plots a histogram 
with an estimated probability density function.

    #Input: data frame generated by the data_prep function, as well as a single variable to 
check the normality for, e.g., "MW" and "TSPA".

    #Output: bar plot with an estimated normal distribution line plot based on distribution 
probability.


 


7. Function feature_check 

    Function call example: feature_check(data,var1=None, var2=None, type=None)


    #Function takes the data file provided by the data_prep function and plots analytical 
contour plots to assess chemical feature distribution when considering a specific chemical 
entity category. That is, a categorical type data needs to be provided, such as active or 
inactive, etc.

    #Input:  data frame generated by the data_prep function, two variables for distribution 
check, e.g., "MW" and "TSPA", and a column name to select categorical data from.

    #Output: contour plot with feature distribution.


8. Function feature_violinplots 

    Function call example: feature_violinplots(data,var1=None,type=None)


    #Function takes the data file provided by data_prep function and plots analytical violin 
plots to assess the type distribution for selected fetaures.

    #Note categorical type data needs to be provided, such as active or inactive, etc.

    #Input: data frame generated by the data_prep function as well as a variable name for 
the distribution check, e.g., "MW" and “TSPA"; also a column name is required to select 
categorical data specified through the "type" designation.

    #Output: contour plot with feature distribution.
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9. Function similarity_search 

    Function call example: similarity_search(data, target=None)


    #Function takes the data file provided by the data_prep function and searches for similar 
structures based on the target molecule.

    #Fingerprinting is based on Morgan fingerprints and the similarity search is based on 
Tanimoto similarity.

    #Input: data frame generated by the data_prep function as well as a SMILE string (e.g., 
the "target" variable) for a molecule to search in the database. 

    #Output: data frame of similar structures.


10. Function similarity_dendogram 

    Function call example: similarity_dendogram(data)


    #Function takes the data file provided by the data_prep function and plots a dendogram 
based on compound similarity.

    #Fingerprinting is based on Morgan fingerprints and the similarity search is based on 
Tanimoto similarity.

    #Input: data frame generated by the data_prep function.

    #Output: dendogram and a data frame with similarity values.


11. Function similarity_heatmap 

    Function call example: similarity_heatmap(data)


    #Function takes the data file provided by the data_prep function and plots a heatmap 
based on compound similarity.

    #Fingerprinting is based on Morgan fingerprints and the similarity search is based on 
Tanimoto similarity.

    #Input: data frame generated by the data_prep function.

    #Output: heatmap and a data frame with similarity values.
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Running tests and example use cases. 

The working directory should contain example data sets (provided with packages PATH="./
tests"). There are several datasets to choose from, namely data_1.csv and data_2.csv.


#initiative variables to data

data="./test/data_1.csv"


#prepare the data for subsequent use

#we are selecting an additional column to assess the activity based on a categorical value

data=data_prep(data, "Type")
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#assess a selected set of molecules and retrieve a data frame that contains information about 
these molecules

data_eval=molecule_check(data,"2821293")


#evaluate exploratory plots


scatter_plot(data,"MW","TSPA")


corr=correlation_plot(data,"MW","TSPA","AP","HBD_count","HBA_count")


#perform multiple feature assessment


feature_plot(data,"MW","TSPA","AP","HBD_count","HBA_count")


#check the normality of the data distribution


normality_check(data,"MW")


#since we have one categorical value we can perform a feature check


feature_check(data,var1="MW", var2="AP", type="Type")


#similarity assessment

target=‘COC(=O)c1c[nH]c2cc(OC(C)C)c(OC(C)C)cc2c1=O'


target_matches=similarity_search(data, target)


#similarity value generation for all pairwise comparisons 


#dendogram ploting and a data frame preparation with similarity values

#both functions produce the same data frame


similarity_data=similarity_dendogram(data)


similarity_datasimilarity_heatmap(data)
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