
Requirements for adaptive consumer 
gateways in residential learning healthcare
systems: bringing intelligence to the edge 
Article 

Accepted Version 

Fares, N. and Sherratt, R. S. ORCID: https://orcid.org/0000-
0001-7899-4445 (2023) Requirements for adaptive consumer 
gateways in residential learning healthcare systems: bringing 
intelligence to the edge. IEEE Transactions on Consumer 
Electronics. ISSN 0098-3063 doi: 10.1109/TCE.2023.3326570 
Available at https://centaur.reading.ac.uk/113699/ 

It is advisable to refer to the publisher’s version if you intend to cite from the 
work.  See Guidance on citing  .

To link to this article DOI: http://dx.doi.org/10.1109/TCE.2023.3326570 

Publisher: IEEE 

All outputs in CentAUR are protected by Intellectual Property Rights law, 
including copyright law. Copyright and IPR is retained by the creators or other 
copyright holders. Terms and conditions for use of this material are defined in 
the End User Agreement  . 

www.reading.ac.uk/centaur   

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence


CentAUR 

Central Archive at the University of Reading 
Reading’s research outputs online



Full text manuscript version 

Accepted to IEEE Transactions on Consumer Electronics 

 

 

Title: 

Requirements for Adaptive Consumer Gateways in Residential Learning Healthcare Systems: Bringing Intelligence to the Edge 

 

Authors: 

N. Fares, and R. Simon Sherratt, Fellow, IEEE 

Department of Biomedical Engineering, the University of Reading, Reading, RG66AY, UK 

(e-mail: n.fares@pgr.reading.ac.uk; r.s.sherratt@reading.ac.uk). 

 

Submitted November 17, 2022, resubmitted February 24, 2023, July 10, 2023, August 30, 2023, September 28, 2023, accepted 

October 14 2023. 

 

 

Abstract: 

A gateway is a key component in residential healthcare systems. Enabling adaptability and applying intelligence to the gateway 

will promote residential healthcare systems to become Learning Healthcare Systems (LHSs) that can perform real-time decision 

making. This leads to the exciting potential of a new research field in consumer-oriented gateways and consumer products that can 

adapt to the consumer’s healthcare needs, learn about the consumer, and over time can adapt accordingly. While consumer 

healthcare gateways exist, they have tended to be fixed on specific medical conditions and are not upgradeable or adaptive. To be 

able to create adaptive consumer gateways for consumer healthcare applications, this paper identifies a set of requirements 

concerning scalability, energy efficiency, reliability, availability, interoperability, and privacy that need to be fulfilled before any 

product or service can be created. Intervention in local data processing, local data storage, embedded data mining, security, 

interoperability, and configurability that serve the development process are also discussed. The goal of this paper is to provide the 

requirements for the innovation of a one-for-all smart adaptive consumer gateway in residential learning healthcare systems and 

to influence the consumer healthcare field to consider the benefits of moving to adaptive gateways for future developments. 
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I. INTRODUCTION 

 

The Internet of Things (IoT) is developing at a rapid growth and being integrated into several Information and Communication 

Technology (ICT) solutions. IoT technology is increasingly being incorporated into healthcare systems, and widely achieving a 

growing acceptance in different aspects of daily life [1]. Presently, an evolution from hospital-centered healthcare systems to 

hospital-home-balanced healthcare systems is in its early stages aiming to become someday home-centered healthcare systems [2]. 

But for such an evolution to develop further, new technologies, system architectures, and computing paradigms are required. And, 

with the development of this evolution towards Learning Healthcare Systems (LHS), new challenges occur in system reliability, 

interoperability, low latency response, energy efficiency, mobility, security, and privacy become requirements to fulfill. This 

extension of healthcare boundaries outside the hospital settings, into the consumer domain, aims for the early detection and 

prevention of health deterioration and permitting consumers to live independently at home, allowing people with acute diseases 

and at-risk populations as senior adults to be continuously monitored and guided by healthcare providers [3], wardens or family 

members, and to receive advice on their healthcare. 

In general, an ICT healthcare system architecture consists of three main tiers in the context of IoT, a Wireless Body Area 

Network (WBAN) and a gateway device located in the vicinity of the WBAN (i.e., edge) allowing continuous connectivity between 

 
 



different components of the ICT healthcare system, and a cloud server performing continuous data analysis and enabling real-time 

decision making. Fares et al. [4] presented a detailed explanation of ICT healthcare systems, but with Internet connectivity causing 

a limitation to the performance of such systems, particularly in many places in the world, and the prohibitive cost of such systems, 

significant research is currently in progress with the aim of adjusting the functionalities of each tier to enable real-time decision 

making locally at the edge. 

Gateways can play a key role in smart healthcare monitoring and real-time decision making by storing and utilizing healthcare 

data locally and to enable the monitoring and decision-making process to be more consumer oriented. Traditionally, home 

healthcare gateways have acted as a hub between the body, personal, local area networks, and remote healthcare cloud services. 

But the fact that a gateway’s characteristics of processing power, power consumption, and communication bandwidth are non-

resource constrained can empower the role of the gateway through strengthening its processing power, intelligence and 

masterminded network capabilities leading to the creation of a smart learning healthcare gateway. This upgrade in the gateway’s 

functionalities enhances healthcare ICT system’s architecture in terms of scalability, energy-efficiency, reliability, and 

interoperability. To enable these enhancements in the architecture of the gateway, edge computing is required. That involves the 

creation of a computation layer that permits bringing intelligence to the edge and enables the communication between the sensors 

layer and the cloud layer [5, 6]. 

Another limitation to the performance of healthcare ICT solutions is the availability, usability, and timeliness of comprehensive 

data sources to achieve optimal healthcare experience for both healthcare providers and consumers. Innovations in the availability 

and application of data, including tools as predictive analytics, Clinical Decision Support (CDS), and other knowledge management 

systems, can precipitate the transmission from healthcare documentation to healthcare practice, identify breaches in healthcare, 

and target interventions to the appropriate populations. 

Research into healthcare-based consumer devices has been a hot topic ever since the IEEE International Conference on 

Consumer Electronics, back in 2009, with healthcare as the conference theme. Since then, many useful, practical, consumer systems 

have emerged and will be discussed in this paper. However, this paper now calls for a paradigm shift from the current fixed 

consumer-based healthcare ICT systems to a Learning Healthcare System (LHS) with a resilient data infrastructure to provide real-

time access to knowledge and automated record of the healthcare experience as called upon by the US Institute of Medicine [7] 

back in 2007. A LHS comprehensively brings together information about the healthcare provided and its pursuing outcomes to 

advise innovation in healthcare delivery and to develop new scientific assumptions. Such systems can adapt to the consumers’ 

changing needs over time. This is important because consumers could purchase home healthcare LHS gateways, but as the 

consumer’s needs change then the gateway can also adapt. Costs can be minimized by having standard gateways with adaptation 

supplied by software. This transformation requires the re-engineering of multiple areas of the healthcare system: science and 

informatics, patient and care provider collaboration, transparency and value of healthcare outcomes, and development and 

maintenance of continuous learning community [8]. 

LHS is a significant evolution from Evidence-Based Medicine (EBM). Greater awareness of LHS is necessary to achieve success 

in the goal of delivering precision and personalized care. LHS, as described by Institute of Medicine, is a system in which 

“knowledge generation is embedded into the core of the practice of medicine that it is a natural outgrowth and product of the 

healthcare delivery process and leads to continual improvement in care” [9, 10]. Friedman et al. [11] described LHS as a system 

which progress in science, informatics and care culture align to generate new knowledge as an ongoing natural by-product of the 

care experience, and seamlessly refine and deliver best practices for continuous improvement in health and healthcare. 

Although the transformation of healthcare into LHSs is still in an early stage, several examples of LHS models have emerged 

and will be discussed later in this paper. 

The specific research contributions from this position paper are as follows: 

1. This is the first call for consumer gateways to become adaptive, follow the LHS paradigm, and enable the consumer field to 

become aware of the advantages of LHS for the consumer. 

2. We present for the first time the technical requirements and challenges that need to be satisfied, solved, and implemented, to 

create consumer based adaptive healthcare gateways. 

3. This position paper is also the first to provide a holistic identification of the technical requirements for the development of 

adaptive consumer gateways in residential learning healthcare systems. 

4. To demonstrate the concept, we present a proof-of-concept residential LHS with a consumer oriented adaptive gateway 

architecture based on machine learning applied on consumer’s cardio data. 

Currently, there are no published requirements, or recommendations on how to create LHS systems. Thus, from our research, 

we present technical requirements that define and then guide researchers to develop adaptive consumer gateways in the future that 

can adapt to the changing needs of the consumer overcoming all the limitations of previously developed fixed consumer gateways. 

The proposed requirements in this paper enable the shift from residential healthcare systems that are non-adaptive over time, fixed 

to one or two medical conditions, and that are mainly dependent on the cloud in data analysis and decision making to adaptive 

consumer-oriented learning healthcare systems, which we believe are the future of mass market residential consumer healthcare 

systems. The holism of the requirements lies in covering the advancements needed in all components of learning healthcare 

systems, data sources quality and feature extraction methods, gateway architecture and capabilities, and decision support system 



location and effectiveness. 

The rest of the paper is as follows. Chapter II presents a review of the state of the art of LHSs, gateway architectures and 

functionalities concluding the need for adaptive gateways. Then data sources that offer the most benefit for the efficiency and 

reliability of adaptive gateways in healthcare are identified. Furthermore, different machine learning methods for data analysis and 

real-time decision making that are suitable for the consumer implementation of adaptive gateways in healthcare LHSs are 

discussed. Chapter III presents the requirements for consumer-based home LHS systems. Chapter IV presents our proof-of-concept 

demonstration. In Chapter V we discuss the research implications. Finally, Chapter VI presents our conclusions and potential future 

research directions. 

 

II. LEARNING HEALTHCARE SYSTEMS 

 

 It is the nature of this topic that many terms exist, therefore Table I presents the nomenclature for this paper. 

 

TABLE I 

NOMENCLATURE 

 
Term Description 

6LoWPAN IPv6 over Low-Power Wireless Personal Area Networks 

ASCO American Society of Clinical Oncology 

BLE Bluetooth Low Energy 

BN Bayesian Networks 

CDS Clinical Decision Support 

CDSS Clinical Decision Support System 

CER Comparative Effectiveness Research 

CI Cohort Identification 

CNN Convolutional Neural Network 

DL Deep Learning 

DNN Deep Neural Networks 

DSS Decision Support System 

EBM Evidence-Based Medicine 

ECG Electrocardiogram 

EHR Electronic Health Record 

HDG Healthcare Data Gateway 

IA Intelligent Assistance 

ICT Information and Communication Technology 

IoT Internet of Things 

LHS Learning Healthcare Systems 

ML Machine Learning 

MQTT Message Queuing Telemetry Transport 

ND Negative Deviance 

NLP Neuro Linguistic Programming 

NN Neural Networks 

PCROM Predictive Care Risk and Outcome Model 

PD Positive Deviance 

PM Precision Medicine 

PPRM Predictive Patient Risk Modelling 

QoE Quality of Experience 

QoS Quality of Service 

RNN Recurrent Neural Network 

S Surveillance 

SARSA State-Action-Reward-State-Action 

SBC Single Board Computer 

SOA Service Oriented Architecture 

SPI Serial Peripheral Interface 

SSL/TLS Secure Sockets Layer and Transport Layer Security 

SVM Support Vector Machines 

WBAN Wireless Body Area Network 

Zigbee Zonal Intercommunication Global standard 

 

 

LHS was first defined in 2007 by Etheredge [1] to be technology frameworks that put major emphasis on the inclusion of patients 

in decision making to personalize care plans. In healthcare, linking available biomedical and environmental data sources gives rise 

to variety and heterogeneity of data. Data sources vary between quantitative data as biomedical sensor data, environmental sensor 

data, laboratory tests, images, and qualitative data as statistics and free text. Integrating these data sources with mobile and social 



health to address acute and chronic diseases is the future of LHS. This chapter discusses LHS pillars, LHS architectures, and 

possible data sources used in LHS [12, 13]. 

A. LHS Taxonomy 

Lambin et al. [14] modeled LHS to embrace four sequential and infinitely repeated phases for the development of a Decision 

Support System (DSS) that focuses on prediction model development, validation, and implementation to enhance patient quality 

of life and preferences, comorbidity, and cost effectiveness. The four phases consist of a data phase that collects and mines data 

from various sources, a knowledge phase that exploits knowledge from the collected data through implementing complex analytical 

methods as machine learning, an application phase that employs the knowledge gained to enhance healthcare delivery, and finally 

an evaluation phase that analyses the DSS performance. Lambin et al. emphasized the need for data sharing ethos to overcome the 

limitations of accessing data with sufficient fidelity in relations to its veracity, velocity, variety, and volume in LHS. Thus, a 

federated system that ensures public trust is needed to mine data in one or several locations based on a policy framework where 

only organizations and individuals that are members of a learning healthcare system are eligible to have access to data. 

CancerLinQ1 [15], of the American Society of Clinical Oncology (ASCO) is one of the initiatives to achieve this goal. CancerLinQ 

used a data centralization approach that faces classical barriers to data sharing as human resources; cultural and language 

difficulties; political and academic relevance; legal and privacy issues, etc. [14]. And, to overcome the traditional barriers of 

centralized data sharing proposed by CancerLinQ, novel applications for advanced information communication technologies were 

developed in the euroCAT project2 under the title of distributed learning which forced the development of data with semantic 

interoperability (machine-readable data). 

Few papers discuss the LHS Taxonomy [16-18]. The Heimdall-integrated LHS framework unified the knowledge identified 

from all three papers into a taxonomy of nine LHS classification types shown in Fig. 1. Cohort Identification (CI) the first 

operational step in LHS that tails patients with similar traits to reveal the efficiency and effectiveness of a medical approach. 

Deviance evaluates clinical care by analyzing CI data and is branched into Positive Deviance (PD) and Negative Deviance (ND). 

PD recognizes beneficial behaviors for inclusion in future clinical practice and identifies common characteristics of patients 

benefiting from a treatment and defines patient groups that may benefit from the same intervention. ND determines clinical 

behaviors that negatively affected patient care and the resulting outcome. Risk modelling analyzes the CI data for patient and 

clinical care risks and develops predictive models for each. Predictive Patient Risk Modelling (PPRM) identifies groups at higher 

risk for future critical unhealthy events by using patterns discovered in patient datasets. Predictive Care Risk and Outcome Model 

(PCROM) algorithms identify situations of high risk resulting from unsafe, delayed, or inefficient care, determine measures of the 

effectiveness of various interventions. Decision making is performed based on CI data. Clinical Decision Support Systems (CDSSs) 

are active knowledge systems that connect two or more characteristics of the patient to computerized knowledge bases with 

algorithms to produce patient-specific treatment plans. Comparative Effectiveness Research (CER) compares interventions and 

outcomes within an Electronic Health Record (EHR) dataset to determine the most effective treatment. CER identifies patients 

with similar characteristics to the current patient, restoring knowledge on treatments that propose optimal health outcomes. 

Intelligent automation makes use of various sources of data as research data and EHR data and involves Intelligent Assistance 

(IA) and Surveillance (S). IA uses data sources to computerize routine procedures such as clinical notes or summing up patient 

health condition before consultations. Surveillance (S) monitors EHR data for outbursts of diseases or treatment issues as unhealthy 

medications or increased frequency for post-surgical infections [10, 12].  

 

 
1 http://cancerlinq.org/ 
2 www.eurocat.info 



 
Fig. 1. Learning Healthcare Systems Taxonomy [12]. 

 

 

The Heimdall-integrated LHS framework started from these nine LHS classification types to record, store, index and present 

information that flows into and improve the learning processes in Evidence-Based Medicine (EBM) towards delivery of Precision 

Medicine (PM). This enables the achievement of unique individualized patient decision practices in LHSs [12]. 

McLachlan et al. [19] discussed barriers to LHS implementation. The most common are cost [20], data interoperability and 

standardization [21], poor data quality and integrity [22], informed consent and ethics review complications [23], privacy and 

security issues [24] and slow technology adoption [25]. These issues are seen in the same context for adopting EHR. And since 

EHR is a major data source for LHS, this indicates LHS is inheriting problems from the EHR. Thus, adopting Heimdall taxonomy 

and framework that classifies and describes LHS is a major requirement in the development of LHS systems to improve the focus 

on the individual consumer’s health, bringing efficient and expedient PM solutions [10, 12].  

B. Data Sources 

In healthcare, there is a need to improve the information infrastructure of healthcare systems and to better understand the 

characteristics that provoke what data needs to be collected. Concatenating various biomedical and environmental data sources 

available results in data heterogeneity and variety that support the basis for observational evidence to answer clinical questions, 

address acute and chronic diseases, deliver PM by identifying unique individualized care plans, and maintain public trust in the 

use of data. The fundamental routine data sources include the EHRs, clinical registries, and administrative claims data. In addition 

to these data sources, data collected from consumers and the environment also provide unique and complementary information to 

support healthcare. Each data source has strengths and limitations but can, especially in combination, begin to provide a 

comprehensive view of the patient care experience necessary for the LHS. 

The EHR data source is becoming increasingly available because of the spread of both inpatient and outpatient EHR systems. 

Weiner and Embi [26] claimed that EHR data provides more details on patient-level medical issues than administrative claims or 

other data sources. Immediate availability of data in EHRs permits its use in real-time for clinical care, thus enabling point-of-care 

CDS, patient risk estimation, and patient emergency alerts which are main pillars of the LHS taxonomy [27]. Although EHR data 

fundamentally increases the effectiveness of care in LHS, there is still a need to tackle a set of existing challenges. Such challenges 

include missing data, inaccurate data, uninterpretable data, inconsistencies among different EHR data providers due to different 

and poorly integrated EHR system. These challenges and limitations, create the need for the development of optimal EHR user 

interfaces to minimize the deleterious effects of EHR-clinician interaction and improve the ease and consistency of data entry to 

reduce user burden and decrease the amount of unstructured, uninterpretable data in the EHR [28, 29]. In addition, there is a need 

to structure and remodel the available EHR data using Machine Learning (ML) algorithms to enable different forms of feature 

extraction as simple concept, temporal, and relation extraction features. Neural networks and deep learning ML algorithms such 

as the Recurrent Neural Network (RNN) and AutoEncoders have been shown to produce impressive results on a variety of Neuro 

Linguistic Programming (NLP) tasks in many domains of EHR data analysis [30]. 

Clinical registries are another important source of data for the LHS. It is regarded as quantitative databases of clinical conditions 

or therapies. The clinical registries’ main role is to capture important details about specific conditions, procedures, or populations 

to analyze and enhance quality and outcomes [13]. The main distinction between EHRs and clinical registry databases is that 



clinical registry databases entail data collected from a diversity of patients, whereas EHRs embrace data provided by individuals 

[31]. Clinical registries have a number of limitations such as the presence of a time lag between care delivery and collection of 

data, the focus on single conditions or treatments, the inconsistent participation of targeted patients and health systems, and the 

low quality of clinical registries data since this form of data is primarily designed for financial/billing purposes making it 

challenging for clinical data mining [32].  

Administrative claims data, created from healthcare invoices to payers, are the most extensively available data in healthcare 

systems. Claims can be useful for inspecting disease occurrence, management, and consequences as in clinical registries. Claims 

provide important visions for hospitals, healthcare systems, and payers since they are linked to a payer and not to a single EHR or 

clinical registry. Claims data have limitations like all other data sources. Claim data depend on authentic coding of clinical 

conditions and events. Claim data lack critical clinical details such as indications for procedures, disease severity measures, and 

other clinical information necessary for accurate risk adjustment and correct characterization of clinical outcomes [33].  

Complementary data sources enabled the collection of healthcare data from pervasive and unobtrusive sensing technologies. 

Such technologies are wearable, implantable, and ambient sensors. Complementary data sources may be classified into patient-

reported data and environmental data. Patient-reported data provides information on the patient’s health status and physiological 

measures which can be collected using implantable medical devices and/or wearables. Gathering and integrating data from 

complementary data sources can contribute to more comprehensive evaluation of a person’s health and permits proactive awareness 

to declines or improvements in health. Although complementary data sources are more likely to be incomplete in areas of lower 

socioeconomic status, and poor Internet connection, such data sources are important for LHS development and effectiveness, where 

significant effort is needed to develop methods for collection, analysis, and use of such data. Different machine learning algorithms 

can be applied on sensor data at different stages for the detection, prediction, and prevention of medical conditions or for real-time 

decision making in residential healthcare systems. Clustering machine learning algorithms are used for data compression. 

Classification machine learning algorithms are used for data mining. Neural networks and deep learning algorithms are applied for 

detailed analysis and knowledge extraction. And finally, ensemble learning algorithms are applied in combination with neural 

network algorithms for superior results in decision making [34]. 

C. Gateways 

Healthcare IoT-based ICT systems are well-defined to sustain health applications, mainly early detection and prediction 

involving both patient and healthcare providers. The complexity of such healthcare ICT systems varies from simple to complex 

IoT-based monitoring systems. Simple systems introduced starting 2009 are traditional systems with fixed gateways that execute 

only data collection, transmission, and visualization [35, 36]. Many simple consumer oriented smart IoT gateways have been 

proposed since then, but unfortunately, they are still fixed, nonadaptive, and with no intelligence introduced at the edge. The 

proposed gateways discussed data collection [37], data transmission [38, 39], data routing [40], and data privacy [41]. Sanchez et 

al. [41] introduced social applications to home gateways by implementing a Social Enabler (SE) for retrieving and presenting 

content, and a Social Watchdog to ensure security and privacy of the consumer. Tung et al. [39] designed a homecare gateway 

introducing novelty in the development of a dual radio ZigBee sensor network to increase transmission data rate, and a medical 

application unit for automatic service discovery. Ray et al. [40] developed an IoT-edge gateway applying smartness by 

implementing a novel consumer’s wellness data-routing algorithm. Dey et al. [41] presented an electrocardiogram (ECG) based 

home monitoring for consumer networks. 

Starting 2015, complex monitoring systems were introduced involving more advanced smart gateways that establish intelligent 

services using data analytic methods diverting from rule-based methods to various learning algorithms [42-44]. Complex IoT-

based monitoring systems are generally categorized into cloud-based IoT systems and fog-based IoT systems.  

 In cloud-based systems with smart gateways in healthcare [42], data analytics is conventionally performed on the cloud where 

the gateway is a virtual platform that connects sensors, IoT modules, and smart devices to the cloud [45-47]. Hung et al. [46] and 

Yan et al. [48] introduced healthcare systems where data analysis is performed at a remote data center. Centralization in cloud-

based systems benefits health services and biomedical research by saving time (to access and retrieve data) and cost, collaboration 

between medical staff (sharing medical resources, data, and files anywhere and anytime) and virtualization. But centralization 

causes drawbacks as making monitoring systems critically reliable on network availability and security. Any interruption in the 

Internet connection may lead to flows in the monitoring and decision-making services of the monitoring systems. And any violation 

in the security and privacy of patients’ medical data and personal information caused by centralized computing affects the patient’s 

trust and Quality of Service (QoS) provided. Although, privacy can be enhanced by distributing information across a fog [49], and 

network availability may be enhanced by focusing more on abstraction or mechanism enforcing by improving network performance 

through providing delay and bandwidth guarantees [50]. Centralized architecture in cloud computing in healthcare showed to cause 

high data retrieval times for real-time emergency scenarios and high-power consumption and costs associated with sending data to 

the cloud for computation, especially large amounts of data generated by sensors. Finally, cloud-based healthcare solutions do not 

offer a low-cost mobile environment to the consumer, that is necessary for many monitoring scenarios [44]. 

Fog-based IoT systems with smart gateways on the edge in healthcare extends the cloud computing paradigm to the edge of the 

network enabling new services for local computation, storage, and control for healthcare IoT systems. In fog-based IoT-systems 

an intermediate layer of networked smart gateways is formed at the edge between sensors and the Cloud. Edge-based computing 



proved to fulfill modern healthcare ICT systems’ requirements for reduced latency in time-dependent solutions [51], energy 

efficiency [52], higher level of security and privacy [53], more accurate location awareness [54], and easier usability [44, 55]. Edge 

computing outperforms cloud computing in terms of energy efficiency by developing or applying encryption schemes and 

classification techniques consuming less threshold power [56, 57], implementing edge mining [56], and resource management by 

determining when and which tasks are to be offloaded to the Cloud [58]. Lee et al. [57] developed a consumer oriented smart 

healthcare monitoring system at the edge with low complexity, high resolution, and low power consumption. Intelligence was 

introduced by implementing a wavelet-based classification machine learning algorithm at the edge for waveform discrimination.  

Edge computing uses authentication protocols and trust ratings and introduces new methods for obtaining patient’s information 

through the distribution of only vital information to obtain a higher level of privacy [49] and uses identity-based encryption 

techniques supported by outsourcing decryption to enable the shift of the computational burden to the edge at a lower latency cost 

and throughput overhead to assure low-cost consumption in patient’s data privacy and security [59]. Edge computing uses 

localization techniques with a higher level of accuracy varying from a single room to multiple room localization awareness within 

a single home [54]. Finally, edge computing devices in healthcare as smartphones and ambient and wearable sensors are designed 

to be simple and user-friendly for untrained personnel and patients to use correctly for accurate data transmission [44]. Rachakonda 

et al. [60] developed an intelligent edge device for stress level detection that received a novel consumer electronic proof of concept 

with Deep Neural Networks (DNN) deployed on edge devices, and a fully automated edge-based monitoring device to distinguish 

stress-eating from normal eating using a set of clustering and classification machine learning algorithms [61]. Both healthcare 

edge-based systems use single board computer (SBC) and smartphone edge platforms where machine learning models are executed 

on the SBC with real-time datasets, that are sent also to the cloud for future analysis. 

Although it’s proven that edge computing provides many beneficial requirements to healthcare, a couple of limitations need to 

be addressed. In edge computing, resource management techniques are bounded due to the limited computational capacity at the 

edge nodes. This disallows the implementation of powerful machine learning algorithms for local decision making at the edge 

nodes. This limited computational capacity may lead to a degradation in the QoS and Quality of Experience (QoE) of the system 

due to the less powerfulness and sophistication of edge-based algorithms over cloud-based ones [16, 44]. 

In conclusion, merging cloud-based and fog-based healthcare ICT systems is beneficial for monitoring and decision making, 

but independently their applications are insufficient due to their architectural limitations. Thus, homogenizing both computing 

paradigms permits maximizing the best features provided by both designs and reducing their limitations [16]. 

D. Machine Learning 

Machine learning plays a fundamental role in the development in LHS systems [62]. The consumer healthcare field can benefit 

from various ML algorithms that can help in the identification/monitoring of different diseases, recommendations, and guidance 

for consumers’ daily activities and healthcare procedures. This includes the identification of high risk for medical emergencies 

such as relapse in health condition or transition into a higher disease state. An ML method used in LHS will likely contain a library 

of information that includes some or all of test data, diagnosis, patient medical data, sensor data, etc. for better decision making 

and improving the health condition and quality of life of patients. 

There is a diverse collection of ML algorithms that can be implemented for the development of smart LHSs supporting clinical 

decision making for diagnosis, prognosis, or treatment selection [63]. The performance of a learning healthcare system and its 

prediction accuracy is affected by the choice of the algorithm and the quality and quantity of data used. 

ML algorithms are categorized into classical learning algorithms, neural networks and deep learning algorithms, reinforcement 

learning algorithms, and ensemble learning algorithms. Classical ML approaches can be broadly divided into two major categories: 

supervised and unsupervised learning. Supervised learning tasks include regression and classification, with algorithms including 

logistic regression, linear regression, Bayesian Networks (BN), and Support Vector Machines (SVM). Regression algorithms are 

used to predict the onset of chronic diseases such as diabetes [64] or lung cancer within a period based on an identified collection 

of predictors. Classification is one of the most widely used methods of data mining in healthcare organizations [65]. Classification 

algorithms are used for disease prediction [66]; if a tumor is benign or malignant through image recognition, or the presence of 

mental health condition by language processing. SVM is one of the most popular approaches that are used by researchers in 

healthcare field for classification [67, 68, 69]. Seint et al. [70] proposed the use of a SVM model for automatic understanding of 

medication and meal intake monitoring.  

 Unsupervised techniques are exploratory and used to find undefined patterns or clusters which occur within datasets. 

Unsupervised algorithms categorized into clustering algorithms as hierarchal clustering, k-means, and fuzzy c-means, or dimension 

reduction algorithms used for compression of information in datasets into fewer features, or dimensions to avoid issues as multiple 

collinearity or high computational cost [71, 72, 73].  

Neural networks and deep learning algorithms are another subset of ML that outperform traditional methods in speech 

recognition, visual disease recognition, and disease detection [74]. Deep learning models as Convolutional Neural Network (CNN), 

Deep Neural Networks (DNN) [60, 64] and Recurrent Neural Networks (RNN) [75] are introduced in various healthcare 

monitoring systems. 

Ensemble learning methods another subset of ML showed improved classification performance in the biomedical and healthcare 

fields [76, 77, 78]. 



Reinforcement learning comprises of a set of algorithms such as Q Learning and State-Action-Reward-State-Action (SARSA). 

Such algorithms are used in home healthcare monitoring systems to prioritize urgent messages to ensure emergency situations are 

handled on time [79, 80]. 

To identify which ML algorithms to be implemented in an LHS, the designer needs to identify whether the purpose is for 

detection, prevention of emergencies, or long-term management of health conditions. Then the selection of the ML algorithm 

should be based on its performance in terms of accuracy, sensitivity, specificity, and precision. Based on the literature, SVM, 

random forest algorithm, neural network algorithms performed better in analyzing features such as time and frequency domain 

features, multi-type feature vector, numerical features, and images [81, 82]. Of course, an adaptive gateway can have its software 

changed over time, thus the system can adapt from detection to management of long-term care when applicable. 

 

III. PROPOSED REQUIREMENTS FOR AN ADAPTIVE GATEWAY IN CONSUMER RESIDENTIAL LEARNING HEALTHCARE SYSTEMS 

 

In this section we propose a set of requirements for the development of adaptive gateways for residential LHSs that enhance the 

consumer healthcare experience. The gateway is to be located at the edge, at the consumers’ premises. The smartness and adaptability of 

the proposed gateway requirements lays in extending the roles of the gateway to include several characteristics as local data processing, 

local data storage, embedded data mining, local decision making, security, interoperability and reconfigurability. 

The adaptive gateway to be developed needs to consist of a data phase, knowledge phase, and evaluation phase. After the execution of 

the three phases the initial phase commences once more, where in each phase current best practices coupled with the latest scientific 

understanding are used to optimize the process. The data phase handles the attainment and mining of prior data collected from a variety 

of data sources such as EHR and sensor data using ML algorithms. In this phase data from different data sources are integrated and 

classified with the aim of addressing acute and chronic diseases. To ensure quality of data sources there is a need to adopt Heimdall’s 

LHS taxonomy and framework [12] that focuses on individual patients and brings systematized PM solutions. Thus, a consumer 

healthcare specific model must be set up based on accessible clinical database data as EHR data appraised with sensor data collected from 

the consumer’s living environment. At this phase data mining of the data sources is performed at the edge by applying ML algorithms. 

First, there is a need to identify the data mining model to be used to ensure the quality and accuracy of the data to be used later for decision 

making. Descriptive data mining models are mainly used for classification, clustering, association rules, and correlation analysis of 

datasets. While predictive data mining models are used for classification, regression, and categorization of datasets [83]. Unfortunately, 

there is no single-best algorithm for every dataset, including biomedical datasets [84]. Thus, it is critical to know which algorithms provide 

greater accuracy on the dataset provided. Classification algorithms as SVM are widely used in data mining due to their prediction power 

but there is a need to carefully use noise reduction approaches as feature selection methods to avoid missing important relationships 

between different variables. Clustering algorithms are widely used when very little information about data is available as in the study of 

genes. And it’s shown in research that the k-means algorithm provides the best clustering accuracy and is very scalable and efficient [84]. 

But it is best to be used with numerical data since clustering algorithms have problems in the conversion from categorical to numerical 

data [84].  

 The knowledge phase is responsible for applying sophisticated and analytical methods on the aggregated, classified, or categorized 

data to harness the knowledge concluded using ML methods for the detection, prediction, and monitoring of chronic diseases, aspects of 

health deterioration, and dangerous physical situations [81, 82]. The evaluation phase uses suitable ML algorithms that showed promising 

results in analyzing different features in mined data such as SVM, Neural Networks (NN), and Deep Learning (DL) for decision making 

based on the outcomes of the knowledge phase SVM and neural networks in combination with ensemble algorithms showed superior 

results in decision making scenarios [34]. Therefore, a hybrid data mining model needs to be designed and implemented at the gateway 

to obtain higher accuracy throughout its three phases of data mining including tasks starting from dimensionality reduction to decision 

making [84]. 

The purpose behind the use of edge computing is to benefit from low latency, high coverage, better reliability than cloud-based models, 

lower energy consumption, and higher level of security and privacy, although in many cases data quality and availability are affected by 

the need to protect consumers’ confidentiality. 

Following these requirements in the implementation of smart edge based adaptive gateways enables the production of a unified system 

that could be mass market due to its adaptability, flexibility, cost efficiency, and availability. 

• Adaptability is achieved throughout the ability to modify the choice of collected data and the analysis process of collected data 

choosing from a variety of ML algorithms preset in the system. 

• Flexibility is attained by the capability of modifying the analysis process target between monitoring, detection, and prediction of 

medical conditions as well as the ability to merge between these targets based on the differing needs of every consumer. 

• The cost efficiency of the proposed system lays in its unified nature that allows its adaptation based on the needs of each consumer. 

• Availability is achieved by setting the gateway at the premises of the consumer making the analysis and the decision-making 

process local.  

To fulfill the requirements presented for a smart adaptive gateway for LHSs, there is a need to address emerging challenges and 

providing possible solutions as identifying the best choice of architecture, enabling technology, security and privacy, protocols, networks, 



physical systems, and possible applications. 

• The adaptive gateway at the edge must be developed using a Service Oriented Architecture (SOA) that permits various devices in 

the system to perform independently, where different operations are properly defined and altered without degrading the 

interoperability of the system [37, 85]. 

• For network availability different communication technologies may be used for short range communication such as RFID, Wi-Fi, 

Zigbee, Bluetooth [86]. Zigbee outperformed the other technologies since it includes a processing center responsible for data 

analysis and aggregation, and ensures low power consumption, high transmission rate, and high network capacity [87]. As for 

long distance communication, the Internet is considered the external channel. 

• For security and privacy attainment, blockchain technology can be deployed to solve the problem of data fragmentation, ensures 

secure and protective sharing of sensitive medical information, and increases transparency between doctors and patients. 

Blockchain technology follows the agreement rules and data exchange policies with a smart contract mechanism to access different 

EHRss that are stored in the blockchain [87]. Healthcare Data Gateway (HDG) is an application that uses blockchain technology 

and provides authority to patients to share their information. Herein, the consumer can control and share their information without 

violating the privacy policy [88]. 

• As for power consumption lately, researchers are trying to design healthcare devices that can generate power for themselves by 

the integration of the IoT system with renewable energy systems [87]. 

• Real-time monitoring in LHSs can be possible throughout the integration of nanoelectronics, big data, and IoT [89].  

• For local-edge analytics and decision making to be achieved there is a need to shift reasoning towards the edge using software as 

TinyML and hardware as Tensor processing units with the aim of combining hardware and software to enable ML models and 

DL algorithms on compact, relatively cheap, and power-efficient devices [90, 91].  

From the results of our research, Table II presents a compiled list of requirements for the development of residential LHS with 

relevant references and a textual description for each requirement. The requirements in the table are categorized into architectural, 

data sources, and gateway requirements. Such requirements were not previously known and need to be defined for the development 

of LHS systems in the future. 

 

TABLE II 

LIST OF REQUIREMENTS FOR RESIDENTIAL LHS 

 
Requirement References Description 

A. Requirements for LHS architecture 
Apply sequential phases Lambin et al. [14]. Data collection phase, knowledge phase, application phase, and evaluation 

phase. 
Adopt Heimdall taxonomy and 

framework 

McLachlan et al. [10], McLachlan 

et al. [12].   

To improve the focus on the individual consumer’s health. 

B. Requirements for Data Sources 
Develop an optimal EHR user 

interface 

Brown et al. [28], CM&MS [29]. Improve consistency of data entry and decrease unstructured, 

uninterpretable data in the EHR. 
Use ML algorithms to Structure and 

remodel the available EHR data 

 Jiang et al. [30]. To enable different forms of feature extraction as simple concept, temporal, 

and relation extraction features. 
Apply ML algorithms on sensor 

data at different stages 

Lillo-Castellano et al. [34]. ML algorithms for data compression, data mining, data analysis, and 

decision making. 
C. Requirements for Smart Adaptive Gateways 
Develop an Edge-based computing 

gateway 

Hartmann et al. [44], Sarabia-

Jácome et al. [51], Miettinen et al. 

[52], Yu et al. [53] Hu et al. [54], 

Cao et al. [55]. 

To fulfill requirements as reduced latency in time-dependent solutions, 

energy efficiency, higher level of security and privacy, accurate location 

awareness, and easier usability. 

Merge cloud-based and fog-based 

computing 

Friedman et al. [16]. To overcome the architectural limitations of both computing systems. 

Scalable Alrawais et al. [59], Rachakonda et 

al. [60], Mouradian et al. [62]. 

Can select from or configure data sources to be used and identify analytical 

methods to be applied choosing from a variety of ML algorithms preset in 

the system. 
Consumer oriented Lee et al. [57]. Capable of modifying the analysis process target between monitoring, 

detection, and prediction of medical conditions as well as the ability to 

merge between these targets based on the differing needs of every consumer 
Cost-efficient Hartmann et al. [44], Alrawais et al. 

[59], Zebari et al. [71]. 

Has a unified nature that allows its adaptation based on the needs of each 

consumer. 
Uses Service Oriented Architecture 

(SOA) 

Kim et al. [37], Avila et al. [85]. Permits various devices in the system to perform independently. 

Ensures edge network availability  Ghamari et al. [86]. Use short range communication technologies as RFID, Wi-Fi, Zigbee, and 

Bluetooth at the edge. 
Ensures security and privacy Pradhan et al. [87], Yue et al. [88]. Deploy blockchain technologies. 

Power efficient.  Pradhan et al. [87]. Generate power using renewable energy systems. 

 



IV. PROPOSED RESIDENTIAL LHS WITH CONSUMER-ORIENTED ADAPTIVE GATEWAY ARCHITECTURE AND IMPLEMENTATION 

 

 In this section, we present the architecture of the proposed proof-of-concept residential LHS demonstrator as presented in this 

work and implemented a set of the proposed requirements for the adaptive consumer-oriented gateway. The architecture of the 

proposed system shown in Fig. 2 consists of three main layers: Sensor nodes layer, Edge computing layer including a Consumer-

oriented adaptive gateway, and a cloud computing platform (Back-end).  

 

 

 
Fig. 2. Proposed Residential LHS Architecture. 

 

 

 

Sensors in a sensor node can be based on different communication protocols such as Wi-Fi, Bluetooth Low Energy (BLE), and 

6LoWPAN. Sensors are grouped based on their functionality. Environmental sensors communicate with other components of the 

system based on the microcontroller or microprocessor used and the communication protocols it supports such as SPI, BLE, Wi-

Fi, and 6LoWPAN. Biomedical sensors are also connected to a microcontroller or a microprocessor, have a power managing unit, 

and a wireless communication chip that supports many-to-many communications. In our scenario sensor nodes and the adaptive 

gateway are connected to a local Area Network via Wi-Fi.  

The Consumer-Oriented Adaptive Gateway layer consists of three components: a local gateway software responsible for local 

data handling, a local MQTT (Message Queuing Telemetry Transport) Broker responsible for the communication between different 

components of the residential LHS, and a decision-making component responsible for reporting results, giving feedback, and 

delivering notifications and alerts to the consumer independent of internet connection availability. 

The Cloud layer consists of a global data handling hub performing heavy computational tasks on the collected and stored data, 

a cloud based MQTT broker that allows communication with the local MQTT broker at consumer’s residence, and a decision-

making model(s) supporting advanced machine learning algorithms for more powerful data analysis and decision making. 

In this work we focused on demonstrating a set of requirements from the list of proposed requirements for residential LHS. We 

present a demonstration of an edge-based gateway that ensures network availability and flow of data at the edge independent of 

Internet availability, performs local decision making at the edge, adaptive and scalable in the sense of being capable to select the 

healthcare decision making models based on the consumer’s changing needs with time, and merges edge and cloud-based 

computing for better decision making and analysis. 

To ensure the flow of data between different components of residential LHS at the edge independent of Internet availability, a 

local MQTT Broker is set up. MQTT enables communication between different components of the system overcoming the gaps 

between hardware and software. All devices collaborate with a messaging flow publish and subscribe. Mosquitto, a lightweight 

open source MQTT broker was installed on a portable computer running linux at the consumer’s residence performing as the smart-

adaptive gateway at the edge (PC1). The local MQTT broker enables reliable communication, lower latency, and improved 

response time between different components of the system. MQTT empowers Edge computing by moving from sensor edge 

towards device Edge (IoT gateways) where the local gateway aggregates and process data from local sensors and make preliminary 

decisions locally independent of Internet availability and is as well connected to the cloud via Internet for detailed analysis and 

advanced decision making. The local gateway is connected to the cloud through bridging the local MQTT broker with another 

broker on the cloud. The local MQTT broker/server uses SSL/TLS certificates to ensure secure connection and data transmission 
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between MQTT clients (sensors, gateway, and other components) to solve the problem of IP broadcasting by being responsible for 

domain name discovery/ resolving. 

To develop a consumer oriented residential LHS, the decision-making component should be designed and implemented targeting 

the specific needs of the consumer. As a proof of concept, we created a heart disease prediction model trained and tested on a pre-

collected heart disease occurrence possibility dataset. Based on the variables in the heart disease csv file, demos for 13 sensors 

were implemented on another portable computer at the consumer’s residence (PC2). The sensors are connected to the local gateway 

through the local MQTT broker. The sensors, the local gateway, and the cloud end system are all MQTT clients 

subscribing/publishing to specific topics to share data. Client connections and their parameters are specified based on their 

functionality. The sensors publish messages to the local MQTT broker, across different topics based on the type of data being 

published.  

The local gateway subscribes to different topics through the local MQTT broker and publishes to the local decision-making 

model/models.  It also publishes to other Clients on the Cloud MQTT broker network responsible for global data handling and 

decision making. Client instances are created for both the local MQTT broker and the MQTT broker hosted on the cloud. Multiple 

clients can be added based on the end user’s requirements. To ensure scalability and interoperability of the introduced residential 

LHS, multiple machine learning models based on consumer’s healthcare requirements can be added to the system as separate 

clients to perform any kind of data analysis locally or at the cloud as shown in Fig. 3. These decision-making models are specified 

and implemented based on the consumer’s diverse and changing healthcare needs.  For every sensor connection that is being 

subscribed to by the local MQTT broker, an adjacent cloud connection is created to publish the received messages. Data received 

from different sensors was saved in queues in the local gateway. For each sensor, two queues are created to guarantee same exact 

data in a specific time is sent to local broker and the cloud. One queue publishes data to the cloud while the other publishes to the 

local machine learning model. 

 

 
Fig. 3. Consumer-oriented Decision-Making Models. 

 

 

Table III is a summary table to present the categories of data sources, gateways, and machine learning algorithms.  

 

  



TABLE III 

SUMMARY PRESENTATION 

 
Data Sources Machine Learning Algorithms 

EHR data [26] [27] Neural network and deep learning 

algorithms (RNN, 

Autoencoder…) for feature 

extraction [30], speech 

recognition, visual disease 

recognition, and disease detection 

[60] [64] [74] [75]. 

Patient/ Disease Registries [31] [32] 

Complementary data: sensors, 

cameras, etc. [35] [48] 

Gateways Clustering algorithms (k-means, 

dimensionality reduction...) for 

data compression [34] [71] [72] 
[73]. 

 

Fixed 

Gateways 

[35] [36] 

[37] [38] 
[39] [40] 

[41] 

Smart Gateways 

Cloud-based 

Gateways [42] [43] 

[45] [46] [47] [48] 

[49] [50] 

Edge-based Gateways 

[51] [52] [53] [54] 

[55] [56] [57] [58] 
[59] [60] [61] 

Classification algorithms (SVM, 

k-nearest neighbors…)  for data 

mining [65] and various 
healthcare monitoring systems 

[67] [68] [69] [70]. 

 
Decision Making 

Heart diseases [42] [57] [67] [68] [69] 

[89] 

Fall detection [48] [75] Regression algorithms (Linear 
regression, LARS…) to predict 

the onset of chronic diseases [64]. 
 

Chronic disease Prediction [66] [81] 

Nutrition [60] [70] 

Dementia [43] Reinforcement learning (Q 

learning, SARSA…) for handling 

emergency situations [79] [80]. 

Diabetes [64] 

Medication [70] 

 

 

 

V. DISCUSSION 

 

The set of requirements proposed in section III, and the residential LHS architecture presented in section IV inspires consumer 

healthcare researchers to divert from developing fixed gateways that are non-adaptive, and limited to one or two medical conditions, 

toward implementing the requirements of adaptive gateway that we are proposing in this position paper, i.e., an adaptive gateway in 

residential learning healthcare systems. The idea behind the proposed requirements is to achieve a holistic residential learning healthcare 

system with an adaptive gateway that has a set of characteristics. A gateway that adapts with different consumer needs that varies between 

monitoring, detection, and prediction of health conditions. A gateway that adapts with changing medical conditions for a consumer over 

time. A gateway that ensures the security and privacy of the consumer and can adapt to new technologies in the domain. A gateway that 

guarantees Internet connectivity and interoperability using various adaptable communication technologies. A gateway that is scalable in 

the means of introducing new components to the hardware (e.g., sensors, memory cards) and/or software. All these characteristics 

combined promote the development of a one and for all gateway system. A cheaper gateway that is suitable for any consumer’s needs 

and that can continuously adapt with each consumer’s needs over time.   

VI. CONCLUSION AND FUTURE DIRECTIONS 

 

The process of building smart adaptive residential learning healthcare systems is very important and requires deep understanding, 

exploration, and implementation to effectively deploy such systems. Healthcare conditions are challenging, and change over time, 

requiring monitoring over extended periods during which many decisions may be undertaken. Current residential healthcare systems do 

not easily enable consumers in the home to receive, integrate, or analyze healthcare data from different data sources. Thus, this paper has 

presented, for the first time, the requirements for creating residential learning healthcare systems (LHS) gateways for consumers that are 

fundamentally adaptive and support decision making, enabling a range of future consumer products and services to offer holistic 

management of their changing health conditions overtime. A system that performs continuous monitoring, self-configuration, exploration 

of new healthcare conditions, ensuring data privacy and security, and enables decision making locally. In this paper we discussed the 

implementation of a set of requirements from the proposed list of requirements. We developed a demo of an edge-based gateway merging 

cloud and edge computing. We presented and explained how the proposed gateway is consumer-oriented and scalable. And finally, 

demonstrated network availability at the edge to enable local decision making.  

The future directions of this work would be the implementation of the uncovered requirements in our proof-of-concept. Requirements 



as implementing a local data storage solution to store processed sensor data for historical records, analytics, or auditing purposes. 

Another future goal would be the integration of the proposed RLHS with remote data sources like EHR data. Creation of a user interface 

for consumers and caregivers to access data, receive alerts, and interact with the system is also a requirement to be fulfilled in the 

future. System integration with remote cloud services for advanced analysis and decision making is an ultimate future goal that serves 

more accurate consumer-oriented decision making through merging both edge and cloud computing. And as a later step, we plan to 

implement the overall Residential LHS in a real word scenario and test it.  
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