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A B S T R A C T

It is well known that the predictability of weather and climate is strongly state-dependent. Special, easily recog-
nisable, and extremely relevant atmospheric states like blockings are associated with anomalous instability.
This reflects the general property that the attractors of chaotic systems can feature considerable heterogeneity
in terms of dynamical properties, and specifically, of their instability. The attractor of a chaotic system is
densely populated by unstable periodic orbits (UPOs) that can be used to approximate any forward trajectory
through the so-called shadowing. Dynamical heterogeneity can lead to the presence of UPOs with different
number of unstable dimensions. This phenomenon – unstable dimensions variability – is a serious breakdown
of hyperbolicity and has considerable implications in terms of the structural stability of the system and of the
possibility to model accurately its behaviour through numerical models. As a step in the direction of better
understanding the properties of high-dimensional chaotic systems, here we provide an extensive numerical
investigation of the variability of the dynamical properties across the attractor of the much studied Lorenz
’96 model. By combining the Lyapunov analysis of the tangent space with the study of the shadowing of
the chaotic trajectory performed by a very large set of UPOs, we show that the observed variability in the
number of unstable dimensions is associated with the presence of a substantial number of finite-time Lyapunov
exponents that fluctuate about zero also when very long averaging times are considered. The transition between
regions of the attractor with different degrees of instability is associated with a significant drop of the quality of
the shadowing. By performing a coarse graining based on the shadowing UPOs, we are able to characterise the
slow fluctuations of the system between regions featuring, on the average, anomalously high and anomalously
low instability. In turn, such regions are associated, respectively, with states of anomalously high and low
energy, thus providing a clear link between the microscopic and thermodynamical properties of the system.
1. Introduction

In Chapter 4 of his book Science and Méthode [1], Poincaré pro-
posed for the first time the concept of sensitive dependence of the
evolution of a system on its initial conditions, making also explicit
reference to the relevance of this issue in the context of Meteorol-
ogy [2]. After a long hiatus, the theoretical and practical relevance
of the phenomenon of sensitive dependence on initial conditions and
its compatibility with the presence of orbits contained in a compact
set became apparent arguably through the seminal contributions by
Lorenz [3], Ruelle and Takens [4], and Li and Yorke [5]. Since then,
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there has been a great effort in creating sophisticated mathematical
frameworks for chaotic systems able to include, at the same time,
phenomenology of practical relevance in science and engineering. In
what follows, we provide a short summary of some key developments.

At first, uniform hyperbolicity was conjectured to be the default
condition for systems featuring sensitive dependence on initial condi-
tions [6–8]. The tangent space of uniformly hyperbolic systems can be
split into contracting - stable - and expanding - unstable - subspaces,
plus the direction of the flow in the case of time-continuous systems.
Exponential divergence of initially infinitesimally nearby orbits is in-
deed compatible with a dynamics occurring in a compact manifold. This
idea stems from the fact that hyperbolic dynamics is robust with respect
to perturbations [9]. Smale and others conjectured that any chaotic
vailable online 31 October 2023
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dynamical system could be transformed into a hyperbolic system by
applying an appropriate perturbation. As a result of this conjecture,
it would be possible to identify any chaotic behaviour emerging in
a mathematical model of a physical process with a uniformly hyper-
bolic system. Uniformly hyperbolic systems are structurally stable [10]
and amenable to analysis via linear response theory [11] but are,
unfortunately, very atypical [12].

1.1. Beyond uniform hyperbolicity

Pesin theory has the great advantage of relaxing the definition of
hyperbolicity by removing the requirement of being uniform [13] and
focuses on studying the rates of expansion or decay (and corresponding
modes) of perturbations with respect to a background trajectory, which
are defined in terms of the properties of the so-called tangent linear
operator. For nonuniformly hyperbolic systems, such asymptotic rates
of expansion or contraction — the Lyapunov exponents (LEs) [14]
are bounded away from zero, except for the direction associated with
the flow (in the case of continuous time systems) [15]. The sum of
the first 𝑝 LEs (ordered from the largest to the smallest) describe the
asymptotic rate of growth (or decay) of the 𝑝−volume of infinitesimal
𝑝−parallelepiped, and the sum of all the LEs gives the time-averaged
growth rate of the phase space volume, which is negative – contractive
– for dissipative systems [16]. The presence of a positive largest LE can
be taken as a proof that a system has sensitive dependence on initial
conditions. The notion of LEs, which are global quantities, has been
extended via their local version, constructed by considering finite time
horizon (finite-time LEs - FTLEs) [17–19], and by considering finite
scale, rather than infinitesimal, perturbations with respect to the back-
ground trajectory (finite size LEs - FSLEs) [20]. In the last few decades,
the so-called Lyapunov analysis has grown into a portfolio of very
powerful methods for studying rather general complex systems [21,22].

A separate way to relax the notion of uniform hyperbolicity en-
tails introducing a nontrivial centre manifold in the tangent space
where expansion or contraction are extremely slow, thus removing
hyperbolicity. The so-defined partial hyperbolic systems can be further
generalised by allowing for nonuniformity outside the centre manifold:
the continuous-time nonuniform partially hyperbolic systems feature
more than one zero Lyapunov exponents [23].

A very influential attempt at creating a powerful paradigm of chaos
beyond uniform hyperbolicity has been presented by Bonatti et al. [24],
According to such a paradigm, chaos can originate from different
mechanisms, such as heterodimensional cycles or homoclinic tangen-
cies. As compared to uniformly hyperbolic systems, these more general
systems are less understood and advances have been mainly made on
discrete dynamical systems, because of the simpler structure of the
phase space [6], hence numerical approaches play an important role
in fueling rigorous mathematical investigations [25].

1.2. Unstable periodic orbits

In order to explain the variability of the local properties of the
attractor of a chaotic system, the investigation of the tangent space via
Lyapunov analysis can be complemented by a different strategy based
on the study of special periodic solutions, the so-called Unstable Peri-
odic Orbits (UPOs) [26–28]. In fact, UPOs, true nonlinear modes of the
flow, provide a rigid structure hidden in the chaos of the dynamics. For
uniformly hyperbolic systems without continuous symmetries, UPOs
are dense in the attractor [29]. This implies that it is always possible to
find a UPO that is arbitrarily near to a chaotic trajectory, allowing for
a reconstruction of the trajectory up to arbitrary accuracy. We can then
think of the chaotic trajectory as being continuously scattered between
neighbourhoods of different UPOs, because of their instability. In gen-
eral, even though the shadowing property has not yet been formalised
2

for more general system, it is widely assumed. Evidence of turbulent
trajectories being shadowed by UPOs has been found in forced two-
dimensional flows [30–32], isotropic turbulence [33], plane Couette
flow [34–36], Kolmogorov flow in two [37] and three dimensions [38].
UPOs can be used to approximate any chaotic trajectory with an
arbitrary accuracy. While for Axiom A systems a rigorous theory that
allows to reconstruct statistical properties of the system as sum with
well-defined weights over the UPOs has been developed [28], exten-
sions of this approach have been proposed for more general chaotic
systems [39]. UPOs-based analysis has been successfully applied for
decomposing and extracting information from the dynamical structure
of chaotic flows in many different contexts [28]. Kawhara and Kida
showed in their seminal work on a numerical simulation of a plane
Couette flow that using just one UPO one manages to capture in a
surprisingly accurate way the statistics of the turbulent flow [40].
Chandler and Kerswell [31] identified 50 UPOs of a turbulent fluid at
a moderate Reynolds number and used them to reproduce the energy
and dissipation probability density functions of the system as dynam-
ical averages over the orbit. More recently, Yalniz and Budanur [38]
proposed a coarse grained state space decomposition of the dynamics
in terms of a few periodic orbits for both the three dimensional Rossler
flow and a discretisation of the Kuramoto–Sivashinksky equation. Page
et al. [41] provided evidence that the statistics of a fully developed
turbulent flow can be reconstructed in terms of a set of UPOs.

Very interestingly, the investigation of the UPOs of a chaotic system
allows one also to identify violations of hyperbolicity in a relatively
simple manner. Indeed, if one detects e.g. two UPOs immersed in the
attractor that feature a different number of positive LEs, hyperbolicity
is broken through the mechanism of so-called unstable dimensions
variability (UDV), which establishes the presence of a fundamental
heterogeneity in the attractor and hinders the existence of an actual
trajectory of the systems that stays uniformly close to a numerical
one for long time intervals [42]. UDV is typically associated with the
presence of large fluctuations of certain FTLEs between positive and
negative values [43–45].

1.3. Unstable dimension variability in geophysical fluids

The study of the tangent space is a key aspect of the science and
technology related to geophysical fluids [46]. In this context, it is
well known that the predictability of a system, far from being in any
sense uniform, is dramatically state-dependent: certain regions of the
attractor feature larger instability than others [47,48], and this has
great impact on data assimilation strategies [49,50]. In turn, the skill
of data assimilation exercises can be used to infer the instability of
the underlying system [51]. The state-dependent predictability results
into substantial fluctuations in the value of the individual FTLEs [52–
55]. These fluctuations can be accurately quantified, when considering
sufficiently long time horizons, using large deviation laws [56], in
agreement with the general theory presented in [57,58]. One also finds
that the number of positive FTLEs fluctuates across the attractor, which
is clearly indicative of a violation of the condition hyperbolicity and
is associated with the UDV mentioned above [59]. The UDV can be
particularly problematic for the efficiency of otherwise very powerful
data assimilation schemes [51].

The use of UPOs for studying geophysical flows was introduced
by Gritsun [60,61], who proposed using an expansion over UPOs to
reconstruct the statistics of a simple atmospheric model based on
the barotropic vorticity equation of the sphere. Later, Lucarini and
Gritsun [59] used UPOs for clarifying the nature of blocking events in
a baroclinic model of the atmosphere. Blockings are rare and persistent
large scale deviations in the mid-latitudes from the approximately zonal
flow. They are most commonly found in either the Atlantic or in the
Pacific sector of the Northern Hemisphere. Specifically, they found that
the atmospheric model was characterised by very large variability in
the number of unstable dimensions (UDs), thus suggesting that the

dynamics of the atmosphere is far from being hyperbolic. Additionally,
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it was found that blocked states are associated with conditions of higher
instability of the atmosphere, in basic agreement with a separate line
of evidence obtained through Lyapunov analysis [62] and through the
study of recurrent patterns of the atmosphere based on EVT [63].

1.4. This work: Concept and main results

In a previous work [64] we have studied the classical version of
the 3-dimensional (3D) Lorenz 1963 (L63) model [3] using a rather
extensive set of UPOs, following [65], and covering up to period 14
in symbolic dynamics. We have been able to investigate accurately the
process of shadowing. We have also elucidated how by studying the
statistics transitions between the neighbourhood of the various UPOs
one can construct a finite-state Markov chain able to represent accu-
rately the statistical and dynamical properties of the system, including
its almost-invariant sets [66]. The attractor of the L63 model is ex-
tremely heterogeneous in terms of predictability, and features specific
regions where return of skill is observed [67]. The detected UPOs do
differ in terms of their dynamical characteristics, and specifically in
the value of the first LE, thus providing a global counterpart of the
heterogeneity of the properties of the tangent space. Nonetheless, in
a 3D chaotic flow, by construction, all UPOs feature one positive, one
negative, and one vanishing LE. Hence, if we want to investigate the
heterogeneity of the attractor of a chaotic flow and possibly relate it to
the presence of variability of the UDs number, one needs to consider
higher dimensional systems.

With this work we would like to characterise and explain the
heterogeneity of the attractor of the very popular Lorenz ’96 (L96)
model [68,69] in a chaotic regime. We show that the system features
clear signature of UDV and that this is accompanied by a substantial
number of FTLEs whose value fluctuates about zero also when very long
averaging times are considered. By combining the information derived
from the analysis of an extensive set of UPOs with Lyapunov analysis,
we find that anomalously unstable UPOs preferentially populate regions
of the attractor where, applying Lyapunov analysis to the tangent
space, one gets, coherently, anomalously high instability indicators.
This bridges the gap between global and local properties of the system.

Detecting UPOs in high dimensional, highly chaotic systems is well-
known to be extremely challenging [28,60,70]. We show that, while
we are able to identify over 3 × 105 UPOs up to period 𝑇 ≈ 22, the
longer-period UPOs are (a) vastly underrepresented and (b) signifi-
cantly skewed towards low instability. Such longer-period UPOs occupy
preferentially a specific region of the phase space. This provides further
support to the heterogeneity of the attractor in terms of instability
and clarifies why restricting our analysis to more thoroughly detected,
shorter-period UPOs leads to significant loss of information on the
system.

We then propose two finite state Markov chain representations of
the dynamics based on the shadowing process of the orbit performed
by the UPOs. In first instance, UPOs are grouped in states according
to their number of UDs and transitions are recorded at the point
when the closest shadowing UPO changes and the new shadowing
UPO has a different UDs number. In second instance, we consider
a much larger space, where each state corresponds to the trajectory
being shadowed by a UPO chosen among a suitable defined subset
of the whole database. In both cases, by studying the subdominant
eigenvectors and eigenvalues of the stochastic matrix, we are able to
characterise the relatively slow fluctuations of the systems between
regions with prevalence of anomalously unstable and anomalously
stable UPOs, and between regions of typical vs atypical UPOs. We also
provide a thermodynamical, energetic interpretation of the results, thus
linking microscopic and macroscopic properties of the system.

The paper is structured as follows. Section 2 provides a description
of the L96 model and of some of its basic properties in the configuration
chosen for this study. In Section 3 we present the database of detected
3

UPOs and discuss their accuracy in reproducing the dynamics of the t
system. We also present evidence of the heterogeneity of the attractor
in terms of stability properties. In Section 4 we supplement the UPOs-
based analysis with the Lyapunov analysis. We link local and global
properties on the attractor, investigate the transitions between regions
of the attractor characterised by different stability, and we emphasise
how the breakdown of hyperbolicity and the associated UDV emerges
according to these two viewpoints. The statistical angle on the problem
is then discussed in Section 5, where we study the relaxation of a
generic initial ensemble to the invariant measure by extracting two sep-
arate finite-state Markov chain from the dynamics. The relaxation can
be seen as a mixing associated with transitions between regions of the
attractor featuring anomalously high and anomalously low instability,
respectively. Finally, in Section 6 we discuss the main results of our
study and present perspectives of future investigations. In Appendix A
we report the main mathematical concepts used throughout the paper
for the benefit of the reader. In Appendix B one can find the link
to the Supplementary Material that complements the content of the
manuscript and provides access to some key datasets and codes.

2. The Lorenz ’96 model: A toy model for spatio-temporal chaos

The L96 model, while not corresponding to a truncated version
of any known fluid dynamical system, was developed as a prototype
for the midlatitude atmosphere, with the scope of investigating prob-
lems of predictability in weather forecasting [68,69]. Each variable
of the model corresponds to an atmospheric quantity of interest at a
discrete location on a periodic lattice, representing a latitude circle
on the sphere. The variables are spatially coupled, and their equation
of motion include nonlinear (quadratic) terms to simulate advection,
linear terms representing dissipation and constant terms representing
external forcing. While the model only shares only such basic char-
acteristics with more complete geophysical fluid dynamical models,
it has emerged as an important testbed for different applications, in-
cluding the study of bifurcations [71,72], of parametrizations [73–75],
of data-driven and machine learning techniques, [76–78], of extreme
events [79–81], of data assimilation schemes [82,83], of ensemble
forecasting techniques [84,85], to develop new tools for investigating
predictability [86,87], and for addressing basic issues in mechanics and
statistical mechanics [88–92]. The evolution equations of the model
are:

�̇�𝑗 = (𝑋𝑗+1 −𝑋𝑗−2)𝑋𝑗−1 − 𝛼𝑋𝑗 + 𝐹 , 𝑗 = 1,… , 𝐽 (1)

here

−1 = 𝑋𝐽−1, 𝑋0 = 𝑋𝐽 , 𝑋𝐽+1 = 𝑋1. (2)

mpose the periodicity conditions, 𝐹 ∈ R+ is a constant forcing, and
∈ R+ modulates the dissipation. The three free parameters of the
odel are 𝐽 , 𝐹 , and 𝛼. For large values of 𝐹∕𝛼 and 𝐽 the model exhibits

xtensive chaos [91]. In the inviscid case – when the dissipation and
he forcing are removed by setting 𝛼 = 𝐹 = 0 – the so-called energy
= 1∕2

∑𝐽
𝑗=1 𝑋

2
𝑗 is conserved and one can recognise a quasi-symplectic

tructure in the dynamics [92]. The chaotic behaviour of the systems is
ssociated with the presence of unstable waves that grow, accumulate
nergy, and then decay, with ensuing dissipation [68,69].

In this work we have considered 𝐽 = 20, 𝐹 = 5, and 𝛼 = 1, which
eads to the onset of a chaotic steady state for the system; see some
elevant definitions in Appendix A.1. In all the simulations the model
s integrated with a Runge–Kutta second order midpoint time scheme
ith fixed time step 𝑑𝑡 = 0.01. The choice of this (suboptimal but

ufficiently accurate) integrator is motivated by the UPOs detecting
lgorithm used. For such choice of the parameters the model is well
ithin the chaotic regime. It features 𝑛 = 4 positive LEs with the

eading one being 𝜆1 ≈ 0.54 (Fig. 1(a)). The fifth LE vanishes and
orresponds to the direction of the flow. The characteristic Lyapunov

ime of the system is then 𝜏1 = 1∕𝜆1 ≈ 1.85, the Kolmogorov–Sinai
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Fig. 1. Panel (a) Lyapunov Exponents of the system; 𝜆5 = 0, which corresponds to the direction of the flow, is highlighted in red. Panel (b): Distribution of pairwise distances
etween points of the attractor.
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ntropy can be approximated as ℎ𝐾𝑆 =
∑

𝜆𝑖>0 𝜆𝑖 ≈ 1.23 and the Kaplan–
orke dimension of the attractor is 𝑑𝐾𝑌 ≈ 9.25. See Appendix A.2 for

clarifications on the mathematical terminology.
The diameter of the attractor is approximately 25, with point-to-

oint distances being distributed as shown in Fig. 1(b). The relatively
igh dimensionality of the attractor is apparent from the very low
revalence of nearby points [93]. The mean speed over the attractor is
38, meaning that on average the trajectory spans a distance of 0.38

or a time-step of 𝑑𝑡 = 0.01.

. Study of the attractor via unstable periodic orbits

.1. Database of the unstable periodic orbits

The numerical extraction of UPOs from a chaotic system - see
efinitions and some essential information in Appendix A.3 - is one of
he greatest challenges in the applications of periodic orbit theory [60,
4,95]. The problem of finding UPOs can be reduced to the solution
f the periodicity condition 𝑆𝑇 𝑥0 = 𝑥0, where 𝑆𝑇 is the evolution

operator associated with the flow given in Eq. (1) that acts for a time
𝑇 and 𝑥0 is an initial condition on the attractor. Hence, one must solve
a system of nonlinear equations with respect to 𝑥0 and the period 𝑇 of
he UPO. Even for simple nonlinear systems this represents a complex
umerical problem, with a computational cost that grows exponentially
ith the dimension of the system. The choice of the algorithm and

nitial condition is thus crucial (see [60] for details). The equations are
ymmetric with respect to a cyclic permutation of the variables, so that
ach time an orbit is detected, the other 𝐽−1 = 19 can be automatically
btained by simply considering all the possible cyclic permutations of
ariables. In this work we constructed a database of 15019 fundamental
POs (i.e. none of these orbits can be obtained from another orbit of

he database through cyclic symmetry) immersed in the attractor with
eriod ranging from a minimum of ≈ 1.5 (≈ 0.8∕𝜆1) to a maximum of
22.8 (≈ 12.3∕𝜆1). This corresponds to lengths ranging from ≈ 2 to
35 diameters of the attractor.
In a chaotic system one expects to find that the number of UPOs

ith prime period smaller or equal than 𝑇 grows as ∝ exp(ℎ𝑡𝑜𝑝𝑇 ),
here ℎ𝑡𝑜𝑝 is the topological entropy [28]. As opposed to our pre-
ious study [64], it is clear that our set of UPOs is far from being
omplete, as longer-period orbits are clearly underrepresented, see
he curve referring to the complete database in Fig. 2(a). The diffi-
ulty in computing long-period UPOs has been widely discussed in the
iterature [28,60,70]. While clearly incomplete, as further discussed
elow, the dataset of detected UPOs can provide extremely valuable
nformation on the properties of the L96 model. The detected UPOs are
haracterised by vastly different instabilities properties, which provide
clear evidence of the heterogeneity of the attractor of the L96 model.
4

c

he UDs number varies from 2 to 9 across the UPOs (Fig. 2(b)): this
ndicates a very serious violation of hyperbolicity via UDV [42–45,59].
dditionally, the Kolmogorov–Sinai entropy varies between ≈ 0.5 and
10.0 (Fig. 2(c)) and the first LE varies between ≈ 0.3 and ≈ 1.8

Fig. 2(d)).
Figs. 2(a)–3(a) show that the periods of the detected UPOs are

pproximately integer multiples of a fundamental period 𝑇𝑓 ≈ 2.1,
hich is associated with the least unstable UPO. Fig. 3(a) additionally

hows that the detected longer-period UPOs we find are significantly
kewed towards low instability; it is extremely difficult to detect long-
eriod, highly unstable UPOs. Indeed, we find that 𝜆𝑚𝑎𝑥,𝑇1 × 𝑇 ≈
𝑜𝑛𝑠𝑡., where 𝜆𝑚𝑎𝑥,𝑇1 is the largest first Lyapunov exponent detected
mong the UPOs with period 𝑇 . This can be explained by considering
hat the UPOs detection algorithm is aimed at controlling errors that
row ∝ exp

(

𝜆1𝑇
)

for a UPO with period 𝑇 [60]. The scatter plot of
he UPOs period vs. ℎ𝐾𝑆 is qualitatively similar; see Fig. 1(a) in the
upplementary Material. Indeed – compare Figs. 2(c) and 2(d) with
igs. 3(c) and 3(d), respectively – if we restrict the statistics of 𝜆1 to
he orbits with 𝑇 ≤ 6.4, where the cutoff corresponds to the first peak
f the distribution in Fig. 2(a), which marks the departure from the
xponential growth of the number of UPOs with respect to their period,
e obtain distributions of ℎ𝐾𝑆 and 𝜆1 that are shifted towards the

ight with respect to what has been obtained using the whole dataset
f UPOs. Even when considering such set of low-period UPOs one
inds considerable UDV; see Fig. 3(b). In agreement with the previous
bservations, the distribution of the UDs number is skewed to higher
alues with respect to what found when considering the whole dataset,
ompare with Fig. 2(b).

It is worth exploring whether one find a clear localisation in phase
pace of the anomalously stable and anomalously unstable UPOs. In
his regard, it is helpful to provide a visual representation of the UPOs.
his can be achieved by considering the 3D projected space over the
irst three normalised time-dependent moments 𝐶1, 𝐶2, 𝐶3, defined as:

𝑘 =

(

∑𝐽
𝑗=1 𝑋

𝑘
𝑗

)1∕𝑘

(

⟨

∑𝐽
𝑗=1 𝑋

2
𝑗 ⟩
)1∕2

, 𝑘 = 1, 2, 3. (3)

where ⟨∙⟩ indicates the expectation value computed according to the
nvariant measure of the system.

Fig. 4(a) represents all UPOs of the database in such a projected
pace. We will come back to this representation in Section 5. One
otes that less unstable UPOs are localised in the part of the projected
pace closest to the origin. Such visual impression is further supported
y Figs. 4(b), 4(c), and 4(d), which portray the statistics of the 𝐶𝑘’s
tratified according to the UD of the UPOs. The average value of 𝐶𝑘
omputed over UPOs with a given number of UD increases monotoni-

ally with UD. In the case of 𝐶2, this corresponds to the intuition that
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Fig. 2. Heterogeneity of the instability properties of the shadowing UPOs. Each distribution represent the properties of the UPOs that shadows the trajectory at least once in
the first 𝐾 = 1, 10, 100, 1000 tiers (see Section 3.2) and the complete database. Panel (a): Distribution of the periods of the shadowing UPOs that shadows - see Section 3.2 - the
rajectory at least once in the first 𝐾 = 1, 10, 100, 1000 tiers. Panel (b): Frequency of the number of UD of the shadowing UPOs for different values of 𝐾. Panel (c): Distribution of

the KS entropy of the UPOs. Panel (d): Distribution of 𝜆1 across the UPOs of the database. The colour code is the same for all panels.
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higher instability is associated with higher energy [68,69,92]. Indeed,
one can interpret the periodic variations in the value of the 𝐶𝑘’s as
describing the life-cycle of the unstable waves defined by the individual
UPOs.

Additionally, we have that the region of the phase space covered
by lower-period – and thus anomalously unstable – UPOs misses the
part of the attractor whose projection is closer to the origin in the
(𝐶1, 𝐶2, 𝐶3) space, compare Fig. 4(e) with Fig. 4(a). Further evidence
is shown in Figs. (1b–1d) of the Supplementary Material, where we
show that mean values of the 𝐶𝑘’s stratified according to the UD of
the UPO are shifted to higher values when only lower-period UPOs are
considered. Fig. 4(f) portrays the projection of the invariant measure
of the system in the (𝐶1, 𝐶2) and shows the region where the presence
of lower-period UPOs is scarce. Hence, when the chaotic trajectory
is in the region of phase space corresponding to the black circle in
Fig. 4(e) or the rectangular region in Fig. 4(f), there will be only few
and nearby lower-period UPOs, so that the best local approximation to
the trajectory will necessarily come from higher-period ones.

3.2. Shadowing by unstable periodic orbits

As discussed in the introduction, UPOs can be used to approximate
the forward trajectory of chaotic dynamical systems. We say that a UPO
is shadowing a chaotic trajectory if the UPO is sufficiently close to the
chaotic trajectory and co-evolves with the trajectory for some period of
time. Here we proceed as [64] and first introduce the concept of ‘‘rank
5

shadowing’’. o
Let  = {𝑈𝑘}
𝑁𝑈𝑃𝑂
𝑘=1 be the set of UPOs of the database where the

𝑘th UPO is defined as 𝑈𝑘 = {𝑢𝑘(𝑠)}
𝑇𝑘∕𝑑𝑡
𝑠=1 , with 𝑇𝑘 being its prime period

and 𝑑𝑡 = 0.01 the time step. We have a total of 𝑁𝑈𝑃𝑂 ≈ 3 × 105

UPOs. We consider a chaotic trajectory 𝑐ℎ𝑎𝑜𝑡𝑖𝑐 consisting of the set of
points 𝑐ℎ𝑎𝑜𝑡𝑖𝑐 = {𝑥(𝑡)}𝑁𝑚𝑎𝑥

𝑡=1 with output given every 𝑑𝑡 and with length
𝑇𝑚𝑎𝑥 = 𝑁𝑚𝑎𝑥 ⋅ 𝑑𝑡 = 3 × 104. We assume that the chaotic trajectory
ives on the attractor of the system, i.e. transients have been discarded.

e define as distance between the UPO 𝑈�̄� and the chaotic trajectory
𝑐ℎ𝑎𝑜𝑡𝑖𝑐 at time 𝑡 as 𝑑𝑘(𝑡) = min𝑠 |𝑢�̄�(𝑠) − 𝑥(𝑡)|. At each time 𝑡 we can
rank the UPOs according to their distance form 𝑥(𝑡). 𝑈𝑙 is the tier 1

PO at time 𝑡 if 𝑙 = argmin𝑘=1,…,𝑁𝑈𝑃𝑂
(𝑑𝑘(𝑡)). Furthermore, 𝑈𝑝 is the

ier K UPO at time 𝑡 if 𝑑𝑝(𝑡) is the 𝐾th smallest value among all 𝑑𝑘(𝑡)’s,
= 1,… , 𝑁𝑈𝑃𝑂.

When constructing the time-dependent ranking of the UPOs in terms
f proximity to the chaotic trajectory, we discover that only around
6% of the total is selected at least once as first tier orbit. Instead, the
raction of UPOs that belong at least once to the first 𝐾 = 10, 100, 1000
iers increases up to 79%, 99.6%, and 99.9%, respectively, of the com-
lete database. The four panels of Fig. 2 show that the 𝐾 = 1 tier
hadowing orbits are preferentially of lower instability (and, hence,
eature typically a longer period, see Fig. 3(a)) compared to the whole
atabase because they repel less intensely nearby trajectories. As we
nclude orbits belonging to higher tiers of proximity, the statistical
roperties rapidly converge to those of the whole database. If we
onsider only the (much more homogeneous) lower-period UPOs, there
s little dependence of the level of instability of the UPOs on their tier

f proximity, see Figs. 3(b) and 3(d). As confirmed below, even orbits



Physica D: Nonlinear Phenomena 457 (2024) 133970C.C. Maiocchi et al.
Fig. 3. Subsampling the set of detected UPOs. Panel (a): Scatter plot period vs. 𝜆1 for the detected UPOs. Panels (b), (c), and (d): Same as Figs. 2(b), 2(c), and 2(d), respectively,
but restricted to UPOs with 𝑇 ≤ 6.4.
belonging to the 𝐾 = 10, 100, 1000 tiers are very often rather close to
the chaotic trajectory.

We will consider two definitions of shadowing orbits. The first
is a stricter definition, which considers as shadowing UPOs only the
sequence of tier 1 UPOs. We also consider a looser definition, which
allows one to slightly prioritise persistence over proximity. In fact, at
each time step, a UPO might still provide a very good local approxi-
mation to the trajectory even if it is not anymore the nearest one. In
particular, if 𝑈𝑙 is the closest UPO to the trajectory at time 𝑡, we say
that 𝑈𝑙 ceases to shadow the trajectory at time 𝑡+ 𝑝𝑑𝑡 if at that time 𝑈𝑙
is not anymore one of the 𝐾 closest UPOs, or, in other terms, it does
belongs to one of first 𝐾 tiers. We then collect the time series of the
distances 𝑑𝑙(𝑡 + 𝑗𝑑𝑡), 𝑗 = 0,… , 𝑝 − 1 and we say that 𝑈𝑙 ’s shadowing
duration (or 𝑈𝑙 ’s persistence) is 𝑝𝑑𝑡. At time 𝑡 + 𝑝𝑑𝑡 the tier 1 UPO is
selected as the next shadowing UPO. The strict definition of shadowing
is obtained by setting 𝐾 = 1.

An example of shadowing (case 𝐾 = 1) is presented in Fig. 5. Panel
(a) shows how a short portion of duration 𝑡1 + 𝑡2 = 2.65 of the chaotic
trajectory is subsequently shadowed by two UPOs featuring different
period and different UD. The juxtaposition of the two pieces of the
shadowing UPOs of duration 𝑡1 = 1.78 and 𝑡2 = 0.87, gives a time-
dependent field that is visually very similar to the considered portion
of the chaotic trajectory. Panel (b) shows the time evolution of the
distance between the trajectory and the two UPOs. At time 𝑡 = 𝑡1 there
is a transition in the shadowing, as the second UPO becomes the closest
one to the chaotic trajectory.
6

By construction, choosing larger values of 𝐾 in the definition of
shadowing leads to an increase in the average distance between the
orbit and the shadowing UPOs, and, at the same time, to an increase in
the persistence of each shadowing UPOs. Figs. 6(a) and 6(b) show the
distribution of the distance 𝑑 and of the persistence 𝜋 of the shadowing
UPOs when considering the strict (tier 1, in black) and the looser
definition of shadowing, with 𝐾 ∈ {10, 100, 1000}. The average distance
increases from 1.81 to 2.70 as 𝐾 increases from 1 to 1000 (see Table 1).
One notices that the quality of the shadowing is in general rather good
and extremely similar for 𝐾 = 1 and 𝐾 = 10: the 95% quantile of
shadowing distances is approximately 2.99 and 3.21, which is well
within the 0.5% quantile of the typical distances distribution over
the attractor (See Fig. 1(b)) The mean persistence, in turn, increases
from 0.22 to 1.69 time units. These values correspond to average
rectified distances ranging from 8 to 63. By comparing these numbers
with the size of the attractor, the typical distances over the attractor
(Fig. 1(b)), and the average distance between the chaotic trajectory
and the shadowing UPOs confirms that there is clear evidence of co-
evolution. Assessing co-evolution is instrumental for constructing a
framework that allows an accurate statistical and dynamical description
of the chaotic flow [96].

Restricting our analysis to the lower-period UPOs unavoidably leads
to an increase in the distance between the shadowing UPOs and the
chaotic trajectory, compare Fig. 6(d) and Fig. 6(b), and look at Table 1.
Note that, instead, the statistics of the log persistence changes negligi-
bly, compare Fig. 6(c) and Fig. 6(a), which indicates that the procedure
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Fig. 4. Panel (a): UPOs of the system projected on the normalised moments 𝐶1 , 𝐶2 , 𝐶3. The colour indicates the dimension of the unstable subspace. Panel (b): scatter plot of the
first moment 𝐶1 averaged along all the UPOs with the same number of UD vs their number of UD (black dots). The bars indicate the range between the 5th and 95th percentile
for each UDs value. In blue the range between 5th and 95th percentile value of the corresponding statistics calculated along the chaotic trajectory. Panel (c): same as Panel (b),
but for 𝐶2. Panel (d), same as Panel (b), but for 𝐶3. Panel (e): same as Panel (a), but for UPOs with 𝑇 ≤ 6.4. The circle indicates the region where major discrepancy is found
with respect to Panel (a). Panel (f): Projection of the invariant measure of the system in the (𝐶1 , 𝐶2) space. The rectangle depicts the region that is sparsely covered by UPOs with
𝑇 ≤ 6.4; compare with the circle in panel (e).
is robust. Let us focus on the statistics of the distances between the
tier 1 UPOs and the chaotic trajectory. The average distance increases
by a rather substantial factor ≈ 1.9: excluding the higher period UPOs
amounts to losing not only about 80% of all UPOs, but also the
geometrically longest and dynamically least unstable ones, so that the
ability to cover the attractor is substantially reduced. Additionally, if
we restrict our analysis to the 𝑇 ≤ 6.4 UPOs, the average distance
between the tier 1 UPOs and the chaotic trajectory increases by a factor
≈ 2.5 when considering the rectangular region in Fig. 4(f), whereas it
7

increases by a factor ≈ 1.8 outside of it. This further supports what has
been shown in Figs. 4(e) and 4(f) regarding the scarcity of the 𝑇 ≤ 6.4
UPOs in the low-energy region of the attractor.

4. Unstable periodic orbits and unstable dimension variability

4.1. Finite-time Lyapunov exponents and unstable dimension variability

In [43–45] it was shown how the UDV could be explained in terms
of the presence of fluctuations between positive and negative values
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Fig. 5. Panel (a): Subsequent shadowing of a segment of chaotic trajectory performed by two different UPOs (here UPO1 and UPO2). UPO1 (UPO2) has period 𝑇1 = 10.8748
(𝑇2 = 10.7626) and possesses 5 (4) positive LEs. In each of the four subpanels the 𝑥-axis indicates the time, the 𝑦-axis indicates the index 𝑗 of the 𝑋𝑗 , 𝑗 = 1,… , 20 variables of
the Lorenz ’96 system, and the colorbar indicates the value of each variable. The space–time diagram of UPO1 and UPO2 over their full period is reported in upper row. The
chaotic trajectory (lower row, right hand side) is shadowed by UPO1 (bright red) for a time duration 𝑡1 = 1.78 and then by UPO2 (dark red) for a time duration 𝑡2 = 0.87. The
two portions of the UPOs performing the shadowing are reported in the lower row, left hand side. Panel (b): Time evolution of distance 𝑑1 and 𝑑2 between the chaotic trajectory
and UPO1 and UPO2, respectively.
Fig. 6. Panel (a): Probability distribution function of the log of the persistence 𝜋 of the tier 1 orbits (solid black line; mean persistence = 0.21), and the shadowing orbits with the
looser definition with 𝐾 = 10 orbits (dashed red line, mean persistence 0.53), 𝐾 = 100 (dashed and dotted orange line, mean persistence 1.03) and 𝐾 = 1000 (dotted yellow line,
mean persistence 1.67). Panel (b): Distribution of the distances from the chaotic trajectory when considering the looser definition of shadowing orbits that allows for fluctuations
within the first K=10 tiers (red dashed line, mean distance 1.97), tier 100 orbits (dashed and dotted orange line, mean distance 2.26), tier 1000 orbits (dotted yellow line, mean
distance 2.7) and again first tier orbits (black solid line, mean distance 1.81). Panel (c): Same as Panel (a), for 𝑇 ≤ 6.4 UPOs. Panel (d): Same as Panel (b), for 𝑇 ≤ 6.4 UPOs.
of one specific FTLE (the one corresponding to the LEs with smallest
absolute value) computed over a time scale 𝜏 also when considering
very large values of 𝜏. See definitions and some essential information
8

on FTLEs in Appendix A.2. The presence of changeovers in the sign
of the FTLE over such long time scales was proposed as evidence of
the trajectory following closely UPOs having different UDs number.
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Table 1
We report the distance statistic for both the complete (left hand side of the table)

and the reduced database of UPOs having 𝑇 ≤ 6.4 (right hand side of the table). The
first and second rows indicate the 95th (5th respectively) percentile of the distribution
of distances of the shadowing orbits from the chaotic trajectory in the first tier and
for 𝐾 = 10, 100, 1000. The third row reports the mean value of the distance for each
tier. The fourth row reports the probability of achieving pairwise distance across the
attractor smaller than the mean value reported in the third row. We can appreciate
how such probability never exceeds 1%, confirming the closeness of the trajectory with
the shadowing orbits.

K 1 10 100 1000 1 10 100 1000
95th percentile 2.99 3.21 3.76 4.64 4.82 5.05 5.76 6.90
5th percentile 0.87 0.95 1.05 1.17 2.15 2.29 2.48 2.68
𝑚𝑒𝑎𝑛(𝑑𝑖𝑠𝑡) 1.81 1.96 2.26 2.70 3.44 3.64 4.09 4.74
𝑃 (𝑑 < 𝑚𝑒𝑎𝑛(𝑑𝑖𝑠𝑡))(%) 0.09 0.10 0.12 0.14 0.17 0.18 0.21 0.25

As mentioned earlier, in the system of interest here the UDV entails
fluctuations between 2 and 9 of the number of UDs, hence one could
expect to find that several FTLEs feature fluctuations between positive
and negative values.

This is indeed confirmed by our data. We consider here the first 10
LEs, ordered from the largest to the smallest. Note that for sufficiently
large values of 𝜏 the distribution of all the FTLEs corresponding to
nonzero LEs converges to a Gaussian with variance ∝ 1∕𝜏, in agreement
with previous studies [56–58]. A different scaling is found for the FTLE
corresponding to the vanishing LE (not shown).

Even considering very long averaging times, the support of the pdf
of more than one FTLEs includes zero, meaning that one observes
fluctuations about zero for the corresponding time series. Putting aside
the vanishing LE, for which this property is trivial, this applies to 5
FTLEs for 𝜏 = 10𝜏1, which is already much longer than the period of
the longest detected UPO, see Fig. 7(a). Clearly, the number of FTLEs
fluctuating about zero decreases as one consider larger values for 𝜏.
Nonetheless one finds four of such FTLEs when 𝜏 = 30𝜏1 (Fig. 7(b)),
and still two for the ultralong averaging time 𝜏 = 100𝜏1 (Fig. 7(c)).

he fluctuations about zero of the 6th FTLE persist even for much long
onger averaging times.

Focusing on indicators of instability provided further information on
he heterogeneity of the attractor. Panel 7(d) shows that the sum of the
TLEs corresponding to the four largest backward LEs – this provides
he finite-time, local estimate of the Kolmogorov–Sinai entropy – have
ery large fluctuations, and the distribution has support extending to
egative values up to averaging times of about 𝜏 = 3𝜏1. We also see
Panel 7(e) – that the largest (ordered) backward FTLE can have

egative values for averaging times up to 𝜏 = 3𝜏1. This implies that the
ystem features (temporary) return of skill. Finally, Panel 7(f) shows
he distribution of the number of positive FTLEs. Note that we have
emoved from the count the direction of the flow, whose corresponding
TLE obviously fluctuates between small positive and small negative
alues. We find confirmation that the number of positive FTLEs has
ery large fluctuations even for very long averaging times 𝜏.

.2. Finite-time Lyapunov exponents and shadowing unstable periodic orbits

We now wish to provide an interpretation of such variability in
erms of UPOs. Our intuition is that the local stability properties of
he tangent space, measured in terms of the values of the FTLEs, are
omehow encoded in neighbouring UPOs populating that same region
f the attractor. In what follows, it is important to keep in mind that
POs are large-scale structures in the phase space of the system and
ave a very long period compared to the typical shadowing times. With
eference to the notation and framework defined in Fig. 4(a), let us
uppose that between the times 𝑡𝑘 and 𝑡𝑘 + 𝜏𝑘 the chaotic trajectory
(𝑡) is being shadowed by the UPO 𝑈𝑘, before being approximated
y another UPO 𝑈ℎ starting at time 𝑡ℎ = 𝑡𝑘 + 𝜏𝑘. We then have a
equence of shadowing orbits 𝑈𝑘, each one associated to a persistence
9

ime 𝜏𝑘. We then compute the spectrum of the FTLEs of the chaotic
Table 2
Temporal correlation between the local properties of the chaotic trajectory and
relative shadowing UPOs.

K 1 10 100 1000

𝜆𝜏𝑚𝑎𝑥 0.23 0.27 0.33 0.39
𝜆𝜏1 0.15 0.17 0.22 0.27

ℎ𝜏
𝐾𝑆,+ 0.34 0.39 0.45 0.53

ℎ𝜏
𝐾𝑆 0.25 0.30 0.36 0.44

trajectory between 𝑡𝑘 and 𝑡𝑘 + 𝜏𝑘, and investigate the correlation with
the corresponding LEs of the shadowing UPO 𝑈𝑘. Please note that
each orbit might be considered more than once when looking at the
correlations. Note also that the values of the time intervals 𝜏𝑘 change
substantially along the trajectory, hence the various considered FTLEs
are in general computed for different time horizons.

The results are presented in Table 2. There is a weak yet positive
linear correlation between the first LE 𝜆1 of the shadowing UPOs and
the corresponding first FTLE 𝜆𝜏1 when considering the orbits shadowing
the trajectory in the first tier. The correlation is stronger if, instead,
we consider the largest local LE 𝜆𝜏𝑚𝑎𝑥 (i.e. the largest one obtained
after reordering the local FTLEs). We need to remember that we are
comparing two very different objects: a local property with a global
structure. The link between local and global properties is clearer when
we consider a measure of instability that encompasses the whole unsta-
ble manifold. The linear correlation between the sum of the first four
FTLE (𝐾𝑆𝜏 ) and the Kolmogorov–Sinai entropy of the shadowing UPOs
(first tier) is about 0.25, whilst a higher value (0.34) is found when
considering the sum of the local positive FTLEs (𝐾𝑆𝜏

+). As we relax our
definition of shadowing according to what described in Section 3.2, we
obtain that as we consider larger and larger values of 𝐾, the correlation
between the corresponding local and global properties increases. Such
an increase in the correlation derives from the fact that higher values
of 𝐾 result in longer shadowing times for the UPOs (Fig. 6(a)), while
maintaining good proximity to the trajectory (Fig. 6(b)).

It is possible to further explore such an aspect by looking in more
detail into the properties of the shadowing UPOs chosen according to
the strictest 𝐾 = 1 criterion. We then investigate how the correlation
between the local instability properties of the chaotic trajectory and
those of the shadowing UPOs change as we consider only UPOs that
shadow the trajectory for longer and longer time durations. This allows
us to restrict our analysis to what we may consider as the better per-
forming UPOs. Fig. 8 shows that the link between the local instability
properties of the trajectory and the UPOs steadily grows stronger as
we consider UPOs that shadow for longer and longer times. As an
example, the linear correlation between the first LE of the UPO 𝜆1 and
the first FTLE 𝜆𝜏1 of the chaotic trajectory increases from 0.15 - full
database - to around 0.35 - when considering only UPOs that shadow
for a time duration larger than 1. Of course, by definition, the number
of UPOs considered for the statistics decreases as we demand more
persistence (see Fig. 6(a)), hence the uncertainty in our estimates grows
as the UPOs dataset shrinks in size. Analogously, the linear correlations
between the Kolmogorov–Sinai entropy of the shadowing UPO and
𝐾𝑆𝜏 increases from 0.25 to around 0.50. While these correlations
might appear as relatively weak, we remark again that we are studying
the link between local and global properties. Our results support the
conjecture that the local stability properties of the flow can indeed be
explained in terms of the properties of the shadowing UPOs. We also
remark that, as shown in Fig. 2 of the Supplementary Material, the
correlations shown in Fig. 8 are substantially degraded if one considers
the database of 𝑇 ≤ 6.4 UPOs, as a result of the much reduced ability
to sample accurately the attractor of the system that we have already
discussed earlier in the paper.
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Fig. 7. Evidence of heterogeneity of the tangent space. The 5th LE corresponds to the direction of the flow. Panel (a): Distribution of the first 10 FTLEs with averaging time
𝜏 = 10𝜏1. Thick lines correspond to pdfs whose support include zero. Panel (b): Same as (a), with 𝜏 = 30𝜏1. Panel (c): Same as (a), with 𝜏 = 100𝜏1. Panel (d): Distribution of the
sum of the first four backward FTLEs for different averaging times 𝜏. Panel (e): Distribution of the largest FTLE for different averaging times. Panel (f): Distribution of the number
of positive FTLEs for different averaging times 𝜏.
4.3. Unstable dimension variability and quality of the shadowing

The UDV is associated with another important phenomenon, namely
the so-called shadowing breakdown [97]. This refers to the fact that,
whereas for hyperbolic system, the Anosov [8] and Bowen’s [98]
shadowing lemma guarantees, roughly speaking, that each pseudo-orbit
– e.g. the output of a numerical model of the system – stays uniformly
close to some true trajectory, this does not necessarily holds true for
non-hyperbolic systems. However, even though it is not possible to
know in detail whether a computer simulated trajectory is representa-
tive of a true trajectory of the system, one can estimate for how long the
10
numerical trajectory remains close to the true one [43,99]. In general,
it is expected that the distance between the true trajectory and the
pseudo-orbit increases when the trajectory goes through a glitch point,
i.e when it performs a transition between regions featuring a different
UDs number [97,99].

We wish to test whether a signature of the glitch points emerges as
a deterioration of the ranked shadowing properties of the UPOs. We
thus look at the statistics of distances between UPOs and the chaotic
trajectory at the transitions points, i.e. when a new UPO takes over as
best local approximation of the trajectory. We distinguish between the
case where the new shadowing UPO has the same number of positive
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Fig. 8. Panel (a): correlation between the first FTLE 𝜆𝜏1 and 𝜆1 of the corresponding shadowing UPO as a function of the minimum persistence time of the UPO. Panel (b):
orrelation between ℎ𝜏

𝐾𝑆 (sum of the first four FTLE) and ℎ𝐾𝑆 of the corresponding shadowing UPO as a function of the minimum persistence time of the UPO. Panel (c): Same as
a), for the largest FTLE 𝜆𝜏𝑚𝑎𝑥. Panel (d): Same as (b), for the local Kolmogorov–Sinai entropy ℎ𝜏

𝐾𝑆,+(sum of the positive FTLE). The error bar corresponds to the 95% confidence
nterval around the correlation value. The leftmost point of the diagrams corresponds to the values reported in Table 2 for 𝐾 = 1.
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Es as the old one or not. If a change in the UD occurs, the trajectory
oes through a glitch point, as in the case shown in Fig. 5, where at time
1 the UDs number of the shadowing UPO decreases from 5 to 4. Indeed,
he distribution of distances shown in Fig. 9(a) are statistically different
t the 99% confidence level as determined by the Kolmogorov–Smirnov
nd the average distance between the trajectory and the shadowing
PO is larger than in the case of glitch point. Clearly, since we are

ocusing on transition points, the quality of the shadowing is in both
ases slightly lower than on average.

In order to better characterise the transitions points, we investigate
he properties of the UPOs belonging to the first tiers - i.e. the best
ocal approximations to the trajectory - and check how similar they
re in terms of number of UD. Fig. 9(b) shows that the variance
n the number of UD of the UPOs across the first 𝐾 = 100 tiers is
igher (99.9% confidence level) when considering glitch rather than
on-glitch transition points. Additionally, the variance of UD is much
maller away from the transitions points.

We propose the following interpretation. During each shadowing
indow, the chaotic trajectory is surrounded by UPOs that are dynam-

cally similar, so that low variability in the number of UD is found.
hen the trajectory approaches a transition point where the shadowing
PO changes, the UPOs around the chaotic trajectory become less
omogeneous and the variability in the number of UD increases. At
glitch point, the hetereogeneity of the UPOs is higher because the

ystem is performing a transition between two qualitatively different
11

egions of the phase space.
. Coarse-grained dynamics via finite-state Markov chains

.1. A statistical analysis of transition points

We take here a different angle for exploring the heterogeneity of the
ttractor of the system. We propose a coarse grained representation of
he dynamics by constructing a finite state Markov chain process [100].
ur approach differs from previous analysis [101,102] because of the
ay we perform the partition of the phase space. Here, the neighbour-
ood of all UPOs with same number of UD are considered as a single
tate, and the mechanism of ranked shadowing outlined in Section 3.2
ictates the sequence of transitions from one state to another other.

We proceed as follows. We consider the 𝐾 = 1 shadowing algorithm,
hich at each time-step 𝑡 selects the UPO 𝑈𝑘 of the full database that
inimises the distance with the chaotic trajectory. We define the states
= {2, 3, 4, 5, 6, 7, 8}, where each 𝑠𝑖 ∈ 𝑆 is the UDs number of the

hadowing UPO. We say that the system is in state 𝑠𝑖 at time 𝑡 if 𝑠𝑖
s the UDs number of the shadowing UPO at time 𝑡. Note that we
ave excluded the state corresponding to the few detected UPOs with
positive LEs because it makes little sense to include it in a statistical

nalysis. The stochastic variable 𝜍 ∶ {1,… , 𝑁𝑚𝑎𝑥} ⊂  → 𝑆, describes
he discrete Markov chain process as 𝜍(𝑡) = 𝑠𝑖, and the stochastic matrix
escribing the process can then be inferred in a frequentist way as

𝑑𝑡
𝑖,𝑗 =

#{𝑘 ∶ (𝜍(𝑘) = 𝑠𝑗 ) ∧ (𝜍(𝑘 + 1) = 𝑠𝑖)}
#{𝑘 ∶ (𝜍(𝑘) = 𝑠𝑗 )}

(4)

where # denotes the cardinality and the denominator ensures that the
matrix is properly normalised.
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Fig. 9. Panel (a): Probability distribution function for the distance of the first tier orbit limited to transition points: dark red dashed line refers to transitions associated to glitch
points (mean distance 2.11), blue dotted line refers to transitions between orbits with the same UDs number (mean distance 2.03). In black probability distribution function for
the distance of the first tier orbit along the full chaotic trajectory (mean distance 1.81). Panel (b): Probability distribution function of the variance in the number of UD of the
shadowing orbits within the first 𝐾 = 100 tiers. In black variance across the entire chaotic trajectory (mean variance 0.45), in blue variance associated to transition points with
ame UDs number (non-glitch points) (mean variance 0.66), in dark red variance in the UDs number at glitch points (mean variance 0.67).
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Through the study of the spectral properties of the stochastic matrix
escribing the process it is possible to obtain information on the
iffusion properties of the system. In particular, under the assumption
f ergodicity, the first eigenvector 𝑤1 corresponding to the unitary
igenvalue 𝜈1 = 1 determines the unique invariant measure that will be
ttained exponentially fast and independently of the initial ensemble.
ach subdominant eigenvector 𝑤𝑘 with corresponding eigenvalue 𝜈𝑘
ums to zero and describes a mode of the anomaly in the measure. The
ecay occurs on the timescale 𝜏𝑘 = − 𝑑𝑡

lnℜ{𝜈(𝑘)} , where ℜ{𝑐} indicates
he real part of the complex number 𝑐. In particular, the process of
elaxation to the invariant measure from a generic initial condition is
ominated by the longest timescale 𝜏2 = − 𝑑𝑡

lnℜ{𝜈(2)} .
The first four subdominant eigenvalues are real. We have verified

hat 𝑃 𝑑𝑡 is ergodic and tested the Markovianity of the process by
verifying that the eigenvalues of the matrix 𝑃 𝑑𝑡×𝑛

𝑖,𝑗 obtained by sampling
the shadowing every 𝑛 time-steps has eigenvalues that scale with the
th power. Specifically, the relative normalised difference between
he 10th power of the eigenvalues of 𝑃𝑖,𝑗 and the eigenvalues of the
tochastic matrix obtained sampling the process every 10 time-steps
ssumes a value of about 0.5%. We also verified that the eigenvectors
re very similar to those of 𝑃 𝑑𝑡×𝑛

𝑖,𝑗 𝑤𝑘 ⋅ 𝑤𝑑𝑡×𝑛
𝑘 ≈ 1 for 𝑛 = 10 ∀𝑘.

e propose that such a coarse-grained representation of the dynamics
haracterises the statistics of the switching behaviour between clusters
f UPOs with the same number of UD.

Fig. 10 shows the first five eigenvectors of 𝑃 𝑑𝑡, ordered according
o the eigenvalue. The first eigenvector (in blue) returns the unique
nvariant measure of the system. Most often UPOs feature 𝑈𝐷 = 4 and
𝐷 = 5, in agreement with the distribution presented in Fig. 2(b).
n the other hand, the modes corresponding to 𝜈2 (in orange, 𝜏2 =
.3982) and 𝜈3 (in yellow, 𝜏3 = 0.3134) are responsible for the dif-
usion between anomalously stable and anomalously unstable UPOs.
ndeed, both eigenvectors are characterised by negative components
orresponding to 𝑈𝐷 = 3 and 𝑈𝐷 = 4, with positive values for larger
Ds number. This means that if the initial ensemble is anomalously

un)stable, thus having an larger (smaller) number of members with
igh UDs number than dictated by the invariant measure, the anomaly
ill be damped mainly through these two modes.

The modes corresponding to 𝜈4 and 𝜈5 are responsible for the
ransitions between typical and atypical UPOs. In particular, the mode
orresponding to 𝜈4 describes the diffusion from UPOs with 𝑈𝐷 = 4
o those with other values for UD. Finally, 𝜈5 describes the diffusion
rom UPOs with 𝑈𝐷 = 5 to those with other values for UD. It is also
nteresting to note that 𝜏4 = 0.2507 > 𝜏5 = 0.2138, in agreement with
he fact that the dominant mode of the invariant measure is given by
12

𝐷 = 4. a
Fig. 10. Eigenvectors of the transition matrix 𝑃 𝑑𝑡. For each eigenvector (represented
y different colours) we represent the value of its different components corresponding
o the different states of the system. 𝜈1 = 1 (in blue) returns the invariant measure
f the system and it is in agreement with the distribution presented in Fig. 2(b). The
ubdominant eigenvalues are 𝜈2 = 0.9752 in orange, 𝜈3 = 0.9686 in yellow, 𝜈2 = 0.9608
n purple and 𝜈2 = 0.9543 in green.

Using Eq. (13) in [103], it is possible to evaluate the KS entropy
𝑃
𝐾𝑆 of the finite state Markov chain described by the stochastic matrix
𝑑𝑡
𝑖,𝑗 . One obtains ℎ𝑃𝐾𝑆 ≈ 0.31. This figure clearly indicate that we are
nvestigating a system that creates information in the Shannon sense.
onetheless, as a result of the procedure of coarse graining used for
efining the stochastic matrix, the estimate of the KS entropy is lower
han the value one can directly derive for the full system ℎ𝐾𝑆 ≈ 1.23,
hich is given by the sum of the first 4 LEs shown in Fig. 1(a).

.2. Mixing between large-scale regions of the attractor with different insta-
ility

We now wish to investigate the relaxation of an ensemble towards
he invariant measure through a different coarse-graining procedure.
ollowing [64], we construct a Markov chain where the states are the
eighbourhoods of the shadowing UPOs. We define here the states 𝑆 =
1,… , 𝑃 }, where each 𝑖 ∈ 𝑆 is index of the shadowing UPO. The system
s in state 𝑖 at time 𝑡 if the 𝑖th UPO is shadowing the chaotic trajectory
t time 𝑡. The stochastic variable 𝜍 ∶ {1,… , 𝑁 } ⊂  → 𝑆, describes
𝑚𝑎𝑥
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Fig. 11. Projection of the subdominant eigenvectors (panel (a)) 𝑤2, (panel (b)) 𝑤3, (panel (c)) 𝑤4, (panel (d)) 𝑤5. of the stochastic matrix 𝑄𝑑𝑡
𝑖,𝑗 (see Section 5) in the space defined

by the normalised moments (𝐶1 , 𝐶2 , 𝐶3) (see Eq. (3)).
the discrete Markov chain process as 𝜍(𝑡) = 𝑖, and the stochastic matrix
describing the process can then be inferred in a frequentist way by
performing the 𝐾 = 1 shadowing using 𝑃 UPOs and evaluating:

𝑄𝑑𝑡
𝑖,𝑗 =

#{𝑘 ∶ (𝜍(𝑘) = 𝑗) ∧ (𝜍(𝑘 + 1) = 𝑖)}
#{𝑘 ∶ (𝜍(𝑘) = 𝑗)}

(5)

Ideally, one like to use the entire dataset of UPOs, so that 𝑃 = 𝑁𝑈𝑃𝑂.
Yet, given the very large number of UPOs considered in this study and
the amount of available data, it is impossible to robustly evaluate the
stochastic matrix by considering all UPOs. Hence, we choose as states of
the system the neighbourhood of 𝑃 = 1000 UPOs. Such UPOs have been
randomly chosen within the whole dataset in such a way to respect the
distribution of periods as in the original database. In order to enforce
robustness, we also verify that each UPO has been selected in the
shadowing for at least the length of its period. We remark that, given
the protocol above, the results presented below are weakly dependent
on the specific choice of UPOs for 𝑃 = 1000 as well as on the chosen
value for 𝑃 .

We have verified that the process described by 𝑄𝑑𝑡
𝑖,𝑗 is ergodic, and

tested its Markovianity (in particular, similarly to what we described
earlier, we estimated an error of 0.4% when considering sampling
every 10 time-steps. We also verified that the eigenvectors are very
similar to those of 𝑄𝑑𝑡×𝑛

𝑖,𝑗 (𝑤𝑘 ⋅ 𝑤𝑑𝑡×𝑛
𝑘 ≈ 1 within less than 1% for 𝑛 =

10 ∀𝑘)). The first eigenvalues are 𝜈1 = 1, 𝜈2 = 0.9887, 𝜈3 = 0.9848, 𝜈4 =
0.9844, 𝜈5 = 0.9831 and the corresponding characteristic decay times
are 𝜏2 = 0.8771, 𝜏3 = 0.6511, 𝜏4 = 0.6348, 𝜏5 = 0.5850. The KS entropy
production rate of the stochastic matrix 𝑄𝑑𝑡

𝑖,𝑗 is ℎ𝑄𝑘𝑠 ≈ 0.15: also in this
case, one finds clear evidence of chaotic behaviour but underestimates
the rate of creation of information of the system.

We want to represent the eigenvectors of the stochastic matrix in
the projected space spanned by the normalised moments 𝐶1, 𝐶2, and
𝐶 introduced in Eq. (3) and used in Fig. 4. We proceed as follows.
13

3

We consider the compact set in R3 that contains the projected attractor
of the system and take into account a partition in 5288 cubes of side
0.15. Each projected UPO of the system intersects a certain number of
cubes, and each cube of the partition might contain contributions from
different orbits. We measure the quantity of mass contained in each
cube accordingly to the distribution given by the different subdominant
eigenvectors. In order to do so, we set a fixed number of points 𝑁 to
be represented in phase space, and we distribute such points to each
UPO accordingly to the weight given by the corresponding component
of the subdominant eigenvector 𝑤(𝑘). For each UPO we represent the
selected points equally spaced in time in the phase space and distin-
guish between negative and positive contributions. We finally quantify
the total amount of mass contained in each cube of the partition by
computing the algebraic sum of the points contained in it.

Fig. 11 presents the outcome of such a procedure for the eigen-
vectors corresponding to the first four subdominant eigenvalues. By
looking at pattern of positive and negative values, one realises that
the eigenvector corresponding to the first subdominant eigenvalue 𝜈2
- see Fig. 11(a) - is responsible for the transfer of mass between
regions characterised by low values of the moments and the core of
the attractor, compare with Figs. 4(a) and 4(f). Considering that there
is a clear relationship between the value of the moments and instability
of the UPOs that preferentially populate the corresponding region of
the attractor - see Figs. 4(b) and 4(d) - this is in good agreement
with Fig. 10, where it is shown that the first subdominant eigenvector
describes the transfer of mass between UPOs with low instability and
those with typical instability. The eigenvector corresponding to 𝜈3 - see
Fig. 11(b) describes the transfer of mass between anomalously high and
anomalously low values of the moments, also in qualitative agreement
with the results shown in Fig. 10. The eigenvectors corresponding to 𝜈4
and 𝜈 - see Figs. 11(c) and 11(d), respectively - describe the transfer of
5
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mass between typical and atypical (anomalously high and anomalously
low) values of the moments. Also in this case a good agreement is found
with the corresponding eigenvectors in Fig. 10.

We remark that if we perform this analysis taking as starting point
the reduced set of 𝑇 ≤ 6.4 UPOs, unsurprisingly, the resulting sub-
dominant eigenvector is rather different from the one depicted in
Fig. 11(a) because low-period UPOs are unable to sample accurately
the low-energy region of the attractor, see Fig. 3 in the Supplementary
Material.

6. Conclusions

The use of Lyapunov analysis is well accepted as a key tool for
understanding the dynamical and statistical properties of complex sys-
tems [22]. In this paper we suggest that this effort should be comple-
mented by taking a global approach based on the study of the skeletal
dynamics associated with the UPOs [26]. While their computation is a
challenging task [31], UPOs indeed have a great potential for clarifying
features and dynamical processes in complex systems [37,40,59,104].

As a step in the direction of better understanding the properties
of chaos in high-dimensional non-hyperbolic systems, we have here
investigated strong violations of hyperbolicity in a specific version
of the Lorenz ’96 model [68,69] with 20 degrees of freedom, taken
as prototypical example of chaotic system with a nontrivial unstable
manifold, i.e. with a dimensionality larger than one. We compute an
extremely large set of UPOs immersed in the attractor, covering a
large range of periods and geometrical lengths. While such a set is
clearly incomplete, it allows for a rather accurate shadowing of the
trajectory. We have verified that the system features UDV, where the
UDs number ranges (at least) from 2 to 9. Fingerprints of the UDV are
also found when performing a Lyapunov analysis of the system: several
FTLEs fluctuate around zero also when very long averaging times are
considered. Our results extend previous findings [43–45] because in our
system we observe a much more pronounced UDV, as the heterogeneity
of the UPOs is very high.

We have also found that the local stability properties of the tangent
space, measured in terms of their FTLES, are highly correlated to those
of the UPOs, measured by their corresponding LEs, populating the same
region of the phase space. This is a nontrivial result if one considers the
fact that UPOs describe global features on the attractor. The agreement
becomes more evident as we focus our statistics on UPOs that shadow
the trajectory for a long time.

We can rank the UPOs according to how close they are to the
trajectory. While the closest orbit typically keeps its rank for a relatively
short time, we find that often the forthcoming rank 1 orbit has the
same UDs number as the previous one. The less frequent transitions
to the neighbourhood of an UPO with a different UDs number – glitch
points – are usually accompanied by a degradation of the quality of the
shadowing.

On slower time scales, the systems performs transitions between
regions of the attractor associated with anomalously high and low
instability, which are preferentially populated by UPOs with large vs
low UDs number, respectively. Following [64], we construct coarse-
grained versions of the system based on using the neighbourhoods of
the UPOs as building blocks and the dynamics as generator of the
random process. It is then possible to see such transitions as slow
relaxation processes of an arbitrary initial ensemble towards the in-
variant measure, with the subdominant modes of the transfer operator
being associated with slow fluctuations between high instability and
low instability states. High (low) energy is typically associated with
high (low) instability, in agreement with the thermodynamical under-
standing of the model. Regions associated with anomalous energy and
corresponding anomalous instability can be though of as corresponding,
by and large, to quasi-invariant sets of the system [66].

In a (relatively) high-dimensional chaotic systems like the one con-
sidered here it is extremely hard if not practically impossible to com-
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pute all UPOs up to a given period T. The task of finding long-period
UPOs becomes particularly daunting in the case of highly unstable
orbits. Hence, our UPOs database is incomplete and biased. One might
reasonably ask whether it is better to restrict our analysis to low-period
UPOs, which are better sampled. Indeed, our results show the extreme
importance of taking into account also the poorly sampled long-period
UPOs. In fact, low-period UPOs cover poorly a specific region (the low-
energy one) of the attractor. Hence, restricting our analysis to such
orbits leads to a serious degradation of the quality of the shadowing and
to losing key information on the dynamical and statistical properties of
the system, in agreement with previous results [38,105].

While we have focused on a rather specific model, our findings
wish to stimulate more general investigations on the link between the
heterogeneity of the attractor and the breakdown of hyperbolicity. Such
a heterogeneity has important implications in terms of robustness of the
system, of the accuracy of the numerical models used to approximate
its evolution, and of the efficacy of data assimilation strategies aimed
at optimally merging observations and dynamics, as discussed in [59]
in the context of geophysical flows.

There is a clear link between hyperbolicity of a system and ap-
plicability of linear response theory for computing the change in its
statistical properties resulting from a perturbation to its dynamics [11,
106]; see also more recent developments in [107,108]. Hyperbolic-
ity is also critical for the definition of rigorous algorithms aimed at
implementing Ruelle’s response formulas and evaluating separately
the two contributions to the overall response coming from the stable
and unstable components of the tangent space [109–111]. The serious
breakdown of hyperbolicity discussed in this paper could reasonably be
seen as a very serious obstacle for the applicability of linear response
formulas. Nonetheless, it has been amply shown that the linear response
theory applies to a great degree of accuracy for the Lorenz ’96 model,
albeit in a slightly different configuration from the one considered
here [89]. As discussed in [112], linear response theory is very effective
in providing accurate climate change projections using climate models
of arbitrary level of complexity. There is no reasons to believe that such
models are anywhere close to hyperbolicity. In fact the opposite seems
to hold when the multiscale effects of atmosphere-ocean coupling is
taken into consideration [113].

The clarification of the apparent mismatch between what is rigor-
ously guaranteed by mathematical theorems and what is heuristically
shown in multiple applications regarding the applicability of linear
response theory in complex systems seems a topic of great scientific
relevance both on theoretical grounds and for reasons of practical
significance.
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Appendix A. Mathematical framework

A.1. Chaotic dynamical systems

Let us consider a continuous-time autonomous dynamical system
̇ = 𝑓 (𝑥) on a compact manifold  ⊂ R𝑛. We define a state at time
∈ R𝑡>0 as 𝑥(𝑡) = 𝑆𝑡𝑥0, where 𝑥0 = 𝑥(0) is the initial condition and
𝑡 is the evolution operator. We assume that the system is dissipative
∇ ⋅ 𝑓 < 0) with 𝛺 ⊂ 𝑀 compact attracting invariant set. The attractor
upports a probability measure 𝜌, invariant and ergodic with respect to
𝑆𝑡, specified in the following manner:

⟨𝜑⟩ = ∫ 𝜌(𝑑𝑥)𝜑(𝑥) = lim
𝑇→∞

1
𝑇 ∫

𝑇

0
𝜑(𝑆𝑡𝑥0)𝑑𝑡 (6)

for any sufficiently regular function (observable) 𝜑 ∶ 𝑀 → R and for
almost all initial conditions 𝑥0 belonging to the basin of attraction of
𝛺.

A.2. Lyapunov exponents and instability of the flow

We now want to characterise dynamical systems that feature sensi-
tive dependence on initial conditions on the attractor. Following Pesin’s
theory [13], this is most easily accomplished by using Lyapunov analy-
sis [21,22]. The separation in time of infinitesimally nearby trajectories
can be asymptotically quantified through specific global dynamical
indicators [22]. We define the matrix

𝛬(𝑥) = lim
𝑡→∞

(𝐽⊤
𝑡 (𝑥)𝐽𝑡(𝑥))

1
2𝑡 (7)

here 𝐽𝑡(𝑥) = ∇𝑥𝑓 (𝑆𝑡𝑥) is the tangent linear matrix of the flow at
ime 𝑡 with initial condition 𝑥 ∈ 𝛺 and ⊤ indicates the transpose. It
s possible to prove that the matrix 𝛬(𝑥) exists and its eigenvalues 𝛬𝑖
re real and constant almost everywhere with respect to the measure
. We call Lyapunov exponents (LE) of the systems the objects defined
s 𝜆𝑖 = log(𝛬𝑖). Usually they are ordered by size in descending order
1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝑛 and a positive first LE 𝜆1 indicates that the
ystem is chaotic. LEs are asymptotic quantities and refer to average
roperties over the attractor. The number of positive LEs is the number
f UDs. The full Lyapunov spectrum allows to define the Kaplan–Yorke
imension, which is conjectured to correspond to the order 1 Renyi
imension [115] of the attractor as follows:

𝐾𝑌 = 𝑚 +
∑𝑚

𝑖=1 𝜆𝑖
|𝜆𝑚+1|

(8)

with 𝑚 being the highest index for which the sum of the largest 𝑚 LEs is
strictly positive. The quantity 𝐷𝐾𝑌 can be thought as an approximate
value of the number of excited degrees of freedom acting in the sys-
tem [116]. The degree of chaoticity of a dynamical system can also be
quantified via the Kolmogorov–Sinai entropy (approximated via Pesin’s
theorem in the case the invariant measure is of the Sinai–Ruelle–Bowen
type) [16] as:

ℎ𝐾𝑆 =
𝑛
∑

𝑖=1
𝜆𝑖 (9)

where 𝑛 is the number of positive LEs, which corresponds to the UDs
number. The quantity ℎ𝐾𝑆 quantifies the production of information of
the system.

The local instability properties of the attractor are described by the
Finite Time Lyapunov Exponents (FTLE). These quantify the amount of
stretching about the trajectory with initial condition 𝑥 on the attractor
over a finite time interval [0, 𝑡]. They are local objects since their value
depends on 𝑥 and 𝑡. They can be computed as the logarithm of the
eigenvalues of the matrix 𝛬(𝑥, 𝑡) = (𝐽𝑇

𝑡 (𝑥)𝐽𝑡(𝑥))
1∕(2𝑡). One can also define

as ℎ𝑡𝐾𝑆 =
∑𝑛

𝑖=1 𝜆
𝑡
𝑖. The value of the 𝑗th FTLE can vary a lot along the

attractor and in some cases, for a given 𝑡, the support of its probability
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distribution can include zero, meaning that the local FTLE can have a
different sign compared to the corresponding 𝑗th LE. Correspondingly,
the number of positive FTLEs can in general fluctuate and be different
from 𝑛. Note also that 𝜆𝑡1 ≤ 𝜆𝑡𝑚𝑎𝑥, where the latter is the largest among
the 𝜆𝑡𝑗 ’s and defines the local largest growth rate. Finally, one can define
a local version of the Kolmogorov–Sinai entropy as ℎ𝑡𝐾𝑆,+ =

∑

{𝜆𝑡𝑖>0}
𝜆𝑡𝑖 ≥

ℎ𝑡𝐾𝑆 .

A.3. Unstable periodic orbits

A periodic orbit of period 𝑇 is an exact periodic solution of the
evolution equation and it is defined as follows:

𝑆𝑇 (𝑥) = 𝑥. (10)

This representation is not unique. In fact, if Eq. (10) is satisfied,
𝑆𝑛𝑇 (𝑥) = 𝑥 is verified as well ∀𝑛 ∈ N. In this work we will consider
a periodic orbit to be identified by its prime period 𝑇 > 0 (we do
not consider equilibria) and an initial condition 𝑥0. The attractor of
a chaotic dynamical systems is densely populated by unstable periodic
orbits [28]. It is known that a good understanding of the UPOs of the
model plays a fundamental role in the characterisation of the system.
As an example, it is possible to reconstruct the invariant measure of the
system through the use of trace formulas, by considering the following
expression for the average of any measurable observable 𝜑:

⟨𝜑⟩ = lim
𝑡→∞

∑

𝑈𝑝 ,𝑝≤𝑡 𝑤
𝑈𝑝 �̄�𝑈𝑝

∑

𝑈𝑝 ,𝑝≤𝑡 𝑤𝑈𝑝 (11)

here 𝑈 𝑝 is a UPO of prime period 𝑝, 𝑤𝑈𝑝 is its weight and �̄�𝑈𝑝 is
he average in time of the observable along the orbit. For uniformly
yperbolic dynamical systems this result is exact and the weight can be
btained, to a first approximation, by 𝑤𝑈𝑝 ∝ exp(−𝑝ℎ𝑈𝑝

𝑘𝑠 ) [117], with ℎ𝑘𝑠
eing the Kolmogorov–Sinai entropy of the system; see also discussion
n [39].

ppendix B. Supplementary material

The full address is the following: http://dx.doi.org/10.6084/m9.
igshare.24242458.v1. The supplementary material contains text and
atasets.
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