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ABSTRACT
Attentional control theory (ACT) was proposed to account for trait anxiety’s effects on
cognitive performance. According to ACT, impaired processing efficiency in high
anxiety is mediated through inefficient executive processes that are needed for
effective attentional control. Here we review the central assumptions and
predictions of ACT within the context of more recent empirical evidence from
neuroimaging studies. We then attempt to provide an account of ACT within a
framework of the relevant cognitive processes and their associated neural
mechanisms and networks, particularly the fronto-parietal, cingular-opercula, and
default mode networks. Future research directions, including whether a neuroscience-
informed model of ACT can provide a platform for novel neurocognitive intervention
for anxiety, are also discussed.

ARTICLE HISTORY
Received 23 April 2021
Revised 3 November 2022
Accepted 13 December 2022

KEYWORDS
Trait anxiety; processing
efficiency; fronto-parietal
network (FPN); cingular-
opercula network (CON);
default mode network
(DMN)

1. Introduction

Anxiety disorders are the most prevalent class of
psychological disorders (Remes et al., 2016) and the
sixth leading cause of disability worldwide (Baxter
et al., 2014), causing significant disruption to everyday
life and placing a considerable burden on healthcare
systems (Wittchen et al., 2011). An established risk
factor for anxiety disorders is trait anxiety, which is a
normally distributed personality dimension (Sandi &
Richter-Levin, 2009) characterised by intrusive
thoughts, worry, and difficulty in disengaging from
negative material (Heeren et al., 2018), as well physio-
logical manifestations (Engels et al., 2007; Nitschke
et al., 2001). Trait anxiety has been associated with
functional consequences including increased distract-
ibility and attention problems (Bishop, 2009; Bishop
et al., 2004; Eysenck et al., 2007). Indeed, the effects
of trait anxiety on cognitive function have long been
recognised (Berggren & Derakshan, 2013) and can be

accounted for by attentional control theory (ACT;
Eysenck et al., 2007; Eysenck & Derakshan, 2011). Fur-
thermore, experimental work has shown that impaired
attentional control can maintain and exacerbate the
distracting effects of anxiety (Borkovec & Ruscio,
2001; Leigh & Hirsch, 2011; Stefanopoulou et al.,
2014). Thus, it is important that we advance our
current theoretical models, so that we better under-
stand how trait anxiety affects cognitive performance,
and the neural substrates involved. Such an approach
is likely tobeuseful ifwewish todevelop and test novel
mechanistically targeted interventions for anxiety.

Moreover, from a theoretical perspective, models
that focus on brain mechanisms plus cognitive pro-
cesses (e.g. Braver, 2012; Eysenck et al., 2007) can
combine information at behavioural and neural levels,
thusproviding amore substantial andholistic evidential
basis for evaluating theories. This is important because
many behavioural studies have reported non-
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significant effects of trait anxiety on cognitive perform-
ance (Eysencket al., 2007). Suchfindingshavebeen typi-
cally regarded as uninformative but often camouflage
important differences in brain processes that may
provide information regarding inefficient and compen-
satory neural processing. In this manuscript we will
first outline ACT and its assumptions. We then attempt
to derive a series of neurofunctional predictions from
ACTandexamine themin the context of existingneuroi-
maging finding in trait-anxious samples. First, we
outline the predictions of ACT before examining how
these might fit with, or be adapted within, our current
understanding of the brain’s neurofunctional architec-
ture. We then discuss neurofunctional evidence for
ACTwith specific focus on neuroimaging studies of sus-
ceptibility to distraction, compensatory mechanisms,
and the associated role of neurofunctional network.
Based on a synthesis of ACT and existing neuroimaging
findings, we then consider implications for future
research directions and examine if a neurofunctional
account of ACT might aid in the development of novel
neurocognitive interventions for anxiety disorders.

2. Attentional Control Theory (ACT)

First, we will discuss the major assumptions of Atten-
tional Control Theory (ACT; Eysenck et al., 2007;
Eysenck & Derakshan, 2011). Of key importance in
ACT is the theoretical distinction between perform-
ance effectiveness and processing efficiency.

Importantly, neuroimaging data may also be useful
in quantifying processing efficiency, as behavioural
performance can be considered in the context of
levels of neural activity and connectivity using tech-
niques such as functional Magnetic Resonance
Imaging (fMRI) and electroencephalography (EEG).

A second key prediction of ACT is that high levels
of trait anxiety impair processing efficiency more
than performance effectiveness, because individuals
who experience high levels of anxiety often utilise
compensatory strategies or mechanisms to overcome
inefficiency caused by non-task processing, without
concomitant performance improvement. Such com-
pensatory strategies or processes may be measured
by longer correct antisaccade latencies (Derakshan,
Ansari, et al., 2009), reaction times during a task-shift-
ing paradigm (Derakshan, Smyth, et al., 2009), greater
CNV (Contingent Negative Variation) amplitude of the
ERP response, a well-known index for cognitive effort
utilisation for an upcoming task demand involving
inhibitory responses (Ansari & Derakshan, 2011) or

fMRI measures such as greater bold activity in the
DLPFC on tasks such as the Stroop demanding
efficient selective attention and response inhibition
(Basten et al., 2011, 2012) . However, the precise
measures of interest will depend on the task para-
digm being used as well as the task instructions
given (see Berggren & Derakshan, 2013, for a review).

Specifically, ACT predicts that trait anxiety impairs
three executive functions: (i) the inhibition function
(using attentional control to inhibit focus on task-irre-
levant stimuli and prepotent but incorrect responses);
(ii) the shifting function (using attentional control to
redirect attention in response to changing demands
within and between tasks); and (iii) the updating func-
tion (updating and monitoring information within
working memory). Although a full review of behav-
ioural evidence is outside the remit of this manuscript,
there is considerable experimental support for ACT’s
prediction that trait anxiety affects these executive
functions (Berggren & Derakshan, 2013).

ACT assumes that impaired efficiency of these execu-
tive functions is mediated by interactions between two
attentional systems (Corbetta & Shulman, 2002): (1) a
top-down, “goal-directed attentional system influenced
by expectation, knowledge, and current goals” and (2)
a bottom-up “stimulus-driven attentional system
responding maximally to salient or conspicuous
stimuli”. fMRI and EEG studies are ideally suited to
examine this prediction. Experimentally, it has been
shown that when tasks require attentional control,
anxiety can reduce processing efficiency, usually
indexed by increased functional activity in top-down
and reactive attentional networks (Barker et al., 2018;
Basten et al., 2011; Sylvester et al., 2012) and/or a late cor-
rection process known as Error Related Negativity (ERN)
(Hsieh et al., 2021; Moser et al., 2013); both believed to be
compensatory mechanisms that maintain task effective-
ness, albeit inefficiently (Berggren & Derakshan, 2013).
However, whilst some neuroimaging findings are con-
sistent with the processing inefficiency prediction of
ACT, the model provides little neurocognitive conceptu-
alisation of themechanisms through which anxiety com-
petes for limited processing resources.

3. How might the predictions of ACT fit
with our current understanding of the
brain’s functional architecture?

The original conceptualisation of ACT emphasised
dysfunctional integrations between top-down and
bottom-up attentional systems that loosely mapped
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onto the dorsal and ventral attention systems (Cor-
betta & Shulman, 2002), respectively. More recently,
a number of functional brain networks have been
identified. Goal-driven or top-down attentional
control is known to be supported by activation in
the DLPFC and a wider network of superior parietal
regions known as the fronto-parietal network (FPN;
Dosenbach et al., 2008; Dosenbach Nico et al., 2007;
Hopfinger et al., 2000). In addition to the FPN, a
second compensatory or ‘reactive’ attentional
control system (Braver, 2012) is thought to be utilised
when task-elated errors and conflict are detected. The
Cingular Opercula Network (CON; Dosenbach et al.,
2006; Dosenbach et al., 2008), sometimes referred to
as the salience network (Seeley et al., 2007), is con-
sidered to be a late correction mechanism that main-
tains and facilitates optimal task performance. CON
activity, particularly the dorsal anterior cingulate
(dACC), is thought to signal to the DLPFC to update
task demands – so proactive control can be main-
tained and/or reoriented to reduce the subsequent
need for compensatory effort (Carter & van Veen,
2007). Such a mechanism would likely rely on
efficient and causally directed coupling between the
dACC and DLPFC. An analogous electrophysiological
mechanism is error-related negativity (ERN), a com-
ponent of the event-related potential (ERP) reflecting
error-monitoring functions of the dACC (described in
more detail below).

The default mode network (DMN; Gusnard &
Raichle, 2001; Raichle et al., 2001), a network of
regions active during stimulus-independent/self-refer-
ential thought (Fox et al., 2005; Fox et al., 2015), may
also play an important role in attentional control. This
is because fMRI studies have shown that brain
regions within the DMN are associated with persevera-
tive cognition such as worry (e.g. Makovac et al., 2020;
Servaas et al., 2014; Weber-Goericke &Muehlhan, 2019)
and rumination (Zhou et al., 2020), i.e. difficult to
control negative thoughts that are a key cognitive
component of anxiety (Borkovec et al., 1983).

In particular, the posterior cingulate gyrus (PCC;
part of the medial DMN) appears to be strongly associ-
ated with worry (Makovac et al., 2020) and lapses in
attentional control (Cieslik et al., 2015; Weissman
et al., 2006), potentially leading to impaired proces-
sing under certain task demands. A neurocognitive
extension of ACT is now needed that provides an
account of the theory’s predictions within the
context of our current understanding of these func-
tional brain networks, and their interactions. Of

importance to ACT would appear to be the inter-
actions between three major functional brain net-
works discussed above (FPN, CON, DMN) during task
processing, and how these interactions are affected
by anxiety (See Figures 1 and 2).

First, activity in the FPN is crucial during tasks
requiring attentional control, to maintain effective
and efficient task performance (Sylvester et al.,
2012). Second, there is now a large body of fMRI
studies showing that neural activity in the FPN is
anti-correlated with activity in the DMN (Fox et al.,
2005), such that over the duration of a task requir-
ing some attentional control (usually arranged into
TASK ON/OFF blocks), as activity in the FPN
increases due to attentional demands, activity in
the DMN decreases (or deactivates) (e.g. Hugdahl
et al., 2019; Raichle, 2015). Third, during periods of
increasing task demands, when compensatory
mechanisms are required, activity in CON regions
increases to maintain effective task performance
(Sylvester et al., 2012) by signalling the need for
increased attentional control (Moran et al., 2015;
Zanto & Gazzaley, 2013). ACT predicts that anxiety
competes for processing resources. In the context
of these functional brain network interactions, a
neurofunctional account of ACT would predict that
trait anxiety, would perturb these network inter-
actions, leading to reduced processing efficiency.
An ERP study reported that during a flanker task,
high worriers shown an enhanced N2 component
during distractor trials, in the absence of errors
(Owens et al., 2015). This may be because anxiety
(particularly negative and worrisome thoughts), is
associated with increased activity (or reduced deac-
tivation) in the DMN regions, such as the PCC (Fox
et al., 2015; Makovac et al., 2020; Servaas et al.,
2014; Weber-Goericke & Muehlhan, 2019). Failure
to deactivate (or reduce activation) in the DMN
due to anxiety would then disrupt the ‘normative’
anti-correlation between the DMN and FPN activity
that is crucial for efficient network switching
during attentional control. Although this needs to
be confirmed experimentally, individuals with high
levels of worry may be less able to deactivate the
DMN and allow activity in the FPN to be up regu-
lated when attentional control is required, results
in CON and N2 activity.

To compensate for perturbed DMN/FPN inter-
actions and to maintain effective task processing
(albeit inefficiently), anxious individuals are then
more reliant upon activity in CON regions, particularly
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the anterior cingulate cortex (ACC) (Paulus et al., 2004;
Sylvester et al., 2012), especially when task demands
are high (Wheaton et al., 2014).

First, the conceptualisation of processing efficiency
differs from that in ACT. Within ACT, the emphasis

was on a nebulously defined global processing
efficiency based on very general measures of resource
utilisation such as self-reported mental effort or acti-
vation within a single brain area (typically the
DLPFC) (e.g. Bishop, 2009). It is often assumed

Figure 1. A neurofunctional account of ACT emphasises the differential involvement of three brain networks (DMN; CON; FPN)* during task
performance by individuals with high and low trait anxiety or worry. Neural activity in the FPN is anti-correlated with activity in the DMN, where
the activity in the FPN increases due to attentional demands, activity in the DMN decreases (or deactivates) over the duration of a task requiring
some attentional control. During high load, where compensatory processes are required, activity in CON regions increases to maintain effective
task performance by signalling the need for increased attentional control. CON activity is required to compensate for altered FPN activity. Note
the temporal relationship between FPN and CON activity/connectivity is not well understood in this context alternative temporal relationship
are possible. *ROIs are from Shirer et al. (2012).
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optimal processing efficiency during task perform-
ance is associated with a high level of attentional
control involving relatively increased activation in
the prefrontal cortex (especially the DLPFC) (Chrysi-
kou et al., 2014). However, performance of implicit
and largely ‘automatic’ tasks is often associated with
a low level of attentional control (Chrysikou et al.,
2014), and the DLPFC activation (Jansma et al., 2001;
Poldrack et al., 2005), so this assumption may not
always apply in certain task contexts. A neurofunc-
tional account of ACT defines processing efficiency
in more definite terms of optimal, task context-depen-
dent, interactions and connectivity between three
functional brain networks, i.e. the FPN, CON and
DMN. It should be noted, however, that such concep-
tualisations of ‘processing efficiency’ may de-empha-
sise task differences in optimal processing strategies.
And, as already discussed, effectiveness/efficiency
trade-offs can be dependent on the task instructions
that are provided to participants. How these atten-
tional brain networks interact under such conditions,
and their associated temporal dynamics, is still
unclear. For example, greater FPN/DLPFC activation
in high-anxious individuals is not always reported
(Bishop, 2009; Forster et al., 2015). This is probably
because several factors determine the level of FPN
activation in high-anxious individuals. For example,
individuals with high levels of anxiety have greater
problems than those with low levels of anxiety with
goal-directed attentional processes involved in goal
maintenance (Moser et al., 2013). This may occur, in
part, because they have experienced increased

anxious apprehension. As a consequence, their
initial FPN activation during task processing may be
lower than that of low-anxious individuals due to
worry competing for neural resources and perturbing
FPN/DMN anti-correlations. Thus, if a task requires
minimal top-down attentional control and goal main-
tenance, overall FPN activation could be lower in
high-anxious than low-anxious individuals, whilst
task performance levels are unaffected (e.g. Bishop,
2009). However, FPN/DLPFC activity would likely
need to increase, as a task becomes more attention-
ally demanding. Again, if FPN/DMN anti-correlations
are perturbed by worrisome thoughts that compete
for limited neural resources, high-anxious individuals
may have less FPN activation than low-anxious ones
shortly after task presentation or in a low task
demand condition, but subsequently have higher
FPN activation when tasks require more attentional
control. It is also difficult to assess processing
efficiency from brain activity. Researchers have often
focused on activity within a single brain area (e.g.
the relationship between trait anxiety and ‘inefficient’
DLPFC activity; (Basten et al., 2011; Bishop, 2009). This
is oversimplified because many tasks involve sequen-
tial processing stages associated with different brain
regions (e.g. Silton et al., 2010; Silton et al., 2011).
There are several reasons why high-anxious individ-
uals might have greater (less efficient) brain activation
than low-anxious individuals despite comparable per-
formance effectiveness. For example, the use of more
complex processing strategies, and/or impaired con-
nectivity between brain networks could lead to
over-activity in local hubs and disrupted temporal
dynamics between networks. Indeed, temporal
dynamics relating to processing efficiency are poorly
understood using fMRI. Techniques such as event-
related potentials (ERPs) and time series analysis
such as finite-impulse response function for fMRI are
approaches that can provide a superior assessment
of such dynamics (see later).

Second, ACT assumes high anxiety is associated
with increased involvement of the Ventral Attentional
Network (a stimulus-driven attentional system).
However, little empirical evidence supports that
assumption. A neurofunctional account of ACT
places greater emphasis on the CON, encompassing
the anterior cingulate cortex (ACC) and bilateral
insula (discussed below). Moreover, within ACT, the
compensatory strategies used by high-anxious indi-
viduals are not explicit. Within a neurofunctional
account, processes relating to error monitoring,

Figure 2. In anxious individuals worry competes for cognitive
resources. This impairs attentional control and in turn increases dis-
tractibility and maintains worry i.e. a bi-directional influence of
worry on attentional control and of attentional control on worry.
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conflict, and ‘reactive’ control (Braver, 2012) often
involving the engagement and coupling of the
DLPFC and dorsal ACC are posited to instantiate
such compensatory functions.

4. Neurofunctional evidence for ACT

To summarise, a neurofunctional account of ACT
emphasises the differential involvement of three
brain networks (FPN; CON; DMN; see Figure 1) during
task performance by individuals with high and low
trait anxiety or worry. We now examine evidence relat-
ing to the proposed neurofunctional account of ACT.

4.1. ACT prediction: anxiety increases
susceptibility to distraction

4.1.1. ERPs and the role of the DMN
ACT predicts, high-anxious individuals are more sus-
ceptible to distraction from neutral task-irrelevant
stimuli than low-anxious ones because they have
impaired attentional control making them more
responsive to task-irrelevant stimuli. These theoreti-
cal assumptions are supported by a large body of
behavioural studies (Berggren & Derakshan, 2013)
and additional evidence has been obtained in
studies using ERPs to assess attention to neutral
external distractors (Gaspar & McDonald, 2018;
Moran & Moser, 2015; Moser et al., 2012; Tsai et al.,
2017). In all four ERP studies, high-anxious individ-
uals had a larger N2pc (reflecting attentional selec-
tivity) than low-anxious individuals indicating they
were more likely to misallocate attention to the
external distractors. Studies using fMRI generally
support the finding of these ERP studies regarding
external distractors during task processing and are
discussed in more detail below. However, fMRI
studies have also allowed us to gain a better under-
standing of how internal/endogenous distraction
might affect attentional control.

Whilst ACT emphasises the effects of trait anxiety on
limited capacity cognitive systems, a number of studies
propose a more refined role for worry and its effects on
limited attentional/executive resources (e.g. Processing
Efficiency Theory; Eysenck & Calvo, 1992; Stefanopou-
lou et al., 2014). Furthermore, high-anxious individ-
uals exhibit more mind-wandering than low-
anxious ones. Robison et al. (2017) found individuals
high in neuroticism (highly correlated with trait
anxiety) reported more mind-wandering than low
neuroticism individuals during cognitive tasks. fMRI

research in this area is relatively limited. However,
as already discussed, there is increasing evidence
that worry, perseverative cognitions, and mind-wan-
dering involve the DMN, and that high anxiety is
associated with increased DMN activation (Fox
et al., 2015; Makovac et al., 2020; Servaas et al.,
2014; Weber-Goericke & Muehlhan, 2019). Whilst
networks known to support language and memory
processing have also been linked to worry
(Makovac et al., 2020), as discussed earlier, fMRI
studies also report that worry is linked to altered
activity and connectivity in the brain’s DMN. The
most direct link between DMN activity and worry
has been demonstrated by Servaas and colleagues
(Servaas et al., 2014). During this fMRI study, partici-
pants were requested to worry about a topic, which
led to significantly increased DMN activation. Gentili
et al. (2015) found DMN activity was correlated posi-
tively with social anxiety scores and Maresh et al.
(2014) found higher levels of social anxiety were
positively associated with DMN activity during task
performance. However, according to a recent
review by Northoff (2020), increased deactivation of
DMN in high-anxious individuals across various
tasks have also been reported. One reason for the
apparently inconsistent findings is that task-related
deactivation of DMN may depend on the type of
task and its reliance upon executive processes
(Weissman et al., 2006). It is also important to con-
sider the temporal sequencing of processes. Accord-
ing to the anti-correlation principle described by Fox
et al. (2005), increased activity in one brain network
is usually associated with decreased activity in
another network. It is possible that high-anxious
individuals initially allocate attentional resources to
mind-wandering and other processes involving the
DMN (e.g. precuneus and posterior cingulate),
thereby reducing attentional resources (involving
DLPFC and ACC) available for task performance.
However, it is also possible that later in task proces-
sing, high-anxious individuals’ enhanced attentional
control may produce reduced DMN activation
through an anti-correlational relationship. Currently,
our limited understanding of network dynamics
during task processing (using fMRI) is an obstacle
to fully understanding these temporal relationships.
Further, although a different construct to worry, a
meta-analysis of mind-wandering studies using
fMRI has also indicated that mind-wandering and
spontaneous thoughts are associated with activation
in several key areas within the DMN (Fox et al., 2015).
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4.2. ACT prediction: anxiety reduces goal-
directed attentional control

4.2.1. Role of the FPN
Because anxiety competes for limited cognitive
resources, ACT predicts that anxiety can impair goal-
directed attentional control, thus impacting task per-
formance and outcomes. fMRI studies have generally
indicated that trait-anxious individuals having greater
DLPFC activation than low-anxious ones when tasks
require attentional and/or executive control (i.e. inhi-
bition; shifting; updating). Basten et al. (2011) assessed
right DLPFC activity during colour Stroop Task per-
formance. High-anxious participants showed a
greater increase in DLPFC activation than low-
anxious ones on incongruent trials only. Since the
effects of trait anxiety on task performance were non-
significant, it could be argued that anxiety impaired
processing efficiency rather than performance effec-
tiveness, i.e. a greater level of DLPFC activation was
required to achieve the sample level of Stroop Task
performance than low trait anxious subjects. Barker
and colleagues (Barker et al., 2018), assessed levels of
worry (anticipatory anxiety) and reported similar
results to those reported by Basten and colleagues,
i.e. higher levels of worry were associated with
greater activation in DLPFC (and ACC) regions during
an emotional interference task without associated
improvements in behavioural performance. Whilst
moredifficult to assess theeffects on taskperformance,
Basten et al. (2012) observed a greater increase in acti-
vation in DLPFC in high-anxious than low-anxious par-
ticipants only when updating was required during a
working memory task. Fales et al. (2008) also used a
task requiring the updating function (the n-back
task). High-anxious individuals showed reduced sus-
tained activation within the FPN network (possibly
reflecting impaired engagement of the FPN for sus-
tained goal-directed attentional control) but increased
transient FPN activation reflecting use of compensa-
tory processes. By using the same task, Liu et al.
(2021) showed higher FPN activity in high trait-
anxious individuals under long-term stress. Whilst it is
not always possible to distinguish between processing
effectives and efficiency, these neurofunctional data
suggest that, in anxious individuals, there is a transient
need to engage greater levels of cognitive control to
maintain task performance because of a failure in sus-
taining goal-directed control throughout the task.

Some other fMRI findings appear less consistent
with the prediction of ACT, that anxiety is associated

with the use of compensatory mechanisms. Bishop
(2009) used two tasks: one involving minimal per-
ceptual load and a harder task involving a much
greater perceptual load (with congruent and incon-
gruent distractors being used in both tasks). Trait
anxiety was linked to impoverished/reduced recruit-
ment of prefrontal attentional control mechanisms
(DLPFC) to inhibit distractor processing when the
task involved minimal perceptual load. However, in
the minimal perceptual load condition, it is possible
that the task required no, or low levels of executive
function, so enhanced DLPFC activation in high-
anxious individuals associated with compensatory
control processes were not required. Forster et al.
(2015) found on no-go trials of a go/no-go task
that anxiety was also associated with reduced
DLPFC, as well as ACC activation – interpreted as
reflecting “impoverished frontal control of atten-
tion”. However, using a similar go/no-go paradigm,
Karch et al. (2008) compared brain activity using
fMRI in high and low-anxious individuals. Trait
anxiety did not affect performance, but when the
task required inhibitory control (i.e. no-go trials),
anxious individuals had greater activity than low-
anxious ones in the DLPFC and temporo-parietal
brain regions, a finding again suggesting the use
of compensatory mechanisms to maintain task
performance.

It should be noted however there are several limit-
ations when using fMRI to assess attentional control.
First, many tasks described above do not adequately
dissociate goal-directed attentional control (involving
maintenance of goal-relevant information) and com-
pensatory attentional control mechanisms (transient
goal-reactivation; i.e. Braver, 2012), which may
involve different brain networks, i.e. the FPN and
CON respectively. Second, as mentioned, fMRI has
poor temporal resolution, which limits inferences
about DLPFC’s temporal dynamics in the context of
early goal-directed attentional/cognitive control and
subsequent compensatory or reactive mechanisms,
or a complex combination of the two.

4.3. ACT prediction: anxiety is associated with
greater use compensatory mechanisms during
attentional control

4.3.1. Compensatory strategies, conflict and
error monitoring: role of the CON
ACT predicts that anxiety is associated with the use of
compensatory strategies. This is because studies
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requiring executive function, i.e. using the anti-
saccade task (e.g. Derakshan, Ansari, et al., 2009; Hep-
somali et al., 2017; Hepsomali et al., 2019; Wright et al.,
2014), the Stroop Task, and the go/no-go paradigm
(Berggren et al., 2013; Hepsomali et al., 2019) have
all provided experimental evidence linking trait-
anxiety to impaired inhibition function.

The investigation of compensatory strategies
during conflict tasks is particularly suited to ERP
research. Previous research has established ERP com-
ponents closely associated with inhibitory control,
permitting more precise examination of associations
between anxiety and inhibition. Much ERP research
has used the go/no-go paradigm where participants
must infrequently inhibit a motor response (no-go
trials). The N2 ERP component is typically much
larger on no-go than go trials, strongly suggesting it
reflects the use of inhibitory processes. If top-down
or goal-directed attentional control, supported by
the FPN, is impaired in high-anxious individuals they
will exhibit impaired goal focus and reduced ability
to discriminate between task-relevant and task-irrele-
vant, affecting performance outcomes. As a conse-
quence, compensatory strategies deployed by
individuals with anxiety should be reflected in a
larger N2 on no-go trials.

ERP studies have provided evidence of this com-
pensatory mechanism. Righi et al. (2009) used the
same go/no-go task as Forster et al. (2015) while
recording ERPs. High-anxious participants had signifi-
cantly larger N2 responses (reflecting inhibitory pro-
cesses) than low-anxious ones on no-go trials (but
no differences in other ERP components). These
enhanced N2 responses most likely reflect inhibitory
processes occurring within the frontal cortex. Since
there were no effects of trait anxiety on performance
(RTs and/or accuracy), anxiety appears to be associ-
ated with compensatory mechanisms that maintain
performance effectiveness. Similar findings were
reported by Sehlmeyer et al. (2010) in high-anxious
and by (Owens et al., 2015) in high-worrier partici-
pants, only when the task demands were high. Con-
verging evidence came from studies that utilised
Contingent Negative Variation (CNV) and showed
increased frontal CNVs (a marker of effort) in high
(vs. low) trait anxious individuals in the anti-saccade
task (Ansari & Derakshan, 2011), especially under
high load conditions (Hepsomali et al., 2019). Similar
findings were also reported in individuals with high
levels of perceived chronic stress (Shi & Wu, 2020).
However, some studies utilising the Go/No-Go task

have reported attenuated N2 responses (Hepsomali
et al., 2019; Xia et al., 2020; Yang & Li, 2014), a
finding harder to reconcile with the use on compensa-
tory mechanism by anxious individuals.

Savostyanov et al. (2009) and Neo et al. (2011)
extended the ERP findings by measuring EEG desyn-
chronisation (event-related spectral perturbations,
reflecting effort or use of processing resources in a
go/no-go task). High-anxious participants showed
greater EEG desynchronisation than low-anxious
ones only in the no-go condition (Neo et al., 2011;
Savostyanov et al., 2009). Thus, as predicted by ACT,
findings from these studies suggest that the require-
ment to utilise inhibitory processes causes high-
anxious individuals to use more effort and processing
resources than those individuals with low anxiety.

Arguably less well suited to the study of compensa-
tory mechanisms and their temporal dynamics, due to
the sluggish hemodynamic response, fMRI studies
have examined the effects of trait anxiety on ACC
activity. The dorsal ACC (dACC), part of the CON, is
important for detecting conflict (e.g. mismatch
between prepotent and correct responses) and signal-
ling to the DLPFC the need for increased cognitive
control (Botvinick et al., 2001). As ACT predicts that
high-anxious individuals have less efficient goal-
directed control making them susceptible to internal
and external distractors, the theorywould consequently
predict that anxious individuals would need to devote
more resources to compensatory conflict detection
and so should exhibit greater dACC on conflict tasks.

Silton et al. (2011) showed that at higher levels of
anxious apprehension, increased dorsal ACC activity
was related to greater Stroop interference (worse per-
formance). In a different conflict task, Comte et al.
(2015) presented participants simultaneously with a
face and a scene having congruent or incongruent
emotional valence and required them to determine
the emotion of the face or scene. Task performance
was unaffected by trait anxiety. However, high trait
anxiety was associated with increased dACC activity
on incongruent trials compared to congruent ones,
suggesting the use of greater compensatory proces-
sing. In addition, functional connectivity between
the ACC and lateral PFC was reduced in high-
anxious relative to low-anxious individuals suggesting
disrupted coupling and communication between
these attentional network hubs. Although, unclear,
this finding could be interpreted as reduced neural
efficiency, resulting the need for compensatory pro-
cessing to maintain task performance.
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Eisenberger et al. (2005) used an oddball task
where a different response was required on infre-
quent oddball trials. The extent to which dACC activity
was greater on oddball trials than non-oddball trials
correlated positively with neuroticism (highly corre-
lated with trait anxiety), again, probably reflecting
compensatory control in anxious individuals.
Decreased functional connectivity between the
dACC (perhaps signalling the need for increased cog-
nitive control) and DLPFC (perhaps involved in imple-
menting that increased control) has also been
reported in high-anxious individuals compared to
low-anxious ones during conflict tasks (Barker et al.,
2018; Basten et al., 2011; Comte et al., 2015). Silton
et al. (2010) assessed brain activation, and, impor-
tantly, the timing of such activation using both fMRI
and ERPs with the Stroop Task. During incongruent
trials, dACC activity followed DLPFC activity. These
findings suggest dACC activity works as a compensa-
tory mechanism during attentional control, presum-
ably when DLPFC-mediated top-down control is
inefficient.

Other related research has focused on dACC’s role
in error monitoring and detection. A neurofunctional
account of ACT would predict that high-anxious indi-
viduals require greater error monitoring than low-
anxious ones as a compensatory strategy to maintain
performance because of impaired goal-directed
control (Moser et al., 2013). Moser et al. (2013)
focused on error-related negativity (ERN). ERN has
been consistently localised to the ACC and may
reflect the activity of a co-ordinated network invol-
ving communication between ACC and DLPFC
engaged within 100 ms of an erroneous response
(Gehring et al., 2012). In a meta-analysis of studies
using standard conflict tasks (e.g. the Stroop Task;
the go/no-go task; the flanker task), Moser et al.
(2013) found anxiety was associated with a larger
ERN. Moser et al. (2013) concluded, “Enhanced ERN
in anxiety may index a compensatory effort signal
aimed at maintaining a standard level of perform-
ance.” Anxiety typically had no effect on performance,
suggesting such compensatory efforts are generally
successful. In a recent systematic review, heightened
ERN response has also been proposed as a neurocog-
nitive marker of anxiety-related disorders (Sagalakova
et al., 2021). It is important to note that enhanced ERN
has also been proposed as a risk marker for anxiety
(Banica et al., 2020; Olvet & Hajcak, 2008), as the
ERN amplitude showed considerable heritability
(47% of the phenotypic variance being accounted

for by genetic factors) (Anokhin et al., 2008), and
enhanced ERN in childhood and adolescence may
predict the onset of anxiety disorders (Meyer, 2017;
Meyer et al., 2018), although the ERN’s role in risk
for anxiety is a matter of debate (Moser, 2017;
Moser et al., 2014).

Moran et al. (2015) further found anxiety was not
only associated with enlarged ERN, but also with
reduced coupling between dACC and lateral DLPFC
recording sites on error trials using advanced EEG
signal processing analysis. This finding is consistent
with fMRI findings mentioned above indicating
reduced ACC-DLPFC coupling during high conflict
trials in trait-anxious individuals. Using path analysis
accounting for effects of anxiety, ERN and ACC-
DLPFC coupling on post-error performance, Moran
et al. (2015) found enhanced ERN in anxious individ-
uals served the proposed compensatory function of
counteracting reduced ACC-DLPFC coupling, thereby
stabilising post-error performance relative to lower
anxious individuals.

Finally, error monitoring is likely facilitated by
inhibitory functions. Research by Hoffmann et al.
(2014) suggests ERN reflects inhibition of the error
response to replace it with the correct response.
Thus, enhanced ERN in anxiety is consistent with the
ACT predictions that anxiety impairs the inhibition
function of executive control, requiring a greater
ERN for successful inhibition.

To summarise, anxious individuals often compen-
sate for impaired or inefficient top-down control
involving the DLPFC via the ERN (localised to the
dACC). This compensatory strategy is generally
effective in part because the ERN reflects inhibition
of error responses. However, during conflict and
error monitoring, high-anxious individuals appear
to have weaker coupling between the dACC and
DLPFC, which may result in additional use of
neural resources (possibly involving both the
DLPFC and dACC) to maintain task performance,
although it is not clear how this might affect task
performance.

It is also important to note that bigger N2 and ERN
responses observed in anxious individuals might be
attributable to increased generic need-for-control
signal of the medial frontal cortex known as frontal
midline theta (FMT) (Cavanagh & Frank, 2014), as
FMT has been shown to be heightened in individuals
with high anxiety (Cavanagh et al., 2017; Cavanagh &
Shackman, 2015; Osinsky et al., 2017; Schmidt et al.,
2018), and might reflect a higher general control-
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related resource recruitment employed by high
anxious individuals.

5. A neurofunctional account of ACT:
further factors to consider

5.1. Trait anxiety vs. worry

According to ACT, performance effectiveness and pro-
cessing efficiency deficits during tasks requiring atten-
tional control depend primarily on individual
differences in trait anxiety. However, trait anxiety is
a multifaceted construct (Endler & Kocovski, 2001),
involving cognitive and physiological dimensions.
Worry, considered the cognitive component of
anxiety, is characterised by negative and repetitive
thoughts that are attention-demanding and
consume limited attentional resources, impacting
adversely on top-down attentional control. Moreover,
experimental work has shown that reduced or ineffi-
cient attentional control can maintain and exacerbate
the distracting effects of worry (Armstrong et al., 2011;
Hotton et al., 2018; Stefanopoulou et al., 2014). Of rel-
evance to a neurofunctional account of ACT, worry is
often associated with increased neural activity in brain
areas important for attentional control (Silton et al.,
2010; Spielberg et al., 2013), and associated with
DMN activity (Steinfurth et al., 2017) which, as
explained above, is an important network within the
framework of a neurofunctional account of ACT.
Barker et al. (2018) tested more directly the effect of
worry on activity and connectivity in prefrontal and
cingulate cortices during an attentional control task.
Worry (but not trait anxiety) was associated with
increased activity across CON regions in the ACC
and insula, and FPN regions in the DLPFC and parietal
cortex, findings consistent with ACT. Moreover,
reduced functional connectivity between ACC and
DLPFC was also observed during an emotional inter-
ference task, reflecting the effect of worry on atten-
tional network coupling. However, neither worry nor
trait anxiety predicted task performance. This fMRI
finding is also consistent with ERP studies. Moser
et al. (2013) in a meta-analysis discussed earlier,
found anxiety positively correlated with enhanced
ERN. However, this effect was threefold greater
when anxious apprehension or worry was the
measure of anxiety rather than anxious arousal. Schro-
der et al. (2017) studied the error-preceding positivity
(EPP; an ERP component larger on pre-error trials than
pre-correct trials), which reflects reduced attentional

focus immediately preceding errors. The EPP was
reduced in females with high worry, suggesting they
attempt to compensate for reduced task-focused
attention by engaging in increased target processing.
Moreover, Schroder et al. also found that the reduced
EPP mediated the relationship between worry and
enlarged ERN, further confirming that the ERN
reflects compensatory processing to increase task-
focused attention following mistakes.

5.2. Processing efficiency

Cognitive neuroscience provides compelling evi-
dence that impaired processing efficiency associated
with high trait anxiety (or worry) depends on several
factors. Here we consider some of the main complex-
ities involved. Global conceptualisations of processing
efficiency (i.e. based on notions of resource utilisation
or mental effort) are oversimplified and should mostly
be replaced by more local or specific conceptualis-
ations (Poldrack, 2015). An especially promising
approach involves distinguishing between efficiency
involving task-relevant processing and efficiency
involving task-irrelevant processing. According to
this approach, we should assess task-relevant and
task-irrelevant processing efficiency in high and low
worriers (or high – and low-anxious individuals)
taking account of the temporal sequencing of pro-
cesses during task performance. For example, it is
possible that early in task processing, high-anxious
individuals typically engage in more task-irrelevant
processing than low-anxious ones due to impaired
attentional control. According to a neurofunctional
account of ACT, such task-irrelevant processing of
internal stimuli, i.e. worry, and mind-wandering, may
be associated with activation within the DMN that
perturbs network interactions during the temporal
course of a task. In addition, high-anxious individuals
are also more likely than low-anxious ones to engage
in processing of task-irrelevant external stimuli (e.g.
distractors). Thus, high-anxious individuals exhibit
greater task-irrelevant local inefficiency than low-
anxious ones. Later in task processing, high-anxious
individuals typically engage in more task-relevant
processing than low-anxious ones through their
enhanced use of compensatory strategies to re-
direct processing resources to tasks requiring the
use of executive functions. Enhanced brain activation
in high-anxious individuals associated with such strat-
egies includes the N2 ERP component, the EPP, the
ERN, dACC/CON, and DLPFC/FPN.
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Tentative evidence to support this mechanistic
account comes from fMRI studies reporting that
high-anxious individuals generally have greater
DLPFC activation than low-anxious individuals only
when the current task is attentionally demanding
(e.g. Barker et al., 2018; Basten et al., 2011, 2012;
Bishop, 2009; Santos et al., 2006). Similar findings
have been reported with respect to dACC activation
(Comte et al., 2015; Eisenberger et al., 2005). Whilst
these fMRI studies tell us little about the temporal
dynamics of this process, as the averaging of the
BOLD signal over task ON/OFF blocks is likely to
obscure temporal information, it may be that on
average, high-anxious individuals are able to recruit
these compensatory mechanisms relatively early
during task processing, resulting in a relatively
increased task related BOLD signal in FPN and CON
regions during task ON blocks or events. In fact,
some behavioural and ERP studies have already
addressed the presence of dynamic, trial-to-trial vari-
ations of resource recruitment in anxiety that are
responsive to task demands and/or characteristics
(Booth & Peker, 2017; Jeong & Cho, 2021; Larson
et al., 2013; Osinsky et al., 2010; Osinsky et al., 2012;
Suárez-Pellicioni et al., 2014; Yu et al., 2018). Hence,
more sophisticated analytical approaches to BOLD
time series analysis are needed to truly test this
prediction.

5.3. Connectivity

Another factor of relevance to assessing efficiency in
high – and low-anxious individuals is functional con-
nectivity between brain areas involved in attentional
control and task performance. There is increasing evi-
dence high anxiety is associated with reduced func-
tional connectivity between ACC and DLPFC (or
CON and DLPFC) (Barker et al., 2018; Basten et al.,
2011; Comte et al., 2015). Indeed, a recent fMRI
study using real-time neurofeedback shows that train-
ing participants to increase functional connectivity
between attentional networks reduces anxiety levels
in anxious individuals (Morgenroth et al., 2020).
Servaas et al. (2015) found individuals high in neuroti-
cism (highly correlated with trait anxiety) also had
impaired connectivity within brain networks (the
default mode network; the fronto-parietal network).

Dysfunctional connectivity is also found in high
worriers. Weber-Goericke and Muehlhan (2019)
reported a meta-analysis of fMRI studies. High wor-
riers had strong activation in brain areas associated

with language processing (e.g. middle frontal gyrus;
inferior frontal gyrus; anterior insula), and there
were strong functional connections between these
areas and DMN. Thus, high worriers may have
strong connections among brain areas associated
with ongoing internally oriented task-irrelevant pro-
cessing. These strong connections may affect
network switching and interactions during task pro-
cessing and reflect their impaired attentional control
and processing inefficiency. However, more research
is needed to better understand the complex
network interactions and dynamics, e.g. anticorrela-
tions between the FPN and DMN and how these inter-
actions are affected by worry.

6. Future research directions and
implications for novel intervention for
anxiety

Better fMRI task designs are required to examine how
FPN, CON and DMN activity is modulated interactively
by trait anxiety and temporally changing task
demands. Neurofunctionally, ACT predicts a positive
association between trait anxiety and FPN activation
during tasks requiring high levels of executive pro-
cesses. An alternative, more targeted approach to
assessing the effects of anxiety on FPN activity, con-
nectivity and temporal dynamics will be important
for understanding the processing inefficiency associ-
ated with high anxiety. Indeed, establishing a better
understanding of the temporal dynamics of FPN,
CON and DMN and how these networks interact
during task processing and attentional control are
important. Recently, a number of analytic approaches
have been developed that can be applied to the
understanding of network temporal dynamic and
interaction. For example, finite-impulse response
function (FIR) had been used to quantify the
dynamic regulation of DMN and FPN networks
(Hugdahl et al., 2019). This and similar fMRI analyses
approaches are likely to be suitable for fMRI studies
that aim to understand how these (and other) net-
works interact during different task conditions, and,
how these interactions are affected by worry and
trait anxiety.

Better mechanistic models will ultimately provide
critical insights into the development of new neuro-
cognitive interventions for anxiety. Behaviourally,
experimental work has shown that reduced or ineffi-
cient attentional control can maintain and exacerbate
the distracting effects of anxiety (Borkovec & Ruscio,
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2001; Leigh & Hirsch, 2011; Stefanopoulou et al.,
2014). Poor attentional control may also limit the
efficacy of psychological interventions for anxiety
(e.g. CBT) in many individuals (Covin et al., 2008; Han-
rahan et al., 2013), because they do not have the
attentional resources required to implement effortful
psychological techniques at times of heightened
anxiety – when they are most required. Thus, enhan-
cing attentional control in anxious people and
helping them learn to utilise this capacity may
reduce anxiety, and also be useful as an augmentation
strategy to improve the efficacy of existing psycho-
logical interventions that require attentional
resources (Hirsch et al., 2020). Indeed, training to
enhance attentional control and/or executive func-
tions can reduce anxiety. Sari et al. (2016) trained
working memory to enhance attentional control in
high trait-anxious individuals. Hotton et al. (2018)
found improvement during working memory training
correlated with reductions in worry in high worriers.
Hadwin and Richards (2016) found working memory
training increased inhibitory control and reduced
anxiety symptoms. Moser et al. (2015) found atten-
tional training reduced state anxiety. Recent studies
have also shown similar patterns of results (i.e.
reduced anxiety and improved task performance fol-
lowing training) (Lotfi et al., 2021; Lukasik et al.,
2019; Zhao et al., 2020).

Morgenroth et al. (2020) used fMRI neurofeedback
training to up-regulate functional connectivity in
attentional networks, between the DLPFC and ACC.
Relative to a sham condition, connectivity-based real
time neurofeedback training significantly reduced
anxiety in a group of high trait anxiety participants.
New research is needed to understand the potential
for brain stimulation techniques such as tDCS and
tACS to enhance attentional control in anxious indi-
viduals. Recently, tACS has been used to enhance cog-
nitive performance by non-invasively modulating
intrinsic oscillatory neural activity (Klink et al., 2020).
An advantage of tACS relative to other brain stimu-
lation techniques is that it can target specific brain
oscillations or frequencies. EEG studies of cognitive
and attentional control generally report that these
cognitive abilities are related to the alpha range fre-
quency band, and there is also evidence that tACS
can improve function in the brain’s attentional net-
works during and after the stimulation period (see
Klink et al., 2020 for a review). In recent years, a
small number of experimental medicine studies
have demonstrated that tACS can reduce symptoms

in clinical populations (Clancy et al., 2018; Grover
et al., 2021). Therefore, ACT may provide useful
mechanistic information for future interventional
studies testing the efficacy of dietary interventions
in large cohorts, particularly in patients with anxiety
disorders and/or individuals with high trait anxiety
and/or worry.

7. Limitations and conclusions

Before drawing any conclusions, it is first necessary to
discuss the limitations of the neurofunctional account
of ACT proposed above. First, ACT assumes that differ-
ences in task processing and performance between
high and low-anxious groups are strongly influenced
by individual differences in trait anxiety. Within a neu-
rofunctional account of ACT, worry, rather than trait
anxiety per se, is the central cognitive construct that
affects attentional control in trait anxious individuals
i.e. the cognitive dimension of trait anxiety, that co-
opts available cognitive resources that would other-
wise be allocated to task processing, thus leading to
inefficient task processing (see Figure 2).

Whilst the physiological effects of trait anxiety may
also act on attentional control (Heller et al., 1997),
there is currently a limited understanding of its
precise role in anxiety-related cognitive dysfunction.
This may also be an important distinction at a
neural level, as the physiological component of
anxiety is reported to be associated with distinct pat-
terns of brain activity, i.e. in parietal vigilance net-
works during the presentation of threat stimuli
(Engels et al., 2007). However, to date, the vast
majority of neuroimaging research has not focused
directly on worry or assessed levels of worry in combi-
nation with trait anxiety measures. This limitation
needs to be addressed in future neuroimaging
studies of attentional control mechanisms, in particu-
lar studies that dissociate the effects of worry and trait
anxiety on brain network function and interactions.

Second, at behavioural and neurofunctional levels,
the effectiveness/efficiency distinction remains
difficult to parse at times and is dependent on the
upon the task being used and on the method of per-
formance measurement. A more parsimonious
definition of task effectiveness may be the capacity
for individuals to execute attentional processes in
line with attentional goals. As such, the instructions
given to participants before a task may significantly
affect the ‘effectiveness/efficiency trade-off’. Further-
more, the links between cognitive processes and
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associated patterns of brain activation are often rela-
tively indirect are there are undoubtedly complex
interactions between task-relevant and task-irrelevant
processes not explicitly considered by a neurofunc-
tional account of ACT that are important for task per-
formance. In particular, we need to use more
sophisticated techniques to assess more precisely
the strength and time course of both types of pro-
cesses. For example, our neurofunctional account of
ACT predicts the time course of FPN activity during
attentionally demanding tasks, and along with more
sophisticated EEG approaches, magnetoencephalo-
graphy (MEG) could be used to test these predictions
more directly than fMRI.

To conclude, neuroimaging research has allowed
theory to move well beyond the simplistic assumption
within ACT that high-anxious individuals are globally
inefficient compared to low-anxious ones because
they use more processing resources (or mental effort)
but achieve only comparable performance. fMRI and
ERP data have enabled us to learn more about the
mechanistic nature and extent of imapired or inefficient
processing in high-anxious individuals, and to some
extent, how this may vary over the temporal course of
task processing as a function of interactions between
at least three brain networks (FPN; CON; DMN). This
mechanistic account, made possible by neuroimaging
studies, also allows us to gain a greater understanding
of how dysfunctional interactions in these brain net-
works, when tasks require executive functions, may
affect processingefficiency.One reason for suchproces-
sing inefficiency may be impaired functional connec-
tivity among brain areas associated with attentional
control in high-anxious individuals.

In sum, considerable progress has been made in
identifying the different kinds of processing ineffi-
ciency exhibited by high-anxious individuals (see
Figures 1 and 2). Neuroimaging data has allowed us
to construct a more complex and nuanced account
of processing inefficiency within the context of ACT.
It is clear the optimal research approach is both com-
prehensive and theoretically driven: effective testing
of the new predictions that have arisen from this neu-
rofunctional account of ACT will require assessing
activity concurrently in the brain networks identified
in the theory using techniques that can provide a
good temporal resolution.
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