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Abstract. There has been considerable debate about the de-
gree to which climate has driven societal changes in the
eastern Mediterranean region, partly through reliance on a
limited number of qualitative records of climate changes
and partly reflecting the need to disentangle the joint im-
pact of changes in different aspects of climate. Here, we use
tolerance-weighted, weighted-averaging partial least squares
to derive reconstructions of the mean temperature of the cold-
est month (MTCO), mean temperature of the warmest month
(MTWA), growing degree days above a threshold of 0 ◦C
(GDD0), and plant-available moisture, which is represented
by the ratio of modelled actual to equilibrium evapotranspi-
ration (α) and corrected for past CO2 changes. This is done
for 71 individual pollen records from the eastern Mediter-
ranean region covering part or all of the interval from 12.3 ka
to the present. We use these reconstructions to create re-
gional composites that illustrate the long-term trends in each
variable. We compare these composites with transient cli-
mate model simulations to explore potential causes of the
observed trends. We show that the glacial–Holocene tran-
sition and the early part of the Holocene was characterised
by conditions colder than the present. Rapid increases in
temperature occurred between ca. 10.3 and 9.3 ka, consid-

erably after the end of the Younger Dryas. Although the time
series are characterised by centennial to millennial oscilla-
tions, the MTCO showed a gradual increase from 9 ka to the
present, consistent with the expectation that winter tempera-
tures were forced by orbitally induced increases in insolation
during the Holocene. The MTWA also showed an increas-
ing trend from 9 ka and reached a maximum of ca. 1.5 ◦C
greater than the present at ca. 4.5 and 5 ka, followed by a
gradual decline towards present-day conditions. A delayed
response to summer insolation changes is likely a reflection
of the persistence of the Laurentide and Fennoscandian ice
sheets; subsequent summer cooling is consistent with the ex-
pected response to insolation changes. Plant-available mois-
ture increased rapidly after 11 ka, and conditions were wet-
ter than today between 10 and 6 ka, but thereafter, α de-
clined gradually. These trends likely reflect changes in at-
mospheric circulation and moisture advection into the region
and were probably too small to influence summer tempera-
ture through land–surface feedbacks. Differences in the sim-
ulated trajectory of α in different models highlight the diffi-
culties in reproducing circulation-driven moisture advection
into the eastern Mediterranean.

Published by Copernicus Publications on behalf of the European Geosciences Union.
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1 Introduction

The eastern Mediterranean region is a critical region for ex-
amining the long-term interactions between climate and past
societies because of the early adoption of agriculture in the
region, which has been widely associated with the rapid
warming at the end of the Younger Dryas (Belfer-Cohen and
Goring-Morris, 2011). Societal collapse and large-scale mi-
grations have been associated with climates less favourable
to agriculture during the 8.2 ka event (Weninger et al., 2006)
or to major changes in agricultural practices (Roffet-Salque
et al., 2018). Subsequent periods of less favourable climate,
particularly prolonged droughts, have been associated with
the fall of the Akkadian Empire, ca. 4.2 ka (Cookson et al.,
2019), and the end of the Late Bronze Age and the begin-
ning of the Greek Dark Ages, ca. 3.2 ka (Kaniewski et al.,
2013; Drake, 2012). However, the attribution of changes in
human society to climate changes is not universally accepted.
Flohr et al. (2016), for example, analysed radiocarbon-dated
archaeological sites for evidence of societal changes in re-
sponse to climate changes in the early Holocene, particu-
larly the 8.2 ka event, and found no evidence of large-scale
site abandonment or migration, although there were indica-
tions of local adaptations. However, since Flohr et al. (2016)
did not compare the archaeological records to region-specific
climate reconstructions, it is difficult to assess how far local
responses might reflect differences in climate between the
sites. Even the societal response to the early Holocene warm-
ing appears to have differed across the region (Roberts et al.,
2018).

The need to understand the interactions between climate
and past societies in the eastern Mediterranean is given fur-
ther impetus because human modification of the landscape
has the potential to affect climate directly through changes
in land surface properties. The degree to which human mod-
ifications of the landscape had a significant impact on global
climate before the pre-industrial period is debated (Ruddi-
man, 2003; Joos et al., 2004; Kaplan et al., 2011; Singarayer
et al., 2011; Mitchell et al., 2013; Stocker et al., 2017), but
these impacts were likely to be more important in regions
with a long history of settlement and agricultural activities
(Harrison et al., 2020).

Much of our current understanding of climate changes in
the eastern Mediterranean region is based on the qualita-
tive interpretation of individual records (e.g. Roberts et al.,
2019). Oxygen isotope records from speleothems or lake sed-
iments have been used to infer changes in moisture avail-
ability through the Holocene (e.g. Bar-Matthews et al., 1997;
Cheng et al., 2015; Dean et al., 2015; Burstyn et al., 2019),
as have pollen-based reconstructions of changes in vegeta-
tion (e.g. Bottema, 1995; Denèfle et al., 2000; Sadori et al.,
2011). Pollen records can also be used to make quantitative
reconstructions of seasonal temperatures and precipitation
or plant-available water (Bartlein et al., 2011; Chevalier et
al., 2020). Quantitative reconstructions of past climates have

been made for individual records from the eastern Mediter-
ranean region (e.g. Cheddadi and Khater, 2016; Magyari et
al., 2019), and syntheses of pollen-based quantitative climate
reconstructions have included sites from this region (Davis
et al., 2003; Mauri et al., 2015; Herzschuh et al., 2022).
Davis et al. (2003) provided a composite curve of seasonal
temperature changes but not moisture changes; both summer
and winter temperatures showed very little variation (< 1 ◦C)
through most of the Holocene. Mauri et al. (2015) is an up-
dated version of the Davis et al. (2003) reconstructions, with
more sites included but showing similarly muted temperate
changes in the eastern Mediterranean region. Herzschuh et
al. (2022) showed more homogenous changes in both tem-
perature and precipitation across the eastern Mediterranean
region, but it is difficult to compare the two reconstruc-
tions directly because they used different reconstruction tech-
niques. None of the existing reconstructions takes account
of the impact of changing CO2 levels on vegetation, which
could potentially affect the reconstructions of moisture vari-
ables (Prentice et al., 2022a). Thus, there is a need for well-
founded reconstructions of climate, particularly climate vari-
ables that are relevant for human occupation and agriculture,
to be able to address questions about the interactions between
climate and society in the eastern Mediterranean region.

Here, we provide new quantitative reconstructions of
seasonal temperature and plant-available moisture for 71
sites from the eastern Mediterranean region (defined by the
eastern Mediterranean–Black Sea–Caspian corridor, EMB-
SeCBIO, project as the region between 29–49◦ N, 20 and
62◦ E), including a correction for the impact of changing
CO2 levels on plant-available moisture reconstructions. We
use these reconstructions to document the regional trends in
climate from 12.3 ka to the present. We then explore how far
these trends can be explained by changes in external forc-
ing by comparing the reconstructions with transient climate
model simulations.

2 Methods

2.1 Modern pollen and climate data

The modern pollen data set was obtained from version 1
of the SPECIAL Modern Pollen Data Set for Climate Re-
constructions (SMPDSv1; Harrison, 2019), which provides
relative abundance data from 6459 terrestrial sites from Eu-
rope, the Middle East, and northern Eurasia and has been
assembled from multiple public sources or provided by the
original authors. The SMPDS pollen records have been taxo-
nomically standardised, filtered to remove obligate aquatics,
insectivorous species, introduced species, or taxa that only
occur in cultivation. The removal of cultivars is designed to
minimise the influence of anthropogenic signals on the re-
constructions. We then grouped taxa with only sporadic oc-
currences into higher taxonomic levels (genus, sub-family,
or family). Consequently, the data set provides relative abun-
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dance data for 247 pollen taxa (Table S1 in the Supplement).
We used the 5840 SMPDS sites from the area between 29
and 75◦ N and 20◦W, 62◦ E to construct the training data set
(Fig. S1 in the Supplement); the sampling outside this box
is limited and likely not representative of the diversity of the
climate gradients. At sites with multiple modern samples, we
averaged the taxon abundances across all samples to min-
imise the over-representation of some localities and hence
specific climates, in the training data set. We used the 195
pollen taxa that occurred at more than 10 sites (Table S1) to
derive climate–abundance relationships.

We focus on reconstructing bioclimatic variables that fun-
damentally control plant distribution, specifically related to
winter temperature limits, accumulated summer warmth, and
plant-available moisture (Harrison et al., 2010). The biocli-
matic data for each modern site was obtained from Harri-
son et al. (2019) through a data set that provides estimates
of mean temperature of the coldest month (MTCO), growing
degree days above a base level of 0 ◦C (GDD0), and a mois-
ture index (MI) defined as the ratio of annual precipitation
to annual potential evapotranspiration at each modern pollen
site, which is derived using a geographically weighted re-
gression of version 2.0 of the Climate Research Unit (CRU)
long-term gridded climatology at 10 arcmin resolution (CRU
CL v2.0; New et al., 2002). MTCO and GDD0 were taken
directly from the data set. Since Harrison (2019) do not pro-
vide mean temperature of the warmest month (MTWA), we
calculated this based on the relationship between MTCO and
GDD0 given in Wei et al. (2021). We derived an alternative
moisture index, α, which is the ratio between modelled actual
and equilibrium evapotranspiration from MI, following Liu
et al. (2020). MI and α both provide good indices of plant-
available moisture, but since α has a natural limit in wetter
conditions, it is more suitable for discriminating differences
in drier climates.

2.2 Fossil pollen data

The fossil pollen data set for the eastern Mediterranean re-
gion was obtained from the eastern Mediterranean–Black
Sea–Caspian corridor (EMBSeCBIO) database (Harrison et
al., 2021), which contains information from 187 records from
the region between 29 and 49◦ N and between 20 and 62◦ E.
(Note that this is a more limited region than the one used
for the modern training data set.) We discarded records (a)
from marine environments or very large lakes (> 500 km2),
(b) with no radiocarbon dating, (c) where the age of the
youngest pollen sample was unknown, (d) where there is a
hiatus after the youngest radiocarbon date, (e) where more
than half of the radiocarbon dates were rejected by the origi-
nal authors, and (f) where more than half of the ages were
based on pollen correlation with other radiocarbon-dated
records. However, we kept records where there is a hiatus
but where there are sufficient radiocarbon dates above the
hiatus to create an age model for the post-hiatus part of the

Figure 1. Distribution of pollen records used in the climate recon-
structions. The colour coding shows the length of the record.

record. We constructed new age models for all the remain-
ing sites (121) using the IntCal20 calibration curve (Reimer
et al., 2020) and the rbacon R package (Blaauw et al., 2021)
in the framework of the AgeR R package (Villegas-Diaz et
al., 2021). Some of these records have no modern samples,
where modern was defined as 0–300 years before present,
and thus could not be used to calculate climate anomalies.
As a result, 71 pollen records (Fig. 1; Table S2) were used
for the climate reconstructions. These records have a mean
length of 6594 years and a mean resolution of 228 years.
The records were taxonomically standardised for consistency
with the training data set.

2.3 Climate reconstructions

We used tolerance-weighted, weighted-averaging partial
least squares (fxTWA-PLS; Liu et al., 2020) regression to
model the relationships between taxon abundances and in-
dividual climate variables in the modern training data set
and then applied these relationships to reconstruct past cli-
mate using the fossil assemblages. fxTWA-PLS reduces the
known tendency of regression methods to compress climate
reconstructions towards the middle of the sampled range by
applying a sampling frequency correction to reduce the in-
fluence of uneven sampling of climate space and by weight-
ing the contribution of individual taxa according to their cli-
mate tolerance (Liu et al., 2020). Version 2 of fxTWA-PLS
(fxTWA-PLS2; Liu et al., 2023), applied here, uses P-spline
smoothing to derive the frequency correction and also ap-
plies the correction both in estimating climate optima and
in the regression itself, producing a further improvement in
model performance relative to version 1, as published by Liu
et al. (2020).

We evaluated the fxTWA-PLS models by comparing the
reconstructions against observations using pseudo-removed
leave-out cross-validation, where one site was randomly se-
lected as a test site and geographically and climatically sim-
ilar sites (pseudo sites) were removed from the training set

https://doi.org/10.5194/cp-19-2093-2023 Clim. Past, 19, 2093–2108, 2023
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to avoid redundancy in the climate information inflating the
cross-validation. We selected the last significant component
(p value ≤ 0.01) and assessed model performance using the
root mean square error of the prediction (RMSEP). The de-
gree of compression was assessed using linear regression,
and local compression was assessed by loess regression (loc-
fit). Climate reconstructions were made for every sample in
each fossil record using the best models, and sample-specific
errors were estimated via bootstrapping. We applied a cor-
rection factor (Prentice et al., 2022a) to the reconstructions of
α to account for the impact of changes in atmospheric CO2
levels on water use efficiency, specifically the increased wa-
ter use efficiency under high CO2 levels characteristic of the
recent past and the low CO2 levels that would have reduced
water use efficiency during the Late Glacial period and thus
could have influenced the reconstructions during the earliest
part of the records. The correction was implemented through
the package codos: 0.0.2 (Prentice et al., 2022b), with past
CO2 concentration values derived from the EPICA Dome C
record (Bereiter et al., 2015).

2.4 Construction of climate time series

To obtain climate time series representative of the regional
trends in climate, we first screened the reconstructions to
remove individual samples with (a) low effective diversity
(< 2), as measured using Hill’s N2 diversity measure (Hill,
1973), which could indicate low pollen counts or local con-
tamination; and (b) sample-specific errors above the 0.95
quantile to remove obvious outliers. This screening resulted
in the exclusion of only a small number of individual samples
(see Fig. S2). We then averaged the reconstructed values in
300-year bins (slightly larger than the average resolution of
the records at 228 years) with 50 % overlap. The first bin cen-
tred on 150 years before present, and subsequent bins were
centred at 150-year increments throughout the record. We ex-
cluded any bins with only one sample. The binned values of
individual sites were averaged to produce a regional compos-
ite of the anomalies for each climate variable, where the mod-
ern baseline was taken as the first 300-year bin centred on
150 years before present. These time series were smoothed
using locally weighted regression (Cleveland and Devlin,
1988), with a window width of 1000 years (half-window
width 500 years) and fixed target points in time to highlight
the long-term trends. Confidence intervals (5th and 95th per-
centiles) for each composite were generated by bootstrap re-
sampling by site over 1000 iterations. We examined the im-
pact of the CO2 correction on reconstructed α (Fig. S3); this
had no major effect on the reconstructed trends, except dur-
ing the earliest part of the record.

Figure 2. Time series of reconstructed anomalies of mean temper-
ature of the coldest month (MTCO) for individual records. Entities
are arranged by latitude (N–S). Information about the numbered in-
dividual sites can be found in Table S1.

2.5 Climate model simulations

We compared the reconstructed climate changes with tran-
sient climate model simulations of the response to external
forcing to determine the extent that the reconstructed climate
changes reflect changes in known forcing. We used transient
simulations of the response to orbital and greenhouse gas
forcing in the later Holocene from the following four models
participating in the PAleao-Constraints on Monsoon Evolu-
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tion and Dynamics (PACMEDY) project (Carré et al., 2021):
the MPI (Max Planck Institute) Earth System Model ver-
sion 1.2 (Dallmeyer et al., 2020), the AWI (Alfred Wegener
Institute) Earth System Model version 2 (Sidorenko et al.,
2019), and two versions of the IPSL (Institut Pierre-Simon
Laplace) Earth System Model. The IPSL and AWI simula-
tions were run from 6 ka to 1950 CE and the MPI simulation
from 7.95 ka to 1850 CE. We used a longer transient simula-
tion covering the period from 11.5 ka that was made with the
LOVECLIM model (Goosse et al., 2010), which, in addition
to orbital and greenhouse gas forcing, accounts for the wan-
ing of the Laurentide and Fennoscandian ice sheets (Zhang
et al., 2016). Finally, we used two transient simulations from
22 ka to the present that were made using the Community
Climate System Model (CCSM3; Collins et al., 2006). Both
were forced by changes in orbital configuration, atmospheric
greenhouse gas concentrations, continental ice sheets, and
meltwater fluxes but differ in the configuration of the melt-
water forcing applied after the Bølling warming (14.7 ka).
In the first simulation (TRACE-21k-I; Liu et al., 2009), there
was a sustained meltwater flux of∼ 0.1 Sv from the Northern
Hemisphere ice sheets to the Arctic and North Atlantic un-
til ca. 6 ka and a continuous inflow of water from the North
Pacific into the Arctic after the opening of the Bering Strait.
The second simulation (TRACE-21k-II; He and Clark, 2022)
had no meltwater flux during the Bølling warming or the
Holocene but applied a flux of ∼ 0.17 Sv to the North At-
lantic during the Younger Dryas (12.9–11.7 ka). The differ-
ence in meltwater forcing results in a much stronger Atlantic
Meridional Overturning Circulation during the Holocene in
the TRACE-21k-II simulation compared to the TRACE-21k-
I simulation. Details of the model simulations are given in
Table S3. The use of multiple simulations allows the identifi-
cation of robust signals that are not model-dependent (see,
e.g., Carré et al., 2021) and also the separation of the ef-
fects of different forcings. The TRACE-21k-I data were ad-
justed to reflect the changing length of months during the
Holocene (related to the eccentricity of Earth’s orbit and the
precession-determined time of year of perihelion), whereas
the other simulations were not. However, this makes little
practical difference for the selection of variables used here
(Fig. S4).

Outputs from each simulation were extracted for land grid
cells in the EMBSeCBIO domain (29–49◦ N, 20–55◦ E; this
region extends slightly less far eastwards than the EMB-
SeCBIO region as originally defined, but there are no pollen
sites beyond 55◦ E). The MTCO and MTWA were extracted
directly; GDD0 was obtained by deriving daily temperature
values from monthly data using a mean-preserving autore-
gressive interpolation function (Rymes and Myers, 2001).
Daily values of cloud cover fraction and precipitation were
obtained from monthly data in the same way and used to
estimate MI, i.e. the ratio of annual precipitation to annual
potential evapotranspiration, through the R package smpds
(Villegas-Diaz and Harrison, 2022) before converting this to

α, following Liu et al. (2020). For consistency with the re-
constructed time series, climate anomalies for 30-year bins
for each land grid cell within the EMBSeCBIO domain were
calculated using the interval after 300 years before present
as the modern baseline. Since the spatial resolution of the
models varies (Table S3), and in any case is coarser than the
sampling resolution of the individual pollen records preclud-
ing direct comparisons except at a regional scale, we used all
of the land grid cells within the EMBSeCBIO domain and
did not attempt to select grid cells coincident with the loca-
tion of pollen data. A composite was produced by averaging
the grid cell time series, which was then smoothed, using lo-
cally weighted regression (Cleveland and Devlin, 1988) with
a window width of 1000 years (i.e. a half-window width of
500 years) and fixed target points in time. Confidence inter-
vals (5th and 95th percentiles) for each composite were gen-
erated by bootstrap resampling by grid cell over 1000 itera-
tions.

3 Results

3.1 Performance of the fxTWA-PLS statistical model

The assessment of the model through cross-validation
showed that it reproduces the modern climate variables
reasonably well (Table 1; Table S4). The best perfor-
mance is achieved by α (R2

= 0.73; RMSEP= 0.15) and
MTCO (R2

= 0.73; RMSEP 3.67). The models for GDD0
(R2
= 0.69; RMSEP= 880) and MTWA (R2

= 0.63, RM-
SEP= 3.22) were also acceptable. The slopes of the regres-
sions ranged from 0.78 (MTWA) to 0.86 (MTCO), indicating
that the degree of compression in the reconstructions in small
(Table 1). Thus, the downcore fxTWA-PLS reconstructions
of all the climate variables can be considered to be robust
and reliable.

3.2 Holocene climate evolution in the region

Down-core reconstructions showed broadly coherent signals,
although there was variation in both the timing and magni-
tude of climate changes across the sites that reflected differ-
ences in latitude and elevation (Figs. 2, 3, 4). Nevertheless,
the records indicated coherent regional trends over the past
12 kyr.

Winter temperature showed a cooling trend between 12
and 11 ka, with the reconstructed MTCO ca. 8 ◦C lower than
the present at 11 ka (Fig. 5). There was a moderate increase
in the MTCO after 11 ka, followed by a more pronounced
increase of ca. 5 ◦C between 10.3 and 9.3 ka. Winter temper-
atures were only ca. 2 ◦C lower than the present at the end
of this rapid warming phase. There are relatively large un-
certainties in the MTCO reconstructions prior to 10.3 ka, so
the trends in the early part of the record are not well con-
strained. However, the phase of rapid warming between 10.3
and 9.3 ka (and the subsequent part of the record) is well

https://doi.org/10.5194/cp-19-2093-2023 Clim. Past, 19, 2093–2108, 2023
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Table 1. Leave-out cross-validation fitness of fxTWA-PLSv2 for the mean temperature of the coldest month (MTCO), mean temperature
of the warmest month (MTWA), growing degree days above base level 0 ◦C (GDD0), and plant-available moisture (α), with a P-spline-
smoothed fx estimation, using bins of 0.02, 0.02, and 0.002, showing results for the selected component for each variable. RMSEP is the root
mean square error of the prediction. P assesses whether using the current number of components is significantly different from using one
component less. The degree of overall compression is assessed by linear regression of the cross-validated reconstructions onto the climate
variable, where b1 and b1.se are the slope and the standard error of the slope, respectively. The overall compression is reduced as the slope
approaches 1. Full details for all the components are given in Table S4.

Variable Selected R2 Average RMSEP P b1 b1.se
component bias

MTCO 4 0.73 −0.22 3.67 0.001 0.86 0.01
MTWA 2 0.63 −0.10 3.22 0.001 0.78 0.01
GDD0 2 0.69 56.46 880.33 0.001 0.79 0.01
α 2 0.73 −0.01 0.15 0.001 0.80 0.01

constrained. MTCO continued to increase gradually through
the Holocene, although multi-centennial to millennial oscil-
lations were superimposed on the general trend.

The initial trends in the summer temperature were broadly
similar to those in MTCO, with a cooling between 12.3
and 11 ka and the reconstructed MTWA ca. 2 ◦C lower than
the present at 11 ka (Fig. 5). Summer temperature increased
thereafter, although with pronounced millennial oscillations,
up to ca. 4.5 ka when the MTWA was ca. 1.5 ◦C higher than
the present. There was a gradual decrease in summer tem-
perature after ca. 4.5 ka. The GDD0 reconstructions showed
similar trends to the MTWA, reaching maximum values
around 4.5 ka when the growing season was ca. 150 degree
days greater than today. The subsequent decline in GDD0
was somewhat flatter, which presumably reflects the influ-
ence of still-increasing winter temperatures on the length of
the growing season.

The trends in α differ from the trends in temperature. Con-
ditions were similar to the present at around 11.5 ka (Fig. 5).
Between 11 and 10 ka, there was a rapid increase in α. Values
of α were higher than the present (> 0.1) between 10 to 6 ka.
Subsequently, there was a gradual and continuous decrease
in α until the present time. The correction for the physiolog-
ical impact of CO2 levels was, as expected, largest during
intervals when CO2 was lowest (i.e. prior to 11 ka; Fig. S4).
The reconstructions with and without the correction are not
statistically different between 10 and 5 ka, when taking ac-
count the uncertainties in the reconstructions, but the correc-
tion produced marginally wetter reconstructions after 5 ka,
with a maximum difference of 0.08. However, the gradually
declining trend in moisture availability towards the present is
not affected by the CO2 correction.

3.3 Comparison with climate simulations

The TRACE-21k-I simulation (Fig. 6) shows an initial win-
ter warming between 12 and 11 ka, but the MTCO is still
ca. 3 ◦C lower than the present at 11 ka. There is a grad-
ual increase in MTCO from 11 ka onwards, although with

centennial-scale variability and a more pronounced oscilla-
tion corresponding to the 8.2 ka event. The TRACE-21k-II
simulation is initially slightly colder and displays a two-step
warming, with a peak at 8.5 ka, when MTCO is ca. 1.5 ◦C
lower than the present. The later Holocene trend is simi-
lar to that shown in TRACE-21k-I. The LOVECLIM sim-
ulation produced generally warmer conditions than either of
the TRACE simulations, where MTCO is ca. 2.5 ◦C lower
than the present at 11 ka, but the two-step warming is more
pronounced, and peak warming occurs somewhat later, at
ca. 7.5 ka, when the MTCO was only ca. 0.25 ◦C lower than
the present (Fig. 7). While all three models show a rapid
warming comparable to the reconstructed warming between
10.3 and 9.3 ka, it is clear that the differences in the ice sheet
and meltwater forcings affect both the magnitude and the
timing of this trend. The overall magnitude of the warm-
ing after 9 ka in the TRACE-21k-I simulation is consistent
with the reconstructions of the MTCO (anomalies of 2.4
and 2.6 ◦C for model and data, respectively). The mid to
late Holocene trend is similar in the PACMEDY simulations
(Fig. 8) to both TRACE-21k simulations, both in sign and
in magnitude (ca. 1 ◦C between 6 ka and the present), and
both are consistent with the reconstructions (−0.9± 0.7 ◦C).
The continuous increase in MTCO is consistent with the
change in winter insolation. Given the similarities between
the PACMEDY simulations (which only include orbital and
greenhouse gas forcing) and the LOVECLIM and TRACE
simulations, which also include the forcing associated with
the relict Laurentide and Fennoscandian ice sheets, it seems
likely that orbital forcing was the main driver of winter
temperatures in the EMBSeCBIO region during the later
Holocene.

The TRACE-21k-I simulation shows peak summer tem-
peratures between 11 and 9 ka, when the MTWA was ca. 3 ◦C
greater than the present (Fig. 6). The TRACE-21K-II simula-
tions are initially colder than the TRACE-21k-I simulation,
and the peak in summer temperatures occurs at 9 ka, when
the MTWA was ca. 2.5 ◦C greater than the present (Fig. 6).
The LOVECLIM simulation is warmer than the present from
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Figure 3. Time series of reconstructed anomalies of mean tempera-
ture of the warmest month (MTWA) for individual records. Entities
are arranged by latitude (N–S). Information about the numbered in-
dividual sites can be found in Table S1.

11.5 ka, but peak warming is only reached at 7.5 ka when
the MTWA is ca. 2 ◦C (Fig. 7). All three simulations show
a gradual decrease in the summer temperature through the
Holocene after this initial peak. This decreasing trend is also
seen in the PACMEDY simulations from 6 ka (or 8 ka in the
case of the MPI simulation) onwards (Fig. 8), and the mag-
nitude of the change over this interval (ca. 2 ◦C from 6 ka
onwards) is similar to that shown by the TRACE and the
LOVECLIM simulations. This similarity suggests that the

Figure 4. Time series of reconstructed anomalies of plant-available
moisture, expressed as the ratio between potential and actual evap-
otranspiration (α), at individual sites. A correction to account for
the direct physiological impacts of CO2 on plant growth has been
applied to the reconstructed α. Entities are arranged by latitude (N–
S). Information about the numbered individual sites can be found in
Table S1.

simulated response is a direct reflection of the change in or-
bital forcing. However, the reconstructed changes in summer
temperature do not show this gradual decline. Reconstructed
MTWA is ca. 4 ◦C colder than the model predictions at 9 ka.
The reconstructions show a gradual increase in the MTWA
from 9 to 4.5 ka. Changes in reconstructed temperatures at
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Figure 5. Composite changes in reconstructed mean temperature
of the coldest month (MTCO), mean temperature of the warmest
month (MTWA), growing degree days above a base level of 0 ◦C
(GDD0), and plant-available moisture expressed as the ratio be-
tween potential and actual evapotranspiration (α). A correction to
account for the direct physiological impacts of CO2 on plant growth
has been applied to the reconstructions of α. The dark blue line is
a loess smoothed curve through the reconstruction, with a window
half-width of 500 years; the green shading shows the uncertainties
based on 1000 bootstrap resampling of the records. The bottom plot
shows the number of records used to create the composite through
time.

4.5 ka are of a similar magnitude to the simulated tempera-
tures at this time (ca. 1 ◦C greater than the present), although
the late Holocene is marked by a cooling trend, as seen in the
simulations. Thus, while the simulated late Holocene trend is

Figure 6. Simulated regional changes in mean temperature of the
coldest month (MTCO), mean temperature of the warmest month
(MTWA), growing degree days above a base level of 0 ◦C (GDD0),
and plant-available moisture expressed as the ratio between poten-
tial and actual evapotranspiration (α) in the EMBSeCBIO domain
from the TRACE-21K-I (green) and TRACE-21K-II (red) transient
simulations. It is not possible to calculate changes in α for the
TRACE-21K-II simulation from the available data. Loess smoothed
curves were drawn using a window half-width of 500 years, and the
envelope was obtained through 1000 bootstrap resampling of the
sequences. The top plot shows the changes in summer and winter
insolation (Wm−2) at 40◦ N.

consistent with orbital forcing being the main driver of sum-
mer temperatures in the EMBSeCBIO region, the early to
mid Holocene trend is not. Previous modelling studies have
suggested that the timing of peak warmth differs in differ-
ent regions of Europe and is associated with the impact of
the Fennoscandian ice sheet on regional climates (Renssen
et al., 2009; Blascheck and Renssen, 2013; Zhang et al.,
2016). The differences in the timing of peak warmth in the
EMBSeCBIO region in the TRACE-21k-II and LOVECLIM
simulations would be consistent with this argument but sug-
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Figure 7. Simulated regional changes in mean temperature of the
coldest month (MTCO), mean temperature of the warmest month
(MTWA), and growing degree days above a base level of 0 ◦C
(GDD0) in the EMBSeCBIO domain from the LOVECLIM tran-
sient simulation. It is not possible to calculate the changes in
α for the LOVECLIM simulation from the available data. Loess
smoothed curves were drawn using a window half-width of 500
years, and the envelope was obtained through 1000 bootstrap re-
sampling of the sequences.

gest that the timing and magnitude are model-dependent. It is
therefore plausible that the reconstructed trend in the MTWA
at least during the early Holocene reflects the influence of the
relict Laurentide and Fennoscandian ice sheets in modulat-
ing the impact of increased summer insolation until the mid
Holocene. Given that GDD0 is a reflection of both changes
in season length, as influenced by winter temperatures and
summer warming, the difference between the simulated and
reconstructed MTWA are also seen in GDD0 trends during
the early part of the Holocene (Fig. 6).

The simulations do not show consistent patterns for the
trend in α. The TRACE-21k-I simulation (Fig. 6) shows
a gradual increase, with minor multi-centennial oscillations
from 12 ka to present. (Available model output variables
are not sufficient to calculate α for the TRACE-21k-II or
LOVECLIM simulations.) One of the PACMEDY simula-
tions (IPSL-CM5) shows an increase from the mid Holocene
(Fig. 8), although the simulated change is an order of magni-
tude smaller than over the comparable period in the TRACE-
21k-I simulation. The AWI model shows no trend in α over
this period; the remaining two models show increasing arid-
ity from the mid Holocene to the present (Fig. 8). These three
models are all broadly consistent with the reconstructions,

Figure 8. Simulated regional changes in the mean temperature
of the coldest month (MTCO), mean temperature of the warmest
month (MTWA), and growing degree days above a base level
of 0 ◦C (GDD0) in the EMBSeCBIO domain from the four
PACMEDY simulations. The models are the Max Plank Institute
Earth System Model (MPI), Alfred Wegener Institute Earth Sys-
tem Model simulations (AWI), Institut Pierre-Simon Laplace Cli-
mate Model TR5AS simulation (IPSL-CM5), and Institut Pierre-
Simon Laplace Climate Model TR6A V simulation (IPSL-CM6).
Loess smoothed curves were drawn using a window half-width of
500 years and the envelope was obtained through 1000 bootstrap
resampling of the sequences.

since the reconstructed decrease in α is small. However, the
differences in the sign of the trend between the different
models indicates that changes in moisture are not a straight-
forward consequence of the forcing but must reflect model-
dependent changes in moisture supply via changes in atmo-
spheric circulation. Reconstructions of Holocene climates in
Iberia have suggested that land–surface feedbacks associated
with changes in moisture availability have a strong influence
on summer temperature (Liu et al., 2023). There does not
seem to be strong evidence for this in the EMBSeCBIO re-
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gion, given the difference in the trends of α and the MTWA
and the muted nature of the trend in α.

4 Discussion

The three temperature-related variables, MTCO, MTWA,
and GDD0, all show relatively warm conditions around the
late glacial–Holocene transition (ca. 12 ka), followed by a
cooling that was greatest between ca. 11 and 10 ka. This
pattern is also shown in regional composites (Fig. 9) de-
rived from the reconstructions by Mauri et al. (2015) and
Herzschuh et al. (2022). However, the magnitude of the
cooling shown in the Mauri et al. (2015) and Herzschuh et
al. (2022) reconstructions is small compared to our recon-
structions. The cool interval starts somewhat later and per-
sists until 9 ka in the Mauri et al. (2015) reconstructions, but
this is partly a reflection of the fact that these reconstructions
were only made at 1 ka intervals, and thus, the transitions
are less well constrained than in either our reconstructions
or those of Herzschuh et al. (2022). This cool interval and
the marked warming seen after 10.3 ka in our reconstructions
does not correspond to the Younger Dryas and the subsequent
warming. Although the Younger Dryas is considered to be a
globally synchronous event (Cheng et al., 2020) and is gen-
erally considered coeval with Greenland stadial I (Larsson
et al., 2022), it does not appear to be strongly registered in
the EMBSeCBIO region in any of the quantitative climate
reconstructions. This is consistent with earlier suggestions,
based on vegetation changes, that the Younger Dryas was not
a clearly marked feature over much of this region (Bottema,
1995).

We have shown that winter temperatures increased sharply
between 10.3 and 9.3 ka but then continued to increase at
a more gradual rate through the Holocene. The increase of
ca. 7.5 ◦C is of the same order of magnitude to the increase
shown in the TRACE-21K-II simulation (ca. 5 ◦C) and in the
LOVECLIM simulation (ca. 3 ◦C). This increasing trend is
also seen in the Mauri et al. (2015) reconstructions of MTCO
(Fig. 9), although the change from the early Holocene to the
present is much smaller (ca. 0.5–1 ◦C) in these reconstruc-
tions than in our reconstructions, and Mauri et al. (2015)
do not show marked cooling around 11 ka. Nevertheless, the
consistency between the two reconstructions and between
our reconstruction and the simulated changes in MTCO sup-
ports the idea that these trends are a response to orbital forc-
ing during the Holocene. Our reconstructions show a grad-
ual increase in summer temperature, as measured by both
MTWA and GDD0, from ca. 10 to 5 ka, when the MTWA
was ca. 1 ◦C warmer than the present, followed by a grad-
ual decrease towards the present. This is not consistent with
previous reconstructions. Mauri et al. (2015) show an over-
all increasing trend from 9 ka to present. The Herzschuh et
al. (2022) study shows a completely different pattern, with

Figure 9. Comparison of regional composites of reconstructed sea-
sonal temperatures from this study with those derived from Mauri
et al. (2015) and Herzschuh et al. (2022). Mauri et al. (2015 pro-
vide the mean temperature of the coldest month (MTCO) and mean
temperature of the warmest month (MTWA) reconstructions, which
can be directly compared with our reconstructions. Herzschuh et
al. (2022) only provide reconstructions of July temperature. Our re-
constructions are shown in blue, reconstructions based on the Mauri
et al. (2015) data set are shown in green, and reconstructions based
on the Herzschuh et al. (2022) reconstruction are shown in orange.
The solid line is a loess smoothed curve through the reconstruction
with a window half-width of 500 years; the shading shows the un-
certainties based on 1000 bootstrap resampling of the records.

the maximum in July temperature at ca. 9 ka and an oscillat-
ing but declining trend thereafter (Fig. 9).

These differences between the three sets of reconstructions
are too large to be caused by differences in the age mod-
els applied. They are also unlikely to reflect differences in
sampling, since the number of sites used is roughly simi-
lar across all three reconstructions (71 sites versus 67 sites
from Herzschuh et al., 2022, and 409 grid points, based on
57 sites, from Mauri et al., 2015); most sites are common
to all three analyses. The differences must therefore be re-
lated to the reconstruction method. Herzshuch et al. (2022)
used the regression-based approach, weighted-average par-
tial least squares (WA-PLS) that is the basis for our recon-
struction technique, fxTWA-PLSv2. Mauri et al. (2015) used
the modern analogue technique. However, after taking the
differences caused by the temporal resolution into account,
there is greater similarity between our reconstructions and
those of Mauri et al. (2015) than between either of these
reconstructions and the Herzschuh et al. (2022) reconstruc-
tions.

Several methodological issues could be responsible for
the differences between the three sets of reconstructions
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and, in particular, the anomalous moisture trends shown by
Herzschuh et al. (2022). Specifically, Herzschuh et al. (2022)
used (1) a unique calibration data set for each fossil site,
based on modern samples within a 2000 km radius of that
site, rather than relying on a single training data set; (2) a
limited set of 70 dominant taxa rather than the whole pollen
assemblage; and (3) marine records, including those from,
e.g., the Black Sea, which were excluded in the other recon-
structions because they sample an extremely large area and
thus are unrepresentative of the local climate. However, in-
clusion of records from the Black Sea in our reconstructions
does not have a substantial impact on either the magnitude
or the trends in climate. Thus, it seems likely that the differ-
ences between these two reconstructions reflects the use of a
unique calibration data set for each fossil site and the limited
set of taxa included.

The reconstructed MTWA shows a gradual increase
through the early Holocene with maximum values of around
1.5 ◦C greater than the present reached at ca. 4.5 ka. Previ-
ous modelling studies have shown that the timing of max-
imum warmth during the Holocene in Europe was delayed
compared to the maximum of insolation forcing and varied
regionally as a consequence of the impact of the Fennoscan-
dian ice sheet on surface albedo, atmospheric circulation, and
heat transport (Renssen et al., 2009; Blascheck and Renssen,
2013; Zhang et al., 2016; Zhang et al., 2018). Two of the
simulations examined here show a delay in the timing of
peak warmth, which occurred ca. 9 ka in the TRACE-21k-
II simulation and ca. 7.5 ka in the LOVECLIM simulation.
Although both sets of simulations include the relict Lauren-
tide and Fennoscandian ice sheets, neither has realistic ice
sheet and meltwater forcing. In the LOVECLIM simulation,
for example, the Fennoscandian ice sheet was gone by 10 ka,
whereas in reality it persisted until at least 8.7 ka (Patton et
al., 2017). Thus, the impact of the Fennoscandian ice sheet in
delaying orbitally induced warming would likely have been
greater than shown in this simulation. In addition to differ-
ences in the way in which ice sheets and meltwater forcing
are implemented in different models, models are also dif-
ferentially sensitive to the presence of the same prescribed
ice sheet (Kapsch et al., 2022). Thus, it would be useful to
examine the influence of more realistic prescriptions of the
relict ice sheets on the climate of the EMBSeCBIO region
using multiple models and, preferably, transient simulations
at a higher resolution or with regional climate models. It has
been suggested that meltwater was routed to the Black and
Caspian seas via the Dnieper and Volga rivers during the
early phase of deglaciation (e.g. Yanchilina et al., 2019; Aksu
et al., 2022; Vadsaria et al., 2022), and it would also be useful
to investigate the impact of this on the regional climate.

We have shown that α was similar to today around 11 ka,
but there was a rapid increase in moisture availability after
ca. 10.5 ka, such that α values were noticeably higher than
the present between 10 to 6 ka, followed by a gradual and
continuous decrease until the present time. Changes in the

late Holocene are small even at centennial scale (Fig. 5).
The reconstructed trends in α are not captured in the simula-
tions, which show different trends during the late Holocene.
Thus, it is unlikely that the gradual increase in aridity dur-
ing the late Holocene is a straightforward response to orbital
forcing. Changes in α in the EMBSeCBIO region are likely
to be primarily driven by precipitation changes, which in
turn are driven by changes in atmospheric circulation. Differ-
ences in the trend of moisture availability between the mod-
els imply that the nature of the changes in circulation varies
between models and thus the simulations do not provide a
strong basis for explaining the observed patterns of change
in moisture availability. Earlier studies, focusing on the west-
ern Mediterranean (Liu et al., 2023), Europe (Mauri et al.,
2014), and central Eurasia (Bartlein et al., 2017), have shown
that models have difficulty in simulating the enhanced mois-
ture transport into the Eurasian continent shown by palaeoen-
vironmental data during the mid Holocene and during the
late Holocene. Changes in precipitation can also affect land–
surface feedbacks. Liu et al. (2023), for example, have argued
that enhanced moisture transport into the Iberian peninsula
during the mid Holocene led to more vegetation cover and
increased evapotranspiration and had a significant impact on
the reduction of growing season temperatures. Differences in
the reconstructed trends of summer temperature and plant-
available moisture through the Holocene suggests that this
land–surface feedback was not an important factor influenc-
ing summer temperatures in the EMBSeCBIO region. Never-
theless, differences in the strength of land–surface feedbacks
between models could also contribute to the divergences seen
in the simulations. It would be useful to investigate the role
of changes in atmospheric circulation for precipitation pat-
terns during the Holocene in the EMBSeCBIO region using
transient simulations at a higher resolution or with regional
climate models.

The timing of the transition to an agriculture economy in
the eastern Mediterranean is still debated (Asouti and Fuller,
2012). It has been argued that climatic deterioration and pop-
ulation growth during the Younger Dryas triggered a shift
to farming (Weiss and Bradley, 2001; Bar-Yosef, 2017). The
presence of morphologically altered cereals by the end of the
Pleistocene has been put forward as evidence for an early
transition to agriculture (Bar-Yosef et al., 2017), but it has
also been pointed out that the evidence for cereal domestica-
tion before ca. 10.5 ka is poorly dated and insufficiently doc-
umented (Nesbitt, 2002) and that crops did not replace for-
aging economies until well into the Holocene (Smith, 2001;
Willcox, 2012; Zeder, 2011). The availability of water is a
crucial factor in the viability of early agriculture (Richer-
son et al., 2001; Zeder, 2011). We have shown that mois-
ture availability was higher than today during the first part of
the Holocene (10–6 ka) but similar to today until ca. 10.5 ka.
Wetter conditions during the early Holocene could have been
a crucial factor in the transition to agriculture, and our find-
ings support the idea that this transition did not happen until
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much later than the Younger Dryas or late glacial–Holocene
transition. Further exploration of the role of climate in the
transition to agriculture would require a more comprehen-
sive assessment of the archaeobotanical evidence. The issue
could also be addressed by using modelling to explore how
the reconstructed changes in regional moisture availability
and seasonal temperatures would impact crop viability (see,
e.g., Contreras et al., 2019).

We have focused on the composite picture of regional
changes across the EMBSeCBIO region, in order to inves-
tigate whether these changes could be explained as a conse-
quence of known changes in forcing. The data set also pro-
vides information on the trends in climate at individual sites.
These data could be used to address the question of whether
population density or cultural changes reflect shifts in climate
(e.g. Weninger et al., 2006; Drake, 2012; Kaniewski et al.,
2013; Cookson et al., 2019; Weiberg et al., 2019; Palmisano
et al., 2021). In addition, it would also be possible to use
these data to explore the impact of climate changes on the en-
vironment, including the natural resources available for peo-
ple (Harrison et al., 2023).

5 Conclusions

We have reconstructed changes in seasonal temperature and
in plant-available moisture from 12.3 ka to the present from
71 sites from the EMBSeCBIO domain to examine changes
in the regional climate of the eastern Mediterranean region.
We show that there are regionally coherent trends in these
variables. The large increase in both summer and winter tem-
peratures during the early Holocene considerably post-dates
the warming observed elsewhere at the end of the Younger
Dryas, supporting the idea that the impact of the Younger
Dryas in the EMBSeCBIO region was muted. Subsequent
changes in winter temperature are consistent with the ex-
pected response to insolation changes. The timing of peak
summer warming occurred later than expected as a conse-
quence of insolation changes and likely, at least in part, re-
flects the influence of the relict Laurentide and Fennoscan-
dian ice sheets on the regional climate. There is a rapid
increase in plant-available moisture between 11 and 10 ka,
which could have promoted the adoption of agriculture in
the region.
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