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Major depressive disorder often originates in adolescence and is associated with long-term functional impairment. Mechanistically
characterizing this heterogeneous illness could provide important leads for optimizing treatment. Importantly, reward learning is
known to be disrupted in depression. In this pilot fMRI study of 21 adolescents (16–20 years), we assessed how reward network
disruption impacts specifically on Bayesian belief representations of self-efficacy (SE-B) and their associated uncertainty (SE-U), using
a modified instrumental learning task probing activation induced by the opportunity to choose, and an optimal Hierarchical Gaussian
Filter computational model. SE-U engaged caudate, nucleus accumbens (NAcc), precuneus, posterior parietal and dorsolateral prefrontal
cortex (PFWE < 0.005). Sparse partial least squares analysis identified SE-U striatal activation as associating with one’s sense of perceived
choice and depressive symptoms, particularly anhedonia and negative feelings about oneself. As Bayesian uncertainty modulates belief
flexibility and their capacity to steer future actions, this suggests that these striatal signals may be informative developmentally,
longitudinally and in assessing response to treatment.

Key words: functional magnetic resonance imaging; reward learning; computational modeling; depression.

Introduction
Major depressive disorder (MDD) is a common disorder with an
estimated lifetime risk of 15%–18% (Bromet et al. 2011; Malhi
and Mann 2018), which can impose significant suffering and
functional impact across the lifespan. It often has its roots in
adolescence, with peak incidence between ages 15–20, and 25%
of individuals having been diagnosed by age 19, (Kessler et al.
2005; McGrath et al. 2023). Although treatments are available,
their mechanisms of effect remain only partly understood, and
full remission after a first episode is seen in only 50% of patients
(Rush 2007). It is therefore key that we develop a more mecha-
nistic understanding of depression that highlights potential ways
forward regarding treatment.

One brain system of particular interest concerns reward
processing (Admon and Pizzagalli 2015), which demonstrates
prominent subcortical responses in adolescents versus adults
(Silverman et al. 2015), and gradually shifts to more frontal
regions during maturation (Schreuders et al. 2018; Willinger et al.
2021). The reward system also shows evidence of dysfunction
in adolescent MDD (O’Callaghan and Stringaris 2019). Treatment
response can be significantly predicted by levels of anhedonia and
motivation (Uher et al. 2008; McMakin et al. 2012), which encom-
passes the anticipation, effort expenditure and consummatory
experience of reward (Rizvi et al. 2016; Keren et al. 2018).

However, it is important to consider how such dysfunction
can exert its effects most problematically. Here, we propose that
reward network dysfunction within the context of self-efficacy
is of particular relevance to MDD. Self-efficacy is the belief in
your own ability to plan and execute goal-directed behavior13, and
has been found to mediate the relationship between risk factors
such as adverse childhood experiences and current quality of life
in young adults (Cohrdes and Mauz 2020). It is associated with
increased beneficial activity and cognitive self-care strategies in
the context of recovery from depression (McCusker et al. 2016).
The mental representations that we construct regarding ourselves
and our capabilities must be flexibly responsive to our experi-
ences (Price and Duman 2020; Koban et al. 2021). Adolescence is a
period of dramatic neurobiological change (Dahl 2004; Blakemore
2012), particularly concerning prefrontal synaptic overproduction
and pruning (Petanjek et al. 2011), which coincides with the great-
est levels of gene expression regulating neuronal development
(Harris et al. 2009). Age-related shifts from forward to backward
projections within the reward system are argued to energize the
exploratory behavior that is so important in allowing adolescents
to develop self-efficacy and autonomy (Luciana et al. 2012). Self-
referential networks (Pfeifer and Peake 2011; Ernst et al. 2019)
are particularly dynamic, reflecting that this is a time when we
are actively developing beliefs and models about oneself and
capabilities (Crone and Dahl 2012; Harter 2012), with wide-ranging
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future implications. If the means to evaluate and incorporate the
consequences of our actions via the reward system becomes com-
promised, then this could give rise to an increasingly entrenched
and biased model of the self (Hoven et al. 2019; Kopala-Sibley and
Zuroff 2020).

A negatively-skewed inner model of self-efficacy during ado-
lescence can lead to a vicious circle of lost opportunities and
deepening bias. These skewed beliefs could impair motivation and
social engagement, causing functional debilitation by depriving
people of the sense that their opportunities are actually available
to them (Milanovic et al. 2018). However, this also makes adoles-
cence a time of potential opportunity, as therapeutic approaches
that directly challenge a skewed internal working model may
confer longer-term benefits.

Neuroimaging, particularly when used in concert with
computational approaches, has the power to test mechanistic
hypotheses of such phenomena. Functional MRI (fMRI) has been
used to explore several aspects of the self, including self-esteem
(Chavez and Heatherton 2015; Will et al. 2017; van der Aar et al.
2019), sense of agency (Haggard 2017; Beyer et al. 2018), and self-
appraisal/valuation (Denny et al. 2012; Brühl et al. 2014; van
der Cruijsen et al. 2019; Peters et al. 2021; van Buuren et al.
2022), consistently implicating a self-referential brain network
comprising the precuneus, medial and dorsolateral prefrontal
cortex, anterior cingulate and the striatum. To date, there have
been few neuroimaging studies looking specifically for brain
correlates of self-efficacy. A recent example applied Rescorla-
Wagner models to account for fMRI responses akin to self-esteem,
finding that self-esteem belief update signals correlated with
activity in ventromedial prefrontal cortex (vmPFC) (Will et al.
2017). Rouault and Fleming (Rouault and Fleming 2020) have
defined the concept of global self-performance estimates, which
integrates more momentary and task-specific local estimates,
and provides an account for fMRI activation within ventromedial
prefrontal cortex and precuneus. Notably, this global measure—
most akin to general self-efficacy—was particularly aligned with
activity within ventral striatum.

Extending on the capabilities of Rescorla-Wagner models, Hier-
archical Gaussian Filters (HGF) offer a means to formally repre-
sent the formation and updating of Bayesian beliefs over a series
of increasingly abstract hierarchies (Mathys et al. 2014), using
the mismatch between expectations and experience (prediction
error) to update these evolving beliefs, weighted according to their
associated precision, otherwise known as certainty or confidence.
Prior beliefs with high precision require greater evidence to be
updated toward more accurate posterior beliefs. High uncertainty
signals could represent a more malleable belief system, whereas
low uncertainty implies a system that is robust to change. Both
states have the potential to be adaptive or maladaptive, in part
dependent on whether the beliefs are represented within limbic
versus association/cognitive networks (Heinz et al. 2018). HGF
have been successfully applied to fMRI data in the context of
social beliefs (Henco et al. 2020), but they have yet to be applied
in considering self-efficacy.

Based on the above, we carried out a pilot fMRI study to
examine brain correlates of self-efficacy beliefs (SE-B) and their
associated uncertainty (SE-U) within a sample of young people
experiencing depressive symptoms. Using the Modified Inherent
Value of Choice task (MIVCT), we examined neural activation
related to anticipation of being able to make your own choice,
compared to passively obeying what the computer instructs you
to do. HGF modeling was applied to implicitly estimate each
participant’s evolving self- and other-efficacy beliefs, based on

their behavior and patterns of received rewards. Our hypotheses
tested whether one’s estimates of self-efficacy (a) covary with
activation within the brain’s reward and salience networks, and
(b) that this in turn demonstrates relationships with current
depressive symptoms and measures related to one’s sense of
autonomy (Deci and Ryan 1985), applying partial least squares
analysis to account for multicollinearity.

Materials and methods
Participants
This study was part of a pilot that sought to develop and trial three
novel fMRI paradigms within a cohort of late-adolescents/young
adults, with a focus on feasibility, tolerability, and establishing
activation signals for future power calculations. The other two
tasks will be analyzed separately. Thirty young people aged 16–
20 years were recruited from the community via posters and
a local social media campaign, facilitated by third sector orga-
nizations, schools (with local educational authority approval),
colleges and universities in the region. Inclusion criteria were self-
reported history of depressive symptoms or an episode; to be able
to provide informed consent; normal/corrected-to-normal vision
and hearing; self-reported fluency in English; and no contraindi-
cations for MRI. Exclusion criteria were a clinical diagnosis of a
pervasive developmental disorder; neurological or genetic disor-
der; or intellectual disability. The study had ethical approval (REC
number 19-HV-061) and participants provided written informed
consent. Participants’ travel costs were reimbursed, and they
received a picture of their brain as a token of gratitude for tak-
ing part.

Clinical and psychological measures
Depressive symptom severity was assessed using the Patient
Health Questionnaire (PHQ-9 (Kroenke et al. 2001)), a validated
self-report measure based on DSM-IV MDD criteria. It examines
the nine key symptom groups of anhedonia, dysthymia, sleep
disturbance, anergia, appetite disturbance, poor self-esteem, poor
concentration, psychomotor disturbance and self-harm/suicidal
thoughts, each rating current severity from 0 to 3. Total scores > =
10 have sensitivity 88% and specificity 88% for MDD (Kroenke et al.
2001). We also incorporated measures of relevance to one’s sense
of self-efficacy and autonomy, specifically (a) the General Causal-
ity Orientations Scale (Deci and Ryan 1985) adapted for clinical
populations (GCOS-CP (Cooper et al. 2015)) which measures the
degree to which the source of one’s motivation and behavioral
initiation comes from within (Autonomy subscale), from without
(Control orientation) or is indeterminate (Impersonal orientation),
as defined by Self-Determination Theory (Ryan and Deci 2017); (b)
the Perceived Choice and Awareness of Self Scale (PCASS (Sheldon
and Deci 1996)), which measures how much choice you have over
your own behavior (Perceived choice, PC) and awareness of your
inner states/sense of self (Awareness of self, AOS); and finally the
Brief Resilience Scale (BRS (Smith et al. 2008)), which measures
the ability to recover from adversity.

Imaging protocol
MRI scanning took place at the Clinical Research Imaging Centre
(CRIC), University of Edinburgh, using a 3T Siemens Magnetom
Skyra scanner and 32-channel head coil. A T1-weighted MPRAGE
structural image was acquired having 192 contiguous 1.0 mm
slices (matrix = 256 × 256; FoV = 256 mm; TR = 2.5 s, TE = 4.37 ms,
flip angle = 7◦). BOLD signals were acquired using an axial gradient
echo planar imaging (EPI) sequence with TR = 1.4 s, TE = 30 ms, flip
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Fig. 1. A) Overall schema of the hierarchical Gaussian filter, in this case displaying three layers, with parallel models for the choice and noChoice
conditions. The second level represents the tendency for the yellow card to be rewarding in the choice (i.e. self-efficacy) and noChoice (other-efficacy)
contexts. For two-layer models, the highest layer representing volatility is omitted. B) The modified inherent value of choice task (MIVCT).

angle = 68◦ and 2× GRAPPA acceleration. FoV = 210 mm, spatial
resolution 3 mm isotropic.

Modified inherent value of choice task (MIVCT)
The MIVCT is an instrumental reward learning task that probes
the value participants place on being able to make decisions
themselves (Fig. 1). It was adapted (Leotti and Delgado 2011) and
described in previous studies (Romaniuk et al. 2019; Rupprechter
et al. 2020). In brief, participants learn by trial and error which
of two-color stimuli (yellow and blue) lead to a reward (80:20%
reinforcement). For half of the trials, they get to choose (Choice
condition), and for the other half, they must do as the computer
directs them (noChoice condition). Stimuli reward contingencies
remained consistent across Choice and noChoice. During the
scan, the task was implemented using Presentation (https://www.
neurobs.com). Each trial is divided into three phases: the Cue
phase informs participants whether this will be a Choice or
noChoice trial; the Selection phase is when the yellow or blue
stimulus is selected; and the Outcome phase when the participant
finds out their reward. The three phases are jittered to permit their
disambiguation during event-related fMRI analysis. There were 27
trials for each condition. Trial order and the side of the screen on
which stimuli were presented were randomized to prevent action
planning. noChoice trial decisions echoed the participant’s own
choices, with a three-trial lag, to ensure rewards were matched
between conditions. Task duration was 11 m 16 s, 483 volumes.

Hierarchical Gaussian filter modeling
The HGF framework was used to implement five related models,
with Bayesian model selection applied to determine that which
provided the best account for the data. Each model permits
inferences to be made regarding the participants’ emerging beliefs
about their own tendency to be correct, versus that of the com-
puter, based on their behavioral data. Similar frameworks have
been successfully applied within several neuroimaging studies to
date (Iglesias et al. 2013; Deserno et al. 2019; Henco et al. 2020). It
was implemented using the TAPAS HGF toolbox version 6 (Frässle
et al. 2021). Each model comprised a binary perceptual model,
and a response model. The binary perceptual model estimates
each participant’s beliefs about the hidden states of their sen-
sory inputs over time. The response model describes how the
participant’s actions are informed by these beliefs.

The perceptual model was composed of two parallel models,
with separate hierarchies for Choice and noChoice trials (Fig. 1).

Both are inversions of generative models of the participant’s
sensory experiences, which in this context are card choice and
subsequent reward. The generative model attempts to infer the
hidden states of the environment x, by updating the posterior
probability distributions of a hierarchical series of beliefs μ, which
are updated after each trial. Two variants of perceptual model
were tested, comprising of two or three hierarchical levels. The
first and lowest level x1 is a binary representation of whether
or not the yellow card was associated with a reward. The sec-
ond level x2 represents the tendency for the yellow card to be
rewarding. For three-level models, the third and highest level x3

represents the volatility of this tendency over time. Given the
parallel architecture, the beliefs represented at the intermediate
level x2 Choice were analogous to the tendency for yellow to be
rewarding in the context of the self making the choice, i.e. self-
efficacy or μself, as opposed to the computer making the choice
x2 noChoice, i.e. other-efficacy or μother. The trial-by-trial variance
associated with each belief trajectory were also estimated: σ̂ k

2 Choice

i.e. the uncertainty around the self-efficacy belief or σ self, and
σ̂ k

2 noChoice, the corresponding uncertainty around other-efficacy
or σ other.

x2and x3 develop as Gaussian random walk processes, with
step-sizes defined by their evolution rates ω2 Choice, ω2 noChoice,
(which describe how quickly the contingencies between card
and outcomes evolve for each participant, irrespective of phasic
changes), and for three-level models ω3 Choice and ω3 noChoice, which
are the equivalent for the volatilities. x2 is sigmoid-transformed to
produce a probability of x1.The model is then inverted according
to the card chosen and reward received for each trial k, in order
to infer each participant’s evolving hierarchical beliefs over the
course of the task. Beliefs at each hierarchical level i are updated
according to the prediction error from the level below δk

i−1, which
is weighted by the ratio of the precisions π of the beliefs at i
and i − 1. A belief’s precision is the inverse of its variance σ k

i , i.e.
πk

i = 1/σ k
i , defined as:

π̂k
i = 1

μ̂k
i

(
1 − μ̂k

i

)

Beliefs are updated according to:

Δμk
i = πk

i−1

πk
i

δk
i−1
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The response models also had parallel Choice and noChoice
architectures. Two variants were tested: a softmax model, which
did not depend on belief certainty; and a unit square sigmoid
model, the slope of which was defined by how certain the par-
ticipant was estimated to be in their own (or the computer’s)
tendency to be correct.

For the softmax model, The probability of choosing yellow was

probk
yellow = 1(

1 + exp
(−βμ̂k

1

)

Where free parameter β is the participant’s decision noise.
For the unit square sigmoid model, the probability of choosing

yellow was

probk
yellow = μ̂k

1
ζ k

(
μ̂k

1
ζ k + (1 − μ̂k

1)
ζ k

)

Where ζ k defines the shape of the sigmoid for each trial k,
which in this case was set to − log

(
σ̂ k

2 Choice

)
or − log

(
σ̂ k

2 noChoice

)
: the

negative log-transformed variance regarding the tendency for the
participant or computer to be correct, respectively.

A simple Rescorla-Wagner model with fixed learning rate and
softmax response model was also tested as a control, to estab-
lish whether the HGF framework in itself provided an improved
account for the data.

Trial-by-trial estimate trajectories of μself, μother, σ self, and
σ other were derived by fitting the model to each participant’s
card selections and associated rewards. Free parameters during
model fitting were the evolution rates ω2 Choice, ω2 noChoice; 3-level
models also incorporated ω3 Choice and ω3 noChoice; and models
using the softmax response model included decision noise
parameters βChoice and βnoChoice. Random-effects Bayesian model
selection was used to select the optimal model of the five
possible architectures, according to their negative variational free
energy (approximating log model evidence). That with the highest
protected exceedance probability was deemed optimal (Stephan
et al. 2009). The winning model was then tested to see whether
the percentage of sufficiently-explained trials was better than
chance, i.e. that the negative log likelihood per trial exceeded 0.55
(Reiter et al. 2017).

Functional imaging pre-processing and analysis
fMRI data were preprocessed and analyzed using SPM12 (http://
www.fil.ion.ucl.ac.uk/spm/software/spm12/), within MathWorks
MATLAB R2022a (http://www.mathworks.com). fMRI volumes
were reconstructed into NIfTI format, and realigned to the mean
volume. The structural image was segmented and warped to MNI
space. The mean fMRI and structural volumes were co-registered,
and the normalization parameters applied to the whole fMRI
dataset which was then smoothed using a 6 mm FWHM gaussian
kernel, and resampled at 2 mm isotropic resolution. The data
was high pass filtered with 128 s cutoff, and serial correlations
modeled using a first-order autoregressive model.

For each participant, and following optimal HGF model fitting
to their behavioral data, the estimated efficacy belief trajecto-
ries μSelf and μOther were used to parametrically modulate the
moment when participants learned whether or not they would
be doing the choosing, during Choice and noChoice trials respec-
tively within a first-level GLM. As μ and σ estimates were corre-
lated, the uncertainty trajectories σ self, and σ other were considered
in a separate first-level GLM, modulating the same moment of

Choice and noChoice trials. Motion parameters were included
as nuisance regressors. Contrasts representing differences in the
beliefs of self- versus other-efficacy (SE-B: μself > μother), and the
uncertainty surrounding those beliefs (SE-U: σ self > σ other) were
evaluated within second-level F tests. Activation was deemed
significant if it achieved cluster-level familywise-corrected signif-
icance of p < 0.05 for the whole brain volume. This task-defined
activation was extracted as first eigenvariates from these clusters
for subsequent analyses.

Associations between brain activation,
psychometrics and symptoms
Sparse partial least squares regression (sPLS) was used to identify
the relationships brain correlates of SE-B and SE-U related to
expressed psychology and psychopathology, while accounting for
multicollinearity. Using the MixOmics toolbox in R (Cao et al. 2016;
Rohart et al. 2017), brain activations extracted from significant
clusters were regressed onto each PHQ9 depressive symptom,
GCOS-CP Autonomy, Control and Impersonal subscales; the
PCASS PC and AOS subscales and the BRS resilience score. A two-
step optimization process was used, whereby first the optimal
number of variates to be included, and then the most stably-
selected variates were identified, using 4-fold cross validation
over 1,000 repeats. Statistical tests were performed within
confirmatory regressions on those subsets implicated by sPLS,
using the MASS toolbox within R (Venebles and Ripley 2002).
Brain regions implicated by sPLS were also regressed on each
symptom of the PHQ-9, using backwards stepwise regression,
with an optimal model selected according to Akaike information
criterion (AIC).

Results
Demographics and clinical measures
Of the original 30 participants, four were excluded as they didn’t
respond during noChoice trials; and five were excluded due to
excessive motion (any single volume-to-volume displacement >

1 mm), leaving 21 participants for analysis. Participant charac-
teristics are described in Table 1. The excluded participants did
not differ from the included group in terms of age, or PHQ-
9, GCOS-CP, PCASS or BRS scores (p > 0.209). The 21 included
participants had PHQ-9 scores ranging between 3 and 24, with
mean 11, signifying depression of moderate severity. Two were
currently taking antidepressants (fluoxetine and sertraline).
PHQ-9 depression scores significantly correlated with GCOS-CP
Autonomy (r = −0.510, p = 0.018), Impersonal (r = 0.449, p = 0.041),
PCASS Awareness of Self (r = −0.526, p = 0.014) and Perceived
choice (r = −0.630, p = 0.002). The estimated computational model
parameters can be found in the supplementary materials.

Computational model selection
The optimal model comprised the 3-layer HGF perceptual
model, and the response model whose unit square sigmoid
was modulated by belief uncertainty (σ̂ k

2 Choice and σ̂ k
2 noChoice),

with protected exceedance probability 0.848 (Table 2), clearly
outperforming the alternatives. For each participant, this winning
model performed better than chance at accounting for behavior,
with negative log likelihood per trial exceeding 0.55 in all cases
(sample median 0.662, IQR 0.045). Model estimated parameters
ω2 Choice, ω2 noChoice, ω3 Choice, and ω3 noChoice, as well as their respective
Choice vs noChoice differences, did not significantly correlate
with any psychometric score (p > 0.182, Supplementary Table S1)
or age (p > 0.302).
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Table 1. The demographic, computational and clinical characteristics of 21 included participants. Computational model estimated
parameters are reported for the optimal model, specifically the 3-layer HGF with uncertainty-dependent response model.

Measure Mean (SD)
Age 18.9 (0.825)
Sex F:M 14: 7
PHQ-9 Depression
Severity:

• None
• Mild
• Moderate
• Moderately-severe
• Severe

11.0 (6.05)
N:

• 1
• 9
• 5
• 3
• 3

Taking antidepressant Yes: No 2: 19
GCOS-CP Autonomy 43.7 (5.33)
GCOS-CP Control 25.1 (7.08)
GCOS-CP Impersonal 30.5 (6.76)
PCASS Awareness of Self 14.4 (4.93)
PCASS Perceived Choice 15.8 (4.30)
BRS resilience 3.17 (0.32)

Optimal perceptual model evolution rates ω2 Choice −6.10 (2.21)
ω2 noChoice −6.33 (0.978)
ω3 Choice −6.00 (0.019)
ω3 noChoice −6.00 (0.001)

Table 2. Bayesian model selection between the five proposed computational models.

Perceptual model 2-layer HGF 3-layer HGF Rescorla-Wagner

Response model Softmax Uncertainty-dependent Softmax Uncertainty-dependent

Posterior model probability 0.079 0.317 0.063 0.500 0.042
Exceedance probability < 0.001 0.145 < 0.001 0.854 0.002
Protected exceedance probability 0.002 0.145 < 0.002 0.848 0.001

SE-B belief in self- versus other-efficacy
The SE-B F test of μself > μother demonstrated no significant acti-
vation at the whole-brain level.

SE-U uncertainty around belief in self- versus
other-efficacy
The SE-U F test examining the uncertainty around the beliefs
of Self-efficacy > Other-efficacy (σ self > σ other) showed significant
whole-brain activation in bilateral anterior striatum including
NAcc; bilateral dorsolateral prefrontal cortex (dlPFC); midline
cortex including supplementary motor (SMA) and precuneus; and
posterior parietal cortex (see Table 3, Fig. 2). In all cases, the
direction of effect was σ self >σ other.

To provide further evidence for the specificity of the winning
computational model (3-layer HGF with uncertainty-dependent
response model) in accounting for brain activation, the Rescorla-
Wagner’s estimates of the value V̂ of the Choice and noChoice
trials was also estimated and used to parametrically modulate the
Cue phase of each trial. The contrast of V̂Choice > V̂noChoice showed
some activation in midline and striatal areas, but to a much less
degree than σ self >σ other (Supplementary Materials).

Multivariate regression of psychometric
measures and symptoms
Having extracted the first eigenvariate from each of the signifi-
cant SE-U σ self > σ other cluster regions, sPLS regression was used
to identify relationships with the psychometrics of interest, for
both Self (Choice) and Other (noChoice) conditions.

For Self-efficacy uncertainty, an optimal correlation between
selected variates and the full model was achieved with two
brain regions, and three psychometric measures, accounting
for 0.401 of the variance across psychometrics. The two most
stably-selected regions were L caudate and L putamen/NAcc; the
three most-stable psychometrics were PCASS Perceived Choice,
PHQ-9 depression and GCOS Impersonal (Fig. 3A). Confirmatory
stepwise regression of brain activation on each psychometric
measure highlighted the prominent relationships between L
caudate Self-efficacy uncertainty and both PHQ-9 depression
(p < 0.026), and PCASS Perceived choice scores (p < 0.017, Fig. 3B).
A stepwise regression of PHQ-9 depressive symptoms on L caudate
SE-U activation produced an optimal model that comprised
anhedonia, negative feelings about the self, sleep disturbance,
poor concentration and feeling tired (Table 4).

For Other-efficacy uncertainty, the optimal sPLS comprised
two brain regions (B SMA and R caudate), and five psychometrics
(PCASS Awareness of Self, PCASS Perceived Control, BRS, PHQ-9
and GCOS Control), accounting for 0.345 of psychometric vari-
ance, however none of the confirmatory regressions achieved
significance (p > 0.069).

Discussion
In this pilot study exploring how computational models of self-
efficacy can relate to brain function within a group of adolescents
with self-reported low mood, we find evidence that activation
within several brain regions, particularly striatal reward areas,
can be accounted for by a three-layer HGF computational model
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Table 3. Whole-brain significant activation for the SE-U F contrast of uncertainty around belief in self-efficacy > other-efficacy
σ self > σ other. MFG: middle frontal gyrus; SFG: superior frontal gyrus; SMA: supplementary motor area; SMG: supramarginal gyrus; SPL:
superior parietal lobule.

Region Peak MNI Peak Z kE Cluster PFWE

L Putamen/nucleus accumbens −18 8 −10 4.82 292 < 0.001
L Caudate −12 8 5 4.80
L Putamen/anterior insula −27 14 −1 4.03
R Caudate 18 8 11 4.52 192 < 0.001
R Putamen/nucleus accumbens 18 17 −4 4.52
R dorsal MFG/SFG 27 11 41 4.08 62 0.005
L & R SMA −6 20 47 3.98 108 < 0.001
L SPL/SMG/angular gyrus −33 −49 41 3.97 130 < 0.001
L & R precuneus 9 −67 53 3.92 82 0.001
L dorsal MFG/SFG −36 2 47 3.80 104 < 0.001

Table 4. Stepwise regression of PHQ-9 depressive symptoms on L caudate SE-U activation.

PHQ9 Item Est Std err T P

Anhedonia 0.723 0.171 4.23 < 0.001
Feel bad about self/guilt 0.522 0.151 3.45 0.004
Sleep disturbance 0.344 0.180 1.91 0.075
Poor concentration −0.324 0.172 −1.89 0.078
Feeling tired −0.312 0.180 −1.56 0.140

Adj R2 = 0.605. F(5,15) = 7.13, p = 0.001.

characterizing beliefs around self-efficacy and their associated
uncertainty. In particular, activation representing the uncertainty
surrounding beliefs in self-efficacy within L caudate covaried with
measures of perceived choice, and having an impersonal causality
orientation, providing face validity. This activation also demon-
strated potential clinical utility, through its associate with the
severity of current depressive symptoms, particularly anhedonia
and negative feelings about the self.

Belief uncertainty, reward networks and
depression
Dysfunction within reward networks is a well-replicated finding
within people with depression (Keren et al. 2018; Fox and Lobo
2019). However, corticostriatal circuits (Peters et al. 2016) and their
dopaminergic innervation are implicated in multiple mental dis-
orders, including attention-deficit hyperactivity disorder (Plichta
and Scheres 2014), eating disorders (Val-Laillet et al. 2015), psy-
chosis (McCutcheon et al. 2019), obsessive-compulsive disorder
(Robbins et al. 2019) as well as affective disorders (Gong et al.
2020). This pervasive presence of striatal dysfunction across diag-
noses may be due to it being well-placed to mediate the updating
of beliefs across broader cortical networks (Broyd et al. 2017;
Nour et al. 2018; Gershman and Uchida 2019) via the partially-
overlapping hierarchically spiraling loops that reconnect it to
the cortex via the thalamus (Haber 2016). Understanding the
specific nature and contribution each pattern of striatal dysfunc-
tion makes to an individual’s current state could therefore be
highly informative, particularly in view of the pharmacothera-
peutic potential for intervention at this site. Here, we focused
on how such dysfunction might be relevant in the context of
depression, by modeling one’s beliefs about self-efficacy, and find
that L caudate self-efficacy uncertainty relates to negative beliefs
about the self, as well as one’s sense of how much choice they
have over their own behavior.

Within a Bayesian framework, belief uncertainty will impact
on not only how readily beliefs can be updated by new evidence,
but also how influential they are in guiding behavior, according

to active inference (Knolle et al. 2023). Conceptually, self-efficacy
represents a bridge between self-referential processes and behav-
ior, providing a means by which self-related beliefs can impinge
on a person’s inclination to act. If one is more certain in their
own self-efficacy, then if follows that they will be more likely
to take action. The specific relationship with anhedonia could
be a consequence of a more confident belief underpinning a
deeper sense of personal involvement and connection to the act
(Yeshurun et al. 2021) It is noteworthy that anhedonia is higher in
those with impaired connectivity between striatum and several
of the cortical regions we report to correlate with self-efficacy
uncertainty (Gabbay et al. 2013). A broader network analysis of
depressive symptoms has found that all five of the symptoms
associated with L caudate self-efficacy uncertainty feature promi-
nently in the most-central symptoms out of a possible 28 (Fried
et al. 2016). Lack of energy and anhedonia also make a substantial
contribution to the functional impairment seen in depression
(Fried and Nesse 2014). This signal could therefore be broadly
informative across the range of phenotypic variation commonly
observed under the umbrella of depression.

Anatomically, this caudate region appears to play a particular
role in positively- and negatively valanced beliefs about the
self: is connected to anterior medial prefrontal and inferior
frontal/insula regions (Fan et al. 2016), which together are often
activated by aversive stimuli (Kober et al. 2008) as part of a
proposed negative affect circuit (Williams 2016). Corticostriatal
tract integrity between these regions can also predict self-esteem
(Chavez et al. 2022). These findings therefore provide preliminary
support for L caudate being a site where belief uncertainty signals
of specific relevance to depression are meaningfully detectable.
Although requiring replication in a larger sample, such a signal
could guide optimal pharmacotherapy, by identifying those
with markedly affected belief-updating networks, and tracking
improvements in response to treatment. It has been observed
that those with abnormally low striatal reward responses go on
to experience the most benefit from the serotonin (and weak
dopamine)-reuptake inhibitor sertraline (Greenberg et al. 2020)
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Fig. 2. Brain activation covarying with SE-U, where in cases self > other. Areas displayed demonstrate cluster-wise whole-brain significance of p < 0.05,
FWE-corrected.

and noradrenaline-dopamine reuptake inhibitor bupropion
(Nguyen et al. 2019). The link between striatal responses and belief
uncertainty may be an additionally informative step, and lays the
foundations to maximize the efficacy of psychological therapies
intended to improve cognitive flexibility and the adoption of
more adaptive, less pathologically-negative beliefs (Shany et al.
2022).

Self-efficacy, adolescence and mental illness
In this study we have used each participant’s task behavioral
data to implicitly estimate their underlying beliefs regarding

self-efficacy, rather than asking them to explicitly rate them-
selves. This has the potential advantage of accessing the
parameter in itself, rather than the “meta-parameter” of one’s
publicly-acknowledged assessment of their own self-efficacy.
Self-efficacy is of key relevance to all mental disorders, especially
if considered within the broader concept of autonomy. Autonomy,
which encompasses the dimensions of competence (the ability
to form goals and act on them) and authenticity (how one
personally endorses their motivations to act) is undermined in
all mental illnesses, albeit in different ways (Bergamin et al.
2022). Indeed, this interference with or loss of autonomy could
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Fig. 3. The relationships between self-efficacy uncertainty and psychometric measures. A) The stability of how frequently each variate was selected
for the optimal sPLS regression over cross-validation. B) Confirmatory regressions of self-efficacy uncertainty-associated brain activation on
sPLS-implicated psychometric measures. C) Scatter plots demonstrating the relationships between L caudate self-efficacy uncertainty activation and
implicated psychometric measures.

be argued to be what defines a mental illness as such, regardless
of its associated clusters of signs and symptoms. To have a better
understanding of the neurobiology underpinning autonomy could
therefore have a broader clinical relevance. A developing sense of
autonomy and self-efficacy are especially important hallmarks of
adolescence, so this period of life could afford us the opportunity
to observe how the neurobiology of self-efficacy evolves through
adolescence longitudinally. It is known that striatal responses to
positive > negative self-evaluations show an inverted-U curve
with age, being lowest though adolescence (van der Cruijsen et al.
2018). Longitudinally, young adults with low self-directedness
have higher depressive scores three years later (Takanobu et al.
2021). This is evidence for the potential impact of this phase
of life on the developing sense of self, and it is hoped that this
study can lead into a larger-scale longitudinal cohort study of
young people on the cusp of adolescence, allowing us to track
how these fMRI- and computationally-derived signals of self-
efficacy develop over time, particularly in relation to symptom
and functional trajectories.

Self-referential processing and the default mode
network
SE-U engaged a range of cortical areas, including dorsal superior
frontal gyri, medial prefrontal cortex, angular gyri and precuneus.
These are all considered part of the default mode network (DMN
(Raichle 2015)), which contributes to internally-oriented processes
including self-referential processing (Northoff et al. 2006; Qin
and Northoff 2011), and has been reliably found to demonstrate
reduced connectivity in depression (Tozzi et al. 2021). The
precuneus is particularly relevant with regard to self-appraisal:
its activity is positively correlated with academic self-regard in
adolescents (van der Aar et al. 2019); and estimates of general

self-efficacy correlate with its volume (Sugiura et al. 2016). The
connectivity it demonstrates with dorsal PFC and angular gyrus
is increased in those with depression (Cheng et al. 2018). However,
using a multivariate approach, these cortical regions did not
demonstrate a prominent relationship with the psychometric
measures of interest, above and beyond that provided by L
striatum. This isn’t to say that they don’t play a part, but within
this pilot sample, most variance was accounted for by striatal
activation.

Strengths and limitations
This study has attempted to apply theoretically-grounded
computational models to functional data in a principled way,
using Bayesian model selection to identify the optimal model
given the evidence. Regions demonstrating significant covariation
with model-derived estimates were then related to psychometric
and symptoms measures within a multivariate framework that
accommodated multicollinearity.

The implicit nature of how self-efficacy beliefs and uncertainty
were estimated in this work would benefit from additional valida-
tion within longitudinal studies. This was a pilot study involving
a small sample of self-selected young people, and although their
mean PHQ-9 score suggested clinically-significant psychopathol-
ogy, this was not a formal clinical sample. They were also
predominantly female, and it could be informative to specifically
address sex differences in the context of self-efficacy and
depression.

Conclusions
Here we have shown that computational estimates of belief uncer-
tainty regarding self-efficacy implicitly derived from behavioral
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responses during a reward task provide an account for patterns
of brain activation in areas key to the reward system. This in turn
correlates both with depressive symptoms and perceived choice
in a group of adolescents. These signals could be informative in
future longitudinal studies of development, as well as in assessing
response to treatment for depression.
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