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Multimodal continual learning for process
monitoring: a novel weighted canonical correlation

analysis with attention mechanism
Jingxin Zhang, James Xiao, Maoyin Chen and Xia Hong, Senior Member, IEEE

Abstract—Aimed at sequential dynamic modes, a novel mul-
timodal weighted canonical correlation analysis using attention
mechanism (MWCCA-A) is introduced to derive a single model
for process monitoring, by integrating two ideas of replay and
regularization in continual learning. Under the assumption that
data are received sequentially, subsets of data from past modes
with dynamic features are selected and stored as replay data,
which are utilized together with the current mode data for contin-
ual model parameter estimation. The weighted canonical corre-
lation analysis is introduced to achieve appropriate weightings of
past modes’ replay data, so that the latent variables are extracted
by maximizing the weighted correlation with its prediction via
the attention mechanism. Specifically, replay data weightings are
obtained via the probability density estimation from each mode.
This is also beneficial in overcoming data imbalance amongst
multiple modes and consolidating the significant features of past
modes further. Alternatively, the proposed model also regularizes
parameters based on its previous modes’ importance, which is
measured by synaptic intelligence. Meanwhile, the objective is
decoupled into a regularization-related part and a replay-related
part, to overcome the potentially unstable optimization trajectory
of synaptic intelligence-based continual learning. In comparison
with several multimode monitoring methods, the effectiveness
of the proposed MWCCA-A approach is demonstrated by a
continuous stirred tank heater, Tennessee Eastman process and
a practical coal pulverizing system.

Index Terms—Multimode dynamic process monitoring,
weighted canonical correlation analysis, replay and regularization
continual learning, synaptic intelligence, attention mechanism

I. INTRODUCTION

Multimode process monitoring has become a pervasive chal-
lenge in industrial system modelling and has attracted wide
interest [1]–[4]. Various complex modelling systems/processes
generate a large amount of data, which are inherently dynamic
and involve changes in system operating conditions. These
may be related to the underlying system or process, such as
raw materials, setting points, etc [5], [6]. Dynamic process
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monitoring has been researched in recent decades, including
dynamic inner principal component analysis (DiPCA) [7].
DiPCA is robust to collinearity and delivers interpretability
as well as prediction performance. However, DiPCA does not
maximize correlation [8]. To overcome this issue, dynamic
inner canonical correlation analysis (DiCCA) was presented
to extract the most predictable information by maximizing the
correlation between the variables and predictions [9].

Traditional multimode process methods generally divide
multimode data into several clusters, followed by local moni-
toring models being constructed corresponding to each mode
or a global model built for existing modes based on Bayesian
inference [4]. Typically, a mixture of canonical variate analysis
(MCVA) was presented for multimode dynamic processes,
where the mode was identified by Gaussian mixture models
and subsequently local dynamic models were built within
each mode [1]. However, these methods assume that data
from all potential modes are available. In practical industrial
applications, sensing data are collected sequentially, and it is
intractable to collect complete data to train a perfect model.
When new modes arrive successively, traditional approaches
need to store all historical data [1], [2], [10] and retrain the
model from scratch without using the learned knowledge. It
is therefore highly important to develop efficient methods
to monitor sequential modes, with acceptable storage and
computational resource requirements.

Recently, continual learning has been applied to multimode
process monitoring and has achieved excellent performance
[11]–[13], which assumes that data are generated successively,
and the model is updated without forgetting the previously
learned knowledge [14]–[17]. Three techniques have been
researched to alleviate the catastrophic forgetting issue, in-
cluding regularization, data replay and parameter isolation
[18]. Parameter isolation approaches generally isolate param-
eters for specific tasks [19], and the capacity for new tasks
is minimized to avoid saturation and ensure stable learn-
ing for future tasks. Regularization-based continual learning
has already been applied to multimode process monitoring
[11], [12], where an extra quadratic term is introduced to
consolidate the previous knowledge to learn a new mode,
via the estimation of the importance of model parameters
[18]. Specifically, sparse principal component analysis (SPCA)
with continual learning ability was proposed for multimode
stationary processes [12], where the importance was measured
by synaptic intelligence (SI) [20]. This method was denoted
as SPCA–SI. Subsequently, a novel sparse DiPCA (SDiPCA)
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was investigated for multimode dynamic processes [11], where
modified SI (MSI) was presented to overcome the limitations
of traditional SI. It is referred to as SDiPCA–MSI. However,
it has been analyzed [21] that regularization-based continual
learning using SI may incur unstable optimization trajectory
due to improper hyperparameters. Meanwhile, regularization
continual learning is limited to modes with high similarity
and the performance may degrade abruptly when the modes
are diverse [22]. Therefore, it may be inappropriate if applied
to long-term monitoring tasks.

Alternatively, replay continual learning [14], [18], [22] is
effective to address shortcomings of regularization continual
learning and is suitable for long-term monitoring tasks. Data
in raw format are stored or pseudo-samples may be generated
from a generative model, and would be replayed when a new
mode arrives. Multimode nonlinear SDiPCA (MNSDiPCA)
was presented for sequential modes [13], where a small part
of sensing data were selected and would be replayed together
with the current data to retrain a new monitoring model. One
potential issue is that the stored replay data or the current mode
data play an equally important role in multimode processes.
However, the statistics of selected replay data may differ from
overall past mode data, or the data numbers amongst past
modes and the current mode data may be very imbalanced;
these factors will influence parameter estimates in the model
and could reduce modelling performance.

Against this background, this work introduces a novel
weighted canonical correlation analysis (WCCA) with atten-
tion mechanism (WCCA-A), which is applicable to a single
dynamic mode initially and then extended to monitoring
sequential dynamic modes. The relationship of dynamic latent
variables in canonical correlation analysis [9] is characterized
by attention mechanism. The proposed multimodal WCCA-
A with continual learning ability is denoted as MWCCA-A.
Several complementary strategies such as SI-based regulariza-
tion are incorporated in MWCCA-A to alleviate catastrophic
forgetting issues, in which the importance of model parameters
is evaluated by SI [20] and tuned by [21]. Simultaneously,
new replay approaches are proposed to enhance the continual
learning ability subject to satisfying the constraints of compu-
tational resources. Specifically, some data from each mode are
selected and stored when the training procedure finishes per
mode. With each incoming new mode, sufficient current mode
data and previously stored replay data are jointly utilized for
retraining the model. To overcome the potential imbalance be-
tween replayed data and the current mode data, the weights of
replayed data are estimated by probability density estimation
and used within the MWCCA-A framework.

The contributions of this paper are outlined below:

a) This paper proposes a novel WCCA-A approach for mul-
timode dynamic process monitoring (MWCCA-A), where
replay and regularization continual learning techniques are
adopted to consolidate the previous knowledge via sensing
data and the learned model. It can achieve excellent long-
term and short-term monitoring performance.

b) To mitigate data imbalance among multiple modes, the
weightings of replay data are allocated by the Parzen

window density estimation algorithm, which is calculated
based on each mode respectively.

c) The objective function is divided into two parts to deal
with the unstable optimization trajectory, which leads to
less human intervention. Besides, the proposed MWCCA-
A method can avoid the potentially unstable training pro-
cedure that is caused by SI-based regularization continual
learning.

The remainder of this paper is organized below. Section
II introduces the framework of the proposed approach. Sec-
tion III introduces the procedure of proposed MWCCA-A,
including replay data selection, weight allocation, attention key
updating algorithm, optimization solver including estimation
of parameter importance for regularization, and the monitoring
procedure. In Section IV, several state-of-the-art multimode
monitoring methods are discussed to highlight the virtues
of the proposed method. The effectiveness of the proposed
method is demonstrated by several industrial systems in Sec-
tion V. The concluding remarks are given in Section VI.

II. A NOVEL FRAMEWORK OF MULTIMODE PROCESS
MODEL COMBINING REGULARIZATION AND REPLAY

This section introduces a new framework of continual
learning, combining regularization and replay, for multimode
process model that is based on WCCA-A to extract dynamic
features. The concept of multimode parameter regularization
for continual learning is initially described, then the proposed
WCCA-A model is investigated for dynamic processes, fol-
lowed by a problem statement of the proposed MWCCA-A.

A. Multimode parameter regularization for continual learning

The regularization technique is shown to be effective for
monitoring multiple sequential modes with continual learning
capability [4], [11], [12]. Consider the task of monitoring
multimode dynamic processes, with each of the modes being
denoted as MK , for sequential modes K = 1, 2, . . .. In
contrast to the common approach of building local models for
each mode followed by combining them as a global model,
only a single adaptive model is obtained. While the model is
updated with incoming data from being collected of MK , it
can explain MK as well as all previous modes.

Without loss of generality, the concept of regularization for
continual learning [20] is initially introduced for an unspeci-
fied system model, based on the gradient descent algorithm in
the context that the model parameters are updated between two
consecutive modes per step. Denote the associated parameter
vector as θ. When the Kth mode MK arrives, normal data
X0

K are collected. Parameter regularization is designed using
the concept of SI to control catastrophic forgetting [20],
where a quadratic regularization term is added to the loss to
penalize changes in important model parameters. Specifically,
the regularized objective function of regularization continual
learning at current mode MK can be formulated as

JK
reg = JK(θ) +

λ

2

!

i

ϖ̂K−1
i

"
θi − θ∗K−1,i

#2
(1)
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where JK(θ) is a model specific objective function using new
data information at the Kth mode. λ > 0 is a regularization
hyperparameter, θ∗K−1,i denotes the parameter estimate from
the previous mode MK−1, and ϖ̂K−1

i is an importance
parameter from SI for continual learning, as detailed below.

Considering gradient descent method to solve (1), each
element of θ is updated by

θi ← θi − η
"
∇θiJK + λϖ̂K−1

i

"
θi − θ∗K−1,i

##
(2)

where η > 0 is a small learning rate. Reformulating (2), the
parameter is updated by

θi ←
"
1− ηλϖK−1

i

#
θi +

"
ηλϖK−1

i

#
θ∗K−1,i$ %& '

Interpolation current and previous values

− η
∂JK
∂θi$ %& '

mode derivative
(3)

The updating of θ contains the regularization-related part
(the first term) and the optimization about the current mode
(the second term) in (3). It can be observed from (3) that a new
mode monitoring task is trained through moving model pa-
rameters along mode-specific derivatives, and the catastrophic
forgetting issue is alleviated by adding an interpolation op-
eration between current and previous model parameters [21].
The interpolation term minimizes the variation of important
parameters to retain the previously learned knowledge.

To represent the influence of interpolation visually, we
derive the total variation in mode parameters between the
(K − 1)th and Kth modes. According to (3), unrolling the
parameter updates via recursive substitution for k iterations
yields

θi = θ∗K−1,i −
k−1!

j=0

("
1− ηλϖK−1

i

#k−j−1
)

$ %& '
effective learning rate

gj (4)

in which gj = ∂JK

∂θi
at jth iteration. However, it has already

been analyzed in [21] that improper hyperparameter config-
urations often result in extrapolation of parameters and the
training process may be unstable. To address this issue, the
updating of θ is divided into two operations:

θi ← θi − η∇θiJK (5a)

θi ← (1− ri)θi + riθ
∗
K−1,i (5b)

where the relative importance ri is defined as [21]

ri =

*
ϖ̂K−1

i

√
ϖ̂i +

*
ϖ̂K−1

i

(6)

and ϖ̂i is calculated by SI as follows [20]

ϖ =
!

k

+
(−∇θJK (θk))

T ⊙ (θk − θk−1)
T
,T

(7)

where ⊙ denotes the Khatri-Rao product. After the training
procedure, each element of ϖ is normalized by [23]

ϖ̂i = max

-
0,

ϖi

(∆θi)
2
+ ζ

.
(8)

where ∆θi is the total change of ith variable for mode MK .
ζ > 0 is added to avoid ill-conditioning issues and let ζ =
1e−8 in this paper. Once the optimization procedure finishes,
ϖ̂ is determined. The importance measure is updated for the
(K + 1)th mode as follows:

ϖK =
"
ϖK−1 + ϖ̂

#
/2 (9)

Remark: We further explain the rationale to update param-
eters using (5) instead of (3). In most cases, a gradient descent
method is adopted to optimize the objective (1) and the pa-
rameter is updated by (4). Here, 1−ηλϖK−1

i can be regarded
as a learning rate [21]. Once an improper hyperparameter λ
is selected, it may lead to ηλϖK−1

i > 1. Then, the training
procedure is unstable because 1 − ηλϖK−1

i < 0. To avoid
this problem, the updating steps are divided into two parts,
namely, mode-specific changes in (5a) and interpolation (5b).
The parameter importance of previous modes is evaluated by
ri in (6) and the updating procedure is not affected by the
hyperparameter λ, which also reduces the need for human
intervention to select an appropriate hyperparameter λ.

B. WCCA-A model for a single mode dynamic process

The attention mechanism is an efficient technique to over-
come catastrophic forgetting [24], [25]. It is also beneficial
for extracting global and local important features and ig-
noring the unimportant information. In this section, a novel
weighted CCA model with attention mechanism is proposed
by constructing a set of dynamical latent attention variables,
and then the dynamical relationship of attention variables is
characterized by a vector autoregressive (VAR) model.

Let X = {xk}, k = 1, . . . , N as time instance. N is the
number of samples and x ∈ ℜm is a sample. Consider an
attention function F : x (−→ φ(x), and φ(x) = {φi(x)} ∈ ℜM

given by

φi(x) = −‖x− ci‖2
d

(10)

where d > 0 is a scaling hyperparameter and C = {ci},
i = 1, . . . ,M are a set of M keys.

Attention is the mapping [26]

Attention(x,C,w) =

M!

i=1

softmax(x,C)iwi (11)

in which

softmax(x,C)i =
exp(φi(x))/M
i=1 exp(φi(x))

(12)

For convenience, the function of softmax(·) is denoted as
xφ and Attention(x,C,w) is labelled by t. Through the
attention mechanism (12), the mapped data are denoted as
Xφ ∈ ℜN×M and the kth sample is xφ,k correspondingly.

Define the latent attention variable at the kth instant as

tk = xT
φ,kw (13)

where w = [w1, . . . , wM ]T is the weight vector with ‖w‖2 =
1. Similar to DiCCA [8], the current latent attention variable
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is represented by the past ones through a VAR model, namely,

tk =

s!

j=1

βjtk−j + rk (14)

where rk is the Gaussian white noise at kth instant and s
is the order of VAR model. According to (13) and (14), the
prediction of dynamic latent attention variable is described by

t̂k =

s!

j=1

xT
φ,k−jwβj

=
0
xT
φ,k−1 · · · xT

φ,k−s

1
(β ⊗w)

(15)

where ⊗ denotes the Kronecker product, β = [β1, . . . ,βs]
T

and ‖β‖2 = 1. By extending the idea in DiCCA [8], [9], the
proposed WCCA-A extracts dynamic features by maximizing
the weighted correlation between the latent variable tk and its
prediction t̂k, namely,

/N
k=s+1 ωktk t̂k*/N

k=s+1 ωkt2k

*/N
k=s+1 ωk t̂2k

(16)

where ωk > 0 are preset weights to each data instance. When
all weights are equal, it is equivalent to unweighted correlation.
For notational convenience, the description mentioned above
is reformulated in a vector form. Define X

(s+1)
φ and Z as

X
(j)
φ = [xφ,j xφ,j+1 · · · xφ,N−s+j−1]

T
, j = 1, . . . , s+ 1

(17)
Z =

(
X

(s)
φ X

(s−1)
φ · · · X(1)

φ

)
(18)

Then, the sub-vectors of latent variables are described as

tj = X
(j)
φ w ∈ ℜN−s, j = 1, . . . , s+ 1 (19)

The prediction t̂j of tj is rewritten based on (15) into

t̂s+1 =

s!

j=1

βjts+1−j =

s!

j=1

βjX
(s+1−j)
φ w (20)

According to the expression mentioned above, the objective
(16) can be reformulated as

max
w,β

tTs+1Ωt̂s+1222Ω
1
2 ts+1

222
222Ω

1
2 t̂s+1

222

where Ω = diag{ωs+1, . . . ,ωN}, which is equivalent to

max
w,β

tTs+1Ωt̂s+1

s.t.
222Ω

1
2 ts+1

222
2

= 1,
222Ω

1
2 t̂s+1

222
2

= 1
(21)

Let X denote X
(s+1)
φ . By making use of (19) and (20), the

objective of WCCA-A is designed as

min J(w,β) = −wTX
T
ΩZ (β ⊗w) + λ1β

TDβ

s.t.
222Ω

1
2Xw

222
2
= 1,

222Ω
1
2Z (β ⊗w)

222
2
= 1

(22)

where D is an unknown weighting matrix to make β sparse,
and λ1 is a hyperparameter and predefined by users. Sparse
representation contributes to avoiding potential overfitting
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Fig. 1. Overview of MWCCA-A with regularization and replay continual
learning

[11], [27] and alleviating catastrophic forgetting [22]. Ω is
an externally supplied constant matrix in above objective
function, which can be set as an identity matrix in the case
of single-mode data sets, which is equivalent to unweighted
CCA with attention mechanism.

C. Problem Statement
This work aims to adaptively build a single MWCCA-A

model, upon receiving sequential modes, by integrating both
replay and regularization techniques. This presents a novel
framework for a continual learning multimode monitoring
approach in order to maintain the performance for all modes
with acceptable storage and computing costs.

Considering that the regularized objective function (1) is
integrated within the specific context of WCCA-A, we have
θ = {w,β} and the term JK(θ) in (1) should be contributed
by data set XK and ZK from data XK which follow (17) and
(18), except that the subscript is added to indicate the mode
index K. As illustrated in Fig. 1, in the proposed approach,
XK is formed jointly from data of the current mode K,
and all previous stored replay data DK in memory, so that
data in raw format of previous modes are replayed together
with new data when a new mode arrives. Specifically as data
from MK , K > 1 are received sequentially, the attention
mechanism parameters {CK ,wK} and the VAR parameters
βK are shared parameters between neighborhood modes and
updated from a prior model parameter set {CK−1,wK−1} and
βK−1, using data X0

K , as well as previous stored replay data
DK from each previous mode. wK−1 and βK−1 are optimal
parameters of the mode MK−1, that are obtained recursively
as below. The projection matrix P is utilized to calculate the
monitoring index in Section III.C.

According to (1), (22) and replay continual learning, the
objective of MWCCA-A at Kth mode can be formulated as

min JK
total(w,β) = JK(w,β) + Jreg

+
w,β,wK−1,βK−1

,

s.t.
222Ω

1
2

KX
K
w
222
2
= 1,

222Ω
1
2

KZK (β ⊗w)
222
2
= 1

(23)
Similar to (17) and (18), construct X

K
and ZK based on

data XK from the existing K modes. The replay-related term
JK(w,β) is constructed by

JK(w,β) = −wT
+
X

K
,T

ΩKZK (β ⊗w) + λ1β
TDβ
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in which ΩK measures the importance of joint data
XK . According to (1), the regularization-related term
Jreg

+
w,β,wK−1,βK−1

,
is formulated as

Jreg

+
w,β,wK−1,βK−1

,

=
γ1,K
2

"
w −wK−1

#T
Πw

"
w −wK−1

#

+
γ2,K
2

+
β − βK−1

,T

Πβ

+
β − βK−1

,
(24)

where ϖK−1
w and ϖK−1

β are the corresponding importance
measures, and Πw = diag(ϖK−1

w ), Πβ = diag(ϖK−1
β ).

The parameters {w,β,ϖK
w ,ϖK

β } are updated by (5)–(9).
γ1,K and γ2,K are regularization coefficients and predefined
by users. Contrary to [4], [12], the training parameters are
not affected by the hyperparameters through scaling down the
regularization coefficient.

III. MWCCA-A FOR MULTIMODE PROCESS MONITORING

This section provides the details of MWCCA-A to mon-
itor successive dynamic modes, integrating both replay and
regularization continual learning for model estimation and its
application for monitoring procedures. We start by outlining
the technical ingredients that are: replay data selection, their
weighting allocation and training data preparation. Then the
unsupervised learning of keys CK in the attention mechanism
for each mode is introduced, followed by the parameter esti-
mation of the proposed algorithm. Finally, the offline training
and online monitoring phases are presented.

A. Subset replay data selection and weighting allocation

The MWCCA-A aims to build a single model for sequential
modes with acceptable storage and computing costs. To reduce
storage space and computation requirements, it is important
to make the data selection algorithm as efficient as possible
to store a selected fraction of the original data to be used as
replay data. Alternatively once the replay data set is selected, it
is desired that adequate weighting in MWCCA-A, as reflected
ΩK , can reflect the data distribution of each previous mode,
for improved estimation. For example, in the case of an outlier
being used as replay data, the weighting will reduce its impact
on mode parameters.

1) Data selection: Define multiple modes as MK , K =
1, 2, . . .. To facilitate the exposition, assume that there are NK

normal samples in data matrix X0
K ∈ ℜNK×m for each mode

MK , which are normalized to zero means as well as unit
variances, to yield XK . For each mode MK , some replay
data are selected in order to present the operating condition
without much redundancy. A novel data selection technique is
presented by combining online k-means algorithm [28] and k
nearest neighborhood (KNN). Specifically, k-means clustering
is adopted to acquire several cluster centers, which can reflect
the data distribution to a certain extent. Subsequently, KNN
is used to find the corresponding samples in original data
space that are nearest to the cluster centers. The procedure of
data selection is summarized in Algorithm 1. Therefore, the
selected data X̃K can represent the original data, and between

Algorithm 1 Data selection via online k-means and KNN
Input: Data XK ∈ ℜNK×m, the number of clusters n, ttotal.
Output: Representative data X̃K .
1: Initialize cluster centers U = {u1, . . . ,un}, iter = 1, η1 = 0.05,

n1 = 2.
2: For iter = 1 : ttotal

For k = 1 : NK

a) For each data xk ∈ XK , i∗ = argmini ‖xk − ui‖2, i ∈
{1, . . . , n};

b) Update the cluster center ui∗ as

unew
i∗ = ui∗ − ηiter

∂L

∂ui∗

= ui∗ + ηiter(xk − ui∗ )

c) Update the learning rate ηiter = η0(
ηf
η0

)
iter

ttotal , let iter = iter+1;

3: The optimal cluster centers are denoted as UK = {u∗
1, . . . ,u

∗
n}.

4: According to KNN, find n samples in XK that are nearest to u∗
1, . . . ,u

∗
n

correspondingly. Delete the redundant vectors and the rest vectors are
denoted as X̃K ∈ ℜnK×m.

them there is sufficient dissimilarity. The number of clusters
n remains the same for different modes and is generally set
to be sufficiently large to cover the data space. It is possible
that different clustering centers may share the same nearest
samples. Thus, the number of selected data may be different
when replay data are ensured to be different.

2) Weight allocation: Obviously, data from previous modes
and the current mode are generally imbalanced. Only a few
representative samples from previous modes are selected and
stored for replay continual learning, hence data size of previ-
ous modes could be much lower than that of the current mode.
The significant features from previous modes may be forgotten
because these features could be overwritten by the current
mode, which motivates the need for data weighting. For each
mode, a Parzen window density estimation algorithm [29] is
utilized to generate a weighting for each replay data instance.
For simplicity, denote xk ∈ ℜm, k = 1 : NK , as data samples
of XK . The Parzen window probability density function
(PDF) estimator [29] can be written as

PDF (x) =
1

NK(2π)m/2
3

σi

×
NK!

k=1

exp{−1

2
(x− xk)

TΣ−1(x− xk)} (25)

where Σ = diag{σ2
1 , ...,σ

2
m}, σi is called the bandwidth and

set using Scott’s rule of thumb [30] that minimizes the mean
integrated squared error to true, unknown density, as

σi ≈ SiN
−1/(m+4)
K

Algorithm 2 Replay data weighting using Parzen window PDF
estimation
Input: Data XK , replay data set X̃K = {x̃1, . . . , x̃nK} .
Output: The corresponding weighting vector for replay data X̃K as

qK = {q(x̃i)} ∈ ℜnK .
1: Denote each data xk ∈ XK , k = 1 : NK .
2: Find PDF for XK using (25).
3: q(x̃i) =

NKPDF (x̃i)!nK
i=1 PDF (x̃i)

4: return
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Algorithm 3 Updating CK based on maximum likelihood
Input: Data XK , CK−1, η = 0.1, error ε.
Output: Key CK = {c∗1, . . . , c∗M}.
1: Initialize t = 1, use CK−1 as the initial setting of C, calculate the

initial L(0) =
!NK

k=1 Lk based on (26);
2: For each data xk(k = 1, . . . , NK), update ci using gradient ascent

update of (27);
3: Calculate L(t) =

!NK

k=1 Lk , and Lk is calculated by (26);
4: Return to step 2 until ‖L(t)− L(t− 1)‖ < ε, let t = t+ 1;
5: The optimal cluster centers are denoted as CK = {c∗1, . . . , c∗M}.

in which Si is the standard deviation of samples in the ith
feature of mode data XK . The data weighting procedure is
outlined in Algorithm 2.

3) Training data preparation and pre-training algorithm for
CK: Assume that data from multiple modes are collected
sequentially, replay data X̃K−1 have been selected after
training the mode MK−1, together with their weighting qK−1

being obtained. Thus, DK =
4
X̃1, . . . , X̃K−1

5
are available

for previous modes. When Kth mode MK arrives, normal
data X0

K are normalized as XK . Let XK = {DK ,XK} ∈
ℜNK×m be constructed, where NK is the number of prepared
training samples (current mode and replay modes) that are
ready to be employed in training algorithms.

As summarized in Algorithm 3, the key CK is updated
via an unsupervised pre-training manner once a new mode
appears, using instantaneous log-likelihood function (26)

Lk =

M!

i=1

log softmax(xk,C)i (26)

as

cnewi = coldi + η
∂

∂ci
Lk

cnewi = cnewi /
!

i

‖cnewi ‖, (27)

with

δci =
∂

∂ci
Lk = 2(Msoftmax(x,C)i − 1)

(xk − ci)

d
,

for all i if (10) is used. η > 0 is a small preset learning rate.

B. Parameter estimation of MWCCA-A algorithm

The proposed MWCCA-A method inherits the themes of
replay and regularization continual learning, and thus it is
appropriate for long-term and short-term monitoring tasks. The
problem has been reformulated specifically in Section II-C.

Recall the objective function (23), we explain the construc-
tion of some critical matrices. Assume that data from multiple
modes are collected and the model is trained in a sequential
manner. When the mode MK arrives, data of previous modes
have been selected and replayed, followed by updating the
key CK . Map data XK to a high dimensional space by
(11)–(12), and then calculate the mean µφ

K and variance Σφ
K .

The preprocessed data are denoted as Xφ,K with zero mean
and unit variance. Similar to (17) and (18), construct X(j)

φ,K

(1 ≤ j ≤ s+1) and ZK =
(
X

(s)
φ,K X

(s−1)
φ,K · · · X

(1)
φ,K

)
, and

let X
K

denote X
(s+1)
φ,K . The weightings of replayed data have

been estimated by Algorithm 2. ΩK is a diagonal weighting
matrix with the dimension of an incremental data size along
with that of X

K
(also XK) as K increases. It is defined as

ΩK = diag{qT
1 , ...., q

T
K−1,α1

T
NK

} (28)

where α > 0 is a scaling parameter, balancing data importance
between the current mode and past modes. It is predefined by
users based on the expert experience and prior knowledge. 1
is an all-ones vector, reflecting equal weighting for data in the
current mode.

Solution: The objective (23) is optimized by an augmented
Lagrange multiplier method. To be consistent with (1), the
augmented Lagrange function of (23) is divided into two parts

J̃K
total(w,β) = J̃K(w,β) + Jreg

+
w,β,wK−1,βK−1

,

(29)
where

J̃K(w,β) =JK(w,β) + ρ1

6
wT

+
X

K
,T

ΩKX
K
w − 1

72

+ ρ2

6
(β ⊗w)

T
+
ZK

,T

ΩKZK (β ⊗w)− 1

72

(30)
in which ρ1 and ρ2 are Lagrangian parameters, Jreg has been
described in (24).

We aim to optimize (29) by a gradient descent method.
Specifically, (5a) is realized by Nesterov-accelerated adaptive
moment estimation (Nadam) [31] to optimize (30), which
inherits the virtues of Adam and Nesterov accelerated gradient.
Then, the regularization term (24) is updated by (5b).

For the proposed MWCCA-A, the gradients with regard to

Algorithm 4 Update parameters and importance
at kth iteration: [θk+1,ϖk+1,mk+1,vk+1] =
F
"
θk,mk,vk, gk,θ0,θ

∗
pre,ϖk,ϖpre

#

1: Update parameters by Nadam
a) Update the first moment estimate: mk+1 = µ1mk +

(1− µ1) gk

b) Update the second moment estimate: vk+1 = µ2vk +
(1− µ2) gk ⊙ gk

c) Correct the first moment estimate: m̂k+1 = mk+1/
!
1− µk

1

"

d) Correct the second moment estimate: v̂k+1 =
vk+1/

!
1− µk

2

"

e) Update each element of the parameter: θ̂k+1,i = θk,i −
η2√

v̂k+1,i+ε

#
µ1m̂k+1,i +

(1−µ1)gk,i

1−µk
1

$
, i = 1, · · · , n, and

θ̂k+1 =
%
θ̂k+1,1, · · · , θ̂k+1,n

&

2: Correct parameters by considering the interpolation operation
a) Update parameter importance: ϖk+1 = ϖk −'

gT
k ⊙

#
θ̂k+1 − θk

$T
(T

b) Normalize importance: ϖ̂k+1,i =

max

'
0,

ϖk+1,i

(θ̂k+1,i−θ0,i)
2
+ζ

(

c) Compute each element of relative importance: ri =√
ϖpre,i/

!√
ϖpre,i +

)
ϖ̂k+1,i

"

d) Correct parameters: θk+1,i = (1− ri)θ̂k+1,i + riθ
∗
pre,i

3: The updated parameter is θk+1 = {θk+1,1, · · · , θk+1,n}
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Algorithm 5 Optimization procedure of MWCCA-A

Input: Data Xφ,K , parameters of mode MK−1

%
WMK−1 ,ΓMK−1 ,Π

w
MK−1

,Πβ
MK−1

&

Output: Weight matrix WMK , regression matrix ΓMK , the importance measures Πw
MK

and Πβ
MK

, projection matrix P , latent score
matrix T
for j = 1, 2, · · · , l do

1) Let wK−1, βK−1, ϖ̂w, and ϖ̂β be the jth line of WMK−1 , ΓMK−1 , Πw
MK−1

and Πβ
MK−1

. Πw = diag(ϖ̂w), Πβ =

diag(ϖ̂β).
2) Random unit vectors β1 and w1, mw

1 = 0, vw
1 = 0, mβ

1 = 0, vβ
1 = 0, ϖw

1 = 0, ϖβ
1 = 0, rw = 1, rβ = 1, ρ1,1 = 0, ρ2,1 = 0,

µ1 = 0.9, µ2 = 0.999, αρ = 0.01, η = 0.001, ε = 10−8, µ1 = 0.9, µ2 = 0.999, η2 = 0.001, k = 1;
3) Construct X(j)

φ,K (1 ≤ j ≤ s+ 1) and ZK in accordance with (17) and (18);
4) Calculate optimal w and β based on the correlation of prediction:

while the objective (29) is not converged do
a) Update parameters about w, [wk+1,ϖ

w
k+1,m

w
k+1,v

w
k+1] = F

#
wk,m

w
k ,v

w
k ,∇wJ̃K (wk,βk) ,w1,w

K−1,ϖw
k , ϖ̂w

$
in

Algorithm 4, and ∇wJ̃K (wk,βk) is calculated by (31);
b) Update parameters about β,

*
βk+1,ϖ

β
k+1,m

β
k+1,v

β
k+1

+
= F

#
βk,m

β
k ,v

β
k ,∇βJ̃

K (wk+1,βk) ,β1,β
K−1,ϖβ

k , ϖ̂β

$
in

Algorithm 4, and ∇βJ̃
K (wk+1,βk) is calculated by (32);

c) Update the Lagrangian parameters: ρ1,k+1 = ρ1,k + αρ∇ρ1 J̃
K
!
wk+1,βk+1

"
, ρ2,k+1 = ρ2,k + αρ∇ρ2 J̃

K
!
wk+1,βk+1

"
;

d) Update the weighted matrix D by (33) and let k = k + 1;
end while

5) The weighted vector is w∗
j , the regression coefficient is β∗

j . Let tj = Xφ,Kw∗
j , pj = XT

φ,Ktj
,
tTj tj , deflate Xφ,K as Xφ,K :=

Xφ,K − tjp
T
j ;

6) The importance measures are normalized by (8), and denoted as ϖ̂w
j and ϖ̂β

j .
end for
WMK = [w∗

1 w∗
2 · · · w∗

l ], ΓMK = [β∗
1 β∗

2 · · · β∗
l ], Πw

MK
= [ϖ̂w

1 ϖ̂w
2 · · · ϖ̂w

l ], Πβ
MK

=
*
ϖ̂β

1 ϖ̂β
2 · · · ϖ̂β

l

+
, P =

[p1 p2 · · · pl], T = [t1 t2 · · · tl]

each parameter are calculated by

∇wJ̃K (w,β)

=−
+
GK,β +GT

K,β

,
w + 4ρ1

"
wTGK,xw − 1

#
GK,xw

+ 4ρ2
"
wTGK,zβw − 1

#
GK,zβw

(31)

∇βJ̃
K (w,β) =−(Is ⊗w)

T
+
ZK

,T

ΩKX
K
w + 2λ1Dβ

+ 4ρ2

+
βTGK,zwβ − 1

,
GK,zwβ

(32)

where GK,zβ = (β⊗IM )
T
+
ZK

,T

ΩKZK (β⊗IM ),

GK,zw = (Is ⊗w)
T
+
ZK

,T

ΩKZK (Is ⊗w), GK,x =
+
X

K
,T

ΩKX
K

, GK,β =
+
X

K
,T

ΩKZK (β ⊗ IM ). Is

and IM are identity matrices with s and M dimensions,
respectively.

The updating procedure of w and β is summarized in Algo-
rithm 4. ρ1 and ρ2 are updated to accelerate the convergence
rate. The gradients are calculated by

∇ρ1
J̃K (w,β) =

6
wT

+
X

K
,T

ΩKX
K
w − 1

72

∇ρ2 J̃
K (w,β) =

6
(β ⊗w)

T
+
ZK

,T

ΩKZK (β ⊗w)− 1

72

The detailed solution of MWCCA-A is outlined in Algo-
rithm 5. During the optimization procedure, the matrix D is

updated to avoid potential overfitting as follows [27]

Dk+1 =diag
8
dk+1
1 , dk+1

2 , · · · , dk+1
s

9

dk+1,j =
1

|βk+1,j |+ ε
, j = 1, · · · , s

(33)

where βk+1,j is the jth element of βk+1, ε = 1e−6 is added
to avoid the potential ill-conditioning issue.

Importance measure: Recall (7), the importance measures
for parameters w and β are calculated by

ϖw =
!

k

6+
−∇wJ̃K

"
wk+1,βk+1

#,T

⊙ (wk+1 −wk)
T

7T

ϖβ =
!

k

6+
−∇βJ̃

K
"
wk+1,βk+1

#,T

⊙
"
βk+1 − βk

#T
7T

After finishing the training procedure, ϖw and ϖβ are
normalized by (8), and denoted as ϖ̂w and ϖ̂β respectively.
Then, the importance measures are updated and ready for the
(K + 1)th mode:

ϖK
w =

"
ϖK−1

w + ϖ̂w

#
/2 (34)

ϖK
β =

+
ϖK−1

β + ϖ̂β

,
/2 (35)

Remark: This work unifies replay and regularization-based
continual learning, and it is appropriate for long-term and
short-term monitoring tasks. A small amount of original data
are selected based on the concept of nearest neighborhoods
and would be replayed when a new mode arrives. Data nearest
to the clustering centers can represent the most efficient
information, and the data distribution is utilized to measure the



8

weight. Compared with data selection in [13], this work also
considers data imbalance among multiple modes so that it is
robust to outliers which are not used in replay. Simultaneously,
MWCCA-A slows down learning for the parameters that are
significant to previous modes, and the importance is evaluated
by synaptic intelligence. Contrary to [12], the optimization
procedure is stable and is not affected by the hyperparameters
γ1,K and γ2,K , as analyzed in Section II-A. The importance
between the current mode and all previous modes is measured
by hyperparameter α, which should be determined by prior
knowledge and expert experience.

We briefly compare with parameter isolation methods [19]
and explain that it is easier to adopt replay and regularization
continual learning into the CCA framework. For online appli-
cations, it is necessary to judge whether the mode appears be-
fore. This work preserves common features by regularization
continual learning and extracts specific features from diverse
modes via replay continual learning. For parameter-isolation
methods, part of parameters and resources are allocated for
each specific monitoring mode and the mode needs to be
identified for online monitoring, which may be challenging
and presents an open problem for future research.

C. MWCCA-A for process monitoring

Similar to [7], [11], define R = WMK

+
P TWMK

,−1

,
T = Xφ,KR. Form T i, i = 1, · · · , s+1, from T in the same
way with (17). Similar to (14), we establish the relationship
between the latent score T s+1 and past T 1,T 2, · · · ,T s [7]

T s+1 =

s!

i=1

T iΦs+1−i +E

=T̄ sΦ+E

Algorithm 6 Offline training procedure of MWCCA-A
Input: Data XK and XK , weights

-
q1, . . . , qK−1

.
, keys CK−1,

weight matrix WMK−1 , regression matrix ΓMK−1 , importance
measure Πw

MK−1
and Πβ

MK−1

Output: Representative data X̃K , weight qK , keys CK , mean µφ
K

and variance Σφ
K , WMK , ΓMK , Πw

MK
, Πβ

MK
, P , thresholds

Jth,T2
ϕ

and Jth,T2
c

.
1: According to Algorithm 3, update CK based on XK and

CK−1;
2: Map data XK to a high-dimensional space via (10) and (12),

which are denoted as X0
φ,K ;

3: Calculate the mean µφ
K and variance Σφ

K of X0
φ,K . Normalize

data X0
φ,K to zero mean and unit variance, which are denoted

as Xφ,K ;
4: Construct the weight matrix ΩK via (28), calculate the optimal

parameters WMK , ΓMK , Πw
MK

, Πβ
MK

, P and T via Algo-
rithm 5;

5: Calculate two statistics by (38) and (41), and the thresholds
Jth,T2

ϕ
and Jth,T2

c
are estimated by KDE;

6: Select representative data X̃K via online k-means and KNN in
Algorithm 1;

7: Allocate the weight qK of replay data X̃K via Algorithm 2.

Algorithm 7 Online monitoring procedure of MWCCA-A
1: x0 is preprocessed by its mean and variance, and denoted as x;
2: Map x to a high dimensional space via (10) and (12), the mapped

x0
φ is preprocessed by µφ

K and variance Σφ
K , and denoted as xφ;

3: Calculate the latent variables t1, . . . , ts through t = xφR, and
construct t̄s = [t1 t2 · · · ts];

4: Predict the latent attention variable t̂s+1 by (36), and calculate
the dynamic prediction error by (37) and the static residual by
(40);

5: Compute test statistics based on (38) and (41);
6: Evaluate the operating state: two statistics are lower than thresh-

olds, the process is normal; otherwise, faulty.

where T̄ s = [T 1 T 2 · · · T s], Φ = [Φs Φs−1 · · · Φ1]. The
least squares estimate for Φ is

Φ̂ =
+
T̄

T
s T̄ s

,−1

T̄
T
s T s+1

After Φ̂ is obtained, T s+1 is predicted by

T̂ s+1 = T̄ sΦ̂ (36)

The dynamic residual matrix V is computed by:

V = T − T̂ s+1 (37)

Since the latent score matrix T may be dynamic, monitoring
it directly would lead to high false alarm rate. Therefore, a
monitoring index is built through V and defined as

T 2
ϕ = vTΦvv (38)

Φv =
P vΛ

−1
v P T

v

Jth,T 2
v

+
I − P vP

T
v

Jth,SPEv

(39)

where P v is the principal component matrix by principal
component analysis (PCA), and Λv = 1

NK−s−1V
TV . Jth,T 2

v

and Jth,SPEv are the thresholds of two statistics T 2
v and SPEv

based on PCA, respectively. T 2
v and SPEv are the monitoring

statistics and calculated based on PCA, where the projection
matrix is P v and eigenvalues are contained in Λv . The static
prediction error is

E = Xs+1 − T s+1P
T (40)

Similar to (38), an index is designed to monitor the static error

T 2
c = eTΦce (41)

Φc =
P rΛ

−1
r P T

r

Jth,T 2
r

+
I − P rP

T
r

Jth,SPEr

(42)

where P r is the principal component matrix. Perform PCA on
E, then E = T rP

T
r +Er and Λr = 1

NK−s−1T
T
r T r. Jth,T 2

r

and Jth,SPEr are the thresholds of T 2
r and SPEr.

Thresholds are estimated by kernel density estimation
(KDE) [11], which are denoted as Jth,T 2

ϕ
and Jth,T 2

c
respec-

tively. The offline training and online monitoring procedures
are summarized in Algorithms 6 and 7, respectively. Fault de-
tection rate (FDR), false alarm rate (FAR) and detection delay
(DD) are utilized to evaluate the monitoring performance. FDR
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and FAR are calculated as follows:

FDR =
number of samples (J > Jth|f ∕= 0)

total samples (f ∕= 0)
× 100% (43)

FAR =
number of samples (J > Jth|f = 0)

total samples (f = 0)
× 100% (44)

where J indicates the monitoring statistic and Jth is the
corresponding threshold. If the process operates normally,
f = 0; otherwise, f ∕= 0. DD refers to the number of samples
that the fault is detected later than the practical faulty time.

IV. DISCUSSION AND COMPARATIVE EXPERIMENT DESIGN

A. Comparison and discussion

The proposed MWCCA-A is compared with SDiPCA–MSI
[11], SPCA–SI [12], MNSDiPCA [13], MCVA [1] and finite
Gaussian mixture model (FGMM) [32]. These methods furnish
continual learning ability except MCVA and FGMM, where
regularization or replay technique is adopted to overcome the
catastrophic forgetting issue of a single model for multiple
modes. For MCVA and FGMM, the process data are assumed
to be from different clusters and each cluster corresponds to
a mode [32], which would be characterized by a Gaussian
component. Bayesian inference is then adopted to derive
an integrated global monitoring consequence for multimode
processes. MCVA built local CVA monitoring models within
each cluster and local statistics are calculated instead of local
probability index. To be consistent with the other methods,
two local monitoring statistics based on PCA are constructed
within each Gaussian component for FGMM, instead of Maha-
lanobis distance. MCVA and FGMM need to store complete
data of existing modes and retrain the model from scratch
when a new mode arrives.

We focus on association and distinctions of four continual
learning-based methods. They construct a single model for
sequential modes, where significant features of new modes are
extracted while consolidating the information from previous
modes. We discuss these methods from five aspects:

a) The manner of preserving information from previous
modes. SPCA–SI and SDiPCA–MSI adopt regularization-
based continual learning, where the learned knowledge is
consolidated by slowing down the learning rate of certain
parameters when the model is updated. SPCA–SI utilized
traditional SI to measure the importance of SPCA model
parameters. The importance is easily influenced by initial
setting of optimization issue. Aimed at this limitation,
modified SI was proposed to estimate the importance of
SDiPCA model parameters. However, it has been ana-
lyzed in Section II-A that improper hyperparameter set-
tings would cause the unstable training procedure. Replay
continual learning methods store representative data from
previous modes and extract significant features from data in
raw format, which would be replayed when a new mode
arrives. MNSDiPCA only adopts the intention of replay
continual learning. Regularization and replay continual
learning are adopted simultaneously in MWCCA-A, where
parameter importance is measured by traditional SI and the

parameters are updated by (5) to avoid potential negative
influence of improper hyperparameter configuration.

b) Data selection and storage. SPCA–SI and SDiPCA–MSI
only use the learned knowledge from previous modes and
the current mode data, which would be discarded once the
training procedure finishes. Thus, there is no need to select
and store representative data. MNSDiPCA utilized cosine
similarity to reduce data redundancy, thus outliers may be
selected and influence the extraction of dynamic features.
MWCCA-A selects replay data based on online k-means
and KNN, and the weights of these data are evaluated
by Parzen window PDF, which can characterize the data
distribution. Since MNSDiPCA and MWCCA-A store a
fraction of data from previous modes, they cost a little
more storage resources than SPCA–SI and SDiPCA–MSI.

c) Data preprocessing. For replay continual learning, replay
data and the current mode data are integrated as a new data
matrix. MNSDiPCA projected the reconstructed data onto
a high dimensional space via a polynomial function to cope
with nonlinearity, and the dimension of the mapped data is
fixed. MWCCA-A maps the reconstructed data to a high
dimensional space through attention mechanism, where the
similarity is measured by negative Euclidean distance and
the keys are estimated by maximum likelihood estimation.
Then, replay data are allocated to different weights as
mentioned in (28) before extracting multimode features.
Contrary to MNSDiPCA, the dimension of mapped data is
flexible and determined by prior knowledge.

d) Applications. SPCA–SI and SDiPCA–MSI require data
similarity among different modes and are suitable for short-
term monitoring tasks. MNSDiPCA can monitor multiple
diverse modes via a single model and be applied to long-
term monitoring tasks. The MWCCA-A model is retrained
based on raw data and the learned knowledge from all
existing modes, and thus it inherits the virtues of both
continual learning techniques and can provide excellent
performance for long-term and short-term monitoring tasks.
In addition, SPCA–SI was investigated for multimode
stationary processes, while the rest methods are presented
for multimode dynamic processes.

e) Online computational complexity. The online computa-
tional complexity is measured by the term flam to present
operation counts in Table I, which contains one addition
and one multiplication [11], [33]. Similar to the proposed
MWCCA-A, m is the dimension of original data, s is the
auto-regressive order and l is the number of latent vari-
ables. For each sampling instance, SPCA–SI costs the least
computational resource. Generally, let M > m to char-
acterize the nonlinear relationship, thus the computational
complexity of MWCCA-A is higher than that of SDiPCA–
MSI. When M > m2+3m

2 , the computational complexity of
MWCCA-A is higher than that of MNSDiPCA. Note that
the online computational complexity of these four methods
is irrelevant to the number of existing modes K. However,
the complexity of MCVA and FGMM would increase with
the successive emergence of modes in future.
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TABLE I
COMPARISON OF ONLINE COMPUTATIONAL COMPLEXITY

Algorithm Complexity (flam)
MWCCA-A M2 + (2m+ 2l + 2)M + (s+ 1)l2 + 3l + 3m

SDiPCA–MSI m2 + (l + 3)m+ (s+ 1)l2 + 3l
SPCA–SI 2m2 + 3m

MNSDiPCA m4

4
+ 5m3

2
+ ( 25

4
+ l)m2 + (3l + 6)m+ (s+ 1)l2 + 3l

MCVA 8(s2m2 + sm)K + 2K
FGMM (m2 + 4m)K + 2K

B. Comparative experiment design

In this paper, four dynamic modes arrive sequentially and
the simulation scheme is summarized in Table II. SDiPCA–
MSI [11], SPCA–SI [12], MNSDiPCA [13], MCVA [1] and
FGMM [32] are adopted as comparisons to illustrate the
superiority of the proposed MWCCA-A method. FDR (%),
FAR (%) and DD are considered to evaluate the performance.
It is not useful to consider detection delay when the FAR is
higher than 20%. Note that the dash in the “Training data”
column indicates the same data as the row above.

Similar to [11]–[13], Situations 1–19 are designed to il-
lustrate the continual learning ability of MWCCA-A and
the catastrophic forgetting issue of WCCA-A in multimode
dynamic processes. Take the first two modes as an instance to
explain the experiment. When the second mode M2 arrives,
data X2, replay data D2 (X̃1) of the previous mode and the
previously learned knowledge A are utilized to train the model
C and extract the multimode dynamic features. It is desired that
the monitoring model C can monitor two modes M1 and M2

simultaneously, as the Situations 2 and 3 stated. Situation 4
is designed to illustrate the effectiveness of WCCA-A for a
single dynamic mode. Situation 5 is utilized to illustrate the
catastrophic forgetting of WCCA-A for multimode processes,
namely, the monitoring model trained for one mode M2

fails to monitor another mode M1. When the modes M3

and M4 arrive one after another, similar to Situations 2–5,
Situations 6–11 and Situations 12–19 are designed to evaluate
the performance of MWCCA-A and WCCA-A.

SDiPCA–MSI, SPCA–SI and MNSDiPCA are adopted
to compare the continual learning ability of MWCCA-A.
SDiPCA–MSI and SPCA–SI were presented on the basis of
regularization continual learning, where parameters important
to previous modes are expected to change insignificantly
to preserve the previously learned knowledge, as Situations
20–29 and Situations 30–39 designed. MNSDiPCA filters
representative data based on cosine similarity, which would
be replayed together with current mode data for retraining.
Situations 40–49 are designed to reflect the continual learning
ability of MNSDiPCA. MCVA is a typical multimode process
monitoring approach, where the local monitoring models are
built and then a global model is constructed based on Bayesian
fusion. As Situations 50–67 shown, the MCVA model and
FGMM model are retrained from scratch based on complete
historical data when a new mode appears. They need expensive
storage resources with the successive emergence of dynamic
modes.

V. EXPERIMENTS AND SIMULATION ANALYSIS

This paper utilizes five methods in Section IV-A to compare
with the proposed MWCCA-A. Continuous stirred tank heater
(CSTH), Tennessee Eastman process (TEP) and a practical
coal pulverizing system are adopted to illustrate the effective-
ness of MWCCA-A.

A. CSTH

The CSTH process is a popular benchmark for multimode
dynamic process monitoring, which aims to mix hot water
and cold water [5], [11]. Level, temperature and flow are
controlled by PI controllers and six interdependent variables
are adopted for monitoring. Detailed description could refer to
[34]. This paper considers the abnormality from temperature
and the settings are summarized in Table III, where data are
collected in a sequential manner. For each mode, 1000 normal
samples are collected, and 1000 testing samples are generated
including 500 normal samples and 500 faulty samples. The
fault amplitude is 0.1.

The monitoring results of Case 1 are summarized in Table
II. The proposed MWCCA-A method can deliver distinguished
performance, where the FDRs are 100% and the FARs are
lower than 0.70%. The FARs of Situations 1 and 3 are 3.0%
and 0.40%, which indicates that the learned knowledge of
mode M2 is beneficial to monitoring the previous mode M1.
This phenomenon represents backward transfer learning abil-
ity, namely, the information of the future mode M2 is valuable
for monitoring the previous mode M1. The FARs of Situations
2 and 16 are 0.40% and 3.40%, which reflects the forward
transfer learning ability of MWCCA-A, namely, the features
of previous modes are valuable to enhance the performance
of the future mode M4. WCCA-A fails to monitor multiple
modes, where the FARs of Situations 10, 17–19 are higher
than 13.50%. The catastrophic forgetting issue is reflected in
the monitoring model when one mode cannot detect the fault in
another mode accurately. SDiPCA–MSI delivers outstanding
performance except Situations 24 and 27. SPCA–SI is unable
to monitor this multimode process, where the FDRs are lower
than 80%. Similarly to SDiPCA–MSI, SPCA–SI can offer
excellent performance except Situation 44. MNSDiPCA fails
to deliver excellent detection accuracy, because the FARs of
Situations 44 and 47 are not less than 10%. MCVA cannot
monitor this process, for which the FDRs are lower than 96%
and the FARs are higher than 11%. FGMM can monitor this
case accurately, where the FDRs are 100% and the FARs are
not higher than 3.0%.

MWCCA-A and MNSDiPCA need to select and store
partial sets of data from previous modes, and the amount of
replay data is listed in Table IV. Note that part of samples
may be selected through Algorithm 1 more than once, dupli-
cate data would be eliminated and thus the number of final
representative data is different for four modes. MNSDiPCA
selects fewer than 10% of normal samples based on cosine
similarity. For MWCCA-A, fewer than 4% of samples are
filtered from original training samples, which can further re-
duce the storage cost. According to Parzen window probability
density estimation, different weights are allocated to replay
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TABLE II
SIMULATION SCHEMES AND MONITORING RESULTS FOR CSTH, TEP AND THE COAL PULVERIZING SYSTEM

Methods Training data Testing
mode

Model
label

CSTH TEP Coal pulverizing system

Case 1 Case 2 Case 3 Case 4

FDR FAR DD FDR FAR DD FDR FAR DD FDR FAR DD
Situation 1 WCCA-A X1 M1 A 100 3.00 0 99.01 0.50 15 99.60 0.50 4 100 33.73 -
Situation 2 MWCCA-A X2, D2+ A M2 B 100 0.40 0 97.36 0.50 20 99.93 0.50 0 100 0.26 0
Situation 3 MWCCA-A - M1 B 100 0.40 0 99.08 2.75 14 99.67 2.75 0 100 0.83 0
Situation 4 WCCA-A X2 M2 C 100 1.80 0 97.82 0.75 20 100 0.75 0 100 0.66 0
Situation 5 WCCA-A - M1 C 100 5.80 0 99.08 4.25 14 99.67 4.25 4 100 14.08 0
Situation 6 MWCCA-A X3, D3 + B M3 E 100 0.40 0 98.81 0.25 16 99.93 0.25 1 100 0 0
Situation 7 MWCCA-A - M1 E 100 0.40 0 98.81 0.25 16 98.22 3.50 0 100 0.59 0
Situation 8 MWCCA-A - M2 E 100 0.40 0 97.03 6.75 20 99.87 6.75 0 100 0.52 0
Situation 9 WCCA-A X3 M3 F 100 1.60 0 98.95 0.25 16 100 0.25 0 100 0.31 0

Situation 10 WCCA-A - M1 F 100 13.60 0 99.01 20.75 - 98.75 16.25 0 100 5.33 0
Situation 11 WCCA-A - M2 F 100 3.80 0 97.96 36.25 - 99.21 28.75 - 100 66.97 -
Situation 12 MWCCA-A X4, D4 +E M4 F 100 0.40 0 98.95 0.25 6 99.67 0.25 0 100 5.71 0
Situation 13 MWCCA-A - M1 G 100 0.40 0 99.01 3.25 15 99.67 3.25 4 100 0.47 0
Situation 14 MWCCA-A - M2 G 100 0.60 0 97.03 2.00 22 99.93 2.25 0 100 0.26 0
Situation 15 MWCCA-A - M3 G 100 0.40 0 99.08 5.50 8 100 5.50 0 100 0 0
Situation 16 WCCA-A X4 M4 H 100 3.40 0 99.14 0.50 6 99.74 0.50 0 100 25.52 0
Situation 17 WCCA-A - M1 H 100 14.40 0 99.14 5.50 13 99.67 5.50 4 100 0.36 0
Situation 18 WCCA-A - M2 H 100 37.80 - 97.89 2.75 20 100 2.75 0 100 0.26 0
Situation 19 WCCA-A - M3 H 100 35.20 - 99.14 15.75 8 100 16.00 0 100 0.20 0
Situation 20 SDiPCA X1 M1 I 100 4.20 0 98. 48 0.75 14 98.95 0.75 12 100 48.76 -
Situation 21 SDiPCA–MSI X2 + I M2 J 100 2.00 0 97.43 0.75 20 99.47 1.00 0 100 0.26 0
Situation 22 SDiPCA–MSI - M1 J 100 5.20 0 99.08 2.75 14 99.41 2.75 1 100 50.89 -
Situation 23 SDiPCA–MSI X3 + J M3 K 100 0.60 0 97.76 0.75 16 99.54 0.75 3 100 5.51 0
Situation 24 SDiPCA–MSI - M1 K 100 10.60 0 98.48 18.50 12 99.41 18.50 3 100 0.71 0
Situation 25 SDiPCA–MSI - M2 K 100 4.00 0 96.84 30.25 - 99.74 30.50 - 100 1.57 0
Situation 26 SDiPCA–MSI X4 + K M4 L 100 1.40 0 97.50 0.75 7 99.67 0.75 0 100 24.33 -
Situation 27 SDiPCA–MSI - M1 L 100 14.40 0 99.08 6.75 14 99.87 6.75 1 100 0.47 0
Situation 28 SDiPCA–MSI - M2 L 100 5.60 0 95.52 3.00 21 99.93 3.00 0 100 0.26 0
Situation 29 SDiPCA–MSI - M3 L 100 2.00 0 98.88 25.00 - 100 25.00 - 100 0 0
Situation 30 SPCA X1 M1 N 67.60 3.40 0 98.88 2.50 17 99.08 2.50 10 100 27.22 -
Situation 31 SPCA–SI X2 + N M2 O 59.80 4.40 0 95.99 2.75 23 99.74 2.75 3 99.68 0 0
Situation 32 SPCA–SI - M1 O 70.00 3.60 0 98.82 3.50 18 99.01 3.50 10 100 0.12 0
Situation 33 SPCA–SI X3 + O M3 P 51.00 4.60 0 98.68 1.25 20 99.74 1.25 4 99.34 0 3
Situation 34 SPCA–SI - M1 P 74.40 3.60 0 98.82 3.00 18 99.01 3.00 10 100 21.30 -
Situation 35 SPCA–SI - M2 P 63.60 4.80 0 95.66 3.25 23 99.67 3.25 3 99.68 1.18 1
Situation 36 SPCA–SI X4 + P M4 Q 54.20 5.00 0 97.89 1.25 7 98.42 1.25 4 100 21.97 -
Situation 37 SPCA–SI - M1 Q 79.60 4.60 0 98.82 2.50 18 98.75 2.50 12 100 0 0
Situation 38 SPCA–SI - M2 Q 67.80 6.20 0 94.47 1.25 23 99.47 1.25 6 99.68 0 1
Situation 39 SPCA–SI - M3 Q 58.40 6.00 0 98.68 0.25 20 99.67 0.25 5 99.34 0 3
Situation 40 NSDiPCA X1 M1 R 100 8.40 0 99.08 1.75 14 99.74 1.75 4 100 60.71 -
Situation 41 MNSDiPCA X2, X̄1 M2 S 99.40 0.60 0 98.02 1.50 20 100 1.75 0 100 0.39 0
Situation 42 MNSDiPCA - M1 S 100 8.80 0 99.14 2.25 4 99.74 2.25 4 100 39.17 -
Situation 43 MNSDiPCA X3, X̄2, X̄1 M3 T 96.18 0.60 0 99.01 1.50 15 99.93 1.50 1 100 0 0
Situation 44 MNSDiPCA - M1 T 100 12.20 0 99.08 1.50 14 99.67 1.50 4 100 33.25 -
Situation 45 MNSDiPCA - M2 T 100 6.80 0 98.02 1.75 20 100 1.75 0 100 30.93 -
Situation 46 MNSDiPCA X4, X̄3, X̄2, X̄1 M4 U 97.38 0.60 0 99.41 0.75 4 99.60 0.75 0 100 52.91 -
Situation 47 MNSDiPCA - M1 U 100 10.00 0 99.08 1.25 14 99.60 1.25 4 100 33.02 -
Situation 48 MNSDiPCA - M2 U 100 3.20 0 97.82 1.75 20 99.87 1.75 2 100 0.66 0
Situation 49 MNSDiPCA - M3 U 100 1.20 0 99.01 2.25 15 99.93 2.25 1 100 0 0
Situation 50 MCVA X1,X2 M1 V 92.51 18.00 0 96.24 1.25 13 95.64 1.25 13 100 36.80 -
Situation 51 MCVA - M2 V 95.95 44.00 - 83.43 1.25 28 97.62 1.25 9 100 4.33 0
Situation 52 MCVA X1,X2,X3 M1 W 85.83 13.80 0 96.04 1.00 13 95.71 1.00 13 100 35.38 -
Situation 53 MCVA - M2 W 91.70 37.60 - 81.85 1.00 30 97.03 1.00 9 100 4.98 0
Situation 54 MCVA - M3 W 91.09 42.40 - 79.41 0 15 99.01 0 3 100 0.31 0
Situation 55 MCVA X1,X2,X3,X4 M1 X 80.36 11.20 0 95.38 0.25 26 96.04 0.25 23 100 34.67 -
Situation 56 MCVA - M2 X 88.66 34.20 - 73.66 0 0 96.24 0 11 100 2.23 0
Situation 57 MCVA - M3 X 87.25 39.20 - 83.10 0.25 15 98.94 0.25 5 100 65.01 -
Situation 58 MCVA - M4 X 89.27 19.80 0 90.03 1.00 9 92.94 1.00 4 100 62.76 -
Situation 59 FGMM X1,X2 M1 Y 100 2.40 0 98.88 0 17 99.41 0 7 100 46.98 -
Situation 60 FGMM - M2 Y 100 0.80 0 95.99 4.25 3 99.74 4.25 3 99.68 0 1
Situation 61 FGMM X1,X2,X3 M1 Z 100 2.60 0 98.95 1.25 16 99.67 1.25 4 100 70.89 -
Situation 62 FGMM - M2 Z 100 0.80 0 5.72 0 8 2.30 0 67 99.68 3.41 1
Situation 63 FGMM - M3 Z 100 0.80 0 98.75 3.00 19 99.61 3.00 6 99.78 31.13 -
Situation 64 FGMM X1,X2,X3,X4 M1 Ξ 100 3.00 0 98.88 1.50 17 99.54 1.50 7 100 58.70 -
Situation 65 FGMM - M2 Ξ 100 0.80 0 76.84 0 29 94.08 0 9 99.68 0.39 1
Situation 66 FGMM - M3 Ξ 100 0.80 0 98.75 3.50 19 99.61 3.50 6 100 25.64 -
Situation 67 FGMM - M4 Ξ 100 1.20 0 98.16 2.50 9 99.08 2.50 2 100 77.93 -
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TABLE III
NORMAL OPERATING MODES OF CSTH

Case
number

Mode
label

Level
SP

Temperature
SP

Hot water
valve

1

M1 11 9 4.5
M2 12 9.5 4.5
M3 12 11 5
M4 9 10.5 4.5

TABLE IV
THE NUMBER OF REPLAY DATA

Method M1 M2 M3 M4

CSTH MWCCA-A 20 30 36 30
MNSDiPCA 95 86 73 71

TEP MWCCA-A 20 29 16 24
MNSDiPCA 1920 1920 1918 1919

Coal pulverizing
system

MWCCA-A 34 62 19 62
MNSDiPCA 36 319 67 481

data from different modes, which contributes to both reducing
data imbalance and consolidating the significant features from
previous modes. Consequently, although MWCCA-A uses
fewer replay data than MNSDiPCA, MWCCA-A performs
better on the previously learned modes than MNSDiPCA.

The offline computational complexity is measured by train-
ing time, as summarized in Table V. Note that mode in-
formation refers to the training data from these modes. As
mentioned in Table II, training data are different for these
comparative methods. For instance, different data are selected
and replayed for MWCCA-A and MNSDiPCA. FGMM costs
the most expensive computational resources. The complex-
ity of MWCCA-A is less complicated than SDiPCA–MSI
and FGMM. In contrast to MCVA and FGMM, the offline
complexity of the four continual learning methods would not
increase significantly with the successive emergence of new
modes. According to aforementioned analysis, the proposed
MWCCA-A approach delivers the best monitoring perfor-
mance among the six methods, in terms of detection accuracy
and computing costs.

B. Tennessee Eastman process

The Tennessee Eastman process is a complex industrial
process and was widely utilized to illustrate the effectiveness
of multimode monitoring methods [35], [36]. Detailed infor-
mation was described in [37]. The data are collected from the
Simulink model, which can be downloaded from http://depts.
washington.edu/control/LARRY/TE/download.html. Four suc-
cessive modes of process operation at three different G/H mass
ratios are considered and listed in Table VI. In this experiment,
22 measured variables and 9 manipulated variables are utilized
for monitoring. The sampling time is 3 minutes.

To construct the monitoring model, 1920 normal samples
from each mode are collected. Two cases are considered,
where testing samples are generated from two typical faults of
TEP, namely, IDV(17) (Case 2) and IDV(19) (Case 3). Note
that two cases share the same training data in Table VI. 1920
testing samples from each mode are collected, including the
first 400 normal samples and subsequent 1520 faulty samples.

The monitoring results of Case 2 and Case 3 are listed in
Table II. For two cases, the FDRs of MWCCA-A are higher
than 97% and the FARs are lower than 6.8%. The FARs of
Situations 10, 11 and 19 are higher than 15%, which reflects
the catastrophic forgetting of WCCA-A for multiple mode
problems. SDiPCA–MSI fails to monitor two cases accurately,
because the FARs of Situations 24, 25 and 29 are higher than
18%. SPCA–SI could provide excellent performance, where
the FDRs are higher than 94% and the FARs are not higher
than 3.5%. MNSDiPCA offers higher accuracy than SPCA–SI,
and the FDRs are higher than 97%. MCVA could not monitor
Case 2 accurately, where the FDRs of Situations 51, 53, 54,
56–58 are lower than 90.5%. FGMM performs excellently on
Cases 2 and 3 except Situations 62 and 65, where the FDRs
are higher than 95% and the FARs are lower than 4.5%. For
two cases, the FDRs of Situation 62 are lower than 6%, which
indicate that FGMM fails to monitor the mode M2 based on
the model Z .

The selected data of MWCCA-A and MNSDiPCA are
summarized in Table IV. Fewer than 2% of all normal training
samples are selected for MWCCA-A. Significant weights
are allocated to replay data in MWCCA-A, which makes it
still perform excellently on the previous modes. MNSDiPCA
and MWCCA-A provide similar monitoring performance with
regard to Cases 2 and 3. However, almost all samples are
selected based on cosine similarity and stored for MNSDiPCA.
The training time is listed in Table V, where MWCCA-A
is obviously less complicated than SDiPCA–MSI, SPCA–SI
and MNSDiPCA. The complexity of MCVA is the lowest, but
would increase with the sequential addition of dynamic modes.
In conclusion, MWCCA-A provides the optimal performance
among the six illustrative methods.

C. Coal pulverizing system

To demonstrate the effectiveness of MWCCA-A, a coal
pulverizing system, which is one key unit of the 1030 MW
ultra-supercritical thermal power plant in China, is employed.
The structure and specific description can refer to [4], [12].
This work focuses on the abnormality from the coal feeder
and detailed data information is summarized in Table VII. 14
critical variables have been pre-selected according to expert
experience and prior knowledge.

The monitoring results are summarized in Table II. From
Situations 1–19, it can be concluded that the proposed
MWCCA-A method is able to monitor sequential modes
accurately via a single model. The FARs of Situations 1 and
3 are 33.73% and 0.83%, which indicates that the information
from the mode M2 is valuable to enhance the monitoring
accuracy of the previous mode M1. Similar to CSTH case, the
backward transfer learning ability of MWCCA-A is reflected,
namely, the information from future modes contributes to
boosting the performance of previous modes. The FARs of
Situations 12 and 16 are 5.71% and 25.52%, which means
that the significant information from the previous three modes,
including the learned knowledge and partial representative
data, is beneficial for enhancing the monitoring accuracy of the
current mode M4. This phenomenon represents the forward
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TABLE V
OF F LINE TRAINING TIME (s) OF ALL METHODS

Case
number Mode information MWCCA-A SDiPCA–MSI SPCA–SI MNSDiPCA MCVA FGMM

1

M1 45.11 67.63 13.49 6.05 - -
M1,M2 41.38 66.10 14.15 5.13 0.51 163.24
M1,M2,M3 43.11 62.97 14.54 4.50 1.08 426.44
M1,M2,M3,M4 42.24 61.56 14.66 6.01 1.90 869.81

2 & 3

M1 209.71 2499.13 1369.56 4122.44 - -
M1,M2 193.91 2055.06 1316.93 4222.24 7.67 2111.01
M1,M2,M3 208.67 1815.84 1435.55 4312.24 17.02 4879.32
M1,M2,M3,M4 209.64 1658.15 1437.45 4162.48 28.43 9494.71

4

M1 64.52 647.73 64.25 52.24 - -
M1,M2 121.38 1432.99 109.92 57.20 5.57 373.75
M1,M2,M3 122.13 907.31 76.15 58.89 13.48 1077.22
M1,M2,M3,M4 119.79 1145.47 79.69 52.36 24.88 2267.44

TABLE VI
FOUR OPERATING MODES OF TEP

Case
number

Mode
label

Desired G/H
mass ratio

Desired
production

2 & 3

M1 50/50 14076
M2 10/90 14077
M3 90/10 11111
M4 50/50 Maximum

transfer learning ability of continual learning. However, the
FAR of Situation 11 is higher than 20%. The WCCA-A
model again fails to monitor multiple modes and displays
the catastrophic forgetting issue. Compared to the proposed
method, the other five methods do not demonstrate excellent
performance for sequential modes, where the FARs of several
situations are especially high and are not acceptable. For
instance, the FARs of Situations 22, 26, 34 and 36 are higher
than 20%. In addition, the FARs of Situations 42, 44–47 are
higher than 30%. For MCVA, the FARs of Situations 50,
52, 55, 57 and 58 are higher than 30%. For FGMM, the
FARs are higher than 25% except for Situations 60, 62 and
65. In conclusion, the proposed method furnishes the highest
monitoring accuracy among six methods.

The quantity of selected data needed to be stored for each
model is summarized in Table IV. It is clear that MWCCA-
A needs much less storage space than MNSDiPCA. With
allocated weightings, the portion of data replayed in MWCCA-
A can still reflect the operating condition of previous modes
and then MWCCA-A delivers excellent performance on the
previously learned modes. MWCCA-A only consumes a little
more storage resources than SDiPCA–MSI and SPCA–SI. The
training time is listed in Table V, the proposed MWCCA-A is
less complicated than SDiPCA–MSI and FGMM. According
to the analysis mentioned above, the proposed method pro-
vides optimal monitoring performance, in terms of accuracy
and storage cost.

D. Ablation study

In this section, different data selection methods are consid-
ered and a relevant ablation study is conducted to illustrate the

virtues of the proposed data selection method in Algorithm 1.
Various data selection methods have been investigated for

replay continual learning. Gradient episodic memory selected
representative data by minimizing negative backward transfer
[38]. Gradient based sample selection (GSS) calculated the
score of each sample based on the gradient and aimed to
keep diverse samples in the replay buffer [39]. However,
GSS requires that the gradient to be optimized should be
calculated once for each iteration process, which makes it not
appropriate within the framework of MWCCA-A. Adversarial
Shapley value experience replay was investigated to score
memory samples based on their ability to preserve latent
decision boundaries [40]. It is extremely complicated because
calculating the Shapley value requires O(2N ) evaluations for
general, bounded utility functions. The iCaRL method selected
a subset of samples, to best approximate the average feature
vector over all training examples [41]. It is computationally
efficient and could order the importance of selected data.

In practical applications, it is important to select a simple
and useful data selection method. Thus, random selection and
iCaRL are adopted to conduct the ablation study. 40 repre-
sentative samples are selected for replay continual learning.
The hyperparameters are the same as those of the proposed
MWCCA-A. The monitoring results are summarized in Table
VIII, where only situations with regard to MWCCA-A are
considered. To enhance the reliability of random selection,
200 independent repetition experiments are conducted and the
average monitoring results are listed in Table VIII. For Case
1, the performance of random selection is not satisfactory
because the FDRs are lower than 99%. Besides, the FARs
of iCaRL are higher than those of the proposed method,
where the FARs of Situations 13 and 14 are 5.8% and 4.8%
respectively. With regard to Cases 2 and 3, the performance
of random selection is excellent. However, the performance
of iCaRL is not satisfactory because the FARs of Situation 8
are higher than 8% for both cases. For Case 4, the FAR of
Situation 12 is 12.89% based on random selection. The FARs
of Situations 8 and 12 are 10.75% and 19.80% using iCaRL.

According to the aforementioned analysis, the proposed data
selection method based on k-means clustering and KNN is the
optimal among three data selection methods, in consideration
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TABLE VII
EXPERIMENTAL DATA OF THE PRACTICAL COAL PULVERIZING SYSTEM

Case
number Key variables Mode

label
Number of

training data
Number of
testing data

Fault
location Fault cause

4

14 variables: current and speed
of coal feeder, rotary separator
speed and current, coal feeding
capacity, etc.

M1 1080 1080 846 The coal feeder does not drop coal
M2 2160 1080 764 Speed probe failure
M3 2160 1440 984 The coal feeder does not drop coal
M4 2160 1440 1016 The coal feeder belt is broken

of complexity and monitoring performance.

VI. CONCLUSION

This paper has introduced the novel MWCCA-A method,
which is a continual learning method using weighted CCA
based on attention mechanism and aimed at multimode dy-
namic process monitoring. With dynamic, multimodal data
being received sequentially, MWCCA-A works by extracting
dynamic features via maximizing the weighted correlation
between the latent variable and its prediction. Replay data
from each mode are selected, and utilized in WCCA together
with the current mode data in order to form a monitoring
model with continual learning ability. To avoid potential data
imbalance among different modes, the replayed data may
be allocated large weighting and the significant features are
consolidated further. Model parameter regularization is used
based on synaptic intelligence. Finally, the effectiveness of the
proposed MWCCA-A method is illustrated by CSTH, TEP and
a practical coal pulverizing system. The experimental results
have shown that the proposed approach outperforms several
state-of-the-art multimode process monitoring methods, and is
suitable for both long-term and short-term monitoring tasks.

In future, the CCA method within the framework of param-
eter isolation based continual learning would be investigated
for multimode diverse dynamic modes.
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