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Fire-human-climate interactions
in the Bolivian Amazon rainforest
ecotone from the Last Glacial
Maximum to late Holocene

S. Yoshi Maezumi1,2,3*, Mitchell J. Power2,3, Richard J. Smith4,

Kendra K. McLauchlan5, Andrea R. Brunelle3,

Christopher Carleton1, Andrea U. Kay1, Patrick Roberts1,6 and

Francis E. Mayle4

1Department of Archaeology, Max Planck Institute of Geoanthropology, Jena, Germany, 2Natural History

Museum of Utah, University of Utah, Salt Lake City, UT, United States, 3Department of Geography,

University of Utah, Salt Lake City, UT, United States, 4Department of Geography and Environmental

Science, School of Archaeology, Geography and Environmental Science (SAGES), University of Reading,

Reading, United Kingdom, 5Department of Geography and Geospatial Sciences, Kansas State University,

Manhattan, KS, United States, 6 isoTROPIC Research Group, Max Planck Institute of Geoanthropology,

Jena, Germany

The Amazon Rainforest Ecotone (the ARF-Ecotone) of the southwestern Amazon

Basin is a transitional landscape from tropical evergreen rainforests and seasonally

flooded savannahs to savannah woodlands and semi-deciduous dry forests. While

fire activity plays an integral role in ARF-Ecotones, recent interactions between

human activity and increased temperatures and prolonged droughts driven by

anthropogenic climate change threaten to accelerate habitat transformation

through positive feedbacks, increasing future fire susceptibility, fuel loads, and

fire intensity. The long-term factors driving fire in the ARF-Ecotone remain poorly

understood because of the challenge of disentangling the e�ects of prolonged

climatic variability since the Last Glacial Maximum (LGM; ∼24,000 to 11,000 cal

BP) and over 10,500 years of human occupation in the region. To investigate

this issue, we implement an interdisciplinary framework incorporating multiple

lake sediment cores, with varying basin characteristics with existing regional

palaeoclimatological and archaeological data. These data indicate expansive C4

grasslands coupled with low fire activity during the LGM, higher sensitivity of

small basins to detecting local-scale fire activity, and increased spatial diversity

of fire during the Holocene (∼10,500 cal year BP to the limit of our records

∼4,000 cal year BP), despite a similar regional climate. This may be attributed to

increased human-driven fire. These data raise the intriguing possibility that the

composition of modern flora at NKMNP developed as part of a co-evolutionary

process between people and plants that started at the beginning of the ARE

occupation.

KEYWORDS

palaeofire, indigenousburning,C4 vegetation, stable isotope analysis,macrocharcoal, last

glacial maximum, biodiversity
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1 Introduction

The Amazon rainforest is an expansive and vital biome that

displays a diverse distribution of vegetation formations, including

tropical rainforests, flooded grasslands, and dry savannahs, creating

a mosaic of habitats essential for the region’s unparalleled

biodiversity. The Amazon Rainforest Ecotone (hereafter the ARF-

Ecotone) of the southwestern Amazon Basin is a transitional

landscape between the humid evergreen tropical forests (HETF),

the seasonally flooded savannahs (SFS) of the Llanos de Moxos

(Mayle et al., 2007), the upland (cerrado) savannahs, and the semi-

deciduous tropical forests (SDTF) of Chiquitaniá. Fire plays an

integral role in maintaining these vegetation transition zones, from

fire-limited HETF to fire-prone SFS, SDTF and cerrado vegetation

(Figure 1). Modern synergies between climate change (e.g., more

frequent, severe droughts (Bowman et al., 2020) and human activity

(e.g., increased deforestation for ranching, crop land expansion,

and infrastructure development) threaten to accelerate forest die-

back through positive-feedback loops by increasing future tree

mortality, fire susceptibility, fuel loads, fuel connectivity and fire

intensity (Doughty et al., 2015; Feldpausch et al., 2016; Le Page

et al., 2017; Brando et al., 2020). These compounding factors

have caused the ARF-Ecotone to become one of the most heavily

exploited and most threatened regions of the Amazon (Cochrane,

2009; Le Page et al., 2017). This recent increase in fire activity is

not just of regional significance, given that changes to the Amazon

rainforest have been identified as one of the potential major future

tipping points in the Earth’s climate state (Lenton et al., 2019).

While fire is an ancient influence on the Earth system human

agency has become increasingly important (Bowman et al., 2020).

Today, humans are the primary cause of fire ignitions globally

(Bowman et al., 2020; Pereira et al., 2022), and in fire-prone

ecosystems including the SDTF and cerrado savannahs of the

ARF-Ecotone, fires are more frequent when humans are in the

landscape (Power et al., 2016; Le Page et al., 2017; Maezumi et al.,

2018b; Brando et al., 2019). Indeed, as the keystone species of

fire (Pyne, 2021), humans are the only species able to directly

and deliberately manipulate fires through a variety of management

practices (Levis et al., 2018; Bowman et al., 2020). Humans can

shape fire directly, by manipulating the frequency, severity, and

intensity of fires, and indirectly, by influencing the abundance

and distribution of vegetation and through the introduction,

cultivation, and domestication of plant species (Bowman et al.,

2016, 2020; Levis et al., 2018; Hoffman et al., 2021; Furquim et al.,

2023). For example, ethnographic studies demonstrate hunter-

gatherers often influence vegetation structure, composition and

diversity near human settlements (Posey and Balée, 1989; Politis,

1996; Denevan, 2006; ter Steege et al., 2013; Clement et al., 2015;

Lins et al., 2015; Levis et al., 2018).

While the impact of humans on modern fire is substantial,

the human use of fire to modify landscapes was practiced

long before the colonization of the Americas (Boivin et al.,

2016; Roberts et al., 2017). There is increasing evidence that in

the Amazon, Indigenous traditional burning practices (hereafter

Indigenous burning) influenced fire activity in mountain cloud

forests (Loughlin et al., 2018), humid evergreen tropical forest

(Bush et al., 2015, 2016; Carson et al., 2015; Maezumi et al., 2018a,b,

2022), semi-deciduous tropical forests (Bush et al., 2015; Carson

et al., 2015), and cerrado savannahs (Carson et al., 2015; Brugger

et al., 2016) as early as the mid-Holocene (∼6500 cal year BP).

The recent archaeological evidence documenting extensive human

occupation in the Bolivian ARF-Ecotone region after ∼10,500 cal

year BP (Watling et al., 2018; Capriles et al., 2019; Lombardo et al.,

2020), raises the possibility that human-fire linkages may have

influenced fire activity in the region much earlier than previously

proposed (Urrego et al., 2013; Carson et al., 2014; Bush et al., 2016;

Maezumi et al., 2018b).

In light of the above, it is critical to obtain and compare

multidisciplinary, direct proxy records of changes in past fire

(hereafter palaeofire) regimes, vegetation change, human activity,

and changes in key climate parameters in order to explore changing

fire dynamics through time and their implications for future

model projections. However, as a result of the complex fire-

human-climate interactions and incomplete historical or long-

term datasets (O’Connor et al., 2011; Bowman et al., 2020),

the role of human-influences on palaeofires in the ARF-Ecotone

remains largely unknown. While previous palaeoecological studies

in the region have examined the relationship between basin

characteristics (e.g., type/size) and fossil pollen archives (Smith

et al., 2021), little is known about the relationship between basin

characteristics and fossil charcoal records used to reconstruct

past fire activity. We hypothesize that there is greater sensitivity

of small lake basins to detect local-scale fire activity, thus

smaller basins may be more sensitive to picking up Indigenous

burning. To address this issue, we compare high-resolution (sub-

centennial) Late Quaternary records from sites with varying basin

characteristics. In addition to basin size, we explore potential

drivers (e.g., climate, human) of the spatial and temporal variability

of fire and vegetation change in the ARF-Ecotone. We implement

a multi-proxy approach utilizing geochemistry, δ13C and δ15N

stable isotopes, and macrocharcoal (>125µm) analysis from a new

∼24,000-year-old sediment core (Cuatro Vientos) that exceeds the

earliest evidence of human activity in the region by > ∼13,500

years. These data are compared with two existing palaeovegetation

studies of Laguna Chaplin and Huanchaca Mesetta palm swamp

in Mayle et al. (2000), Burbridge et al. (2004), and Maezumi et al.

(2015, 2018b), along with regional palaeoclimate (Baker et al., 2001;

Whitney et al., 2011) and regional archaeological data (Maezumi

et al., 2018b; Capriles et al., 2019; Lombardo et al., 2020; Capriles,

2023; Peripato et al., 2023) (Supplementary Table S4).

2 Materials and methods

2.1 Study area

Noel Kempff Mercado National Park (NKMNP) is a 15,230

km2 protected reserve located near the southern margin of

the Amazon basin in the department of Santa Cruz, north-

eastern Bolivia (14◦22′9.336′′, 60◦51′14.3994′′; Figure 1) (Killeen

and Schulenberg, 1998). The park has been designated a

UNESCO world heritage site due to its exceptionally high

beta (habitat) diversity (Killeen et al., 2003; Heyer et al.,

2018). The biodiversity of the park is attributed to the high
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FIGURE 1

Regional Map of the study area in South America. Top vegetation map generated from Global Ecoregions, Major Habitat Types, Biogeographical

Realms and The Nature Conservancy Terrestrial Assessment Units as of August 7, 2007 (Olson and Dinerstein, 2002) with insert map of South America

with study region indicated by red star. Bottom left map Bolivia with regional AMS-dated archaeological sites included in the SPD analysis (pink dots),

regional archaeology sites black dots from Bolivia (Capriles, 2023) and Brazil (Peripato et al., 2023), and lake study sites used in this study (blue dots).

Bottom right map of Noel Kemp� Mercado National Park (NKMNP) boundary (olive green) showing location of Cuatro Vientos, Laguna Chaplin, and

Huanchaca Mesetta study sites (blue dots), dated archaeology (pink dots), and other archaeology sites documented in Brazil (Peripato et al., 2023).

levels of habitat heterogeneity which incorporates five distinct

ecosystems: humid upland forest, inundated and riparian forest,

semi-deciduous and deciduous forest, upland savannah and

savannah wetland (Killeen and Schulenberg, 1998; Killeen et al.,

2003; Burbridge et al., 2004). While the park is considered

to be largely undisturbed by modern anthropogenic land use,

ceramics have been recovered from a soil pit in an interfluve

∼25 km northwest of our study sites and abundant ceramics

mixed with charcoal (dated to ∼400–500 cal year B.P.) were

recovered from Amazonian Dark Earths throughout La Chonta

(Guarayos province) ∼150 km west of NKMNP (Burbridge et al.,

2004). To date, no archaeological surveys or excavations have

been conducted within NKMNP though there are, increasing

numbers of archaeological sites identified in the surrounding region

(Figures 1, 9, Supplementary Table S4).

2.2 Climate

The climate of NKMNP is characterized by a tropical seasonal

climate with intermediate rainfall between increasingly moist

regions to the north and the drier areas to the south (Killeen and

Schulenberg, 1998). Mean annual precipitation at NKMNP is ca.

1,400–1,500mmper year, with amean annual temperature between

25 and 26◦C (Centro de Previsão de Tempo e Estudos Climáticos,

Instituto Nacional de Pesquisas da Amazônia [CPTEC/INPA],

2023). There is a 3–5 months dry season during the austral winter,

when the mean monthly precipitation is <30mm (CPTEC/INPA)

Precipitation falls mainly during the austral summer, originating

from a combination of deep-cell convective activity in the Amazon

Basin from the South American summer monsoon (SASM) and

the Intertropical Convergence Zone (ITCZ) (Vuille et al., 2012;
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FIGURE 2

Schematic features of the tropical and subtropical South American climate including the Intertropical Convergence Zone (ITCZ) in June-July-August

(JJA) and December-January-February (DJF), the South American summer monsoon (SASM), the South American low-level jet (SALLJ), the South

Atlantic Subtropical High (SASH), the South Atlantic convergence zone (SACZ), and the cold, dry polar advections from Patagonia, locally known as

surazos.

Novello et al., 2017; Orrison et al., 2022) (Figure 2). The SASM

transports Atlantic moisture into the basin and corresponds to the

southern extension of the ITCZ driven by seasonal variation in

insolation (Bush and Silman, 2004; Vuille et al., 2012). When the

ITCZ is located over the equator or further south, the northeast

trade winds shift southward and intensify over South America.

Diversion of the South American low-level jet (SALLJ) along the

eastern foothills of the Andes delivers convective moisture from the

Amazon basin to the La Plata Basin. The SALLJ converges with the

western edge of the South Atlantic Subtropical High (SASH) and

south-south westerly mid-latitude flow to form the South Atlantic

convergence zone (SACZ), bringing precipitation to south-eastern

Brazil during the austral summer (December to February). During

the austral winter, cold, dry polar winds from Patagonia, locally

known as surazos, can move northward, penetrating the NKMNP

region causing temperatures to drop to 5–10◦C for several days at a

time (Latrubesse et al., 2012; Mayle and Whitney, 2012).

2.3 Geomorphology and regional
vegetation

NKMNP is located on the western reach of the Precambrian

Brazilian shield. The eastern half of the park is dominated by the

Huanchaca Plateau, a table-mountain ∼600–900m above sea level

(a.s.l) comprised of Precambrian sandstone and quartzite (Killeen,

1998). The plateau is dominated by upland cerrado savannah

vegetation (Killeen and Schulenberg, 1998). To the west lies a

lowland peneplain, where the Precambrian bedrock is overlaid by

Tertiary and Quaternary alluvial sediments (Killeen, 1998) which

is dominated by HETF vegetation. The Río Iténez and Río Paraguá

black-water rivers form the northeastern and western boundaries

of NKMNP, respectively. Today, these rivers are lined by riverine

evergreen tropical forests with patches of seasonally-inundated

savannah in areas where soil drainage is poor (Smith et al., 2021).

The southern border of NKMNP defines the modern ARF-Ecotone

between the southern Amazonian HETF and the Chiquitano semi-

deciduous tropical dry forest (SDTF) of eastern lowland Bolivia

(Killeen et al., 2003; Smith et al., 2021).

2.4 Site descriptions

In this study we compare high-resolution (sub-centennial)

Late Quaternary charcoal records from three sites in NKMNP

with varying basin characteristics (Figure 1). The first site, Cuatro

Vientos (CV; 14◦31
′

18.5
′′

S, 61◦7
′

11.3
′′

W; ca. 184m a.s.l.) is a

small-sized (∼5 km2 area) palm swamp located in the western

portion of NKMNP. CV is dominated by HETF to the east and

the riparian forest of the Río Paraguá to the west (Smith et al.,

2021). Growing within the CV basin itself is a floating mat of

sedge/grass swamp vegetation, interspersed with small pools of
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open water and scattered clumps of Arecaceae (palms) dominated

by Mauritiella sp. A recent study of CV (Smith et al., 2021)

demonstrates that palm swamps can yield Quaternary pollen

archives recording terrestrial vegetation histories beyond the basin

margin. To complement the previously published pollen data, here

we conducted geochemical, stable carbon (δ13C) and nitrogen

(δ15N) isotope, and macrocharcoal analysis from the same CV

sediment core.

The second study site is Laguna Chaplin (LCh, 14◦28
′

12
′′

S,

61◦2
′

60
′′

W; elevation ∼170m a.s.l.), a large (∼12 km2), shallow

(2–2.5m in the dry season), flat-bottomed lake (within a ∼20

km2 basin) located ∼6.5 km north-east of CV (Mayle et al.,

2000; Burbridge et al., 2004). Today, LCh is surrounded by

HETF, with a mix of seasonally-inundated riverine forest and

terra firme (upland) HETF. Previous pollen and charcoal studies

of LCh have documented evidence of climate-driven ecotonal

dynamics that replaced flammable SFS with less flammable HETF

vegetation, maize crop cultivation, and Indigenous fire use during

the Holocene (Mayle et al., 2000; Burbridge et al., 2004; Maezumi

et al., 2018b).

The third study site is Huanchaca Mesetta (HM, 14◦32
′

10.66
′′

S,

60◦43
′

55.92
′′

W; elevation: 800m a.s.l.), a small palm swamp (0.02

km2 area) located on the eastern portion of NKMNP atop the

Huanchaca table mountain ∼40 km east of CV (Figure 1). HM is

comprised of a monospecific stand of Mauritia flexuosa palms.

While previously published changes in vegetation composition

and fuel loads have been documented in phytolith and charcoal

data from within the HM palm swamp during the Holocene

(Maezumi et al., 2015), the broader table mountain has likely been

dominated by edaphically constrained cerrado savannah vegetation

for millions of years as a result of the rocky substrate and lack of

soil on the table mountain (Killeen and Schulenberg, 1998; Mayle

andWhitney, 2012). To date, no archaeological or palaeoecological

evidence of human occupation or fire use has been recorded

on the table mountain (Maezumi et al., 2015). Based on limited

archaeological research on the table mountain, we assume that the

14,500-year-old charcoal record from HM represents a natural,

lightning-caused cerrado savannah fire regime (Maezumi et al.,

2015). HM is thus used as a general estimate of natural lightning-

caused ignitions in the NKMNP region, serving as a “control” site

to explore the possible influence of human-caused ignitions at LCh

and CV.

2.5 Sediment core

A sediment core from CV palm swamp was collected in

August 1995 by FM using a Livingstone modified square-rod

piston corer (Wright, 1967) ∼300m from the eastern edge of

the palm swamp and described in detail in Smith et al. (2021).

The top 20 cm of the core was comprised of a floating mat of

sedges and grasses. The 0 cm mark for collecting the core was

the surface of the floating mat of grass and sedge which was

∼30 cm thick. The water-sediment interface was between 30 cm

depth and 155 cm depth. Sediments were solid enough to recover

between 155 cm and 309 cm depth. The CV sediment cores were

photographed and lithological descriptions were based on Munsell

soil color charts and the texture of the sediment core (Figure 3).

Visual descriptions, including sediment type, structure, texture, and

organic content were undertaken to assist interpretation of the

palaeoenvironmental data and comparisons with LCh and HM.

2.6 Chronology

The chronological framework for CV is based on nine

Accelerator Mass Spectrometry (AMS) radiocarbon (14C)

dates originally published by Smith et al. (2021) (Figure 3;

Supplementary Table 1). Because of the lack of sufficient plant

macrofossils, the majority of the dates were obtained from

non-calcareous bulk sediment. However, two of the samples (Beta-

467884 and Beta-467885) contained enough decayed plant remains

following pre-treatment to be dated. All samples selected for

dating were treated to remove carbonates, and the plant remains

were treated to remove mobile humic acids. The radiocarbon

ages were calibrated using the IntCal20 calibration curve (Reimer

et al., 2020), and an age-depth chronology was constructed using

the Bayesian age modeling software Bacon v2.3.4 (Blaauw and

Christen, 2011). As per previous studies (Whitney et al., 2011;

Smith et al., 2021), the IntCal20 calibration curve was selected over

SHCal20 because of the hydrological connection of the study area

to the northern hemisphere, via the SASM (McCormac et al., 2004;

Hogg et al., 2013).

2.7 Magnetic susceptibility

Magnetic susceptibility (MS) was measured to identify

mineralogical variation in the sediments (Nowaczyk, 2001).

The MS of sediments reflects the relative concentration of

ferromagnetic (high positive MS), paramagnetic (low positive MS),

and diamagnetic (weak negative MS) minerals or materials. Shifts

in the magnetic signature of the sediment can be diagnostic of

a disturbance event (Gedye et al., 2000). Sediment cores were

scanned horizontally, end to end, at 1 cm intervals using a

Barrington ring sensor equipped with a 75mm aperture. Data were

calibrated by removing background noise at the beginning and end

of each core.

2.8 Loss on ignition

The variability in the organic content of the sediments was

used, in conjunction with magnetic susceptibility measurements, to

identify periods of variability in sediment composition and organic

content throughout the sediment record. Loss-on-ignition (LOI)

analysis was carried out at 4 cm intervals through the CV core.

After drying at 100◦C for 24 h, each 1 cm3 sample was combusted at

550◦C for 2 h (LOI550). The relative loss of weight before and after

combustion determines the percentage organic carbon content that

was present in that sample (Dean Jr, 1974; Heiri et al., 2001).
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FIGURE 3

Cuatro Vientos age-model: the chronology for the sediments of Cuatro Vientos. (Upper left panel) Depicts the Markov Chain Monte Carlo (MCMC)

iterations, priors (green curves) and posteriors (gray histograms) for accumulation rate (top middle) and memory (top right). (Lower panel) Shows

the calibrated 14C dates and the age-depth model (darker grays indicate more likely calendar ages; gray stippled lines show 95% confidence intervals;

red dashed curve shows single “best” model based on the weighted mean age for each depth. The Chronology is derived from Bacon using the

IntCal20 calibration curve.

2.9 X-ray fluorescence

X-ray fluorescence (XRF) analysis of the sediment core

was carried out using the ITRAX core scanner at Aberystwyth

University at a step size of 2,000 or 5,000µm. An intense micro-

X-ray beam focused through a flat capillary waveguide was used

to irradiate samples to enable both X-radiography and X-ray

fluorescence (XRF) analysis. Data were acquired incrementally by

advancing a split core, via a programmable stepped motor drive,

through the flat, rectangular-section X-ray beam (Croudace et al.,

2006). Results were normalized using z-scores for comparability

(Figure 4).

2.10 Stable isotope analysis

Stable carbon (δ13C) isotope analysis was performed as a

proxy for changes in vegetation structure and composition. The

carbon in soil organic matter (SOM) is mainly derived from

plants, resulting in a δ13C value that closely reflects that of

the standing plant biomass (Ambrose and Sikes, 1991; Bond

et al., 1994) and is primarily determined by the photosynthetic

pathway of vegetation (Ehleringer et al., 1991; Ehleringer and

Cerling, 2002; Sage, 2004). Previous research on δ13C values

from NKMNP and the surrounding region (Pessenda et al., 1998;

Killeen et al., 2003; Mayle et al., 2007; Maezumi et al., 2015;

Lombardo et al., 2019) have been used to determine the relative

proportions of C4 savannah grasses vs. C3 woody and herbaceous

vegetation based on differences in the discrimination of the C4

and C3 photosynthetic pathways against the heavier 13C isotope

during CO2 fixation (Smith and Epstein, 1971). Open vegetation

characterized by the predominance of C4 grasses has a typical

δ13C signature between −16.0‰ and −10.0‰, whereas dense

vegetation characterized by trees is usually dominated by the C3

photosynthetic pathway with a δ13C signature between −26.0‰

and −20.0‰ (Cerling, 1984), although the exact values of these

distinctions have been shown to vary for the Amazon Basin (Tejada

et al., 2020).

The interpretation of δ13C measurements of bulk SOM from

lake sediments can be complex, however. Firstly, bulk SOM δ13C

can be offset from the plant material from which it derives by

+1–3‰ as a product of microbial action (Ehleringer et al., 2000).

Though this offset cannot mask the non-overlapping differences

between C3 and C4 taxa (Roberts et al., 2013), the relative

changes in δ13C values throughout a sequence are often more

meaningful than absolute comparisons. Secondly, the terrestrial

C3 and C4 distinction are potentially complicated by the presence

of CAM plants, which can have δ13C values overlapping with,

or between, both of these photosynthetic pathways (O’Leary,

1981). Thirdly, variation in environmental conditions (e.g., aridity,

temperature) has been shown to influence the δ13C values of C3

plants in particular (Ehleringer and Björkman, 1977; Sage and

Kubien, 2007; Kohn, 2010). Finally, the bulk organic matter of

lake sediments is a product not only of terrestrial vegetation
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FIGURE 4

Cuatro Vientos XRF geochemical data from the Last Glacial Period to late Holocene: (A) Magnetic susceptibility, (B) Loss On Ignition (LOI), (C) Si

z-score, (D) Rb z-score, (E) Ca z-score, (F) Al z-score, (G), Fe z-score, (H) Ti z-score, (I) K z-score. Y-axis broken from 18,000 to 11,000 cal year BP

during sediment hiatus.

in the catchment but also aquatic plants (Cloern et al., 2002)

which can also follow C3, C4 or CAM pathways (Keeley and

Sandquist, 1992). Additionally, carbon limitation tends to reduce

carbon isotope discrimination resulting in higher δ13C values in

algae and submerged macrophytes (Sharkey et al., 1985; Keeley

and Sandquist, 1992; Street-Perrott et al., 2004), making the

teasing apart of terrestrial and lacustrine responses to climate

and human activity complex. Consequently, comparisons with

other, independent, records of vegetation and sedimentological

conditions are essential.

Stable nitrogen (δ15N) isotope analysis provides an index of

changing dynamics in the N cycle, particularly denitrification, as

well as an indicator of the N2-fixation processes. Plants, such as

aquatic macrophytes (e.g., Sagittaria), can increase available N

through N2-fixation (Arima and Yoshida, 1982). Sediment δ15N

integrates a variety of nutrient cycling processes including the

loss of inorganic N to the atmosphere through denitrification

which results in the subsequent increases in δ15N (Robinson,

1991; McLauchlan et al., 2013). Denitrification requires anaerobic

conditions coupled with abundant available carbon and nitrate

(Seitzinger et al., 2006). Thus, wet, anoxic sediments tend

to have higher values of δ15N. Environmental conditions that

alternate between wet (anaerobic) to dry (aerobic) conditions

also lead to an increase in δ15N values (Codron et al., 2005).

During dry periods, denitrification is stopped because of an

increase in available oxygen in sediments, and thus δ15N values

decrease. If dry soils become hydrated, there is a preferential

loss of 14N, increasing δ15N values (Jordan et al., 1982; Codron

et al., 2005). δ15N values have also been associated with

forest cover in the Amazon (Ometto et al., 2006) and in the

anthropogenic enrichment of soils in Southern Africa (Aranibar

et al., 2008).

Subsampling for stable isotope analysis was performed at

1.5-cm-resolution throughout the length of the sediment core

(Figure 5). One cm3 of bulk sediment was dried, powdered, and

treated with 0.5 molar hydrochloric acid to remove carbonates.

One to 25mg of the dried carbonate-free sediment was weighed

into tin capsules depending on organic matter content. Following

reaction with 100% phosphoric acid, gases evolved from the

samples were analyzed for stable carbon and nitrogen isotopic

composition using a Finnigan Delta dual inlet elemental analyzer

at the SIRFER Lab at the University of Utah. 13C/12C and
15N/14N ratios were presented in delta (δ) notation, in per

mil (0/00) relative to the international scale standard used for
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FIGURE 5

Stable carbon and nitrogen isotope data from Cuatro Vientos: (A) % Carbon, (B) % Nitrogen, (C) C/N ratio, (D) δ13C, (E) δ15N. X-axis broken from

18,000 to 11,000 cal year BP during sediment hiatus.

carbon, Vienna Pee Dee Belemnite (VPDB; USGS40=−26.240/00;

USGS41=+37.760/00) and the standard for nitrogen, atmospheric

N2AIR(air) (USGS40=−4.50/00 and USGS40=−4.50/00) (Codron

et al., 2005). δ13C and δ15N values were compared against

International Standards [PLRM-1 (δ13CVPDB =+23.96‰; δ15NAIR

= +49.63‰); PLRM-2 (δ13CVPDB = +28.18‰; δ15NAIR =

−4.56‰); and SLRM MT soil (δ13CVPDB = +7.5‰; δ15NAIR

= +16.96‰)]. Replicate analysis of SLRM standards suggests

that machine measurement error is c. ± 0.2‰ for δ13CVPDB

and ± 0.2‰ for δ15NAIR. Overall measurement precision was

studied through the measurement of repeat extracts from the

SLRM standard.

2.11 Macrocharcoal

Sediment samples were analyzed for macrocharcoal pieces

(>125µm in minimum diameter) using a modified macroscopic

sieving method (Whitlock and Larsen, 2001; Leys et al., 2015) to

reconstruct the history of local and extra-local fires. Macrocharcoal

was analyzed using 1 cm3 volume of sediment in contiguous 0.5 cm

intervals for the length of the sediment core. Samples were treated

with 10% potassium hydroxide in a hot water bath for 15min.

The residue was sieved through a 125µm sieve. Macroscopic

macrocharcoal was counted in a gridded petri dish at 40× on

a dissecting microscope. Macrocharcoal counts were converted

to macrocharcoal concentrations (number of macrocharcoal

particles cm−3) and macrocharcoal influx rates by dividing by

the deposition time (year cm−1). CHAR statistical software was

used to decompose charcoal data to identify distinct charcoal

peaks using standard methodology (Higuera et al., 2007, 2009,

2010). Charcoal peaks are interpreted as a fire episode (a period

of increased burning). The time difference between peaks is

reflected in the fire return interval (fire frequency) for every

1,000 years.

2.12 Existing pollen data

The CV core was previously analyzed for pollen by Smith et al.

(2021). Here, the Species Richness Index (SRI) was calculated from

the existing pollen data which has previously been used to estimate

floristic richness and biodiversity (Heck et al., 1975). Species

richness was calculated from the total terrestrial fossil pollen data

from CV (Smith et al., 2021) and LCh (Burbridge et al., 2004) using

rarefaction analysis (Hurlbert, 1971; Heck et al., 1975) in the Vegan

Community Ecology Package in R (Oksanen et al., 2017; R Core

Development Team, 2020). Rarefaction enables the estimation

of pollen richness using standardized pollen counts (Birks and

Line, 1992). Standardization is important as palynological richness

depends in part on the pollen sum because, as the sum increases,

more taxa can potentially be detected. The units of rarefaction

analysis represent the estimated number of pollen taxa reduced to a

certain pollen sum, usually the lowest sum of the group of samples

being compared.

2.13 Laguna Chaplin and Huanchaca
Mesetta sediment cores

For complete palaeoecological analyses of LCh and HM

see Mayle et al. (2000), Burbridge et al. (2004), and Maezumi

et al. (2015, 2018b). Details on the recalibrated age-models

follow. LCh and HM were cored in 1998 and 1995 by FM,

with the results of the palaeoecological analyses presented in

subsequent publications (Mayle et al., 2000; Burbridge et al.,

2004; Maezumi et al., 2015, 2018b). Here, we replot the LCh

and HM macrocharcoal and stable carbon isotope data with

updated Bayesian age-depth models (Blaauw et al., 2018). The

chronological framework for LCh presented here is based on 14

Accelerator Mass Spectrometry (AMS) radiocarbon (14C) dates

(Supplementary Table 2, Supplementary Figure 1) and six AMS
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radiocarbon dates for HM (Supplementary Table 3, Supplementary

Figure 2). Updated age models implement the Bacon Bayesian age

modeling software package using the IntCal20 calibration curve

(Reimer et al., 2020). CV, LCh, and HM are plotted from 24,000

to 3,500 to allow direct comparison with the 24,000-year CV

macrocharcoal and isotope record.

2.14 Regional archaeological activity

The absence of archaeological sites in NKMNP, and the broader

region of eastern Santa Cruz, the largest department in Bolivia,

is attributed to the lack of systematic archaeological research in

the region (Capriles, 2023). To the eastern edge of the park,

across the Brazilian boarder, there are over 50 archaeological sites

documented <50 km from the KNMNP (Figure 1). Additionally,

recent maximum entropy models estimate 85% likelihood of

pre-Columbian earthworks in the surrounding area (Peripato

et al., 2023). Thus, in the absence of archaeological excavations

and surveys within NKMNP, we relied on existing, regional

archaeological data (Figure 1). We infer that these data are

representative of NKMNP as these dated archaeological sites come

from analogous settings across the ARC-Ecotone including sites

that are coupled with palaeoecological studies documenting crop

cultivation and agroforestry (including maize cultivation, similar to

LCh) and Indigenous burning (Carson, 2014; Brugger et al., 2016;

Maezumi et al., 2022). Additionally, the archaeological ceramics

present within an interfluve ∼25 km northwest of our study sites

are similar to ceramics documented outside of the park (Riester,

1981; Carson et al., 2014; Barreto et al., 2016; Maezumi et al., 2022).

Identifying change in regional human activity levels and

population size over time is frequently done with a “dates-as-data”

approach (Rick, 1987). Under this paradigm, the abundance of

dated archaeological deposits is thought to correlate over time with

regional human activity in the sense thatmore dated deposits (more

dates) in a given time and place indicates more human activity. This

logic holds because a change in activity levels and/or an increase

in population corresponds (though imperfectly correlated), to

a change in the abundance of datable deposits entering the

archaeological record at a given place and time. Following this logic,

we compiled a radiocarbon date database (Supplementary Table S1)

comprising archaeological deposits across the Bolivian ARF-

ecotone into the Llanos de Moxos savannah ranging from 19,500

BP to 3,500 BP. We compared the abundance of those dates to

our palaeoecological proxies for CV, LCh, and HM. The aim was

to evaluate if regional human activity corresponded to changes in

the palaeoecological record (i.e., fire activity).

To accomplish this, we used two visualizations to summarize

the information contained in the radiocarbon database. The first

visualization is Summed Probability Density (SPDs). SPDs have

frequently been used as an indirect proxy for identifying change

over time in human activity and demographic patterns (Shennan

et al., 2013; Bevan et al., 2017; Ramsey, 2017). They are produced

by calibrating each date in a given sample and then summing the

probability distributions to produce a single density curve. That

curve represents the temporal distribution of events in the relevant

database along with their combined chronological uncertainty

(Shennan et al., 2013; Timpson et al., 2014; Downey et al., 2016;

Goldberg et al., 2016; Zahid et al., 2016). While popular, SPDs

have significant limitations. Crucially, they conflate temporal event

density or count with dating uncertainties and should largely serve

only as a visual aid with some significant caveats regarding biases,

calibration artifacts, and their point-wise interpretation (Carleton

and Groucutt, 2021; Price et al., 2021; Crema, 2022). Nevertheless,

they have become a staple of regional archaeological syntheses

and can be deployed to help visualize the overall distribution of

anthropogenic deposits and their relevant dating uncertainties in

relation to other proxies.

The second visualization used here is called a Radiocarbon-

dated Event Count Ensemble (RECE). A RECE provides visual

information along three dimensions: one is time, another is count,

and the other is probability (Carleton, 2021; Carleton andGroucutt,

2021). The ensemble refers to a collection of randomly sampled,

probable event count time series that can be produced given a

sample of radiocarbon dates. The dates are first calibrated, and

then the calibrated dates are sampled at random in proportion

to their densities producing a probable set of event dates. Each

time the set of calibrated radiocarbon densities is sampled, the

sampled event dates are then binned at a given resolution into a pre-

determined temporal grid in order to count the number of events

(dates, and by extension dated deposits) that fall into each bin.

This produces an event count time series at the given resolution.

The process is then repeated (i.e., 10,000 times) to produce the

ensemble. A 2d grid histogram, is created where one axis represents

time corresponding to the selected bin resolution and the other axis

represents event count. The ensemble is then coded on the 2d grid

based on the probable count sequence for each bin. These relative

frequencies are then visualized with a heat-map spectrum so that

the final image (i.e., the plotted RECE) provides a visual of the most

likely count sequences along with uncertainty about both count and

time in a single image. In this way, RECEs can help to separate

event abundance from chronological uncertainty, suffer less from

calibration artifacts than SPDs, have a clearer interpretation for

comparison with other proxies, and indicate both overall sample

size (maximum counts in one dimension) and total uncertainties in

two dimensions.

To produce these visualizations, a total of 418 AMS dates

were compiled from 98 archaeological sites from the Bolivian

lowlands (ca. 69◦-58◦W, 9◦-16◦S; Supplementary Table S3). A

binning procedure was applied to account for sites that have

multiple dates within a phase (Shennan et al., 2013; Timpson

et al., 2014; Goldberg et al., 2016). Dates within sites were ordered

and those occurring within 100 years of each other were grouped

into bins and merged. Each bin had a maximum width of 200

years. SPDs were then built in the package “rCarbon” (Crema and

Bevan, 2021) and a RECE plot was produced using the package

“chronup” (Carleton, 2021) using the IntCal20 calibration curve

(Reimer, 2020; Reimer et al., 2020). In response to recent critiques

of the SPD method such as minimum sample size (n = 500)

(Williams, 2012) and the conflation of chronological uncertainty

(Carleton and Groucutt, 2021), we refrain from interpretations

about past population levels, and rather use the SPD curve and

RECE plots as indicators of human presence in the region at a

coarse temporal resolution with no reference to rates of change

or palaeodemographics.
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3 Results

The CV Bacon age-depth model was derived from seven of the

nine AMS-radiocarbon dates and has previously been published

(Smith et al., 2021), although here we update the chronology using

the IntCal20 calibration curve (Reimer et al., 2020). The dates at

240 cm and 276 cm were rejected based on the outlier identification

in Bacon. Ages for the top 160–155 cm and bottom 292 to 309 cm

of the core were based on interpolation and extrapolation. The

lithology of CV, as described in Smith et al. (2021), was divided

into threemain stratigraphic sections (Figure 3): (1) the Last Glacial

Period (309–255 cm; 24,000–11,000 cal year BP), (2) the early

to middle Holocene (255–230 cm; 11,000–7,000 cal BP), and (3)

the middle to late Holocene (230–155 cm; 7,000–3,700 cal year

BP). These three stratigraphic sections provide the chronological

framework for discussing the newMS, LOI, XRF, stable carbon and

nitrogen isotope, and macrocharcoal results from CV.

3.1 Last glacial period (24,000–11,000 cal
year BP; sediment hiatus 18,000–11,000 cal
year BP)

Magnetic susceptibility (MS) values from CV ranged between 4

and 8 and <10% organic material was present, as indicated by the

LOI values. The XRF data indicated high frequency, low amplitude

variability in Si, Rb, Ca, AL, Fe, Ti, and K (Figure 4). These data

suggest a higher energy, nutrient-poor environment that may have

been associated with substantial riverine influence. The pollen

during this period suggests abundant Poaceae (grass 40%−60%)

and Cyperaceae (sedge, 5%−10%) presence, along with cold

adapted taxa including Podocarpaceae (Podocarpus), Betulaceae

(Alnus), and Aquifoliaceae (Ilex). The savannah indicator Curatella

americana (Dilleniaceae) was present (<1%). Only a few grains of

the aquatic/semi-aquatic taxa from Alismataceae (Sagittaria sp.)

and Isoetaceae (Isoetes sp.) were recovered (Smith et al., 2021).

Pollen data are summarized in Figure 6.

Total %N remains low (<0.1%) and δ15N ranges between −0.6

and 3.4‰. Total %C was low (<1%) and the δ13C values range

between−16.0 to−8.0‰, indicating the highest contribution of C4

vegetation in the CV record during this period (Figure 5). The δ13C

values at LCh (−18.0) and HM (−18.0 to −16.0‰) also indicate

a contribution of C4 vegetation at this time. The C/N values at

CV fluctuate between 14 to 22 (Figures 6, 7), suggesting a mixed

contribution of aquatic (∼10) and terrestrial (∼20) organic sources

The existing palynological data from CV and LCh (Figure 8)

indicate open, seasonally flooded savannah (Burbridge et al., 2004;

Smith et al., 2021). The lack of phytolith preservation at HM

prior to 15,000 cal year BP limits vegetation reconstruction on the

table mountain (Maezumi et al., 2015). The absence of phytolith

preservation at HM was attributed to the limited vegetation

growing within the small palm swamp basin. Nevertheless, the

δ13C values (−19 to −15‰, Figures 7, 8) suggest C4 grasses were

growing on the table mountain. The sediment hiatus between

∼18,000 and 11,000 cal year BP at CV is synchronous with low

sedimentation rates (∼0.02mm year−1) at LCh (Burbridge et al.,

2004) and a sediment hiatus at HM from ∼18,000 to 16,000 cal

year BP (Maezumi et al., 2015). Despite the presence of C4 fire-

adapted vegetation, such as grasses, macrocharcoal values were low

at all three sites during this period. Human activity in the region

was minimal between 19,500 and 11,000 cal year BP based on the

regional radiocarbon dated archaeological sites (Figure 9).

3.2 Early to middle Holocene
(11,000–7,000 cal year BP)

The end of the sediment hiatus at CV ∼11,000 cal year BP

(Figure 3) was associated with decreased MS values from ca. 8 to 4

∼10,000 cal year BP (Figure 4), suggesting a shift to a lower energy

depositional environment. LOI values remained<10% indicating a

continuation of organic-poor sediments. The XRF data, particularly

Si, exhibits greater amplitude variability after 10,000 cal year BP,

reaching record high values (∼3) between 10,000 and 8,000 cal year

BP that correspond with a sand layer (Figure 4). These lithological

changes were likely associated with changing fluvial dynamics and

greater riverine influence that increased Si-rich sand deposition at

CV. The sand layer corresponds to poor pollen preservation at CV

between 8,750 and 7,000 cal year BP (Smith et al., 2021; Figure 8).

Total % N remained low (<0.1) and δ15N values increased

slightly from the previous period (1.0 and 5.0‰). Total % C was

low (<1%) and the δ13C values indicate a progressive replacement

of C4 vegetation with C3 vegetation at all three sites toward the late

glacial-Holocene transition (Figures 6, 7). Coupled with an increase

in C/N values (∼16‰), these data indicate increased terrestrial

organic matter input at CV (Figures 5, 6). Fire activity NKMNP

increases at HM ∼ 12,000 to 9,000 cal year BP and at CV ∼10,500

to 9,600 cal year BP, indicated by charcoal influx and fire frequency

values (Figures 6, 9). Macrocharcoal values remain low at LCh (<1)

throughout this period. Fire activity was low between ∼9,000 and

6,500 cal year BP at CV and LCh, (<2) coupled with a sediment

hiatus at HM from ∼9,000 to 8,300 cal BP prior to the onset of the

mid-Holocene Dry Period (MHDP; 6,000–4,000 cal year BP). The

SPD and RECE values indicate increased human activity at this time

(Figure 9, Supplementary Figure S3).

3.3 Middle Holocene (7,000–3,700 cal
year BP)

Around 6,500 cal year BP there were abrupt declines in MS

(6 to −2) and an increase in organic content (>90%) at CV

(Figure 4). This was synchronous with declines in Si, Rb, Fe, Ti and

K values. Ca and Al exhibit higher frequency and greater amplitude

variability after ∼6,000 cal year BP. Pollen data show the presence

of a dry forest-savannah mosaic during this time period (Smith

et al., 2021). The aquatic/semi-aquatic taxa Sagittaria and Isoetes

increase, with Sagittaria becoming a large proportion of the total

pollen sum (∼20%) between ca. 6,000–5,500 cal year BP (Figure 8).

The increase in the aquatic C4 plant Sagittaria corresponds to a

shift in δ13C values at CV (from −24.0 to −12.0). These data

correspond with low C/N values (<12; Figures 5, 7), indicating a

greater contribution of aquatic vs. terrestrial carbon input. The

increase in sediment organic matter at CV during this period
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FIGURE 6

Regional climate, charcoal, and stable carbon isotope measurements: (A) Lake Titicaca lake levels (Baker et al., 2001), (B) Antarctic CO2

concentrations, (C) δ13C Cuatro Vientos, (D) Cuatro Vientos charcoal accumulation, (E) δ13C Laguna Chaplin, (F) charcoal accumulation Laguna

Chaplin, (G) δ13C Huanchaca Mesetta, (H) charcoal accumulation Huanchaca Mesetta. X-axis broken from 18,000 to 14,000 cal year BP during

sediment hiatus. LGM, Last Glacial Maximum; MHDP, Mid-Holocene Dry Period.

suggests a shift toward more eutrophic conditions indicating lower

water levels (Smith et al., 2021).

Between 6,000 and 4,000 cal year BP the δ13C values at LCh

also indicate an increase in C4 vegetation (Figure 6) that was not

associated with a significant increase in grass pollen (Figure 8), that

did correspond to a 10% increase in the aquatic CAM plant, Isoetes

which has higher δ13C values (−20 to −10‰) compared to woody

C3 vegetation (<-24‰).

The MHDP was associated with increased variability of fire

between CV, LCh, and HM. There was an increase in fire activity

at CV ∼6,500–6,000 cal year BP indicated by higher charcoal

influx and fire frequency values that were not documented at

LCh despite similar SDTF vegetation (Figures 8, 9) and close

proximity (∼5 km) of the lakes. At both CV and LCh there was a

negative correlation between pollen species richness and increased

macrocharcoal (Figure 8). This corresponds with an increase in

human activity ca. 6,500 and 5,000 cal year BP indicated by a rise

in SPD and RECE values (Figure 9). Fire activity at HM was low to

absent during this period, despite abundant available fuel indicated

by the presence of ca. 80% woody vegetation documented in the

phytolith data (Figure 8). Fire increased between 5,000 to 4,000 cal

year BP at CV and LCh, followed by decreased fire at both sites after

∼4,000 cal year BP.The CV record terminates at 3,750 cal year BP,

prior to the establishment of modern palm swamp vegetation.
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FIGURE 7

Biplot of C/N ratio to stable carbon (δ13C) isotope measurements for Cuatro Vientos (CV), Laguna Chaplin (LCh), and Huanchaca Mesetta (HM) for

the Holocene and Last Glacial Maximum (LGM). CV Holocene: open orange square, CV LGM: open blue square, LCh Holocene: orange circle, LCh

Holocene: blue circle, LCh LGM: blue circle, HM Holocene: orange triangle, HM LGM: blue triangle.

4 Discussion

4.1 Climate and ARF-ecotone vegetation
dynamics during the last glacial period
(24,000–11,000 cal year BP)

During the Last Glacial Maximum (LGM; ∼21,000 cal year

BP) atmospheric CO2 levels were ∼76 ppm lower (Monnin et al.,

2001), temperatures were ∼5◦C cooler than pre-industrial values

(Seltzer et al., 2002; Whitney et al., 2011; Metcalfe et al., 2014),

and decreased precipitation, in response to lower evaporative

moisture, resulted in drier than present conditions across tropical

lowland South America (Burbridge et al., 2004; Whitney et al.,

2011; Woillez et al., 2011; Novello et al., 2019; Orrison et al.,

2022). C/N values (>12) and δ13C (−16 to −12‰; Figures 7,

8), combined with the low abundance of C4 aquatic plants

documented in the pollen records, suggest that C4 terrestrial

vegetation dominated the NKMNP landscape between the LGM

and onset of the Holocene (∼24,000 to ∼11,500 cal year BP).

This interpretation corroborates existing pollen data indicating

glacial-age savannah vegetation at CV (Smith et al., 2021), savannah

and semi-deciduous dry forest communities at LCh (Burbridge

et al., 2004), and C4 dominated landscapes at HM (Maezumi

et al., 2015; Figure 6). Similar glacial vegetation patterns of C4

dominated landscapes have been documented at sites south of

NKMNP in the Pantanal at Laguna La Gaiba (LLG; ∼500 km

southeast) (Whitney et al., 2011; Metcalfe et al., 2014) and Jaraguá

cave (∼850 km southeast of NKMNP) (Novello et al., 2019),

suggesting the dominance of C4 savannah grasslands during

the last glacial period in the region. These data are consistent

with previous modeling studies that simulate a replacement of

rainforest with savannah/seasonally dry forest in ecotonal areas

during the LGM (Beerling and Mayle, 2006).During the late

glacial-Holocene transition, stable carbon isotope data indicate a

progressive increase in C3 vegetation (Figure 6) that corresponds

with a period of poor pollen preservation at CV, an increase of

semi-deciduous tropical dry forest at the expense of savannah

vegetation at LCh after ∼13,000 cal year BP, and a decrease in C4

grass phytoliths at HM palm swamp after ∼12,000 cal year BP

(Figure 8), though it is likely that C4 cerrado savannah persisted

on the broader table mountain as a result of its rocky substrate

and lack of soil (Mayle and Whitney, 2012; Maezumi et al.,

2015). Model simulations demonstrate late glacial climate change

(i.e., precipitation), drove the competitive replacement of drought-

adapted vegetation (e.g., savannah or deciduous/semideciduous dry

forest) by rainforest in drought-sensitive ecotonal areas (Beerling

and Mayle, 2006). Precipitation increased in tropical lowland

South America after ∼12,800 cal year BP, as indicated by more

frequent flooding and rising lake levels at LLG (Whitney et al.,

2011), and in the Andes, water levels increased at Salar de

Uyuni (Servant-Vildary et al., 2001) and Lake Titicaca (Baker

et al., 2001). Reconstructions from LLG indicate that deglacial
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temperatures in the lowland Bolivian Amazon rose by 4◦C at 19,500

cal year BP and have likely remained relatively consistent until

present (Whitney et al., 2011), supporting the interpretation that

temperature was not the dominant driver of late glacial-Holocene

vegetation change at NKMNP. It is important to note however, that

temperature may not have been uniform across lowland Amazonia.

For example, the presence of Podocarpaceae (Podocarpus sp.)

at Lagoa da Curuça (0◦46
′

S, 47◦51
′

W) in the eastern Brazilian

Amazon has been attributed to late glacial-Early Holocene cooling

(Behling, 1996).

FIGURE 8 (Continued)
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FIGURE 8 (Continued)

(A) Summarized vegetation from pollen, δ13C and charcoal data for Cuatro Vientos: Humid evergreen tropical forest (HETF), Semi-deciduous tropical

forest (SDTF), Savanna (SAV), palms (PALM), Herbaceous (HERB), Aquatics (AQ), percent Poaceae, % C4 Isoetes, % C4 Sagittatia sp., δ13C, Rarefaction,

and charcoal accumulation (particles cm−3 year−1). Y-axis broken from 18,000 to 11,000 cal year BP during sediment hiatus. (B) Summarized

vegetation from pollen, δ13C and charcoal data for Laguna Chaplin: Humid evergreen tropical forest (HETF), Semi-deciduous tropical forest (SDTF),

Savanna (SAV), palms (PALM), Herbaceous (HERB), Aquatics (AQ), percent Poaceae, % C4 Isoetes, % C4 Sagittatia sp., δ13C, Rarefaction, and charcoal

accumulation (particles cm−3 year−1). (C) Summarized vegetation from phytoliths, δ13C and charcoal data for Huanchaca Mesetta: Grasses: % C3

Pooideae, % C4 Panicoideae, % C4 Chloridoideae, % Rondel, % Arboreal, % Palms, δ13C, and charcoal accumulation (particles cm−3 year−1). Y-axis

broken from 18,000 to 14,000 cal year BP during sediment hiatus.

The decline in drought-adapted C4 vegetation associated with

regionally wetter climates suggests that increased precipitation was

likely the dominant driver shaping C3-C4 ARF-Ecotone vegetation

dynamics inNKMNPduring the glacial-interglacial transition. This

interpretation is supported by palaeoecological studies from other

drought-sensitive ecotonal areas around the Amazon Basin (Absy,

1991; Behling and Hooghiemstra, 1999; Sifeddine et al., 2001;

Mayle et al., 2004). Interestingly, this interpretation contrasts with

a recent record from Jaraguá cave (ca. 320 km east of NKMNP)

that identified CO2, opposed to temperature or precipitation, as

the dominant driver of glacial-interglacial vegetation dynamics in

western Brazil (Novello et al., 2019), demonstrating considerable

spatial variability and the potential influence of different proxy

data to determine drivers of late glacial vegetation responses in the

tropical lowlands.

4.2 Documenting fire in C4 Savannah
grasslands during the last glacial period

During the LGP, minimal charcoal was present at NKMNP,

however, determining the cause this absence of macrocharcoal is

complicated by deposition and preservation issues associated with

grass charcoal. Charcoal morphometrics based on aspect ratio can

successfully differentiate woody and grass fuels (Vachula et al.,

2021), however, previous studies document the overrepresentation

of woody charcoal in grass dominated systems (Leys et al., 2015).

To complicate this issue, recent charcoal dispersal models indicate

that the dispersal of wood versus grass charcoal is not uniform, with

fine grass charcoal particles being transported further than woody

charcoal particles of the same size class (i.e., 125µm) (Vachula

and Rehn, 2023). Thus, the grass-charcoal component present

in charcoal records from grass-dominated and mixed wood-grass

ecosystems, such as NKMNP, likely represent broader regional

fire histories than woody charcoal records from wood-dominated

ecosystems. The pollen data at CV and LCh indicate the continued

presence of woody fuels on the landscape during the LGP, thus if

fire was present, we would anticipate woody charcoal to be present,

if not overrepresented. In the absence of significant charcoal at any

of the sites, we infer minimal LGP fire activity, across NKMNP.

The cooler glacial climate conditions and decreased evaporative

moisture (Baker et al., 2001; Novello et al., 2019) in turn decreased

the incidence of lightning-caused ignitions (Ramos-Neto and

Pivello, 2000). The dominance of C4 grasses would have reduced

fuel loads and decreased fuel connectivity (Cochrane and Ryan,

2009). Coupled with the lower incidence of lightning-caused
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FIGURE 9

Climate, humans and fire activity: (A) Regional palaeoclimate record from Lake Titicaca δ13C (PDB) (Baker et al., 2001), (B) RECE model and (C) SPD

curve from regional radiocarbon dates (Supplementary Table S4), (D) Cuatro Vientos (CV) fire frequency: red fill, fire peak: plus sign, (E) CV Charcoal

accumulation (CHAR): black line, (F) Laguna Chaplin (LCh) fire frequency: red fill, fire peak: plus sign, (G) LCh charcoal accumulation: black line, (H)

Huanchaca Mesetta (HM) re frequency: red fill, fire peak: plus sign, (I) HM charcoal accumulation.
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fires, these factors likely contributed to decreased fire activity in

NKMNP during the LGP. Previous research suggests that ecological

disturbance by fire is a fundamental component of C4 grassland

ecosystems (Keeley and Rundel, 2005; Beerling and Osborn, 2006;

Edwards et al., 2010) and demonstrates that fire was an essential

feedback mechanism leading to C4 grassland expansion during

the late Miocene (8–3 MYA) (Edwards et al., 2010; Strömberg,

2011; Bouchenak-Khelladi et al., 2014; Kirschner andHoorn, 2019).

Additionally, studies from the southwestern African grasslands

of Namibia demonstrate that intensified fire activity caused by

aridification triggered the initial establishment and later dominance

of C4 plants (Hoetzel et al., 2013). Although the presence of

fire activity may have been essential in the initial evolution

and establishment of C4 grassland ecosystems, the absence of

fire activity in our study sites during the LGM suggests that

fire was not necessary for the presence and maintenance of C4

savannah grasslands in NKMNP for over 24,000 years. These

data challenge recent model simulations that indicate fire and

low CO2 were responsible for the expansion of the savannah

vegetation in the southern ecotone margins of the Amazon during

the LGM (Sato et al., 2021). Alternatively, our data support previous

interpretations that low LGM CO2 values and drier conditions

likely helped to maintain the C4 dominated system in NKMNP

(Burbridge et al., 2004).

4.3 The influence of basin size in recording
fire and vegetation dynamics in the
ARF-ecotone

The glacial-Holocene transition (ca. 13,500–10,000 cal year

BP) was characterized by a shift toward wetter conditions after

12,800 cal year BP in tropical lowland South America, coupled

with oscillating periods of dry and wet conditions (Baker et al.,

2001; Whitney et al., 2011; Novello et al., 2017). Despite increased

precipitation variability, stable carbon isotope data indicate a

progressive replacement of C4 savannah grasslands with C3 woody

vegetation at our study sites (Figure 8). The stable isotope data

corroborate existing pollen records indicating increased woody

vegetation at CV and LCh (Burbridge et al., 2004; Maezumi et al.,

2015) and decreasing C4 phytoliths within the HM palm swamp

(Maezumi et al., 2015). There was an increase in macrocharcoal

values at HM ∼12,000 to 9,000 cal year BP and at CV between

10,500 to 9,600 cal year BP.

The transition from cool-dry glacial climates to warm-wet

climates in the early Holocene likely increased the incidence of

convective thunder storms and lightning-induced fires at HM.

Empirical studies of fire activity in the Emas National Park, Brazil

(∼900 km southeast of NKMNP) indicate that the majority of

modern fires in the cerrado savannahs occur during the wet

season (October–April), with a significantly higher occurrence

of lightning-caused fires in open vegetation (wet field or grassy

savannahs) on flat plateau areas, similar to the table mountain in

NKMNP (Ramos-Neto and Pivello, 2000). Over a four-year period

(1995–1999), wet season lightning fires were frequent (n = 31

fires burning ∼30,000 ha), patchy, and extinguished by rain, likely

representing the natural fire regime in the region (Ramos-Neto and

Pivello, 2000). These data support the interpretation that HM likely

represents the natural lightning-induced fire regime since the LGM.

Below the table mountain at CV, wetter climate conditions

after 12,800 cal year BP (Whitney et al., 2011) likely increased fuel

accumulation, fuel connectivity, and fuel moisture. The later may

have made it more difficult for lightning-ignited fires to spread.

LCh does not record an increase in fire activity during this period

(Figure 9), despite similar declines in C4 to vegetation indicated

by the decrease in δ13C (from −16 to −24‰) and C/N values

(>12; Figures 6, 7). The synchronicity of fire activity at the smaller

lake basins of CV and HM, but not the larger lake basin of LCh,

suggests basin size may have influenced the detection of fire activity

between the records. In most forested ecosystems, macrocharcoal

deposition typically occurs within 1 km of the lake (Clark et al.,

1998; Lynch et al., 2004; Oris et al., 2014). However, in open

grasslands in the South African Savannah, Afrotropics and North

American tall-grass prairies, macrocharcoal deposition typically

occurs within 5 km of the lake (Duffin et al., 2008; Aleman et al.,

2013; Leys et al., 2015), though recent charcoal dispersal models

suggest fine grass charcoal particles may be transported further

(Vachula and Rehn, 2023). The close proximity of CV to LCh

(<6 km) suggests these study sites should have similar fire histories.

However, additional palaeoecological studies indicate small lake

basins (<5 km2) are more sensitive to detecting local-scale (1–106

m2) fire activity, while large sedimentary basins (>50 km2) capture

regional (>1010 m2) macrocharcoal signals (Power et al., 2010).

The presence of fire activity recorded in the small basins of CV and

HM, but not the large basin of LCh, suggests these small basins are

likely more sensitive to detecting local-scale fire activity (i.e. slash

and burn cultivation fires) in the ARF-Ecotone. This interpretation

corroborates existing studies documenting the influence of basin

size on fire detection sensitivity in lake sediment basins ∼300 km

north of NKMNP (Carson et al., 2014).

4.4 Fire and human linkages during the
early to middle Holocene (11,000–3,700
cal year BP)

In addition to basin size, the increase in the spatial variability of

fire after 10,500 cal year BP at CV and LCh raises the possibility that

climate (i.e., lightning) was not the dominant cause of ignitions.

Previous studies have shown that increased spatial variability of

fire, despite similar vegetation and climate, may be attributed to

increased human influence (Bush et al., 2007a; Mayle and Power,

2008; Marlon et al., 2013; Maezumi et al., 2018b). A large spike

in macrocharcoal has been documented at numerous sites in the

Amazonian lowlands when areas were first occupied by humans

(Bush et al., 2007a, 2016). Recent studies demonstrate that the

ARF-Ecotone was extensively occupied since the early Holocene

(after 10,500 cal year BP) with thousands of human-managed

artificial forest islands documented across the Llanos de Moxos

plains (∼350 km west of NKMP) (Lombardo et al., 2013, 2020;

Capriles et al., 2019). Additionally, recent distribution models

estimate between 10,000 and 24,000 sites remain to be discovered

in the region (Peripato et al., 2023).
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The ARF-Ecotone region was also a center for early Holocene

plant domestication (Oliver, 2008; Clement et al., 2010, 2015; de

Cristo-Araújo et al., 2013; Brugger et al., 2016; Hilbert et al.,

2017; Kistler et al., 2018; Watling et al., 2018; Lombardo et al.,

2020). Cultivating crops (i.e., maize, manioc, sweet potato, squash,

arrow root) was often coupled with Indigenous burning (Brugger

et al., 2016; Bush et al., 2016; Maezumi et al., 2018b, 2022;

Iriarte et al., 2020). Maize and Indigenous burning has been well-

documented in the region in the anthropic forest islands [∼6,850

cal year BP; (Lombardo et al., 2020)], Lake Rogaguado [∼6,500

cal year BP; (Brugger et al., 2016)], Lake Versalles [∼5,700 cal

year BP; (Maezumi et al., 2022), and the Monte Castelo shell-

mound [∼5,300 cal year BP (Hilbert et al., 2017; Furquim et al.,

2021)]. Previous palaeoecological studies demonstrate that crop

cultivation was not uniform across the landscape; while some

Amazon lake records had limited evidence of cultivation and

fire activity, neighboring lakes with similar basin characteristics

(<50 km away) had histories of crop cultivation and fire activity

for millennia (Burbridge et al., 2004; Bush et al., 2007a,b; Carson

et al., 2014; Brugger et al., 2016; McMichael and Bush, 2019). This

may account for the spatial variability of fire and presence of maize

cultivation at LCh (Maezumi et al., 2018b) but not at CV.

Another compelling line of evidence documenting the

prevalence of past Indigenous burning comes from Amazonian

Dark Earth Soils (ADEs). ADEs are human made soils that have

high charcoal concentrations and organic matter, higher pH values

and greater concentrations of P, Ca, and Mg which enable them to

maintain nutrient levels over hundreds of years (Lehmann et al.,

2003; Glaser and Woods, 2004; Woods et al., 2009). The earliest

ADEs are documented in the Upper Madeira ∼6,000 years ago

(Mora et al., 1991; Watling et al., 2018), at the Teotônio site (ca.

600 km NW of NKMNP) where crops such as Cucurbita (squash)

and Phaseolus (beans) were grown (Watling et al., 2018). While the

widespread formation of ADEs across the Amazon did not begin

until after the termination of the CV record ∼2,500 cal year BP

(Iriarte et al., 2020), the incipient land use practices trace their

origins to the early to middle Holocene.

Archaeological studies have also identified the importance

of riverine bluff habitats for Indigenous settlement, ADE soil

formation, crop cultivation, and migration corridors (Denevan,

1996, 2005; Heckenberger et al., 2008; McMichael et al., 2014).

The close proximity of CV to the Rio Paraguá (Figure 1) would

have made it an optimal location for Indigenous utilization of the

naturally open, mosaic landscape in the early Holocene (Figure 10).

At CV there was a significant increase in macrocharcoal values

at CV ∼6,500 to 6,000 cal year BP that was not documented at

LCh despite similar savannah-SDTF mosaic vegetation at both

sites. The spatial variability of fire coupled with the synchronous

increase in human activity in the region indicated by the SPD and

RECE values (Figure 9), may be attributed to increased human-

caused ignitions at this time. Climate likely also promoted fire by

decreasing fuel moisture and increasing flammability during the

MHDP, that would have in turn promoted natural fires (Bowman

et al., 2009) and made Indigenous burning a more effective tool for

land management (Mayle and Power, 2008; Bowman et al., 2020).

However, while it is possible that humans have been influencing

fire activity in NKMNP since the early Holocene (∼10,500 cal year

BP), additional archaeological evidence is needed to support this

interpretation.

4.5 Climate and vegetation linkages during
the mid-Holocene dry period (6,000–4,000
cal year BP)

The MHDP was characterized by significantly drier-than-

present climate conditions with longer, more extreme dry seasons

across much of tropical South America (Baker et al., 2001; Wang

et al., 2007; Mayle and Whitney, 2012; Cheng et al., 2013; Kanner

et al., 2013; Bernal et al., 2016). The MHDP has been attributed

to lower southern-hemispheric summer insolation levels driven by

the precessional cycle of Earth’s orbit (Berger and Loutre, 1991).

This restricted the southerly migration of the ITCZ (Haug et al.,

2001) and decreased the strength of the SASM (Cruz et al., 2009;

Baker and Fritz, 2015; Novello et al., 2017). The CV and LCh pollen

records (Burbridge et al., 2004; Smith et al., 2021) and the phytolith

record from HM (Maezumi et al., 2015) indicate a savannah-SDTF

mosaic dominated the NKMNP landscape during the MHDP.

Around 7,000 cal year BP higher δ13C values at CV correspond

to an increase in aquatic/semi-aquatic macrophytes Sagittaria

(∼30%−40%) and Isoetes (∼10%), indicating a shift from a clear

open lake to a shallower more eutrophic environment (Smith et al.,

2021). The dry conditions of the MHDP likely lowered lake levels

creating optimal conditions for Sagittaria which grows in shallow

waters (15–30 cm deep) along lake shores and requires exposed

mud for successful seedling establishment (Jepson, 1993). Higher

levels of %N (3–5; Figure 5) indicates increased nitrogen fixation,

likely from the increase in Sagittaria which has high rates of N2

fixation (Arima and Yoshida, 1982) and lower δ15N values (−2‰).

At LCh the mid-Holocene expansion of Isoetes was also attributed

to shallower conditions that allowed this aquatic plant to spread

from the lake shore-line across the lake (Burbridge et al., 2004).

The increased abundance of these aquatic macrophytes at CV and

LCh was coupled with consistent levels of Poaceae (∼50%) at both

sites, suggesting C4 grass was not the dominant driver of the δ13C

values during this period. Some aquatic plants, such as Sagittaria

(Sage, 2004), predominantly utilize the C4 photosynthetic pathway

(δ13C−12 to−13‰) (Ehleringer et al., 1991), while Isoetes uses the

CAM photosynthetic pathway which can have a similar δ13C value

(range −20 to −10‰) to C4 plants (O’Leary, 1988). Together, the

increase in Sagittaria and Isoetes, as a result of lower lake levels,

likely drove the increased δ13C values at CV and LCh during the

MHDP (Figure 10).

Additional evidence of vegetation response to regional drying

has been documented in the Llanos de Moxos, where seasonally

flooded savannahs were replaced by dry cerrado savannah

vegetation (Mayle et al., 2007; Lombardo et al., 2019). The longer

and more severe dry seasons were associated with a decrease in

seasonal flooding during the MHDP (Mayle and Power, 2008),

increased available land for cultivation and enabled the expansion

of C3 tree populations, intolerant of waterlogging, into the low-

lying plains of the Llanos de Moxos (Mayle et al., 2007; Lombardo

et al., 2019).
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FIGURE 10

A conceptual figure of the landscape change since the Last Glacial Maximum in Northeast Bolivia. (A) End of the Last Glacial 24,000–11,000 cal year

BP characterized by open seasonally flooded savannah taxa including Poaceae, Cyperaceae, Betulaceae (Alnus), Aquifoliaceae (Ilex), Podocarpaceae,

and Paullinia/Roupala, with low concentration of Curatella americana, (B) Middle Holocene 7,000–5,500 cal year BP characterized by

Anadenanthera, Astronium Curatella americana Poaceae, Sagittaria, and Isoetes, (C) Middle to Late Holocene 5,500–3,750 cal year BP characterized

by Moraceae/Urticaceae, Mauritia/Mauritiella palms, and increased Sagittaria, and Isoetes.

4.6 Fire activity and pollen species richness
in the middle Holocene (7,000–3,700 cal
year BP)

After ca. 5,000 cal year BP the spatial variability of fire in

NKMNP begins to decrease, as indicated by similar macrocharcoal

signatures at CV and LCh. The similarity in the macrocharcoal

records suggest climate was likely the dominant driver of the

regional increase in fire at CV, however, as humans are present

in the region surrounding NKMNP (Figure 9), human-caused

ignitions should not be ruled out and future archaeological research

within the park may help to resolve this issue.

Interestingly, there is a slight negative correlation between fire

activity and pollen species richness (Figure 8) at CV and LCh

during this time that is likely attributed to declines in non-fire

tolerant rainforest taxa (e.g., Moraceae/Urticaceae) immediately
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following a period of increased fire activity. However, at both

CV and LCh, pollen diversity levels return to, or exceed pre-

fire levels, suggesting that fire did not have a long-lasting

negative influence on pollen species richness. Ethnographic studies

have shown that through agroforestry practices (Denevan, 2006;

Levis et al., 2018), even small groups of hunter-gatherers can

change the configuration of useful plant species and create more

productive environments surrounding human settlements (Posey

and Balée, 1989; Politis, 1996; Denevan, 2006; Levis et al., 2018).

For example agroforestry and Indigenous burning can increase

alpha (local) and beta (regional) biodiversity in anthropogenic

forests (Balée, 2000; Junqueira et al., 2010; Neves, 2012; ter

Steege et al., 2013; Clement et al., 2015; Lins et al., 2015;

Arroyo-Kalin, 2018). These studies, combined with the potential

influence of Indigenous burning throughout the Holocene, raise

the intriguing possibility that the composition of modern flora at

NKMNP developed as part of a co-evolutionary process between

people and plants that started at the beginning of its occupation

as proposed in other sites in the Amazon (Furquim et al.,

2023).

Fire activity decreases at CV and LCh after 4,500 cal year

BP, likely as a result of the progressive increase in precipitation

associated with the end of the MHDP (Mayle et al., 2000; Baker

et al., 2001; Wang et al., 2007; Mayle and Whitney, 2012; Cheng

et al., 2013; Kanner et al., 2013; Bernal et al., 2016; Lombardo

et al., 2018) in response to the strengthening of the SASM driven

by gradually increasing insolation levels (Berger and Loutre, 1991;

Cruz et al., 2005; Baker and Fritz, 2015). This resulted in local

seasonal flooding at CV and the establishment of M. flexuosa

consistent with regional records indicating the expansion of both

riverine and terra firme tropical rainforest (Mayle et al., 2000;

Carson et al., 2014; Brugger et al., 2016). Unfortunately, the CV

record terminates at 3750 cal year BP prior to the establishment

of the modern palm swamp and the apex of regional human

activity in the region (Heckenberger and Neves, 2009; Maezumi

et al., 2018b; de Souza et al., 2019; Arroyo-Kalin and Riris,

2021).

5 Conclusions

This study reconstructs vegetation and palaeofire activity in

the Bolivian ARF-Ecotone for the past 24,000 years (i.e., from

the LGM to the late Holocene). Our data indicate that C4

terrestrial savannah vegetation dominated the CV, LCh, and HM

catchments during the glacial-Holocene transition. Additionally,

fire was likely not a requisite for the maintenance of C4 savannah-

woodland ecosystems during the late glacial Period. The influence

of basin size on the detection of palaeofire activity compliments

existing pollen studies indicating the greater sensitivity of small

lake basins to detect local-scale fire activity, supporting our

hypothesis. Increased spatial variability of fire coupled with

continuous presence of human occupation and regional maize

cultivation suggests that humans may have contributed to the

increased heterogeneity of fire at NKMNP during the Holocene.

The close proximity of CV to the Rio Paragua would have made

it an ideal settlement location for Indigenous occupation (likely

less so once it became a swamp after ∼3,750 cal year BP);

however, archaeological surveys and excavations in the NKMNP

area are still needed. While pollen richness declined with peak fire

activity, richness values recovered to equivalent or higher levels

following fire events, suggesting that the increase in fire at CV

and LCh during the Holocene did not have a lasting negative

influence on savannah-SDTF vegetation at NKMNP. While

NKMNP has long been celebrated for its “pristine” ecosystems,

the data presented here add to the increasing body of evidence

that Indigenous peoples may have had a long, multi-millennial

history of managing Bolivian Amazon ecosystems through fire

and agroforestry. Hence, it is increasingly likely that, through

millennia of land use, humans may have helped shape patterns

of biodiversity in NKMNP, that potentially has a strong legacy in

today’s forests. Incorporating insights from Indigenous traditional

ecological knowledge may contribute useful insights in combining

biodiversity conservation and maintenance of ecosystem services

with sustainable land use.
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