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Abstract

Data assimilation is used to obtain an improved estimate (analysis) of the state of a dy-

namical system by combining a previous estimate with observations of the system. A

weak constraint four-dimensional variational assimilation (4D-Var) method accounts for

the dynamical model error and is of large interest in numerical weather prediction. The

analysis can be approximated by solving a series of large sparse symmetric positive def-

inite (SPD) or saddle point linear systems of equations. The iterative solvers used for

these systems require preconditioning for a satisfactory performance. In this thesis, we

use randomised numerical methods to construct effective preconditioners that are cheap

to construct and apply. We employ a randomised eigenvalue decomposition to construct

limited memory preconditioners (LMPs) for a forcing formulation of 4D-Var indepen-

dently of the previously solved systems. This preconditioning remains effective even if the

subsequent systems change significantly. We propose a randomised approximation of a

control variable transform technique (CVT) to precondition the SPD system of the state

formulation, which preserves potential for a time-parallel model integration. A new way

to include the observation information in the approximation of the inverse Schur comple-

ment in the block diagonal preconditioner for the saddle point formulations is introduced,

namely applying the randomised LMPs. Numerical experiments with idealised systems

show that the proposed preconditioners improve the performance of the iterative solvers.

We provide theoretical results describing the change of the extreme eigenvalues of the

unpreconditioned and preconditioned coefficient matrices when new observations of the

dynamical system are added. These show that small positive eigenvalues can cause con-

vergence issues. New eigenvalue bounds for the SPD and saddle point coefficient matrices

in the state formulation emphasize their sensitivities to the observations. These results

can guide the design of other preconditioners.
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Chapter 1

Introduction

Data assimilation is used to obtain an estimate of a state of a dynamical system and

is essential in numerous applications, including atmospheric reanalysis, environmental

forecasting for hazards like flooding, and numerical weather prediction (NWP), where

it provides initial conditions for the weather model [Dee et al., 2011, Garćıa-Pintado

et al., 2015, Kalnay, 2002]. The forecasting requires integrating dynamical models and

hence is an initial value problem. In NWP, the importance of accurate initial conditions

is emphasised by the fact that the atmosphere is chaotic, that is, a small change in its

state at one time can result in a very different state at a later time (e.g., [Kalnay, 2002]).

Accurate forecasting and hence data assimilation is vital for governments and businesses

to prepare for extreme events and a longer lead time makes the process easier [Kovats and

Ebi, 2006, Doong et al., 2012].

Data assimilation combines observations of the dynamical system with a prior guess

of the state (background) taking into account their error statistics. In NWP, there may

be 108 observations, whereas the state may consist of 109 − 1010 variables [Bauer et al.,

2021]. This is because it includes values for meteorological variables like temperature,

wind direction, moisture, pressure and others at every grid point at multiple vertical levels

[Coiffier, 2011]. There may be 107 grid points and 102 vertical levels of the atmosphere

[Bauer et al., 2021]. The size of the system makes the problem extremely challenging.

There is also a time constraint on the computations because of the commitment to issue

forecasts at specific times. Efficient data assimilation is hence of vast importance and it

requires suitable linear algebra techniques [Freitag, 2020].

Variational data assimilation methods are used in NWP centres like the European Cen-

tre for Medium-Range Weather Forecasts (ECMWF) and the UK Met Office [Bonavita

and Lean, 2021, Clayton et al., 2013]. The weak constraint four dimensional variational

(4D-Var) data assimilation method has received interest in the data assimilation commu-

nity (e.g., [Fisher and Gürol, 2017, Shaw and Daescu, 2017, Bowler, 2017, Freitag and

Green, 2018, Laloyaux et al., 2020a, Laloyaux et al., 2020b]), because it accounts for the

error of the dynamical model and thus a more accurate estimate of the state of the system

can be obtained. The state is estimated by minimising a series of quadratic cost functions

(inner loop minimisations) that require the solution of very large sparse systems of linear

1



2 CHAPTER 1. INTRODUCTION

equations. One can choose to write these systems with symmetric positive definite (SPD)

or symmetric saddle point coefficient matrices depending on factors such as the need for

parallel computations [Fisher and Gürol, 2017].

These systems are solved using iterative methods of which the Krylov subspace meth-

ods are the most popular, but their convergence can be slow [Saad, 2003]. It is ac-

cepted that preconditioning is needed to improve their performance (for example, [Benzi,

2002, Wathen, 2015]). In this technique, a modified (preconditioned) system is solved.

The preconditioning has to be designed in a way that the preconditioned system is solved

faster than the original one and the solution of the original system is easily recovered. If

the original system has potential for parallel computations, then preconditioning needs

to preserve it. The design process is thus highly problem dependent. Well-known results

show a relationship between the convergence of Krylov subspace solvers and the eigenval-

ues of the coefficient matrices (e.g., Lecture 38 of [Trefethen and Bau, III, 1997]). This

suggests that effective preconditioning can be obtained when the eigenvalue distribution

of the preconditioned coefficient matrix is better suited for the solver than the original

one. A way to achieve this is to use an approximation of the inverse of the coefficient

matrix for preconditioning. These often make use of low-rank matrix approximations.

Randomised methods for low-rank approximations of a matrix A constitute a flour-

ishing research theme in numerical linear algebra (see, e.g., [Martinsson and Tropp, 2020]

and references therein). They have been also used to design solvers for strong constraint

4D-Var [Bousserez et al., 2020]. The randomised methods consist of two stages: first, a

random matrix is used to generate a subspace that approximates the range of A, and then

this subspace is used to construct a small matrix whose cheap to obtain decomposition is

employed to approximate A. It has been shown that a high quality approximation of A

can be constructed with high probability when A has rapidly decreasing singular values

[Halko et al., 2011]. The randomised methods are designed as block methods, that is

they require matrix-matrix products, which can be parallelised and hence are suitable for

efficient computations on current computers. We use randomised methods to construct

preconditioners for weak constraint 4D-Var.

1.1 Thesis aims

In this thesis, we consider the following research questions related to preconditioning the

weak constraint 4D-Var.

1. How can we precondition the linear systems of equations arising in the so-called

forcing formulation of the weak constraint 4D-Var independently of the previously

solved systems? Current preconditioning practices depend on the previous inner

loops [Tshimanga et al., 2008], and may not be successful when the linear systems

change significantly from one inner loop to the next.

2. How do the extreme eigenvalues of the coefficient matrices change when new observa-

tions are introduced? The number of observations that are used in data assimilation
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for NWP is ever increasing and this can affect the convergence of the Krylov subspace

solvers.

3. How can we precondition the linear systems in the so-called state formulation so that

the potential for time-parallel computations is preserved? In the state formulation,

the model linearised at different times can be integrated in parallel [Fisher and Gürol,

2017] and hence effective preconditioning should not impair this.

4. How can we include more information about the observations when preconditioning

the saddle point systems? This may improve the performance of the preconditioning

when more observations of the dynamical system are used in data assimilation.

1.2 Outline

In Chapter 2, we introduce the theory of data assimilation. We start with the required

components and introduce the strong constraint 4D-Var method. We then discuss ways to

precondition the linear systems that arise in the incremental formulation of the method,

namely using the control variable transform (CVT), also known as first level precondition-

ing, and limited memory preconditioners (LMPs). These ideas are then used in designing

preconditioning for the weak constraint method. We formulate three linear systems that

can be solved in the incremental formulation, specifically two SPD systems and a 3 × 3

block saddle point system. A discussion of their features as well as previous attempts to

precondition these systems finalises the chapter.

In Chapter 3, mathematical ideas and results that form the basis for our work are pre-

sented. We state results for specific matrices, their decompositions and relationships con-

cerning their eigenvalues and singular values. Low-rank matrix approximations for large

matrices are presented, focusing on the eigenvalue and singular value decompositions. We

discuss traditional Lanczos and subspace iteration methods used for these decompositions

and introduce randomised methods. The conjugate gradient and minimal residual meth-

ods for solving linear systems are presented; the results connecting their convergence with

the distribution of the eigenvalues are shown. We also describe mathematical properties

of the LMPs and block diagonal Schur complement preconditioners.

In Chapter 4, research question 1 is addressed. LMPs have been used in strong

constraint 4D-Var, where they have been constructed using estimates of eigenvalues and

eigenvectors obtained cheaply in the previous inner loop [Tshimanga et al., 2008]. Such

preconditioners can be expected to perform well if the coefficient matrices do not change

significantly from one loop to another. We propose a way to construct LMPs in every

inner loop independently of the previous ones. This is done using a randomised eigenvalue

decomposition and we explore three variants. Numerical experiments with the advection

and Lorenz 96 models show that these preconditioners improve the performance of the

solvers.

In Chapter 5, we consider research question 2 for the linear systems in the state

formulation. A 3×3 block saddle point system has been introduced and studied by [Fisher
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and Gürol, 2017]. We introduce a reduced 2×2 block saddle point system that can also be

used in this formulation. We describe how the extreme eigenvalues of the 3× 3 block and

2× 2 block saddle point and the SPD coefficient matrices change when new observations

are introduced. These theorems hold for the general observation error covariance matrix

in the 3 × 3 block system, and for a diagonal observation error covariance matrix in the

other systems. We also provide bounds for the eigenvalues of the coefficient matrices.

These results can be used to better understand how to design effective preconditioners

that remain useful when the number of observations is increased.

In Chapter 6, research question 3 is examined for the SPD system in the state for-

mulation. [Fisher and Gürol, 2017] suggested extending the CVT technique by using an

approximation of the linearised model, but did not recommend a suitable approximation.

We propose using a randomised singular value decomposition to construct an approxi-

mation which preserves the time-parallelism. A way to incorporate the background and

model error in this approximation is also explored. It is shown that the exact CVT tech-

nique is not always useful but that the randomised preconditioner can give good results

when the CVT performs well.

In Chapter 7, we tackle research question 4, and research question 2 for the SPD

system with a diagonal error covariance matrix in the forcing formulation. We focus on

the block diagonal Schur preconditioners. These are constructed with an approximation of

the inverse of the Schur complement. The Schur complement in our application coincides

with the SPD coefficient matrix in the state formulation. We suggest approximating the

inverse of it using the cheap to construct and apply randomised LMPs, which were also used

in Chapter 4. They include information about the observations of the dynamical system,

which was omitted in previous attempts to precondition [Gratton et al., 2018a, Freitag and

Green, 2018, Tabeart and Pearson, 2021]. The importance of this information is expected

to grow when the number of observations increases. We further provide results on the

eigenvalues of the preconditioned 3 × 3 block and 2 × 2 block matrices, and show how a

specific choice of preconditioner relates the eigenvalues of the preconditioned systems to

the eigenvalues of the SPD systems in the state and forcing formulations.

In Chapter 8, we conclude the thesis and provide an outlook for future endeavours.



Chapter 2

Data assimilation

In this chapter, we present the strong constraint 4D-Var data assimilation method and

its incremental formulation. Preconditioning approaches for the latter are discussed. The

weak constraint 4D-Var method is presented in relation to the strong constraint formu-

lation. We discuss two formulations of incremental weak constraint 4D-Var and present

large sparse linear systems of equations, whose solution provides the analysis update. The

chapter is concluded with an overview of previously used preconditioning techniques for

the three systems of equations.

2.1 Strong constraint 4D-Var

Consider the evolution of a dynamical system over a time window, which is described

by taking snapshots of the state of the system at discrete times, i.e., using vectors

x0,x1, . . . ,xN , xi ∈ Rn that define the state at times t0 < t1 < · · · < tN . Data as-

similation provides an estimate of this trajectory, called the analysis, by combining a prior

estimate and observations of the system [Kalnay, 2002].

A dynamical model Mi describes the evolution of the system from time ti to ti+1.

When complicated systems are simulated, the model is imperfect and does not describe

all the physical processes that influence the state, includes approximations, and the rep-

resented processes can be poorly resolved [Warner, 2010]. Model discretisation introduces

more errors, because processes that occur on smaller spatial scales than the grid are not

resolved [Coiffier, 2011]. Hence, the trajectory obtained by integrating the model for a long

time may be far from the real state of the system (see, for example, [Kalnay, 2002, Allen

et al., 2006, Bauer et al., 2015]).

Observations of the system at time ti are denoted yi ∈ Rqi . They can come from various

sources, for example, in NWP observations come from weather stations, satellites, ocean

buoys and so on (e.g., [Rabier, 2005]). The nonlinear observation operator Hi : Rn → Rqi

maps the model state xi to the observation space, that is, the following holds

yi = Hi(xti) + εi, (2.1)

where xti is the true state of the dynamical system at time ti and εi is the observation

error. Hi can be complicated, for example, when the observations of the cloud related

5
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reflectances are compared to the state described by meteorological variables like tempera-

ture, wind speed an so on (e.g., [Kostka et al., 2014]). The observation error εi arises due

to the instruments that are used to obtain the measurements and how the observations

are represented in data assimilation system, for example, different scales of the obser-

vations and the model, and error in the observation operator [Andersson and Thépaut,

2010, Janjić et al., 2018]. In NWP, not all of the state is observed.

The prior estimate xb ∈ Rn called the background usually comes from a short range

forecast, i.e., running the numerical model for a short period of time. Hence, errors in xb

contain the model errors. If the short range forecast was initialised by a previous analysis,

then xb includes information from the previously used observations (see, e.g., [Bannister,

2008a] for a general discussion).

The information on the errors of the data is incorporated into the data assimilation

process. The exact errors are unknown and only the statistics of the errors are available.

A common assumption, which we use in this thesis, is that the errors are Gaussian, hence

they can be described using the mean and error covariances. It is assumed that the

errors have zero mean. The error covariance matrices are denoted as follows: B for the

background and Ri for the observation error at time ti. It is assumed that the observation

errors are not correlated in time.

A variational approach to data assimilation requires minimising a cost function to find

the analysis. We present the strong constraint four dimensional variational (4D-Var) cost

function:

J(x0) =
1

2
(x0 − xb)TB−1(x0 − xb) +

1

2

N∑
i=0

(yi −H(xi))
TR−1

i (yi −Hi(xi)), (2.2)

where xi satisfies the strong model constraint

xi =Mi−1(xi−1), (2.3)

i.e., it is assumed that the model errors can be ignored. In this case, the analysis trajectory

is defined by the state at the initial time x0.

Evaluating (2.2) or its gradient requires integrating the nonlinear model Mi, which

can be expensive for large systems, and the minimisation of a nonlinear function is a hard

problem [Nocedal and Wright, 2006]. We discuss a way to approximate the solution in the

following section.

2.1.1 Incremental 4D-Var

[Courtier et al., 1994] proposed approximating the analysis using the incremental approach.

Consider a perturbation δxi to xi. Then the first-order approximations of the nonlinear

model and observation operator are

Mi(xi + δxi) ≈Mi(xi) + Miδxi, (2.4)

Hi(xi + δxi) ≈ Hi(xi) + Hiδxi, (2.5)
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where

δxi+1 = Miδxi. (2.6)

Mi and Hi are the Jacobian matrices of Mi and Hi, respectively, that is they are the

model and observation operators linearised at xi, and they are known as the tangent linear

model and tangent linear observation operator in the data assimilation literature.

The analysis is approximated sequentially with (j + 1)th approximation

x
(j+1)
0 = x

(j)
0 + δx

(j)
0 , (2.7)

where δx
(j)
0 minimises the quadratic cost function

Jδ(δx
(j)
0 ) = (δx

(j)
0 − (xb − x

(j)
0 ))TB−1(δx

(j)
0 − (xb − x

(j)
0 )) (2.8)

+
1

2

N∑
i=0

(H
(j)
i δx

(j)
i − (yi −Hi(x(j)

i )))TR−1
i (H

(j)
i δx

(j)
i − (yi −Hi(x(j)

i ))),

subject to the linear model constraint (2.6). The incremental approach is organised into

inner and outer loops. The inner loop consists of minimising (2.8). The outer loop includes

linearising the model and observation operator at x
(j)
i , evaluating xb−x

(j)
0 and yi−Hi(x(j)

i )

subject to the model constraint (2.3), and updating (2.7). The first outer loop is usually

started by setting x
(0)
0 = xb. This is a Gauss-Newton method [Gratton et al., 2007] and

x
(j)
0 converges to the minimiser of (2.2) under certain conditions (see, for example, Section

10.3 of [Nocedal and Wright, 2006]).

To gain computational savings the linearised model in the inner loop can be run at

a coarser resolution and with simpler representation of some physical processes than the

nonlinear model in the outer loop [Trémolet, 2004]. The resolution of the linearised model

can be increased in the subsequent inner loops when x
(j)
0 is expected to be closer to the

solution [Veerse and Thépaut, 1998], as is done at the ECMWF [ECMWF, 2020]. The

inner loop solver is usually stopped after a fixed number of iterations before convergence is

reached, for example, the China Meteorological Administration allows 50 iterations [Zhang

et al., 2019]. Sufficient conditions for convergence of x
(j)
0 as j increases are presented by

[Gratton et al., 2007]. In operational settings, only a small number of outer loops is

performed, e.g., three outer loops at the ECMWF [ECMWF, 2020].

Because (2.8) is a quadratic cost function, its minimum can be found by solving a large

sparse linear system (e.g., Chapter 5 of [Nocedal and Wright, 2006]). We introduce the
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following notation to define the system

Ĥ(j) =



H
(j)
0

H
(j)
1 M

(j)
0,0

H
(j)
2 M

(j)
0,1

...

H
(j)
N M

(j)
0,N−1


∈ Rq×n, (2.9)

R =diag(R0, . . . ,RN ) ∈ Rq×q, (2.10)

d(j) =


y0 −H0(x

(j)
0 )

y1 −H1(x
(j)
1 )

...

yN −HN (x
(j)
N )

 ∈ Rq, (2.11)

where q = ΣN
i=0qi, R is block diagonal and

M
(j)
i,l = M

(j)
l . . .M

(j)
i (2.12)

denotes the linearised model integration from time ti to tl+1.

The update δx
(j)
0 is the solution of

Aδx(j)
0 = B−1(xb − x

(j)
0 ) + (Ĥ(j))TR−1d(j), (2.13)

where A = B−1 + (Ĥ(j))TR−1Ĥ(j). (2.14)

A ∈ Rn×n is the Hessian of (2.8) and it is symmetric positive definite. In operational

settings, matrices B, R and Ĥ are too large to be formed explicitly and only operators

that return the matrix-vector products with these matrices are available (e.g., [Bannister,

2008b, Fisher et al., 2009]). Hence, iterative methods are used to solve (2.13). The

conjugate gradient (CG) method is often used for such systems [Fisher, 1998]. We further

discuss a technique used to improve the CG performance.

2.1.2 Preconditioning

The idea of preconditioning is to map the linear system

Ax = b, (2.15)

where A ∈ Rm×m and x, b ∈ Rm, to another system which can be solved to a desired

accuracy faster. We denote the preconditioner P ∈ Rm×m. It can be applied in the

following ways (e.g., Chapter 9 of [Saad, 2003]):

• left preconditioning

PAx = Pb, (2.16)

• right preconditioning

APx̃ = b, (2.17)

where Px̃ = x, (2.18)
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• split preconditioning

CTACx̃ = CTb, (2.19)

where P = CCT , (2.20)

Cx̃ = x. (2.21)

P and C ∈ Rm×m are nonsingular. The choice of left, right, or split preconditioning

is problem dependent, as is the construction of P. We detail the desired mathematical

properties of P in Section 3.6.

When solving (2.13), CG convergence depends on the distribution of the eigenvalues

of A with eigenvalues clustered away from zero expected to give fast convergence (see

Section 3.4 for a more in depth discussion). We discuss preconditioning strategies that

are used in data assimilation and aim to improve the CG convergence by changing the

distribution of the eigenvalues in the following sections.

2.1.3 First level preconditioning

The background covariance matrix B is badly conditioned and difficult to estimate [Ban-

nister, 2008a]. A control variable transform (CVT) technique has been used in operational

centres to tackle this [Rabier et al., 2000, Lorenc et al., 2000, Gauthier et al., 2007]. A

change of variable is introduced

δx
(j)
0 = B1/2δw

(j)
0 , (2.22)

where B1/2 is the unique symmetric square root of B. B1/2 is usually obtained by using

knowledge of the physical system and choosing new variables δw0 that are uncorrelated

with each other [Lawless, 2013]. Then the error covariance matrix is the identity. This is

equivalent to first level (split) preconditioning for (2.13) with B = B1/2B1/2 [Haben et al.,

2011b]. The preconditioned system is then

Aprδw(j)
0 = B−1/2(xb − x

(j)
0 ) + B1/2(Ĥ(j))TR−1d(j), (2.23)

where Apr = I + B1/2(Ĥ(j))TR−1Ĥ(j)B1/2 (2.24)

If the dynamical system is not fully observed, the term B1/2(Ĥ(j))TR−1Ĥ(j)B1/2 is sym-

metric positive semi-definite and has zero and positive eigenvalues. Hence, the precon-

ditioned Hessian Apr is symmetric positive definite with smallest eigenvalues equal to

one. It has been shown that first level preconditioning with B = B1/2B1/2 improves the

conditioning (e.g., [Haben et al., 2011a, Haben et al., 2011b, Haben, 2011]).

To increase the potential for parallel calculations when solving (2.23), [Bousserez and

Henze, 2018, Bousserez et al., 2020] introduced a randomised solution algorithm Ran-

domized Incremental Optimal Technique (RIOT). RIOT uses a randomised eigenvalue

decomposition to estimate a few leading eigenvectors of Apr and these are employed to

construct an approximation to δx
(j)
0 . We discuss the randomised methods for matrix

decompositions in more detail in Section 3.3.3. Due to the nature of the randomised al-

gorithms, the quality of the approximation to δx
(j)
0 strongly depends on how rapidly the

largest eigenvalues of Apr decrease.
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2.1.4 Second level preconditioning

Second level preconditioning can be used to further improve the convergence rate when

solving (2.23).

Because the smallest eigenvalues of Apr are equal to one, it is natural to aim to reduce

the largest eigenvalues. Limited memory preconditioners (LMPs) described by [Tshimanga

et al., 2008, Gratton et al., 2011, Tshimanga, 2007] have been used in operational centres

[Moore et al., 2011, Mogensen et al., 2012, Laloyaux et al., 2018]. These preconditioners

are constructed with estimates of the largest eigenvalues and eigenvectors (eigenpairs) of

Apr and aim to reduce the largest eigenvalues of the preconditioned system (we discuss

LMPs in Section 3.6.1).

[Tshimanga et al., 2008] detailed a computationally cheap way to obtain the eigenpair

estimates. A Lanczos and CG connection can be used to obtain estimates of the extreme

eigenvalues and eigenvectors of the coefficient matrix after the system is solved using

CG (see Section 4.4.4 for a detailed description). Because in data assimilation we solve

a sequence of systems with coefficient matrices (Apr)(1), (Apr)(2), (Apr)(3), . . . , the inner

loops can be performed in the following way:

1. Solve unpreconditioned system with the coefficient matrix (Apr)(1);

2. Use Lanczos and CG connection to obtain estimates of a few eigenpairs of (Apr)(1);

3. Use these eigenpairs to construct an LMP in a factored form P(1) = T (1)T (1)T ;

4. Solve the preconditioned system with the preconditioned coefficient matrix

T (1)T (Apr)(2)T (1);

5. Use Lanczos and CG connection to obtain estimates of a few eigenpairs of

T (1)T (Apr)(2)T (1);

6. Use these eigenpairs to construct an LMP P(2) = T (2)T (2)T ;

7. Solve the preconditioned system with the preconditioned coefficient matrix

T (2)TT (1)T (Apr)(2)T (1)T (2);

8. Continue for subsequent inner loops.

Because the Lanczos and CG connection returns eigenpairs of the preconditioned coeffi-

cient matrix, e.g., T (1)(Apr)(2)T (1), the preconditioners are used in all subsequent inner

loops. Hence, the preconditioner becomes more expensive to apply. Preconditioning for

the first system with (Apr)(1) is not defined.

2.2 Weak constraint 4D-Var

In the weak constraint 4D-Var data assimilation method the perfect model assumption

is rejected and hence model errors are taken into account (see, for example, [Trémolet,

2006, Trémolet, 2007]). Various formulations of the weak constraint 4D-Var cost function
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have been described by [Trémolet, 2006]. We consider two of them in the thesis. The

model is a weak constraint, i.e.,

xi =Mi−1(xi−1) + ηi, (2.25)

where ηi ∈ Rn is random Gaussian model error with zero mean and covariance matrix

Qi ∈ Rn×n. In this thesis, we assume that the model error is not correlated in time.

The forcing formulation minimises a cost function that estimates x0 and η1,η2, . . . ,ηN :

Jf (x0,η1, . . . ,ηN ) =
1

2
(x0 − xb)TB−1(x0 − xb) +

1

2

N∑
i=0

(yi −Hi(xi))TR−1
i (yi −Hi(xi))

(2.26)

+
1

2

N∑
i=1

ηTi Q−1
i ηi,

where xi satisfies the weak model constraint (2.25) (e.g., [Trémolet, 2006]). Obtaining

the full trajectory x0,x1, . . . ,xN requires integrating the model over the time window

sequentially.

Alternatively, the cost function can operate on the full trajectory x0,x1, . . . ,xN . This

gives the cost function known as a state formulation (e.g., [Trémolet, 2006]):

Js(x0,x1, . . . ,xN ) =
1

2
(x0 − xb)TB−1(x0 − xb) +

1

2

N∑
i=0

(yi −Hi(xi))TR−1
i (yi −Hi(xi))

(2.27)

+
1

2

N−1∑
i=0

(xi+1 −Mi(xi))
TQ−1

i+1(xi+1 −Mi(xi)).

In both forcing and state formulations, the solution is now N + 1 times larger than in

the strong constraint case. This requires a lot of computational resources and makes the

efficiency of the solution methods even more important and we focus on this in the thesis.

The size of the problem is reduced in a variant of (2.25), where the model error is assumed

to be constant; this is used to correct the model bias in a part of stratosphere at ECMWF

[Leutbecher et al., 2017, Laloyaux et al., 2020b], but it does not account for the random

error. Estimating Qi is another challenging area of research, because it is problematic to

separate the observation and model error [Laloyaux et al., 2020a].

2.2.1 Incremental weak constraint 4D-Var

The incremental formulation in Section 2.1.1 can be extended for the weak constraint case.

We introduce the following vectors (following [Gratton et al., 2018b]).

p(j) =


x

(j)
0

η
(j)
1
...

η
(j)
N

 , δp(j) =


δx

(j)
0

δη
(j)
1
...

δη
(j)
N

 ,b(j) =


xb − x

(j)
0

−η(j)
1

...

−η(j)
N

 ,
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x(j) =


x

(j)
0

x
(j)
1
...

x
(j)
N

 , δx(j) =


δx

(j)
0

δx
(j)
1
...

δx
(j)
N

 ,

where p(j), δp(j),b(j),x(j), δx(j) ∈ Rn(N+1). We define matrices

L(j) =



I

−M
(j)
0 I

−M
(j)
1 I

. . .
. . .

−M
(j)
N−1 I


∈ Rn(N+1)×n(N+1), (2.28)

(L−1)(j) =



I

M
(j)
0,0 I

M
(j)
0,1 M

(j)
1,1 I

¯...
...

. . .
. . .

M
(j)
0,N−1 M

(j)
1,N−1 · · · M

(j)
N−1,N−1 I


∈ Rn(N+1)×n(N+1), (2.29)

H(j) = diag(H
(j)
0 , . . . ,H

(j)
N ) ∈ Rq×n(N+1), (2.30)

D = diag(B,Q1, . . . ,QN ) ∈ Rn(N+1)×n(N+1), (2.31)

where M
(j)
i,l is as in (2.12) and matrices H(j) and D are block diagonal.

For the forcing formulation, we update

p(j+1) = p(j) + δp(j), (2.32)

where δp(j) is found as the minimiser of

Jδf (δp(j)) =
1

2
||δp(j) − b(j)||2D−1 +

1

2
||H(j)(L−1)(j)δp(j) − d(j)||2R−1 , (2.33)

where ‖a‖2A = aTAa for an SPD A, d(j) and R are as in (2.11) and (2.10), respectively.

For the state formulation, the update is

x(j+1) = x(j) + δx(j), (2.34)

where δx(j) minimises

Jδs (δx(j)) =
1

2
||L(j)δx(j) − b(j)||2D−1 +

1

2
||H(j)δx(j) − d(j)||2R−1 . (2.35)

We omit the superscript (j) in the following sections.

The differences in the sensitivities of both forcing and state formulations and their

conditioning has been studied in a thesis by [El-Said, 2015]. As in the strong constraint

formulation, (2.33) and (2.35) can be minimised by solving linear systems of equations. We

introduce three formulations and discuss their different potential for parallel computations

in the following section.
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2.2.2 Linear systems

The update δp in the forcing formulation is also a solution of the following system

Afδp = D−1b(j) + L−THTR−1d, (2.36)

where Af = (D−1 + L−THTR−1HL−1) ∈ Rn(N+1)×n(N+1). (2.37)

In the state formulation, the following system arises

Asδx = LTD−1b + HTR−1d, (2.38)

where As = (LTD−1L + HTR−1H) ∈ Rn(N+1)×n(N+1), (2.39)

Af and As are the Hessians of (2.33) and (2.35), respectively. These coefficient matrices

are symmetric positive definite and CG is the method of choice as in the strong constraint

case. The most computationally expensive part of CG are matrix-vector products because

of the tangent linear model Mi and its adjoint MT
i in L and LT , respectively.

Notice that Af includes L−1 and As includes L. This defines the different possibilities

for parallel in time computations as described by [Fisher and Gürol, 2017], i.e., running

the tangent linear model linearised at different times in parallel. Matrix-vector products

with L−1 are essentially sequential. Let z = (zT0 , z
T
1 , . . . , z

T
N )T , zi ∈ Rn, then

L−1z =



z0

M0z0 + z1

M1(M0z0 + z1) + z2

...

MN−1(MN−2 . . .M0z0 + MN−2 . . .M1z1 + · · ·+ zN−1) + zN


, (2.40)

thus the tangent linear model has to be integrated sequentially. Contrarily, matrix-vector

products with L can be parallelised in the time dimension, because

Lz =



z0

z1 −M0z0

z2 −M1z1

...

zN −MN−1zN−1


. (2.41)

Hence, the state formulation (2.38) has more potential for parallel in time computations

compared to the forcing formulation (2.36). Even though the tangent linear model can

be run in parallel in (2.38), the adjoint model in LT can only be applied after D−1Lz is

computed.

Motivated by a lack of suitable preconditioners for (2.38), [Fisher and Gürol, 2017]

introduced a saddle point formulation to obtain δx. In this formulation the tangent

linear and adjoint models in L and LT , respectively, can be run at the same time. Let

λ ∈ R(N+1)n and µ ∈ Rq be Lagrange multipliers that satisfy equations

Dλ = (b− Lδx) ∈ R(N+1)n, (2.42)

Rµ = (d−Hδx) ∈ Rq. (2.43)
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Then the optimality constraint, where the gradient of (2.35) with respect to δx is equal

to the zero vector, gives

0 =LTD−1(Lδx− b) + HTR−1(Hδx− d) (2.44)

=− (LTλ+ HTµ). (2.45)

Taking (2.42), (2.43) and (2.45) we obtain the following system

A3


λ

µ

δx

 =


b

d

0

 , (2.46)

where A3 =


D 0 L

0 R H

LT HT 0

 . (2.47)

A3 ∈ R(2(N+1)n+q)×(2(N+1)n+q) is a sparse symmetric indefinite saddle point matrix of 3×3

block form. The minimal residual method (MINRES) of [Paige and Saunders, 1975] is the

iterative solver of choice. System (2.46) is more than twice as large as the positive definite

systems (2.36) and (2.38). However, matrix-vector products with every block in (2.46) can

be parallelised, hence this formulation may be preferred if enough computational resources

are available and parallel computations are essential.

2.2.3 Preconditioning

Effective preconditioning is essential in order to use the weak constraint 4D-Var in opera-

tional settings; otherwise a sufficient quality solution may not be obtained in the given time

because of the slow convergence. The unique features of each of the three systems (2.36),

(2.38) and (2.46) have to be taken into account when designing suitable preconditioners.

We now examine the previous efforts and point to our work.

Forcing formulation

The first level preconditioning idea in Section 2.1.3 can be extended for the forcing for-

mulation, so that the preconditioned coefficient matrix is equal to the sum of an identity

and a low-rank matrix. Let D = D1/2D1/2, where D1/2 is the unique symmetric square

root, and D1/2δp̃ = δp. The increment δp̃ is obtained by solving

Aprf δp̃ = D−1/2b + D1/2L−THTR−1d, (2.48)

where Aprf = I + D1/2L−THTR−1HL−1D1/2. (2.49)

Aprf is symmetric positive definite and its smallest eigenvalues are equal to one. It can

be preconditioned using the same second level preconditioners as in the strong constraint

case, discussed in Section 2.1.4. In this thesis, we explore a new way to construct LMPs

for the forcing formulation (Chapter 4).
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State formulation

Extending the first level preconditioning idea for the state formulation requires split pre-

conditioning (2.38) with P = L−1D1/2(L−1D1/2)T . Then the state formulation with first

level preconditioning is the same as (2.48), i.e., we obtain the forcing formulation with

first level preconditioning. This is not desirable if potential for time-parallel computations

is important.

[Fisher and Gürol, 2017] suggested using approximation L̃−1 of L−1 in the first level

preconditioning for the state formulation, that is, solving the system

Aprs δx̃ = D1/2L̃−T (LTD−1b + HTR−1d), (2.50)

where Aprs = D1/2L̃−T (LTD−1L + HTR−1H)L̃−1D1/2, (2.51)

L̃−1D1/2δx̃ = δx. (2.52)

A suitable L̃−1 was not found. [Gratton et al., 2018b] obtained bounds for the eigenvalues

of Aprs when the linearised model Mi in L̃−1 is approximated by zero and identity matrices.

These bounds indicate that a good approximation of the model may be needed for the

preconditioner to be effective. Note that this preconditioner and analysis ignores the

observation term HTR−1H.

We propose a new way to approximate L−1 in the first level preconditioner and retain

the potential for parallel in time computations in Chapter 6. We also observe that the

first level preconditioning is not always useful even if the exact L−1 is used.

Saddle point formulation

The computationally most expensive blocks of the saddle point system (2.46) are the off-

diagonal blocks L and LT . This is unusual; in many other applications, in which saddle

point systems arise, matrix-vector products with the off-diagonal blocks are cheap (see,

e.g., [Benzi et al., 2005]). Hence, many preconditioners described in numerical linear

algebra literature are not suitable for (2.46) because they include the exact off-diagonal

blocks.

Variants of inexact constraint [Bergamaschi et al., 2007, Bergamaschi et al., 2011],

block diagonal and block triangular [Benzi and Wathen, 2008] preconditioners for (2.46)

have been considered by [Fisher and Gürol, 2017, Gratton et al., 2018a, Fisher et al.,
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2018, Freitag and Green, 2018, Tabeart and Pearson, 2021]:

(Inexact constraint) PM =


D 0 L̃

0 R 0

L̃T 0 0

 , (2.53)

(Block diagonal) PB =


D 0 0

0 R 0

0 0 S̃

 , (2.54)

(Block triangular) PT =


D 0 L̃

0 R H̃

0 0 S̃

 . (2.55)

Inverses of these preconditioners are used when solving the system (2.46):

P−1
M =


0 0 L̃−T

0 R−1 0

L̃−1 0 −L̃−1DL̃−T

 , (2.56)

P−1
B =


D−1 0 0

0 R−1 0

0 0 S̃−1

 , (2.57)

P−1
T =


D−1 0 −DL̃S̃−1

0 R−1 −RH̃S̃−1

0 0 S̃−1

 . (2.58)

S̃−1 is an approximation to the inverse of negative Schur complement of the (1,1) block(
D 0

0 R

)
. The exact S−1 is equal to the inverse Hessian of the state formulation A−1

s .

With a proper choice of S̃−1, MINRES can be used to solve (2.46) preconditioned with the

block diagonal P−1
B . The inexact constraint and block triangular preconditioners are not

symmetric and thus they cannot be used with MINRES. The generalized minimal residual

method (GMRES) of [Saad and Schultz, 1986] is the method of choice then.

When generating the block diagonal preconditioner, the observation term in S−1 was

ignored by setting S̃−1 = L̃−1DL̃−T , where L̃−1 is an approximation to L−1 [Fisher and

Gürol, 2017, Gratton et al., 2018a, Freitag and Green, 2018, Tabeart and Pearson, 2021].

L̃−1 was obtained by setting the tangent linear model Mi to zero or identity matrices

[Fisher and Gürol, 2017, Gratton et al., 2018a, Freitag and Green, 2018]. This may be

unrealistic when the state of the dynamical system changes fast. [Tabeart and Pearson,

2021] proposed approximating L−1 by setting Mi to zero at every kth time and using

exact Mi at other times; larger k values increases the amount of information the precon-

ditioner uses but requires more time-sequential computations. They also approximated

non-diagonal R−1 in the preconditioners. This preconditioner accelerates the convergence

more than when the Mi is set to a zero matrix.

[Freitag and Green, 2018] showed that the preconditioners made the problem harder to

solve compared to the unpreconditioned case when using a low-rank GMRES solver, where
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a low-rank matrix is obtained to approximate δx. [Gratton et al., 2018a] concluded that

PM outperforms other preconditioners over multiple inner loops, but it was not compared

to solving the unpreconditioned system.

When solving the positive definite systems (2.36) and (2.38), the decrease of the

quadratic cost function at every iteration of CG is monotonic (at least in exact arith-

metic; see Section 3.4). This is not the case when solving the saddle point problem with

GMRES or MINRES [Gratton et al., 2018a], i.e., the quadratic cost function value can

increase during the solution process. This is not desirable, because in operational appli-

cations it is not possible to run the iterative process until convergence and the solver is

terminated after a fixed number of iterations. [Gratton et al., 2018a] suggested a Safe-

guarded SADDLE solution algorithm, where GMRES termination criterion depends on

reducing the quadratic cost function value and is checked at every jth iteration. Choice of

j depends on finding a balance between frequent costly evaluations of the quadratic cost

function and running more than necessary iterations of GMRES. For both Safeguarded

SADDLE and regular GMRES it is desirable that the preconditioner helps to reduce the

quadratic cost function value in the beginning of the iterative process. We explore a new

way to approximate the full S−1 in the block diagonal preconditioner in Chapter 7.

2.3 Summary

In this chapter, we defined the strong and weak constraint 4D-Var data assimilation meth-

ods and their incremental formulations. The state and forcing formulations of the weak

constraint problem were presented. We discussed linear systems of equations that arise

in the incremental formulations and how the first level preconditioning (control variable

transform), which is used in the strong constraint formulation, can be extended to precon-

dition the weak constraint positive definite problems. The second level preconditioning

using the limited memory preconditioners (LMPs) in the strong constraint case was re-

viewed. We considered the inexact constrain, block diagonal, and block triangular precon-

ditioners for the saddle point system and how they have been constructed in the previous

work. We now present mathematical ideas and results used in this thesis.



Chapter 3

Mathematical background

In this chapter, we present mathematical theory and ideas that are used in the follow-

ing chapters. Specific matrices, their features and decompositions, and vector and matrix

norms are described in Section 3.1. Section 3.2 contains results on eigenvalues and singular

values. Methods for low-rank eigenvalue and singular value approximations are discussed

in Section 3.3. We examine the conjugate gradient and the minimal residual methods

and their convergence in Sections 3.4 and 3.5, respectively. The theory of preconditioning

including limited memory, and block diagonal Schur complement preconditioners are con-

sidered in Section 3.6. Throughout the chapter we provide references to standard texts

where the theorems can be found.

3.1 Matrix theory

In this thesis, we consider linear systems with symmetric coefficient matrices. We start

the section by defining a symmetric matrix and consider its special cases.

Definition 3.1. A matrix A ∈ Rn×n, A = [aij ] is symmetric if aij = aji for i, j ∈
{1, 2, . . . , n}, that is, if A = AT .

Definition 3.2. A symmetric matrix A ∈ Rn×n is positive definite (SPD) if xTAx > 0

for all nonzero vectors x ∈ Rn.

Definition 3.3. A symmetric matrix A ∈ Rn×n is positive semi-definite (SPSD) if

xTAx ≥ 0 for all vectors x ∈ Rn.

Definition 3.4. A symmetric matrix A ∈ Rn×n is indefinite if there exist vectors x ∈ Rn

and y ∈ Rn such that xTAx > 0 and yTAy < 0.

Theorem 3.5 (Section 9.12.1 of [Lütkepohl, 1996]). If A and B are n × n symmetric

positive definite and symmetric positive semi-definite, respectively, then A+B is symmetric

positive definite.

Theorem 3.5 explains why the coefficient matrices Af and As in (2.37) and (2.39) are

SPD. The singular value and eigenvalue decompositions are presented next. These decom-

positions are explored to understand the behaviour of iterative methods and accelerate

their convergence.

18
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Theorem 3.6 (Theorem 2.4.1 of [Golub and Van Loan, 2013]). Let A be a real m × n
matrix, then there exist orthogonal matrices U (m×m) and V (n× n) such that

UTAV = Σ ∈ Rm×n,

where Σ has nonzero entries on the diagonal only, that is, Σ = diag(σ1, σ2, . . . , σp),

p = min{m,n}, and σ1 ≥ σ2 ≥ · · · ≥ σp ≥ 0.

σi is the singular value of A and the columns ui and vi of U and V are called the ith

left and right singular vectors, respectively.

Theorem 3.7 (Theorem 8.1.1 of [Golub and Van Loan, 2013]). Let A be a symmetric

n× n matrix, then there exists a real orthogonal n× n matrix V such that

VTAV = Λ = diag(λ1(A), λ2(A), . . . , λn(A)).

λi(A) is the eigenvalue of A and the column vi of V is the corresponding eigenvector.

We order eigenvalues of A in the following way

λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A). (3.1)

When we want to emphasise the largest and smallest eigenvalues, we write λmax(A) and

λmin(A). Eigenvalues λi(A) are the roots of a characteristic polynomial pA(λ) = det(λI−
A). There is the following relationship between the eigenvalues of A and A−1.

Theorem 3.8 (Section 5.2.1 of [Lütkepohl, 1996]). Let λ be an eigenvalue of a nonsin-

gular A with associated eigenvector v. Then λ−1 is an eigenvalue of A−1 with associated

eigenvector v.

Hence, if λmax(A) and λmin(A) are the largest and smallest eigenvalues of A, re-

spectively, then λmax(A−1) = 1/λmin(A) and λmin(A−1) = 1/λmax(A). The same rela-

tionship holds for the singular values of a nonsingular A, because A−1 = (UΣVT )−1 =

VΣ−1UT . Vector and matrix norms are defined in the following.

Definition 3.9 (Section 2.2.1 of [Golub and Van Loan, 2013]). A vector norm on Rn is

a function f : Rn → R that satisfies the following properties:

f(x) ≥ 0, x ∈ Rn (f(x) = 0 ⇐⇒ x = 0) (3.2)

f(x + y) ≤ f(x) + f(y), x,y ∈ Rn (3.3)

f(αx) = |α|f(x), α ∈ R,x ∈ Rn. (3.4)

An often used class of vector norms is the p-norm.

Definition 3.10. Let x = (x1, x2, . . . , xn)T and p ≥ 1. Then the p-norm of x is

‖x‖p = (|x1|p + |x2|p + · · ·+ |xn|p)1/p.

In this thesis, we use the 2-norm. Matrix p-norms are derived using the vector p-norms.
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Definition 3.11. The p-norm of matrix A is

‖A‖p = sup
x 6=0

‖Ax‖p
‖x‖p

.

As for the vectors, we consider the 2-norm for the matrices. It is known that ‖A‖2 =

σmax, where σmax is the largest singular value of A. For a nonsingular A, ‖A−1‖2 =

1/σmin, where σmin is the smallest singular value of A. If A is SPD, then σmax coincides

with the largest eigenvalue of A (we show this in Theorem 3.36). This fact is useful when

considering the condition number of a matrix.

Definition 3.12. Let A be a nonsingular n×n matrix. Then its condition number relative

to the norm ‖ · ‖ is defined as

κ(A) = ‖A‖‖A−1‖. (3.5)

The condition number of A depicts how sensitive the solution to Ax = b with b ∈ Rn

is to small perturbations to A and b. If κ(A) is large, then A is said to be ill-conditioned

and small changes in A and b may lead to very different solutions (Lecture 12 of [Trefethen

and Bau, III, 1997]).

A 2-norm condition number is also used to describe the worst case convergence be-

haviour for the iterative solution methods, such as conjugate gradient method (see Sec-

tion 3.4). In this case, κ(A) = ‖A‖2‖A−1‖2 = σmax/σmin. If A is SPD, then

κ(A) = λmax(A)/λmin(A). (3.6)

We present ideas of range and rank of a matrix. These are used in describing the

matrix approximation algorithms.

Definition 3.13. The range of a matrix A ∈ Rn×m is defined as a subspace containing

all possible combinations of its columns, that is,

range(A) = {Ax | x ∈ Cm} = span{a1,a2, . . . ,am}, (3.7)

where ai is the ith column of A.

Definition 3.14. The rank rank(A) of a matrix A is the maximum number of linearly

independent rows or columns of A.

Theorem 3.15 (Section 4.3.3 of [Lütkepohl, 1996]). Let A be an m× n and B an n× k
matrices. Then

rank(AB) ≤ min{rank(A), rank(B)}.

Theorem 3.16 (Theorem 1.3 of [Trefethen and Bau, III, 1997]). Let A be an n×n matrix.

A is nonsingular if and only if rank(A) = n.

In this work we consider some low-rank matrices, where an n×m matrix A is low-rank

if rank(A)� min{m,n}. Notice that by Theorem 3.15 a product of a nonsingular square

matrix and a low-rank matrix is low-rank and hence singular by Theorem 3.16. This is
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taken into account when a low-rank matrix approximation is used to approximate L−1

defined in (2.28) (see Chapter 6).

We now introduce block matrices and theorems regarding their inverses and deter-

minants. A Schur complement in a block matrix is presented as well. It defines the

relationship between the saddle point matrices in the incremental weak constraint 4D-Var

and the SPD formulation As in (2.39) (Chapter 5), and arises in preconditioning the saddle

point systems (Chapter 7).

Definition 3.17. An n×m matrix A is called a block matrix if it is written in terms of

submatrices, that is

A =


A11 A12 . . . A1k

A21 A22 . . . A2k

...
...

. . .
...

Al1 Al2 . . . Alk

 ,

where Aij is an ni ×mi submatrix and
∑l

i=1 ni = n and
∑k

j=1mi = m.

Theorem 3.18 (Section 3.5.3 of [Lütkepohl, 1996]). If ni×ni matrices Ai are nonsingular

for i ∈ {1, 2, . . . , k}, then
A1 0 . . . 0

0 A2 . . . 0
...

...
. . .

...

0 0 . . . Ak


−1

=


A−1

1 0 . . . 0

0 A−1
2 . . . 0

...
...

. . .
...

0 0 . . . A−1
k

 .

Theorem 3.19 (Theorem 3 of [Silvester, 2000]). If F =

(
A B

C D

)
, A,B,C,D are n×n

matrices, and CD = DC, then

det(F) = det(AD−BC).

Theorem 3.20 (Section 9.11.2 of [Lütkepohl, 1996]). Let A and D be square matrices

and F =

(
A B

C D

)
. If A is nonsingular, then

det(F) = det(A)det(D−CA−1B). (3.8)

Definition 3.21. Let A be a nonsingular n× n matrix, B an n×m, C an m× n, D an

m ×m matrix and F =

(
A B

C D

)
. Then the Schur complement of A in F is the m ×m

matrix S = D−CA−1B.

In data assimilation, SPD covariance matrices that describe the relationship between

the errors in different variables are used. A covariance matrix F ∈ Rn×n can be written as

F = ΣCΣ, (3.9)
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where Σ ∈ Rn×n is a diagonal matrix with the error standard deviation on the diagonal,

and C ∈ Rn×n is a correlation matrix. In our numerical experiments, we assume that the

standard deviation is the same for all the variables and denote it σ. Then

F = σ2C. (3.10)

Two types of correlation matrices C, which can be used for equally spaced variables on a

circle, are employed in this thesis. The second-order auto-regressive (SOAR) correlation

matrix is based on a SOAR correlation function [Daley, 1993], and it has been used in the

UK Met Office [Lorenc, 1992, Lorenc et al., 2000]. [Haben, 2011] describes how to obtain

the covariance matrix from the correlation function.

Definition 3.22. Let s1, s2, . . . , sn be equally spaced grid points on a circle with θi,j de-

noting the angle between si and sj, and a be the radius of the circle. Then the (i, j)th

element of the second-order auto-regressive (SOAR) correlation matrix CS ∈ Rn×n is

CS(i, j) =

(
1 +
|2a sin(θi,j/2)|

L

)
exp

(
−|2a sin(θi,j/2)|

L

)
, (3.11)

where L > 0 is the correlation length scale.

A Laplacian correlation matrix CL ∈ Rn×n is defined using its inverse. It has been

shown that CL is SPD if n > 5 (Theorem 5.2.1 of [Haben, 2011]).

Definition 3.23. Let s1, s2, . . . , sn be equally spaced grid points on a circle with the great

circle distance ∆s between adjacent grid points. Then the inverse of the Laplacian corre-

lation matrix CL ∈ Rn×n is

C−1
L = γ−1

(
I +

L4

2∆s4
(Lss)

2

)
, (3.12)

where L > 0 is the correlation length scale, γ > 0 is a normalisation constant that ensures

that the largest entry of CL is equal to one, and Lss is a second derivative matrix given

by

Lss =



−2 1 0 0 . . . 0 1

1 −2 1 0 . . . 0 0
...

. . .
. . .

. . .
...

0
. . .

. . .
. . . 1

1 0 . . . 1 −2


. (3.13)

In the following chapters, we consider randomised methods that use random Gaussian

matrices, which we define now.

Definition 3.24. Matrix G ∈ Rm×n is Gaussian if its entries are independent standard

normal random variables with zero mean and variance equal to one.
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3.2 Results on eigenvalues and singular values

Chapters 5 and 7 contain results bounding the eigenvalues of symmetric matrices, including

Af ,As and A3. They are obtained using well-known theorems, which we discuss in this

section. We refer to an eigenvalue λ of A and the corresponding eigenvector v as an

eigenpair (λ,v). Theorems that consider the similarity A = FBF−1 and congruence

A = FBFT transformations are presented next.

Theorem 3.25 (Fact 1.1 of [Parlett, 1998]). Let A, B, and F be n × n matrices, such

that

A = FBF−1. (3.14)

If (λ,v) is an eigenpair of B, then (λ,Fv) is an eigenpair of A. A and B are said to be

similar.

Theorem 3.26 (Sylvester’s inertia theorem, Fact 1.6 of [Parlett, 1998] ). Each n × n

matrix A is congruent to a diagonal matrix B = diag(Iπ,−Iµ,0ζ), that is, there exists an

n× n matrix F such that

A = FBFT , (3.15)

where Iπ and Iµ are the π × π and µ× µ identity matrices, respectively, and 0ζ is a ζ × ζ
zero matrix. The number triple (π, µ, ζ) is called inertia of A and depends only on A;

π, µ, ζ are the number of positive, negative, and zero eigenvalues of A.

The SPD, SPSD, and indefinite matrices defined in the previous section can be char-

acterised using their eigenvalues.

Theorem 3.27 (Section 5.2 of [Lütkepohl, 1996]). A symmetric matrix A ∈ Rn×n is SPD

if and only if all its eigenvalues are real and positive.

Theorem 3.28 (Section 5.2 of [Lütkepohl, 1996]). A symmetric matrix A ∈ Rn×n is

SPSD if and only if all its eigenvalues are real and nonnegative.

Theorem 3.29. A symmetric matrix A ∈ Rn×n is indefinite if and only if it has both

positive and negative eigenvalues.

In the following chapters, we consider block diagonal error covariance matrices D and R

defined in (2.31) and (2.10). Their eigenvalues can be obtained by finding the eigenvalues

of the diagonal blocks as shown in the following theorem.

Theorem 3.30. Let A be an n × n block diagonal matrix, Ai be nonsingular ni × ni

matrices for i ∈ {1, 2, . . . , k}, and

A =


A1 0 . . . 0

0 A2 . . . 0
...

...
. . .

...

0 0 . . . Ak

 .

Then the eigenvalues of A are the eigenvalues of Ai for i ∈ {1, 2, . . . , k}.
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Proof. The result for A =

(
A1 0

0 B1

)
can be found in Section 9.11.1 of [Lütkepohl,

1996]. The result for the general case follows by considering B1 = diag(A2,B2) with

B2 = diag(A3,B3), . . . , Bk−2 = diag(Ak−1,Ak).

We further present theorems that consider eigenvalues of a sum of matrices, and show

that eigenvalues of a matrix and its principal submatrix exhibit interlacing. These are

useful when considering the change of the eigenvalues of Af , As, and A3 when new obser-

vations of the dynamical system are introduced (Chapters 5 and 7).

Theorem 3.31 (Section 8.1.2 of [Golub and Van Loan, 2013]). If A and C are n × n
symmetric matrices, then

λk(A) + λmin(C) ≤ λk(A + C) ≤ λk(A) + λmax(C), k ∈ {1, 2, . . . , n}.

Theorem 3.32 (Cauchy’s Interlace Theorem, Theorem 4.2 in Chapter 4 of

[Stewart and Sun, 1990]). If A is an n×n symmetric matrix and C is a (n− 1)× (n− 1)

principal submatrix of A (a matrix obtained by eliminating an ith row and an ith column

of A), then

λn(A) ≤ λn−1(C) ≤ λn−1(A) ≤ · · · ≤ λ2(A) ≤ λ1(C) ≤ λ1(A).

The Rayleigh quotient is used in approximating eigenvalues and we employ it in de-

riving bounds for the eigenvalues of symmetric matrices. The definition of the Rayleigh

quotient follows.

Definition 3.33. Let A be a symmetric n × n matrix. The Rayleigh quotient for A is

defined as

ρ(u; A) =
u∗Au

u∗u
, (3.16)

where u ∈ Cn is nonzero and u∗ is its conjugate transpose.

The Rayleigh quotient is bounded by the smallest and largest eigenvalues of A.

Theorem 3.34 (Fact 1.8 of [Parlett, 1998]). Let A be a symmetric n × n matrix. Then

the Rayleigh quotient ρ(u; A) ranges over the interval [λmin(A), λmax(A)].

If A is not a square matrix, a similar bound can be obtained using A∗A and the

smallest singular value of A.

Theorem 3.35 (Section 5.5 of [Lütkepohl, 1996]). Let A be an m×n matrix with m ≥ n
and σmin(A) be its smallest singular value. Then

σmin(A) = min
u 6=0

(
u∗A∗Au

u∗u

)1/2

, (3.17)

where u ∈ Cn.



3.2. RESULTS ON EIGENVALUES AND SINGULAR VALUES 25

Hence, the following holds

σmin(A) ≤ ‖Au‖2
‖u‖2

. (3.18)

We now consider the relationship between the singular values of a matrix and eigen-

values of some related matrices. These are used to bound eigenvalues of the coefficient

matrices in Chapter 5.

Theorem 3.36 (Corollary 4.4.4 of [Horn and Johnson, 2012]). If A is a symmetric n×n
matrix, then there is an orthogonal n× n matrix Usuch that

A = UΣUT , (3.19)

where Σ is a nonnegative diagonal n×n matrix with singular values of A on the diagonal.

It thus follows from Theorems 3.7 and 3.36 that for a symmetric matrix the singular

value and the eigenvalue decompositions coincide up to the sign of the eigenvalues. The

following two theorems consider the relationships between the two decompositions when

A may not be symmetric.

Theorem 3.37 (Jordan-Wielandt Theorem, Theorem 4.2 in Chapter 1 of

[Stewart and Sun, 1990]). Let UH be the conjugate transpose of U and

UHAV =

(
Σ 0

0 0

)
, Σ = diag(σ1, · · · , σn)

be the singular value decomposition of A ∈ Cm×n, m ≥ n. Then the eigenvalues of the

matrix

C =

(
0 A

AH 0

)

are ±σ1, · · · ,±σn, corresponding to the eigenvectors

(
ui

±vi

)
, i = 1, · · · , n, where ui and

vi are the ith columns of U and V, respectively. C also has m− n zero eigenvalues with

eigenvectors

(
ui

0

)
, i = n+ 1, · · · ,m.

Theorem 3.38 (Theorem 5.4 of [Trefethen and Bau, III, 1997]). The nonzero singular

values of an m × n matrix A are the square roots of the nonzero eigenvalues of ATA or

AAT ; ATA and AAT have the same nonzero eigenvalues.

The following result is used to bound the eigenvalues of the saddle point matrix in the

3× 3 block formulation (2.46) (Chapter 5).

Theorem 3.39 (Lemma 2.1 of [Rusten and Winther, 1992]). Consider a saddle point

matrix

A =

(
M B

BT 0

)
, (3.20)
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where M ∈ Rn×n is SPD, B ∈ Rn×m with m ≤ n and rank(B) = m. Let µmin and µmax

be the smallest and largest eigenvalues of M and σmin and σmax be the smallest nonzero

and largest singular values of B. Then the negative eigenvalues of A lie in the interval

I− =

[
1

2

(
µmin −

√
µ2
min + 4σ2

max

)
,
1

2

(
µmax −

√
µ2
max + 4σ2

min

)]
(3.21)

and the positive eigenvalues of A lie in the interval

I+ =

[
µmin,

1

2

(
µmax +

√
µ2
max + 4σ2

max

)]
. (3.22)

3.3 Low-rank matrix approximations

The singular value and eigenvalue decompositions can be used to accelerate the solution of

linear systems of equations. For large problems, however, computing the full decomposi-

tion may take too much time and memory issues can arise, because the eigenvectors are in

general not sparse even if the matrix is sparse (Chapter 4 of [Stewart, 2001]). Hence, only

a subset of the singular vectors and values or eigenpairs are found and low-rank matrix

approximations are used. Most algorithms for this consist of two stages:

1. Construct a subspace that contains approximations to the singular vectors or eigen-

vectors.

2. Compute the approximations to the singular vectors or eigenvectors from the sub-

space in stage 1.

The two stages can be repeated until the approximation reaches the desired accuracy, and

the approximations in the second stage can be used to improve the subspace in the first

stage.

3.3.1 Low-rank singular value decomposition

The appeal of the low-rank singular value decomposition (SVD) is explained by the fol-

lowing theorem showing that the SVD of A contains the most energy of A among all

low-rank approximations, where the energy is measured in 2-norm.

Theorem 3.40 (Eckart-Young Theorem). Let A be an m × n matrix with σ1 ≥ σ2 ≥
· · · ≥ σr > 0 nonzero singular values, and ui and vi, i ∈ {1, 2, . . . , r} as its left and right

singular vectors, respectively. For any k with 0 ≤ k ≤ r, define

Ak =

k∑
i=1

σiuiv
T
i . (3.23)

Then

‖A−Ak‖2 = inf
X∈Cm×n

rank(X)≤k

‖A−X‖2 = σk+1, (3.24)

where σk+1 = 0 if k = min{m,n}.
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Algorithms for computing the SVD use results in Theorems 3.37 or 3.38 and the

problem is reduced to computing an eigenvalue decomposition [Berry et al., 2005]. In

this thesis, we use the subspace iteration method for computing the SVD (Chapter 6).

This method for the eigenvalue decomposition (EVD) is presented in Algorithm 3 in

Section 3.3.2.

For a symmetric matrix, the SVD coincides with EVD up to the signs of the singular

values. It is thus natural to consider the low-rank EVD of a symmetric matrix.

3.3.2 Low-rank eigenvalue decomposition

We now focus on the low-rank EVD. Stages 1 and 2 of the approximation problem are

addressed separately by discussing the Krylov susbspaces and the Rayleigh-Ritz procedure.

The methods for two stages are then combined together in the Lanczos and subspace

iteration methods.

Krylov subspaces

The stage 1 of the approximation problem can be performed by employing Krylov sub-

spaces, which arise in the solution of linear systems when the conjugate gradient or minimal

residual methods are used (sections 3.4 and 3.5). We now define the Krylov subspace.

Definition 3.41. Let A be an n× n matrix and v 6= 0 an n× 1 vector. The mth Krylov

subspace based on A and v is

Km(A,v) = span{v,Av, . . . ,Am−1v}. (3.25)

That is, any w ∈ Km(A,v), where w is an n× 1 vector, can be written as

w = γ1v + γ1Av + · · ·+ γmAm−1v. (3.26)

The sequence of Krylov subspaces is nested, i.e., (e.g., Theorem 3.3, Chapter 4 of [Stewart,

2001])

Km(A,v) ⊂ Km+1(A,v). (3.27)

This sequence can contain approximations to eigenvectors of A [Stewart, 2001]. To

show that, we assume that A is symmetric and has a set of orthonormal eigenvectors

u1,u2, . . . ,un with corresponding eigenvalues λ1, λ2, . . . , λn. Then we can write v in the

following form

v = α1u1 + α2u2 + · · ·+ αnun, (3.28)

where αi = uTi v. Consider the matrix polynomial

p(A) = γ1I + γ1A + · · ·+ γmAm−1. (3.29)

Then (3.26) can be written as w = p(A)v and using (3.28), we have

w = p(A)v = α1p(A)u1 + α2p(A)u2 + · · ·+ αnp(A)un. (3.30)
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Because p(A)u1 = p(λiI)u1,

w = α1p(λ1I)u1 + α2p(λ2I)u2 + · · ·+ αnp(λnI)un. (3.31)

Hence, w is a good approximation to the eigenvector ui if there is a polynomial p such

that p(λiI) is large compared to p(λjI), j 6= i. In practice, Krylov subspaces generate good

approximations to the eigenvectors associated with the extreme eigenvalues. If the two

largest eigenvalues are close to each other, then for small m the values of the polynomial p

will be large for both of these and more iterations may be needed to generate satisfactory

approximations. Notice that if v is orthogonal to any eigenvector ui, then αi = 0 and from

(3.31) we see that ui does not belong to Km(A,v). However, in practice the rounding

errors can cause the loss of orthogonality between Amv and ui when m increases (Chapter

13 of [Parlett, 1998]).

Rayleigh-Ritz procedure

Rayleigh-Ritz (RR) procedure is a popular way to perform the stage 2, that is, extract

the approximations to the eigenvectors contained in a subspace. It is motivated by the

following theorem, that shows that eigenvectors of a large matrix can be obtained by

finding eigenvectors of a smaller matrix. We first define an invariant subspace.

Definition 3.42. Subspace X ⊂ Rn is called an invariant subspace of A ∈ Rn×n if Ax ∈ X
for every x ∈ X .

Theorem 3.43 (Theorem 1.2, Chapter 4 of [Stewart, 2001]). Let X ⊂ Rn be an invariant

subspace of A ∈ Rn×n and let the columns of X ∈ Rn×m be the basis for X . Then there

exists a unique K ∈ Rm×m such that

AX = XK. (3.32)

K is given by

K = XIAX, (3.33)

where XI ∈ Rm×n satisfies XIX = I. If (λ,u) is an eigenpair of A, then (λ,XIu) is an

eigenpair of K. Conversely, if (λ,u) is an eigenpair of K, then (λ,Xu) is an eigenpair of

A.

Note that if X is orthogonal, then XI = XT .

Usually the subspace X̃ obtained in stage 1 is not invariant and contains only ap-

proximations û to the eigenvectors u of A. It is then expected that eigenvectors w of

K̃ = X̃TAX̃, where the columns of X̃ are the orthonormal basis for X̃ , give good ap-

proximations ũ = Xw to û. We present the RR procedure in Algorithm 1. It requires

finding an EVD of an m×m matrix. In practice, m is small and EVD can be computed

using, e.g., QR algorithm (Chapter 8 of [Parlett, 1998]). Vectors ũ are called Ritz vectors,

eigenvalues θ and eigenvectors w of K̃ are called Ritz values and primitive Ritz vectors,

respectively.
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Algorithm 1 Rayleigh-Ritz procedure for computing approximations of eigenpairs of

symmetric A

Input: symmetric matrix A ∈ Rn×n, orthogonal matrix X̃ ∈ Rn×m, m < n

Output: orthogonal Ũ ∈ Rn×m with approximations to eigenvectors of A as its

columns, and diagonal Θ ∈ Rm×m with approximations to eigenvalues of A on the diagonal

1: Form K̃ = X̃TAX̃ ∈ Rm×m

2: Form EVD of K̃ : K̃ = WΘWT , where W, Θ ∈ Rm×m

3: Form Ritz vectors Ũ = X̃W ∈ Rn×m

The RR procedure generates an optimal collection of approximations (θi, ũi) in the

sense that for any orthonormal basis X̃ of X̃ and diagonal matrix ∆ the norm

‖AX̃− X̃∆‖2 (3.34)

is minimised when the columns of X̃ are the Ritz vectors ũ and ∆ entries are the Ritz

values θ (Chapter 11 of [Parlett, 1998]). That is, Ritz vectors and values minimise the

2-norm of the residual R = AX̃ − X̃∆. However, in general, no Ritz vector is expected

to be the closest unit vector in X̃ to any eigenvector of A, that is, there is no guarantee

that the norm ‖x̃ − u‖2, where x̃ ∈ X̃ is a unit vector and u is an eigenvector of A, is

minimised by setting x̃ = ũ.

Lanczos method

The Lanczos method combines the Krylov subspaces and Rayleigh-Ritz procedure to ap-

proximate eigenpairs of symmetric matrices (Chapter 13 of [Parlett, 1998]). The idea is

based on the fact that if the columns of

Qm = (q1,q2, . . . ,qm) ∈ Rn×m (3.35)

form an orthonormal basis for Km(A,v) and A is symmetric, then (Section 12.7 of [Parlett,

1998])

Tm =QT
mAQm (3.36)

=



α1 β1

β1 α2 β2

β2
. . .

. . .

. . .
. . . βm−1

βm−1 αm


, (3.37)

where αi = qTi Aqi, (3.38)

βi = qTi+1Aqi. (3.39)

Eigenvalues and eigenvectors of Tm are the Ritz values and primitive Ritz vectors of A.

Tm can be obtained from Tm−1 by appending αm and βm−1.
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At every Lanczos iteration, a new orthonormal basis vector qm (Lanczos vector) for

the Krylov subspace is generated and values αm and βm−1 are computed. We present the

Lanczos method in Algorithm 2. It often returns a good approximation to the extreme

eigenpairs of A in a small number of iterations compared to n [Golub and Van Loan,

2013].

Algorithm 2 Lanczos method for computing Ritz values and vectors of a symmetric A

Input: symmetric matrix A ∈ Rn×n, starting vector q1 ∈ Rn such that ‖q1‖2 = 1

Output: orthogonal Ũ ∈ Rn×m with Ritz vectors of A as its columns, and diagonal

Θ ∈ Rm×m with Ritz values of A on the diagonal

1: Set q0 = 0, β0 = 0

2: for m = 1, 2, 3... until convergence criteria is satisfied do

3: zm = Aqm − βm−1qm−1

4: αm = zTmqm

5: zm = zm − αmqm

6: βm = zTmzm

7: qm = zm
βm

8: Form EVD of Tm in (3.37): Tm = WΘWT , where W, Θ ∈ Rm×m

9: Form Ritz vectors Ũ = QmW ∈ Rn×m, where Qm is as in (3.35)

Notice that the algorithm orthogonalises qm+1 against qm and qm−1 only. In exact

arithmetic, qm+1 is orthogonal to all qj , j < m+ 1. However, in floating point arithmetic

the orthogonality between the Lanczos vectors qi can be lost quickly, because of the

roundoff error. This usually happens when one of the Ritz vectors is close to convergence

(Section 13.6 of [Parlett, 1998]). The loss of orthogonality results in the algorithm finding

approximations to the same eigenpairs repeatedly [Parlett, 1998]. The duplicate Ritz

values are called ‘ghost’ values and they can be avoided by complete orthogonalisation of

the Lanczos vectors at every iteration, that is orthogonalising qi against qj for all j < i

(Section 10.3.5 of [Golub and Van Loan, 2013]).

Subspace iteration method

The subspace iteration method is a classic method for approximating a few leading eigen-

pairs, that is largest eigenvalues and associated eigenvectors (e.g., Chapter 5 of [Saad,

2011]). It can be considered as an extension of a power method which is used to find a

leading eigenpair (Chapter 4 of [Parlett, 1998]). The power method is based on the fact

that if A is a diagonalisable n × n matrix with eigenvalues |λ1| > |λ2| ≥ · · · ≥ |λn| and

associated eigenvectors u1,u2, . . . ,un, then Akv for an n× 1 vector v can be written as

Akv = α1λ
k
1u1 + α2λ

k
2u2 + · · ·+ αknλnun (3.40)

and if α1 6= 0, that is, if v is not orthogonal to u1, then as k increases Akv converges to a

good approximation of u1. The power method considers subspaces generated by products

Av, A2v, . . . in a sequence. The Krylov subspace can be contemplated as an extension
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of such subspace generation method when the previous subspaces are retained (Chapter

14 of [Parlett, 1998]).

The subspace iteration considers a subspace Sk spanned by the columns of AkV, where

V is an n×m matrix, instead of the subspace generated by one vector Akv in the power

method. In general, Sk includes a better approximation to u1 than the power method and

contains approximations to the other leading eigenpairs (Chapter 6 of [Stewart, 2001]).

To prevent Sk from converging to the subspace generated by u1, orthogonal bases for Sk

are considered throughout the subspace iteration method.

The kth iteration of the subspace iteration method transforms the orthogonal basis for

Sk−1 to orthogonal basis for Sk. The RR procedure is then used to extract the eigenpairs

from Sk. We detail the subspace iteration method in Algorithm 3.

Algorithm 3 Subspace iteration method with RR projection for computing Ritz values

and vectors of a symmetric A

Input: symmetric matrix A ∈ Rn×n, orthogonal matrix V0 ∈ Rn×m

Output: orthogonal V ∈ Rn×m with Ritz vectors of A as its columns, and diagonal

Θ ∈ Rm×m with Ritz values of A on the diagonal

1: for k = 1, 2, 3... until convergence criteria is satisfied do

2: Zk = AVk−1

3: Orthonormalise Zk into Qk

4: Form Gk = QT
kAQk

5: Form EVD of Gk: Gk = WkΘkW
T
k , where Wk, Θk ∈ Rm×m

6: Form Ritz vectors Vk = QkWk ∈ Rn×m

The low-rank SVD can be also found using Algorithm 3 by changing the step 5: EVD

is replaced with SVD Gk = WkΣkU
T , where Σk is diagonal matrix with singular values

of Gk on its diagonal, and the columns of Wk and UT are the left and right singular

vectors of Gk, respectively.

The subspace iteration method is simple to implement. The convergence of the ith

leading Ritz vector depends on the ratio |λm+1/λi| (Chapter 5 of [Saad, 2011]). It can be

slow compared to the Lanczos method, but if there is a large gap between the eigenvalues

we are looking for and the rest of the spectrum, that is if |λm+1 − λm| is large, then the

convergence can be achieved in one or a few iterations (Chapter 14 of [Parlett, 1998]). A

larger than needed subspace can be considered to accelerate the convergence. That is, if

we require approximating the m leading eigenpairs, the convergence can be accelerated by

using V0 ∈ Rn×(m+l) in Algorithm 3, because |λm+l+1/λi| is smaller than |λm+1/λi|.

3.3.3 Randomised methods

A thriving area of research in linear algebra focuses on randomised methods, where ran-

domness is used to address the first stage of the low-rank approximation problem, i.e., find-

ing a subspace that contains eigenvectors or singular vectors of A [Halko et al., 2011, Mar-

tinsson and Tropp, 2020]. A deterministic method is used to extract the approximation in
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the second stage. The randomised methods are attractive for large problems when using

parallel computing, because they minimise the communication between the processors and

they are block methods, that is, they require matrix-matrix products which are easy to

parallelise on current computers.

Randomised methods generate orthonormal basis q1,q2, . . . ,qk for a subspace that

approximates the range of an m× n matrix A, that is, if Q = (q1,q2, . . . ,qk), then

A ≈ QQTA. (3.41)

The subspace spanned by q1,q2, . . . ,qk contains the leading left singular vectors of A or

the leading eigenvectors if m = n. The general randomised algorithm for range approxi-

mation is presented in Algorithm 4. It is called a proto-algorithm by [Halko et al., 2011].

Algorithm 4 Randomised algorithm for approximating the range of A

Input: A ∈ Rm×n, target rank k, oversampling parameter l

Output: orthonormal Q ∈ Rm×(k+l) whose range approximates the range of A

1: Draw a random matrix Ω ∈ Rn×(k+l)

2: Form Y = AΩ ∈ Rm×(k+l)

3: Orthonormalise Y into Q

Notice that Algorithm 4 coincides with the subspace iteration method in Algorithm 3

if it is started with a random matrix and the RR projection (steps 4-6) is omitted. The

randomisation removes the risk that the subspace iteration can be detrimentally affected

by a bad choice of a start matrix. We mentioned that a larger than required subspace

can be used in the subspace iteration method to improve the performance; this practice

is called using the ‘guard vectors’ by [Duff and Scott, 1993]. Such practice is referred to

as oversampling for the randomised methods and we denote the oversampling parameter

l. Large matrices may need larger values of l, whereas good approximations of matrices

with rapidly decreasing singular values or eigenvalues may be obtained with small l values

[Halko et al., 2011]. In general, [Halko et al., 2011] claim that setting l to five or ten results

in a good performance of the randomised methods. If a very high quality approximation

is required, larger values of l can be considered.

The expected quality of the approximation using randomised methods can be described

when a Gaussian start matrix Ω is used. The following theorem bounds the expected error.

Theorem 3.44 (Theorem 10.6 of [Halko et al., 2011]). Let σ1 ≥ σ2 ≥ . . . be singular

values of A ∈ Rm×n, k ≥ 2 be the target rank, and l ≥ 2 the oversampling parameter,

where k + l ≤ min{m,n}. Then the expected approximation error using Algorithm 4 with

a standard normal Ω is bounded by the following:

E ‖A−QQTA‖2 ≤

(
1 +

√
k

l − 1

)
σk+1 +

e
√
k + l

l

∑
j>k

σ2
j

1/2

, (3.42)

where e is the exponential constant.
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Note that σk+1 is the smallest possible error of the approximation by Theorem 3.40.

If the singular values decay fast, then
∑

j>k σ
2
j is small and a good approximation can be

expected. If the decay of the singular values is slow, then the power method can be used to

improve the performance of the randomised method. In this case, matrix Y = (AAT )qAΩ

is used in step 2 of Algorithm 4 (Section 9.3 of [Halko et al., 2011]). (AAT )qA has the

same singular vectors as A, but its singular values are equal to σ2q+1
i where σi is a singular

value of A. Setting q to two or three may give a satisfactory approximation (Section 11.6

of [Martinsson and Tropp, 2020]).

3.4 The conjugate gradient method

The conjugate gradient (CG) method is a Krylov subspace iterative method used to solve

systems of linear equations

Ax = b, (3.43)

where A is a symmetric positive definite n× n matrix, and b is an n× 1 vector.

If x0 is the initial guess for the solution x of (3.43) and the initial residual is r0 =

b−Ax0, then the Krylov subspace is defined as Km(A, r0) = span{r0,Ar0, . . . ,A
m−1r0}.

CG generates a nested sequence of subspaces K1(A, r0) ⊂ K1(A, r0) ⊂ · · · ⊆ Kn(A, r0)

by constructing iterates xm such that rm is orthogonal to Km(A, r0), that is rTmv = 0

for every v ∈ Km(A, r0). The algorithm is presented in Algorithm 5 (Algorithm 38.1 of

[Trefethen and Bau, III, 1997]).

Algorithm 5 Conjugate gradient (CG) method for solving Ax = b

Input: symmetric positive definite matrix A ∈ Rn×n, right hand side b ∈ Rn

Output: approximate solution xm ∈ Rn

1: Set x0 = 0, r0 = b, p0 = r0

2: for m = 1, 2, 3... until convergence criteria is satisfied do

3: αm =
rTm−1rm−1

pT
m−1Apm−1

4: xm = xm−1 + αpm−1

5: rm = rm−1 − αmApm−1

6: βm = rTmrm
rTm−1rm−1

7: pm = rm + βmpm−1

The convergence criteria is set depending on the linear system that is solved and the

application in which it arises. In data assimilation, research on the stopping criteria

suggest that it can be based on the relative change in the norm of the gradient of the

quadratic cost function [Lawless and Nichols, 2006], and the tolerance should not be too

small so that the solution is not fitted to the observation error [Laroche and Gauthier,

1998]. Examples of the stopping criteria used in operational setting include change in the

value of the quadratic cost function in the Met Office [Rawlins et al., 2007], and a fixed

number of iterations in ECMWF [Fisher et al., 2009].
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The error of every CG iterate is em = x− xm. CG monotonically minimises the error

A-norm (Lecture 38 of [Trefethen and Bau, III, 1997]) defined as

‖em‖A =
√

eTmAem. (3.44)

This norm can be expressed in terms of a quadratic cost function φ(A) = 0.5xTAx−xTb

(Lecture 38 of [Trefethen and Bau, III, 1997]), that is

‖em‖A = 2φ(A) + c, (3.45)

where c is a constant. Thus CG guarantees the monotonic minimisation of φ(A). Solv-

ing the SPD systems (2.36) and (2.38) in data assimilation using CG gives a monotonic

minimisation of the quadratic cost functions (2.33) and (2.35), respectively.

The convergence of CG can be described using eigenvalues. A well known bound on

the error A-norm considers the 2-norm condition number κ = λmax(A)/λmin(A) of A.

Theorem 3.45 (Theorem 38.5 of [Trefethen and Bau, III, 1997]). Let A be an SPD matrix

and κ its 2-norm condition number. If Ax = b is solved using CG, then the A-norms of

the error em satisfy

‖em‖A
‖e0‖A

≤ 2/

((√
κ+ 1√
κ− 1

)m
+

(√
κ+ 1√
κ− 1

)−m)
≤ 2

(√
κ− 1√
κ+ 1

)m
. (3.46)

The bound in (3.46) decreases when κ, that is the distance between the largest and

smallest eigenvalues, decreases. This is an upper bound that describes the worst case

convergence, and does not take into account information on clustering of the eigenvalues.

This is considered in the following theorem.

Theorem 3.46 (Theorem 38.3 of [Trefethen and Bau, III, 1997]). Assume that CG has

not converged before iteration m, Pm is a set of polynomials p of degree m with p(0) = 1,

then the problem

min
pm∈Pm

‖pm(A)e0‖A, (3.47)

has a unique solution pm and em = pm(A)e0 is the error of iterate xm. Consequently we

have
‖em‖A
‖e0‖A

= inf
pm∈Pm

‖pm(A)e0‖A
‖e0‖A

≤ inf
pm∈Pm

max
λ∈Λ(A)

|pm(λ)|, (3.48)

where Λ(A) is the spectrum of A.

Hence, CG will converge in a few iterations if polynomials pm(Λ(A)) are small and

rapidly decrease as n increases. This may be the case when the eigenvalues lie in small

clusters or they are well separated from zero. The following corollary of Theorem 3.46

considers the clustered eigenvalues.

Theorem 3.47 (Theorem 38.4 of [Trefethen and Bau, III, 1997]). If A has m distinct

eigenvalues, then CG converges in at most m iterations.
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The results that we discussed are valid in the case when exact arithmetic is used. In

practice, floating point arithmetic means that the orthogonality is lost and the theoretical

guarantees do not hold. However, if CG is used for matrices that have suitable eigenvalue

distribution, then the convergence can be achieved quickly (Lecture 38 of [Trefethen and

Bau, III, 1997]). The linear systems solved with CG are often large and running n it-

erations is too expensive. We discuss preconditioning that can be used to transform the

spectrum to a one that is better suited for CG in Section 3.6.

3.5 The minimal residual method

The minimal residual method (MINRES) solves (3.43), where A is symmetric positive

definite or symmetric indefinite. It is often used in the latter case and we employ it for

such systems in our work.

MINRES generates approximations xm by creating a sequence of Krylov subspaces

Km(A, r0), where rm is orthogonal to AKm(A, r0) = span{Ar0,A
2r0, . . . ,A

mr0}. At

every iteration xm is chosen such that ‖rm‖2 is minimised over Km(A, r0). Because the

sequence of Krylov subspaces is nested, ‖rm‖2 is minimised monotonically. A possible

implementation is presented in Algorithm 6 (Chapter 2 of [Greenbaum, 1997]).

Algorithm 6 Minimal residual (MINRES) method for solving Ax = b

Input: symmetric positive definite or indefinite matrix A ∈ Rn×n,

right hand side b ∈ Rn

Output: approximate solution xm ∈ Rn

1: Set x0 = 0, r0 = b, p0 = r0

2: Compute s0 = Ap0

3: for m = 1, 2, 3... until convergence criteria is satisfied do

4: αm−1 =
rTm−1sm−1

sTm−1sm−1

5: xm = xm−1 + αm−1pm−1

6: rm = rm−1 − αm−1sm−1

7: pm = sm−1

8: sm = Asm−1

9: for l = 1, 2 do

10: b
(m)
m−l = sTmsm−1

sTm−lsm−l

11: pm ← pm − b(m)
m−lpm−l

12: sm ← sm − b(m)
m−lsm−l

The worst case convergence of MINRES can be described with the following bound on

the residual norm
‖rm‖
‖r0‖

≤ min
pm∈Pm

max
λ∈Λ(A)

|pm(λ)|, (3.49)

where pm, Pm, and Λ(A) are as in Theorem 3.46 [Simoncini and Szyld, 2013]. Hence,

in exact arithmetic MINRES will convergence in at most m iterations if A has m dis-
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tinct eigenvalues, and eigenvalues clustered away from zero may result in fast convergence

[Wathen, 2015].

MINRES does not have a clear link to minimisation of a quadratic cost function like

CG. Hence, the nonmonotonic decrease of the quadratic cost function when solving the

3 × 3 block system in data assimilation (see the discussion in Section 2.2.3 Saddle point

formulation).

3.6 Preconditioning

Preconditioning is essential when Krylov subspace methods like CG or MINRES are used

to solve large linear systems of equations [Benzi, 2002, Ferronato, 2012, Wathen, 2015,

Pearson and Pestana, 2020]. Consider the left preconditioning, that is, when we solve

PAx = Pb, (3.50)

instead of (3.43). The preconditioner P is constructed so that the preconditioned coef-

ficient matrix PA has more favourable features than A. These features depend on the

convergence theory for the solver, e.g., if the system is solved using CG then the aim can

be to reduce the condition number of the coefficient matrix, or improve the clustering

of the eigenvalues when CG or MINRES is used. There is no universally good precon-

ditioner though and they are problem dependent. In general, the requirements for the

preconditioner are:

• be cheap to construct;

• be cheap to apply;

• accelerate the convergence or ensure that a higher accuracy solution is reached in a

given computational time.

The preconditioner has to be cheap to apply, because for large problems PA is not formed

and matrix vector products with P are performed in every iteration. If the solver has to

be terminated after a fixed number of iterations, then we are interested in the performance

of the preconditioner in the beginning of the iterative process.

When CG or MINRES is used, SPD preconditioners are required. Many precondition-

ing techniques for CG are based on approximating A−1; PA then approximates an identity

matrix. Such a strategy is not suitable for MINRES, because A−1 is indefinite [Wathen,

2015]. We discuss specific preconditioners used in this thesis for CG and MINRES in the

following sections.

3.6.1 Limited memory preconditioners

Preconditioner P which approximates an SPD A−1 can be constructed using ideas from

quasi-Newton optimisation methods. These methods are used for unconstrained minimi-

sation of smooth functions f(x) by updating the estimate xk+1 = xk + αkpk ∈ Rn, where
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the search direction is pk = −Hk∇fk, ∇fk is the gradient of f(x) evaluated at xk, and

Hk ∈ Rn×n is an SPD approximation of the inverse of the Hessian ∇2f(x) (e.g., chapter

6 of [Nocedal and Wright, 2006]). Hk is updated with the newest information about f(x)

at every iteration of the minimisation and imposing different conditions on Hk gives rise

to different quasi-Newton methods.

One popular method is the Broyden-Fletcher-Goldfarb-Shanno (BFGS) update (e.g.,

[Vlček and Lukšan, 2019]) with the block version derived by [Schnabel, 1983]

Hk = S(STY)−1ST + (I−Y(STY)−1ST )TH0(I−Y(STY)−1ST ), (3.51)

where HkY = S, (3.52)

Y,S ∈ Rn×k, k < n, STY ∈ Rk×k is nonsingular and H0 is an initial approximation. The

columns of Y and S are yi = ∇fi+1−∇fi and si = xi+1−xi, i ∈ {1, 2, . . . , k}, respectively.

Storing all the vectors yi and si can be too expensive for large problems, hence a limited

memory version can be used where only m newest vectors are used for the update and the

older ones are discarded, so that S = (sk−m+1, . . . , sk) and Y = (yk−m+1, . . . ,yk).

Such an approach is used in constructing a class of limited memory preconditioners

(LMPs) discussed by [Tshimanga et al., 2008, Gratton et al., 2011, Tshimanga, 2007]. Let

H0 = M, where M is SPD, and Y = AS, then LMP for A is

Pm = S(STAS)−1ST + (I−AS(STAS)−1ST )TM(I−AS(STAS)−1ST ). (3.53)

(3.53) is also called balancing preconditioner and is used in domain decomposition meth-

ods [Tang et al., 2009]. In this setup, it can be obtained by combining three n × n

preconditioners P̂, Q, and M, where

P̂ =I−AQ (3.54)

Q =Z(ZTAZ)−1ZT , (3.55)

Z ∈ Rn×m is a projection subspace matrix with rank k, and P̂ is a projection matrix. If

we set S = Z, then

Pm = Q + P̂TMP̂. (3.56)

M is considered to be a first level preconditioner, which removes the smallest eigenvalues.

In data assimilation, we set M = I, because the smallest eigenvalues of the precondi-

tioned matrix are equal to one after the the control variable transform is applied (see

Section 2.1.3).

The limited memory preconditioners have properties that are advantageous when con-

sidering the eigenvalue distribution of the preconditioned coefficient matrix. The following

theorem shows that Pm does not expand the spectrum of the original matrix if it includes

eigenvalues at one, that is, some eigenvalues of the preconditioned matrix are equal to one

and the rest are bounded by the smallest and largest eigenvalues of A.

Theorem 3.48 (Theorem 3.4 of [Gratton et al., 2011]). Let λ1 ≤ λ2 ≤ · · · ≤ λn be

eigenvalues of MA, Pm be defined as in (3.53), and let W̄ be an n× n−m matrix such
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that W̄TAS(STAS)−1/2 = 0 and W̄TAW̄ = I. Then the set of eigenvalues µ1, µ2, . . . , µn

of PmA can be split into two subsets

λj ≤ µj ≤ λj+m, j ∈ {1, 2, . . . , n−m}, (3.57)

where µ1, µ2, . . . , µn−m are also the eigenvalues of W̄TAMAS(STAS)−1/2, and

µj = 1, j ∈ {n−m+ 1, . . . , n}. (3.58)

In addition, the condition number κ of PmA can be bounded

κ ≤ max{1, σn}
min{1, σ1}

. (3.59)

Recall that in data assimilation the first level preconditioning creates a cluster of

eigenvalues at one. As shown by the following theorem, this cluster is preserved by the

LMP and may be increased given an appropriate choice of S.

Theorem 3.49 (Theorem 3.7 of [Gratton et al., 2011]). Let Pm be defined as in (3.53).

If r and p denote the multiplicity of one as an eigenvalue of MA and PmA, respectively,

then

max{m, r} ≤ p ≤ min{r + 2m,n}. (3.60)

Moreover, if the r independent vectors of MA associated with eigenvalue one are A-

conjugate to the columns of S, then

r +m ≤ p ≤ min{r + 2m,n}, (3.61)

while if the columns of S are m independent eigenvectors of MA associated with eigenvalue

one, then p = r.

For large problems the matrix AS in Pm is not formed and every application of Pm

requires computing matrix-vector products with A, which may dominate the cost of the

CG iteration. This may result in Pm being too computationally expensive to use. Ex-

pression (3.53) can be simplified if S is constructed using specific vectors. We discuss two

formulations, which have been used in the data assimilation setting, namely the spectral-

and Ritz-LMPs [Moore et al., 2011, Mogensen et al., 2012, Laloyaux et al., 2018]. In the

following, we assume that the first level preconditioning has been performed separately

and set M = I.

A spectral-LMP can be obtained if m eigenvalues λ1, λ2, . . . , λm of A and the corre-

sponding orthonormal eigenvectors v1,v2, . . . ,vm are available. Set V = (v1,v2, . . . ,vm),

Λ = (λ1, λ2, . . . , λm), then using the low-rank eigendecomposition AV = VΛ and orthog-

onality VTV = I, and setting S = V we obtain

S(STAS)−1ST = VΛ−1V, (3.62)

AS(STAS)−1ST = VVT . (3.63)
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Then the LMP in (3.53) can be simplified to what is known as a spectral-LMP

Psp
m = I−

m∑
i=1

(1− λ−1
i )viv

T
i . (3.64)

The split version is Psp
m = Csp

m(Csp
m)T with (Section 2.3.1 of [Tshimanga, 2007])

Csp
m =

m∏
i=1

(
I−

(
1− (

√
λi)
−1
)

viv
T
i

)
. (3.65)

A Ritz-LMP is obtained using Ritz values θ1, . . . , θm and corresponding orthogonal

Ritz vectors u1, . . . ,um. Set U = (u1, . . . ,um), Θ = diag(θ1, . . . , θm) and S = U, then

the Ritz-LMP is

PRt
m = (I−UΘ−1UTA)(I−AUΘ−1UT ) + UΘ−1UT . (3.66)

Notice that this formulation still requires computing matrix-vector products with A. If

θi and ui are obtained using the Lanczos method, then (3.66) can be simplified to PRt
m =

CRt
m (CRt

m )T with

CRt
m =

m∏
i=1

(
I−

(
1− (

√
θi)
−1
)

uiu
T
i −

eTmwi√
θi
βm−1uiq

T
m+1

)
, (3.67)

where wi is a primitive Ritz vector, em is a zero vector with 1 as its mth entry, qm+1

is a Lanczos vector and βm−1 is an off-diagonal entry of matrix Tm used in the Lanczos

process.

From (3.65) and (3.67), we see that the Ritz-LMP can be considered to be the spectral-

LMP with a correction term to account for the error in using approximations of the

eigenpairs. In practice, the exact eigenpairs are usually unavailable and the spectral-

LMP is constructed using Ritz approximations. It has been shown that this may have a

detrimental effect to its performance and the Ritz-LMP can outperform the spectral-LMP

in the data assimilation setting [Tshimanga et al., 2008]. However, the following theorem

shows that if the Ritz approximations are well converged, then the spectral-LMP performs

like the Ritz-LMP.

Theorem 3.50 (Theorem 4.5 of [Gratton et al., 2011]). Suppose that m Ritz pairs (θi,ui)

of A are obtained using the Lanczos method. Let PRt
m be the corresponding Ritz-LMP and

P̃sp
m the spectral-LMP in (3.64) constructed using θi and ui instead of λi and vi. Then

‖PRt
m − P̃sp

m‖ ≤ (2 + ‖ω‖2)‖ω‖2, (3.68)

where ω = (ω1, ω2, . . . , ωm)T with ωi = eTmwi

θi
βm, and eTm, wi, and βm defined as in (3.67).

Because |(eTmwi)βm| = ‖Aui − θiui‖2 is the residual norm for the Ritz pairs (Section

13.2 of [Parlett, 1998]), well converged Ritz pairs give small ωi and the spectral-LMP acts

like the Ritz-LMP.

Obtaining Ritz pairs using the Lanczos method is computationally expensive, and such

preconditioner may not be useful. We explore a cheap way to obtain the Ritz pairs in

Chapter 4.
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3.6.2 Block diagonal Schur complement preconditioners

Consider system (3.43), where A is an indefinite matrix of the form

A =

(
B CT

C 0

)
, (3.69)

with an SPD B ∈ Rk×k and full rank C ∈ Rn−k×k. A way to precondition A comes from

the following idea. Consider the symmetric positive definite matrix

P =

(
B 0

0 S

)
, (3.70)

where S = CB−1CT is the negative Schur complement of B in A. The preconditioned

matrix P−1
m A has three distinct eigenvalues equal to 1 and 0.5(1 ±

√
5), and MINRES

converges in three iterations (see, e.g., section 10.1.1. of [Benzi et al., 2005]). In practice,

preconditioning with (3.70) is too expensive, but it is expected that a good preconditioner

P̃ can be constructed by using suitable SPD approximations B̃ to B and S̃ to S (section

5.2 of [Wathen, 2015]). Then the preconditioner is

P̃ =

(
B̃ 0

0 S̃

)
. (3.71)

In practice we use P̃−1, that is,

P̃−1 =

(
B̃−1 0

0 S̃−1

)
, (3.72)

and we need approximations of the inverses of B and S.

The following well-known result bounds the eigenvalues of P̃−1A and shows that when

B̃ and S̃ approximate B and S in a way that the largest and smallest eigenvalues of B̃−1B

and S̃−1S are close to one, then eigenvalues are contained in three clusters away from zero

and fast convergence of MINRES can be expected.

Theorem 3.51 ([Rees and Wathen, 2009]). Let B, B̃, CTB−1C and S̃ be positive def-

inite matrices, A as in (3.69) and P̃ as in (3.71). If we denote λmin(B̃−1B) = δ,

λmax(B̃−1B) = ∆, λmin(S̃−1CTB−1C) = φ and λmax(S̃−1CTB−1C) = Φ, where λmin(C)

and λmax(C) are the smallest and largest eigenvalues of C, respectively, then the eigen-

values λ of P̃−1A are real and are bounded by

1

2

(
δ −

√
δ2 + 4∆Φ

)
≤ λ ≤ 1

2

(
∆−

√
∆2 + 4δφ

)
, (3.73)

δ ≤ λ ≤ ∆, (3.74)

1

2

(
δ +

√
δ2 + 4δφ

)
≤ λ ≤ 1

2

(
∆ +

√
∆2 + 4∆Φ

)
. (3.75)

3.7 Summary

In this chapter, we presented results on specific matrices and their eigenvalues and singular

values, which are used to better understand and bound the eigenvalues of the coefficient
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matrices in the incremental weak constraint 4D-Var (Chapters 5 and 7). CG and MINRES

methods, that are used to solve the linear systems, and the connection between their con-

vergence and the distribution of the eigenvalues of the coefficient matrices were discussed.

We examined using preconditioning to improve the convergence of CG and MINRES, which

is explored in Chapters 4, 6 and 7. We specifically concentrated on the limited memory

and block diagonal Schur complement preconditioners. In our work (Chapters 4 and 7),

these are constructed using a low-rank eigenvalue decomposition, and a low-rank singular

value decomposition is exploited in Chapter 6. The Lanczos and subspace iteration as well

as the randomised methods that can be used to obtain the low-rank approximations were

discussed. In the following chapter, we concentrate on preconditioning the linear systems

of equations arising from the forcing formulation.



Chapter 4

Second level preconditioning for

the forcing formulation

In this chapter, we consider the research question 1 by using LMPs to precondition the

linear systems of equations in the forcing formulation independently of the previous inner

loops. Three methods for randomised eigenvalue decomposition are used to construct the

preconditioner. We explore if such preconditioning is useful compared to using no precon-

ditioning and using LMPs constructed with the information from the previous inner loops,

and consider the following questions. Do the results get better when the preconditioner

is constructed with more approximations to the eigenvalues and eigenvectors? Should we

use a large oversampling to obtain better results?

This chapter, except the summary in Section 4.8, is based on the paper: Daužickaitė,

I., Lawless, A.S., Scott, J.A. and van Leeuwen, P.J. (2021) Randomised preconditioning

for the forcing formulation of weak-constraint 4D-Var. Quarterly Journal of the Royal

Meteorological Society, 147(740), 3719 - 3734.

4.1 Abstract

There is growing awareness that errors in the model equations cannot be ignored in data

assimilation methods such as four-dimensional variational assimilation (4D-Var). If al-

lowed for, more information can be extracted from observations, longer time windows are

possible, and the minimisation process is easier, at least in principle. Weak constraint 4D-

Var estimates the model error and minimises a series of quadratic cost functions, which

can be achieved using the conjugate gradient (CG) method; minimising each cost function

is called an inner loop. CG needs preconditioning to improve its performance. In previous

work, limited memory preconditioners (LMPs) have been constructed using approxima-

tions of the eigenvalues and eigenvectors of the Hessian in the previous inner loop. If the

Hessian changes significantly in consecutive inner loops, the LMP may be of limited use-

fulness. To circumvent this, we propose using randomised methods for low-rank eigenvalue

decomposition and use these approximations to cheaply construct LMPs using informa-

tion from the current inner loop. Three randomised methods are compared. Numerical

42
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experiments in idealized systems show that the resulting LMPs perform better than the

existing LMPs. Using these methods may allow more efficient and robust implementations

of incremental weak constraint 4D-Var.

4.2 Introduction

In numerical weather prediction, data assimilation provides the initial conditions for the

weather model and hence influences the accuracy of the forecast [Kalnay, 2002]. Data

assimilation uses observations of a dynamical system to correct a previous estimate (back-

ground) of the system’s state. Statistical knowledge of the errors in the observations and

the background is incorporated in the process. A variational data assimilation method

called weak constraint 4D-Var provides a way to also take the model error into account

[Trémolet, 2006], which can lead to a better analysis (e.g. [Trémolet, 2007]).

We explore the weak constraint 4D-Var cost function. In its incremental version,

the state is updated by a minimiser of the linearised version of the cost function. The

minimiser can be found by solving a large sparse linear system. The process of solving

each system is called an inner loop. Because the second derivative of the cost function,

the Hessian, is symmetric positive definite, the systems may be solved with the conjugate

gradient (CG) method [Hestenes and Stiefel, 1952], whose convergence rate depends on

the eigenvalue distribution of the Hessian. Limited memory preconditioners (LMPs) have

been shown to improve the convergence of CG when minimising the strong constraint

4D-Var cost function [Fisher, 1998, Tshimanga et al., 2008]. Strong constraint 4D-Var

differs from weak constraint 4D-Var by making the assumption that the dynamical model

has no error.

LMPs can be constructed using approximations to the eigenvalues and eigenvectors

(eigenpairs) of the Hessian. The Lanczos and CG connection (Section 6.7 of [Saad, 2003])

can be exploited to obtain approximations to the eigenpairs of the Hessian in one inner

loop, and these approximations may then be employed to construct the preconditioner for

the next inner loop [Tshimanga et al., 2008]. This approach does not describe how to

precondition the first inner loop, and the number of CG iterations used on the ith inner

loop limits the number of vectors available to construct the preconditioner on the (i+1)th

inner loop. Furthermore, the success of preconditioning relies on the assumption that the

Hessians do not change significantly from one inner loop to the next.

In this paper, we propose addressing these drawbacks by using easy to implement

subspace iteration methods (see Chapter 5 of [Saad, 2011]) to obtain approximations

of the largest eigenvalues and corresponding eigenvectors of the Hessian in the current

inner loop. The subspace iteration method first approximates the range of the Hessian

by multiplying it with a start matrix (for approaches to choosing it see, e.g., [Duff and

Scott, 1993]) and the speed of convergence depends on the choice of this matrix (e.g.,

[Gu, 2015]). A variant of subspace iteration, which uses a Gaussian random start matrix,

is called Randomised Eigenvalue Decomposition (REVD). REVD has been popularised
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by probabilistic analysis [Halko et al., 2011, Martinsson and Tropp, 2020]. It has been

shown that REVD, which is equivalent to one iteration of the subspace iteration method,

can often generate a satisfactory approximation of the largest eigenpairs of a matrix that

has rapidly decreasing eigenvalues. Because the Hessian is symmetric positive definite, a

randomised Nyström method for computing a low-rank eigenvalue decomposition can also

be used. It is expected to give a higher quality approximation than REVD (e.g. [Halko

et al., 2011]). We explore these two methods and another implementation of REVD, which

is based on the ritzit implementation of the subspace method [Rutishauser, 1971]. The

methods differ in the number of matrix-matrix products with the Hessian. Even though

more computations are required to generate the preconditioner in the current inner loop

compared with using information from the previous inner loop, the randomised methods

are block methods and hence easily parallelisable.

In Section 4.3, we discuss the weak constraint 4D-Var method and, in Section 4.4,

we consider LMPs and ways to obtain spectral approximations. The three randomised

methods are examined in Section 4.5. Numerical experiments with linear advection and

Lorenz 96 models are presented in Section 4.6, followed by a concluding discussion in

Section 4.7.

4.3 Weak constraint 4D-Var

We are interested in estimating the state evolution of a dynamical system x0,x1, . . . ,xN ,

with xi ∈ Rn, at times t0, t1, . . . , tN . Prior information about the state at t0 is called the

background and is denoted by xb ∈ Rn. It is assumed that xb has Gaussian errors with

zero mean and covariance matrix B ∈ Rn×n. Observations of the system at time ti are

denoted by yi ∈ Rqi and their errors are assumed to be Gaussian with zero mean and

covariance matrix Ri ∈ Rqi×qi (qi � n). An observation operator Hi maps the model

variables into the observed quantities at the correct location, i.e. yi = Hi(xi) + ζi, where

ζi is the observation error. We assume that the observation errors are uncorrelated in

time.

The dynamics of the system are described using a nonlinear model Mi such that

xi+1 =Mi(xi) + ηi+1, (4.1)

where ηi+1 is the model error at time ti+1. The model errors are assumed to be uncorre-

lated in time and to be Gaussian with zero mean and covariance matrix Qi ∈ Rn×n.

The forcing formulation of the nonlinear weak constraint 4D-Var cost function, in

which we solve for the initial state and the model error realizations, is

J(x0,η1, . . . ,ηN ) =
1

2
(x0 − xb)TB−1(x0 − xb) +

1

2

N∑
i=0

(yi −Hi(xi))TR−1
i (yi −Hi(xi))

(4.2)

+
1

2

N∑
i=1

ηTi Q−1
i ηi,
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where xi satisfies the model constraint in equation (4.1) [Trémolet, 2006]. The analy-

sis (approximation of the state evolution over the time window) xa0,x
a
1, . . . ,x

a
N can be

obtained from the minimiser of (4.2) using constraints in equation (4.1).

4.3.1 Incremental 4D-Var

One way to compute the analysis is to approximate the minimum of (4.2) with an inex-

act Gauss-Newton algorithm [Gratton et al., 2007], where a sequence of quadratic cost

functions is minimised. In this approach, we update x0 and the model error

p(j+1) = p(j) + δp(j), (4.3)

where p(j) = (x
(j)T
0 ,η

(j)T
1 , . . . ,η

(j)T
N )T is the jth approximation and the update is δp(j) =

(δx
(j)T
0 , δη

(j)T
1 , . . . , δη

(j)T
N )T . The jth approximation of the state x(j) = (x

(j) T
0 , . . . ,x

(j) T
N )T

is calculated with (4.1) using p(j). The update δp(j) is obtained by minimising the follow-

ing cost function

Jδ(δp(j)) =
1

2
||δp(j) − b(j)||2D−1 +

1

2
||H(j)(L−1)(j)δp(j) − d(j)||2R−1 , (4.4)

where ||a||2A−1 = aTA−1a and the covariance matrices are block diagonal, i.e. D =

diag(B,Q1, . . . ,QN ) ∈ Rn(N+1)×n(N+1) and R = diag(R0, . . . ,RN ) ∈ Rq×q, where q =

ΣN
i=0qi. We use the notation (following [Gratton et al., 2018b]) H(j) = diag(H

(j)
0 , . . . ,H

(j)
N ) ∈

Rq×n(N+1), where H
(j)
i is the linearised observation operator, and

(L−1)(j) =



I

M
(j)
0,0 I

M
(j)
0,1 M

(j)
1,1 I

...
...

. . .
. . .

M
(j)
0,N−1 M

(j)
1,N−1 · · · M

(j)
N−1,N−1 I


, (4.5)

b(j) =


xb − x

(j)
0

−η(j)
1

...

−η(j)
N

 , (4.6)

d(j) =


y0 −H0(x

(j)
0 )

y1 −H1(x
(j)
1 )

...

yN −HN (x
(j)
N )

 , (4.7)

where M
(j)
i,l = M

(j)
l . . .M

(j)
i and M

(j)
i is the linearised model, i.e. M

(j)
i,l denotes the lin-

earised model integration from time ti to tl+1, (L−1)(j) ∈ Rn(N+1)×n(N+1), x(j), δx(j),b(j) ∈
Rn(N+1) and d(j) ∈ Rq. The outer loop consists of updating (4.3), calculating x(j),b(j),d(j),

and linearising Hi and Mi for the next inner loop.

The minimum of the quadratic cost function (4.4) can be found by solving a linear

system
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A(j)δp(j) = D−1b(j) + (L−T )(j)(HT )(j)R−1d(j), (4.8)

A(j) = (D−1 + (L−T )(j)(HT )(j)R−1(H)(j)(L−1)(j)) ∈ Rn(N+1)×n(N+1), (4.9)

where A(j) is the Hessian of (4.4), which is symmetric positive definite. These large sparse

systems are usually solved with the conjugate gradient (CG) method, whose convergence

properties depend on the spectrum of A(j) (see Section 4.4.1 for a discussion). In gen-

eral, clustered eigenvalues result in fast convergence. We consider a technique to cluster

eigenvalues of A(j) in the following section. From now on we omit the superscript (j).

4.3.2 Control Variable Transform

A control variable transform, which is also called first level preconditioning, maps the

variables δp to δp̃, whose errors are uncorrelated (see, e.g. Section 3.2 of [Lawless, 2013]).

This can be denoted by the transformation D1/2δp̃ = δp, where D = D1/2D1/2 and D1/2

is the symmetric square root. The update δp̃ is then the solution of

Aprδp̃ =D−1/2b + D1/2L−THTR−1d, (4.10)

where Apr =I + D1/2L−THTR−1HL−1D1/2. (4.11)

Here, Apr is the sum of the identity matrix and a rank q positive semi-definite matrix.

Hence, it has a cluster of n(N + 1) − q eigenvalues at one and q eigenvalues that are

greater than one. Thus, the spectral condition number κ = λmax/λmin (here λmax and

λmin are the largest and smallest eigenvalues of Apr, respectively) is equal to λmax. We

discuss employing second level preconditioning to reduce the condition number while also

preserving the cluster of the eigenvalues at one. In the subsequent sections, we use notation

that is common in numerical linear algebra. Namely, we use A for the Hessian with first

level preconditioning, x for the unknown and b for the right hand side of the system of

linear equations. Thus, we denote (4.10) by

Ax = b, (4.12)

where the right hand side b is known and x is the required solution. We assume throughout

that A is symmetric positive definite.

4.4 Preconditioning weak constraint 4D-Var

4.4.1 Preconditioned conjugate gradient

The CG method (see, e.g. [Saad, 2003]) is a popular Krylov subspace method for solving

systems of the form (4.12). A well known bound for the error at the ith CG iteration

εi = x− xi is

||εi||A
||ε0||A

≤ 2

(√
κ− 1√
κ+ 1

)i
, (4.13)
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where κ is the spectral condition number and ||εi||2A = εTi Aεi (see, e.g., Section 5.1. of

[Nocedal and Wright, 2006]). Note that this bound describes the worst-case convergence

and only takes into account the largest and smallest eigenvalues. The convergence of CG

also depends on the distribution of the eigenvalues of A (as well as the right hand side b

and the initial guess x0); eigenvalues clustered away from zero suggest rapid convergence

(Lecture 38 of [Trefethen and Bau, III, 1997]). Otherwise, CG can display slow convergence

and preconditioning is used to try to tackle this problem (Chapter 9 of [Saad, 2003]).

Preconditioning aims to map the system (4.12) to another system that has the same

solution, but different properties that imply faster convergence. Ideally, the preconditioner

P should be cheap both to construct and to apply, and the preconditioned system should

be easy to solve.

If P is a symmetric positive definite matrix that approximates A−1 and is available in

factored form P = CCT , the following system is solved

CTACx̂ = CTb, (4.14)

where x̂ = C−1x. Split preconditioned CG (PCG) for solving (4.14) is described in

Algorithm 7 (see, for example, Algorithm 9.2 of [Saad, 2003]). Note that every CG iteration

involves one matrix-vector product with A (the product Apj−1 is stored in step 3 and

reused in step 5) and this is expensive in weak constraint 4D-Var, because it involves

running the linearised model throughout the assimilation window through the factor L−1.

Algorithm 7 Split preconditioned CG for solving Ax = b

Input: A ∈ RnA×nA , b ∈ RnA , preconditioner P = CCT ∈ RnA×nA , initial solution

x0 ∈ RnA

Output: solution xj ∈ RnA

1: Compute r0 = CT (b−Ax0), and p0 = Cr0

2: for j = 1, 2, . . . , until convergence do

3: αj = (rTj−1rj−1)/(pTj−1Apj−1)

4: xj = xj−1 + αjpj−1

5: rj = rj−1 − αjCTApj−1

6: βj = (rTj rj)/(r
T
j−1rj−1)

7: pj = Crj + βjpj−1

4.4.2 Limited memory preconditioners

In weak constraint 4D-Var, the preconditioner P approximates the inverse Hessian. Hence,

P can be obtained using Quasi-Newton methods for unconstrained optimization that con-

struct an approximation of the Hessian matrix, which is updated regularly (see, for ex-

ample, Chapter 6 of [Nocedal and Wright, 2006]). A popular method to approximate the

Hessian is BFGS (named after Broyden, Fletcher, Goldfarb, and Shanno, who proposed

it), but it is too expensive in terms of storage and updating the approximation. Instead,

the so-called block BFGS method (derived by [Schnabel, 1983]) uses only a limited number
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of vectors to build the Hessian, and when new vectors are added older ones are dropped.

This is an example of a limited memory preconditioner (LMP), and the one considered

by Tshimanga et al. (see [Tshimanga et al., 2008, Gratton et al., 2011] and [Tshimanga,

2007]) in the context of strong constraint 4D-Var. An LMP for an nA × nA symmetric

positive definite matrix A is defined as follows

Pk = (InA − S(STAS)−1STA)(InA −AS(STAS)−1ST ) + S(STAS)−1ST , (4.15)

where S is an nA × k (k ≤ nA) matrix with linearly independent columns s1, . . . , sk, and

InA is the nA×nA identity matrix [Gratton et al., 2011]. Pk is symmetric positive definite

and if k = nA then (STAS)−1 = S−1A−1S−T and Pk = A−1. In data assimilation, we

have k � nA, hence the name LMPs. Pk is called a balancing preconditioner in [Tang

et al., 2009].

A potential problem for practical applications of (4.15) is the need for expensive matrix-

matrix products with A. Simpler formulations of (4.15) are obtained by imposing more

conditions on the vectors s1, . . . , sk. Two formulations that [Tshimanga et al., 2008] call

spectral-LMP and Ritz-LMP have been used, for example, in ocean data assimilation in the

Regional Ocean Modeling System (ROMS) [Moore et al., 2011] and the variational data

assimilation software with the Nucleus for European Modelling of the Ocean (NEMO)

ocean model (NEMOVAR) [Mogensen et al., 2012], and coupled climate reanalysis in

Coupled ECMWF ReAnalysis (CERA) [Laloyaux et al., 2018].

To obtain the spectral-LMP, let v1, . . . ,vk be orthonormal eigenvectors of A with

corresponding eigenvalues λ1, . . . , λk. Set V = (v1, . . . ,vk) and Λ = diag(λ1, . . . , λk) so

that AV = VΛ and VTV = Ik. If si = vi, i = 1, . . . , k, then the LMP in (4.15) is the

spectral-LMP Psp
k (it is called a deflation preconditioner in [Giraud and Gratton, 2006]),

which can be simplified to

Psp
k = InA −

k∑
i=1

(1− λ−1
i )viv

T
i . (4.16)

Then Psp
k = Csp

k (Csp
k )T with (presented in Section 2.3.1 of [Tshimanga, 2007])

Csp
k =

k∏
i=1

(
InA −

(
1−

(√
λi

)−1
)

viv
T
i

)
. (4.17)

In many applications, including data assimilation, exact eigenpairs are not known,

and their approximations, called Ritz values and vectors, are used (we discuss these in the

following section). If u1, . . . ,uk are orthogonal Ritz vectors, then the following relation

holds: UTAU = Θ, where U = (u1, . . . ,uk), Θ = diag(θ1, . . . , θk) and θi is a Ritz value.

Setting si = ui, i = 1, . . . , k, the Ritz-LMP PRt
k is

PRt
k = (InA −UΘ−1UTA)(InA −AUΘ−1UT ) + UΘ−1UT . (4.18)

Each application of PRt
k requires a matrix-matrix product with A. If the Ritz vectors

are obtained by the Lanczos process (described in Section 4.4.4 below), then (4.18) can
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be further simplified, so that no matrix-matrix products with A are needed (see Section

4.2.2. of [Gratton et al., 2011] for details).

An important property is that if an LMP is constructed using k vectors then at least

k eigenvalues of the preconditioned matrix CTAC will be equal to 1, and the remaining

eigenvalues will lie between the smallest and largest eigenvalues of A (see Theorem 3.4 of

[Gratton et al., 2011]). Moreover, if A has a cluster of eigenvalues at 1, then LMPs preserve

this cluster. This is crucial when preconditioning (4.10): because the LMPs preserve the

n(N + 1)− q smallest eigenvalues of Apr that are equal to 1, the CG convergence can be

improved by decreasing the largest eigenvalues. Hence, it is preferable to use the largest

eigenpairs or their approximations.

In practice, both spectral-LMP and Ritz-LMP use Ritz vectors and values to con-

struct the LMPs. It has been shown that the Ritz-LMP can perform better than the

spectral-LMP in a strong constraint 4D-Var setting by correcting for the inaccuracies in

the estimates of eigenpairs [Tshimanga et al., 2008]. However, [Gratton et al., 2011] (their

Theorem 4.5) have shown that if the preconditioners are constructed with Ritz vectors

and values that have converged, then the spectral-LMP acts like the Ritz-LMP.

4.4.3 Ritz information

Calculating or approximating all the eigenpairs of a large sparse matrix is impractical.

Hence, only a subset is approximated to construct the LMPs. This is often done by

extracting approximations from a subspace, and the Rayleigh-Ritz (RR) procedure is a

popular method for doing this.

Assume that Z ⊂ RnA is an invariant subspace of A, i.e. Az ∈ Z for every z ∈ Z,

and the columns of Z ∈ RnA×m, m < nA, form an orthonormal basis for Z. If (λ, ŷ) is an

eigenpair of K = ZTAZ ∈ Rm×m, then (λ,v), where v = Zŷ, is an eigenpair of A (see,

e.g. Theorem 1.2 in Chapter 4 of [Stewart, 2001]). Hence, eigenvalues of A that lie in the

subspace Z can be extracted by solving a small eigenvalue problem.

However, generally the computed subspace Z̃ with orthonormal basis as columns of Z̃

is not invariant. Hence, only approximations ṽ to the eigenvectors v belong to Z̃. The RR

procedure computes approximations u to ṽ. We give the RR procedure in Algorithm 8,

where the eigenvalue decomposition is abbreviated as EVD. Approximations to eigenvalues

λ are called Ritz values θ, and u are the Ritz vectors. Eigenvectors of K̃ = Z̃TAZ̃, which

is the projection of A onto Z̃, are denoted by w and are called primitive Ritz vectors.

4.4.4 Spectral information from CG

[Tshimanga et al., 2008] use Ritz pairs of the Hessian in one inner loop to construct LMPs

for the following inner loop, i.e. information on A(0) is used to precondition A(1), and so

on. Success relies on the Hessians not changing significantly from one inner loop to the

next. Ritz information can be obtained from the Lanczos process that is connected to CG,

hence information for the preconditioner can be gathered at a negligible cost.
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Algorithm 8 Rayleigh-Ritz procedure for computing approximations of eigenpairs of

symmetric A

Input: symmetric matrix A ∈ RnA×nA , orthogonal matrix Z̃ ∈ RnA×m, m < nA

Output: orthogonal U ∈ RnA×m with approximations to eigenvectors of A as its

columns, and diagonal Θ ∈ Rm×m with approximations to eigenvalues of A on the diagonal

1: Form K̃ = Z̃TAZ̃ ∈ Rm×m

2: Form EVD of K̃ : K̃ = WΘWT , where W, Θ ∈ Rm×m

3: Form Ritz vectors U = Z̃W ∈ RnA×m

The Lanczos process is used to obtain estimates of a few extremal eigenvalues and

corresponding eigenvectors of a symmetric matrix A (Section 10.1 of [Golub and Van

Loan, 2013]). It produces a sequence of tridiagonal matrices Tj ∈ Rj×j , whose largest

and smallest eigenvalues converge to the largest and smallest eigenvalues of A. Given

a starting vector f0, it also computes an orthonormal basis f0, . . . , fj−1 for the Krylov

subspace Kj = span{f0,Af0, . . . ,A
j−1f0}. Ritz values θi are obtained as eigenvalues of a

tridiagonal matrix, which has the following structure:

Tj =


γ1 τ1

τ1 γ2 τ2

. . .
. . .

. . .

τj−1 γj

 . (4.19)

The Ritz vectors of A are ui = Fjwi, where Fj = (f0, . . . , fj−1) and an eigenvector wi

of Tj is a primitive Ritz vector. Eigenpairs of Tj can be obtained using a symmetric

tridiagonal QR algorithm or Jacobi procedures (see, e.g. Section 8.5 of [Golub and Van

Loan, 2013]).

Saad (see Section 6.7.3 of [Saad, 2003]) discusses obtaining entries of Tj when solving

Ax = b with CG. At the jth iteration of CG, new entries of Tj are calculated as follows

γj =


1
αj

for j = 1

1
αj

+
βj−1

αj−1
for j > 1

(4.20)

τj =

√
βj

αj
, (4.21)

and the vector fj = rj/||rj ||, where ||rj ||2 = rTj rj and αj , βj and rj are as in Algorithm 7.

Hence, obtaining eigenvalue information requires normalizing the residual vectors and

finding eigenpairs of the tridiagonal matrix Tj . In data assimilation, the dimension of Tj

is small, because the cost of matrix-vector products restricts the number of CG iterations

in the previous inner loop. Hence its eigenpairs can be calculated cheaply. However,

caution has to be taken to avoid ‘ghost’ values, i.e. repeated Ritz values, due to the

loss of orthogonality in CG (Section 10.3.5 of [Golub and Van Loan, 2013]). This can be

addressed using a complete reorthogonalization in every CG iteration, which is done in the

CONGRAD routine used at the European Centre for Medium Range Weather Forecasts
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[ECMWF, 2020]. This makes every CG iteration more expensive, but CG may converge

in fewer iterations [Fisher, 1998].

4.5 Randomised eigenvalue decomposition

If the Hessian in one inner loop differs significantly from the Hessian in the previous inner

loop, then it may not be useful to precondition the former with an LMP that is constructed

with information from the latter. Employing the Lanczos process to obtain eigenpair

estimates and use them to construct an LMP in the same inner loop is too computationally

expensive, because each iteration of the Lanczos process requires a matrix-vector product

with the Hessian, thus the cost is similar to the cost of CG. Hence, we explore a different

approach.

Subspace iteration is a simple procedure to obtain approximations to the largest eigen-

pairs (see, e.g., Chapter 5 of [Saad, 2011]). It is easily understandable and can be im-

plemented in a straightforward manner, although its convergence can be very slow if the

largest eigenvalues are not well separated from the rest of the spectrum. The accuracy of

subspace iteration may be enhanced by using an RR projection.

Such an approach is used in the Randomised Eigenvalue Decomposition (REVD: see,

e.g., [Halko et al., 2011]). This takes a Gaussian random matrix, i.e. a matrix with

independent standard normal random variables with zero mean and variance equal to

one as its entries, and applies one iteration of the subspace iteration method with RR

projection, hence obtaining a rank m approximation A ≈ Z1(ZT1 AZ1)ZT1 , where Z1 ∈
RnA×m is orthogonal. We present REVD in Algorithm 9. An important feature of REVD

is the observation that the accuracy of the approximation is enhanced with oversampling

(which is also called ‘using guard vectors’ in [Duff and Scott, 1993]), i.e. working on a

larger space than the required number of Ritz vectors. [Halko et al., 2011] claim that

setting the oversampling parameter to 5 or 10 is often sufficient.

Algorithm 9 Randomised eigenvalue decomposition, REVD

Input: symmetric matrix A ∈ RnA×nA , target rank k, an oversampling parameter l

Output: orthogonal U1 ∈ RnA×k with approximations to eigenvectors of A as its

columns, and diagonal Θ1 ∈ Rk×k with approximations to the largest eigenvalues of A on

the diagonal

1: Form a Gaussian random matrix G ∈ RnA×(k+l)

2: Form a sample matrix Y = AG ∈ RnA×(k+l)

3: Orthonormalize the columns of Y to obtain orthonormal Z1 ∈ RnA×(k+l)

4: Form K1 = ZT1 AZ1 ∈ R(k+l)×(k+l)

5: Form EVD of K : K = W1Θ1W
T
1 , where W1, Θ1 ∈ R(k+l)×(k+l), elements of Θ1 are

sorted in decreasing order

6: Remove last l columns and rows of Θ1, so that Θ1 ∈ Rk×k

7: Remove last l columns of W1, so that W1 ∈ R(k+l)×k

8: Form U1 = Z1W1 ∈ RnA×k.
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Randomised algorithms are designed to minimise the communication instead of the

flop count. The expensive parts of Algorithm 9 are the two matrix-matrix products AG

and AZ1 in steps 2 and 4, that is, in each of these steps, matrix A has to be multiplied

with (k+ l) vectors, which in serial computations would be essentially the cost of 2(k+ l)

iterations of unpreconditioned CG. However, note that these matrix-matrix products can

be parallelised.

In weak constraint 4D-Var, A is the Hessian, hence it is symmetric positive definite and

its eigenpairs can also be approximated using a randomised Nyström method (Algorithm

5.5. of [Halko et al., 2011]), which is expected to give much more accurate results than

REVD [Halko et al., 2011]. We present the Nyström method in Algorithm 10, where

singular value decomposition is abbreviated as SVD. It considers a more elaborate rank m

approximation than in REVD: A ≈ (AZ1)(ZT1 AZ1)−1(AZ1)T = FFT , where Z1 ∈ RnA×m

is orthogonal (obtained in the same way as in REVD, e.g. using a tall skinny QR (TSQR)

decomposition [Demmel et al., 2012]). The eigenvalues of FFT are the squares of the

singular values of F (see section 2.4.2 of [Golub and Van Loan, 2013]). In numerical

computations we store matrices E(1) = AZ1 and E(2) = ZT1 E(1) = ZT1 AZ1 (step 4),

perform the Cholesky factorization of E(2) = CTC (step 5) and obtain F by solving the

triangular system FC = E(1).

Algorithm 10 Randomised eigenvalue decomposition for symmetric positive semi-definite

A, Nyström

Input: symmetric positive semi-definite matrix A ∈ RnA×nA , target rank k, an

oversampling parameter l

Output: orthogonal U2 ∈ RnA×k with approximations to eigenvectors of A as its

columns, and diagonal Θ2 ∈ Rk×k with approximations to the largest eigenvalues of A on

the diagonal

1: Form a Gaussian random matrix G ∈ RnA×(k+l)

2: Form a sample matrix Y = AG ∈ RnA×(k+l)

3: Orthonormalize the columns of Y to obtain orthonormal Z1 ∈ RnA×(k+l)

4: Form matrices E(1) = AZ1 ∈ RnA×(k+l) and E(2) = ZT1 E(1) ∈ R(k+l)×(k+l)

5: Form a Cholesky factorization E(2) = CTC

6: Solve FC = E(1) for F ∈ RnA×(k+l)

7: Form SVD of F : F = U2ΣVT , where U2, V ∈ RnA×(k+l), Σ ∈ R(k+l)×(k+l), elements

of Σ are sorted in decreasing order

8: Remove last l columns of U2, so that U2 ∈ RnA×k

9: Remove last l columns and rows of Σ, so that Σ ∈ Rk×k, and set Θ2 = Σ2

The matrix-matrix product with A at step 4 of Algorithms 9 and 10 is removed

in Rutishauser’s implementation of subspace iteration with RR projection called ritzit

[Rutishauser, 1971]. It can be derived in the following manner (see Chapter 14 of [Par-

lett, 1998]). Assume that G3 ∈ RnA×m is an orthogonal matrix and the sample matrix is

Y3 = AG3 = Z3R3, where Z3 ∈ RnA×m is orthogonal and R3 ∈ Rm×m is upper triangu-
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lar. Then a projection of A2 onto the column space of G3 is K̂ = YT
3 Y3 = RT

3 ZT3 Z3R3 =

RT
3 R3. Then K3 = R3R

T
3 = R3R

T
3 R3R

−1
3 = R3K̂R−1

3 , which is similar to K̂ and hence

has the same eigenvalues. This leads to another implementation of REVD presented in

Algorithm 11. This is a single pass algorithm, meaning that A has to be accessed just

once, and to the best of our knowledge this method has not been considered in the context

of randomised eigenvalue approximations.

Algorithm 11 Randomised eigenvalue decomposition based on ritzit, REVD ritzit

Input: symmetric matrix A ∈ RnA×nA , target rank k, an oversampling parameter l

Output: orthogonal U3 ∈ RnA×k with approximations to eigenvectors of A as its

columns, and diagonal Θ3 ∈ Rk×k with approximations to the largest eigenvalues of A on

the diagonal

1: Form a Gaussian random matrix G ∈ RnA×(k+l)

2: Orthonormalize the columns of G to obtain orthonormal G3

3: Form a sample matrix Y3 = AG3 ∈ RnA×(k+l)

4: Compute QR decomposition Y3 = Z3R3 to obtain orthogonal Z3 ∈ RnA×(k+l) and

upper triangular R3 ∈ R(k+l)×(k+l)

5: Form K3 = R3R
T
3 ∈ R(k+l)×(k+l)

6: Form EVD of K3 : K3 = W3Θ
2
3W

T
3 , where W3, Θ2

3 ∈ R(k+l)×(k+l), elements of Θ3

are sorted in decreasing order

7: Remove last l columns and rows of Θ2
3, so that Θ2

3 ∈ Rk×k

8: Remove last l columns of W3, so that W3 ∈ R(k+l)×k

9: Form U3 = Z3W3 ∈ RnA×k.

Note that the Ritz vectors given by Algorithms 9, 10 and 11 are different. Although

Algorithm 11 accesses the matrix A only once, it requires an additional orthogonalisation

of a matrix of size nA × (k + l).

In Table 4.1, we summarise some properties of the Lanczos, REVD, Nyström and

REVD ritzit methods when they are used to compute Ritz values and vectors to generate

a preconditioner for A in incremental data assimilation. Note that the cost of applying

the spectral-LMP depends on the number of vectors k used in its construction and is inde-

pendent of which method is used to obtain them. The additional cost of using randomised

algorithms arises only once per inner loop when the preconditioner is generated. We recall

that in these algorithms the required EVD or SVD of the small matrix can be obtained

cheaply and the most expensive parts of the algorithms are the matrix-matrix products of

A and nA×(k+ l) matrices. If enough computational resources are available, these can be

parallelised. In the best case scenario, all k + l matrix-vector products can be performed

at the same time, making the cost of the matrix-matrix product equivalent to the cost of

one iteration of CG plus communication between the processors.

When a randomised method is used to generate the preconditioner, an inner loop is

performed as follows. Estimates of the Ritz values of the Hessian and the corresponding

Ritz vectors are obtained with a randomised method (Algorithm 9, 10 or 11) and used
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Lanczos REVD Nyström REVD ritzit

Information source
Previous inner

loop
Current inner loop Current inner loop Current inner loop

Preconditioner for the

first inner loop
No Yes Yes Yes

k dependence on the

previous inner loop

Bounded by

the number of

CG iterations

Independent Independent Independent

Matrix-matrix products

with A
None

2 products with

nA × (k + l)

matrices

2 products with

nA × (k + l)

matrices

1 product with

nA × (k + l)

matrix

QR decomposition None None None Y3 ∈ RnA×(k+l)

Orthogonalisation None Y ∈ RnA×(k+l) Y ∈ RnA×(k+l) G ∈ RnA×(k+l)

Cholesky factorization None None E(2) ∈ R(k+l)×(k+l) None

Triangular solve None None
FC = E(1)

for F ∈ RnA×(k+l)
None

Deterministic EVD Tk ∈ Rk×k * K ∈ R(k+l)×(k+l) None K3 ∈ R(k+l)×(k+l)

Deterministic SVD None None F ∈ RnA×(k+l) None

Table 4.1: A summary of the properties of the different methods of obtaining k Ritz

vectors and values to generate the preconditioner for a nA×nA matrix A in the ith inner

loop. Here l is the oversampling parameter. * applies for CG with reorthogonalization.

to construct an LMP. Then the system (4.12) with the exact Hessian A is solved with

PCG (Algorithm 7) using the LMP. The state is updated in the outer loop using the PCG

solution.

4.6 Numerical experiments

We demonstrate our proposed preconditioning strategies using two models: a simple linear

advection model to explore the spectra of the preconditioned Hessian and the nonlinear

Lorenz 96 model [Lorenz, 1996] to explore the convergence of split preconditioned CG

(PCG) . We perform identical twin experiments, where xt = ((xt0)T , . . . , (xtN )T )T denotes

the reference trajectory. The observations and background state are generated by adding

noise with covariance matrices R and B to Hi(xti) and x0, respectively. We use direct

observations, thus the observation operator Hi is linear.

We use covariance matrices Ri = σ2
oIqi , where qi is the number of observations at time

ti, Qi = σ2
qCq, where Cq is a Laplacian correlation matrix [Johnson et al., 2005], and

B = σ2
bCb, where Cb is a second-order auto-regressive correlation matrix [Daley, 1993].

We assume that first level preconditioning has already been applied (recall (4.10)).

In data assimilation, using Ritz-LMP as formulated in (4.18) is impractical because of

the matrix products with A and we cannot use a simple formulation of Ritz-LMP when

the Ritz values and vectors are obtained with the randomised methods. Hence, we use

the spectral-LMP. However, as we mentioned in Section 4.4.2, the spectral-LMP that is

constructed with well converged Ritz values and vectors acts like Ritz-LMP. When we
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consider the second inner loop, we compare the spectral-LMPs with information from the

randomised methods with the spectral-LMP constructed with information obtained with

the Matlab function eigs in the previous inner loop. eigs returns a highly accurate estimate

of a few largest or smallest eigenvalues and corresponding eigenvectors. We will use the

term randomised LMP to refer to the spectral-LMPs that are constructed with information

from the randomised methods, and deterministic LMP to refer to the spectral-LMP that

is constructed with information from eigs.

The computations are performed with Matlab R2017b. Linear systems are solved

using the Matlab implementation of PCG (function pcg), which was modified to allow

split preconditioning to maintain the symmetric coefficient matrix at every loop.

4.6.1 Advection model

First, we consider the linear advection model:

∂u(z, t)

∂t
+
∂u(z, t)

∂z
= 0, (4.22)

where z ∈ [0, 1] and t ∈ (0, T ). An upwind numerical scheme is used to discretise (4.22)

(see, e.g. Chapter 4 of [Morton and Mayers, 1994]). To allow us to compute all the

eigenvalues (described in the following section), we consider a small system with the linear

advection model. The domain is divided into n = 40 equally spaced grid points, with grid

spacing ∆z = 1/n. We run the model for 51 time steps (N = 50) with the time step size

∆t = 1/N , hence A is a 2040×2040 matrix. The Courant number is C = 0.8 (the upwind

scheme is stable with C ∈ [0, 1]). The initial conditions are Gaussian,

u(z, 0) = 6 exp

(
−(z − 0.5)2

2× 0.12

)
,

and the boundary conditions are periodic u(1, t) = u(0, t).

We set σo = 0.05, σq = 0.05 and σb = 0.1. Cq and Cb have length scales equal to 10∆z.

Every fourth model variable is observed at every fifth time step, ensuring that there is an

observation at the final time step (100 observations in total). Because the model and the

observational operator Hi are linear, the cost function (4.2) is quadratic and its minimiser

is found in the first loop of the incremental method.

Eigenvalues of the preconditioned matrix

We apply the randomised LMPs in the first inner loop. Note that if the deterministic

LMP is used, it is unclear how to precondition the first inner loop. We explore what effect

the randomised LMPs have on the eigenvalues of A. The oversampling parameter l is set

to 5 and the randomised LMPs are constructed with k = 25 vectors.

The Ritz values of A given by the randomised methods are compared to those com-

puted using eigs (Figure 4.1a). The Nyström method produces a good approximation

of the largest eigenvalues, while REVD gives a slightly worse approximation, except for

the largest five eigenvalues. The REVD ritzit method underestimates the largest eigen-

values significantly. The largest eigenvalues of the preconditioned matrices are smaller
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than the largest eigenvalue of A (Figure 4.1b). However, the smallest eigenvalues of the

preconditioned matrices are less than one and hence applying the preconditioner expands

the spectrum of A at the lower boundary (Figure 4.1c), so that Theorem 3.4 of [Gratton

et al., 2011], which considers the non-expansiveness of the spectrum of the Hessian after

preconditioning with an LMP, does not hold. This happens because the formulation of the

spectral-LMP is derived assuming that the eigenvalues and eigenvectors are exact, while

the randomized methods provide only approximations. Note that even though REVD ritzit

gives the worst approximations of the largest eigenvalues of the Hessian, using the ran-

domised LMP with information from REVD ritzit reduces the largest eigenvalues of the

preconditioned matrix the most and the smallest eigenvalues are close to one. Using the

randomised LMP with estimates from Nyström gives similar results. Hence, the condition

number of the preconditioned matrix is lower when the preconditioners are constructed

with REVD ritzit or Nyström compared to REVD.

The values of the quadratic cost function at the first ten iterations of PCG are shown in

Figure 4.1d. Using the randomised LMP that is constructed with information from REVD

is detrimental to the PCG convergence compared with using no preconditioning. Using

information from the Nyström and REVD ritzit methods results in similar PCG conver-

gence and low values of the quadratic cost function are reached in fewer iterations than

without preconditioning. The PCG convergence may be explained by the favourable dis-

tribution of the eigenvalues after preconditioning using Nyström and REVD ritzit, and the

smaller than one eigenvalues when using REVD. These results, however, do not necessarily

generalize to an operational setting as this system is well conditioned while operational

settings are not. This will be investigated further in the next section.

4.6.2 Lorenz 96 model

We next use the Lorenz 96 model to examine what effect the randomised LMPs have on

PCG performance. In the Lorenz 96 model, the evolution of the n components Xj , j ∈
{1, 2, . . . , n} of xi is governed by a set of n coupled ODEs:

dXj

dt
= −Xj−2Xj−1 +Xj−1Xj+1 −Xj + F, (4.23)

where X−1 = Xn−1, X0 = Xn and Xn+1 = X1, and F = 8. The equations are integrated

using a fourth order Runge-Kutta scheme [Butcher, 1987]. We set n = 80 and N = 150

(the size of A is 12080 × 12080) and observe every tenth model variable at every tenth

time step (120 observations in total), ensuring that there are observations at the final time

step. The grid point distance is ∆X = 1/n and the time step is set to ∆t = 2.5× 10−2.

For the covariance matrices we use σo = 0.15 and σb = 0.2. Cb has length scale equal

to 2∆X. Two setups are used for the model error covariance matrix:

• σq = 0.1 and Cq has length scale Lq = 2∆X (the same as Cb);

• σq = 0.05 and Cq has length scale Lq = 0.25∆X.
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Figure 4.1: Advection problem. (a) The 25 largest eigenvalues of A (eigs) and their

estimates given by randomised methods; the largest eigenvalues and their estimates given

by REVD and Nyström coincide. (b) The largest eigenvalues of A (no LMP, the same

as eigs in (a)) and (Csp
25)TACsp

25, where Csp
25 is constructed with Ritz values in (a) and

corresponding Ritz vectors. (c) The smallest eigenvalues of A and (Csp
25)TACsp

25. (d)

Quadratic cost function value versus PCG iteration when solving systems with A and

(Csp
25)TACsp

25.

In our numerical experiments, the preconditioners have very similar effect using both

setups. Hence, we present results for the case σq = 0.1 and Lq = 2∆X in the following

sections, except Figure 4.3.

The first outer loop is performed and no second level preconditioning is used in the

first inner loop, where PCG is run for 100 iterations or until the relative residual norm

reaches 10−6. In the following sections, we use randomised and deterministic LMPs in the

second inner loop. PCG has the same stopping criteria as in the first inner loop.

Minimising the inner loop cost function

In Figure 4.2, we compare the performance of the randomised LMPs with the deterministic

LMP. We also consider the effect of varying k, the number of vectors used to construct

the preconditioner. We set the oversampling parameter to l = 5. Because results from

the randomized methods depend on the random matrix used, we perform 50 experiments

with different realizations for the random matrix. We find that the different realizations

lead to very similar results (see Figure 4.2a).
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Independently of the k value, there is an advantage in using the second level pre-

conditioning. The reduction in the value of the quadratic cost function is faster using

randomised LMPs compared with deterministic LMPs, with REVD ritzit performing the

best after the first few iterations. The more information we use in the preconditioner (i.e.

the higher k value), the faster REVD ritzit shows better results than the other methods.

The performances of the REVD and Nyström methods are similar. Note that as k in-

creases, the storage (see Table 4.1) and work per PCG iteration increase. Examination

of the Ritz values given by the randomised methods shows that REVD ritzit gives the

worse estimate of the largest eigenvalues, as was the case when using the advection model.

We calculated the smallest eigenvalue of the preconditioned matrix (Csp
5 )TACsp

5 using

eigs. When Csp
5 is constructed using REVD ritzit or Nyström, the smallest eigenvalue of

(Csp
5 )TACsp

5 is equal to one, whereas using REVD it is approximately 0.94. This may

explain why the preconditioner constructed using REVD may not perform as well as other

randomised preconditioners, but it is not entirely clear why the preconditioner that uses

REVD ritzit shows the best performance.
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Figure 4.2: A comparison of the value of the quadratic cost function at every PCG iteration

when spectral-LMP is constructed with k ∈ {5, 10, 15} Ritz values and vectors obtained

with the randomised methods in the current inner loop, and function eigs in the previous

inner loop. We also show no second level preconditioning (no LMP), which is the same in

all four panels. For the randomised methods, (a) shows 50 experiments for k = 5 and the

rest display means over 50 experiments. Here σq = 0.1 and Lq = 2∆X.

The PCG convergence when using the deterministic LMP and the randomised LMP
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with information from REVD ritzit with different k values is compared in Figure 4.3

for both setups of the model error covariance matrix. We also show an additional case

where the model error covariance matrix is constructed setting σq = σb/100 = 0.002

and Lq = 0.25∆X. In this case, the performances of the REVD and Nyström methods

are very similar, outperforming no preconditioning after the first 10-15 iterations, with

better performance for higher k values (results not shown). Moreover, REVD ritzit again

outperforms the deterministic LMP from the first PCG iterations. For the deterministic

LMP in Figure 4.3, varying k has little effect, especially in the initial iterations. However,

for REVD ritzit in general, increasing k results in a greater decrease of the cost function.

Setting k = 5 gives better initial results compared with k = 10 in the σq = 0.002 case, but

the larger k value performs better after that. Also, at any iteration of PCG we obtain a

lower value of the quadratic cost function using the randomised LMP with k = 5 compared

to the deterministic LMP with k = 15, which uses exact eigenpair information from the

Hessian of the previous loop.
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Figure 4.3: A comparison of the values of the quadratic cost function at every PCG

iteration when using deterministic LMP with information from the previous loop (eigs)

and the randomised LMP with information from REVD ritzit for different k values (5,

10 and 15). No second level preconditioning is also shown (case (a) is the same as in

Figure 4.2). In cases (a), (b) and (c) the model error covariance matrices are constructed

using parameters σq and Lq.
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Effect of the observation network

To understand the sensitivities of the results from the different LMPs to the observation

network, we consider a system with the same parameters as in the previous section, where

we had 120 observations, but we now observe

• every fifth model variable at every fifth time step (480 observations in total);

• every second variable at every second time step (3000 observations in total).

The oversampling parameter is again set to l = 5 and we set k = 5 and k = 15 for both

observation networks. Since the number of observations is equal to the number of eigenval-

ues that are larger than one and there are more observations than in the previous section,

there are more eigenvalues that are larger than one after the first level preconditioning.

Because all 50 experiments with different Gaussian matrices in the previous section were

close to the mean, we perform 10 experiments for each randomised method, solve the

systems, and report the means of the quadratic cost function.

The results are presented in Figure 4.4. Again, the randomised LMPs perform better

than the deterministic LMP. However, if the preconditioner is constructed with a small

amount of information about the system (k = 5 for both systems and k = 15 for the system

with 3000 observations), then there is little difference in the performance of different

randomised LMPs. Also, when the number of observations is increased, more iterations

of PCG are needed to get any improvement in the minimisation of the quadratic cost

function when using the deterministic LMP over using no second level preconditioning.

When comparing the randomised and deterministic LMPs with different values of k for

these systems, we obtain similar results to those in Figure 4.3a, i.e. it is more advantageous

to use the randomised LMP constructed with k = 5 than using the deterministic LMP

constructed with k = 15.

Effect of oversampling

We next consider the effect of increasing the value of the oversampling parameter l. The

observation network is as in Section 4.6.2: Minimising the inner loop cost function (120

observations in total). We set k = 15 and perform the second inner loop 50 times for every

value of l ∈ {5, 10, 15} with all three randomised methods. The standard deviation of the

value of the quadratic cost function at every iteration is presented in Figure 4.5.

For all the methods, the standard deviation is greatest in the first iterations of PCG.

It is reduced when the value of l is increased and the largest reduction happens in the first

iterations. However, REVD ritzit is the least sensitive to the increase of the oversampling.

With all values of l, REVD ritzit has the largest standard deviation in the first few itera-

tions, but it stills gives the largest reduction of the quadratic cost function. Hence, large

oversampling is not necessary if REVD ritzit is used.
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Figure 4.4: As in Figure 4.2, but for two systems with q observations; 10 experiments are

done for each randomised method and the mean values plotted.

4.7 Conclusions and future work

We have proposed a new randomised approach to second level preconditioning of the

incremental weak constraint 4D-Var forcing formulation. It can be preconditioned with

an LMP that is constructed using approximations of eigenpairs of the Hessian. Previously,

by using the Lanzcos and CG connection these approximations were obtained at a very

low cost in one inner loop and then used to construct the LMP in the following inner

loop. We have considered three methods (REVD, Nyström and REVD ritzit) that employ

randomisation to compute the approximations. These methods can be used to cheaply

construct the preconditioner in the current inner loop, with no dependence on the previous

inner loop, and are parallelisable.

Numerical experiments with the linear advection and Lorenz 96 models have shown

that the randomised LMPs constructed with approximate eigenpairs improve the conver-

gence of PCG more than deterministic LMPs with information from the previous loop,

especially after the initial PCG iterations. The quadratic cost function reduces more

rapidly when using a randomised LMP rather than a deterministic LMP, even if the ran-

domised LMP is constructed with fewer vectors than the deterministic LMP. Also, for the

randomised LMPs, the more information about the system we use (i.e. more approxima-

tions of eigenpairs are used to construct the preconditioner), the greater the reduction in

the quadratic cost function, with a possible exception in the first PCG iterations for low

k values and very small model error. Using more information to construct a deterministic
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Figure 4.5: Standard deviation of the quadratic cost function at every iteration of PCG

when spectral-LMP is constructed with different randomised methods. For every ran-

domised method we perform 50 experiments. Here σq = 0.1 and Lq = 2∆X.

LMP may not result in larger reduction of the quadratic cost function, especially in the

first iterations of PCG, which is in line with results in [Tshimanga et al., 2008]. However,

if not enough information is included in the randomised LMP, then preconditioning may

have no effect on the first few iterations of PCG.

Of the randomised methods considered, the best overall performance was for the

REVD ritzit. However, if we run a small number of PCG iterations, the precondition-

ers obtained with different randomised methods give similar results. In the case of a very

small model error, using REVD and Nyström is useful after the initial iterations of PCG

whereas REVD ritzit improves the reduction of quadratic cost function from the start.

The performance was independent of the choice of the random Gaussian start matrix and

it may be improved with oversampling.

In this work we apply randomised methods to generate a preconditioner, which is

then used to accelerate the solution of the exact inner loop problem (4.12) with the PCG

method (as discussed in Section 4.5). A different approach has been explored by [Bousserez

and Henze, 2018] and [Bousserez et al., 2020], who presented and tested a randomised

solution algorithm called the Randomized Incremental Optimal Technique (RIOT) in data

assimilation. RIOT is designed to be used instead of PCG and employs a randomised

eigenvalue decomposition of the Hessian (using a different method than the ones presented

in this paper) to directly construct the solution x in (4.12), which approximates the
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solution given by PCG.

The randomised preconditioning approach can also be employed to minimise other

quadratic cost functions, including the strong constraint 4D-Var formulation. Further

exploration of other single-pass versions of the randomised methods for the eigenvalue

decomposition, that are discussed in [Halko et al., 2011], may be useful. In particular,

the single-pass version of the Nyström method is potentially attractive. If a large number

of Ritz vectors are used to construct the preconditioner, more attention can be paid to

choosing the value of the oversampling parameter l in the randomised methods. In some

cases a better approximation may be obtained if l linearly depends on the target rank of

the approximation [Nakatsukasa, 2020].
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4.8 Summary

We explored preconditioning the linear systems in the forcing formulation independently

of previous inner loops by using randomised eigenvalue decompositions. We showed that

in this way LMPs can be constructed cheaply if computational resources for parallelising

matrix-matrix products are available. All three randomised methods considered outper-

formed no preconditioning and LMPs constructed using eigenpairs from the previous inner

loop. Increasing the number of eigenpairs used to construct the LMPs gave better results,

although the effect may appear only after a few PCG iterations. The REVD ritzit im-

plementation of the randomised method showed the best results of the three randomised

methods. There may be no or a very small difference between the results with different

methods if the number of eigenpairs in LMP is very small compared to the size of the

system. We saw that large oversampling is not required.

Because REVD ritzit implementation showed best results, we use this randomised

method to construct LMPs in the block diagonal Schur complement preconditioners for

the saddle point systems in Chapter 7. The results on oversampling motivate us to use

the recommended value of l = 5 in Chapters 6 and 7.

The randomised LMPs remained effective when the number of observations was in-

creased, whereas LMPs constructed using eigenpairs from the previous inner loop were

less effective in the first PCG iterations. We explore how the extreme eigenvalues of the

coefficient matrix in the forcing formulation change when new observations are added in

Chapter 7. In the following chapter, we study the effect of adding observations on the

extreme eigenvalues of the systems in the state formulation.



Chapter 5

Spectral estimates for coefficient

matrices in state formulation

In this chapter, we look at the research question 2 for the systems in state formulation.

We wish to know how the extreme eigenvalues of the coefficient matrices change when

new observations are introduced. This can be used to assess the worst case convergence of

CG and MINRES. We also provide bounds for the eigenvalues to estimate how changes in

eigenvalues of the error covariance matrices and singular values of the blocks including the

linearised model and linearised observation operator affect the eigenvalues of the coefficient

matrices. A numerical example with the Lorenz 96 model is used to understand how tight

the bounds are and how the convergence of CG and MINRES is affected by the new

observations.

This chapter, except the summary in Section 5.8, is based on the paper: Daužickaitė,

I., Lawless, A.S., Scott, J.A. and van Leeuwen, P.J. (2020) Spectral estimates for saddle

point matrices arising in weak constraint four-dimensional variational data assimilation.

Numerical Linear Algebra with Applications, 27(5): e2313.

5.1 Abstract

We consider the large sparse symmetric linear systems of equations that arise in the

solution of weak constraint four-dimensional variational data assimilation, a method of

high interest for numerical weather prediction. These systems can be written as saddle

point systems with a 3 × 3 block structure but block eliminations can be performed to

reduce them to saddle point systems with a 2× 2 block structure, or further to symmetric

positive definite systems. In this paper, we analyse how sensitive the spectra of these

matrices are to the number of observations of the underlying dynamical system. We also

obtain bounds on the eigenvalues of the matrices. Numerical experiments are used to

confirm the theoretical analysis and bounds.

64
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5.2 Introduction

Data assimilation estimates the state of a dynamical system by combining observations

of the system with a prior estimate. The latter is called a background state and it is

usually an output of a numerical model that simulates the dynamics of the system. The

impact that the observations and the background state have on the state estimate depends

on their errors whose statistical properties we assume are known. Data assimilation is

used to produce initial conditions in numerical weather prediction (NWP) [Kalnay, 2002,

Swinbank, 2010], as well as other areas, e.g. flood forecasting [Chen et al., 2013], research

into atmospheric composition [Elbern et al., 1997], and neuroscience [Moye and Diekman,

2018]. In operational applications, the process is made more challenging by the size of the

system, e.g. the numerical model may be operating on 108 state variables and 105 − 106

observations may be incorporated [Nichols, 2010, Lawless, 2013]. Moreover, there is usually

a constraint on the time that can be spent on calculations.

The solution, called the analysis, is obtained by combining the observations and the

background state in an optimal way. One approach is to solve a weighted least-squares

problem, which requires minimising a cost function. An active research topic in this area

is the weak constraint four-dimensional variational (4D-Var) data assimilation method

[Trémolet, 2006, Trémolet, 2007, El-Said, 2015, Bonavita et al., 2017, Fisher and Gürol,

2017, Gratton et al., 2018a, Freitag and Green, 2018]. It is employed in the search for

states of the system over a time period, called the assimilation window. This method uses

a cost function that is formulated under the assumption that the numerical model is not

perfect and penalises the weighted discrepancy between the analysis and the observations,

the analysis and the background state, and the difference between the analysis and the

trajectory given by integrating the dynamical model.

Effective minimisation techniques need evaluations of the cost function and its gradient

that involve expensive operations with the dynamical model and its linearised variant.

Such approaches are impractical in operational applications. One way to approximate

the minimum of the weak constraint 4D-Var is to use an inexact Gauss-Newton method

[Gratton et al., 2007], in which a series of linearised quadratic cost functions with a low

resolution model are minimised [Courtier et al., 1994], and the minima are used to update

the high resolution state estimate. The state estimate update is found by solving sparse

symmetric linear systems using an iterative method [Saad, 2003].

To increase the potential of using parallel computations when computing the state

update with weak constraint 4D-Var, [Fisher and Gürol, 2017] introduced a symmetric

3 × 3 block saddle point formulation. The resulting large symmetric linear systems are

solved using Krylov subspace solvers [Freitag and Green, 2018, Saad, 2003, Benzi et al.,

2005]. One criteria that affects their convergence is the spectra of the coefficient matrices

[Benzi et al., 2005]. We derive bounds for the eigenvalues of the 3× 3 block matrix using

the work of [Rusten and Winther, 1992]. Also, inspired by the practice in solving saddle

point systems that arise from interior point methods [Greif et al., 2014, Morini et al.,

2017], we reduce the 3 × 3 block system to a 2 × 2 block saddle point formulation and
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derive eigenvalue bounds for this system. We also consider a 1×1 block formulation with a

positive definite coefficient matrix, which corresponds to the standard method [Trémolet,

2006, Trémolet, 2007]. Some of the blocks in the 3 × 3 and 2 × 2 block saddle point

coefficient matrices, and the 1× 1 block positive definite coefficient matrix depend on the

available observations of the dynamical system. We present a novel examination of how

adding new observations influences the spectrum of these coefficient matrices.

In Section 5.3, we formulate the data assimilation problem and introduce weak con-

straint 4D-Var with the 3 × 3 block and 2 × 2 block saddle point formulations and the

1 × 1 block symmetric positive definite formulation. Eigenvalue bounds for the saddle

point and positive definite matrices and results on how the extreme eigenvalues and the

bounds depend on the number of observations are presented in Section 5.4. Section 5.5 il-

lustrates the theoretical considerations using numerical examples, and concluding remarks

and future directions are presented in Section 5.6.

5.3 Variational Data Assimilation

The state of the dynamical system of interest at times t0 < t1 < ... < tN is represented by

the state vectors x0,x1, . . . ,xN with xi ∈ Rn. A nonlinear model Mi that is assumed to

have errors describes the transition from the state at time ti to the state at time ti+1, i.e.

xi+1 =Mi(xi) + ηi+1, (5.1)

where ηi represents the model error at time ti. It is further assumed that the model errors

are Gaussian with zero mean and covariance matrix Qi ∈ Rn×n, and that they are uncor-

related in time, i.e. there is no relationship between the model errors at different times.

In NWP, the model comes from the discretization of the partial differential equations that

describe the flow and thermodynamics of a stratified multiphase fluid in interaction with

radiation [Kalnay, 2002]. It also involves parameters that characterize processes arising

at spatial scales that are smaller than the distance between the grid points [Rood, 2010].

Errors due to the discretization of the equations, errors in the boundary conditions, in-

accurate parameters, and so on are components of the model error [Griffith and Nichols,

2000].

The background information about the state at time t0 is denoted by xb ∈ Rn. xb

usually comes from a previous short range forecast and is chosen to be the first guess of

the state. It is assumed that the background term has errors that are Gaussian with zero

mean and covariance matrix B ∈ Rn×n.

Observations of the dynamical system at time ti are given by yi ∈ Rqi . In NWP, there

are considerably fewer observations than state variables, i.e. qi << n. Also, there may

be indirect observations of the variables in the state vector and a comparison is obtained

by mapping the state variables to the observation space using a nonlinear operator Hi.
For example, satellite observations used in NWP provide top of the atmosphere radiance

data, whereas the model operates on different meteorological variables, e.g. temperature,
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pressure, wind and so on [Andersson and Thépaut, 2010]. Hence, values of meteorolog-

ical variables are transformed into top of the atmosphere radiances in order to compare

the model output with the observations. In this case, the operator Hi is nonlinear and

complicated. Approximations made when mapping the state variables to the observation

space, different spatial and temporal scales between the model and some observations

(observations may give information at a finer resolution than the model), and prepro-

cessing, or quality control, of the observations (see, e.g., Section 5.8 of [Kalnay, 2002])

comprise the representativity error [Janjić et al., 2018]. The observation error is made up

of the representativity error combined with the error arising due to the limited precision

of the measurements. It is assumed to be Gaussian with zero mean and covariance matrix

Ri ∈ Rqi×qi . The observation errors are assumed to be uncorrelated in time [Lawless,

2013].

5.3.1 Weak constraint 4D-Var

In weak constraint 4D-Var, the analysis xa0,x
a
1, . . . ,x

a
N is obtained by minimising the

following nonlinear cost function

J(x0,x1, . . . ,xN ) =
1

2
(x0 − xb)TB−1(x0 − xb) +

1

2

N∑
i=0

(yi −Hi(xi))TR−1
i (yi −Hi(xi))

(5.2)

+
1

2

N−1∑
i=0

(xi+1 −Mi(xi))
TQ−1

i+1(xi+1 −Mi(xi)).

This cost function is referred to as the state control variable formulation. Here, the control

variables are defined as the variables with respect to which the cost function is minimised,

i.e. x0,x1, . . . ,xN in (5.2). Choosing different control variables and obtaining different

formulations of the cost function is possible [Trémolet, 2006]. If the model is assumed to

have no errors (i.e. xi+1 =Mi(xi)), the cost function simplifies as the last term in (5.2) is

removed; this is called strong constraint 4D-Var. Rejecting this perfect model assumption

and using weak constraint 4D-Var may lead to a better analysis [Trémolet, 2007].

Iterative gradient-based optimisation methods are used in practical data assimilation

[Talagrand, 2010, Lawless, 2013]. These require the cost function and its gradient to be

evaluated at every iteration. In operational applications, integrating the model over the

assimilation window to evaluate the cost function is computationally expensive. The gra-

dient is obtained by the adjoint method (see, e.g., Section 2 of [Lawless, 2013] and Section

3.2 of [Talagrand, 2010] for an introduction), which is a few times more computationally

expensive than evaluating the cost function. This makes the minimisation of the nonlin-

ear weak constraint 4D-Var cost function impractical. Hence, approximations have to be

made. We introduce such an approach in the following section.
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5.3.2 Incremental formulation

Minimisation of the 4D-Var cost function in an operational setting is made feasible by

employing an iterative Gauss-Newton method, as first proposed by [Courtier et al., 1994]

for the strong constraint 4D-Var. In this approach, the solution of the weak constraint

4D-Var is approximated by solving a sequence of linearised problems, i.e. the (l + 1)th

approximation of the state is

x
(l+1)
i = x

(l)
i + δx

(l)
i , i ∈ {0, 1, . . . , N}, (5.3)

where δx
(l)
i is obtained as the minimiser of the linearised cost function

Jδ(δx
(l)
0 , δx

(l)
1 , . . . , δx

(l)
N ) = (δx

(l)
0 − b̂(l))TB−1(δx

(l)
0 − b̂(l)) (5.4)

+
1

2

N∑
i=0

(H
(l)
i δx

(l)
i − d

(l)
i )TR−1

i (H
(l)
i δx

(l)
i − d

(l)
i )

+
1

2

N−1∑
i=0

(M
(l)
i δx

(l)
i − δx

(l)
i+1 − η

(l)
i+1)TQ−1

i+1(M
(l)
i δx

(l)
i − δx

(l)
i+1 − η

(l)
i+1),

where b̂(l) = xb−x
(l)
0 , d

(l)
i = yi−Hi(x(l)

i ), η
(l)
i = x

(l)
i −Mi−1(x

(l)
i−1) (as in (5.1)) and M

(l)
i

and H
(l)
i are the modelMi and the observation operatorHi, respectively, linearised at x

(l)
i .

Minimisation of (5.4) is called the inner loop. The lth outer loop consists of updating the

approximation of the state (5.3), linearising the model Mi and the observation operator

Hi, and computing the values b̂(l), d
(l)
i and η

(l)
i . This cost function is quadratic, which

allows the use of effective minimisation techniques, such as conjugate gradient (see Chapter

5 of [Nocedal and Wright, 2006]). In NWP, the computational cost of minimising the 4D-

Var cost function is reduced by using a version of the inner loop cost function that is

defined for a model with lower spatial resolution, i.e., on a coarser grid [Fisher, 1998].

We do not consider such an approach in the subsequent work, because our results on the

change of the spectra of the coefficient matrices and the bounds (that are introduced in

the following section) hold for models with any spatial resolution.

For ease of notation, we introduce the following four-dimensional (in the sense that

they contain information in space and time) vectors and matrices.

x(l) =


x

(l)
0

x
(l)
1
...

x
(l)
N

 , δx(l) =


δx

(l)
0

δx
(l)
1
...

δx
(l)
N

 ,b(l) =


b̂(l)

−η(l)
1

...

−η(l)
N

 , d(l) =


y0 −H0(x

(l)
0 )

y1 −H1(x
(l)
1 )

...

yN −HN (x
(l)
N )

 ,

where x(l), δx(l),b(l) ∈ R(N+1)n and d(l) ∈ Rq, q = ΣN
i=0qi. We also define the matrices

L(l) =



I

−M
(l)
0 I

−M
(l)
1 I

. . .
. . .

−M
(l)
N−1 I


, H(l) =


H

(l)
0

H
(l)
1

. . .

H
(l)
N

 ,
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where I ∈ Rn×n is the identity matrix, L(l) ∈ R(N+1)n×(N+1)n and H(l) ∈ Rq×(N+1)n. We

define the block diagonal covariance matrices

D =


B

Q1

. . .

QN

 and R =


R0

R1

. . .

RN

 ,

D ∈ R(N+1)n×(N+1)n and R ∈ Rq×q. The state update (5.3) may then be written as

x(l+1) = x(l) + δx(l), (5.5)

and the quadratic cost function (5.4) becomes

Jδ(δx(l)) =
1

2
||L(l)δx(l) − b(l)||2D−1 +

1

2
||H(l)δx(l) − d(l)||2R−1 , (5.6)

where ||a||2A−1 = aTA−1a. We omit the superscript (l) for the outer iteration in the

subsequent discussions. The minimum of (5.6) can be found by solving linear systems.

We discuss different formulations of these in the next three subsections.

3× 3 block saddle point formulation

In pursuance of exploiting parallel computations in data assimilation, [Fisher and Gürol,

2017] proposed obtaining the state increment δx by solving a saddle point system (see also

[Freitag and Green, 2018]). New variables are introduced

λ = D−1(b− Lδx) ∈ R(N+1)n, (5.7)

µ = R−1(d−Hδx) ∈ Rq. (5.8)

The gradient of the cost function (5.6) with respect to δx provides the optimality constraint

0 =LTD−1(Lδx− b) + HTR−1(Hδx− d) (5.9)

=− (LTλ+ HTµ). (5.10)

Multiplying (5.7) by D and (5.8) by R together with (5.10), yields a coupled linear system

of equations:

A3


λ

µ

δx

 =


b

d

0

 , (5.11)

where the coefficient matrix is given by

A3 =


D 0 L

0 R H

LT HT 0

 ∈ R(2(N+1)n+q)×(2(N+1)n+q). (5.12)

A3 is a sparse symmetric indefinite saddle point matrix that has a 3 × 3 block form.

Such systems are explored in the optimization literature [Greif et al., 2014, Morini et al.,
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2016, Morini et al., 2017]. When solving these systems iteratively, it is usually assumed

that calculations involving the blocks on the diagonal are computationally expensive, while

the off-diagonal blocks are cheap to apply and easily approximated. However, in our

application, operations with the diagonal blocks are relatively cheap and the off-diagonal

blocks are computationally expensive, particularly because of the integrations of the model

and its adjoint in L and LT .

Recall that the sizes of the blocks R, H and HT depend on the number of observations

q. Thus, the size of A3 and possibly some of its characteristics are also affected by q. The

saddle point systems that arise in different outer loops vary in the right hand sides and

the linearisation states of L and H.

Because of the memory requirements of sparse direct solvers, they cannot be used to

solve the 3 × 3 block saddle point systems that arise in an operational setting. Iterative

solvers (such as MINRES, SYMMLQ [Paige and Saunders, 1975], GMRES [Saad and

Schultz, 1986]) need to be used. These Krylov subspace methods require matrix-vector

products with A3 at each iteration. Note that the matrix-vector product A3q, qT =

(qT1 ,q
T
2 ,q

T
3 ), q1,q3 ∈ R(N+1)n,q2 ∈ Rq, involves multiplying D and LT by q1, R and HT

by q2, and L and H by q3. These matrix-vector products may be performed in parallel.

Furthermore, multiplication of each component of each block matrix with the respective

part of the vector qi can be performed in parallel. The possibility of multiplying a vector

with the blocks in L and LT in parallel is particularly attractive, because the expensive

operations involving the linearised model Mi and its adjoint MT
i can be done at the same

time for every i ∈ {0, 1, . . . , N − 1}.

2× 2 block saddle point formulation

The saddle point systems with 3 × 3 block coefficient matrices that arise from interior

point methods are often reduced to 2× 2 block systems [Greif et al., 2014, Morini et al.,

2017]. The 2×2 block formulation has not been used in data assimilation before. Because

of its smaller size, it may be advantageous. Therefore, we now explore using this approach

in the weak constraint 4D-Var setting.

Multiplying equation (5.7) by D and eliminating µ in (5.10) gives the following equiv-

alent system of equations

A2

(
λ

δx

)
=

(
b

−HTR−1d

)
, (5.13)

where

A2 =

(
D L

LT −HTR−1H

)
∈ R2(N+1)n×2(N+1)n. (5.14)

The reduced matrix A2 is a sparse symmetric indefinite saddle point matrix with a

2×2 block form. Unlike the 3×3 block matrix A3, its size is independent of the number of

observations. A2 involves the matrix R−1, which is usually available in data assimilation

applications. The computationally most expensive blocks L and LT are again the off-

diagonal blocks.
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Solving (5.13) in parallel might be less appealing compared to solving (5.11) in parallel:

for a Krylov subspace method, the (2, 2) block −HTR−1H need not be formed separately,

that is, only operators to perform the matrix-vector products with HT , R−1 and H need

to be stored. Hence, a matrix-vector product A2q, qT = (qT1 ,q
T
3 ), q1,q3 ∈ R(N+1)n,

requires multiplying D and LT by q1, L and H by q3 (which may be done in parallel)

and subsequently R−1 by Hq3, followed by −HT by R−1Hq3. Hence, the cost of matrix-

vector products for the 3 × 3 and 2 × 2 block formulations differs in that the former

needs matrix-vector products with R while the latter requires products with R−1, and

the 2 × 2 block formulation requires some sequential calculations. However, notice that

the expensive calculations that involve applying the operators L and LT (the linearised

model and its adjoint) can still be performed in parallel.

1× 1 block formulation

The 2 × 2 block system can be further reduced to a 1 × 1 block system, that is, to the

standard formulation (see, e.g., [Trémolet, 2006] and [El-Said, 2015] for a more detailed

consideration):

(LTD−1L + HTR−1H)δx = LTD−1b + HTR−1d. (5.15)

Observe that the coefficient matrix

A1 = LTD−1L + HTR−1H (5.16)

= (LT HT )

(
D−1 0

0 R−1

)(
L

H

)

is the negative Schur complement of

(
D 0

0 R

)
in A3. The matrix A1 is block tridiagonal

and symmetric positive definite, hence the conjugate gradient method by [Hestenes and

Stiefel, 1952] can be used. The computations with the linearised model in L at every time

step can again be performed in parallel. However, the adjoint of the linearised model in

LT can only be applied after the computations with the model are finished, thus limiting

the potential for parallelism.

5.4 Eigenvalues of the saddle point formulations

One factor that influences the rate of convergence of Krylov subspace iterative solvers for

symmetric systems is the spectrum of the coefficient matrix (see, for example, Section 9

in the survey paper of [Benzi et al., 2005] and Lectures 35 and 38 in the textbook by

[Trefethen and Bau, III, 1997] for a discussion). [Simoncini and Szyld, 2013] have shown

that any eigenvalues of the saddle point systems that lie close to zero can cause the iterative

solver MINRES to stagnate for a number of iterations while the rate of convergence can

improve if the eigenvalues are clustered.

In the following, we examine how the eigenvalues of the block matrices A3, A2, and

A1 change when new observations are added. This is done by considering the shift in
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the extreme eigenvalues of these matrices, that is the smallest and largest positive and

negative eigenvalues. We then present bounds for the eigenvalues of these matrices.

5.4.1 Preliminaries

In order to determine how changing the number of observations influences the spectra of

A3, A2, and A1, we explore the extreme singular values and eigenvalues of some blocks in

A3, A2 and A1. We state two theorems that we will require. Here, we employ the notation

λk(A) to denote the kth largest eigenvalue of a matrix A and subscripts min and max

are used to denote the smallest and largest eigenvalues, respectively.

Theorem 5.1 (See Section 8.1.2 of [Golub and Van Loan, 2013]). If A and C are n× n
Hermitian matrices, then

λk(A) + λmin(C) ≤ λk(A + C) ≤ λk(A) + λmax(C), k ∈ {1, 2, . . . , n}.

Theorem 5.2 (Cauchy’s Interlace Theorem, see Theorem 4.2 in Chapter 4 of [Stewart

and Sun, 1990]). If A is an n×n Hermitian matrix and C is a (n− 1)× (n− 1) principal

submatrix of A (a matrix obtained by eliminating a row and a corresponding column of

A), then

λn(A) ≤ λn−1(C) ≤ λn−1(A) ≤ · · · ≤ λ2(A) ≤ λ1(C) ≤ λ1(A).

In the following lemmas we describe how the smallest and largest singular values of

(LT HT ) (here L and H are as defined in Section 5.3.2) and the extreme eigenvalues of

the observation error covariance matrix R change when new observations are introduced.

The same is done for the largest eigenvalues of HTR−1H assuming that R is diagonal. In

these lemmas the subscript k ∈ {0, 1, . . . , (N + 1)n − 1} denotes the number of available

observations and the subscript k+1 indicates that a new observation is added to the system

with k observations, i.e. matrices Rk ∈ Rk×k and Hk ∈ Rk×(N+1)n correspond to a system

with k observations and Rk+1 and Hk+1 correspond to the system with an additional

observation. We write Rk+1 =

(
Rk r

rT α

)
and Hk+1 =

(
Hk

hTk+1

)
, where r ∈ Rk, α ∈ R1,

α > 0 and hk+1 ∈ R(N+1)n correspond to the new observation.

Lemma 5.3. Let ωmin and ωmax be the smallest and largest singular values of (LT HT
k ),

and φmin and φmax be the smallest and largest singular values of (LT HT
k+1). Then

ω2
min ≤ φ2

min and ω2
max ≤ φ2

max

i.e. the smallest and largest singular values of (LT HT ) increase or are unchanged when

new observations are added.

Proof. We consider the eigenvalues of LTL + HT
kHk and LTL + HT

k+1Hk+1, which are the

squares of the singular values of (LT HT
k ) and (LT HT

k+1), respectively (see Section 2.4.2

of [Golub and Van Loan, 2013]). We can write

HT
k+1Hk+1 =

(
HT
k hk+1

)( Hk

hTk+1

)
= HT

kHk + hk+1h
T
k+1.
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Then by Theorem 5.1,

ω2
min + λmin(hk+1h

T
k+1) ≤ φ2

min, k ∈ {0, 1, . . . , (N + 1)n− 1},

and since hk+1h
T
k+1 is a rank 1 symmetric positive semi-definite matrix, λmin(hk+1h

T
k+1) =

0.

The proof for the largest singular values is analogous.

Lemma 5.4. Consider the observation error covariance matrices Rk ∈ Rk×k and Rk+1 ∈
R(k+1)×(k+1). Then

λmin(Rk+1) ≤ λmin(Rk) and λmax(Rk) ≤ λmax(Rk+1), k ∈ {0, 1, . . . , (N + 1)n− 1},

i.e. the largest (respectively, smallest) eigenvalue of R increases (respectively, decreases),

or is unchanged when new observations are introduced.

Proof. When adding an observation, a row and a corresponding column are appended to

Rk while the other entries of Rk are unchanged. The result is immediate by applying

Theorem 5.2.

Lemma 5.5. If the observation errors are uncorrelated, i.e. R is diagonal, then

λmax(HT
kR−1

k Hk) ≤ λmax(HT
k+1R

−1
k+1Hk+1), k ∈ {0, 1, . . . , (N + 1)n− 1},

i.e. for diagonal R, the largest eigenvalue of HTR−1H increases or is unchanged when

new observations are introduced.

Proof. The proof is similar to that of Lemma 5.3. For diagonal Rk+1:

R−1
k+1 =

(
R−1
k

α−1

)
, α > 0.

Then

HT
k+1R

−1
k+1Hk+1 =

(
HT
k hk+1

)(R−1
k

α−1

)(
Hk

hTk+1

)
= HT

kR−1
k Hk + α−1hk+1h

T
k+1.

Hence, by Theorem 5.1,

λmax(HT
kR−1

k Hk) + α−1λmin(hk+1h
T
k+1) ≤ λmax(HT

k+1R
−1
k+1Hk+1),

k ∈ {0, 1, . . . , (N + 1)n− 1}, (5.17)

and since λmin(hk+1h
T
k+1) = 0 the result is proved.

Notation

In the following, we use the notation given in Table 5.1 for the eigenvalues of A3, A2 and

A1, and the eigenvalues and singular values of the blocks within them. We use subscripts

min andmax to denote the smallest and largest eigenvalues or singular values, respectively,
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Matrix A3 A2 A1 D HTR−1H R

Eigenvalue γi ζi χi ψi νi ρi

Matrix (LT HT ) L

Singular value θi σi

Table 5.1: Notation for the eigenvalues and singular values.

and θmin denote the smallest non-zero singular value of (LT HT ). In addition, || · ||
denotes the L2 norm.

We also use

τmin = min{ψmin, ρmin}, (5.18)

τmax = max{ψmax, ρmax}. (5.19)

5.4.2 Bounds for the 3× 3 block formulation

To determine the numbers of positive and negative eigenvalues of A3 given in (5.12), we

write A3 as a congruence transformation

A3 =


D 0 L

0 R H

LT HT 0



=


D 0 0

0 R 0

LT HT I




D−1 0 0

0 R−1 0

0 0 −LTD−1L−HTR−1H




D 0 L

0 R H

0 0 I


=L̂B̂L̂T ,

where I ∈ R(N+1)n×(N+1)n is the identity matrix. Thus, by Sylvester’s law of inertia (see

Section 8.1.5 of [Golub and Van Loan, 2013]), A3 and B̂ have the same inertia, that is, the

same number of positive, negative, and zero eigenvalues. Since the blocks D−1, R−1 and

LTD−1L + HTR−1H = A1 are symmetric positive definite matrices, A3 has (N + 1)n+ q

positive and (N + 1)n negative eigenvalues. In the following theorem, we explore how the

extreme eigenvalues of A3 change when new observations are introduced.

Theorem 5.6. The smallest and largest negative eigenvalues of A3 either move away

from zero or are unchanged when new observations are introduced. The same holds for

the largest positive eigenvalue, while the smallest positive eigenvalue approaches zero or is

unchanged.

Proof. Let A3,k denote A3 where q = k. To account for an additional observation, a row

and a corresponding column is added to A3, hence A3,k is a principal submatrix of A3,k+1.

Let

λ−(N+1)n(A3,k) ≤ λ−((N+1)n−1)(A3,k) ≤ · · · ≤ λ−1(A3,k) < 0, (5.20)

0 < λ1(A3,k) ≤ · · · ≤ λ(N+1)n+k(A3,k) (5.21)
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be the eigenvalues of A3,k, and

λ−(N+1)n(A3,k+1) ≤ λ−((N+1)n−1)(A3,k+1) ≤ · · · ≤ λ−1(A3,k+1) < 0, (5.22)

0 < λ1(A3,k+1) ≤ · · · ≤ λ(N+1)n+k+1(A3,k+1) (5.23)

be the eigenvalues of A3,k+1. Then by Theorem 5.2:

smallest negative eigenvalues : λ−(N+1)n(A3,k+1) ≤ λ−(N+1)n(A3,k),

largest negative eigenvalues : λ−1(A3,k+1) ≤ λ−1(A3,k),

smallest positive eigenvalues : λ1(A3,k+1) ≤ λ1(A3,k),

largest positive eigenvalues : λ(N+1)n+k(A3,k) ≤ λ(N+1)n+k+1(A3,k+1).

To obtain information on not only how the eigenvalues of A3 change because of new

observations, but also on where the eigenvalues lie when the number of observations is

fixed, we formulate intervals for the negative and positive eigenvalues of A3.

Theorem 5.7. The negative eigenvalues of A3 lie in the interval

I− =
[1

2

(
τmin −

√
τ2
min + 4θ2

max

)
,
1

2

(
τmax −

√
τ2
max + 4θ2

min

)]
(5.24)

and the positive eigenvalues lie in the interval

I+ =
[
τmin,

1

2

(
τmax +

√
τ2
max + 4θ2

max

)]
, (5.25)

where τmin, τmax, and θi are defined in (5.18), (5.19), and Table 5.1.

Proof. Lemma 2.1 of [Rusten and Winther, 1992] gives eigenvalue intervals for matrices

of the form A =

(
C E

ET 0

)
. Applying these intervals in the case C =

(
D 0

0 R

)
and

ET =
(

LT HT
)

yields the required results.

We present two corollaries that describe how the bounds in Theorem 5.7 change if

additional observations are introduced and conclude that the change of the bounds is

consistent with the results in Theorem 5.6.

Corollary 5.8. The interval for the positive eigenvalues of A3 in (5.25) either expands

or is unchanged when new observations are added.

Proof. First, consider the positive upper bound 1
2

(
τmax +

√
τ2
max + 4θ2

max

)
. By Lemma

5.3, θ2
max increases or is unchanged when additional observations are included. If τmax =

ρmax, the same holds for τmax (by Lemma 5.4). If τmax = ψmax, changing the number

of observations does not affect τmax. Hence, the positive upper bound increases or is

unchanged.

The positive lower bound τmin is unaltered if τmin = ψmin. If τmin = ρmin, the bound

decreases or is unchanged by Lemma 5.4.
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Corollary 5.9. If τmax = ψmax, the upper bound for the negative eigenvalues of A3 in

(5.24) is either unchanged or moves away from zero when new observations are added. If

τmin = ψmin, the same holds for the lower bound for negative eigenvalues in (5.24).

Proof. The results follow from the facts that ψmax and ψmin do not change if observations

are added, whereas θmin and θmax increase or are unchanged by Lemma 5.3.

If τmax = ρmax or τmin = ρmin, it is unclear how the interval for the negative eigenvalues

in (5.24) changes, because
√
τ2
min + 4θ2

max can increase, decrease or be unchanged, and

both τmax and
√
τ2
max + 4θ2

min can increase or be unchanged.

5.4.3 Bounds for the 2× 2 block formulation

A2 given in (5.14) is equal to the following congruence transformation

A2 =

(
D L

LT −HTR−1H

)
=

(
D 0

LT I

)(
D−1 0

0 −LTD−1L−HTR−1H

)(
D L

0 I

)
,

(5.26)

where I ∈ R(N+1)n×(N+1)n is the identity matrix. Then by Sylvester’s law, A2 has (N+1)n

positive and (N + 1)n negative eigenvalues. The change of the extreme negative and

positive eigenvalues of A2 due to the additional observations is analysed in the subsequent

theorem. However, the result holds only in the case of uncorrelated observation errors,

unlike the general analysis for A3 in Theorem 5.6.

Theorem 5.10. If the observation errors are uncorrelated, i.e., R is diagonal, then the

smallest and largest negative eigenvalues of A2 either move away from zero or are un-

changed when new observations are added. Contrarily, the smallest and largest positive

eigenvalues of A2 approach zero or are unchanged.

Proof. Matrices D and L do not depend on the number of observations. In Lemma 5.5,

we have shown that HT
k+1R

−1
k+1Hk+1 = HT

kR−1
k Hk + α−1hk+1h

T
k+1, (α > 0) for diagonal

R. Hence, when A2,k denotes A2 with q = k, we can write

A2,k+1 = A2,k +

(
0 0

0 −α−1hk+1h
T
k+1

)
= A2,k + E2,

where E2 has negative and zero eigenvalues. Let

λ−(N+1)n(A2,k) ≤ · · · ≤ λ−1(A2,k) < 0 < λ1(A2,k) ≤ · · · ≤ λ(N+1)n(A2,k)

be the eigenvalues of A2,k, and

λ−(N+1)n(A2,k+1) ≤ · · · ≤ λ−1(A2,k+1) < 0 < λ1(A2,k+1) ≤ · · · ≤ λ(N+1)n(A2,k+1)

be the eigenvalues of A2,k+1. By Theorem 5.1,
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smallest negative eigenvalues :

λ−(N+1)n(A2,k)− α−1λmax(hk+1h
T
k+1) ≤ λ−(N+1)n(A2,k+1) ≤ λ−(N+1)n(A2,k),

largest negative eigenvalues :

λ−1(A2,k)− α−1λmax(hk+1h
T
k+1) ≤ λ−1(A2,k+1) ≤ λ−1(A2,k),

smallest positive eigenvalues :

λ1(A2,k)− α−1λmax(hk+1h
T
k+1) ≤ λ1(A2,k+1) ≤ λ1(A2,k),

largest positive eigenvalues :

λ(N+1)n(A2,k)− α−1λmax(hk+1h
T
k+1) ≤ λ(N+1)n(A2,k+1) ≤ λ(N+1)n(A2,k).

We further search for the intervals in which the negative and positive eigenvalues of

A2 lie. We follow a similar line of thought as in [Silvester and Wathen, 1994], with the

energy arguments for any non-zero vector w ∈ R(N+1)n

ψmin||w||2 ≤ wTDw ≤ ψmax||w||2, (5.27)

−νmax||w||2 ≤ −wTHTR−1Hw ≤ −νmin||w||2, (5.28)

σmin||w|| ≤ ||LTw|| ≤ σmax||w||, (5.29)

θmin||w|| ≤ ||(LT HT )Tw|| ≤ θmax||w||. (5.30)

Theorem 5.11. The negative eigenvalues of A2 lie in the interval

I− =

[
1

2

(
ψmin − νmax −

√
(ψmin + νmax)2 + 4σ2

max

)
,min {β1,max {β2, β3}}

]
, (5.31)

where

β1 =
1

2

(
ψmax − νmin −

√
(ψmax + νmin)2 + 4σ2

min

)
, (5.32)

β2 = −ρ−1
maxθ

2
min, (5.33)

β3 =
1

2

(
ψmax −

√
ψ2
max + 4θ2

min

)
, (5.34)

and the positive ones lie in the interval

I+ =
[
I

(1)
+ , I

(2)
+

]
, (5.35)

where

I
(1)
+ =

1

2

(
ψmin − νmax +

√
(ψmin + νmax)2 + 4σ2

min

)
, (5.36)

I
(2)
+ =

1

2

(
ψmax − νmin +

√
(ψmax + νmin)2 + 4σ2

max

)
. (5.37)

Proof. Assume that (uT ,vT )T , u,v ∈ R(N+1)n is an eigenvector of A2 with an eigenvalue

ζ. Then the eigenvalue equations are

Du + Lv = ζu, (5.38)

LTu−HTR−1Hv = ζv. (5.39)
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We note that if u = 0 then v = 0 by (5.38) and if v = 0 then u = 0 by (5.39). Hence,

u,v 6= 0.

First, we consider ζ > 0. Equation (5.39) gives v = (Iζ + HTR−1H)−1LTu, where

I ∈ R(N+1)n×(N+1)n. The matrix Iζ + HTR−1H is positive definite, hence nonsingular.

We multiply (5.38) by uT and use the previous expression for v to get

uTDu + uTL(Iζ + HTR−1H)−1LTu = ζ||u||2. (5.40)

The eigenvalues of (Iζ+HTR−1H)−1 in increasing order are (ζ+νmax)−1, . . . , (ζ+νmin)−1.

Then

uTL(Iζ + HTR−1H)−1LTu ≥ 1

ζ + νmax
||LTu||2 (5.41)

≥ 1

ζ + νmax
σ2
min||u||2 [by (5.29)]. (5.42)

Hence, this inequality together with (5.27) and (5.40) gives

ζ||u||2 ≥ ψmin||u||2 +
1

ζ + νmax
σ2
min||u||2 (5.43)

and solving

ζ2 + (νmax − ψmin)ζ − ψminνmax − σ2
min ≥ 0 (5.44)

results in

ζ ≥ 1

2

(
ψmin − νmax +

√
(ψmin + νmax)2 + 4σ2

min

)
. (5.45)

Similarly, using the upper bound from (5.27) and employing (5.40) yields the upper

bound

ζ ≤ 1

2

(
ψmax − νmin +

√
(ψmax + νmin)2 + 4σ2

max

)
. (5.46)

Now consider the case ζ < 0. Since D− ζI is positive definite, from (5.38)

u = −(D− ζI)−1Lv. (5.47)

Using this expression and multiplying (5.39) by vT gives

− ζ||v||2 = vTLT (D− ζI(N+1)n)−1Lv + vTHTR−1Hv. (5.48)

Then using (5.28), (5.29) and the fact that the smallest eigenvalue of (D−ζI)−1 is (ψmax−
ζ)−1 results in inequality

− ζ||v||2 ≥ σ2
min||v||2

1

ψmax − ζ
+ νmin||v||2, (5.49)

which can be expressed as

ζ2 − (ψmax − νmin)ζ − νminψmax − σ2
min ≥ 0, (5.50)

and its solution gives the upper bound

ζ ≤ 1

2

(
ψmax − νmin −

√
(ψmax + νmin)2 + 4σ2

min

)
= β1. (5.51)
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Notice that the bound (5.51) takes into account information on observations only if

the system is fully observed. Otherwise, q < (N + 1)n and νmin = 0.

We obtain an alternative upper bound for the negative eigenvalues, that depends on the

observational information and might be useful for the fully observed case, too. Equation

(5.48) may be written as

− ζ||v||2 = vT (LT HT )

(
(D− ζI)−1 0

0 R−1

)(
L

H

)
v. (5.52)

Eigenvalues of the 2 × 2 block matrix in the previous equation are the eigenvalues of

(D− ζI)−1 and R−1. Thus, by an energy argument (5.27),

−ζ||v||2 ≥ min{ρ−1
max, (−ζ + ψmax)−1}||(LT HT )Tv||2 (5.53)

≥ min{ρ−1
max, (−ζ + ψmax)−1}θ2

min||v||2 [by (5.30)]. (5.54)

Hence,

ζ ≤ −θ2
minι, (5.55)

where ι = min{ρ−1
max, (−ζ + ψmax)−1}. If ι = ρ−1

max, the upper bound is

ζ ≤ −ρ−1
maxθ

2
min = β2. (5.56)

If ι = (−ζ + ψmax)−1, the following inequality

ζ2 − ψmaxζ − θ2
min ≥ 0 (5.57)

gives the bound

ζ ≤ 1

2

(
ψmax −

√
ψ2
max + 4θ2

min

)
= β3. (5.58)

Hence,

ζ ≤ max{β2, β3}. (5.59)

The required upper bound follows from (5.51) and (5.59)

Next, we obtain the lower bound for the negative eigenvalues. Using equation (5.48)

with the largest eigenvalue of (D− ζI)−1 and other parts of (5.28) and (5.29) yields

−ζ||v||2 ≤ σ2
max||v||2

1

ψmin − ζ
+ νmax||v||2.

Solving

ζ2 − (ψmin − νmax)ζ − νmaxψmin − σ2
max ≤ 0

results in

ζ ≥ 1

2

(
ψmin − νmax −

√
(ψmin + νmax)2 + 4σ2

max

)
.

We observe that if the system is not fully observed, then q < (N + 1)n and νmin = 0,

and the upper bound for the positive eigenvalues and the upper bound for the negative

eigenvalues (5.32) in Theorem 5.11 reduces to (2.11) and (2.13) of [Silvester and Wathen,

1994].
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We are interested in how the bounds in Theorem 5.11 change if additional observations

are introduced. The change to the upper negative bound in (5.31) depends on which of

(5.32), (5.33) or (5.34) gives the bound. Hence, in Corollary 5.12 we comment on when

(5.34) is larger than (5.33) and Corollary 5.13 describes a setting when the negative upper

bound is given by (5.34).

Corollary 5.12.

max{β2, β3} = β3 ⇐⇒ 1

2
(ψmax +

√
ψ2
max + θ2

min) ≥ ρmax.

Proof. max{β2, β3} = β3 if and only if

1

2

(
ψmax −

√
ψ2
max + 4θ2

min

)
≥ −ρ−1

maxθ
2
min.

Rearranging this inequality gives

ψmax + 2ρ−1
maxθ

2
min ≥

√
ψ2
max + 4θ2

min.

Squaring both sides with further rearrangement results in

θ2
min(ρ−1

maxψmax + ρ−2
maxθ

2
min − 1) ≥ 0.

Since θ2
min > 0, this is equivalent to

ρ2
max − ρmaxψmax − θ2

min ≤ 0,

from which it follows that

ρmax ≤
1

2

(
ψmax +

√
ψ2
max + 4θ2

min

)
.

Corollary 5.12 can be used to check if the assumption in the following corollary holds.

Corollary 5.13. If the system is not fully observed and max{β2, β3} = β3, then the upper

bound for the negative eigenvalues of A2 is given by (5.34).

Proof. The singular values of L and (LT HT ) are the square roots of the eigenvalues of

LTL and LTL + HTH, respectively. Hence, by Theorem 5.1,

σ2
min + λmin(HTH) ≤ θ2

min,

where λmin(HTH) ≥ 0, since HTH is symmetric positive semi-definite. Also, if q <

(N + 1)n, then HTR−1H is singular, that is, νmin = 0, and from (5.32) and (5.34)

β1 =
1

2

(
ψmax −

√
ψ2
max + 4σ2

min

)
≥ 1

2

(
ψmax −

√
ψ2
max + 4θ2

min

)
= β3 = max{β2, β3}.

We further describe how the negative upper bound changes if it is given by (5.32) or

(5.34), including the case described in Corollary 5.13.
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Corollary 5.14. If the upper bound for the negative eigenvalues of A2 in (5.31) is given by

β1 or β3, then the bound moves away from zero or stays the same when new observations

are added.

Proof. β1 does not change while the system is not fully observed. When the system

becomes fully observed, νmin > 0 and β1 decreases. β3 decreases or stays the same by

Lemma 5.3.

Note that if the negative upper bound in (5.31) is given by β2, it is unclear how the

bound changes with the number of observations, since both ρmax and θ2
min increase or

stay the same. The same is true for the positive bounds in (5.35). Only νmax and νmin

depend on the available observations and they are contained in elements with positive and

negative signs.

The result in Corollary 5.14 that applies for A2 with a general R is consistent with

the result in Theorem 5.10 that considers A2 with a diagonal R. The same holds for the

result in the following corollary, that determines how the lower bound for the negative

eigenvalues of A2 changes in the special case of uncorrelated observational errors.

Corollary 5.15. If the observation error covariance matrix R is diagonal, the negative

lower bound in (5.31) moves away from zero or stays the same when additional observations

are introduced.

Proof. The result follows by applying Lemma 5.5 to see how νmax changes.

In the following corollary, we consider the intervals for the positive eigenvalues of A3

and A2 with a fixed number of observations. It suggests that we may expect the positive

eigenvalues of A2 to be more clustered than those of A3.

Corollary 5.16. The interval for the positive eigenvalues of A2 is contained in the interval

for the positive eigenvalues of A3, i.e.[1

2

(
ψmin − νmax +

√
(ψmin + νmax)2 + 4σ2

min

)
,

1

2

(
ψmax − νmin +

√
(ψmax + νmin)2 + 4σ2

max

)]
⊆[

τmin,
1

2

(
τmax +

√
τ2max + 4θ2max

)]
.

Proof. As observed in Corollary 5.13,

σ2
max + λmin(HTH) ≤ θ2

max, (5.60)

with λmin(HTH) ≥ 0. Also, by definition τmax ≥ ψmax and the following inequality for

the upper bound for the positive eigenvalues of A3 holds

1

2

(
τmax +

√
τ2
max + 4θ2

max

)
≥ 1

2

(
ψmax +

√
ψ2
max + 4θ2

max

)
. (5.61)

Thus, we show that the upper bound for positive eigenvalues of A3 is larger than the upper

bound for positive eigenvalues of A2:

1

2

(
ψmax +

√
ψ2
max + 4θ2

max

)
≥ 1

2

(
ψmax − νmin +

√
(ψmax + νmin)2 + 4σ2

max

)
⇐⇒ νmin +

√
ψ2
max + 4θ2

max ≥
√

(ψmax + νmin)2 + 4σ2
max (5.62)
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(squaring both sides and simplifying)

⇐⇒ 2θ2
max + νmin

√
ψ2
max + 4θ2

max ≥ ψmaxνmin + 2σ2
max (5.63)

(rearranging)

⇐⇒ 2(θ2
max − σ2

max) ≥ νmin(ψmax −
√
ψ2
max + 4θ2

max). (5.64)

Inequality (5.64) always holds because the left hand side is positive and the right hand

side is negative.

We also show that the lower bound for the positive eigenvalues of A3 is smaller than

the lower bound for the positive eigenvalues of A2:

τmin ≤
1

2

(
ψmin − νmax +

√
(ψmin + νmax)2 + 4σ2

min

)
. (5.65)

Note that by definition τmin ≤ ψmin and the following inequality always holds

ψmin ≤
1

2

(
ψmin − νmax +

√
(ψmin + νmax)2 + 4σ2

min

)
, (5.66)

because it can be simplified to

ψmin + νmax ≤
√

(ψmin + νmax)2 + 4σ2
min (5.67)

(squaring both sides) ⇐⇒ (ψmin + νmax)2 ≤ (ψmin + νmax)2 + 4σ2
min (5.68)

⇐⇒ 0 ≤ 4σ2
min. (5.69)

5.4.4 Bounds for the 1× 1 block formulation

The system matrix A1 given by (5.16) is symmetric positive definite and so its eigenvalues

are positive. We determine how these change due to additional observations when the

observation errors are uncorrelated (as for the extreme eigenvalues of A2 in Theorem 5.10).

Theorem 5.17. If the observation errors are uncorrelated, i.e. R is diagonal, then the

eigenvalues of A1 move away from zero or are unchanged when new observations are added.

Proof. Let A1,k denote A1 where q = k. Then A1,k+1 = LTD−1L + HT
k+1R

−1
k+1Hk+1 =

A1,k + α−1hk+1h
T
k+1. The result follows by applying Theorem 5.1.

We formulate spectral bounds for A1 that depend on the largest and smallest eigen-

values of D and R, and the largest and smallest singular values of (LT HT ).

Theorem 5.18. The eigenvalues of A1 lie in the interval

I+ =
[
θ2
min/τmax, θ

2
max/τmin

]
, (5.70)

where θi and τi are defined in Table 5.1, and (5.18) and (5.19).
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Proof. Assume that u ∈ R(N+1)n is an eigenvector of A1. Then the eigenvalue equation

premultiplied by uT can be written as

χ||u||2 = uT (LT HT )

(
D−1 0

0 R−1

)(
L

H

)
u, (5.71)

where χ is an eigenvalue of A1. The smallest and largest eigenvalues of

(
D−1 0

0 R−1

)
are τ−1

max and τ−1
min, respectively. The bounds follow from the following inequalities that

are obtained using (5.30):

χ||u||2 ≥ τ−1
maxu

T (LT HT )

(
L

H

)
u ≥ τ−1

maxθ
2
min||u||2, (5.72)

χ||u||2 ≤ τ−1
minu

T (LT HT )

(
L

H

)
u ≤ τ−1

minθ
2
max||u||2. (5.73)

The following corollary explains how the upper bound for the eigenvalues of A1 changes

with the addition of new observations. This result that applies for A1 with a general R is

consistent with Theorem 5.17 that considers A1 with a diagonal R.

Corollary 5.19. The upper bound in Theorem 5.18 moves away from zero or is unchanged

when new observations are added.

Proof. If τmin = ρmin, τmin decreases by Lemma 5.4. Otherwise τmin does not change.

The result follows by applying Lemma 5.3 to determine the change to θmax.

It is unclear how the lower bound in Theorem 5.18 changes with respect to the number

of observations, because both the numerator and denominator grow or stay unchanged by

Lemmas 5.3 and 5.4, respectively.

5.4.5 Alternative bounds

Alternative eigenvalue bounds for symmetric saddle point matrices have been formulated

by [Axelsson and Neytcheva, 2006]. These depend on the eigenvalues of the matrices

LTD−1L, R, D and A1, and

ξ = max{|λi(A−1/2
1 LTD−1LA−1/2

1 )|, i = 1, . . . , (N + 1)n}.

Theorem 5.20 (From Theorem 1 (c) of [Axelsson and Neytcheva, 2006]). The negative

eigenvalues of A3 lie in the interval

I− =

[
1

2

(
τmax −

√
τ2
max + 4τmaxλmax(A1)

)
,
1

2

(
τmin −

√
τ2
min + 4τminλmin(A1)

)]
(5.74)

and the positive ones lie in the interval

I+ =

[
τmin,

1

2

(
τmax +

√
τ2
max + 4τmaxλmax(A1)

)]
. (5.75)
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Note that the lower bound for the positive eigenvalues in Theorem 5.20 is the same as

in Theorem 5.7.

Theorem 5.21 (From Theorem 1 (a) and (b) of [Axelsson and Neytcheva, 2006]). The

negative eigenvalues of A2 lie in the interval

I− =

−λmax(A1),
−λmin(A1)

1 + ξλmin(A1)
ψmin

 , (5.76)

and the positive ones lie in the interval

I+ =

[
ψmin,

1

2

(
ψmax +

√
ψ2
max + 4ψmaxλmax(LTD−1L)

)]
. (5.77)

We observe that the bound (5.77) for the positive eigenvalues, unlike our bound in

Theorem 5.11, is independent of the number of observations. Also, in practical applications

it may not be possible to compute the upper bound for the negative eigenvalues because

of the ξ term.

5.5 Numerical Experiments

5.5.1 System setup

We present results of numerical experiments using the Lorenz 96 model [Lorenz, 1996],

where the state of the system at time ti is xi = (X1
i , X

2
i , . . . , X

n
i )T and the evolution of

xi components Xj , j ∈ {1, 2, . . . , n}, is governed by a set of n coupled ODEs:

dXj

dt
= −Xj−2Xj−1 +Xj−1Xj+1 −Xj + F,

where X−1 = Xn−1, X0 = Xn and Xn+1 = X1. This model is continuous in time and

discrete in space. We assume that X1, X2 . . . , Xn are equally spaced on a periodic domain

of length one and take the space increment to be ∆X = 1/n. We require the linearisation

of this model M
(l)
i , i ∈ {0, . . . , N − 1} to define A3, A2 and A1. In our experiments, we

set n = 40 and F = 8, since the system shows chaotic behaviour with the latter value.

The equations are integrated using a fourth order Runge-Kutta scheme [Butcher, 1987].

The time step is set to ∆t = 2.5× 10−2 and the system is run for N = 15 time steps.

The assimilation system is set up for so-called identical twin experiments, by which

synthetic data are generated using the same model as is used in the assimilation. We

generate a reference, or “true”, model trajectory xt by running the Lorenz 96 model over

the time window from prescribed initial conditions and with prescribed Gaussian model

errors ηi. An initial background state xb and observations yi at each time ti are then

generated by adding Gaussian noise to xt. Assimilation experiments are run using this

background state and observations, assuming that the true state is unknown. The error

covariance matrices that are used to generate the model error in xt and the observation

error in yi are also used for the assimilation, i.e. in the 3 × 3 block, 2 × 2 block and

1 × 1 block matrices. These error covariance matrices do not change over time. The
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observation error covariance matrix is Ri = σ2
oIqi , where qi is the number of observations

at time ti, (diagonal Ri is a common choice in data assimilation experiments [Freitag

and Green, 2018, Gratton et al., 2018a]) and the model error covariance matrix is equal

to the background error covariance matrix Qi = B = σ2
bCb, where Cb is a second-order

auto-regressive correlation matrix [Daley, 1993] with correlation length scale 1.5 × 10−2.

We have also performed numerical experiments with Qi = σ2
qCq 6= B, where Cq is a

Laplacian correlation matrix [Johnson et al., 2005], and σq and σb vary by a factor of two.

We observed similar results to those presented here. In our experiments, the parameters

are chosen so that the observations are close to the real values of the variables, and the

background and the model errors are low, in particular, we set σo = 10−1, which is about

5% of the mean of the values in xt, and σb = 5×10−2. yi consists of direct observations of

the variables Xj , j ∈ {1, 2, . . . , n} at time ti, hence the observation operator Hi is linear.

All computations are performed using Matlab R2016b. In particular, the eigenvalues

are computed using the Matlab function eig. If only extreme eigenvalues are needed, eigs

is used, and the extreme singular values are given by svds.

5.5.2 Eigenvalue bounds

We present numerically calculated eigenvalue bounds and eigenvalues of A3, A2 and A1

and illustrate their change with the number of observations and the quality of the spectral

estimates, presented in Section 5.4. We consider the following observation networks that

have different numbers of observations (q =
∑N

i=0 qi):

a) 1 observation at the final time t15,

b) 20 observations, observing every eighth model variable at every fourth time step (at

times t3, t7, t11, t15),

c) 80 observations, observing every fourth model variable at every second time step (at

times t1, t3, t5, t7, t9, t11, t13, t15),

d) 160 observations, observing every second model variable at every second time step

(at the same times as in observation network c)),

e) 320 observations, observing every second model variable at every time step,

f) 640 observations, fully observed system.

In Figure 5.1, we plot the eigenvalues of the matrices A3, A2, and A1 together with

the bounds from Theorems 5.7, 5.11, and 5.18, respectively, for each of the observation

networks a-f. In these experiments, as expected from Theorem 5.6, as the number of ob-

servations increases, the smallest and largest negative and the largest positive eigenvalues

of A3 move away from zero and the smallest positive eigenvalue approaches zero. Also, as

determined in Corollary 5.8, the upper bound for the positive eigenvalues of A3 presented

in Figure 5.1a grows and the lower bound stays the same (because the eigenvalues of R do

not change) when more observations are added. The change is too small to observe in the
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(a) (b)

(c) (d)

(e)

Figure 5.1: Semilogarithmic plots of the positive and negative eigenvalues of the matrices

A3 ((a) and (b)) and A2 ((c) and (d)), and the positive eigenvalues of A1 in (e) for the

different observation networks (a-f). Eigenvalues are denoted with merged blue dots. The

filled black squares mark the bounds for eigenvalues of A3 in Theorem 5.7, A2 in Theorem

5.11, and A1 in Theorem 5.18. Note that the smallest negative eigenvalues of A2 coincide

with the bounds.

plots, hence we report the extreme eigenvalues of A3 and the intervals from Theorem 5.7

for the networks a), c), e) and f) in Table 5.2. Moreover, the negative bounds for the

eigenvalues of A3 in Figure 5.1b move away from zero. This agrees with Corollary 5.9,

because here τmin = ψmin. However, in this setting τmax = ρmax and the same Corollary

cannot be used to explain the change to the upper bound. In general, the outer bounds

(the largest positive and the smallest negative) for the eigenvalues of A3 are tight and the

inner bounds (the smallest positive and the largest negative) get tighter as the number of
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observations increases.

The positive eigenvalues of A2 displayed in Figure 5.1c approach zero as observations

are added, whereas the negative eigenvalues in Figure 5.1d move away from it. This is

consistent with Theorem 5.10, which holds for this experiment because we have chosen

diagonal R. The lower bounds for the positive and negative eigenvalues of A2 stay the

same when the observation network is changed. In these bounds only νmax (the largest

eigenvalue of HTR−1H) depends on the observations. In our experiments, νmax does not

change because of our choice of H and R. The constant negative lower bound is consistent

with Corollary 5.15. The numerical values of the intervals from Theorem 5.11 and of the

extreme eigenvalues of A2 for the networks a), c), e) and f) are presented in Table 5.3.

The upper positive bound moves towards zero when the system becomes fully observed

and is constant for the other networks, because the smallest eigenvalue νmin of HTR−1H

is nonzero only for the fully observed system. The negative upper bound for the spectrum

of A2 is given by β1 in (5.32) for the fully observed system and β3 in (5.34) otherwise,

and moves away from zero, in agreement with Corollary 5.14. Notice that the eigenvalue

bounds are tight. Also, the numerical results confirm the statement of Corollary 5.16 that

the interval for the positive eigenvalues of A3 contains the bounds for positive eigenvalues

of A2.

Note that A2 has q distinct eigenvalues that coincide with the negative lower bound in

the plots. The distinct eigenvalues are explained by the bounds for individual eigenvalues

in Corollary 5.26 in Appendix 5.7, because in our experiments HTR−1H has eigenvalues

that are equal to σ−2
o = 102 and the largest singular value σmax of L is less than 10. Hence,

there are q eigenvalues of A2 in the interval [−110,−90] and (N + 1)n− q eigenvalues no

further than 10 from zero.

The eigenvalues of A1 and their bounds presented in Figure 5.1e move away from zero

when more observations are used. This is as expected, because Theorem 5.17 holds for

our choice of diagonal R. The variation of the bounds is explained by the fact that with

our choice of R values of τmin and τmax do not change, and θmin and θmax grow. Such

behaviour of the upper bound agrees with Corollary 5.19. However, as can be seen in

Table 5.4 the upper value of the intervals in Theorem 5.18 are too pessimistic.

Better eigenvalue clustering away from zero when more observations are used can speed

up the convergence of iterative solvers when solving the 1×1 block formulation. However,

nothing definite can be said about the 3×3 block and 2×2 block formulations: the negative

eigenvalues become more clustered, but the smallest positive eigenvalues approach zero

when new observations are introduced.

We also calculate the alternative eigenvalue bounds given in Theorems 5.20 and 5.21.

With the choice of parameters and observations considered in this section, the bounds

given in these theorems are not as sharp as those in Theorems 5.7 and 5.11. However, this

is not always the case, as is illustrated in Tables 5.5 and 5.6. Here σo = 1.5, σb = 1 and

the observation network d) is used.
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O.n. I− Eigenvalues

a) [−2.193,−2.66× 10−2] [−2.192,−2.99× 10−2]

c) [−2.249,−5.88× 10−2] [−2.247,−6.18× 10−2]

e) [−2.360,−1.28× 10−1] [−2.358,−1.31× 10−1]

f) [−2.410,−9.96× 10−1] [−2.408,−9.96× 10−1]

O.n. I+ Eigenvalues

a) [5.93× 10−4, 2.198] [3.56× 10−3, 2.195]

c) [5.93× 10−4, 2.254] [1.70× 10−3, 2.251]

e) [5.93× 10−4, 2.365] [1.13× 10−3, 2.362]

f) [5.93× 10−4, 2.416] [9.14× 10−4, 2.413]

Table 5.2: Computed spectral intervals and extreme eigenvalues of A3 from Theorem 5.7

for different observation networks (O.n.).

O.n. I− Eigenvalues

a) [−1.0005× 102,−2.83× 10−2] [−1.0001× 102,−2.99× 10−2]

c) [−1.0005× 102,−6.07× 10−2] [−1.0002× 102,−6.50× 10−2]

e) [−1.0005× 102,−1.29× 10−1] [−1.0004× 102,−1.33× 10−1]

f) [−1.0005× 102,−1.00× 102] [−1.0005× 102,−1.00× 102]

O.n. I+ Eigenvalues

a) [6.03× 10−4, 2.196] [3.91× 10−3, 2.195]

c) [6.03× 10−4, 2.196] [1.78× 10−3, 2.148]

e) [6.03× 10−4, 2.196] [1.15× 10−3, 2.101]

f) [6.03× 10−4, 5.42× 10−2] [9.35× 10−4, 5.15× 10−2]

Table 5.3: Computed spectral intervals and extreme eigenvalues of A2 from Theorem 5.11

for different observation networks (O.n.).

O.n. I+ Eigenvalues

a) [9.72× 10−2, 8.11× 103] [3.23× 10−1, 6.30× 103]

c) [4.05× 10−1, 8.53× 103] [1.16, 6.32× 103]

e) [1.75, 9.40× 103] [5.21, 6.35× 103]

f) [1.00× 102, 9.80× 103] [1.00× 102, 6.40× 103]

Table 5.4: Computed spectral intervals and extreme eigenvalues of A1 from Theorem 5.18

with different observation networks (O.n.).
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Eigenvalues of A3 Bounds from Th. 5.7 Bounds from Th. 5.20

[−1.93,−1.38× 10−2] [−2.17,−5.83× 10−3] [−5.10,−1.33× 10−2]

[2.98× 10−1, 3.59] [2.37× 10−1, 3.81] [2.37× 10−1, 7.53]

Table 5.5: Computed spectral intervals and extreme eigenvalues of A3 from Theorems 5.7

and 5.20 for observation network d) with σo = 1.5 and σb = 1.

Eigenvalues of A2 Bounds from Th. 5.11 Bounds from Th. 5.21

[−1.97,−1.39× 10−2] [−2.33,−5.83× 10−3] [−15.79,−1.33× 10−2]

[3.00× 10−1, 3.51] [2.38× 10−1, 3.74] [2.37× 10−1, 7.51]

Table 5.6: Computed spectral intervals and extreme eigenvalues of A2 from Theorems 5.11

and 5.21 for observation network d) with σo = 1.5 and σb = 1.

5.5.3 Solving the systems

We solve the 3×3 block, 2×2 block, and 1×1 block systems with the coefficient matrices

discussed in the previous subsection, and the right hand sides defined in (5.11), (5.13), and

(5.15), respectively. The saddle point systems are solved with MINRES and the symmetric

positive definite systems are solved with CG. The relative residual at the jth iteration of

the iterative method is defined as ||rj ||/||r0||, where || · || is the L2 norm and rj is the

residual on iteration j. The iterative method terminates after 400 iterations or when the

relative residual reaches 10−4. The initial guess is taken to be the zero vector.

In Figure 5.2, we plot the relative residuals. Note that the residual reaches 10−4 in

the fully observed case (observation network f)) when solving each of the systems and

convergence is most rapid in this case. This is expected because of the clustering of the

eigenvalues. The convergence rates are similar for networks d and e, which is consistent

with Figure 5.1. The convergence of MINRES for the observation network a) with a single

observation is not explained by the spectra of A3 and A2. However, the convergence in

other cases agrees with our eigenvalue analysis.

5.6 Conclusions

Weak constraint 4D-Var data assimilation requires the minimisation of a cost function

in order to obtain an estimate of the state of a dynamical system. Its solution can be

approximated by solving a series of linear systems. We have analysed three different

formulations of these systems, namely the standard system with 1 × 1 block symmetric

positive definite coefficient matrix A1, a new system with a 2 × 2 block saddle point

coefficient matrix A2, and the version with 3× 3 block saddle point coefficient matrix A3

of [Fisher and Gürol, 2017]. We have focused on the dependency of the coefficient matrices

on the number of observations.

We have found that the spectra of A3, A2 and A1 are sensitive to the number of

observations and examined how they change when new observations are added. The results
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Figure 5.2: Semilogarithmic plots of the relative residual of MINRES when solving the

3× 3 block (a) and 2× 2 block (b) systems, and the relative residual of CG when solving

the 1× 1 block (c) system for different observation networks (a-f).

hold with any choice of the blocks in A3, whereas we can only make inference about the

change of the spectra of A2 and A1 for uncorrelated observation errors (diagonal R). We

have shown that the negative eigenvalues of both A3 and A2 move away from zero or are

unchanged when observations are added. The smallest and largest positive eigenvalues

of A2, as well as the smallest positive eigenvalue of A3, approach zero or are unchanged,

whereas the largest positive eigenvalue of A3 moves away from zero or is unchanged.

The smallest and largest eigenvalues of A1 move away from zero or are unchanged. The

extreme eigenvalues may cause convergence problems for Krylov subspace solvers, hence

we may expect the small positive eigenvalues of A2 and A3 to cause these issues when

new observations are added. We summarise these results together with the properties of

the three systems in Table 5.7.

We have used the work of [Rusten and Winther, 1992] to determine the bounds for

the spectrum of A3 and derived novel bounds for the spectral intervals of the saddle point

matrix A2 and the positive definite matrix A1. We have observed that the change to the

intervals due to new observations is consistent with the change of the extreme eigenvalues

of the matrices. Our numerical experiments agree with these findings. In general, the

bounds for the saddle point matrices are tight whereas the upper bounds for the positive

definite matrix are too pessimistic.



5.6. CONCLUSIONS 91

A3 A2 A1

Type Symmetric indefinite Symmetric indefinite
Symmetric positive

definite

Iterative solver MINRES/SYMMLQ MINRES/SYMMLQ CG

Order 2(N + 1)n+ q 2(N + 1)n (N + 1)n

D−1 needed No No Yes

R−1 needed No Yes Yes

Sequential matrix

products
None HTR−1H

LTD−1L,

HTR−1H

Eigenvalues that may

move towards zero

with new observations

Smallest positive Positive* None*

Eigenvalues that may

move away from zero

with new observations

Largest positive,

negative
Negative* All*

Table 5.7: A summary of the properties of the 3 × 3 block, 2 × 2 block, and 1 × 1 block

systems. * applies to systems with diagonal R.

Our numerical experiments show slow convergence, particularly with a few observa-

tions, and the need for preconditioning is evident. Previous work on the 3×3 block saddle

point system considered iteratively solving the problem when inexact constraint precondi-

tioners of [Bergamaschi et al., 2007] are used (see, [Fisher and Gürol, 2017], [Freitag and

Green, 2018], [Gratton et al., 2018a]). It was shown that such a preconditioning approach

is not optimal and further research into effective preconditioning is still an open question.

Preconditioning may transform the coefficient matrix into a non-normal one with GMRES

as an iterative solver of choice. Although the spectrum of a non-normal matrix may not

be enough to describe the convergence of GMRES [Greenbaum et al., 1996], [Benzi et al.,

2005] claim that fast convergence often appears if the spectrum is clustered away from

the origin. Hence, a better understanding of the spectrum of A3, A2 and A1 may help

in finding a suitable preconditioner for these matrices. We suggest that including the

information on observations coming from the observation error covariance matrix R and

the linearised observation operator H could be beneficial for preconditioning, given that

the spectra of all the considered matrices depend on the observations. A design of such

preconditioners that are cheap to construct and apply is an interesting area for future

research.
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5.7 Appendix: Bounds for individual eigenvalues of A3 and

A2

We derive bounds for the individual eigenvalues of A3 and A2 (Theorems 5.24 and 5.25,

respectively). First, we state two theorems that are used in deriving these bounds. The

notation of Table 5.1 is used.

Theorem 5.22 (See Theorem 3 in [Silvester, 2000]). If A =

(
C E

F G

)
, C,E,F,G ∈

Rn×n, and FG = GF, then

det(A) = det(CG−EF).

Theorem 5.23 (Jordan-Wielandt Theorem, see Theorem 4.2 in Chapter 1 of [Stewart

and Sun, 1990]). Let

UHAV =

(
Σ 0

0 0

)
, Σ = diag(σ1, · · · , σn)

be the singular value decomposition of A ∈ Cm×n, m ≥ n. Then the eigenvalues of the

matrix

C =

(
0 A

AH 0

)

are ±σ1, · · · ,±σn, corresponding to the eigenvectors

(
ui

±vi

)
, i = 1, · · · , n, where ui and

vi are the i-th columns of U and V, respectively. C also has m− n zero eigenvalues with

eigenvectors

(
ui

0

)
, i = n+ 1, · · · ,m.

Theorem 5.24. Let ωi, i = 1, . . . , (N+1)n+q be the i-th value in {ψk, ρj |k = 1, . . . , (N+

1)n, j = 1, . . . , q} (the set of eigenvalues of D and R). Then the kth eigenvalue of A3 is

bounded by

positive eigenvalues: ωk − θmax ≤ γk ≤ ωk + θmax, k = 1, . . . , (N + 1)n+ q,

(5.78)

negative eigenvalues: − θmax ≤ γk+(N+1)n+p < 0, k = 1, . . . , (N + 1)n.

(5.79)

Proof. We can write A3 as a sum of two symmetric matrices:

A3 =


D 0 L

0 R H

LT HT 0

 =


D 0 0

0 R 0

0 0 0

+


0 0 L

0 0 H

LT HT 0

 = S3x3
D + S3x3

L . (5.80)



5.8. SUMMARY 93

The spectrum of S3x3
D is the union of the eigenvalues of D, R and zeros. By Theo-

rem 5.23, the eigenvalues λ of the indefinite matrix S3x3
L are the singular values of (LT HT )

with plus and minus signs, thus λmin = −θmax and λmax = θmax.

The result follows from applying Theorem 5.1 to the matrices S3x3
D and S3x3

L .

Theorem 5.25. The eigenvalues of A2 are bounded by

positive eigenvalues: ψk − σmax ≤ ζk ≤ ψk + σmax, k = 1, . . . , (N + 1)n.

negative eigenvalues: − νk − σmax ≤ ζk+(N+1)n ≤ −νk + σmax, k = 1, . . . , (N + 1)n,

(5.81)

Proof. As in Theorem 5.24, we express A2 as a sum of two symmetric matrices

A2 =

(
D 0

0 −HTR−1H

)
+

(
0 L

LT 0

)
= S2x2

D + S2x2
L . (5.82)

The rest of the proof is analogous to that of Theorem 5.24.

Corollary 5.26. If there are q < (N + 1)n observations, (5.81) in Theorem 5.25 becomes

−σmax ≤ζk+(N+1)n ≤ 0, k = 1, . . . , (N + 1)n− q, (5.83)

−νk − σmax ≤ζk+2(N+1)n−q < −νk + σmax, k = 1, . . . , q. (5.84)

Proof. The result follows from noticing that −HTR−1H has (N+1)n−q zero eigenvalues.

5.8 Summary

We provided eigenvalue bounds for the coefficient matrices in the state formulation. The

bounds for the eigenvalues of the saddle point systems are tight, but the bounds for

the SPD coefficient matrix are pessimistic. The sensitivity of the extreme eigenvalues of

the coefficient matrices to adding new observations was explored. These results hold for

general observation error covariance matrices for the 3× 3 block saddle point matrix, and

for the 2×2 block and SPD matrices with diagonal observation error covariance matrices,

that is, when the errors in different observations are uncorrelated. The smallest positive

eigenvalue of the 3× 3 block and the smallest and largest positive eigenvalues of the 2× 2

block matrices move towards zero or are unchanged when new observations are added.

The small eigenvalues may cause convergence issues, and they should be addressed when

designing the preconditioning (see Chapter 7). The other extreme eigenvalues of the saddle

point and SPD matrices move away from zero or stay unchanged.

The SPD system may become easier to solve when the number of observations is

increased because of the smallest eigenvalues moving away from zero, and may require

different preconditioning strategies than when the number of observations is small. We

explore a way to precondition the SPD system in the next chapter.



Chapter 6

First level preconditioning for the

SPD state formulation

We tackle the research question 3 in this chapter by using a randomised SVD to approxi-

mate the CVT technique. This allows preserving the time-parallelism. We want to know

if such preconditioning is useful in the beginning of the iterative process. If yes, does

it depend on the number of observations and their errors? Should we incorporate the

background and model error information when generating the preconditioner?

This chapter, except the appendix in Section 6.7 and the summary in Section 6.8, is

based on the paper: Daužickaitė, I., Lawless, A.S., Scott, J.A. and van Leeuwen, P.J.

(2021) On time-parallel preconditioning for the state formulation of incremental weak

constraint 4D-Var. Quarterly Journal of the Royal Meteorological Society, 147(740), 3521

- 3529.

6.1 Abstract

Using a high degree of parallelism is essential for the efficient performance of data as-

similation. The state formulation of the incremental weak constraint four-dimensional

variational data assimilation method allows parallel calculations in the time dimension.

In this approach, the solution is approximated by minimising a series of quadratic cost

functions using the conjugate gradient method. To use this method in practice, effective

preconditioning strategies that maintain the potential for parallel calculations are needed.

We examine approximations to the control variable transform (CVT) technique when the

latter is beneficial. The new strategy employs a randomised singular value decomposition

and retains the potential for parallelism in the time domain. Numerical results for the

Lorenz 96 model show that this approach accelerates the minimisation in the first few

iterations, with better results when CVT performs well.

94
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6.2 Introduction

The ever increasing resolution of weather models enhances the importance of parallelisation

in data assimilation. Higher potential for parallel computations can be achieved by using

suitable data assimilation methods. The state formulation of the weak constraint 4D-

Var method, which allows for the model error, is such a method. In its incremental

version, a series of quadratic cost functions is minimised via solving a series of linear

systems containing the Hessian of the linearised cost function. These are solved with the

conjugate gradient (CG) method (e.g., [Saad, 2003]), where the most computationally

expensive part is integrating the tangent linear model and its adjoint. It has been shown

that these calculations can be parallelised in the time dimension [Fisher and Gürol, 2017].

However, CG needs preconditioning for fast convergence. Efficient preconditioning for

the state formulation of incremental weak constraint 4D-Var, which also preserves the

potential for parallel in time calculations, is still an open question. By analogy with the

standard preconditioning technique (also known as a control variable transform or first

level preconditioning) used in strong constraint 4D-Var, [Fisher and Gürol, 2017] suggested

using approximations of the tangent linear model. Their search for a suitable approxima-

tion was unsuccessful. Our investigation in this paper reveals that preconditioning using

the exact tangent linear model can be detrimental to the minimisation in some cases. We

focus on approximations in the case when using the exact tangent linear model works well.

In the light of the growing popularity of randomised methods and examples of their use

in data assimilation [Bousserez et al., 2020, Daužickaitė et al., 2021b], we propose using a

randomised singular value decomposition (RSVD) [Halko et al., 2011] to approximate the

tangent linear model. RSVD is a block method that is easy to parallelise in the sense that it

requires calculating matrix products with blocks of vectors. Because [Lawless et al., 2008]

showed that it is important to take into account the information on the background errors

when using model reduction techniques in data assimilation, we also examine an approach

where we approximate the tangent linear model in interaction with the background and

model error covariance matrices.

We formulate the incremental weak constraint 4D-Var problem and discuss its pre-

conditioning in Section 6.3. Our idea for randomised preconditioning is presented in Sec-

tion 6.4. Numerical experiments exploring preconditioning using the exact tangent linear

model and its low-rank approximation obtained using RSVD are presented in Section 6.5

and we summarize our findings and suggest future directions in Section 6.6.

6.3 Incremental weak constraint 4D-Var

In data assimilation, the prior estimate of a model trajectory is combined with observations

over a time window to obtain an improved estimate of the state (analysis) xa0,x
a
1, . . . ,x

a
N

at times t0, t1, . . . , tN . The prior estimate of the state at t0 is called the background and

is denoted by xb ∈ Rn and the observations at time ti are denoted by yi ∈ Rqi . The state

variables xi are mapped to the observation space using an observation operator Hi. The
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nonlinear dynamical model Mi describes the state evolution from time ti to ti+1. It is

assumed that the background, observations, and model have Gaussian errors with zero

mean and covariance matrices B ∈ Rn×n, Ri ∈ Rqi×qi , and Qi ∈ Rn×n, respectively. We

assume that the observation and model errors are uncorrelated in time.

In the state formulation of weak constraint 4D-Var, the analysis is the minimiser of

the nonlinear cost function

J(x0,x1, . . . ,xN ) =
1

2
‖x0−xb‖2B−1 +

1

2

N∑
i=0

‖yi−Hi(xi)‖2R−1
i

+
1

2

N−1∑
i=0

‖xi+1−Mi(xi)‖2Q−1
i+1
,

(6.1)

where ‖a‖2A = aTAa [Trémolet, 2006].

The minimiser of (6.1) can be approximated using an inexact Gauss-Newton algo-

rithm [Gratton et al., 2007]. In this incremental approach, the (j + 1)th approximation

x(j+1) = (x
(j+1)T
0 ,x

(j+1)T
1 , . . . ,x

(j+1)T
N )T ∈ R(N+1)n of the state is

x(j+1) = x(j) + δx(j), (6.2)

where the update is δx(j) = (δx
(j)T
0 , δx

(j)T
1 , . . . , δx

(j)T
N )T ∈ R(N+1)n. Mi and Hi are the

model and observation operators linearised at xi; they are known as the tangent linear

model and tangent linear observation operator, respectively. We define the following

matrices (following [Gratton et al., 2018b])

L(j) =



I

−M
(j)
0 I

−M
(j)
1 I

. . .
. . .

−M
(j)
N−1 I


∈ R(N+1)n×(N+1)n, (6.3)

H(j) = diag(H
(j)
0 ,H

(j)
1 , . . . ,H

(j)
N ) ∈ Rq×(N+1)n, (6.4)

D = diag(B,Q1, . . . ,QN ) ∈ R(N+1)n×(N+1)n, (6.5)

R = diag(R0,R1, . . . ,RN ) ∈ Rq×q, (6.6)

where I ∈ Rn×n is the identity matrix, diag(·) denotes a block diagonal matrix and q =

ΣN
i=0qi is the total number of observations. We use the following notation for vectors

b(j) =


xb − x

(j)
0

M0(x
(j)
0 )− x

(j)
1

...

MN−1(x
(j)
N−1)− x

(j)
N

 ∈ R(N+1)n, (6.7)

d(j) =


y0 −H0(x

(j)
0 )

y1 −H1(x
(j)
1 )

...

yN −HN (x
(j)
N )

 ∈ Rq. (6.8)
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The update δx(j) is the minimiser of

Jδ(δx(j)) =
1

2
||L(j)δx(j) − b(j)||2D−1 +

1

2
||H(j)δx(j) − d(j)||2R−1 . (6.9)

Because (6.9) is a quadratic cost function, δx(j) can be found by solving the following

large linear systems with the Hessian A(j) of Jδ(δx(j)):

A(j)δx(j) =(LT )(j)D−1b(j) + (HT )(j)R−1d(j), (6.10)

where A(j) =(LT )(j)D−1L(j) + (HT )(j)R−1H(j). (6.11)

It is assumed that q � (N+1)n, thus (HT )(j)R−1H(j) is symmetric positive semi-definite.

Because (LT )(j)D−1L(j) is symmetric positive definite, A(j) ∈ R(N+1)n×(N+1)n is symmet-

ric positive definite. Hence the method of choice for solving (6.10) is CG. Each iteration

of CG requires one matrix-vector product with A(j), which is expensive due to the tan-

gent linear model and its adjoint in L(j) and (LT )(j), respectively. [Fisher and Gürol,

2017] noted that the structure of L(j) allows the matrix-vector products with A(j) to be

parallelised in the time dimension, that is, computation of L(j)z, where z ∈ R(N+1)n, can

be parallelised for the model linearised at different times. In the rest of this paper, the

superscript (j) is omitted for ease of notation.

In general, CG needs preconditioning for fast convergence. Efficient preconditioning

maps the system to another system that can be solved faster and the solution of the

original problem can be easily recovered from the solution of the preconditioned problem.

Choosing a suitable preconditioner is highly problem dependent. Given the possibility

of parallel computations in matrix-vector products with (6.11), the preconditioner should

keep this potential.

6.3.1 Preconditioning

We consider an extension of the control variable transform, also known as a first level

preconditioning, that is used in 3D-Var, where the model evolution is omitted, and in the

strong constraint formulation of 4D-Var, where the model is assumed to have no error

(see, e.g., [Lorenc et al., 2000, Rawlins et al., 2007, Lawless, 2013]). The idea is to apply

the preconditioner so that the first term of the preconditioned Hessian is equal to identity.

Then the preconditioned Hessian is a sum of the identity matrix and a low-rank symmetric

positive semi-definite matrix with rank at most q. Its smallest eigenvalue is equal to one

and it has at most q eigenvalues that are larger than one. The latter can impair CG

convergence if they are not well separated (for a more general discussion see, for example,

[Nocedal and Wright, 2006, Liesen and Strakoš, 2013]).

Applying this kind of preconditioning to the state formulation of weak constraint 4D-
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Var requires preconditioning with L−1D1/2, where

L−1 =



I

M0,0 I

M0,1 M1,1 I
...

...
. . .

. . .

M0,N−1 M1,N−1 · · · MN−1,N−1 I


(6.12)

and Mi,j = Mj . . .Mi denotes the linearised model integration from time ti to tj+1.

Matrix-vector products with L−1 are sequential in the time dimension, i.e.,

L−1z =



z0

M0z0 + z1

M1(M0z0 + z1) + z2

...

MN−1(MN−2 . . .M0z0 + MN−2 . . .M1z1 + · · ·+ zN−1) + zN


, (6.13)

where z = (zT0 , z
T
1 , . . . , z

T
N )T . [Fisher and Gürol, 2017] suggested using an approximation

L̃−1 of L−1 in the preconditioner. Then the preconditioned system to be solved is

Aprδx̃ = D1/2L̃−T (LTD−1b + HTR−1d), (6.14)

where Apr = D1/2L̃−T (LTD−1L + HTR−1H)L̃−1D1/2, (6.15)

L̃−1D1/2δx̃ = δx. (6.16)

With an appropriate choice of L̃−1, Apr is symmetric positive definite. L̃−1 should be

chosen so that it can be applied in parallel. Fisher and Gürol could not find a suitable

approximation that would guarantee good convergence. [Gratton et al., 2018a, Gratton

et al., 2018b] discussed using L̃−1 where Mi is set to zero or to the identity matrix in

(6.12), which may be useful if the model state does not change significantly from one time

step to the next. This may be unrealistic. We propose a new approximation strategy that

avoids this assumption in the next section.

6.4 Randomised preconditioning

Randomised methods for low-rank matrix approximations have attracted a lot of inter-

est in recent years because they require matrix products with blocks of vectors that can

be easily parallelised and it has been shown that good approximations for matrices with

rapidly decaying singular values can be obtained with high probability (e.g., [Halko et al.,

2011], [Martinsson and Tropp, 2020]). These methods have been explored in data assim-

ilation when designing solvers for strong constraint 4D-Var [Bousserez et al., 2020] and

preconditioning for the forcing formulation of the incremental weak constraint 4D-Var

[Daužickaitė et al., 2021b].
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A low-rank approximation of L−1 cannot be used in (6.14), because it would make

(6.15) low-rank and thus singular. Hence, we suggest exploiting the structure of L−1

when generating the preconditioner. We write

L−1 = I + P, (6.17)

where P is a strictly lower triangular matrix (with 0 on the diagonal). We propose us-

ing a rank k approximation P̃ = UΣVT , where k is small compared to (N + 1)n and

U,V ∈ R(N+1)n×k, Σ ∈ Rk×k is a truncated singular value decomposition, that is, Σ is

diagonal with approximations to the k largest singular values of P on the diagonal, and

the columns of U and V are approximate left and right singular vectors, respectively.

Then a nonsingular L̃−1 is

L̃−1 = I + P̃ = I + UΣVT . (6.18)

An RSVD can be used to obtain P̃. RSVD is essentially one iteration of a classic sub-

space iteration method [Gu, 2015]. To increase the probability of success, the randomised

methods work with larger subspaces than the required rank of the approximation. This

is called oversampling. [Halko et al., 2011] indicate that setting the oversampling param-

eter l to five or ten generally gives good results. We present the RSVD in Algorithm 12.

The entries of the Gaussian random matrix are independent standard normal random vari-

ables. Note that we remove the smallest l computed singular values and the corresponding

singular vectors. In this way the oversampling increases the cost of generating the pre-

conditioner (in particular, the cost of the matrix-matrix products in steps 2 and 4 ), but

not of its application. RSVD needs two expensive matrix-matrix products with P (steps 2

and 4 in Algorithm 12), where P is multiplied with a matrix of size (N + 1)n × (k + l).

For efficiency, these can be parallelised. These matrix-matrix products consist of prod-

ucts with Mi,j . Hence, the cost of generating the preconditioner depends on the cost of

integrating the tangent linear model over the assimilation window sequentially.

[Lawless et al., 2008] showed that including the background error covariance matrix

when using model reduction methods may lead to better results. Hence, we also explore

using an approximation of

S = L−1D1/2 =
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1/2 Q

1/2
1
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1/2
1 Q

1/2
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1/2 M1,N−1Q

1/2
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1/2
N−1 Q

1/2
N


.

(6.19)

As when approximating L−1, we write

S = D1/2 + W, (6.20)

where W is strictly lower triangular. Approximation S̃ = D1/2 + W̃ can be obtained

by using RSVD to generate a low-rank approximation of W. The system to be solved is

(6.14) with L̃−1D1/2 replaced by S̃.
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Algorithm 12 Randomised singular value decomposition (RSVD)

Input: matrix A ∈ Rs×s, target rank k, an oversampling parameter l

Output: orthogonal U ∈ Rs×k and V ∈ Rs×k whose columns are approximations to

left and right singular vectors of A, respectively, and diagonal Σ ∈ Rk×k with approxima-

tions to the largest singular values of A

1: Form a Gaussian random matrix G ∈ Rs×(k+l)

2: Form a sample matrix Y = AG ∈ Rs×(k+l)

3: Orthonormalize the columns of Y to obtain orthonormal Z ∈ Rs×(k+l)

4: Form K = ZTA ∈ R(k+l)×s

5: Form SVD of K : K = ÛΣVT , where Û, Σ ∈ R(k+l)×(k+l), V ∈ Rs×(k+l)

6: Remove last l columns and rows of Σ, so that Σ ∈ Rk×k

7: Remove last l columns of Û and V, so that Û ∈ R(k+l)×k,V ∈ Rs×k

8: Form U = ZÛ ∈ Rs×k.

6.5 Numerical results

We test preconditioning using L−1 and the approximations L̃−1 and S̃ in (6.14) numer-

ically. Preconditioning using the exact L−1 is considered so that we understand when

preconditioning using L̃−1 or S̃ may be effective but this is not regarded as a practical

approach when parallelisation in the time dimension is desired. Identical twin experi-

ments are performed. The background state xb is generated by adding random, Gaussian

noise with covariance B to xt0, where xti is the reference state at time ti. We use direct

observations that are obtained by adding random, Gaussian noise with covariance Ri to

Hi(xti).
The nonlinear Lorenz 96 model [Lorenz, 1996] is used, where the dynamics of xi =

(X1, . . . , Xn)T are described by a set of n coupled ODEs:

dXj

dt
= −Xj−2Xj−1 +Xj−1Xj+1 −Xj + F (6.21)

with conditions X−1 = Xn−1, X0 = Xn and Xn+1 = X1 and F = 8. We use a fourth

order Runge-Kutta scheme [Butcher, 1987]. We consider the system with n = 100 and

N = 149, so Apr is a 15000× 15000 matrix. The time step is set to ∆t = 2.5× 10−2 and

the grid point distance is ∆X = 1/n.

The covariance matrices are B = 0.22Cb, Qi = 0.052Cq, where Cb is a second-order

auto-regressive (SOAR) [Daley, 1993] matrix and Cq is a Laplacian [Johnson et al., 2005]

correlation matrix with length scales 2∆X and 0.75∆X, respectively. We consider Ri =

σ2
oI and vary σo.

The computations are performed with Matlab R2019b and the linear systems are solved

with the Matlab preconditioned conjugate gradient (PCG) implementation pcg.

6.5.1 Preconditioning with exact L−1

We have noticed that the effectiveness of the exact preconditioner L−1 depends on how

much of the system is observed and the interaction between the model and observation
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errors. There are observations at every tenth time step, ensuring that there are observa-

tions at the final time. We consider the following cases regarding the observation error

variance σo and the total number of observations q:

1. σo = 1.5× 10−1, q = 300 (observing 2% of the system);

2. σo = 4.5× 10−1, q = 300;

3. σo = 1.5× 10−1, q = 60 (observing 0.4% of the system).

In Figure 6.1, we show that preconditioning using L−1 is not useful in case 1 but can be

effective if the observation error variance is increased while keeping the same number of

observations (case 2), or if the number of observations is reduced while σo is unchanged

(case 3).

Note that we compare the value of the quadratic cost function at every PCG iteration

without taking into account the cost of the computation, which can be evaluated in terms

of runtime or energy consumption and depends on how much parallelism can be achieved

(e.g., [Carson and Strakoš, 2020]). If matrix-vector products with L can be parallelised,

then PCG iterations when solving the unpreconditioned system can be performed faster

than with preconditioning. Then, in terms of the runtime, preconditioning in case 1 can

be even worse than indicated by comparing the quadratic cost function at every PCG

iteration. In the same manner, preconditioning using exact L−1 in cases 2 and 3 may not

be as effective as displayed. In the following section, we test preconditioning using L̃−1

and S̃ in cases 2 and 3.

6.5.2 Preconditioning with randomised low-rank approximation

We generate L̃−1 and S̃ by using rank k ∈ {30, 60, 90} approximations of P and W in

(6.17) and (6.20), respectively. The oversampling parameter is set to l = 5. We found that

using l = 10 or l = 15 does not make a significant difference to the results (not shown).

RSVD produces high quality approximations of the singular values of both P and W.

The largest singular values and their approximations are shown in Figure 6.2, where the

same random seed is used to generate the random matrix G for all k values. Matrices P

and W do not depend on whether case 2 or 3 is considered, because the cases differ in

the observation terms. In each case, we run the RSVD algorithm one hundred times with

different Gaussian matrices G and solve the systems with the resulting preconditioners.

The spread is illustrated in Figure 6.3 for S̃ (see the appendix in Section 6.7 for P̃). In both

cases, the variation in the values of the cost function is small during the early iterations.

This shows that our results are not very sensitive to the choice of G and, in practice, it is

only necessary to run the RSVD algorithm once.

The means of the quadratic cost function in cases 2 and 3 are shown in Figure 6.4.

Higher rank approximations in both cases and using S̃ in case 3 results in faster min-

imisation. Notice that in the first few iterations of PCG, preconditioning gives the same

improvement regardless of the rank of approximation and whether L̃−1 or S̃ is used. Pre-

conditioning is more useful in case 3, which has fewer observations. The approximations
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Figure 6.1: The values of the quadratic cost functions at every PCG iteration when using

no preconditioner and preconditioning using exact L−1. Values of σo and the number of

observations q for cases 1, 2, and 3 are given in the text.
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Figure 6.2: Largest singular values of (a) P (blue) and (b) W (blue) and their approxima-

tions given by RSVD when using rank k = 30 (black), k = 60 (green) and k = 90 (red).

The largest singular values and their approximations coincide.

used to generate L̃−1 and S̃ are very low-rank compared to the size of the system and there

is a good improvement over the unpreconditioned case when the number of observations

is low, especially in the beginning of the iterative process, which is the most relevant in

practical settings. In the case with more observations (case 2), the randomised precon-

ditioning is useful if a small number of PCG iterations is run. Since in an operational
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(a) Case 2, k = 30
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(b) Case 3, k = 30
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(c) Case 2, k = 60
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(d) Case 3, k = 60
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(e) Case 2, k = 90
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(f) Case 3, k = 90

Figure 6.3: Values of the quadratic cost function at every PCG iteration when using

no preconditioner (blue solid line) and preconditioning using S̃ (dotted lines) that are

constructed using rank k ∈ {30, 60, 90} approximation. One hundred realisations of the

randomised preconditioner are shown. Values of σo and the number of observations q in

cases 2 and 3 are given in text.

context we only run a small number of iterations, we are more likely to be in this regime.

In cases 2 and 3, using exact L−1 results in a modest (case 2) and a rapid (case 3) decrease

of the cost function in the first PCG iterations (Figure 6.1). Our proposed preconditioners

replicate such behaviour and if larger k is used then the performance of exact L−1 is fol-

lowed for more PCG iterations. In case 3, the quadratic cost function value is reduced by

a factor of two after five PCG iterations when using exact L−1 in the preconditioner, the

same result is obtained after eight (k = 30) and six (k = 60 and k = 90) PCG iterations

using L̃−1, and six (k = 30) and five (k = 60 and k = 90) PCG iterations using S̃. In
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case 2, the quadratic cost function is reduced only by a factor of 1.7 in one hundred PCG

iterations when preconditioning with the exact L−1. When using our preconditioners the

values of the quadratic cost function after one hundred PCG iterations are larger than

when using exact L−1 or no preconditioning. This can be addressed by using a larger rank

approximation, computational resources permitting.
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Figure 6.4: Mean values (over one hundred experiments) of the quadratic cost function

at every PCG iteration when using no preconditioner (blue solid line) and when precon-

ditioning using L̃−1 (dashed) and S̃ (dotted) that are constructed using rank k = 30

(black), k = 60 (green) and k = 90 (red) approximation. Values of σo and the number of

observations q in cases 2 and 3 are given in text.

Large model error

We explore how the preconditioning using approximations of L−1 and L−1D1/2 compare

when the model error is large. The numerical experiments are performed using the same

setup as before, but now we set Qi = 0.12Cq, where Cq has length scale 2∆X. The means

over one hundred runs are presented in Figure 6.5. There is a clear separation between

the minimisation using L̃−1 and S̃ in the preconditioner after the first few PCG iterations,

with the latter resulting in faster minimisation. Notice that the preconditioning using

both approximations remains useful for more PCG iterations than in the setup with a

smaller model error. This can be expected because the increase of length scales of Qi

has a detrimental effect on the conditioning of the unpreconditioned Hessian (see, e.g.,

Chapter 6 of [El-Said, 2015]) and hence preconditioning can be more efficient.

6.6 Conclusions

We have considered preconditioning for the state formulation of incremental weak con-

straint 4D-Var, which closely follows the control variable transform (first level precondi-

tioning) strategy for the strong constraint formulation. We have shown that such pre-

conditioning may not be useful even when using the exact L−1, which also makes the

matrix-vector products with the Hessian sequential in the time dimension. In the cases



6.7. APPENDIX: SPREAD WHEN USING P̃ 105

0 20 40 60 80 100

PCG iteration

5.5

6

6.5

7

7.5

Q
u
a

d
ra

ti
c
 c

o
s
t 

fu
n

c
ti
o

n

10
3

(a) Case 2

0 20 40 60 80 100

PCG iteration

2

4

6

8

10
12

Q
u
a

d
ra

ti
c
 c

o
s
t 

fu
n

c
ti
o

n

10
3

(b) Case 3

Figure 6.5: As in Figure 6.4, but the model error covariance matrix is Qi = 0.12Cq and

Cq has length scale 2∆X.

where such preconditioning is useful, a good preconditioner can be obtained by using

randomised singular value decompositions to approximate L−1 or L−1D1/2. These pre-

conditioners are cheap to compute and apply and do allow for parallelization in the time

dimension. They can improve the solution of the exact inner loop problem, resulting in a

greater reduction of the quadratic cost function in the same number of iterations compared

to using no preconditioning or obtaining the same quadratic cost function value in fewer

iterations. The effect of the accuracy of the inner loop solution on the analysis has been

studied by, for example, [Lawless and Nichols, 2006].

Our results call for caution when designing preconditioning approaches that focus on

approximating L−1, especially when the number of observations is high. In practical

NWP settings, around 1% of the system is observed, hence approximating L−1 may be

useful. Using randomised approximations of L−1 or L−1D1/2 should be tested using

large and more realistic systems, where meaningful evaluations of the runtime and energy

consumption can be obtained. A more detailed investigation on when preconditioning

with L−1 gives good results would also be useful.
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6.7 Appendix: Spread when using P̃

We report the spread of one hundred runs when the preconditioner is constructed using P̃

(Figure 6.6). The spread in the later iterations is larger than when using S̃ (Figure 6.3).
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(a) Case 2, k = 30
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(b) Case 3, k = 30
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(c) Case 2, k = 60

0 20 40 60 80 100

PCG iteration

2

4

6

8

10

Q
u
a

d
ra

ti
c
 c

o
s
t 

fu
n
c
ti
o
n

10
3

(d) Case 3, k = 60
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(e) Case 2, k = 90
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(f) Case 3, k = 90

Figure 6.6: As in Figure 6.3, but preconditioning uses P̃ instead of S̃.

6.8 Summary

We proposed a time-parallel preconditioning strategy for the SPD system arising in the

state formulation. It is an approximation of the CVT technique which involves approx-

imating the matrix containing the linearised model. We showed that a preconditioner

constructed using the randomised singular value decomposition is useful in the first iter-

ations of CG, which are of the most importance in practical settings. The preconditioner

can also be constructed taking into account the model and background errors; this is es-

pecially useful if the model error is large. Numerical experiments demonstrated that using

the exact CVT technique is not always useful. The effectiveness depends on the number

of observations and their error, that is how much influence the observations have; the

unpreconditioned state formulation is easier to solve when there are many observations or
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when their error is smaller. This may relate to the results in Chapter 5 that show that

the eigenvalues of the state SPD matrix can move away from zero when new observations

are added and hence the system may become easier to solve. Our preconditioner is thus

of interest when a small part of the dynamical system is observed.

In the next chapter we consider how the observation information can be included in

the approximation of the inverse Schur complement when preconditioning the saddle point

systems.



Chapter 7

Preconditioning for the saddle

point systems

In this chapter, we address the research question 4. We precondition the saddle point

systems using the block diagonal Schur preconditioner. We investigate the eigenvalues of

the preconditioned saddle point matrices, particularly how they relate to the eigenvalues

of the SPD matrices in the state and forcing formulations, and how they change when new

observations are added, thus touching upon the research question 2. An answer to this

research question when considering the SPD system with uncorrelated observation errors

in the forcing formulation is also provided.

The required approximation of the inverse Schur complement in the block diagonal

preconditioner are constructed using randomised LMPs. We examine if this is useful

compared to using no preconditioner and other types of model approximations in the

Schur complement where the observation term is discarded. If yes, does the usefulness

depend on the number of observations of the system?

7.1 Abstract

Saddle point formulations of linear systems of equations occurring in the incremental weak

constraint 4D-var data assimilation method are suitable for time-parallel computations.

These large sparse systems can be solved using the MINRES method and preconditioning

is needed to do it efficiently. We consider block diagonal preconditioners for the 3×3 block

and the 2 × 2 block formulations. These preconditioners employ approximations of the

inverse of a Schur complement, which usually excludes the observation information. We

propose a way to incorporate this information in the approximation. This can be achieved

by computing the randomised eigenvalue decomposition of the Schur complement and us-

ing it to construct limited memory preconditioners. We also analyse how the eigenvalues

of the preconditioned coefficient matrices relate to the eigenvalues of the coefficient ma-

trices in the symmetric positive definite formulations of the weak constraint 4D-var, and

how sensitive they are to the number of observations. An idealised numerical example

illustrates the theory and shows that the new preconditioner improves the minimisation.

108
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7.2 Introduction

Data assimilation uses observations of a dynamical system to improve a prior estimate

(background) of the state of this system. It is used in numerical weather prediction to

obtain the initial conditions for a weather model [Kalnay, 2002], and in other applications

like flood-, air pollution-, and epidemiological-forecasting [Garćıa-Pintado et al., 2015,

Arcucci et al., 2018, Evensen et al., 2021]. The size of the problem in operational settings

and time constraint on computations requires parallelisation. High level of parallelism

can be achieved using an incremental weak constraint 4D-Var method, where a series of

quadratic cost functions are minimised (e.g., [Trémolet, 2006, Fisher and Gürol, 2017]).

Their minima can be found by solving large sparse linear systems of equations, and the

3× 3 block and 2× 2 block saddle point formulations of these have a lot of potential for

time-parallel computations ([Fisher and Gürol, 2017, Daužickaitė et al., 2020]).

The iterative Krylov subspace solvers used to solve these require preconditioning (see,

e.g. [Saad, 2003]) and designing an effective preconditioner is a problem-dependent chal-

lenge. The computational time constraint in data assimilation often results in solvers

being terminated after a fixed number of iterations. Hence, the preconditioner needs to be

efficient in the first iterations of the solver. In the early termination case caution has to

be exercised, because the change to the value of the quadratic cost function in the incre-

mental weak constraint 4D-Var, whose minimiser is sought by solving the linear systems,

is not monotonic when solving the saddle point systems and additional checks may be

needed to ensure a reduction in the quadratic cost function value [Gratton et al., 2018a].

If the preconditioner is effective enough to ensure the convergence of the iterative solver

in a given time, then the additional checks are not needed, because the minimum of the

quadratic cost function is reached.

Previous preconditioning approaches for the 3×3 block formulation used a block diag-

onal preconditioner that involves approximation of the Schur complement [Gratton et al.,

2018a, Freitag and Green, 2018, Tabeart and Pearson, 2021]. The Schur complement

is a sum of a symmetric positive definite matrix and a symmetric positive semi-definite

matrix; the latter containing the observation information. The previous approximations

explicitly excluded the observation term, so that the inverse of the approximation could

be computed. Based on our previous work on the forcing formulation of weak constraint

4D-Var [Daužickaitė et al., 2021b], we propose preconditioning using randomised limited

memory preconditioners (LMPs) to approximate the inverse of the full Schur complement.

LMPs are cheap to apply and can be constructed using approximations of the eigenvalues

and eigenvectors (eigenpairs) of the Schur complement, that can be found using the ran-

domised eigenvalue decomposition. This approach can also be used to precondition the

2× 2 block formulation.

We analyse the eigenvalues of the preconditioned 3×3 block and 2×2 block saddle point

matrices and show their connection to the eigenvalues of the symmetric positive definite

(SPD) matrices arising in the standard forcing and state formulations of the incremental

weak constraint 4D-Var [Trémolet, 2006, Trémolet, 2007]. We also extend the theory on
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how the eigenvalues of the unpreconditioned saddle point matrices depend on the number

of observations of the dynamical system [Daužickaitė et al., 2020] to the preconditioned

case.

The incremental weak constraint 4D-Var method and previous preconditioning strate-

gies are discussed in Section 7.3. We propose the randomised preconditioning approach

in Section 7.4, and Section 7.5 contains the theoretical analysis of the eigenvalues. A

numerical example using the Lorenz 96 model is presented in Section 7.6. We conclude

the work in Section 7.7.

7.3 Incremental weak constraint 4D-Var

We consider the state evolution of the dynamical system x0,x1, . . . ,xN with xi ∈ Rn

at times t0, t1, . . . , tN . The background is the previous estimate of the state at time t0

denoted by xb ∈ Rn. The observations at time ti are given by yi ∈ Rqi and the nonlinear

observation operator Hi maps the state variables to the observation space. The nonlinear

model Mi maps the state variables at time ti to the state at time ti+1 and has error

ηi ∈ Rn, that is,

xi+1 =Mi(xi) + ηi. (7.1)

The errors in the data are assumed to be Gaussian with zero mean and are described using

the background- B ∈ Rn×n, the observation- Ri ∈ Rqi×qi and the model-error Qi ∈ Rn×n

covariance matrices.

The updated trajectory xa0,x
a
1, . . . ,x

a
N is called the analysis. It can be obtained as

the minimiser of the following nonlinear cost function, as arises from the so-called state

formulation [Trémolet, 2006]

J(x0,x1, . . . ,xN ) =
1

2
(x0 − xb)TB−1(x0 − xb) +

1

2

N∑
i=0

(yi −Hi(xi))TR−1
i (yi −Hi(xi))

(7.2)

+
1

2

N−1∑
i=0

(xi+1 −Mi(xi))
TQ−1

i+1(xi+1 −Mi(xi)).

For large systems, the direct minimisation of (7.2) is impractical and the analysis is

approximated using an approximate Gauss-Newton method [Gratton et al., 2007], also

known as the incremental formulation. We use the following notation (following [Gratton

et al., 2018a]).

x(j) =


x

(j)
0

x
(j)
1

. . .

x
(j)
N

 , δx(j) =


δx

(j)
0

δx
(j)
1

. . . ,

δx
(j)
N

 ,b(j) =


xb − x

(j)
0

M0(x
(j)
0 )− x

(j)
1

...

MN−1(x
(j)
N−1)− x

(j)
N

 ,d(j) =


y0 −H0(x

(j)
0 )

y1 −H1(x
(j)
1 )

...

yN −HN (x
(j)
N )

 , (7.3)

where x(j) is the jth approximation of the state, x(j), δx(j),b(j) ∈ R(N+1)n, q =
∑N

i=0 qi
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and d(j) ∈ Rq. The following matrices are defined

L(j) =



I

−M
(j)
0 I

−M
(j)
1 I

. . .
. . .

−M
(j)
N−1 I


∈ R(N+1)n×(N+1)n, (7.4)

H(j) = diag(H
(j)
0 ,H

(j)
1 , . . . ,H

(j)
N ) ∈ Rq×(N+1)n, (7.5)

D = diag(B,Q1, . . . ,QN ) ∈ R(N+1)n×(N+1)n, (7.6)

R = diag(R0,R1, . . . ,RN ) ∈ Rq×q, (7.7)

where I is an n × n identity matrix, diag(·) denotes a block diagonal matrix, and Mi

and Hi are the model and observation operator, respectively, linearised at time ti. The

analysis is updated incrementally

x(j+1) = x(j) + δx(j), (7.8)

where δx(j) minimises the quadratic cost function

Jδ(δx(j)) =
1

2
||L(j)δx(j) − b(j)||2D−1 +

1

2
||H(j)δx(j) − d(j)||2R−1 , (7.9)

where ||a||2A−1 = aTA−1a and A is symmetric positive definite.

The increment δx(j) can be obtained as a solution of the following large sparse linear

system of equations with symmetric positive definite coefficient matrix

A(j)
s δx(j) = (LT )(j)D−1b(j) + (HT )(j)R−1d(j), (7.10)

where A(j)
s = (LT )(j)D−1L(j) + (HT )(j)R−1H(j). (7.11)

The conjugate gradient (CG) method (e.g., [Saad, 2003]) is the method of choice for such

systems. The most expensive part of CG is the matrix-vector product with A(j)
s , especially

integrating the linearised model and its adjoint in L and LT , respectively. [Fisher and

Gürol, 2017] noted that the matrix-vector products with A(j)
s can be parallelised in the

time dimension, that is computations with M
(j)
i can be done independently of M

(j)
l , l 6= i.

The control variable transform technique, also known as first level preconditioning (e.g.,

Section 3.2 of [Lawless, 2013]), is used in data assimilation to eliminate the small eigen-

values. In this technique, the coefficient matrix is mapped to a sum of the identity and a

low-rank symmetric positive semi-definite matrix, so the smallest eigenvalue is equal to one.

This is equivalent to split preconditioningA(j)
s with P(j) = ((L−1)(j)D1/2)T ((L−1)(j)D1/2).

Then the so-called forcing formulation is obtained

A(j)
f δp(j) = D−1/2b(j) + D1/2(L−T )(j)(HT )(j)R−1d(j), (7.12)

where A(j)
f = I + D1/2(L−T )(j)(HT )(j)R−1H(j)(L−1)(j)D1/2 (7.13)

and δp(j) = D−1/2L(j)δx(j). (7.14)
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Here,

(L−1)(j) =



I

M
(j)
0,0 I

M
(j)
0,1 M

(j)
1,1 I

...
...

. . .
. . .

M
(j)
0,N−1 M

(j)
1,N−1 · · · M

(j)
N−1,N−1 I


(7.15)

and M
(j)
i,l = M

(j)
l . . .M

(j)
i denotes the linearised model integration from time ti to tl+1.

The matrix-vector products with (L−1)(j) and hence with A(j)
f are essentially sequential

in time, that is, computations with M
(j)
i depend on the computations with M

(j)
l , l < i.

Thus, the control variable transform technique is not suitable when time-parallelism is

important; for approximation approaches see [Daužickaitė et al., 2021a].

We note the following relationship between the eigenvalues of A(j)
s and A(j)

f .

Lemma 7.1. A(j)
f and (L−1)(j)D(L−T )(j)A(j)

s have the same eigenvalues.

Proof. We write A(j)
f in the form

A(j)
f = D1/2(L−T )(j)A(j)

s (L−1)(j)D1/2 (7.16)

and apply the similarity transformation using (L−1)(j)D1/2:

((L−1)(j)D1/2)A(j)
f ((L−1)(j)D1/2)−1 =

((L−1)(j)D1/2)D1/2(L−T )(j)A(j)
s (L−1)(j)D1/2((L−1)(j)D1/2)−1 (7.17)

= (L−1)(j)D(L−T )(j)A(j)
s . (7.18)

A(j)
f is hence similar to (L−1)(j)D(L−T )(j)A(j)

s , and the result follows.

We omit the superscript (j) in further discussion.

7.3.1 Saddle point formulations

Because of a lack of efficient time-parallel preconditioning for (7.10) and the need to

increase the potential for parallelism further, [Fisher and Gürol, 2017] introduced a for-

mulation of the system of linear equations with a 3×3 block saddle point coefficient matrix

to obtain δx

A3


λ

µ

δx

 =


b

d

0

 , (7.19)

where

A3 =


D 0 L

0 R H

LT HT 0

 ∈ R(2(N+1)n+q)×(2(N+1)n+q). (7.20)

λ ∈ R(N+1)n and µ ∈ Rq are Lagrange multipliers. Notice that (7.20) is more than twice

the size of As, but now the computations with L and LT can be done independently, i.e.,

there is more potential for parallel computations.
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[Daužickaitė et al., 2020] introduced a reduced 2× 2 block saddle point system, which

retains the potential for time-parallel model integration, but only solves for λ and δx:

A2

(
λ

δx

)
=

(
b

−HTR−1d

)
, (7.21)

where

A2 =

(
D L

LT −HTR−1H

)
∈ R2(N+1)n×2(N+1)n. (7.22)

Both A3 and A2 are symmetric and thus systems (7.19) and (7.21) can be solved using

MINRES [Paige and Saunders, 1975], which has the advantage of being a three-term re-

currence method compared to other methods for saddle point systems, like the generalized

minimal residual method (GMRES, [Saad and Schultz, 1986]), that is, in MINRES only

two previous iterates are needed to compute the new one. We consider preconditioning

for these systems in the following section.

7.3.2 Preconditioning

MINRES requires a symmetric positive definite preconditioner (e.g., [Benzi et al., 2005]).

In this work, we consider such block diagonal, or Schur complement, preconditioners PB,3
and PB,2 for the 3× 3 block and 2× 2 block systems, respectively.

PB,3 =


D 0 0

0 R 0

0 0 S̃

 , (7.23)

PB,2 =

(
D 0

0 S̃

)
, (7.24)

where S̃ is a symmetric positive definite approximation to the negative Schur complement

of

(
D 0

0 R

)
in A3 and D in A2, defined as

S = LTD−1L + HTR−1H. (7.25)

Notice that

S = As. (7.26)

In practical settings, the inverses of the preconditioners are applied

P−1
B,3 =


D−1 0 0

0 R−1 0

0 0 S̃−1

 , (7.27)

P−1
B,2 =

(
D−1 0

0 S̃−1

)
, (7.28)
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and the preconditioned matrices P−1
B A3 and P−1

B,2A2 are

P−1
B,3A3 =


I 0 D−1L

0 I R−1H

S̃−1LT S̃−1HT 0

 , (7.29)

P−1
B,2A2 =

(
I D−1L

S̃−1LT −S̃−1HTR−1H

)
. (7.30)

PB,3 was used for the 3× 3 block system in [Gratton et al., 2018a, Freitag and Green,

2018, Tabeart and Pearson, 2021]. S̃ did not include observation information, that is, the

approximation

S̃ = L̃TD−1L̃ (7.31)

was considered, because then S̃−1 can be computed easily. The approximation L̃ to L in

(7.31) needs to be chosen in such a way that the potential for time-parallel computations

is preserved. This can be achieved by approximating the model Mi in L̃ with M̃i = 0

or M̃i = I [Gratton et al., 2018a, Freitag and Green, 2018]. [Tabeart and Pearson, 2021]

generated L̃ by setting M̃i = 0 for some times ti and using the exact model M̃i = Mi

for others. This accelerates the convergence of MINRES compared to setting M̃i to zero

or identity, but does not include any observation information and reduces some of the

potential for time-parallel computations. We propose a way to approximate S−1 with-

out discarding the HTR−1H term, while preserving the time-parallelism in the following

section.

7.4 Randomised preconditioning

Spectral limited memory preconditioners (LMPs) use eigenpairs of an SPD matrix to

approximate its inverse (e.g., [Gratton et al., 2011]). They have been used to precondition

the strong constraint 4D-Var [Tshimanga et al., 2008] and the forcing formulation of the

weak constraint 4D-Var (7.12) [Daužickaitė et al., 2021b]. If λi, i ∈ {1, 2, . . . , k}, is an

eigenvalue of an SPD matrix A and vi is the corresponding eigenvector, then the spectral-

LMP defined as

Pk = I−
k∑
i=1

(1− λ−1
i )viv

T
i (7.32)

is an SPD matrix that approximates A−1. The number of eigenpairs k used to construct Pk

is usually small compared to the size of the system and hence the matrix-vector products

with Pk are cheap to compute.

For large systems, approximations of the eigenpairs are used to construct Pk. The

randomised LMP is constructed using approximations of the eigenpairs obtained with a

randomised eigenvalue decomposition method. We propose using the randomised LMP to

construct an approximation of S−1 = A−1
s , that is we set S̃−1 in (7.27) and (7.28) to

S̃−1 = Pk. (7.33)
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Hence, we need to compute the randomised eigenvalue decomposition of As to generate

S̃−1. These methods can be considered as variants of the classic subspace iteration method

started with a random matrix [Gu, 2015]. We present the REVD ritzit method, which is

based on the Rutishauser’s implementation of the subspace iteration method [Rutishauser,

1971], and has been shown to produce a good randomised LMP for the forcing formulation

(7.12) [Daužickaitė et al., 2021b], in Algorithm 13. It is started with a random matrix

whose entries are independent standard normal random variables with zero mean and

variance equal to one. Oversampling, that is, working on a subspace generated by k + l

vectors when looking for k eigenpairs, is used to increase the quality of the approximation;

setting l to five or ten is expected to be sufficient in many applications [Halko et al.,

2011]. The algorithm requires one matrix-matrix product with As in step 3, which is easy

to parallelise on the current computers. The most expensive part of the product is the

integration of the linearised model and its adjoint in L and LT . Note that this can also

be parallelised in time.

Algorithm 13 Randomised eigenvalue decomposition based on ritzit, REVD ritzit

Input: symmetric matrix A ∈ RnA×nA , target rank k, an oversampling parameter l

Output: orthogonal U ∈ RnA×k with approximations to eigenvectors of A as its

columns, and diagonal Θ ∈ Rk×k with approximations to the largest eigenvalues of A on

the diagonal

1: Form a Gaussian random matrix G ∈ RnA×(k+l)

2: Orthonormalize the columns of G to obtain orthonormal Ĝ

3: Form a sample matrix Y = AĜ ∈ RnA×(k+l)

4: Compute QR decomposition Y = ZR to obtain orthogonal Z ∈ RnA×(k+l) and upper

triangular R ∈ R(k+l)×(k+l)

5: Form K = RRT ∈ R(k+l)×(k+l)

6: Form EVD of K : K = WΘ2WT , where W, Θ2 ∈ R(k+l)×(k+l), elements of Θ are

sorted in decreasing order

7: Remove last l columns and rows of Θ2, so that Θ2 ∈ Rk×k

8: Remove last l columns of W, so that W ∈ R(k+l)×k

9: Form U = ZW ∈ RnA×k.

7.5 Eigenvalues of the preconditioned saddle point systems

The convergence of MINRES can be described using the distribution of the eigenval-

ues of the coefficient matrix, see, for example [Greenbaum, 1997, Simoncini and Szyld,

2013]. Eigenvalues tightly clustered away from zero may be expected to give good con-

vergence. In this section, we present results that connect eigenvalues of P−1
B,3A3 with

eigenvalues of S̃−1As for a general choice of S̃−1, and eigenvalues of P−1
B,2A2 with eigen-

values of (LTD−1L)−1HTR−1H when S̃ = LTD−1L, which shows the importance of the

interaction between the model term LTD−1L and the observation term HTR−1H of As.
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We also explore how the extreme eigenvalues of the preconditioned systems change with

introduction of new observations. We use the following theorems.

7.5.1 Preliminaries

Theorem 7.2 (Determinant of a block matrix, see, e.g., Section 9.11.2 of [Lütkepohl,

1996]). Let A and D be square matrices and F =

(
A B

C D

)
. If A is invertible, then

det(F) = det(A)det(D−CA−1B). (7.34)

Theorem 7.3 (Eigenvalue bounds for the preconditioned saddle point system, see, e.g.,

[Rees and Wathen, 2009])). Let A, Ã, BTA−1B and Z be positive definite matrices,

F =

(
A B

BT 0

)
and P =

(
Ã 0

0 Z

)
. If we denote λmin(Ã−1A) = δ, λmax(Ã−1A) = ∆,

λmin(Z−1BTA−1B) = φ and λmax(Z−1BTA−1B) = Φ, where λmin(C) and λmax(C) are

the smallest and largest eigenvalues of C, respectively, then the eigenvalues λ of P−1F are

real and are bounded by

1

2

(
δ −

√
δ2 + 4∆Φ

)
≤ λ ≤ 1

2

(
∆−

√
∆2 + 4δφ

)
, (7.35)

δ ≤ λ ≤ ∆, (7.36)

1

2

(
δ +

√
δ2 + 4δφ

)
≤ λ ≤ 1

2

(
∆ +

√
∆2 + 4∆Φ

)
. (7.37)

Theorem 7.4 (See Section 8.1.2 of [Golub and Van Loan, 2013]). If A and C are n× n
Hermitian matrices, then

λk(A) + λmin(C) ≤ λk(A + C) ≤ λk(A) + λmax(C), k ∈ {1, 2, . . . , n}.

7.5.2 Eigenvalues of the preconditioned 3× 3 block formulation

We consider the eigenvalues of P−1
B,3A3 for an SPD S̃−1, and discuss the implications for

special cases of S̃−1.

Theorem 7.5. Let A3 and P−1
B,3 be as defined in (7.20) and (7.27), respectively, and γ be

an eigenvalue of S̃−1As. Then the eigenvalues λ of P−1
B,3A3 are real and

λ =

{
1, multiplicity q,
1
2

(
1±
√

1 + 4γ
)
,

(7.38)

where q is the total number of observations of the dynamical system.

Proof. We know that λ is real from Theorem 7.3, where A =

(
D 0

0 R

)
, B =

(
L

H

)
,

Ã = A and Z = S̃.

We show that λ = 1 using Theorem 7.3. Because Ã = A, we have Ã−1A = I and

δ = ∆ = 1. Then from (7.36), λ = 1. In this case, A3v = PB,3v, where v =
(
vT1 ,v

T
2 ,v

T
3

)T
,
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v1,v3 ∈ Rn(N+1), v2 ∈ Rq, i.e.,

Dv1 + Lv3 =Dv1, (7.39)

Rv2 + Hv3 =Rv2, (7.40)

LTv1 + HTv2 =S̃v3. (7.41)

From (7.39), v3 = 0. Then (7.41) gives v1 = −L−THTv2 and v =
(
(−L−THTv2)T ,vT2 ,0

T
)T

with q choices of linearly independent v2. Hence, λ = 1 has multiplicity q.

Now, assume λ 6= 1 and consider the characteristic polynomial

0 = det(P−1
B,3A3 − λI) = det




I− λI 0 D−1L

0 I− λI R−1H

S̃−1LT S̃−1HT −λI


 . (7.42)

Matrix

(
I− λI 0

0 I− λI

)
is invertible, thus using Theorem 7.2

0 = det

((
I− λI 0

0 I− λI

))
×

det

−λI−
(

S̃−1LT S̃−1HT
)( I− λI 0

0 I− λI

)−1(
D−1L

R−1H

) (7.43)

and

0 = det

−λI−
(
S̃−1LT S̃−1HT

)( I− λI 0

0 I− λI

)−1(
D−1L

R−1H

) (7.44)

= det
(
−λI− (1− λ)−1S̃−1(LTD−1L + HTR−1H)

)
(7.45)

= det
(
−λI− (1− λ)−1S̃−1As

)
(7.46)

= det
(

(1− λ)−1(−λ(1− λ)I− S̃−1As)
)
. (7.47)

Thus, −λ(1− λ) = λ(λ− 1) is an eigenvalues of S̃−1As, that is,

λ(λ− 1) = γ (7.48)

and

λ =
1

2

(
1±

√
1 + 4γ

)
. (7.49)

Note that S̃−1As is symmetric positive definite and γ are positive. Hence, the smallest

positive eigenvalue of P−1
B,3A3 is equal to one. For large λ the approximation λ(λ−1) ≈ λ2

can be used. Then λ ≈ ±√γ and the modulus of the largest eigenvalue of P−1
B A3 is

approximately the square root of the largest eigenvalue of S̃−1As. We further consider

three special cases of S̃.
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• Assume that S̃ does not involve any information on the observations and the exact

model is used, that is S̃ = LTD−1L. Then S̃−1As = L−1DL−TAs and γ are the

eigenvalues of Af (Lemma 7.1).

• If S̃ does not involve any information on the observations and the model approxima-

tion is set to zero, then S̃−1As = DAs and γ are the eigenvalues of As preconditioned

with D.

• If S̃ is a spectral-LMP in (7.32) constructed with the exact eigenpairs of As, then

some γ are equal to one and the rest are bounded by the smallest and largest eigen-

values of As (see Theorem 3.4 on the spectrum non-expansiveness in [Gratton et al.,

2011]).

We can obtain the general bounds in Theorem 7.3 when δ = ∆ = 1 by bounding γ

with λmin(S̃−1As) = φ and λmax(S̃−1As) = Φ in Theorem 7.5.

7.5.3 Eigenvalues of the preconditioned 2× 2 block formulation

We consider the special case when S̃ = LTD−1L and show that in this case the eigenvalues

of P−1
B,2A2 relate to the eigenvalues of (LTD−1L)−1HTR−1H. This shows that the inter-

action between the terms including the model LTD−1L and the observation information

HTR−1H is important when preconditioner uses the exact model in S̃.

Theorem 7.6. Let A2 and P−1
B,2 be as defined in (7.22) and (7.30), respectively, with

S̃ = LTD−1L, and let θ be an eigenvalue of (LTD−1L)−1HTR−1H. Then the eigenvalues

µ of P−1
B,2A2 are real and are given by

µ =
1

2

(
1− θ ±

√
θ2 + 2θ + 5

)
. (7.50)

Proof. Let µ and u = (uT1 ,u
T
2 )T ∈ R2n(N+1), u1,u2 ∈ Rn(N+1), be an eigenpair of P−1

B,2A2.

First, we show that µ 6= 1. Consider the eigenvalue equation A2u = µPB,2u, that is

Du1 + Lu2 =µDu1, (7.51)

LTu1 −HTR−1Hu2 =µS̃u2. (7.52)

Assume that µ = 1, then from (7.51) Lu2 = 0 and hence u2 = 0. Then from (7.52)

LTu1 = 0, hence u1 = 0 and u = 0. Thus, µ 6= 1.

Now, consider the characteristic polynomial

0 =det(P−1
B,2A2 − µI) (7.53)

=det

(
(1− µ)I D−1L

S̃−1LT −S̃−1HTR−1H− µI

)
. (7.54)

(1− µ)I is invertible, because µ 6= 1. Using Theorem 7.2,

0 = det((1− µ)I)det(−S̃−1HTR−1H− µI− (1− µ)−1S̃−1LTD−1L) (7.55)
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and

0 = det(−S̃−1HTR−1H− µI− (1− µ)−1S̃−1LTD−1L). (7.56)

If S̃−1 = (LTD−1L)−1, then

0 = det(−(LTD−1L)−1HTR−1H− µI− (1− µ)−1I) (7.57)

= det((−µ− (1− µ)−1)I− (LTD−1L)−1HTR−1H) (7.58)

and −µ− (1− µ)−1 is an eigenvalue of (LTD−1L)−1HTR−1H, that is,

− µ− (1− µ)−1 = θ (7.59)

and

µ =
1

2

(
1− θ ±

√
θ2 + 2θ + 5

)
. (7.60)

Notice that (LTD−1L)−1HTR−1H is similar to a symmetric positive semi-definite

matrix D1/2L−THTR−1HL−1D1/2, that is,

D−1/2L((LTD−1L)−1HTR−1H)L−1D1/2 = D1/2L−THTR−1HL−1D1/2. (7.61)

Hence, θ are either positive, or θ = 0 and µ = 1
2

(
−1±

√
5
)

with multiplicity of at least

n(N + 1)− q.

7.5.4 Change in eigenvalues due to new observations

We explore how the eigenvalues of Af , P−1
B,3A3 and P−1

B,2A2 change when the number

of observations of the dynamical system is increased. The theoretical estimates hold

for diagonal R. In this section, the subscript k denotes the dynamical system with k

observations and k + 1 indicates that a new observation has been added to the system

with k observations. The variance α ∈ R, α > 0, and hk+1 ∈ R(N+1)n correspond to the

new observation.

Theorem 7.7. If the observation errors are uncorrelated, i.e., R is diagonal, then the

largest eigenvalues of Af in (7.13) either move away from zero or are unchanged when

a new observation is added. The smallest eigenvalues of Af are equal to one when the

dynamical system is not fully observed.

Proof. The smallest eigenvalue is equal to one for any number of observations q < n(N+1),

because D1/2L−THTR−1HL−1D1/2 is symmetric positive semi-definite.

We can write

HT
k+1R

−1
k+1Hk+1 = HT

kR−1
k Hk + α−1hk+1h

T
k+1 (7.62)

and

(Af )k+1 = (Af )k + α−1D1/2L−Thk+1h
T
k+1L

−1D1/2 = (Af )k + E . (7.63)
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E is symmetric positive semi-definite, hence λmin(E) = 0. Then from Theorem 7.4

λmax((Af )k) + λmin(E) ≤ λmax((Af )k+1), (7.64)

⇒ λmax((Af )k) ≤ λmax((Af )k+1). (7.65)

Theorem 7.8. If the observation errors are uncorrelated, i.e., R is diagonal, and S̃ does

not include information on observations, then the smallest and largest negative, and largest

positive eigenvalues of P−1
B,3A3 either move away from zero or are unchanged when new

observations are introduced. The smallest positive eigenvalues are equal to one.

Proof. The smallest positive eigenvalue of P−1
B,3A3 is equal to one independently of the

number of observations by Theorem 7.5. The proof for the change of other eigenvalues is

equivalent to the proof of Theorem 3 in [Daužickaitė et al., 2020] regarding the change in

eigenvalues of A3.

Note that results in Theorems 7.7 and 7.8 when S̃ = LTD−1L are consistent.

Theorem 7.9. If the observation errors are uncorrelated, that is, R is diagonal, and S̃

does not include information on the observations, then the extreme eigenvalues of P−1
B,2A2

change in the same way as eigenvalues of A2 when new observations are added. That is,

the smallest and largest negative eigenvalues of P−1
B,2A2 either move away from zero or are

unchanged. Contrarily, the smallest and largest positive eigenvalues of P−1
B,2A2 approach

zero or are unchanged.

Proof. We can write

P−1
B,2A2,k+1 = A2,k +

(
0 0

0 −α−1S̃−1hk+1h
T
k+1

)
= A2,k + Ẽ . (7.66)

S̃−1hk+1h
T
k+1 is similar to S̃1/2(S̃−1hk+1h

T
k+1)S̃−1/2 = S̃−1/2hk+1h

T
k+1S̃

−1/2, where S̃1/2 is

the symmetric positive definite square root of S̃. Matrix S̃−1/2hk+1h
T
k+1S̃

−1/2 is symmetric

positive semi-definite, hence Ẽ has negative and zero eigenvalues. The rest of the proof is

analogous to the proof of Theorem 5 in [Daužickaitė et al., 2020].

7.6 Numerical example

We perform numerical experiments to illustrate the theoretical results in Section 7.5 and

explore the performance of PB,3 and PB,2 that include the randomised LMP, that is

S̃−1 = Pk. Identical twin experiments are performed, where we generate the reference

trajectory xt0,x
t
1, . . . ,x

t
N . The background is obtained by adding random, Gaussian noise

with covariance B to xt0 and direct observations are generated by adding random, Gaussian

noise with covariance Ri to Hi(xti).
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The Lorenz 96 model [Lorenz, 1996] is used, where the dynamics of variables Xj , where

xTi =
(
X1, X2, . . . , Xn

)
, are described by n coupled ODEs:

dXj

dt
= −Xj−2Xj−1 +Xj−1Xj+1 −Xj + F, (7.67)

where F = 8 and X−1 = Xn−1, X0 = Xn and Xn+1 = X1. We use the fourth-order

Runge-Kutta scheme to integrate (7.67) [Butcher, 1987]. The gridpoint distance is ∆X =

1/n and the time step is ∆t = 2.5× 10−2.

The error covariance matrices are set to B = 0.22Cb, Qi = 0.052Cq and Ri = 0.152I,

where Cb is a a second-order auto-regressive (SOAR, [Daley, 1993]) matrix with length

scale 2∆X and Cq is a Laplacian [Johnson et al., 2005] correlation matrix with length

scale 0.75∆X. We vary the number of observations.

We consider PB,3 and PB,2 with three choices of S̃−1:

• S̃−1 = D, that is, M̃i = 0;

• S̃−1 = L−1DL−T , that is, M̃i = Mi;

• S̃−1 = P30, that is, using the randomised LMP in (7.32).

When the randomised LMP is used, then S̃−1 includes some information on the observa-

tions. This is not the case with the other two choices of S̃−1. Using the exact linearised

model Mi in the preconditioner is not considered as a practical choice, because it makes

the application of preconditioner sequential in time; it is used only for comparison. The

randomised LMP P30 is constructed with thirty eigenpairs of As obtained using Algo-

rithm 13. We set the oversampling parameter l = 5.

7.6.1 Eigenvalues of the preconditioned systems

We set n = 40 and N = 79, so that we can compute all of the eigenvalues of the pre-

conditioned systems; the matrices are formed and the Matlab function eig is used. The

following observation networks are considered with the total number of observations q:

a) q = 60, observing every sixteenth model variable at every fourth time step (at times

t3, t7, . . . , t75, t79),

b) q = 200, observing every eighth model variable at every second time step (at times

t1, t3, . . . , t77, t79),

c) q = 800, observing every fourth model variable at every time step.

We explore the change of the extreme eigenvalues of the preconditioned systems. Our

choice of diagonal R means that the assumptions of Theorems 7.8 and 7.9 hold when

S̃−1 = D and S̃−1 = L−1DL−T . We report the computed largest and smallest positive

and negative eigenvalues of P−1
B,3A3 and P−1

B,2A2 in Tables 7.1 and 7.2, respectively. All

computed eigenvalues for observation networks a) and c) are shown in Figures 7.1 and 7.2.

The change of the extreme eigenvalues of P−1
B,3A3 with S̃−1 = D and S̃−1 = L−1DL−T
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O.n. S̃−1 = D S̃−1 = L−1DL−T S̃−1 = P30

a) [−8.84,−1.10× 10−5] [−82.92,−6.18× 10−1] [−59.16,−5.5× 10−3]

[1, 9.84] [1; 83.92] [1; 60.16]

b) [−8.84,−7.12× 10−5] [−149.03,−6.18× 10−1] [−59.18,−3.30× 10−2]

[1, 9.84] [1, 150.03] [1, 60.18]

c) [−9.03,−5.00× 10−4] [−411.10,−6.18× 10−1] [−59.26,−1.98× 10−1]

[1, 10.03] [1, 412.10] [1, 60.26]

Table 7.1: Computed eigenvalue intervals of P−1
B,3A3 with three choices of S̃−1 in P−1

B,3 for

different observation networks (O.n.).

O.n. S̃−1 = D S̃−1 = L−1DL−T S̃−1 = P30

a) [−8.84,−1.10× 10−5] [−6.96× 103,−6.18× 10−1] [−65.87,−5.51× 10−3]

[1 + 2× 10−7, 9.84] [1 + 10−4, 1.62] [1 + 10−4, 60.10]

b) [−8.84,−7.12× 10−5] [−2.24× 104,−6.18× 10−1] [−68.40,−3.31× 10−2]

[1 + 2× 10−7, 9.84] [1 + 4× 10−5, 1.62] [1 + 3× 10−5, 59.62]

c) [−11.02,−5.00× 10−4] [−1.69× 105,−6.18× 10−1] [−75.29,−2.12× 10−1]

[1 + 10−7, 8.27] [1 + 6× 10−6, 1.62] [1 + 6× 10−6, 57.33]

Table 7.2: As in Table 7.1, but for P−1
B,2A2.

when the number of observations increases is as described in Theorem 7.8. That is, the

negative and largest positive eigenvalues move away from zero or stay unchanged while

the smallest positive eigenvalue is equal to one. The change of the extreme eigenvalues of

P−1
B,2A2 agrees with Theorem 7.9; the negative eigenvalues move away from zero or stay

unchanged and the positive ones approach zero or stay unchanged. The change when using

S̃−1 = Pk agrees with the results in Theorems 7.8 and 7.9 even though S̃−1 is influenced

by the observation information.

In the case of the preconditioner with the exact linearised model, the modulus of the

largest positive and negative eigenvalues of P−1
B,3A3 grows more than with other choices

of S̃−1 when the number of observations is increased. The same is observed for the

modulus largest negative eigenvalues of P−1
B,2A2. This may result in poor performance of

the preconditioner that uses the exact linearised model when the dynamical system has

many observations.

7.6.2 Solving the preconditioned systems

To explore the performance of the preconditioners we consider larger systems and set

n = 120 and N = 149. The observations are taken at the same frequencies as in the

previous section giving the the total number of observations q:

a) q = 304,

b) q = 1125,
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Figure 7.1: Eigenvalues of the unpreconditioned (blue) and preconditioned 3 × 3 block

systems that have q observations. Preconditioner P−1
B,3 is constructed using S̃−1 = D

(vermilion), S̃−1 = L−1DL−T (black), and S̃−1 = P30 (green).

c) q = 4500.

MINRES is run for 1000 iterations and the norm of the relative residual ‖rj‖/‖r0‖, where

rj is the residual at jth iteration and ‖ · ‖ is the L2 norm, stays above 10−4 for all the

systems. We choose 1000 iterations to explore how the preconditioning affects the early

iterations, that are the most important if the solvers is stopped after a fixed number of

iterations, and to see the effect on the later iterations when the quadratic cost function

is expected to approach its minimum value. REVD ritzit is run five times with different

initialisations.

The change of the quadratic cost function value during the solution process is reported

in Figure 7.3. Preconditioning using S̃−1 = P30, that is, the randomised LMP constructed

with thirty eigenpairs, is useful for both 3× 3 block and 2× 2 block systems with all three

observation networks compared to the unpreconditioned case. Notice that the perfor-

mance is not sensitive to the initialisation of REVD ritzit. Preconditioners constructed

using S̃−1 = D are in general detrimental to the convergence or perform similarly to the

unpreconditioned case. The performance of the preconditioner that uses the exact lin-

earised model, i.e., S̃−1 = L−1DL−T , depends on the total number of observations. It

outperforms other preconditioners and no preconditioning when there are very few ob-

servations, but performs worse than these when the number of observations is increased.
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Figure 7.2: As in Figure 7.1, but for the 2×2 block system using P−1
B,2.

This agrees with the results in the previous section, where we saw the large growth of the

modulus largest eigenvalues when using S̃−1 = L−1DL−T .

Notice the initial jump in the quadratic cost function value in the unpreconditioned

cases for both 3×3 block and 2×2 block systems and when using S̃−1 = P30 for the 2×2

block system in the p = 304 and p = 1125 cases. It reinforces the need for caution if early

termination of MINRES is needed.

7.7 Conclusions

We have introduced a new way to include the observation information in the approximation

of the inverse Schur complement, which is used in a block diagonal preconditioner for the

saddle point systems in incremental weak constraint 4D-Var. This information has been

excluded in the previously used preconditioners [Gratton et al., 2018a, Freitag and Green,

2018, Tabeart and Pearson, 2021]. The new approximation of the inverse Schur comple-

ment is constructed by employing randomised limited memory preconditioners, which have

been used to precondition the symmetric positive definite forcing formulation [Daužickaitė

et al., 2021b]. These preconditioners are cheap to construct and apply. Numerical exper-

iments have shown that the randomised preconditioner is useful and outperforms other

block diagonal preconditioners, especially when the number of observations is high.

We have provided theoretical results that show the relationship between the eigenval-

ues of preconditioned saddle point systems and those of the symmetric positive definite
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formulations. The results depend on the choice of the inverse Schur complement ap-

proximation and can be used to better understand the sensitivities of the preconditioned

systems. The change of the extreme eigenvalues due to introduction of new observations

has also been examined in the case of uncorrelated observation errors and when the Schur

complement approximation excludes observation information. The extreme eigenvalues of

the preconditioned 3×3 block system either move away from zero or stay unchanged when

new observations are introduced. This is also true for the extreme negative eigenvalues of

the preconditioned 2×2 block system, but the extreme positive eigenvalues may approach

zero. Further preconditioning for the small positive eigenvalues may be needed.

The block diagonal preconditioners are advantageous, because MINRES can be used

to solve the preconditioned systems. It has been shown that inexact constraint precon-

ditioners, which are not symmetric positive definite and require using other solvers, for

example, GMRES instead of MINRES, may accelerate the convergence when solving the

3× 3 block saddle point system [Gratton et al., 2018a, Tabeart and Pearson, 2021]. Using

randomised methods to improve the approximations in these preconditioners is the scope

of future research.

7.8 Summary

We proposed a new way to include the observation information in the block diagonal

Schur preconditioners for the saddle point matrices and the numerical experiments with

an idealised model showed that this technique is effective. The improvement is greater

when the number of observations of the dynamical system is increased.

Theoretical results regarding the eigenvalues of the preconditioned matrices were pre-

sented. We showed how the eigenvalues of the preconditioned 3 × 3 block saddle point

matrix are connected to the eigenvalues of the SPD state matrix. Similar sensitivities

thus can be expected when solving both systems and this can be exploited when designing

alternative preconditioning strategies. We explored how the extreme eigenvalues of the

preconditioned systems change when new observations are added. The extreme eigenval-

ues of the preconditioned 3 × 3 block saddle point matrix either move away from zero

or stay unchanged, which agrees with the results for the SPD state system in Chapter 5.

Note that this solves the problem of the small positive eigenvalues of the unpreconditioned

3× 3 block matrix. This problem is not solved for the preconditioned 2× 2 block system

though: the negative eigenvalues move away from zero or stay unchanged whereas the

positive eigenvalues move towards zero or stay unchanged. Further preconditioning to ad-

dress the small positive eigenvalues may be necessary. The largest eigenvalues of the SPD

matrix in the forcing formulation move away from zero or stay unchanged and the CVT

ensures that the smallest eigenvalues remain equal to one, hence expanding the spectrum

and increasing the condition number. These results for SPD and saddle point systems

hold when the observation error matrix is diagonal and the Schur approximation does not

include observation information.
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We conclude the thesis and propose areas of further research in the following chapter.
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(c) 3× 3 block, q = 1125
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(d) 2× 2 block, q = 1125
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(e) 3× 3 block, q = 4500
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(f) 2× 2 block, q = 4500

Figure 7.3: Quadratic cost function value at every MINRES iteration when solving the

unpreconditioned (blue solid line) and preconditioned 3× 3 block and 2× 2 block systems

that have q observations. Preconditioners P−1
B,3 and P−1

B,2 are constructed using S̃−1 = D

(vermilion dashed), S̃−1 = L−1DL−T (black dash-dotted), and S̃−1 = P30 (green dotted)

for five different initialisations of the randomised method.



Chapter 8

Conclusions and future work

8.1 Conclusions

The data assimilation method weak constraint 4D-Var can be advantageous compared to

other variational methods, because it accounts for the model error [Sasaki, 1970, Trémolet,

2006, Laloyaux et al., 2020a] and its so-called state formulation has potential for time-

parallelism [Fisher and Gürol, 2017]. If the model error is accounted for, then longer as-

similation window can be used and hence more observations can be assimilated [Trémolet,

2006]. The time-parallelism for large systems is important, because the resolution of the

models is ever increasing and a smaller time step is needed for numerical stability, and the

arising additional computations need to be parallelised to finish the assimilation process

in the given wall-clock time [Fisher and Gürol, 2017].

A series of quadratic cost functions have to be minimised to approximate the solution

of the weak constraint 4D-Var. Each minimisation is called an inner loop. In this thesis, we

considered the state and forcing formulations of the method, and four different systems

of linear equations that can be solved to obtain the minimisers of the cost functions,

namely the standard symmetric positive definite (SPD) systems in the forcing and state

formulations, and the 3× 3 block saddle point system of [Fisher and Gürol, 2017] and the

reduced 2× 2 block saddle point system in the state formulation. The choice of the linear

system should depend on how much computational resources for parallel computations are

available; the systems ordered by the increasing potential for parallelism are

• forcing SPD system;

• state SPD system;

• 2× 2 block saddle point system;

• 3× 3 block saddle point system.

The SPD systems are of the same size in the forcing and state formulation, but the 2× 2

block system is twice the size of these and the 3 × 3 block system grows even larger.

Availability of estimates of the inverses of error covariance matrices can be taken into

account too: the SPD systems include inverses of the error covariance matrices, the 2× 2

128
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block system requires inverse of only the observation error covariance matrix, the 3 × 3

block system does not need any inverses. The systems show different sensitivities to adding

new observations [El-Said, 2015].

Independently of which system is chosen, iterative solution methods are used and

they require preconditioning for efficient performance (e.g., [Trefethen and Bau, III, 1997,

Saad, 2003, Wathen, 2015]). The design of suitable preconditioners is a challenging and

important task in data assimilation [Fisher, 1998, Tshimanga et al., 2008, Fisher and

Gürol, 2017, Gratton et al., 2018a, Gratton et al., 2018b, Fisher et al., 2018, Freitag and

Green, 2018, Tabeart and Pearson, 2021]. In our work, we employed randomised methods

for low-rank matrix approximations [Halko et al., 2011, Martinsson and Tropp, 2020] to

suggest new preconditioning approaches, where the construction and application of the

preconditioner can be performed in parallel and hence efficiently on current computers.

We further discuss how we addressed each research question, which was presented in

Chapter 1.

Research question 1: How can we precondition the linear systems of equations arising

in the forcing formulation independently of the previously solved systems?

The systems in different inner loops change because of a different linearisations of the

model and the observation operator, but they can also be affected by other changes, such as

introducing new observations and increasing the resolution of the model in the later inner

loops as is done in ECMWF [Lean et al., 2021]. If the changes to the subsequent systems

are large enough, the usefulness of limited memory preconditioners (LMPs) [Fisher, 1998,

Tshimanga et al., 2008, Gratton et al., 2011] can be affected, because they are constructed

using cheaply obtained estimates of the eigenpairs from the previous inner loops. LMPs

are currently used in, for example, ocean data assimilation [Mogensen et al., 2012, Moore

et al., 2011] and climate reanalysis [Laloyaux et al., 2018].

We addressed this in Chapter 4 by proposing to use randomised eigenvalue decomposi-

tion (REVD) to construct LMPs, which we then called randomised LMPs. The eigenpairs

can be obtained at the beginning of each inner loop independently of the previous inner

loops. We performed idealised numerical experiments and observed the following.

• The randomised LMPs improve the minimisation compared to using no precondi-

tioning and are more effective than the LMPs constructed with eigenpair estimates

obtained in the previous loop (deterministic LMPs). This holds even if the ran-

domised LMPs are constructed with fewer eigenpairs than the deterministic LMPs.

• The effectiveness of the randomised LMPs grows when they are constructed using

more eigenpairs.

• Out of three REVD methods tested, REVD ritzit performed the best.

• Large oversampling is not necessary for the randomised methods, although it can

further reduce the small variation of the LMPs performance in the first iterations of

the iterative solver.
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Research question 2: How do the extreme eigenvalues of the coefficient matrices change

when new observations are introduced?

The convergence of Krylov subspace solvers CG and MINRES can be described by the

eigenvalue distribution of the coefficient matrix [Trefethen and Bau, III, 1997]. We anal-

ysed how the extreme eigenvalues of the SPD matrices and saddle point matrices change

when new observations are added in Chapters 5 and 7. The change for the saddle point

matrices preconditioned using a block diagonal preconditioner was also investigated in the

latter. We provided bounds for the eigenvalues of the unpreconditioned coefficient matri-

ces in the state formulation, and showed the relationship between the eigenvalues of the

preconditioned saddle matrices and SPD coefficient matrices. We showed the following,

where the results for the unpreconditioned 3× 3 block coefficient matrix hold for general

observation error covariance matrix R, and a diagonal R, that is, uncorrelated observation

errors, is assumed for other systems. The Schur complement approximation in the block

diagonal preconditioner is assumed to contain no information on the observations.

• The change when new observations are introduced:

– The largest positive eigenvalues of the SPD forcing coefficient matrix with the

control variable transform (CVT) move away from zero or stay unchanged,

and the smallest positive eigenvalue stays at one when the system is not fully

observed.

– The extreme eigenvalues of the SPD state coefficient matrix move away from

zero or stay unchanged.

– The extreme negative eigenvalues of the unpreconditioned 2 × 2 block coeffi-

cient matrix move away from zero or stay unchanged, and the extreme positive

eigenvalues move towards zero or stay unchanged.

– The extreme negative and largest positive eigenvalues of the unpreconditioned

3 × 3 block coefficient matrix move away from zero or stay unchanged, while

the smallest positive eigenvalues move towards zero or stay unchanged.

– The extreme eigenvalues of the preconditioned 2 × 2 block coefficient matrix

change in the same way as in the unpreconditioned case.

– The extreme eigenvalues of the preconditioned 3 × 3 block coefficient matrix

move away from zero or stay unchanged.

• Eigenvalue bounds:

– The provided bounds depend on the extreme eigenvalues of the error covariance

matrices and the singular values of the matrix including the linearised model

and the linearised observation operator.

– The bounds for the saddle point coefficient matrices are tight, whereas the

bounds for the state SPD coefficient matrix may be too pessimistic.

• We showed the direct relationship between the eigenvalues of the preconditioned

3× 3 block matrix and the preconditioned SPD state coefficient matrix.
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• We showed the direct relationship between the eigenvalues of the preconditioned

2×2 block matrix and the eigenvalues of a matrix involving the interaction between

the model and observation terms.

Research question 3: How can we precondition the linear systems in the state formu-

lation so that the potential for time-parallel computations is preserved?

Potential for time-parallel model integration is embedded in the state formulation [Fisher

and Gürol, 2017]. Fisher and Gürol suggested approximating the CVT technique for the

SPD state system, but did not find an effective and parallelism preserving approximation.

We proposed using a randomised singular value decomposition to approximate the matrix

involving the linearised model, and this matrix in interaction with the background and

model error covariance matrices in Chapter 6. Although the construction of these precon-

ditioners is not time-parallel, their application is cheap and preserves the time-parallelism

when solving the systems. Our numerical experiments with idealised system showed the

following.

• The exact CVT technique is not always useful compared to using no preconditioning,

especially if there are many high quality observations of the dynamical system.

• If the exact CVT techniques is useful, then its randomised approximation improves

the minimisation in the first iterations.

• Including the background and model error covariance matrices in the CVT approx-

imation is particularly useful when the model error is large.

• Including the background and model error covariance matrices in the CVT approxi-

mation may result in preconditioner that is less sensitive to the random initialisation

of RSVD.

Research question 4: How can we include more information about the observations

when preconditioning the saddle point systems?

Block diagonal Schur preconditioners were used previously to precondition the 3×3 block

system, but they included the approximation to the inverse Schur complement without

the observation term [Gratton et al., 2018a, Freitag and Green, 2018, Tabeart and Pear-

son, 2021]. We proposed a new way to approximate the inverse Schur complement, namely

using the randomised LMP to construct an approximation that does not exclude the obser-

vation term in Chapter 7. Such an approximation can be also used when preconditioning

the 2×2 block system. The randomised LMP can be generated in a time-parallel way and

the application is cheap. We performed experiments with a simple system and observed

the following.

• Our proposed preconditioner is more effective than using no preconditioning.

• The new preconditioner outperforms other preconditioners when the number of ob-

servations is high.
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• Using the exact model in the preconditioner may be detrimental when there are

many observations.

We discuss the relevance of the results. The fact that the largest eigenvalues of the

forcing coefficient matrix with CVT can grow when new observation are added, reinforces

the importance of generating the LMPs independently of the previous inner loops. Note

that these preconditioners are constructed with estimates of the largest eigenvalues and

the relevance of the estimates obtained in the previous inner loop can hence decrease if new

observations are added in the later loops. The increase of the largest eigenvalue while the

smallest eigenvalue stays equal to one means that the spectrum of the forcing coefficient

matrix with CVT expands and thus its condition number grows. This agrees with our

observation that using the CVT for the state SPD system, and in this way converting it to

the forcing formulation with CVT, may be detrimental when the number of observations

is increased.

The bounds for the eigenvalues of the unpreconditioned saddle point matrices suggest

that observation information should be included in the preconditioning approaches. The

effectiveness of our new preconditioner with observation information in the Schur comple-

ment supports this. Our preconditioner is very effective when the number of observations

is high. This is useful because the theoretical results show that the unpreconditioned

systems may be harder to solve when the observation number is increased because of the

small positive eigenvalues approaching zero. Note that we showed that when block diago-

nal preconditioner is used, this problem is eliminated for the 3×3 block coefficient matrix.

The relationships between the eigenvalues of the preconditioned saddle point matrices and

the SPD matrices can be helpful to better understand other sensitivities of the systems.

8.2 Future work

We present research questions for future work.

• When is the CVT technique useful? Experiments with simple systems showed that

this technique may not be useful in the case of many accurate observations (Chap-

ter 6), and this is confirmed by the theoretical result on the eigenvalue change when

CVT is used and the observation error covariance matrix is diagonal (Chapter 7).

Further theoretical and experimental explorations with more realistic systems are

needed.

• How should the state SPD formulation be preconditioned when the number of obser-

vations is high? Our suggested randomised approximation to the CVT is useful in

the cases when the exact CVT is useful, that is, when the number of observations of

the dynamical system is low (Chapter 6). The increasing number of observations may

require different preconditioning approaches that still allow the time-parallelism.

• How should we precondition the state SPD formulation if a large number of iterations

can be run? The randomised approach in Chapter 6 proved to be useful in the first
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iterations, which are the most important, but the iterative solver stagnates in the

later iterations. In case a very large number of iterations has to be run, the solver

may require restarting with a different preconditioner.

• How can the 2 × 2 block system be preconditioned so that the positive eigenvalues

do not approach zero when new observations are added? The block diagonal precon-

ditioners (Chapter 7) did not fix this problem and the small eigenvalues can cause

convergence issues.

• How do the extreme eigenvalues of the coefficient matrices change when the obser-

vation error covariance matrix is correlated? Our theoretical results consider a diag-

onal observation error covariance matrix (Chapters 5 and 7), but there is a growing

amount of work on using the correlated matrices (e.g., [Stewart et al., 2008, Weston

et al., 2014, Tabeart et al., 2020]). Bounds for the eigenvalues of the 3 × 3 block

system preconditioned using a block diagonal preconditioner with approximation to

the correlated observation error covariance matrix are presented by [Tabeart and

Pearson, 2021].

• Finally, are the proposed preconditioners useful for realistic systems? Our numerical

tests considered idealised systems in a sequential environment, and did not take into

account the cost of generating and applying the preconditioners. Further tests on

large systems in parallel environments are needed to evaluate the effects on the run

time and energy consumption (e.g., [Carson and Strakoš, 2020, Bousserez et al.,

2020]).
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