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Abstract 

 

Soil is a complex, variable, living medium essential to supporting life on earth through the provision of 

a range of ecosystem services, yet it is a non-renewable resource. Soil can be identified as the basis 

for food production, providing us with clean water, hosting biodiversity, cycling nutrients, and 

buffering against climate change. Anthropogenic pressures to increase productivity to enable food 

security is damaging these soil systems. The current environmental boundaries for soil systems are 

being transgressed, leading to the degradation of soil systems globally.  This is particularly apparent 

in peatlands drained for agriculture, where departure from their natural state has caused intense 

degradation. Peatlands are essential to UK natural capital, food production, and ecosystem service 

provision. Previous attempts to create metrics to assess soil health and functioning have focused 

primarily on mineral soils and are not appropriate for assessing the soil health of drained agricultural 

peatlands. Specific tools to assess peat health were lacking and thus needed to be developed. Here I 

describe the development of two tools to enable assessment of the health of lowland peat systems 

using simple indicators that allow farmers to benchmark, compare, and sustainably manage peat 

health. The first tool created a minimum indicator set to classify peat health though Principal 

Component Analysis, leading to the development of an Additive and Weighted Peat Health Index 

approach. These indices were able to effectively distinguish deep peat from wasted peat, as identified 

by farmers. Additionally, the Peat Health Indices revealed that healthier fields required less farm 

inputs, indicating a better functioning system. The second tool developed was a Bayesian network. 

This tool incorporates probability distributions in assessing peat health, enabling the direct 

assessment of ecosystem uncertainty, and providing an estimated distribution of peat health given 

the observation of simple on-farm indicators. The network was developed through expert opinion and 

use of the ECOSSE biogeochemical model. The network was validated through k-fold cross validation, 

scenario analysis and expert evaluation. This thesis demonstrates the development and application of 

health assessment tools for drained agricultural lowland peat using easily measurable soil properties. 

We anticipate these tools to be a starting point for the assessment of peat health across the East 

Anglian fenland region and lead to the development of a national monitoring network using the 

Bayesian network approach.  
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Chapter 1: Introduction 

 

1.1 Background 

 

The doubling of global food demand projected over the next 50 years will place increasing pressure 

upon agricultural soil systems reducing the provision of ecosystems services and posing challenges to 

increasing food production in a sustainable manner (Tilman et al., 2002; Foley et al., 2011). This 

increasing pressure of agriculture on soils has led to the degradation of these systems, leading to a 

reduction in their ability to function (Kopittke et al., 2019).  Contemporaneously, yield plateaus, or 

abrupt decreases in gains in yields, have been observed (Grassini, Eskridge and Cassman, 2013). 

Therefore, a key concern is that the identified degradation of soil systems is leading to a reduction in 

the provision of ecosystem services and overall functioning, reducing the food security of nations. 

 

Soils are known to provide and regulate a range of ecosystem services, playing an important role in 

sustaining life on the planet (Pereira et al., 2018). These services are provided through the 

functionality of soil systems and include; the provision and maintenance of a complex soil structure, 

the transformation and regulation of elements (including carbon, nitrogen, phosphorous, potassium 

etc.), the provision of habitat for biological and plant communities, and the control of soil water flows 

(Bünemann et al., 2018; Pawlett, Hannam and Knox, 2021). A healthy soil allows for the delivery of 

multiple functions and subsequent supply of associated ecosystem services (Bouma, 2014). Yet soils 

are complex and spatially differentiated, with high natural variability and differing ecosystem 

boundaries (Kopittke et al., 2021). Quantitative measurement of the subjective “health” of a soil has 

proven difficult, particularly given the variation between soil systems (van Bruggen and Semenov, 

2000; Cardoso et al., 2013; Maharjan, Das and Acharya, 2020). 

 

Changes to environmental regulation and policy within the UK have moved at pace in recent years 

with the publishing of the 25 Year Environment Plan and the introduction of the 2021 Environment 

Act. The current policy aims to encourage and help the natural world regain and retain good health 

(Department for Environment Food and Rural Affairs, 2018a). The development of tools and metrics 

to quantify and improve soil health has been highlighted as a key factor to enable sustainable soil 

management. Further to this, the maintenance and restoration of peatlands within the UK, has been 

identified as a critical area to improve UK natural capital.  



13 
 

The degradation of soil systems in the UK has led to over 4 million hectares of soil being classified as 

at risk of compaction and 2 million hectares at risk of erosion. Furthermore, intensive agriculture has 

caused arable soils to lose between 40-60% of their organic carbon (Environment Agency, 2019). The 

degradation of soil systems leads to an adverse impact on agricultural productivity, consequently 

reducing food security, and damaging the environment (Eswaran, Lal and Reich, 2001; Sonneveld, 

Keyzer and Ndiaye, 2016). UK agricultural production is regionally diverse (Department for 

Environment Food and Rural Affairs, 2018b). Yet, the lowland fen region in East Anglia (Figure 1) 

contains rich, fertile areas of peat that that allow the production of horticulture and agricultural crops, 

accounting for around 7% of England’s total agricultural production (Department for Environment 

Food and Rural Affairs, 2021a). It is increasingly apparent that the sustainable management of lowland 

fens of East Anglia is necessary for commercial productivity standpoint but also critical to achieve 

national environmental goals.  

 

Figure 1: Geographical Map displaying the UK East Anglian fenland area outlined in red. Reproduced 
from (Redding and Nunns, 2017) 
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The recent advancements in knowledge of the functioning and services provided by soils has led to a 

variety of approaches to assess the health of soils. These include the development of national 

assessments, visual assessment methods, and suites of indicators (Bünemann et al., 2018). However, 

current methods for assessing soil health are primarily developed with a focus on mineral soils. The 

development of on-farm indicators and tools to identify soil health specific to lowland drained fens is 

an urgent and essential requirement to support the sustainable management of these vital 

agroecosystems.  

 

This project was framed by the research themes of the BBSRC Waitrose Collaborative Training 

Partnership (CTP). This partnership between BBSRC and Waitrose provided three interrelated research 

themes; Sustainable Crop Production, Sustainable Soil and Water, and Biodiversity and Ecosystem 

Services in Agriculture. This project, in theory, could fall under the auspice of any of these themes, but 

the third theme was deemed most appropriate. Sustainable production systems require a 

commitment to developing biodiverse systems and multifunctional landscapes to support the delivery 

of a variety of ecosystem services. The partnership therefore required consideration of the wider 

context of food production systems, including the concept of food security, the production systems 

present within the UK, and the development of concepts to assess the functioning of agricultural 

systems. The thesis work was conducted alongside an industrial CASE partner G’s Fresh Ltd, based in 

Barway, Cambridgeshire who farm over 5,000 ha of land in East Anglia, with a large proportion of this 

located on lowland fen in the area. This role was directly related to the research project, encouraging 

the thesis development to be commercially grounded and provide usable outputs for the industrial 

partner. 

 

1.2 Research Aims and Objectives and Thesis outline 

 

The aim of this study was to develop tools to allow farmers and land managers to measure soil health 

on farms across the lowland fen region of East Anglia. This required me to identify key physical, 

chemical, and biological properties that infer the health of lowland peat systems. Two tools were 

developed to measure the soil health of lowland fen soils. One used a statistical redundancy approach 

and the other used a Bayesian network approach. After a literature review, two chapters are dedicated 

to each approach and then the overall thesis findings are discussed in a general discussion chapter. I 

provide here a short summary of the purpose of each chapter. 
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Chapter 2 provides a review of the literature concerning food security, the agricultural production 

systems in the UK, and the role of peatlands in agricultural production. The chapter highlights the 

ecosystem services provided by peatlands and current approaches to the assessment of soil health. 

 

Chapter 3 describes the development of a Peat Health Index (PHI). The purpose of this exercise was 

to identify a minimum set of indicators to successfully capture the variance in peat properties across 

a peat health gradient using Principal Component Analysis. The output from this would allow farmers 

and land managers to identify differences between health status of their fields and inform sustainable 

management. Chapter 4 expanded upon the work in Chapter 3. Twenty randomly selected fields 

(including the study sites used in Chapter 3 to develop the PHI) were assessed using the PHI to validate 

the index and determine its reproducibility. The scores from this process were compared against 

farmer’s perceptions of soil health and farm key performance indicators (KPIs).  

 

Chapter 5 introduces the concept of using Bayesian networks to model the health of peat soils. The 

chapter starts with a description of Bayesian networks, how they operate, and how they have been 

previously used. The chapter then reports a Bayesian network structure created by expert opinion to 

infer the health of peat systems using simple on-farm available indicators that represent the functions 

associated with a healthy peat under intensive agriculture. Chapter 6 follows on from Chapter 5 by 

parametrising and evaluating the Bayesian network to create a tool that can be used to benchmark 

and compare the health of peat soils. Parameterisation was achieved through using expert opinion 

and by running simulations using a biogeochemical model. Expert opinion on the probability 

distributions of the network were gathered using the ACE programme created by Rothamsted 

Research to aide in elicitation. Expert opinion was combined with outputs from the ECOSSE 

biogeochemical model to represent carbon and nitrogen cycling. The parameterised network was 

evaluated through retrospective and predictive propagation, k-fold cross validation and sensitivity 

analysis. The output enables famers and land managers to assess peat health and consider the 

uncertainty associated with environmental systems.  

 

The development of the two tools to quantify soil health of lowland drained agricultural peatlands are 

discussed in Chapter 7 alongside recommendation for future work. The publication strategy for the 

work presented in the thesis is to combine chapters to create two papers. Chapter 3 and 4 will be 

combined to describe the creation and validation of the Peat Health Index. Chapter 5 and 6 will be 

combined to report the creation and evaluation of a parametrised Bayesian network.  
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Thesis Hypothesis 

Chapter 3 Hypothesis 

We hypothesised that the health scores from a Peat Health Index (PHI) created with simple 

indicators will display signification correlation with key farm performance indicators. 

 

Chapter 4 Hypotheses 

We hypothesised that the PHI scoring gradient developed in prior work would be reproduceable 

over time using the indicators developed in Chapter 3 

We hypothesised that a significant correlation between PHI scores and farmer subjective opinion on 

health status of individual fields would exist 

We hypothesised that the health scores from a Peat Health Index (PHI) created with simple 

indicators will display signification correlation with key farm performance indicators. 

 

Chapter 5 Hypothesis 

We hypothesised that the Bayesian network structure created through expert opinion would include 

a range of physical, chemical and biological Peat Health indicator nodes. 

 

Chapter 6 Hypothesis 

We hypothesised that the parametrised Bayesian network could distinguished between a (1) deep 

well structured peat, (2) a deep compacted peat, (3) A Shallow well-structured Peat, and (4) a 

Shallow compacted Peat. 

  



17 
 

Chapter 2: Literature Review 

 

2.1 Food Security 

 

Food security occurs when all people, at all times, have physical and economic access to sufficient, 

safe and nutritious food that meets their dietary needs and food preferences for an active and healthy 

life (Food and Agriculture Organization of the United Nations, 1996). This concept can be subdivided 

into four key dimensions; Availability, Access, Utilization and Stability (Simon, 2012). There must be 

physical availability of food through either domestic production or net trade to meet demands of the 

populace. The populace must have the ability, both economically and physically, to access the food. 

The populace must be able to ingest and metabolize the food which requires an adequate and 

balanced diet, access to clean water, good sanitation, and healthcare to reach a state of nutritional 

wellbeing. Finally, the last dimension encompasses the former, requiring stability of each to provide 

continuous security rather than immediate security. Global and UK food security is affected by a range 

of complex and inter-linked factors that determine whether each dimension can be achieved 

(Parliamentary Office of Science and Technology, 2017). The importance of food security should not 

be undervalued. Growth in the agricultural sector is recognised as an important instrument in poverty 

reduction through four transmission mechanisms; 1) direct impact of agriculture on rural incomes; 2) 

impact of cheaper food; 3) contribution to growth and generation of economic opportunity and; 4) 

agriculture’s fundamental role in stimulating and sustaining economic transition (Cervantes-Godoy 

and Dewbre, 2010). Food security also increases a country’s global security and stability through self-

dependency (Clapp, 2017), encourages economic growth (Timmer, 2000), improves health (Gillespie, 

2009) and increases trade opportunities due to expansion of production and population growth in 

different geographic regions (Godfray et al., 2010). 

 

Food demand is a complex issue influenced by a range of factors from population growth, income 

growth, urbanization as well as factors including; education, traditions, and development of 

downstream services (Kearney, 2010). Despite a simple definition, the complexity of achieving food 

security increases as our environment changes through time and space. It is therefore necessary to 

explore the pressures that have and will lead to food insecurity. A leading cause of food insecurity will 

come from the projected population growth (Hall et al., 2017). Historically, global annual population 

growth rate peaked in 1962 at 2.2% and began a steady decline which is predicted to continue. Whilst 

the rate of growth is declining, total population predictions indicate global population will reach 10 
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Billion between 2050 and 2060 (Department of Economic and Social Affairs. Population Division., 

2017; United Nations, 2017). 

 

As Malthus stated, “the power of population is indefinitely greater than the power in the earth to 

produce subsistence for man”. Despite dissenting views to those of Malthus indicating population 

growth is controlled by food supply, observations from Africa tend to support these views, with 

continued population growth despite increasing prevalence of undernourishment (FAO-FAD-UNICEF-

WFP and WHO, 2017). The pressures of population growth on food security are multifaceted, 

perpetual, and go beyond merely production of crops (Brundtland, 1987). For example, urbanisation 

patterns of growing populations increases demand for a wider assortment of food groups (FAO, 2017), 

alters dietary patterns, and requires changes to distribution and production infrastructure  (Kearney, 

2010). However, the influence of increasing population on the consumption and production of food 

and fodder is not linear. In 2015, UK households wasted around £13 billion worth of food which could 

have been consumed (Smithers, 2017). Notwithstanding these multifaceted pressures of population 

growth on food security, current food production is ultimately dependent on land and water supply 

(Food and Agriculture Organization of the United Nations, 2013) and growing populations will 

continue to place pressure on production and demand intensification of agricultural practices 

(Kopittke et al., 2019). As such, food security is directly impacted by downstream influences such as 

dietary shifts, and upstream effects from climate change, water scarcity and soil degradation. The next 

four sections will unpack these upstream and downstream pressures in a little more detail.  

 

2.1.2 Dietary shifts 

 

Globally, food production is sufficient to meet population nutritional requirements (Berners-Lee et al., 

2018), but waste and demands beyond nutritional needs causes insufficient supply to meet demand. 

Nutritional demands are influenced by income; wealthier portions of the population tend to increase 

calorie intake and the portion of resource intensive foods in their diets (Ranganathan et al., 2016). 

This  transition to resource intensive foods increases demand for animal source foods, sugars, fats and 

oils, refined grains, and processed foods (Hawkesworth et al., 2010). These diets increase health risks 

(Akbaraly et al., 2013) and impact negatively on the environment through poor carbon, water and 

ecological footprints (Rosi et al., 2017).  The United Nations Sustainable Development Goals acts to 

promote good health and wellbeing (United Nations, 2015a). Whilst the exact make-up of a balanced 

healthy diet varies according to cultural traditions, individual’s needs, local availability and other 

factors, World Health Organizations guides recommended a range of fruit, vegetables legumes, nuts 



19 
 

and whole grains alongside meats and diary (World Health Organization, 2015). To achieve food 

security, a population must have access to safe and nutritionally adequate food to fulfil a healthy 

balanced diet. Fruit and vegetables play an important role in human nutrition providing dietary fiber 

(Padhy and Behera, 2015) in forms that promote satiety (Slavin and Lloyd, 2012) and improve the 

health of the populace (Oyebode et al., 2014). Deficiencies in fruit and vegetable intake is correlated 

with food insecurity, with less frequent consumption in food insecure families, particularly when 

resources deplete (Grutzmacher and Gross, 2011). Given current drives to increase fruit and 

vegetables consumption, the benefits of consuming fruit and vegetables, and the negative health 

impacts associated with current diets, it is likely that there will be a future increase in the demand for 

fresh fruit and vegetables. It is expected that this future increase in demand will ultimately increase 

the environmental impact of growing fruit and vegetables, including additional pressures placed on 

soils. 

 

2.1.3 Climate change 

 

Climate change is likely to directly affect agriculture through changes in rainfall patterns (Piao et al., 

2010) and temperature variations (Howden et al., 2007), and indirectly through changes in markets, 

food prices, and supply chain infrastructure (Gregory, Ingram and Brklacich, 2008). Agricultural 

systems display a highly sensitivity to climate variations and predicted changes to temperature. 

Increased frequency of extreme events will likely lead to reduced crop yields and yield stability, 

accordingly affecting food security (Diacono et al., 2017). Recently published UK Climate Projections 

by the Met Office indicate a trend towards warmer, wetter winters and hotter, drier summers (Fung 

et al., 2018b, 2018a). These changes may positively affect crop production through an increase in 

growing season length. However, they are likely to negatively impact certain crop varieties, create 

drought scenarios, and, during winter periods, lead to waterlogging, compaction, and decreased land 

trafficability (Morison and Matthews, 2016). Climate change not only effects food production but may 

affect food access and utilization via collateral effects on household incomes and loss of access to 

drinking water (Wheeler and von Braun, 2013). These predicted impacts of climate change on food 

production highlight a need to alter the current approaches and practices concerning the 

management of agricultural systems. 
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2.1.4 Water scarcity 

 

Globally, future increases in crop production will primarily come from intensification of current 

agricultural land rather than the cultivation of new areas (Gregory and George, 2011). Current 

demands on water for land associated with agricultural practices are, however, unsustainable (United 

Nations, 2015b). A host of factors affect water scarcity including; inefficiency of water use, distribution 

of water resources, depletion of groundwater resources, and degradation of water quality (Wang et 

al., 2017). Predictions indicate that by 2050, due to climate change, there will be a decline in land 

suitable for rain fed production in the UK, indicating a future demand for supplementary irrigation 

(Daccache et al., 2012). This concern has been highlighted in that the South and East of England 

already requires substantial irrigation (comparing moisture deficits shown in Figure 2a and Irrigation 

levels in Figure 2b) (Rey et al., 2016), with future drier climates predicted, irrigation will become more 

crucial to support the UK agricultural sector. However, some areas of the UK are already over-

abstracting from water reserves (Figure 2c), indicating pre-existing unsustainable practices. 

 

 

Figure 2: Identifying the spatial variability of agroclimate’s across England and Wales in 2010 which 
was designed to mimic a year characterised by low rainfall and high evapotranspiration). Showing; 
(a) Maximum potential soil moisture deficit (PSMDmax) (mm); (b) irrigated cropping (ha); and (c) EA 
water resource availability for England and Wales, by EA region. Reproduced from Rey et al., (2016). 
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2.1.5 Soil degradation 

 

Soil, alongside water, is the foundation of agriculture, providing humans with the ability to produce 

food (Parikh and James, 2012) and it is estimated that 95% of our food is directly or indirectly produced 

on our soils (Food and Agriculture Organization of the United Nations, 2015). Fertile and healthy soils 

are essential for sustainable agriculture. However, with expansion of intensively cultivated land, and 

the management practices associated with it, there has been an increase in soil degradation resulting 

in a loss of productivity (Horrigan, Lawrence and Walker, 2002; Tilman et al., 2002). Soil degradation 

as a concept looks at the decline in the capacity of a soil to perform a specified service or function. 

However, quantifying levels of degradation is challenging due to spatial and temporal scales and global 

assessments vary due to conflicting methodologies and interpretations (Hatfield, Sauer and Cruse, 

2017). Despite difficulties in estimating degradation, the predicted increase in population and 

intensification of agriculture is likely to; escalate erosion (Prokop and Poreba, 2012; Parliamentary 

Office of Science and Technology, 2016; Nearing et al., 2017), increase loss of fertility (Brown, 2005), 

drive the loss of biodiversity (Matson et al., 1997),  increase salinization and desertification (McClure, 

1998), and increase rates of pollution (Tilman et al., 2002). Apart from the environmental issues 

associated with degradation, nutritional values of produce are influenced by soil quality, from pH to 

macro/micro nutrient composition, and degradation is likely to decrease the quality of produce 

(Hornick, 1992). The Economics of Land Degradation Initiative (http://www.eld-initiative.org/) 

estimates that, globally, the annual economic losses due to soil degradation are 1.5 – 3.4 trillion Euros. 

In the UK, quantifiable soil degradation costs have been estimated at £1.2 billion per year, with the 

majority of costs occurring off-site, and so of limited concern to those who actions may be causing the 

degradation (Graves et al., 2015). The economic cost of soil degradation is only going to escalate with 

further demands we place on our soil. Degradation directly effects the soil’s ability to produce 

sustainable and high yields, reducing food security. 

 

 

2.1.6 Conclusion 

 

Population growth, dietary shifts, water scarcity, climate change, and soil degradation place pressure 

on farmed soil ecosystems, likely creating vicious feedback cycles. The bourgeoning population, 

associated nutritional demands, and dietary shifts are the driving force behind anthropogenic changes 

occurring in our ecosystems. Human activities have begun to exacerbate climate changes and degrade 

the ecosystems we rely upon for survival. Planetary boundaries for safe operating of humanity are 

http://www.eld-initiative.org/
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being transgressed which could lead to disastrous consequences (Rockström et al., 2009). Soils provide 

a variety of ecosystem services and processes that are essential to survival and, as understanding of 

these has increased, a shift to sustainably manage our soils is observable. The degradation of the soil 

systems leads to a reduction in production, directly affecting food security, and reducing the capacity 

of the system to provide beneficial services such as climate and water regulation. The recent 

publication by the UK Government, the “25 Year Environmental Plan” (Department for Environment 

Food and Rural Affairs, 2018a), sets out the government’s ambitions to improve soil management and 

sustainably manage all farmland by 2030. Within the boundaries of the UK, this will look at developing 

and testing soil health metrics as well as researching how soil health supports wider ecosystem 

functioning. 

 

2.2 Overview of Primary Crop Production capabilities 

 

Current global production of crops would be sufficient to provide enough food to feed the population 

of 9.7 billion in 2050 but would require significant changes to dietary choices (Berners-Lee et al., 2018). 

Total global production of crops is essential to achieving global food security and trade of food and 

fodder is vital for both developed and developing countries (Food and Agriculture Organization of the 

United Nations, 2003) whereas self-sufficiency of a country can be seen as a buffer to market 

fluctuations (Clapp, 2017). The global cereal and vegetable production rates have steadily increased 

over the period of 1970’s to mind 2010’s (Ritchie and Roser, 2013) . However, available fertile land is 

a finite resource, implying that increasing pressure is being placed upon existing agricultural systems. 

 

Sourcing food from a diverse range of regions, alongside domestic supply, enhances food security 

(Department for Environment Food and Rural Affairs, 2010). However, around 70% of cropland which 

supply the UK, and the associated greenhouse gas emissions, are located abroad, indicating a reliance 

on external resources and displacing environmental degradation (De Ruiter et al., 2016). Sustainably 

increasing UK production would reduce the reliance on overseas food producers and the offshore 

degradation natural assets. While increased local food production may improve food security, it would 

additionally require consumers to follow nationally recommended diets (Behrens et al., 2017). With 

advances in technology, investment, education, and improved farm management, agricultural 

production in the UK has risen steadily since 1961 (Department for Environment Food and Rural 

Affairs, 2010). The yields of cereal crops have in general seen steady increases over the last thirty 

years, yet vegetable production has decreased remarkably over a similar period (Figure 3). The 
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increasing demands from population, and the rapidly increased momentum to increase vegetable 

intake, further anthropogenic pressures are likely to be placed on already degraded systems. 

  

Figure 3: Displaying cereal steady increase and vegetable decline in production across the UK in the 
last 40 years A) Total cereal yields in tonnes per hectare from 1980 to 2020. Data from DEFRA 
(Department for Environment Food & Rural Affairs, 2021). B) Vegetable Production in thousand tonnes 
across the entire UK from 1990 to 2020. Data from DEFRA (Department for Environment Food and 
Rural Affairs, 2021c). 

  

Within the UK, the East of England, compromising, Cambridgeshire, Norfolk, Suffolk, and Essex 

contributes a large proportion of cropped area towards the total English cropland in comparison to 

other regions (see Figure 4). This disproportionate contribution by the East of England is partly due to 

the location of large deposits of fertile peat where over 37% of all vegetables produced in England are 

grown (National Farmers Union, 2008). 
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Figure 4: Data from DEFRA on the proportion each individual UK Region contributes towards English 
total crop area (Department for Environment Food and Rural Affairs, 2018b). 

 

2.2.1 Conclusion 

 

Imports are currently essential to UK food security. Reliance on importation displaces environmental 

impacts on other countries and exposes UK food security to future perturbations of global food 

production and supply. With the UK producing around half the food it requires, there is additional 

scope to expand production levels to meet demands. This expansion and intensification will need to 

be undertaken sustainably to prevent exasperating issues of soil degradation and environmental 

harm. A large percentage of crop output is produced within the East Anglian Fen area, particularly fruit 

and vegetables that are essential to a healthy diet. This high productivity can be attributed to the rich 

and fertile lowland peat that developed in the area. However, these areas are under anthropogenic 

threat of current and future degradation which will likely lead to a reduction in productivity if not 

managed sustainably. 
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2.3 Peatland Ecosystems 

 

Recent modelling of global peatland distribution estimates total area to be 4.23 million km2 (2.84% of 

the world land area), but indicating a current modelling overestimate the extent in the mid and high-

latitude of the Northern Hemisphere (Xu et al., 2018). From modelling, global peatland appears 

however to be dominant in the northern hemisphere, with other peaks in the mid hemisphere (see 

Figure 5). 

 

 

Figure 5: An amalgamated map of global estimate of peatland and its distribution along the latitude 
using a wide variety of data sources (Xu et al., 2018). 

 

Following is a brief introduction into the initial development of peatlands and the process of drainage 

and degradation that occurs. Peat is an organic sedentary material that is primarily formed from the 

remains of photosynthetically derived plant material accumulating under water-saturated conditions. 

These anoxic conditions, the low decomposability of plant material, and other complex causes leads 

to incomplete decomposition of the organic material (Moore and Basiliko, 2006). Natural Peatlands 

are complex eco-hydrological systems commonly conceptualised as consisting of two layers; the 

acrotelm (periodically saturated) and catotelm (permanently saturated). Although a well-accepted 

concept, the use of this diplotelmic model may be inherently inflexible, and a poor representation of 

natural peat systems (Morris et al., 2011) but represents drained agricultural systems effectively. The 

hydrological regime is essential in peat formation and maintenance of the many ecosystem processes 

that occur. As described by Rydin and Jeglum (2013), peat systems differ based upon vegetation 

composition, moisture regimes, microtopography and nutrient regime (Table 1). 
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Table 1: Description of the characteristic of differing peat systems (based upon vegetation 
composition, moisture regimes, microtopography and nutrient regime) reproduced from Rydin and 
Jeglum, (2013)  

Peatland 
Attribute 

Marsh Fen Bog 

Vegetation 
Submergent, floating-

leaved, reeds, tall 
sedges 

Open or sparse cover of 
low trees, low shrubs, 

graminoids, herbs, 
bryophytes 

Open or with low trees, 
dwarf shrubs, low 

cyperaceous plants, 
bryophytes 

Soils/peats 
Mineral, organic-rich 
mineral, or shallow 

peat 

Usually >30cm peat; 
sedge and sedge-

Sphagnum are common 

Usually >30cm peat; 
Sphagnum peat 

Moisture Regime 
Permanently or 

seasonally flooded by 
lake or stream water 

Groundwater fluctuates 
below to above surface 
in lawns, carpets, and 

mud-bottoms; 
hummocks mostly above 

water table 

Groundwater fluctuates 
below to above surface 
in lawns, carpets, and 

mud-bottoms; 
hummocks well above 

water table 

Microtopography Level or tussocky 

Level, or with scattered 
hummocks, or patterned 

with ridges alternating 
with depressions 

Level, or patterned with 
hummocks or ridges 

alternating with hollows 

Nutrient Regime 
Minerotrophic; eu- to 

mesotrophic 
Minerotrophic; eu- to 

oligotrophic 
Ombrotrophic; 

oligotrophic 

 

UK peatland distribution has been estimated to be almost 3 million hectares across England, Wales, 

Scotland and Northern Ireland, around 8.2% of total land area (Artz et al., 2019). This figure may be 

an underestimate as figures are developed in consideration of national definitions of peat. For 

instance, England and Wales define peaty soils as >10cm depth and deep peat as >40cm, Scotland 

map peat as >50cm deep, Northern Ireland maps peat soils as >40cm and deep peat as being >50cm 

(JNCC, 2011a). The following work will use the definition of Peat using the England and Wales 

description noted above. Within the UK, a pocket of peat has developed across the lowlands of East 

Anglia, the fens have been accumulating carbon over the duration of the Holocene as the rising sea 

level flooded the fenland basin (Smith et al., 2011). The Holocene was a major period of peatland 

growth around the world with highly productive fen peat forming in the West Siberian Lowland as well 

as in other high latitude locations around the world (Smith et al., 2004). These sedentary peat layers 

overly a variety of geology in the East Anglian area including sulphate rich impermeable clays (Fen Clay 
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and Oxford Clay) and Chalk groups from the Upper Cretaceous periods. These peatland ecosystems, 

where water is connected to or supplied over mineral parent materials, are called minerogenous and 

are nourished by mineral soil groundwater (i.e., minerotrophic). As a hydrological system, areas of 

lowland Fenland are minerogenous and topogenous in nature, with a dominant vertical flow of water 

(Maddock, 2008). Each individual lowland fen has differing characteristics, reflecting the source of 

their vegetation and the hydrological, chemical, and climatic regimes present (Rydin and Jeglum, 

2013).  

 

2.3.1 Process of peat drainage 

 

Peatlands are drained to allow for agricultural and forestry practices. The process of drainage occurs 

when water is diverted from the region to remove the anoxic conditions through creation of ditches, 

drains and the inclusion of pumps to remove ground water (Page, Proby and Ladds, 1936). The most 

influential stage of drainage of the East Anglian fens took place in the 17th century when rivers were 

straightened by the creation of linear links and sluiced against tidal flows (Langslow, 1997). Following 

the initial reconstruction of waterways, shrinking and subsidence lead to the need to increase water 

removal to render drainage works useful (Holden, Chapman and Labadz, 2004). Artificial drainage of 

peatlands in the East of England lowers the water table to provide a deeper zone of aerated soil for 

agricultural exploitation. Lowering of the water table results in three distinct drainage processes that 

occur in peatland soils; (i) primary consolidation, (ii) secondary compression and (iii) oxidative wastage 

(Lindsay, Birnie and Clough, 2014). Primary consolidation occurs where loss of water leads to collapse 

and shrinkage of peat adjacent to the drain; Secondary compression follows the loss of water. The 

upper layers of peat are less buoyant and compress the lower layer. This effect extends outwards 

away from the drain. Oxidative wastage occurs as oxygen is allowed to penetrate the catotelm, fuelling 

decomposition of peat. Alongside these main processes, peat is also lost through wind erosion, 

removal of soil on crops, and accidental burning (Holman, 2009). As one of the most extensively 

drained areas in Europe (Baldock, 1984), drainage of British peatlands has played a fundamental role 

in the history of British farming. The UK has an extensive network of peatland, with different classes, 

that makes up around 11% of total land area in England (Figure 6) with lowland fens totalling 2880 

km2 (Natural England, 2010). 
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Figure 6: An indication of the area (km2) of different peatland classess in England and the associated 
state following drainage. * SD stands for substantially degraded peatland due to drainage and 
cultivation. Data available from Natural England, 2010. 

 

England’s peatlands are fragile ecosystems that, following removal from their natural state, have been 

unavoidably degraded by anthropogenic activity. Natural England surveyed peatlands across England 

and noted that over 70% of peatlands show degradation and almost 40% of lowland fen peat is 

cultivated (Natural England, 2010). Given the importance of lowland peats to UK food security, their 

current state, and their fragility following drainage, it is essential that we sustainably manage these 

systems. The loss of ecosystem services and processes associated with this degradation is likely to 

impact future sustainability of agricultural production within the UK. To establish sustainable 

management practices, we must understand the ecosystem services and processes that occur in 

natural peatland systems and the evolution of these processes following drainage. 
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 2.4. Peat Soils and Ecosystem Services  

 

Peatlands are wetland ecosystems found globally, and deliver a range of environment, societal and 

financial benefits.  These systems provide critical habitats for species and biodiversity, regulate water 

flow and pathways, provide clean drinking water, and store significant carbon content (Kimmel and Ü. 

Mander, 2010; Rydin and Jeglum, 2013). For example, up to 70% of UK drinking water is sourced from 

catchments dominated by peatland habitat, because these regions contain few pollutants and low 

levels of nutrients (International Union for the Conservation of Nature UK Peatland Programme, 

2018). Despite their importance, problems associated with incomplete knowledge about these 

complex ecosystems processes exist and the establishment of disconnected policies and management 

strategies put these ecosystems at further risk (Whitfield et al., 2011). Peatlands are therefore a large 

reserve of natural capital that provide a range of ecosystem services, with natural capital being the 

stock that provides the flow of these services. A further discussion of the important ecosystem services 

that peatlands provides is outlined below. 

 

2.4.1 Ecosystem Services – What are they? 

 

The Joint Nature Conservation Committee defines ecosystem services as the benefits people obtain 

from ecosystems. Dynamic and evolving, ecosystem processes (also known as functions) govern 

ecosystem services (and disservices). The concept of ecosystem services introduces an anthropogenic-

value to the services and can be seen as a more meaningful way to convey the importance of the 

functioning of soils to decision makers (Robinson et al., 2014). Soils provide a wide range of services 

which are critical to the functioning of the Earth’s life support system, beyond food security (Costanza 

et al., 1997). Several classification systems have been created including the Millennium Ecosystem 

Assessment, The Economics of Ecosystem and Biodiversity, and the Common Classification of 

Ecosystem Services. Fundamentally ecosystem services can be grouped into four overarching 

categories: provisioning services, regulating services, cultural services and supporting services (MEA 

2005). This system can provide an adequate classification scheme for the discussion of soils and their 

related functioning. However, there are many different context specific frameworks that incorporate 

different ecosystem services and different definitions (Fisher, Turner and Morling, 2009). For example, 

Costanza et al. (1997) evaluated 17 soil ecosystem services and Haygarth and Ritz (2009) created a 

framework of 18 critical services for soils and land use (Haygarth and Ritz, 2009). The definition of 

ecosystem services varies since different stakeholders have different methods of assessment and 

classification (Abson et al., 2014). The type, quantity, and quality of ecosystem services provided by a 
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soil will also depend upon specific environmental characteristics that underpin soil properties and 

functions (Pereira et al., 2018). The ecosystem services approach generally has great potential to 

quantify the immense value of soils. For example, services provided by soil biota are estimated to 

exceed 1.5 Trillion US dollars (Brussaard, de Ruiter and Brown, 2007). The ecosystem services and 

disservices that peatlands provide will differ based upon the geographical location, the type of peat, 

and the current management practices (Kimmel and U. Mander, 2010; Xu et al., 2020). A summary of 

the provisioning, regulating, supporting, and cultural ecosystem services provided by peatlands is 

summarised below. 

 

Provisioning 

Peatlands provide a land space for the production of food, fibre and fuel used for; horticulture, 

agriculture, domestic heating, energy generation, medicine, wild or domesticated animals, and 

forestry (Schilstra and Gerding, 2004; Taskila, Särkelä and Tanskanen, 2016; Surahman, Soni and 

Shivakoti, 2018; Hatano, 2019; Mugerwa et al., 2019; Buschmann et al., 2020). Furthermore, fresh 

water provision is obtained from reservoirs draining across and through peatland areas throughout 

the world (Ireson et al., 2015; Goodbrand, Westbrook and van der Kamp, 2019). 

 

Regulating 

Peatlands provide regulation of the climate through control of local climate and air quality by 

regulating greenhouse gases emissions, including carbon dioxide, methane, and nitrous oxide 

(Gorham, 1991; Roulet et al., 1992; Segers, 1998; Belyea and Malmer, 2004; Frolking et al., 2011; 

Joosten et al., 2016). They also regulate carbon sequestration and storage (Roulet, 2000). Peatland 

ecosystem services also include the regulation of water, through storage discharge, the supply of 

water purification and waste treatment (Holden, 2006; Ritson et al., 2016). Peatlands provide nutrient 

cycling services through the activities of the microbial community and their potential to transform 

nutrients into plant-available forms (Espenberg et al., 2018), maintain balances and storage of 

nutrients (Salmon et al., 2021). 

 

Supporting 

Peatlands provide unique habitats for a range of species and provide biodiversity preservation services 

(Parish et al., 2008; Rydin and Jeglum, 2015; Grzybowski and Glińska-Lewczuk, 2020). Further, the 
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process of peatland formation through organic carbon accumulation forms the peat/soil layer that 

supports habitat and growth of crops (Rydin and Jeglum, 2015). 

 

Cultural 

Peatlands provide cultural services through the access to space for recreation and appreciation of 

nature, religious significance, preservation of historical data, and opportunities for education, 

amongst other cultural services (Bonn and Joosten, 2016; Bonn et al., 2016). 

 

Drainage and the associated alteration of hydrological conditions inhibits the peat forming process 

(Charman et al., 2013) and the subsequent management of peatland systems alters the range of 

ecosystem services that peatlands provide generally leading to a degradation of the system to provide 

the identified services (Swindles et al., 2016). As previously noted, peatlands are drained to allow for 

intensive exploitation, resulting in increased provisioning services in the form of agricultural outputs. 

The focus of increasing the provisioning services leads to depletion of regulating and supporting 

services (Fell et al., 2016). Ecosystem services and agriculture are inextricably linked. Agriculture has 

been shown to be a provider and beneficiary of a diverse range of ecosystem services that extend 

beyond the provision of food. Agriculture relies upon numerous ecosystem services, such as soil 

provision, pollination, pest regulation, and genetic diversity but leads to disservices including; water 

pollution, health risks, and biodiversity loss. Redressing the balance of trade-offs is imperative 

(Swinton et al., 2007; Power, 2010). Through intensification and poor management practices, UK 

agriculture has had significant negative impacts on ecosystem services with annual external costs £2.3 

billion in 1998 and soil degradation was calculated in 2010 to cost £1.2 billion every year, although 

these values are assumed to be an underestimate due to complexities in mapping ecosystems (Pretty 

et al., 2000; Environment Agency, 2019). Given the vital role ecosystem services play in aiding food 

production and towards the critical functioning of earth systems it is imperative to quantify the 

relationships between management practices and the delivery of ecosystem services and investigate 

how farmed ecosystems can be managed more sustainably to preserve the future delivery of 

ecosystem services. 

 

The supply of ecosystem services can be mapped at a local (Raudsepp-Hearne and Peterson, 2016), 

regional (Lautenbach et al., 2011) or global (Naidoo et al., 2008) scale depending upon the interests 

of the stakeholder or research group leading the project. To map the ecosystem services provided by 
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soils, it is necessary to consider the underlying processes and functions occurring in these ecosystems. 

A service cascade concept can be used to summarise the ecosystem service paradigm (see Figure 7). 

This concept links the ecological and biophysical structures and processes with the benefits (and 

subjective value) we receive from the environment in the form of a production chain (Potschin and 

Haines-Young, 2011). 

 

 

Figure 7: The Ecosystem service cascade model separating the benefits and values provided by the 
system (Potschin and Haines-Young, 2011) 

 

The concept of ecosystem functions considers a subset of characteristics that are ecosystem specific 

and determines the provision of services identified as outputs. Therefore, the capacity of a soil to 

supply ecosystem services is determined by its ability to function, where each soil process or function 

can relate to either a single or multiple ecosystem service (Bouma, 2014). Soil functions can be seen 

as bundles of biophysical and chemical processes. Examples include decomposition cycles, biological 

population regulation, water cycling, organic matter decomposition and storage, and habitat provision 

(Bünemann et al., 2018). As there are no single direct indicators to map all the ecosystem services or 

processes provided by soils, mapping approaches are varied. Ecosystem service metrics, used to 

establish the stock and flow of a soil’s natural capital, are dominated in terms of quality and quantity 

by indicators for provisioning services, with indicators for other services deficient (Layke et al., 2012). 

Furthermore, while many studies on soil and related ecosystem services exist, not all explore the direct 



33 
 

relationship between ecosystem services and soil properties and instead focus on lower level concepts 

where soil properties can be directly incorporated (Adhikari and Hartemink, 2016). The provision of 

ecosystem services is therefore inferred through the assessment of the functioning of the soil system, 

which is often referred to as the ‘health’ of the soil. 

 

2.4.2 Peatlands and Farming 

 

Lowland peat systems are relatively accessible compared with their upland counterparts, which has 

led to large areas being drained and used for intensive agriculture. The use of peatlands for agriculture 

and associated drainage, alters the hydrology of the remaining natural habitat in the surrounding area 

(Lindsay, Birnie and Clough, 2014). Agricultural practices that occur on peatland soils can result in the 

loss of peat through wind erosion (mainly due to loss of vegetative cover), water erosion pathways (Li 

et al., 2018), microbial decomposition, and future subsidence (Dawson et al., 2010; Säurich et al., 

2019). Peats accumulate and store carbon through their formation. However, through drainage and 

intensified agriculture, this stored carbon becomes a large emission source of greenhouse gases.  

 

Furthermore, the presence of agriculture on these systems increases the risk of flooding and increased 

costs with maintaining drainage (Allott et al., 2019; Buschmann et al., 2020). Cultivation of organic 

soils leads to the subsidence in peat layers, dropping the surface levels to below the flood water level 

and thus leading to an increase in flooding (Ikkala et al., 2021) in addition to decreased infiltration and 

increased ponding of water (C. Kechavarzi, Dawson and Leeds-Harrison, 2010). Not only will this have 

long term impacts on flood and water management, but also directly affect farming through 

accessibility to fields, pests, and reduced yields. The degradation of peatlands associated with 

agriculture, and the transition to vascular plants, leads to an increase in dissolved organic carbon being 

emitted from these peat systems, creating peaty brown coloured water, and reducing the water 

quality (Ritson et al., 2016; International Union for the Conservation of Nature UK Peatland 

Programme, 2018; Nieminen et al., 2021). Considering plant diversity, farming reduces the natural 

abundance and diversity of vegetation (Zeng, Li and Ruiz-Menjivar, 2020), replacing natural vegetation 

with monocrops and cash crops. Natural and rewetted peatlands show an increased diversity of 

vegetation, indicating an increased biodiversity and habitats for flora and fauna (Henkin, Walczak and 

Kaplan, 2011; Gavazov et al., 2018). Species diversity within a community and diversity of communities 

within a landscape are the most important levels of organisations for ecosystem service generation 

(Quijas et al., 2012), and the loss of this diversity through implementation of farming, particularly on 
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the complex mosaic found in natural peatlands (Minayeva, Bragg and Sirin, 2017), will directly affect 

ecosystem service provision. 

 

Farming on peatlands additionally must contend with factors affecting all agricultural systems. 

Currently, safe operating spaces for humanity exists which allow us to meet the challenge of 

maintaining the Holocene state. However, these operating spaces are being transgressed, including 

climate change and nitrogen and phosphorous cycles (Rockström et al., 2009). In particular, the 

process of farming peatland systems adds to these transgressions and increases the likelihood of 

crossing climate change thresholds due to increased organic matter loss to the environment and 

speeding up the cycling and associated loss of nitrogen (Prananto et al., 2020). Agricultural production 

relies upon the non-renewable resource of phosphate rock. However, peak production is expected to 

occur around 2030 and the quantity of rock remaining is decreasing, while production costs increase 

(Cordell, Drangert and White, 2009). 70% of world phosphate supply is owned by four major countries, 

indicating both the possibility of market manipulation and a reduction in supply globally due to world 

events (Gilbert, 2009). Despite this, phosphorous loss pathways exist in agricultural systems on 

peatlands. It has been noted that the degradation of peat leads to the transformation of phosphorus 

compounds, resulting in an increase of labile and easily available forms, forms released in reduced 

conditions, and forms combines with metical oxides, apatite, capitate, carbonate and labile organic 

forms (Becher et al., 2018). As such, farming on peat and the associated degradation can lead to loss 

of phosphorous from the system, further increasing the transgression of safe operating spaces and 

reducing use efficiency of the nutrient.  

 

Drainage to allow for agricultural exploitation has different consequences across time scales. Drainage 

generally leads to the rapid loss of peat due to increased decomposition in the first 100 years after 

drainage, although water table dynamics alter over centuries (Young et al., 2017). Despite the rapid 

increase in decomposition immediately following drainage, the decomposition of peat and release of 

CO2 continues for centuries, albeit at a reduced rate (Urbanová and Bárta, 2016; Säurich et al., 2019). 

Furthermore, the bacterial diversity following long term drainage decreases, with multiple distinct 

peatland ecosystems displaying similar community structure as long term drainage occurs (Urbanová 

and Bárta, 2016). This is further compounded by the introduction of modern agricultural practices 

which shift microbial population structure to a less diverse community (Gupta et al., 2022). The 

introduction of agricultural practices also alters the cycle of carbon and nitrogen in the systems over 

time (MacBean and Peylin, 2014), including the dissolved organic components (Kalbitz and Geyer, 
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2002). Whilst the long term impacts of drainage and agriculture on peatlands is important, current 

peat health tools will need to focus on the short term changes (decadal) which farmers and land 

managers can monitor and alter. 

 

2.5 Development of concepts for assessing soils 

 

There has been a variety of approaches adopted to conceptualize the services and processes of soils 

and their assessment. It is important to discuss the history surrounding this development to allow us 

to fully understand the term ‘soil health’ and how it differs from previous concepts. 

 

2.5.1 Soil Fertility 

 

The concept of soil fertility has a range of definitions. The Soil Science Society of America defines soil 

fertility as “the quality of a soil that enables it to provide nutrients in adequate amounts and in proper 

balance for the growth of specified plants or crops” (Soil Science of America, 2021). Similarly, the Food 

and Agriculture Organization on the United Nations defines the concept as “the capacity to receive, 

store and transmit energy to support plant growth” (Food and Agriculture Organization of the United 

Nations, 2021). These definitions focus upon the concept of soil fertility on the soil’s ability to produce 

crops. However, the concept has a boundless number of uses and definitions. The main features of 

the concept of soil fertility include; provisioning of yield, conceptualizing the term as the sum or 

resultant of something (i.e. its properties), an indicator of ecological processes, and its ability to serve 

plants (Patzel, Sticher and Karlen, 2000). Whilst the term soil fertility has been shown to incorporate 

a range of physical, chemical, and biological properties, the concept is primarily focused upon the 

provision of crop nutrients and water as demonstrated through its definition by major organisations. 

 

2.5.2 Soil Quality 

 

The complex interaction of physical, chemical and biological soil properties, in addition to the resulting 

levels of productivity of healthy and nutritious crops, is referred to as “soil quality” (Parr et al., 1992). 

Soil quality is a complex concept looking at both the inherent (use-invariant) and dynamic (use-

dependent) quality of soils, going beyond just its “fitness for use” (Carter et al., 1997). Warkentin and 

Fletcher (1977) reasoned the concept of soil quality should recognize the range of uses of soil, the 

stakeholders concerned, the priorities of society, and that land-use and soil management are made 

within a human content. (Karlen, Ditzler and Andrews, 2003). In this form soil quality can be viewed 
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as a soil’s suitability for a particular use. Initially, the soil quality concept was critiqued due to fears of 

turning soil science into a value system, discontent with the ideas of universal soil quality index, the 

inclusion of bias for certain soil types, and for the emphasis and value placed on a limited number of 

crops (Letey et al., 2003). The simple description of soil quality as the capacity of a soil to function was 

expanded upon to be defined as “the capacity of a soil to function within ecosystem and land-use 

boundaries to sustain biological productivity, maintain environmental quality, and promote plant and 

animal health”(Doran and Parkin, 1994).  There have been many attempts to define soil quality which 

stem from the author’s point of view and to suit the particular research in question (Bastida et al., 

2008). Concerns are that assessments generally focus upon crop production and ecological functions 

as opposed to remediation and environmental remediation, despite a clear attempt to address multi-

functionality of soil (Karlen, Andrews and Doran, 2001). Addressing the term from an environmental 

perspective, soil quality can be defined as “the capacity of the soil to promote the growth of plants, 

protect watersheds by regulating the infiltration and partitioning of precipitation, and prevent water 

and air pollution by buffering potential pollutants such as agricultural chemicals, organic wastes, and 

industrial chemicals”(Sims, Cunningham and Sumner, 1997). The difficulty associated with the 

development of concepts and definitions of soil quality reflects the complexity of the soil ecosystem 

both at a spatial and temporal scale. Quantifying soil quality is difficult due to the variety of land uses 

and the complexity of soil systems, including timeframes for dynamic properties of soil to alter 

(Nortcliff, 2002).  Despite these difficulties, soil quality has been used in England and Wales to report 

upon the state of our soils (DEFRA, 2009) and for the basis of developing a set of indicators to measure 

soils quality (Merrington, 2006).  

 

 

2.5.3 Soil Health 

 

A broader, ecologically based, approach advancing on aspects of soil quality has introduced the 

definition of soil health as “the continued capacity of soil to function as a vital living system, within 

ecosystem and land-use boundaries, to sustain biological productivity, maintain the quality of air and 

water environments, and promote plant, animal, and human health”(Doran and Zeiss, 2000). The use 

of soil health over soil quality appears to indicate a move towards assessing the biological component 

as governance of the ecological services and processes of soils that differ it from weathered rock 

(Kibblewhite, Ritz and Swift, 2008). Use of the term ‘soil health’ instead of ‘soil quality’ can be seen as 

merely a preference and both soil quality and soil health have begun to take on similar meanings 

(Lehman et al., 2015). As concepts and knowledge have develop, the divide between these two 

schools of thought has decreased and the two terms are used interchangeably, despite their differing 
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definitions. Soil quality is generally directly related to specific soil functions whereas health presents 

the soil as a finite non-renewable and dynamic living resource. 

 

 

2.5.4 Use of the term ‘Soil Health’ in this thesis 

 

The use of the terms soil fertility, quality, and health results in substantial confusion and clarity is 

needed to create a clear conceptual approach (Patzel, Sticher and Karlen, 2000). It is therefore 

necessary to make clear the position on soil health this thesis takes going forward. Soil Health will be 

defined as the continued capacity of the system to function as a vital living ecosystem. This links soil 

health, to the functioning of the system, and sits within the ecosystem service paradigm described 

previously (Lehmann et al., 2020). 

 

The term soil health in this project focuses on drained lowland peatlands. As such it must be clarified 

that, in the context of this thesis, a peatland with good soil health will have properties and functions 

resembling its post drainage state, rather than pre-drainage state. Comparing the functioning of a 

drained peatland with natural vegetation, fluctuating groundwater and minerotrophic nutrient 

regimes would not be appropriate with a drained agricultural fenland system. This project will 

therefore consider a healthy lowland peat under agriculture to function similarly to its state 

immediately post drainage. As we introduced the concept of soil degradation earlier, degradation of 

peat health therefore considers the transition of the functioning of peat towards a reduction in the 

associated provision of ecosystem services and functions from the post drainage state. Therefore, 

degradation can be viewed as the trend in the reduction of the health status of a peatland site relative 

to its starting state immediately after drainage. That is, a deep peat will have a relatively higher health 

“status” immediately post drainage that a shallow peat but has a higher potential for degradation. 

This also frames the concept of sustainable agriculture on peatlands. In the traditional sense, 

sustainable agriculture aims to create farming systems that can meet society’s food demands that are 

also resilient to climate change, protect biodiversity and protect future generations to meet their own 

needs (Janker, Mann and Rist, 2018). In terms of sustainability, draining peatland areas can be seen 

to directly compromise the protection of future generations to climate change and biodiversity 

declines. However, as noted, peatland areas are currently indispensable for food security in the UK 

agricultural system. As such, sustainable agriculture in terms of this project considers the long-term 
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viability of farming of peatland areas. This intrinsically links into the concept of health, as the gap 

between the baseline post drainage state and current functioning of the system. 

 

2.6 Soil Health Monitoring 

 

Perceptions surrounding soil health have been viewed in two distinct manners; (i) a reductionist 

approach which is based upon estimation of conditions using a minimum set of soil properties, and (ii) 

an integrated approach, which assumes the health of a soil is more than the sum of its parts 

(Kibblewhite, Ritz and Swift, 2008). The health of soil systems is essential to the operation of 

agroecosystems and considerable effort has been applied to identify simple indicators to allow 

monitoring of ecosystem services and processes (Schwilch et al., 2016; Griffiths, Faber and Bloem, 

2018; Luján Soto, Cuéllar Padilla and de Vente, 2020). As demonstrated below, the reductionist 

approach dominates the field of soil health monitoring as it is an accessible and practical means of 

assessing and conveying soil health. 

 

2.6.1 Soil Health and National Monitoring and Sampling 

 

In the UK, nature has been taken for granted and undervalued across a range of ecosystems (Defra, 

2011), and this remains true for UK soils (Parliamentary Office of Science and Technology, 2015). 

Whilst it is recognised that soil provides essential ecosystem services and functions, both on and off 

site, and market and non-market benefits (Environmental Audit Committee, 2016), there have been 

limited attempts to set up a nationwide soil health monitoring scheme. An initial approach to 

monitoring soil health within the UK was developed by the Environment Agency which led to the 

selection of a minimum dataset of indicators for assessing the role of soil functions in environmental 

interaction. This minimum dataset included soil organic carbon, total nitrogen, Olsen P, available and 

total Cu, Ni, and Zn, bulk density, and pH (Merrington, 2006). The Countryside Survey has studied and 

audited the natural resources of the UK countryside since 1978 (https://countrysidesurvey.org.uk). An 

Audit in 2007, under Work Package 4, assessed the status of key soil properties including pH, soil 

organic matter, soil organic carbon, bulk density, hand texture, total-N, soil C:N, Olsen-P, potential 

mineralisable nitrogen, invertebrate diversity by main taxa, and metals 

(https://countrysidesurvey.org.uk/content/soils) across a variety of differing systems and 

management practices. The Countryside Survey dataset allows the assessment of soil health, 

providing insight into how soils have changed across a decadal timescale. A national soil quality 

https://countrysidesurvey.org.uk/
https://countrysidesurvey.org.uk/content/soils
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assessment was conducted by Cranfield University between the 1980’s to mid-1990’s as part of the 

National Soil Inventory (Cranfield University, 2021). Data collected ranged from over 20 topsoil 

indicators. While extensive, the dataset comprises a high quantity of chemical properties with little 

measurement of biological properties due to the unavailability of methods and a lack of recognition 

of the importance of soil biology at the time the surveys were undertaken. These schemes have 

provided a vast array of information to aide in monitoring soil health across the UK, however, many 

of these schemes have not been successfully in securing future funding (Emmett et al., 2016).  

 

The European Union attempts to address declining soil health through Common Agricultural Policy 

which encourages farmers to maintain good soil quality through financial incentives 

(Dedeurwaerdere, Polard and Melindi-Ghidi, 2015). Whilst the schemes discussed above have 

sampled across the breadth of the UK, the only soil monitoring programme active today is the 

European Union’s Land Use/Cover Area frame Survey (LUCAS). LUCAS provides not only statistics on 

land use and cover across the whole of the EU, but in 2009 was extended to sample and analyse a 

suite of topsoil properties across the Member States of the EU. Soil properties include coarse 

fragments, soil texture, pH, organic carbon, carbonate content, nitrogen, phosphorus, cation 

exchange capacity, extractable potassium, and multispectral reflectance data. With the UK leaving the 

European Union, the continued operation and future datasets of the LUCAS programme may become 

unavailable or non-existent for British soils. Going into the future, the UK Government is keen to 

develop a soil health index, containing a variety of indicators, to aide farmers and land managers in 

monitoring their soil health (Department for Environment Food and Rural Affairs, 2018a). This has led 

to the development of multiple Environmental Land Management Schemes in the UK including; 

Sustainable Farming Incentive, Local Nature Recovery, and Landscape Recovery (Department for 

Environment Food and Rural Affairs, 2021b). These schemes are currently in development and whilst 

management indicators, such as the installation of hedgerows and wildflowers are identified, no single 

indicator set to monitor soil health has been developed. Therefore, the current list of soil properties 

to be assessed by the developing index is unclear. Recent development have attempted a logical sieve 

approach to identify indicators of soil health, identifying the following; pH, routinely sampled nutrients 

(P, K, Mg), organic matter, microbial activity, nematodes/earthworms, and visual assessment of soil 

structure (VESS) (Stockdale, Hargreaves and Bhogal, 2021). These indices have been established to 

monitor a diverse range of ecosystems. However, different ecosystems provide different quantities 

and qualities of ecosystem services and functions and as such require development of bespoke 

monitoring methodologies. 
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2.6.2 Soil Health Index Studies 

 

Soil health indices aim to effectively combine a variety of available information to create decision tools 

enabling objective decision making on the health of soil systems (Karlen and Stott, 1994). There have 

been numerous attempts to develop soil health Indices using multivariate statistical analysis to select 

a minimum dataset. These minimum datasets are created to map soil functioning and health using the 

least number of soil properties as possible, while maintaining the maximum capability to distinguish 

health and unhealth soils. A huge variety of indicators to construct a minimum dataset, depending 

entirely upon objectives, target groups or stakeholders, spatial scales, and ecosystems in question 

(Bünemann et al., 2018). Chemical and physical indicators are frequently used in soil health 

assessments with biological indicators starting to gain momentum (Andrews, Karlen and Mitchell, 

2002a; Sparling and Schipper, 2002; Sparling et al., 2004; Sangha et al., 2005; Bastida et al., 2006; 

Velasquez, Lavelle and Andrade, 2007a; Masto et al., 2007; Armenise, Redmile-Gordon, et al., 2013; 

Askari et al., 2015; Congreves, Hayes, Verhallen and Van Eerd, 2015; Vasu, Singh, et al., 2016; de Paul 

Obade and Lal, 2016a).  

 

The study of biological life within soils has demonstrated that microorganisms provide a range 

ecosystem services and functions that we rely upon, including the improvement of soil structure and 

water regulation, the cycling of nutrients, the suppression of peats or pathogens, the promotion of 

plant growth through symbiotic relationships, and the degradation of pollutants (Coleman, 2001; 

Stirling et al., 2016). Microbes within soil systems can have both a diverse and niche role to play in 

ecosystem processes. However, the idiosyncratic intra- and interaction between the soil food web, 

alongside high degrees of functional redundancy between species, indicates that a vast knowledge 

gap exists in understanding the outputs of soil biological indicators (Coleman, Crossley and Hendrix, 

2004; Bardgett, 2005). The role of biology in soil systems is essential to understanding the provision 

of functions. However, incomplete knowledge of the diverse community roles, challenges with 

changing populations due to temperature, sampling date and drought conditions pose challenges to 

assessing soils conditions over spatial and temporal conditions. As such, what constitutes a diverse 

range of soil biology, and associated functioning of the system, is poorly understood at a species or 

functional group level (Bolger, 2001). Whilst levels of biological diversity and community composition 

are difficult to analyse, what is clear is that carbon substrates, both within and entering ecosystems, 



41 
 

plays a key role in shaping the composition and activity of soil microbial communities through 

interaction pathways (See Figure 8) (Hooper et al., 2000). 

 

 

Figure 8: Reproduced from Coleman, Crossley and Hendrix 2004 – “Step 1. Diversity of primary 
producers leads to diversity of C inputs belowground. Step 2. Carbon resource heterogeneity leads to 
diversity of herbivores and detritivores. (Alternative Step 2. Carbon resource quality, rather than 
heterogeneity, leads to diversity of detritivores.) Step 3. Diversity of detritivores or belowground 
herbivores leads to diversity of organisms at higher trophic levels in belowground food webs”. 

 

The difficulties assessing and benchmarking soil biological community composition and diversity have 

led to the development of biological indicators that consider the functions provided by the biology in 

the system instead of the presence or absence of specific species (Liang et al., 2009; Cong et al., 2015; 

Hariharan et al., 2017; Khan and Khan, 2020). However, despite these advances in biological analysis, 

soil remains a complex environment, where physiochemical properties affect microbial distribution, 

diversity and activity across the soil environment, and analysis techniques can be hampered through 

masking by dominant populations and associated costs (Lombard et al., 2011; Bünemann et al., 2018). 
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The constraints imposed by the chemical and physical components of soil include mediating access to 

water and nutrients and the creation of hospitable or inhospitable environments for the soil biota 

(Stirling et al., 2016). 

 

Investigating soil health indices further, the purpose of individual indices are varied and include 

includes indices designed to (i) compare organic and conventional agricultural systems (Andrews, 

Karlen and Mitchell, 2002a), quantify the effect of NPK additions, crop sequencing, and stubble 

management (Armenise, Redmile-Gordon, et al., 2013), assess the influence of pasture systems 

(Sangha et al., 2005), or represent the structure of soils (Askari et al., 2015). A key finding that emerges 

from a review of existing soil health metrics is that current indices focus exclusively on mineral soil 

systems (Bastida et al., 2006; Masto et al., 2007; Velasquez, Lavelle and Andrade, 2007a; Congreves, 

Hayes, Verhallen and Van Eerd, 2015; de Paul Obade and Lal, 2016b; Vasu, Kumar, et al., 2016). Where 

organic soils and peat are assessed for soil health, they are integrated with mineral soils rather than 

differentiated (Sparling and Schipper, 2002; Sparling et al., 2004). Given that peat soils perform 

different functions and provide different quantities and qualities of different ecosystem services, the 

development of a specific health index is essential to quantify the health of lowland peat soils and 

identify land management practices that reduce the environmental impact of farming on soil health. 

 

2.7 Summary 

 

A healthy functioning soil is essential to agroecosystems, providing a range of ecosystem services and 

processes. The consequences associated with degradation is a reduction or plateau in yields, 

requirements for additional inputs to maintain soil fertility, and the overall loss of intrinsic physical, 

chemical, and biological soil quality (Nunes et al., 2020). Major threats to the functioning of 

ecosystems exists through climate change, water scarcity and population increases. The process of 

anthropogenic degradation of soil ecosystems, through environmental practices and poor 

management, reduces the capacity of these systems to buffer against the aforementioned threats 

(Castellini et al., 2021). This increased concern around the benefits we receive from soil systems, and 

the threats posed to it, has led to the increased discussion of soil system management within the 

policy sphere. The ecosystem service paradigm has been used to understand the functioning of soil 

systems to enable valuation of the benefits we receive. This paradigm focuses on identifying a healthy 

and functioning soil system and its continued capacity to provide services. Whilst previous work exists 

to identify and create soil health indicators to assess agroecosystems, the literature displays a bias 
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towards designing these indices for evaluating mineral soils. However, given the economic and 

environmental importance of peatlands to UK agriculture and UK food security, it is imperative to 

create indices that allow farmers and land managers to benchmark lowland peat health, identify peat 

soils that are poorly functioning, and develop sustainable land management practices for lowland peat 

drained for agriculture. 
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Chapter 3: Development of an index for assessing the health of lowland drained agricultural 

peatland soils 

 

Abstract 

 

UK lowland peat performs a variety of ecosystem functions including the storage of carbon, regulation 

of water, and providing a habitat for biodiversity. Lowland peat has been drained to allow for intensive 

agricultural practices. However, this leads to degradation of peat soils, reducing productivity and 

leading to substantial environmental damage. This situation requires specific tools to enable 

sustainable management of lowland peat systems. Here we describe the development of two Peat 

Health Indexes (PHI) for lowland soils within the East Anglia Fen region by using Principal Component 

Analysis to derive a minimum suite of indicators, including biological, chemical, and physical soil 

properties, that adequately capture the variance across a peat health gradient. The PHI effectiveness 

was compared with farmer’s perceptions of peat health and farm key performance indicators (KPIs). 

The indicators identified are cation exchange capacity, microbial activity, pH, and visual evaluation of 

soil structure. A Weighted PHI accounted for the relative contribution of each indicator to the variance 

in soil properties, whereas an Additive PHI summed the indicators and gave each equal weighting. 

Both indices correlated strongly with properties customarily associated with peat health. The 

Weighted PHI was best able to differentiate farmer identified subjective gradients of health. The 

Additive PHI developed was more efficient at identifying correlations with farm KPIs, identifying that 

healthier peats require fewer external inputs and are thus more capable of supporting sustainable 

crop production. The results demonstrate the applicability of the PHI to assess the health of peat soils 

using a minimum suite of indicators and provide a valuable tool for famers to inform management 

decisions that protect peat health. 
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3.1 Introduction 

 

Fertile and healthy soils are essential for sustainable agriculture and achieving current food security. 

However, with increase in intensively cultivated land and the management practices associated with 

it, there has been a global increase in soil degradation and an associated loss of productivity (Horrigan, 

Lawrence and Walker, 2002; Tilman et al., 2002). Soil degradation reduces the capacity of a soil to 

perform ecosystem functions and deliver ecosystem services, yet quantifying levels of degradation is 

challenging due to spatial heterogeneity. The antithesis of soil degradation is soil health. Soil health 

represents the continued capacity of the soil to function as a vital living ecosystem (Doran, 2002). The 

adoption of the term ‘soil health’ over ‘soil quality’ in the recent literature appears to indicate greater 

recognition of the role of the biological component in mediating the ecological functions and services 

that soils provide which differentiate it from weathered rock (Kibblewhite, Ritz and Swift, 2008). The 

degradation of a soil is therefore the transition of the health of a system away from the inherent 

potential to perform functions and deliver services (Maharjan, Das and Acharya, 2020). Approaches 

to monitoring soil health can be divided into two distinct manners; a reductionist approach which 

is an estimation of conditions based upon a minimum set of soil properties, and an integrated 

approach, which assumes the health of a soil is more than the sum of its parts (Kibblewhite, Ritz and 

Swift, 2008). The reductionist approach dominates the field of soil health monitoring as it is an 

accessible and practical means of assessing and conveying soil health to stakeholders (Bünemann et 

al., 2018).   

 

Approaches to measuring or assessing soil health have typically been developed with a focus on 

mineral soils. Peatlands (Histosols), whilst only covering 1.3% of the global land area, contain 22.7% 

of the organic carbon stored in soils (Eswaran, Van Den Berg and Reich, 1993) and differ fundamentally 

from mineral soils in terms of their formation and functioning. Therefore, soil health indices that are 

intended for use with mineral soils may not be appropriate for peatlands. Peat is an organic sedentary 

material that is primarily formed from the remains of photosynthetically derived plant material 

accumulating under water-saturated conditions. Under anoxic conditions, low decomposability of 

plant material leads to incomplete decomposition of the organic material (Moore and Basiliko, 2006). 

The hydrological regime is essential in peat formation and maintenance of the many ecosystem 

processes that occur (Rydin and Jeglum, 2006). Peatlands are often drained to allow for agricultural 

and forestry practices. The process of drainage occurs where water is diverted from the region to 

remove the anoxic conditions through creation of ditches, drains and the inclusion of pumps to 

remove ground water (Page, Proby and Ladds, 1936).  Global peatland total area is estimated to be 



46 
 

4.23 million km2 (2.84% of the world land area) (Xu et al., 2018), with 7.5% of worldwide histosols (25 

million hectares) is estimated to be drained for agriculture (Conchedda and Tubiello, 2020; Food and 

Agriculture Organization of the United Nations, 2020). As such, maintenance of peatland health and 

sustainable management of these systems is essential to global food security. Lowering of the water 

table leads to three distinct processes occur; primary consolidation, secondary compression and 

oxidative wastage (Lindsay, Birnie and Clough, 2014). Alongside these main processes, peat is also lost 

through wind erosion, removal of soil on crops and accidental burning (Holman, 2009). Wasted peat 

develops where a large part of the original peat layer has been lost or mixed with underlying mineral 

substrate. Within the UK, the most influential stage of lowland peat drainage took place in the 17th 

century where rivers were straightened through the creation of linear links and sluiced against tidal 

flows (Langslow, 1997). Within England, peatlands occupy 1.4185 million hectares, with 48% being 

Deep peat (>40cm depth), 37% Shallow peat (10cm – 40cm peat depth) and 15% soil with peaty 

pockets (Natural England, 2007). Much of England’s lowland peatlands are now removed from their 

natural state and have been degraded by anthropogenic activity (Page and Baird, 2016). Lowland fens 

occupy 42% of Deep peats, yet over 65% of lowland peatlands are considered wasted (Natural 

England, 2007). Natural England further noted that over 70% of peatlands show signs of degradation 

and the majority of lowland peat is cultivated (Natural England, 2010). The loss of ecosystem functions 

and services associated with this degradation is likely to impact sustainability and future security of 

agricultural production within the UK. In the fens of Lincolnshire, Cambridgeshire and Norfolk, peat 

degradation has resulted in rates of peat loss in the order of 1-2 cm yr-1 (Richardson and Smith, 1977) 

and to the development of large areas of ‘wasted’ peat. Although lowland peatlands only occupy 

around 15% of the total UK peat area (Maddock, 2008), they may account for around 50% of total 

greenhouse gas emissions from all peat (Evans et al., 2016). Lowland peat management strategies are 

urgently required to slow (and perhaps even reverse) the degradation of lowland peat. However, to 

benchmark, assess, and compare management strategies, a methodology for quantifying the soil 

health of lowland peat is needed.  

 

An array of soil health tools exists to examine the functioning of the soil ecosystems. These can range 

from simple spade diagnosis (Guimarães et al., 2013) to more complex Soil Life Suites (Fera, 2021) and 

organic matter balancing tools. The tools developed attempt to identify the sustainability of systems 

to continue to function based upon observable indicators. These indicators are evaluated in 

comparison to pre-defined values based upon expert opinion and sampling regimes. A large range of 

soil properties have been chosen to assess the health of soils (Bünemann et al., 2018). In prior 

developed academic health/quality indexes, the indicators selected vary based upon the research 
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aims of the index. For example, a minimum dataset for assessing soil degradation was developed being 

focused upon the microbiological and biogeochemical indicators (Bastida et al., 2006). Further health 

indices have been developed based upon the use of normalized difference vegetation index (NDVI) 

data to assess the health of cropped systems (Li et al., 2021). A range of indices containing a mixture 

of physical, chemical, and biological indicators have been developed by authors, and a sample is 

displayed below (Table 2). However, there is a distinct lack of indices to measure the health of 

agricultural (drained) peatlands since research on soil health indices has focused on developing indices 

for mineral soils or to assess restoration of upland peats to their natural state (Bonnett et al., 2009). 

 

Table 2: Examples of health/quality indicators developed to understand soil ecosystem functioning 
from a variety of different management systems, geographical locations and framework assessments 
derived from Clarivate Web of Science. 

Author Title Indicators Selected/ 
Suggested 

Soil Type 

(Bai et al., 2018) Effects of agricultural 
management practices on 
soil quality: A review of 
long-term experiments for 
Europe and China 

Soil Organic matter, pH, 
Aggregate Stability, 
water-holding capacity, 
earthworm count. 

Range of soil types 
included in indices 
based upon use of 
existing datasets 

(Andrews, 
Karlen and 
Mitchell, 2002a) 

A comparison of soil quality 
indexing methods for 
vegetable production 
systems in Northern 
California 

Total Nitrogen, Total 
Sodium, Exchangeable 
Calcium, pH, and 
Soluble Phosphorus. 

Reiff loams (coarse-
loamy, mixed, non-
acid, thermic Mollic 
Xerofluvents) and 
Yolo silt loams (fine-
silty, mixed, non-
acid, thermic Typic 
Xerothents). 

(Arshad and 
Martin, 2002) 

Identifying critical limits for 
soil quality indicators in 
agroecosystems 

organic matter, topsoil-
depth, infiltration, 
aggregation, pH, 
electrical conductivity, 
suspected pollutants, 
and soil respiration 

Soil types not 
mentioned, but 
states that indicators 
should be 
representative of 
ecological zone 
based upon similar 
soil types. 

(Mukherjee and 
Lal, 2014) 

Comparison of Soil Quality 
Index Using Three Methods 
- Statistically modelled SQI 
(SQI-3) 

Soil Organic Carbon, 
Available Water 
Capacity, Water Stable 
Aggregates, pH 

Samples collected 
from an organic and 
two mineral soils. 
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Another well-known example includes the Cornell Comprehensive Assessment of Soil Health 

(Moebius-Clune et al., 2016) which focuses upon defining soils by the mineral fraction (Coarse, 

Medium and fine textured) and thus uses non liner curve to assign indicator scoring. These scoring 

functions underestimate the health of organic/peat soils since 4-6% organic matter content can 

provide a healthy score, whereas it is known that organic matter contents of peat soils generally 

exceed 20%. Furthermore, even those national assessments that identify peat as a separate soil type 

underestimate or over generalise the indicator scoring. The Environment Agency of England and Wales 

suggested a suite of indicators with associated “trigger values” to monitor soil quality and health 

(Merrington et al., 2006). This project identified the need for alterative trigger values for peat soils in 

comparison to mineral soils. However, the projects focus was on monitoring the national soil inventory 

of the UK, rather than being developed specific to peat and so this focus influenced minimum dataset 

indicator selection. Moreover, trigger values for peat were set at a single value which, while useful to 

identify a degrading system, does not allow for identification of systems that are at different stages of 

degradation.  

 

Soil health indices can effectively combine data from a variety of indicators to create decision tools 

(Karlen and Stott, 1994; Fine, van Es and Schindelbeck, 2017). Indices based upon a large number of 

indicators may be more informative, but analysis of multiple soil properties to understand the health 

of a soil is economically inefficient and unnecessary. Statistical analysis of large datasets can be used 

to identify properties which explain a large amount of the variance between samples. This 

identification of key soil properties has been performed using Principal Component Analysis (Andrews, 

Karlen and Mitchell, 2002a; Velasquez, Lavelle and Andrade, 2007b; Masto et al., 2009; Armenise, 

Redmile-gordon, et al., 2013; Askari and Holden, 2015; Congreves, Hayes, Verhallen and Eerd, 2015; 

Vasu, Kumar, et al., 2016), Expert Opinion (Andrews, Karlen and Mitchell, 2002a; Vasu, Kumar, et al., 

2016), and Partial Least Square Regression (de Paul Obade and Lal, 2016a). The Principal Component 

Analysis (PCA) methodology obtains a minimum dataset that narrows down the suite of candidate 

indicators to a smaller, more manageable, and more affordable suite of soil properties (Andrews, 

Karlen and Mitchell, 2002a) to enable assessment of the health of drained peatlands.  Prior work has 

established methods for either weighting Minimum Datasets by PCA outputs to create indexes (Edrisi, 

Tripathi and Abhilash, 2019; Bedolla-Rivera et al., 2020) or incorporate an additive approach after PCA 

indictor selection instead of weighting (Andrews, Karlen and Mitchell, 2002a). Weighted approaches 

redefine the influence of each indicator selected, aiming to increase the influence of indicators 

explaining the most variance. 
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The objective of this study was to further develop and apply an existing statistical method to create a 

Peat Health Index (PHI) capable of evaluating the functioning of drained agricultural peatlands using 

a gradient of sites (ranging from Deep peat to Wasted peat). A selection of easily accessible and simple 

farmyard available indicators was measured on peat soils sampled across eight fields. Collected data 

was incorporated into an index to establish a minimum dataset and a linear scoring system 

implemented. Index results were evaluated through comparison with farm identified Key Performance 

Indicators (KPI) (including Yield, Inorganic Nutrient Inputs, Pest Management operations). 

 

We hypothesised that the health scores from a Peat Health Index (PHI) created with simple indicators 

will display signification correlation with key farm performance indicators. 

 

3.2 Methodology 

 

3.2.1 The study area 

 

The study area comprises fields under the management of G’s Fresh Ltd in the East Anglian fens 

surrounding the village of Barway, near Ely, Cambridgeshire (52.3576° N, 0.2670° E). The soils in the 

study area were predominately classified as Histosols, where organic material accumulated in a thick 

organic horizon under anoxic conditions. Drainage of the area over the past two centuries to allow for 

agricultural exploitation has led to the development of a hortic (or anthropogenic) horizon. The 

superficial peat deposit across the study area sits on a variety of geological formations, including 

Kimmeridge Clay’s and Gault Chalk formations and average elevation of 2 meters above sea level with 

vast swathes between 1-2 meters below sea levels (Natural England, 2015). The study area 

experiences average annual temperatures between 9.5°C and 10.5°C, although temperatures show 

both seasonal and diurnal variations. The East of England receives low, yet consistently distributed, 

annual rainfall of 700mm per year due to high ground to the west leading to a rain shadow effect and 

a high frequency of convective rainfall. The area managed by G’s Fresh Ltd is intensively cultivated for 

agricultural and horticultural crop production. The major crops grown include Iceberg and Gem 

Lettuce, Wheat, Maize, Celery, Onion, Potatoes, and a Cover Crop mix. The application rates of organic 

and inorganic fertilisers to crops are advised by the AHDB Nutrient Management Guide (RB209) for 

each specific crop, soil nutrient testing, and farmer knowledge. 
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3.2.2 Sampling 

 

Sample collection was conducted in summer 2018. Eight fields were selected across four farms (two 

fields per farm) to represent a gradient of degraded peats in the study area. The sampling regime 

selected fields that were planted with lettuce crops. This limitation led to an unequal variety of fields 

selected (four shallow, two deep, and two wasted). As such, it was established with the farmers that 

the four shallow fields selected were of differing quality based upon their opinion. Fields were selected 

after discussion with local farmers, using their extensive knowledge, to obtain a range of fields known 

to cover a wide range of peat depths and levels of degradation. Fields were classified by farmers into 

three categories; (i) Deep peat (>40cm in depth), (ii) Shallow peat (10 – 40 cm depth), and (iii) Wasted 

peat (<10cm depth where former peat soils that have OM content below 20% and are substantially 

mixed with mineral soils) (Table 3). Each field selected was planted with lettuce in 2018 and was 

sampled within the last two weeks before the harvest of the lettuce crop. Four sampling points for 

each field were selected using the Sampling Design Tool for ArcGIS using a stratified random 

procedure. 10 – 15 soil samples were taken using a soil corer in an 5m area surrounding the sampling 

point to a depth of 20cm and homogenised in-field using the cone and quarter method. At each 

sampling point, two intact cores were also collected to assess bulk density (5cm diameter by 5cm 

depth) and mesofauna abundance (10cm diameter by 10cm depth). A separate pit (20cm x 20cm x 

20cm) at each location was excavated for analysis of earthworms and other soil invertebrates. Visual 

Evaluation of Soil Structure (VESS) was conducted  on four undisturbed soil slices (25cm depth, 10cm 

thickness and 20cm width) extracted at the four sampling points in each field (Ball et al., 2007).  The 

extracted bloc underwent visual examination to observe any differing layers to assign scores 

separately, where scores would be relative to the depth of layer observed. The extracted bloc was 

gently manipulated by hand to reveal any cohesive slabs or clods and form natural aggregates. Results 

from this process were compared with a visual key attribute score which assigns scores to layers based 

upon a visual picture, size and strength of aggregates, porosity, root presence and soil colour (visual 

key accessible from Scotland’s Rural College (Cloy, 2021)). 

 

Table 3: Displaying the sites selected for the study ranging across a 300km2 region of East Anglia. 
Classification of fields by farmers into (i) Deep peat (>100cm in depth), (ii) Shallow peat (<100cm 
depth), and (iii) Wasted peat (former peat soils that have OM content below 20% and are 
substantially mixed with mineral soils). 

Farm Name Field Name Field Number Classification 
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Redmere P59 1 Wasted Peat 

Redmere P62 2 Wasted Peat 

Plantation Spooners 6 3 Shallow Peat 

Plantation Spooners 7 4 Shallow Peat 

Engine Creeks 5 Shallow Peat 

Engine Wills 6 Shallow Peat 

Barway Tilehouse 7 Deep Peat 

Barway Howes 8 Deep Peat 

 

3.2.3 Laboratory Analyses 

 

Upon return to the laboratory, the soil collected using the bulk density cores (98.17 cm3) were 

removed from the corers, dried at 105 °C, and weighed to calculate bulk density (g/cm3). Mesofauna 

cores (785.40 cm3) were placed upside down above a Tullgren Funnel with a heat source (light bulb) 

suspended above the bottom of the core for 5 days. A sampling tube containing 70% alcohol was 

placed under the cores to collect mesofauna which were subsequently identified under a microscope 

and counted (George et al., 2017). However, due to high temperatures during sampling, no mesofauna 

were identified. Earthworm sampling in-field failed to observe any to analyse within the laboratory. 

 

Soil samples collected using the auger were divided into two sub-samples. One sub-sample was air 

dried at <30 °C and sieved with a 2 mm screen. The other was sieved moist to 4 mm, stored at 4 °C, 

and analysed within 48 hours. The moisture content of the moist samples was determined by 

weighing, drying in an oven at 105°C overnight, and reweighing. Water holding capacity was calculated 

as the difference in mass following saturation and gravimetric draining for 12 hours. Microbial activity 

was determined through Solvita Burst method by moistening a soil sample with deionised water to 

achieve 50% of the Water Holding Capacity, leading to a flush of CO2 produced which was measured 

colorimetrically with a SolvitaTM digital colour reader (Woods End Labratories, 2013). Ammonium and 

Nitrate concentrations in the samples were determined on moist soil by extracting with 1M Potassium 

Chloride and analysing colorimetrically using a Skalar Continuous Flow Analyser. Ammonium and 

Nitrate concentrations were summed to determine available nitrogen. 
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The air-dried soils were subjected to a range of physical and chemical analyses. pH was determined 

potemtiometically after shaking samples with water at a 1:2.5 (w/v) ratio. Organic matter (OM) 

content was analysed on sub-samples dried at 105 oC by quantifying the mass lost after combustion 

at 430 oC. Extractable Phosphorus was determined by shaking 2.5 ml of soil with 50ml 0.5M Sodium 

Bicarbonate solution at pH 8.5 for 30 mins, reacting with Ammonium Molybdate and determining 

Phosphorus concentrations spectrophotometrically (Olsen, 1954). Extractable Potassium and 

Magnesium was determined by shaking 10.0 ml of soil with 50ml 1M Ammonium Nitrate at 20 °C for 

30 minutes, filtering and determining the concentration of Potassium and Magnesium through atomic 

absorption spectrometry (Agricultural Development and Advisory Service, 1986). Particle size 

distribution was determined by laser diffraction and particle size classified using UK Classification 

values (Clay <0.002 mm, Silt 0.002 – 0.06 mm, Sand 0.06 – 2.0 mm)(Natural England, 2008).  Particle 

density of samples was determined by the adjusted pycnometer method (Klute et al., 1986). Cation 

exchange capacity was determined using the Compulsive Exchange method (Gillman and Sumpter, 

1986) using differing molar strengths of Barium Chloride to displace cations. The extractants from the 

first Barium Chloride were analysed by ICP- OES analysis to examine Exchangeable Cations including; 

Calcium, Copper, Iron, Potassium, Magnesium, Nickle and Zinc (Thomas, 1983). 

 

3.2.4 Peat Health Index (PHI) Development 

 

A Peat Health Index (PHI) was developed through (1) selecting a variety of measurable biological, 

chemical and physical indicators through expert discussion, (2) identification of a minimum dataset, 

(3) scoring the minimum dataset, and (4) integrating the indictor scores into a relative health index 

(Andrews and Carroll, 2001).  A multivariate data reduction technique, Principal Component Analysis 

(PCA), was used to select the minimum dataset for the index from the larger dataset of analysed soil 

properties. PCA reduces the dimensionality of a dataset while preserving the variability by finding new 

variables that are linear functions of the original dataset but are uncorrelated with each other (Jollife 

and Cadima, 2016). PCA was conducted using the Factoextra Package (Alboukadel and Mundt, 2020) 

in R where the prcomp() function was selected to examine the correlation between individuals and 

the matrix of soil properties were normalised to have zero mean and standard deviation of one. The 

following soil properties were included in the matrix; pH, extractable phosphorous, extractable 

potassium, organic matter content, microbial activity, sand, silt, clay, cation exchange capacity, bulk 

density, water holding capacity, available nitrogen, and VESS score. Exchangeable nutrients (Ca, Cu, 

Fe, K Mg, Ni, Zn) were excluded from the PCA analysis as Cu, Fe, Ni, and Zn observed multiple values 

below detection limits (high detection limits are noted as a disadvantage of ICP-OES (Wilschefski and 



53 
 

Baxter, 2019)). Further to this, Exchangeable K and Mg were excluded since Extractable K and Mg were 

already selected as indicators. Observed Exchangeable Ca was excluded as it was exceptionally 

abundant in all sites, indicating no limiting effect on critical enzymatic processes and microbial cell 

maintenance (Reicosky, 2018). The inclusion of available nitrogen, extractable phosphorous and 

potassium represented the biogeochemical cycling of nutrients in the peat system since these 

nutrients are usually the scarcest resource in agroecosystems. Further, porosity was not included in 

the PCA dataset because this was calculated using the bulk density values and thus perfectly correlated 

with bulk density. 

 

Using the Kasier criterion (Kaiser, 1960) Principal Components with eigenvalues greater than 1 were 

selected to help identify soil properties for inclusion in a minimum dataset that represents the health 

of the system. For each selected Principal Component (PC), the eigenvectors (soil properties) within 

10% absolute of the eigenvector with the largest magnitude were selected for inclusion in the 

minimum dataset (Mukherjee and Lal, 2014). The process of reducing properties within a principal 

component decreases the complexity of the final index, however, selecting properties with the highest 

influence retains the important component of each PC. Where two or more properties were retained 

under a single PC, correlation coefficients between the retained soil properties were determined and 

the property with the highest sum of correlation coefficients was selected as this was considered to 

best represent the group (Andrews, Karlen and Mitchell, 2002a).  

 

After selecting the soil properties for inclusion in the minimum dataset, their values were transformed 

using linear scoring functions for inclusion into the PHI. Each property selected was sorted into one of 

three categories, based on our prior knowledge of how the soil property influences peat health, and 

transformed using the appropriate equation; (a) “more is better” (Equation 1), (b) “less is better” 

(Equation 2) or (c) “optimum” (Equation 1 where the measured value is below “optimum” and 

Equation 2 where the measured value is above “optimum”): 

Equation 1:  𝑆𝑝,𝑖 = (
𝑃𝑖

𝑃𝑚𝑎𝑥
) 

Equation 2::  𝑆𝑝,𝑖 = (
𝑃𝑚𝑖𝑛

𝑃𝑖 
)  

 

Where 𝑆𝑝,𝑖 is the score for soil property 𝑝 in field 𝑖, 𝑃𝑖 is the value of the soil property observed in that 

field, and 𝑃𝑚𝑎𝑥 and 𝑃𝑚𝑖𝑛 are the maximum and minimum values of these soil properties observed 
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across the dataset. The sampling strategy of selecting fields along a degradation gradient allowed 

identification of an extensive range of values observed (i.e., from Pmin to Pmax). Once transformed, the 

scores (Sp,i) were incorporated into two indices: an Additive and a Weighted PHI. The Additive PHI was 

calculated by simply summing the transformed scores for each soil property (Equation 3). The 

Weighted PHI was calculated by multiplying the score by the percentage of the overall variance in the 

dataset (V) explained by the retained PCs that the property (p) was drawn from to calculate a Weighed 

PHI (Equation 4): 

Equation 3: 𝐴𝑑𝑑𝑖𝑡𝑖𝑣𝑒 𝑃𝑒𝑎𝑡 𝐻𝑒𝑎𝑙𝑡ℎ 𝐼𝑛𝑑𝑒𝑥 (𝑃𝐻𝐼) =  ∑  𝑆𝑝,𝑖   

Equation 4: 𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑃𝑒𝑎𝑡 𝐻𝑒𝑎𝑙𝑡ℎ 𝐼𝑛𝑑𝑒𝑥 (𝑃𝐻𝐼) =  ∑  (𝑆𝑝,𝑖 × 𝑉𝑝)  

 

3.2.5 Statistical Analysis of soil properties and the Peat Health Index (PHI) 

 

Soil data was statistically analysed using R (R Core Team, 2020) and figures produces using the ggplot2 

package (Wickham, 2016). The complete soil dataset was compared with PHI outputs to identify 

correlations for each of the sites sampled using the Hmisc Package in R (Harrell Jr, 2021) allowing for 

exploration of reduction of indicators and information loss. Soil data and Peat Health Index outputs 

were assessed for potential outliers using the Inter Quartile Range criterion which determined an 

outlier existed where the value either exceeded or was below the values determined using Equation 

5. If a potential outlier was identified, the datapoint was assessed for inclusion into the study based 

upon distance from other observations and context of the result.  

Equation 5: 𝑂𝑢𝑡𝑙𝑖𝑒𝑟 = (𝑄𝑢𝑎𝑟𝑡𝑖𝑙𝑒 0.25 − 1.5 × 𝐼𝑄𝑅; 𝑂𝑟; 𝑄𝑢𝑎𝑟𝑡𝑖𝑙𝑒 0.75 + 1.5 × 𝐼𝑄𝑅)  

 

3.2.6 Evaluation of the Peat Health Index (PHI) 

 

To evaluate the performance of the PHI as a quantification of peat health that is useful for land 

managers, farm Key Performance Indicators (KPIs) were supplied by local famers, and analysed to 

identify correlations to the PHI values obtained for each of the 8 fields sampled using the Hmisc 

Package in R (Harrell Jr, 2021). Farm KPIs included the application rates of nitrogen, phosphorous 

potassium, and trace element fertilisers throughout the entire growing season (including the initial 

application during crop transplantation), the rates of herbicide, fungicide and insecticide applications, 

and the amount of irrigation applied during the growing season. Total Pesticide application was 

calculated by summing the herbicide, fungicide, insecticide alongside the use of adjuvants. Lettuce 
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yield data was collected, including the number of harvested heads as a percentage of the number of 

heads transplanted. The average Additive and Weighted PHI values obtained for each field were 

compared with farm management operation data using Spearman’s linear regressions to investigate 

relationships between PHI scores and the quantity of farm inputs required to produce lettuce crops. 

 

3.3 Results 

 

3.3.1 Peat Health Index  

 

The first three PCs of the PCA (PC1, PC2, and PC3) had eigenvalues greater than 1 explaining, 

cumulatively, 78.58% of the variance in the dataset (Figure 9). The highly weighted variables under 

PC1 were organic matter content, sand, and silt content (%), cation exchange capacity, bulk density 

and water holding capacity. All variables were significantly correlated (r>0.7). The absolute sum of 

correlation coefficients between PC1 variables indicated that cation exchange capacity best 

represented the group and was retained for the minimum dataset. Under PC2 VESS and available 

nitrogen were identified as highly weighted. Available nitrogen is a transient soil property that is highly 

temporally dynamic (Powlson, 1993). A second consequent application experiment of the index (see 

chapter 4) identified that available nitrogen should be excluded from the PHI because it was not a 

temporally consistent property (i.e., it is heavily influenced by the timing of fertiliser applications and 

weather events, relative to soil sample collection).  The PHI reported in the results section of this paper 

will be therefore based upon a PHI that excludes available nitrogen. Microbial activity and pH were 

highly weighted under PC3 and were not correlated with each other, so both retained.  
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Figure 9: PCA Scree Plot identifying the first 3 dimensions which explain 78.58% of dataset variance 
thus retained for the Peat Health Index Minimum Dataset. Analysis of 13 indicators across 32 sites, 
showing the Principal Component dimensions against the percentage of variance explained by each.  

 

The final minimum dataset (chosen using PCA) for peat soil health was cation exchange capacity, VESS, 

pH, and microbial activity. The resulting Additive and Weighted PHIs are shown in Equation 6 and 

Equation 7, respectively and used hereafter to infer peat health: 

Equation 6:  𝑃𝐻𝐼 = (
𝑖𝑓 𝑝𝐻 > 6.5 (

6.5

𝑝𝐻
)

𝑖𝑓 𝑝𝐻 < 6.5 (
𝑝𝐻

6.5
)
) + (

𝐶𝐸𝐶

58.6
 ) + (

102

𝑆𝐵
) + (

1

𝑉𝐸𝑆𝑆 
) 

Equation 7:  𝑃𝐻𝐼 = (
𝑖𝑓 𝑝𝐻 > 6.5 (

6.5

𝑝𝐻
)

𝑖𝑓 𝑝𝐻 < 6.5 (
𝑝𝐻

6.5
)

× 0.174) + (
𝐶𝐸𝐶

58.6
 ×  0.616) + (

102

𝑀𝐴
× 0.174) + (

1

𝑉𝐸𝑆𝑆 
× 0.210) 

Where pH = pH (pH units), CEC = Cation Exchange Capacity (meq/100g), MA = Microbial Activity (CO2-

C ppm), and VESS = Visual Evaluation of Soil Structure score. 

 

The linear scoring approach used in identifying health is highly dependent upon the variability of each 

original observation. The dataset was examined for skewness since skew can affect the scoring as each 

score is relative to the highest (or lowest) value observed during the index creation. Skewness was 

assessed through analysing the degree of asymmetry of the distribution through dividing the 

observation (minus the mean) by the standard deviation of the property. Furthermore, outliers were 

examined. Outliers were considered those values observed outside Quartile 1 - 1.5 times the Inter 
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Quartile Range or Quartile 3 +1.5 times the Inter-Quartile Range. This was achieved using the Minitab 

programme (Minitab LLC, 2021). pH, cation exchange capacity, and VESS displayed symmetrical skew 

(between -0.5 and 0.5 respectively) and microbial activity showed a moderate positive skew (0.82). 

No values within the dataset were considered outlier. As such, all datapoints were retained for 

combination into the health index. 

 

The resulting Additive and Weighted PHIs for the eight fields (four sites within each field) are displayed 

in Figure 10. Scores from the Weighted and Additive system of scoring were highly correlated with 

one another (r=0.85, p<0.05). Figure 10 displays that the Weighted Index was able to identify between 

Shallow and Wasted sites (i.e. that the Shallow points scored higher outputs) in comparison to the 

Additive Index. Weighted PHI scores were linearly correlated with higher organic matter content, 

porosity, water holding capacity (r = 0.86 p<0.01, r= 0.83 p<0.01, r= 0.89 p<0.01) and lower bulk 

density (r = -0.83 p<0.01) with higher correlation coefficients than the Additive PHI.   

 



58 
 

 

Figure 10: PHI scores increased with depth of peat, with the Weighted Index being more effective at 
distinguishing Shallow and Wasted sites. A) Scatterplot displaying the higher peat health scoring of 
Deep sites in comparison to Shallow and Wasted sites and the correlation between Weighted and 
Additive PHI scoring outputs with Regression line (r=0.85, p<0.05) and 95% confidence interval (grey 
shading), B-C) Boxplots of associated Index scores of Additive and Weighted PHI Scores identifying 
the differentiation of Wasted, Shallow and Deep sites for the Additive and Weighted indexes 
respectively. 
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Using the 25th, 50th and 75th percentile, the PHI scores can be assigned to “Poor”, “Below Average”, 

“Above Average” and “Good” descriptions of peat health, following Bastida et al., 2006. These 

numerical divisions are displayed in Table 4 and can be applied to other drained peat soils under 

agricultural land management beyond the fields included within the study dataset so that “Peat 

Health” classifications can be applied across other fields in the landscape (see chapter 4). 

 

Table 4: Peat Health subjective classifications established using the 25th, 50th and 75th quartiles of the 
Additive and Weighted PHI scores, to allow farmers to establish and compare fields. 

Health 
classification 

Additive Score 
Range Fields 

Weighted Score 
Range Fields 

Poor < 2.583 (P59, Wills) < 0.715 (P59, Wills) 

Below 
Average  

2.584 - 2.638 (P62, Spooners 7) 0.716 - 0.801 (P62, Creeks) 

Above 
Average 

2.639 - 2.952 
(Spooners 6, 

Creeks) 
0.802 - 0.843 

(Spooners 6, 
Spooners 7) 

Good 
> 2.953 

(Tilehouse, 
Howes) 

> 0.844 (Tilehouse, Howes) 

 

The relative contribution to each indicator to the final index score can be seen in Table 5. On average 

the order of contribution of individual indicators for the Additive PHI score was pH (23.01%), microbial 

activity (17.48%), cation exchange capacity (16.51%) and VESS (13.29%). In comparison, the relative 

order of contribution of individual indicators to the Weighted PHI score was cation exchange capacity 

(34.65%), pH (13.64%), microbial activity (10.36%) and VESS (9.51%). Weighting the indicators by the 

percentage of variance significantly increased the influence of cation exchange capacity whilst 

reducing the contribution of all other MDS indicators towards the final index scores. 

 

Table 5: Displaying the individual contribution (%) of each indicator selected for the index creation 
relative to the Additive and Weighted PHI final scoring. CEC was the dominant contributor for the 
Weighted Index, whereas each indicator contribution was uniform for the Additive Index. 

 
pH Cation exchange 

capacity 

Microbial 

Activity 

Visual Evaluation of Soil 

Structure 

Additive PHI 21.17 – 24.81% 9.16 – 22.71% 12.99 – 22.32% 6.76 – 25.00% 

Weighted PHI 12.55 – 14.71% 19.29 – 47.67% 7.70 – 13.23% 4.83 – 17.89 % 
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We observed several significant correlations between the Weighted and Additive PHI scores and soil 

properties in the overall dataset (Table 6). Weighted PHI scores commonly observed stronger 

correlations with measured properties than the Additive PHI. Microbial activity and pH, which were 

both used in creation of the Index, showed weak linear correlations with both Index scores. Strong 

correlations were displayed between Index scores and organic matter content, bulk density, porosity, 

and water holding capacity. The method of selection of MDS indicators involved the reduction of 

chosen variables through correlation analysis. As such, the aforementioned properties were removed 

under PC1 and represented by cation exchange capacity which displayed strong correlation with them.  

 

Table 6: Identifying Spearman rank correlation coefficients between soil properties measured and 
PHI scoring results. Stronger correlation values were observed with the Weighted index and 
measures soil properties including those traditionally associated with less degraded peat soils. 
Values in Bold represent a strong correlation. * indicates a p-value below 0.05 

Soil Property Additive PHI Weighted PHI 

pH 0.26 0.25 
Extractable Phosphorus -0.13 -0.34 
Extractable Potassium -0.17 -0.05 

Extractable Magnesium -0.52* -0.24 
Soil Organic Matter 0.57* 0.86* 
Microbial Activity -0.04 0.20 

Sand 0.05 -0.35 
Silt 0.23 0.60* 
Clay -0.02 0.28 

Cation Exchange Capacity 0.56* 0.89* 
Bulk Density -0.59* -0.83* 

Porosity 0.59* 0.83* 
Available Nitrogen 0.35* 0.25 

Water Holding Capacity 0.63* 0.89* 
Visual Evaluation of Soil Structure -0.83* -0.59* 

Exchangeable Calcium 0.10 -0.05 
Exchangeable Copper 0.25 0.19 

Exchangeable Iron 0.52* 0.58* 
Exchangeable Potassium 0.25 0.48 

Exchangeable Magnesium -0.14 0.27 
Exchangeable Nickel 0.12 0.15 
Exchangeable Zinc 0.13 0.02 

 

Other measures soil properties measured were not linearly correlated with PHI scores. Exchangeable 

nutrients showed generally poor correlations with Index scores, yet as already noted, exchangeable 

nutrients were generally below detection limits of the ICP-OES. Texture content was uncorrelated 

(expect for Silt and the Weighted PHI) with the Index scores, although deeper soils contained similar 

texture composition (see Appendix: Supplementary information 1).  
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3.3.2 Evaluation of the Peat Health Index (PHI) using Farm KPIs  

 

Scores created through the Additive and Weighted PHIs were compared with a range of farm KPIs 

including yields, inorganic nutrient applications, and pest management products. The spearman rank 

correlation coefficients between index scores and management operations are displayed below (Table 

7).  

 

Table 7: Table of Spearman rank correlation coefficient between Additive and Weighted PHI scores 
and management operations. Strong correlation indicates a functioning system that requires 
reduced inputs to produce a productive crop. * indicates a p-value below 0.05 

  
Percentage Heads 

(%) 
Total N (kg/ha) Total P (kg/ha) 

Total NPK 
(kg/ha) 

Additive PHI Score 0.71 -0.74* -0.69 -0.74* 

Weighted PHI Score 0.64 -0.48 -0.45 -0.48 

  
Trace Elements 

(kg/ha) 
Organic Manure 

(kg/ha) 
Herbicides 

(kg/ha) 
Fungicides 

(kg/ha) 

Additive PHI Score -0.4 -0.57 -0.17 -0.55 

Weighted PHI Score -0.36 -0.3 0.17 -0.42 

  
Insecticides 

(kg/ha) 
Adjuvants 

(kg/ha) 
Pesticides 

(kg/ha)  

Additive PHI Score 0.49 -0.19 -0.31 

 

Weighted PHI Score 0.43 -0.13 -0.02 

 
 

Total Nitrogen, Total Phosphorus and Total NPK applied to the field throughout the entire growing 

season was strongly correlated with Additive PHI scores. The Weighted PHI scores had weaker 

correlations with Total Nitrogen, Total Phosphorus and Total NPK and these relationships were not 

significant. Furthermore, Additive PHI scores were strongly negatively (albeit not significantly) 

correlated with total Fungicide application through the entire growing season. The PHI scores were 

also compared with the lettuce yield of the crop in that growing season. Whilst all fields contained 

lettuce crop, two varieties were grown, Iceberg and Gem lettuce. During the growing season studied, 

one field (P62: Wasted site) was badly affected by lettuce head soft rot, reducing Iceberg heads 
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harvested to 50% of those transplanted, as such, this field was removed from analysis. When 

observing the total percentage of heads harvested combining both Iceberg and Gem, a strong positive 

correlation was observed with both the Additive and Weighted PHI scores, although neither of these 

were statistically significant. In comparison, the percentage of heads harvested was negatively 

correlated with Total NPK (r=-0.82, p > 0.05), Trace Elements (r=-0.61, p > 0.05), and Organic Manure 

(r = -0.78, p = 0.05) additions. 

 

3.4 Discussion 

 

The Weighted PHI created in this study allows us to effectively distinguish between Deep peat and 

Wasted peat on commercially managed agricultural fields in the lowland fen region of East Anglia. The 

PHI created can be used to establish a scoring system for farmers and land managers to assess the 

health of their peat soils, identifying degraded sites where remediation is required. This study 

confirmed that use of the PCA index creation method (Andrews, Karlen and Mitchell, 2002b) could be 

successfully applied to peat soils to identify the health and functioning of the system given observable 

and interpretable soil properties. The development of quantitative divisions of peat health following 

the steps set out in Bastida et al., (2006) will permit the comparison of peats outside the selected 

study sites, and thus provide a useful management tool for farmers. 

 

3.4.1 Peat Health Index (PHI) 

 

As peatlands degrade, their properties begin to mimic those of mineral soils. This peatland 

degradation transition has been described as the “moorsh forming process” (Wallor, Rosskopf and 

Zeitz, 2018). The use of soil health indices non-specific to peat soils are inadequate to assess the health 

of drained peatlands (Environment Agency, 2019). Existing available soil health indicators are 

inadequate to map the health of lowland peats as many are designed for mineral soils, with peat sites 

achieving high soil health scores despite farm knowledge recognising the site as degraded. This study 

created two indexes, Additive and Weighted, that identify peat degradation gradient.  

 

The Weighted PHI effectively distinguished a gradient of degradation across fields in the study site 

when viewed in the scope of all the properties assessed in the dataset. The Weighted PHI displayed 

stronger correlations with more properties indicative of a functioning peat system, compared to the 

Additive PHI. It is well established that the hydro-physiological profile of peats alters across a 
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degradation gradient. Compaction and loss of organic matter following peat drainage alters pore 

geometry, water and air flow characteristics, accessibility of plant roots to nutrients and increases in 

Bulk Density (Gupta, Sharma and DeFranchi, 1989; Wells and Williams, 1996; Minkkinen and Laine, 

2011; Mustamo et al., 2016; Rezanezhad et al., 2016). Sites with higher Weighted PHI scores were 

strongly positively correlated with organic matter, water holding capacity, and porosity, and 

negatively correlated with bulk density. These correlations were expected because weighting of the 

index increased the influence that cation exchange capacity had on the PHI and this was highly 

correlated with these indicators since they all contribute to the variance explained by PC1. In 

comparison the Additive PHI displayed correlation with management operations that farmers can use 

to understand the impact of a healthier peat on crop production. 

 

3.4.2 Peat Health Index and KPIs 

 

A healthy functioning soil is more likely to have a higher natural productivity, requiring fewer external 

inputs to maintain sustainable production. The Additive PHI created through this study displayed a 

strong negative relationship with external inorganic nutrient inputs (i.e., higher scored fields had lower 

inputs). However, these operations are influenced by environmental, societal, and economic factors, 

which must be kept in mind when using these to assess the performance of a PHI. The application of 

inorganic fertilisers aims to improve economic returns through optimising yields, yet over reliance can 

lead to lowering of pH, accumulation of NH4
+, increased pollution and the loss of carbon (Ozlu and 

Kumar, 2018). Sites that require higher external input of nutrients may be an indication that the 

nutrient cycling function of a peat is not operating as desired. The Additive PHI indicates that healthier 

peat requires fewer nutrient inputs to grow a commercially viable crop, and thus, implies a better 

functioning soil.  The indices use cation exchange capacity as part of the minimum dataset, and the 

main exchange sites for nutrients in peat soils are the acidic functional groups of organic matter (Huat 

et al., 2011), as opposed to clay exchange sites which dominate in mineral soils (Parfitt, Giltrap and 

Whitton, 1995). The Additive PHI identifies that a site with higher cation exchange capacity (which 

was correlated organic matter) increases the ability of the peat to retain nutrients, reducing nutrient 

loss, and increasing nutrient use efficiency. Furthermore, the role of organic matter in catalysing crop 

resource capture through mineralisation and root development opportunities is well established (King 

et al., 2020). It should be noted that peat health is not the only factor influencing the rate of fertiliser 

applications. External factors (e.g., commercial guidelines) also influence fertiliser application rates, 

regardless of peat health. These external factors can result in farmers and land managers inputting 

different quantities of foliar applications over the growing season to increase crop yield where 
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necessary. Peatlands are large stores of mineralisable nutrients (due to the presence of high quantities 

of organic matter) with complex structures that allow for root developments, which is captured in the 

PHI scores. 

 

The Additive PHI was negatively correlated with total fungicide applications and total pesticide 

applications and weakly positively correlated with insecticide applications (although no significance 

was observed). The function of fungicides is directed against the survival of parasitic fungi growths 

where natural controls have been exceeded. Biological suppression results from biotic and abiotic 

factors, such as increased total microbial biomass, which results in a low level protection against 

multiple pathogens due to competition for resources among other factors (Schlatter et al., 2017; van 

Agtmaal et al., 2018; Bongiorno et al., 2019; Palojärvi et al., 2020). Pathogen suppression is a natural 

functioning of peat systems where pathogens increase is related to disturbances in the balance 

between functional microbial groups in soils (Gil and Gil, 2011). A site which requires lower pesticide 

inputs indicates a soil biotic system which is more adept at controlling pathogens in the peat, therefore 

a system with increased capacity to continue to function. Despite this, the Additive PHI scores were 

not significantly correlated with microbial activity, which was observed to be lower in the Deep and 

Wasted peat than the Shallow sites. The method for assessing microbial activity is highly influenced 

by accumulated osmolytes (low molecular weight organic compounds) following drought conditions 

(Warren, 2014) in addition to disturbance of the microbial habitat. These conditions may limit the 

effectiveness of measured microbial activity to be related to pathogen suppression. 

 

3.5 Conclusion 

 

Current indices designed to assess the health of mineral soils are unsuitable to assess the health and 

degradation status of drained agricultural lowland peat soils. Therefore, new indices that are suited 

to specific soil types, that differ substantially in formation and functioning from mineral soils, are 

required to assess the health of lowland peat soils, such as those found on the East Anglian fenlands 

in the UK. We created a Weighted PHI scoring system that can effectively distinguish relatively healthy 

peat soils from wasted peat using a minimum dataset consisting of four soil properties (cation 

exchange capacity, pH, microbial activity, and VESS). Two indices were created, where one index 

weighted the influence of these properties (Weighted Index) and the other summed them (Additive 

PHI). Both PHIs correlated strongly with peat properties traditionally associated with peat health, such 

as organic matter content, bulk density, and water holding capacity. Whilst weighting affected the 
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order in which fields were ranked, Additive PHI scores were more strongly correlated with farm key 

performance indicators. Both indices developed can be applied to peat fields in the East Anglia region 

and provide a protocol for assessing the health of drained peatlands. The use of a minimum dataset 

to observe the relative functioning of peat provides a valuable tool for famers and land managers to 

identify degraded sites and thus informing decision makers where interventions are best targeted.  
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Chapter 4: Evaluation and validation of a soil health index for assessing lowland drained 

agricultural peatland soils 

 

 

Abstract: 

Peatlands are complex ecosystems that provide a range of ecosystem services underpinned by various 

functions and processes. However, drainage of peatlands for intensive agricultural exploitation leads 

to the degradation of these ecosystems. Indices to quantify the health and functioning soils usually 

focus on mineral soils. In prior work (Chapter 3) we established a Peat Health Index (PHI) for lowland 

soils within the UK East Anglia Fen region by using Principal Component Analysis (PCA) to derive a 

minimum suite of indicators that included biological, chemical, and physical soil properties. Here we 

evaluate and validate this index by returning to the same fields where data was collected to create 

the index and visiting additional fields to quantify temporal and spatial variance and to compare index 

scores with farmer perceptions and key performance indicators (KPIs). The PHI required modification 

to improve the reproducibility of the index. Available nitrogen was removed from the minimum suite 

of indicators due to its fluctuating nature. Our final validated suite of indicators comprised cation 

exchange capacity, microbial activity, pH, and visual evaluation of soil structure. PHI scores were well 

correlated with farmer rankings of soil health and KPIs (fertiliser use and pesticide use), revealing that 

healthier peat soils require fewer external inputs and are thus more capable of supporting sustainable 

crop production. The results demonstrate the applicability of the PHI to distinguish fields and inform 

land management decisions.  
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4.1 Introduction 

 

The continued degradation of agroecosystems is a major threat to food security and the sustainability 

of agricultural practices  (Kibblewhite, Ritz and Swift, 2008). Peat soils are fertile, well structured, high 

organic matter ecosystems storing vast quantities of carbon. Globally, peatlands are estimated to 

contain 30% of all land-stored carbon whilst covering only 3% of land (Joosten, Tapio-Bistrom and Tol, 

2012). Peatlands are, however, fragile to anthropogenic disturbances, particularly intensive 

agricultural practices where drainage leads to a net positive emission of greenhouse gases (Parish et 

al., 2008; Buschmann et al., 2020). Agricultural management operations including tillage, inorganic 

fertiliser additions, water table lowering, and increasing soil pH deplete the health of peatland 

ecosystems. This depletion results in the loss of stabilised carbon (Säurich et al., 2019), a reduction in 

biodiversity (Littlewood et al., 2010), and negative transformation of the peat structure through 

subsidence and compaction (Zeitz and Velty, 2002; C Kechavarzi, Dawson and Leeds-Harrison, 2010).  

 

As peatlands are degraded, the delivery of ecosystem functions and services is downgraded (Westman 

and Laiho, 2003; Holden, Chapman and Labadz, 2004; Andersen, Chapman and Artz, 2013).  

Sustainable management of peatlands requires tools that allow famers and land managers to map 

functioning across the landscape and target interventions (Andrews and Carroll, 2001). Current soil 

health indices are ineffective at mapping the health of peatlands since they were developed for 

mineral soils. In prior work (see chapter 3) we created a Peat Health Index (PHI) that could map the 

health of the peat agroecosystem using a minimum suite of indicators that distinguished a deep 

healthy peat field from a wasted unhealthy peat field. 

 

A good soil health index should be able to map peat health accurately across temporal and spatial 

variations. Indicators should be reliable, reproduceable, adequately sensitive to spatial and temporal 

variation, and sensitive to changes in management (Bünemann et al., 2018).  Previously developed 

indices of soil health have generally been developed by analysing samples collected at a single point 

in time. As such, the resulting indices do  not assess temporal variations or the reliability and 

reproducibility of index scoring  (Vasu, Singh, et al., 2016; Biswas et al., 2017; Raina and Das, 2017; 

Frost et al., 2019). Our PHI was developed the analysis of samples collected across a single crop during 

one sampling season. The fields chosen to develop the PHI were carefully selected based on a gradient 

of “Healthy” to “Unhealthy” peat fields based on farmer perception. Farmers assessments of the 
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health of their fields have been shown to be significantly correlated with measured soil health test 

scores (O’Neill, Sprunger and Robertson, 2021). However, to evaluate the temporal reproducibility of 

the PHI a second assessment of peat health on the same eight fields was undertaken. To validate the 

PHI this assessment was extended to an additional twelve fields not previously sampled and compared 

with farmer perceptions of soil health and key farm performance indicators. The aim was to determine 

the ability of the PHI to provide a practical and applicable management tool that was effective at 

identifying health peat soils across a wider spatial scale and with multiple crops. The objectives were 

to 1) evaluate the viability of the PHI to monitor peat health consistently over a temporal scale, 2) 

assess the applicability of the PHI to identify healthy fields in agreement with farmer opinion, and 3) 

validate the performance of the PHI to assess agricultural value by comparing scores with key farm 

performance indicators. 

 

We hypothesised that the PHI scoring gradient developed in prior work would be reproduceable 

over time using the indicators developed in Chapter 3 

We hypothesised that a significant correlation between PHI scores and farmer subjective opinion on 

health status of individual fields would exist 

We hypothesised that the health scores from a Peat Health Index (PHI) created with simple 

indicators will display signification correlation with key farm performance indicators. 

 

4.2 Method 

 

4.2.1 The study area 

 

The study area comprised fields under the management of G’s Fresh Ltd in the East Anglian fens 

surrounding Ely, Cambridgeshire (52.3576° N, 0.2670° E). The area is intensively cultivated for 

agricultural and horticultural crop production including lettuce, wheat, maize, potatoes, celery, and a 

cover crop mixture. The soil receives applications of inorganic and organic fertilisers at rates 

recommended by the AHDB Nutrient Management Guide (RB209) in conjunction with farmer 

knowledge for each specific crop. The weather conditions at the study area, including maximum and 

minimum temperature and total rainfall, during the study period are displayed in Figure 11. 
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Figure 11: Time series of weather data between January 2018 and December 2020 taken from the 
local NIAB station. The red line is the monthly maximum temperature (°C), the green line is the 
monthly minimum temperature (°C), and the blue line is the monthly total rainfall (mm). 
Temperature remained relatively constant in the cyclic cycle, however, rainfall showed a slight spike 
just before Winter 2020 sampling.  

 

4.2.2 Sampling 

 

Sample collection was conducted in winter 2020 (January to February). Twenty fields were selected 

for sampling across four farms to represent a range of peat depths and a representative range of the 

crops grown across the study area (Table 8). These fields were spatially distributed over a 300km2 

area,  at four randomly selected points in each of the field, a Visual Evaluation of Soil Structure (VESS) 

spade analysis was conducted on undisturbed soil slices (25cm depth, 10cm thickness and 20cm width) 

(Ball et al., 2007). The extracted block underwent visual examination to observe any differing layers 

to assign scores separately, where scores would be relative to the depth of layer observed. The 

extracted block was gently manipulated by hand to reveal any cohesive slabs or clods and form natural 
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aggregates. Results from this process were compared with a visual key attribute score which assigns 

scores to layers based upon a visual picture, size and strength of aggregates, porosity, root presence 

and soil colour (visual key accessible from Scotland’s Rural College (Cloy, 2021)). The four VESS 

samples were averaged to create a single score for an entire field. An irregular sampling strategy (W-

Shaped) across each field was implemented to obtain soil samples using an auger to a depth of 20cm, 

sampling at least 15 random points throughout the fields and using the cone and quarter method to 

create a composite sample. Samples were transported to and stored in a cold room at the University 

of Reading for analysis within 48 hours. 

 

Table 8: Farm group name, current crop in the ground at time of sampling, and Field Name of study 
sites across the East Anglia farmed system 

Farm Crop Field Name 

Barway Wheat 55 Acre 

Engine Iceberg Bank Farm 2 

Plantation Maize Creek 

Barway Potatoes Howes Ground 

Barway Potatoes Lakes Ground 

Barway Wheat Nightingale 

Redmere Gem P16 

Redmere Gem P17 

Redmere Gem P30 

Redmere Wheat p32A 

Redmere Wheat P32B 

Redmere Wheat P33B 

Redmere Wheat P34 

Plantation Maize Piggery 

Barway Potatoes Sheeps Ground 

Engine Iceberg Spooners 1 

Engine Maize Spooners 6 

Engine Maize Spooners 7 

Barway Maize Tilehouse 

Plantation Maize Wills 
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4.2.3 Laboratory Analysis 

 

Soil samples collected using an auger were divided into two sub-samples at University of Reading, 

whereupon half was air dried at <30 °C and sieved with a 2 mm screen and the other half was sieved 

moist to 4 mm, stored at 4 °C, and analysed within 48 hours. The moisture content of the moist 

samples was determined by weighing, drying in an oven at 105°C overnight, and reweighing. Microbial 

activity was determined using the Solvita Burst method by moistening a soil sample with deionised 

water to achieve 50% of the water holding capacity, leading to a flush of CO2 produced which was 

measured colorimetrically with a SolvitaTM digital colour reader (Woods End Labratories, 2013). 

Ammonium and nitrate concentrations in the samples were determined on moist soil by extracting 

with 1M Potassium Chloride and analysing colorimetrically using a Skalar Continuous Flow Analyser. 

Ammonium and nitrate concentrations were summed to determine available nitrogen.  

 

The air-dried soils were subjected to a range of physical and chemical analyses. pH was determined 

potemtiometically after shaking samples with water at a 1:2.5 (w/v) ratio. Organic Matter (OM) 

content was analysed on sub-samples dried at 105 oC by quantifying the mass lost after combustion 

at 430oC. Cation exchange capacity (CEC) was determined using the compulsive exchange method 

(Gillman and Sumpter, 1986) using differing molar strengths of barium chloride to displace cations.  

 

4.2.4 Peat Health Index (PHI) application 

 

Soil properties were incorporated into two previously generated PHIs; an Additive and a Weighted PHI 

(see chapter 3). The Additive PHI was calculated by simply summing the transformed scores (S) for 

each soil property (p), following Equation 8. The Weighted PHI involved multiplying the transformed 

scores for each soil property by the overall variance explained by the principal component that the 

property was drawn from prior to summing for each property, following Equation 9: 

Equation 8: 𝑃𝐻𝐼 = (
𝑖𝑓 𝑝𝐻 > 6.5 (

6.5

𝑝𝐻
)

𝑖𝑓 𝑝𝐻 < 6.5 (
𝑝𝐻

6.5
)
) + (

𝐶𝐸𝐶

58.6
 ) + (

102

𝑆𝐵
) + (

1

𝑉𝐸𝑆𝑆 
) 

 

Equation 9:  𝑃𝐻𝐼 = (
𝑖𝑓 𝑝𝐻 > 6.5 (

6.5

𝑝𝐻
)

𝑖𝑓 𝑝𝐻 < 6.5 (
𝑝𝐻

6.5
)

× 0.174) + (
𝐶𝐸𝐶

58.6
 ×  0.616) + (

102

𝑀𝐴
× 0.174) + (

1

𝑉𝐸𝑆𝑆 
× 0.210) 
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PHI scores classified as ‘Very Poor’, ‘Below Average’, ‘Above Average’, and ‘Good’ (Table 9) using the 

25th, 50th and 75th quartiles, as explained in Chapter 3. These were used to identify degraded fields and 

enable comparison of the PHIs with key performance indicators. 

Table 9: Peat health classification for associated Additive and Weighted PHI scores, replicated from 
Chapter 3. 

 

 

 

 

 

 

4.2.5 Evaluation of the Peat Health Index (PHI) 

 

Because eight of the twenty fields sampled in winter 2020 had previously been sampled in summer 

2018 to develop the indices, the scores obtained during these two sampling campaigns were 

compared to assess temporal reproducibility, since soil health is not expected to have considerably 

improved or deteriorated between the two sampling events. The PHI was evaluated by quantifying 

the reproducibility of the scores and comparing them with farmer’s perception of soil health on the 

fields sampled. Farmers managing the twenty fields were asked to rank them in terms of perceived 

health and the farmer rankings were compared with the rankings derived from the Additive and 

Weighted PHIs.  

 

4.2.6 Validation of the Peat Health Index (PHI) 

 

To evaluate the performance of the PHIs as a quantification of peat health that is useful for farm 

managers making land management decisions, Key Performance Indicators (KPIs) for individual fields, 

identified by famers, were compared for each field with the Additive and Weighted PHI scores to see 

if the performance of the fields is predictive of the health of the soil. KPIs were fertiliser rates (N, P, K, 

and trace elements), pesticide rates (herbicides, fungicides, nematicides, and insecticide), and crop 

yields (either in tonnes per hectare, or percentage of heads harvested for lettuce crops). Because the 

Peat health 

category Additive  PHI Score Range Weighted  PHI Score Range 

Very Poor < 2.583  < 0.715 

Below Average 2.584 - 2.638 0.716 - 0.801 

Above Average 2.639 - 2.952 0.802 - 0.843 

Good > 2.953 > 0.844 
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units and typical ranges of each KPI is highly dependent on the type of crop being grown, Z scores 

were calculated for each KPI for each following Equation 10. 

Equation 10:  𝑍 = (
𝑥− µ

𝜎
) 

 

where x is the KPI for the field in question, µ is the average KPI for all the fields growing the same crop 

as the field in question, and σ is the standard deviation of the KPI for all the fields growing the crop. 

Positive Z scores indicate that the KPI value is higher than average, and negative Z scores indicate that 

the KPI value is lower than average. Heathier fields are expected to require lower fertiliser and 

pesticide rates and deliver higher crop yields. 

 

4.2.7 Statistical Analysis  

 

Datasets was statistically analysed using R 4.0.2 (R Core Team, 2020) and figures produces using the 

ggplot2 package (Wickham, 2016). The datasets consisted of (1) eight fields sampled across two 

differing years (Summer 2018 and Winter 2020) in a 300km2 region of East Anglia and (2) a dataset 

consisting of 20 fields (including 8 from the prior mentioned dataset) in the 300km2 region of East 

Anglia.  Pearson correlation analysis between; (i) PHI scores determined on samples collected across 

the eight fields in summer 2018 and on samples collected in winter 2020 in order to assess the 

reproducibility of the index, (ii) Farmer subjective rankings and PHI rankings of the twenty fields 

sampled in Winter 2020 in order to assess the ability of the PHI to , and (iii) PHI scores and Z scores of 

KPIs from the twenty fields sampled in winter 2020 to identify the relationship between healthier 

fields and reduced inputs, were undertaken using the Hmisc Package in R (Harrell Jr, 2021). 

 

4.3 Results 

 

4.3.1 Evaluation of the Peat Health Index (PHI) temporal reproducibility 

 

Scores created using the Additive and Weighted PHI from the analysis of samples collected in summer 

2018 (to create the indices) were compared against scores created using the PHIs from the analysis of 

samples collected in same fields during winter 2020 (secondary sampling) (Figure 12). The PHI scores 

obtained from the two sampling events were substantially different from each other, with the 

magnitude and direction of change displayed in Table 10. On average, fields sampled during the 
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second sampling recorded PHI scores that were 33.30% and 16.12% higher than initially observed for 

the Additive and Weighted methods respectively. Changes to scoring ranged from 50.69% to 14.74% 

for the Additive PHI and 31.72% to -3.81% for the Weighted PHI which demonstrated a poor 

reproducibility of the PHI method. Available nitrogen was identified as an indicator with poor 

reproducibility that contributed negatively to the reproducibility of the PHIs in these three fields. It 

accounted, on average, 3.79% towards the PHI scores obtained using the summer 2018 dataset, but 

25.9% towards the PHI scores obtained using the winter 2020 dataset. The PHI reported in the results 

section of this paper will be therefore based upon an updated PHI that excludes available nitrogen. 

 

Figure 12: Scatterplot displaying the lack of consistency between Peat Health scoring of identical 
fields across the two sampling regimes.  A) Additive PHI scores generated from analysis of samples 
collected in summer 2018 and winter 2020 and B) Weighted PHI scores generated from analysis of 
samples collected in summer 2018 and winter 2020. 
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Table 10: The magnitude and direction of change of indicators from winter to summer. A positive 
value would indicate an increase and a negative value a decrease. Microbial Activity and Available 
Nitrogen displayed the largest changes over the period.  

Indicator P59 P62 Spooners 6 Spooners 7 Creeks Wills Tilehouse Howes 

pH 0.71 0.48 0.89 0.22 0.60 -0.39 0.04 0.06 

Microbial 

activity 

-29.75 -4.00 -35.75 -51.75 -69.25 -44.00 22.75 0.75 

CEC 3.62 14.81 -5.32 3.80 11.54 -3.46 11.50 -2.20 

Available 

nitrogen 

-11.88 -8.09 -4.16 -3.77 -6.40 -8.88 -16.44 -14.29 

VESS -0.38 -1.56 -1.00 0.05 2.32 0.18 0.08 0.00 

 

4.3.1.2 The PHI after removal of available nitrogen as a peat health indicator  

 

After the Weighted and Additive PHI scores were calculated without using available nitrogen as an 

indicator a strong correlation was observed between summer 2018 sampling and the winter 2020 

sampling (r=0.70, p-value= 0.05 and r=0.76, p-value=0.02), respectively (Figure 13). The Additive and 

Weighted PHI scores obtained using the winter 2020 dataset were moderately well correlated with 

organic matter content (r =0.48 p-value=0.03 and r=0.57 p-value=0.01, respectively). Field P62 was 

identified as an outlier with scores increasing by 35% between the summer 2018 sampling and winter 

2020. This can be explained by the observation of a substantial increase in organic matter content 

sampled as part of the sampling campaign. After removing P62 from the comparison, the correlation 

between the Weighted and Additive PHI scores obtained in summer 2018 and winter 2020 increased 

in strength (r=0.96, p-value= 0.0007 and r=0.94, p-value=0.001, respectively). 

 

Individual indicators contributed varying amounts towards final index scores (Table 11). For both the 

summer 2018 and winter 2020 Additive PHIs, pH contributed the highest average percentage to 

scoring, followed by microbial activity, CEC, and then visual evaluation of soil structure. By contrast, 

for the Weighted PHIs CEC contributed the most towards index scores, followed by pH, microbial 

activity, and then visual evaluation of soil structure. Therefore, weighting the scores of indicators by 

the variance explained by the principal component that the property was drawn from increased the 

influence of CEC on the PHI score and decreased the influence of all other indicators.  
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Figure 13: Removal of the AN indicator led to a more consistent output of the PHI. Scatterplot 
displaying the relationship between A) Additive PHI Scoring over the summer and winter sampling 
regimes (r=0.96, p-value= 0.0007) and B) Weighted PHI Scoring over the summer and winter 
sampling regime (r=0.94, p-value=0.001) with available nitrogen Indicator removed.  

Table 11: Individual contribution of indicators to the Additive PHI score and Weighted PHI score 
calculated using datasets derived from the summer 2018 sampling and winter 2020 sampling.  

 
 

pH CEC Microbial  

activity 

Visual evaluation of 

soil structure 

Summer 

2018 

Additive 

PHI 

21.17 – 

24.81% 

9.16 – 22.71% 12.99 – 22.32% 6.76 – 

25.00% 

Weighted 

PHI 

12.55 – 

14.71% 

19.29 – 47.67% 7.70 – 13.23% 4.83 – 17.89 

% 

Winter 2020 Additive 

PHI 

20.62 – 

24.39% 

10.74 – 22.67% 18.16 – 24.29% 6.58 – 

25.00% 

Weighted 

PHI 

12.23 – 

14.47% 

22.53 – 47.78% 11.04 – 14.40% 4.71 – 

17.89% 
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The PHI scores derived from the winter 2020 sampling were classed using the classification system 

provided in Table 4, and the results displayed in Table 12. When compared to the winter 2020 

sampling, four of the eight fields previously sampled were classified differently by the Additive PHI, 

with all four fields classified as healthier in winter 2020 than in summer 2018. The Weighted PHI 

classification also resulted in a change in peat health classification over time for four fields as well, 

with three of the four fields classified as healthier and one field as less healthy. 

 

Table 12: Classification of fields using predefined intervals was an unreliable method to assess Peat 
health. Number of fields classified in each peat health category using the Additive PHI and the 
Weighted PHI. n=20. 

Health Classification Additive PHI Score Weighted PHI Score 

Very Low 0 2 

Below Average 0 2 

Above Average 7 2 

High 13 14 

 

4.3.2 Evaluation of Peat Health Index (PHI) scores by comparison with farmer perception of soil 

health 

 

Farmer’s perceptions of soil health were used to select the fields sampled in summer 2018 to 

represent a gradient soil health and create a PHI that can distinguish a healthy peat soil from an 

unhealthy peat soil. This study looks at whether the developed PHI can be used to successfully identify 

the health of soils without the prior need for expert opinion. Fields were ranked using the Additive 

and Weighted PHI’s scores from highest to lowest score (1-20) and compared to rankings provided 

separately by farmers, who ranked the 20 fields from 1 (healthiest) to 20 (least healthy). The PHI score 

rankings were strongly positively correlated with the farmer ranking of field (Figure 14) for both the 

Additive (r=0.63p-value = 0.002) and Weighted (r=0.64 p-value= 0.002) PHI, respectively. 
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Figure 14: Scatterplot displaying field peat health rankings based on A) Additive PHI scores compared 
against farmer perception of peat health (r=0.63p-value = 0.002) and B) Weighted PHI scores 
compared against farmer perception of peat health (r=0.64 p-value= 0.002). 

 

4.3.3 Validation of the PHI by comparing scores with Key farm Performance Indicators (KPIs) 

 

The PHI scores generated with the Additive and Weighted PHI were compared against KPI’s comprising 

fertiliser application rates, pesticide application rates, and crop yields (Figure 15). There were no 

correlations observed between pesticide application rates or crop yield and PHI scores. However, a 

negative correlation was found between the fertiliser Z score and both the Weighted and the Additive 

PHI (Figure 15A and 15B). Fields that have a higher PHI score (and there therefore considered 

healthier) require lower application rates of fertiliser than fields with a lower PHI score (that are 

considered less healthy). This correlation was statistically significant (p < 0.05) for the Additive PHI. 
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Figure 15: Fertliser applications were negativley correlated with Index scores indicating a healthier 
fields requires lower inorganic inputs. Scatterplots and regression models displaying relationships 
between the Weighted (A, C, E) and Additive (B, D, F) PHI and Key Performance Indicators (KPIs) 
represented by Z-scores for fertiliser rates, pesticide rates, and crop yields for 20 fields managed by 
G’s Fresh growing lettuce (n = 5), maize (n = 6), potatoes (n = 3), and wheat (n = 6). 

 

4.4 Discussion 

 

Findings from this study support the use of a PHI comprising a minimum set of indicators to identify 

the soil health of peatlands. The reproducibility of the PHI was determined, and the index adjusted to 

improve reproducibility. The index was evaluated to confirm that it aligned with farmer perceptions 

of soil health, and the index was validated to confirm its relationship with farm KPIs. Current soil health 

indices focus upon the assessment of soil health on mineral soils (see Table 2) and are not easily 

applied to peatlands. This work sought to specifically validate a PHI that was found to be reliable and 

repeatable and captured the processes and functions that occur within peat soils drained for 

agriculture. This index has the potential to provide a practical tool for farmers and land managers to 
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quickly and cost effectively identify degraded fields that require attention and to increase the 

sustainability of agriculture on peatlands.  

4.4.1 Reproducibility of the PHI 

 

To be effective, a PHI must contain a robust set of indicators that can differentiate between a healthy 

well-functioning peat and a wasted peat field. Indicators should be relevant to the system, sensitive 

to analysis, and reflect the functioning of the system (Cardoso et al., 2013). While sensitivity to 

changes in land management practices is a pre-requisite for indicator selection, indicators that are too 

sensitive may lower the effectiveness of an index. Of the indicators used to build the PHI, available 

nitrogen, as an indicator of peat health, was observed to be too sensitive to temporal changes to be 

incorporated into the final PHI. Available nitrogen is a transient soil property affected biological, 

physical, chemical and climatic factors (Powlson, 1993). It was concluded that available nitrogen 

should be excluded from the PHI because it was not a temporally consistent soil property (i.e., it is 

heavily influenced by the timing of fertiliser applications, relative to soil sample collection and 

influenced by rainfall events). In comparison, the other indicators selected maintained relative 

consistency between the two sampling campaigns and each contributed a similar amount towards the 

final index scores for both the summer 2018 and winter 2020 sampling campaigns.  

 

Small variations in the different values for individual PHI soil properties between the sampling 

campaigns may also have been due to the different locations sampled in the fields (i.e., there was no 

attempt to return to the same locations in the fields). Despite these small differences in individual PHI 

soil properties between the sampling campaigns, the PHI consistently distinguished the deep healthy 

peats from the wasted peats. A single field (P62) was identified as an outlier from this general trend. 

Examining the field location using GIS, multiple roddons (former silt and sand tidal creeks that have 

become positive topographical features following drainage (D. M. Smith et al., 2010)) existed within 

this field. Sampling in summer 2018 may have inadvertently included a higher percentage of roddon 

areas, in comparison to winter 2020, which may have included more low-lying peat samples. This intra-

field variability could explain the greater CEC and lower VESS scores observed in this field during winter 

2020 (Table 10), which would be indicative of a deeper peat. 
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4.4.2 Evaluation of the PHI with farmer perceptions of soil health 

 

The PHI was previously created by using farmer’s prior perception of soil health across the farms to 

deliberately select deep, shallow, and wasted peat. Farmer knowledge and assessment of fields has 

been shown to align with soil health assays (O’Neill, Sprunger and Robertson, 2021). The PHI scored 

created using the Additive and Weighted PHI correlated well with the farmer’s assessments of the 

health of the agricultural peat fields sampled (Figure 14). Weighting of the indicators used to create 

the PHI did not substantially alter the degree to which the PHI agreed with farmer perceptions of peat 

soil health. By confirming the ability of the model to predict farmer perceptions of soil health we have 

quantified a subjective opinion using accessible and simple suite of soil heath indicators which agree 

well with farmer knowledge. Farmer derived health rankings were based upon the prior knowledge of 

the functioning of the field in question. This inherent knowledge of soils is valuable. However, with a 

high average age of UK farmers and an increasing reliance on tenant farmers, tools that can represent 

this knowledge may aid land management decisions made by less experienced farmers, or farmers 

who are unfamiliar with the soils they are cultivating.   

 

4.4.3 Validation of the PHI with farm Key Performance Indicators (KPIs) 

 

A soil health index is only useful if it can effectively be used to guide land management practices. There 

are several ways in which a PHI index can be used by farmers. They could use it to identify which fields 

on a farm should receive restorative amendments, they could identify land management practices 

that have led to some fields being healthier than others, they could plan their crop rotations to ensure 

that the crops with the highest value are grown on the healthiest soils, or they could plan inputs (e.g., 

fertilisers and pesticides) based on the nutrient use efficiency of the soils. It is already the case that 

field-specific land management practices are adopted based on farmer’s inherent knowledge of the 

soil health. For example, fields that are known to have a higher nutrient use efficiency typically receive 

less fertiliser. Here we validated the PHI by comparing the PHI scores with three farm KPIs: crop yield, 

fertiliser application rates, and pesticide application rates. We only found a significant correlation 

between fertiliser application rates and the Additive PHI. Significance is highly effected by sample size 

and the complexity of the relationship being observed (Thiese, Ronna and Ott, 2016) and due to the 

nature of the peat ecosystems, correlations observed, while not statistically significant, are also 

important to discuss.  
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Yield is a key performance indicator for farmers. Prior work established that the PHIs created were 

strongly correlated with percentage of lettuce heads harvested (see Chapter 3). The cause of this could 

not be explained by any individual property of the peat measured. However, the growth and harvest 

of crops is also influenced by economic drivers separately to peat health that may have led to a 

suboptimal harvest operation (Allen and Schuster, 2004). For lettuce in particular, different fields are 

harvested slightly differently to match the specifications of different customers. Furthermore, one 

field growing maize was severely affected by strong autumn winds which reduced the total yields. 

Farmers also compensate for poor soil health by applying more inputs (e.g., fertilisers and pesticides) 

which masks the direct effect of soil health on crop yield. These issues highlight that, while the PHI is 

capable of distinguishing healthy and unhealthy peat soils, other factors (such as extreme weather, 

commercial considerations, and field-specific land management decisions) can alter crop yields and 

mask the impact of soil health. These are likely reasons why no significant relationship was found 

between PHI scores and crop yields. 

 

The ability of a peat soil to suppress harmful pathogens is governed by the microbial biomass and the 

diversity of the crop rotation through microbial antagonism, competition for resources, and the 

reduction in pathogen quantity (Expósito et al., 2017; Schlatter et al., 2017; Peralta et al., 2018). 

Despite this, sites with higher PHI scores were not consistently displaying decreased requirements for 

pesticide applications. Fresh fruit and vegetables provide diverse niches for a range of organisms, both 

beneficial and harmful, which can differ based upon type of produce, agricultural practice or specific 

geographical area of production (Ramos et al., 2013). This could explain the need for greater pesticide 

applications on lettuce crops, compared to other crops. Potato and maize crops grown in fields with a 

higher PHI score showed reduced need for pesticide inputs. This would indicate that under these 

fields, the suppression of pathogens and the beneficial relationship between soil biota and crops was 

functioning as intended (Bardgett, 2005). No field was noted to have suffered from any particular 

instances of pathogen attack or disease outbreak. Therefore, it is likely that much of the pesticide use 

is prophylactic and that reductions in pesticides application rates could be trialled on fields with higher 

PHI scores. 

 

A well-functioning peat system supplies the essential macro and micronutrients required for adequate 

plant growth. The current nutrient management paradigm maintains agricultural ecosystems in a state 

of nutrient saturation in order to increase nutrient use by crops and increase yields at the expense of 

environmental degradation through nutrient loss (Drinkwater and Snapp, 2007). The general trend 
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displayed within the work here is that the application of NPK based fertilisers and micronutrients were 

not positively correlated with higher crop yields. Instead, fields that achieved higher PHI scores 

showed a reduced requirement for nutrient inputs and achieved comparable yields. A prime example 

of this situation can be observed amongst the wheat growing fields, where identical management 

practices were employed following RB209 recommendations to create consistent yields. However, the 

fields that displayed higher yields were associated with a higher PHI score, thus identifying that 

nutrient application was not a solution to increasing yields sustainably this relationship was however 

not statically significant.  

 

The significant negative correlation between fertiliser application rates and the Additive PHI score is 

an indication that farmers have reduced inputs on fields where the same yield can be obtained with 

lower inputs. The Additive PHI therefore represents a sensitive index that distinguishes healthy from 

unhealthy fields and adequately represents farmer’s knowledge of peat health. The index could 

therefore be used to develop field-specific fertiliser application rates where farmer knowledge is 

lacking or provide an economic value (in terms of fertiliser savings) of peat health. 

 

4.4.4 Use the PHI as a Decision Support Tool 

 

The discretisation of the PHI scores using the subjective classification system (displayed in Table 9) 

did not reveal variations between subjective groupings and KPIs. The classification system was 

implemented to provide farmers and land managers an interpretable and comparable classification 

for each field. The process of discretisation has been found to lead to a loss of information (Jin, 

Breitbart and Muoh, 2008), despite the simplistically of subjective scoring being shown to be a useful 

tool (Purakayastha et al., 2019; Chaudhary et al., 2021). The use of continuous data in this context 

appears to provide a more relevant and interpretable scoring system for comparison with KPIs than 

the subjective classification. However, the subjective classification provides a simple and effective 

option for farmers and land managers to differentiate peat soils. 

 

4.5. Conclusion 

 

In this chapter, a previously created PHI was reproduced, evaluated, and validated. Locations 

previously sampled were returned to after two years and sampling was expanded to a larger number 
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of fields across the study site to evaluate peat health on intensively managed agricultural lowland fens 

in East Anglia. The initial index contained an unsuitable indicator; the removal of available nitrogen as 

an indicator led to increased reproducibility of the PHI.  

 

The ability of the PHI to distinguish health and unhealthy peat soils, as identified by farmers, was 

evaluated using a blind approach. The PHI derived ranking of twenty fields was in good agreement 

with how farmers ranked their fields, this allows for the quantification of subjective knowledge that 

has developed over decades of farming experience in the local area. The development of an index that 

coincides with farmer beliefs has the potential to increase uptake of such an index whilst promoting 

the sustainable management of lowland agricultural fens. 

 

The correlation of the PHI scores with farm KPIs was used to validate the PHIs. The Additive PHI 

significantly correlated with fertiliser application rates. This confirms the ability of the index to 

represent farmer’s knowledge of soils and the land management practices that are differently applied 

on soils with different peat health. The index could be used as a tool to quantify peat health on fields 

where farmer knowledge is lacking or derive an economic value for peat health. 
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Chapter 5: Creating the structure of a Bayesian network to evaluate peat health under intensively 

managed agricultural systems 

 

Abstract 

Soil degradation is decreasing the sustainability of agricultural practices on lowland peat systems 

within the UK. Attempts to model the functioning and health of soil systems has previously focused 

on mineral soils. Further, traditional frequentist modelling techniques fail to capture the uncertainty 

associated with ecosystem functions due to lack of empirical data or by failing to account for recent 

advances in knowledge. Bayesian networks offer promise for quantifying and mapping soil health and 

functions due to their combined use of expert and empirical data and explicit treatment of 

uncertainty. We elicited expert knowledge and undertook a literature review to define the structure 

of a Bayesian network to infer the health of a lowland fen system under intensive agriculture. The 

network structure created demonstrates that peat health can be inferred, in the most simplistic 

manner, through the combination of four soil functions: Carbon Respiration, Nitrogen Loss, Peat 

Structure and Pathogen Suppression. Our results demonstrate that specific indicators are required to 

understand the functioning and health of the peat system. The structure of the network can be 

incorporated into a Bayesian network with the introduction of conditional probability tables. We 

anticipate this network can be applied extensively across lowland peatlands in East Anglia, UK to 

provide a reliable tool for farmers and land managers to understand the health of their soils. 

Additionally, due to the ease with which Bayesian networks can be updated, our network is a starting 

point for the incorporation of more attributes and processes as our knowledge develops and datasets 

become available.  
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5.1 Introduction 

 

5.1.1 Soil Ecosystem Modelling 

 

Soil is a complex, variable, living medium which is essential to supporting life on earth, yet it is a non-

renewable resource. There has been an increase in the awareness of the multifunctional role of soil 

systems, as shown by a number of key initiatives and studies, including the Millennial Ecosystem 

Assessment, The Economics of Ecosystems and Biodiversity, Sustainable Development Goals, and the 

25-year Environment Plan (Department for Environment Food and Rural Affairs, 2018a; Wood et al., 

2018). Soil systems display both ecosystem multifunctionality and provide multiple services (Manning 

et al., 2018) as shown in Figure 16. The need to sustain soil multifunctionality is well established 

(McBratney, Field and Koch, 2014) and is a beneficial lens in which to view soil systems. 

 

Figure 16: Soil Ecosystem Services and management framework. Reproduced from Pereira et al., 
2018. 
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The ecosystem services paradigm is a conceptual innovation that attempts to categorise and quantify 

the goods and services that humans receive from ecosystems. This concept is a helpful communication 

tool, rendering conservation as economically attractive and extending conservation goals beyond 

protected areas (Hauck et al., 2013). Like other general concepts, the paradigm suffers from 

limitations and inconsistencies, such as (i) simplifying that we only receive benefits from ecosystems 

(where in actual fact, disservices may be received or inflicted on systems), (ii) challenges associated 

with understanding anthropogenically modified systems, (iii) assessment of the ecosystem services 

themselves, and (iv) the trade-offs and synergies between ecosystem services and how these alter 

over time and space (Müller and Burkhard, 2012; Hauck et al., 2013; Portman, 2013; Birkhofer et al., 

2015; Pereira et al., 2018). However, these limitations can be prevented through careful and 

considerate planning at policy levels and developments through a transdisciplinary approach 

(Bouwma et al., 2018; Carmen et al., 2018). The provision of soil ecosystem services is, in part, 

controlled by the functionality of the soil that, in turn, is linked to the soil properties (Hatfield, Sauer 

and Cruse, 2017). This cascade is essential in understanding the soil as a dynamic medium, where the 

complex interaction of biological, chemical, and physical components across temporal and spatial 

scales controls the ecosystem services and functions delivered. It is apparent therefore that ecosystem 

functions, and their associated services, are spatially specific to each system in question (Troy and 

Wilson, 2006). However, ecosystem functioning can be degraded or devalued through anthropogenic 

activities. It is estimated that degradation of ecosystems has led to a loss of $6.3 trillion per year of 

ecosystem service value due to impaired ecosystem function (Sutton et al., 2016). Soils are one 

component of ecosystems which are particularly susceptible to degradation. Soil health considers the 

capacity to function as a vital living ecosystem; it considers the actual functioning in relation to the 

potential functioning of the system (Lehmann et al., 2020; Maharjan, Das and Acharya, 2020). The 

degradation of a system, and the subsequent reduction in the performance of its functions can be 

seen as a reduction in its health. Classifying and quantifying current soil health against potential soil 

health is essential to enable the protection and management of soil systems in a sustainable manner. 

However, soil health and functioning is a complex interaction of properties in non-linear fashion and, 

as such, requires the development of robust methods and models to facilitate classification and 

quantification (Adhikari and Hartemink, 2016).  

 

The increased pressures placed upon the soil environment has led to the demand for tools to assess 

systems functioning (Vogel et al., 2018). These tools attempt to estimate the delivery of functions or 

services indirectly by identifying key features or indicators; in essence, finding simplicity in complexity 
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(Wainwright and Mulligan, 2013). There have been multiple attempts to model the delivery of 

ecosystem functions and services of soil systems across different scales and scopes. Soil biodiversity 

and habitat provisions have been modelled using proxy-indicator systems across grasslands and 

cropland (van Leeuwen et al., 2019). Multiple soil function potential versus actual states have been 

modelled using soil and site attributes in agricultural fields (Vogel et al., 2019).  Other modelling 

techniques have attempted to make use of current soil map and pedo-transfer functions to estimate 

soil functions and services (Lehmann and Stahr, 2010; Leh et al., 2013). More complex models have 

additionally been developed. The Soil & Water Assessment Tool uses features of soils to model the 

impact of runoff, sediment loads, and loss of nutrients over large spatial scales in a systemic manner 

(Gassman et al., 2007; Francesconi et al., 2016). The Rothamsted carbon model (RothC) models the 

turnover of organic carbon in non-waterlogged soils, allowing for identification of organic matter 

decomposition and losses (Coleman and Jenkinson, 1996). Further models have been developed to 

model multiple functions of the soil system, including carbon and nitrogen dynamics in soils under 

agricultural and natural land management (Thomas, Bond and Hiscock, 2013; Li et al., 2017; Smith et 

al., 2019). These tools have generally been developed and applied on mineral soils and are therefore 

unsuitable for quantifying the health and functioning of organic soils. 

 

Directly quantifying ecosystem functions has proven difficult and advances in our knowledge, such as 

recent developments in our understanding of carbon storage in soil (Rumpel and Kögel-Knabner, 

2011) have caused redundancy where new information has come to light. Seemingly successful 

attempts to directly model ecosystem functions have, in reality, not taken into account directly 

measured values; thus invalidating model applicability (Crouzat et al., 2015). In addition to difficulties 

in directly quantifying ecosystem functions, much research has been based on economic valuation of 

ecosystem services rather than quantifying their delivery (Logsdon and Chaubey, 2013; Horrocks et 

al., 2014). Due to the complex nature of soil and our current imperfect understanding, models struggle 

to conclusively map ecosystem services at different spatial and temporal scales. For example, The 

Modelling Soil Ecosystem Services (MOSES) model (Aitkenhead et al., 2011), was able to produce 

better matches with soil functions nearer the surface than at depth due some soil mechanisms and 

processes not being included in the model. Furthermore, the scale at which one models an ecosystem 

can affect the model’s accuracy (Kuo et al., 1999). Therefore, attempting to directly model ecosystem 

functioning and services is difficult due to the inherent complexity of environmental systems (Bonan, 

2019), the poor measurability of indicators of services and functions, and the limited availability of 

empirical data (Pérez-Miñana, 2016a). Complex quantitative models have drawbacks including limited 

model transparency and excessive computation time (Landuyt et al., 2013). Current research has 
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identified that Bayesian networks can become an important framework tool to analyse complex 

systems and enable those involved in ecosystem management to make informed decisions. 

 

5.1.2 Bayesian networks 

 

It is beyond the scope of this chapter to provide a complete description of Bayesian statistics, but a 

brief overview is presented below after review of introductory texts (Koller and Friedman, 2009; 

Kruschke, 2015; Donovan and Mickey, 2019; Kurt, 2019). Bayesian statistics differs from frequentist 

statistics through the interpretation of probability as the “subjective degree of belief”, rather than the 

frequentist view of the “relative frequency observed during many trials”. Probabilities can be 

marginal, joint, or conditional. Marginal probabilities are unconditional on any other event, joint 

probabilities indicate the intersection of two or more events, and conditional probabilities indicate 

the probability of an event given that a second event had occurred. Probability distributions can be 

calculated through fundamental rules of probability: 

 

𝑃𝑟[𝐴] = 𝑃𝑟[𝐴 ∩ 𝐵1] +  𝑃𝑟[𝐴 ∩ 𝐵2] + ⋯ +  𝑃𝑟[𝐴 ∩ 𝐵𝑛] or 

𝑃𝑟[𝐴] = 𝑃𝑟[𝐴│𝐵1]𝑃𝑟[𝐵1] +  𝑃𝑟[𝐴│𝐵2]𝑃𝑟[𝐵2] + ⋯ +  𝑃𝑟[𝐴│𝐵𝑛]𝑃[𝐵𝑛] or 

𝑃𝑟[𝐴] = 𝑃𝑟[𝐴│B]𝑃𝑟[𝐵] + 𝑃𝑟[𝐴│𝐵𝑐]𝑃[𝐵𝑐] 

𝑃𝑟[𝐴│B] =
𝑃𝑟[𝐴 ∩ 𝐵]

Pr[𝐵]
 

Equation 11:Laws of probability distributions  

 

Bayes theorem allows us to describe the relationship between two conditional probabilities and, 

through modification, express how a degree of belief for a given hypothesis can be updated 

considering new evidence. Inclusion of subjectivity and adoption of Bayesian methods has been shown 

to allow for calculation of probabilities as the experiment processes and modification and adaption of 

the experimental plan, and may provide more realistic interpretations of hypotheses testing and 

analysis of data (Berger et al., 1988). Science is typically required to be objective and devoid of bias 

and subjectivity has no place; yet concerns have arisen around objectivity obstructing the progress of 

research (Gelman et al., 2015). Bayesian inference provides clear alternatives for estimating 

parameters and expressing degrees of confidence or uncertainty, although objectivity and subjectivity 

must be reconciled rather than divided (Ellison, 2004). The modified version of Bayes theorem frames 



90 
 

probability problems within a scientific context, where a hypothesis is made, and then updated based 

upon data collection: 

Pr(𝐴|B) =  
Pr(𝐵|A) × Pr (𝐴)

Pr(𝐵|A) × Pr(𝐴) + Pr(𝐵|~A) × Pr (~𝐴)
 

Equation 12: Bayes theorem used for inference.  

 

The modified Bayes Theorem supposes that two hypotheses are being tested (A and B), however, this 

theorem can be generalised for n hypotheses: 

 

Pr(𝐻𝑖|data) =  
Pr(𝐻𝑖|data)  × Pr (𝐻𝑖)

∑ Pr(𝑑𝑎𝑡𝑎|𝐻𝑗)  × Pr (𝐻𝑗)𝑛
𝑗=1

  

Equation 13: Generalised Bayes Theorem: Pr(Hi│data) notes the posterior probability of hypothesis i given the data 
observed. The numerator is the likelihood of observing the data under hypothesis i multiplied by the prior probability of 
the hypothesis. The denominator is the summation of all hypotheses given the observation of data. 

 

The conditional relationships between variables can be implemented to create fully conditional 

models. However, these require enormous quantities of data and can lead to enormous quantities of 

calculations. The implementation of Bayesian networks allows for the development of conditional 

independencies between nodes within the network, providing an intermediary approach between 

fully conditional and fully conditional independent models. Bayesian networks further simplify the 

development of joint probability distributions through the application of the chain rule for probability 

(defined in Equation 14). 

Pr (⋂ 𝐴𝑘) =  ∏(𝐴𝑘│ ⋂ 𝐴𝑗

𝑘−1

𝑗=1

𝑛

𝑘=1

 

𝑛

𝑘=1

) 

Equation 14: The joint probability of n events called A1…An occurring is the product of n-1 conditional probability terms and 
one marginal probability term. 

 

The laws and theorems described above lie at the heart of Bayesian networks and are used to estimate 

the probability of observing a state conditional on the state of liked variables, or it may be used to 

update the probabilities once a particular state has been observed. Bayesian networks are 

probabilistic graphical models that consist of three elements; system variables (referred to as nodes), 

causal relationships between the nodes visualised as arcs (combining arcs and nodes creates a 

Directed Acyclic Graph), and Conditional Probability Tables defining the nature of the relationships 
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(Pearl, 1988b). Nodes within a network represent a specific variable used to model the ecosystem in 

question. While these nodes may assume an infinite number of possible domains, they can be divided 

into two classes: continuous or discrete (i.e., continuous variables, such as age, discrete variables, such 

as True/False). Discretisation of continuous variables is usually implemented to divide nodes into n 

number of states (e.g., age 0-18, 19-30, 31-65, 66+). These states must encompass all possible 

conditions the node can take and be mutually exclusive from one another. Where a causal probabilistic 

dependence between two variables exists, the corresponding variables are connected by a directed 

edge, sometimes referred to as arc (Horný, 2014). The structure developed through linking nodes 

through connecting arcs creates a graphical illustration of interactions among the variables in the 

model and can mimic the causal structure of the real modelled world, although this is not a 

requirement. Where a node is connected via an arc, this indicates that one node is conditionally 

dependent upon another. Conditional Probability Tables are defined for these nodes in the network, 

where they express the probability for a state of the child given the states of its parent. Present in the 

Directed Acyclic Graph are root nodes that contain unconditional probability tables, these nodes have 

no parental arcs to them, and the Conditional Probability Table takes the form of a marginal 

probability distribution. The construction of a Bayesian network and connection of nodes through 

directed arcs dictates the flow of information through the network. These connections can be termed 

either Serial, Diverging or Converging (Taroni and Biedermann, 2015). Serial connections allow 

information to flow from the root node to the child node, provided no intermediate node is 

instantiated. Diverging connections allow transmission of information across child nodes, provided 

the parent is not instantiated. Converging connections can only allow transmission of information 

between parents of the same child when the child node has been made conditional on evidence. 

 

5.1.2.1 Example Bayesian network 

 

An example of a simple Bayesian network depicting the decision to take an umbrella out is displayed 

in Figure 17. The network is predicated on the knowledge that an individual is more likely to take an 

umbrella out when it is raining, but more likely to forget to take the umbrella out if they have not had 

breakfast. From this figure, we observe the nature of the dependence between variables and their 

parents through the Conditional Probability Tables. The diagram indicates that the decision to take an 

umbrella out (Umbrella node) is conditional on the presence of Rain (Rain node) and whether the 

individual has eaten breakfast that morning (Breakfast node). Further, the Rain node is conditional 

upon the Season and Cloud nodes. These relationships are indicated by the directed arcs between the 

nodes. Nodes with no parents (i.e., Season node) are defined as root nodes, and can represent 
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observations, scenarios, or decisions, and contain a simple probability distribution. For child nodes, 

the strength of the causal relationships present in the network is displayed within the Conditional 

Probability Table. The probabilities displayed within the Umbrella node, as an example, are calculated 

using the equations displayed in Table 13. 

 

 

Figure 17: An example Bayesian network with associated Conditional Probability Tables.  
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Table 13:Joint Probability Table calculations for Umbrella Node 

  
 Rain 

 
Rain(TRUE) 

 
Rain(FALSE) 

  
 Pr(𝐶) =
 ∑ 𝑃𝑟(𝑅𝑎𝑖𝑛, 𝐵𝑟𝑒𝑎𝑘𝑓𝑎𝑠𝑡, 𝑈𝑚𝑏𝑟𝑒𝑙𝑙𝑎) 𝑅𝑎𝑖𝑛,𝐵𝑟𝑒𝑎𝑘𝑓𝑎𝑠𝑡   

  
 

Breakfast(TRUE) 
 

Breakfast(FALSE) 
 

Breakfast(TRUE) 
 

Breakfast(FALSE) 

Yes Pr(c1|a1,b1) × 
Pr(a1) × Pr(b1) 

Pr(c1|a1,b2) × 
Pr(a1) × Pr(b2) 

Pr(c1|a2,b1) × 
Pr(a2) × Pr(b1) 

Pr(c1|a2,b2) × 
Pr(a2) × Pr(b2) 

0.4446 0.0156 0.0228 0.0036 0.4866 

No Pr(c2|a1,b1) × 
Pr(a1) × Pr(b1) 

Pr(c2|a1,b2) × 
Pr(a1) × Pr(b2) 

Pr(c2|a2,b1) × 
Pr(a2) × Pr(b1) 

Pr(c2|a2,b2) × 
Pr(a2) × Pr(b2) 

  

0.0494 0.0104 0.4332 0.0204 0.5134 

 

 

The chain rule can be used to calculate the probability of a particular state in the space. For example, 

the probability that in the season of spring (Seasonspring), with clouds present (Cloudspresent), rainfall 

does not occur (RainFalse), and the individual has eaten breakfast (BreakfastTrue) but forgets their 

umbrella (UmbrellaFalse) can be calculated as follows: 

 

𝑃(𝑠𝑒𝑎𝑠𝑜𝑛𝑠𝑝𝑟𝑖𝑛𝑔, 𝑐𝑙𝑜𝑢𝑑𝑠𝑝𝑟𝑒𝑠𝑒𝑛𝑡 , 𝑅𝑎𝑖𝑛𝐹𝑎𝑙𝑠𝑒 , 𝐵𝑟𝑒𝑎𝑘𝑓𝑎𝑠𝑡𝑇𝑟𝑢𝑒 , 𝑈𝑚𝑏𝑟𝑒𝑙𝑙𝑎𝐹𝑎𝑙𝑠𝑒)

= 0.25 × 0.7 × 0.3 × 0.05 × 0.95 = 0.013167 

Equation 15: Example application of the chain rule 

 

Bayesian networks can also be used for prediction and diagnosis of a system. This is achieved through 

instantiation of the root nodes (those without parents) or the child nodes. Predictive reasoning follows 

the joint probability described above (Table 13); however, the input parameters are altered. For 

instance, changing the state of Breakfast to 100% False (and therefore Breakfast being True = 0%) 

would alter the distribution of the network as displayed in Table 14. 

Table 14: Joint Probability Table calculations for Umbrella Node where Breakfast has been instantiated to 100% False. 

  
 Rain 

 
Rain(TRUE) 

 
Rain(FALSE) 

  
 Pr(𝐶) =
 ∑ 𝑃𝑟(𝑅𝑎𝑖𝑛, 𝐵𝑟𝑒𝑎𝑘𝑓𝑎𝑠𝑡, 𝑈𝑚𝑏𝑟𝑒𝑙𝑙𝑎) 𝑅𝑎𝑖𝑛,𝐵𝑟𝑒𝑎𝑘𝑓𝑎𝑠𝑡   

  
 

Breakfast(TRUE) 
 

Breakfast(FALSE) 
 

Breakfast(TRUE) 
 

Breakfast(FALSE) 

Yes Pr(c1|a1,b1) × 
Pr(a1) × Pr(b1) 

Pr(c1|a1,b2) × 
Pr(a1) × Pr(b2) 

Pr(c1|a2,b1) × Pr(a2) 
× Pr(b1) 

Pr(c1|a2,b2) × Pr(a2) 
× Pr(b2) 

0 0.312 0 0.072 0.384 

No Pr(c2|a1,b1) × 
Pr(a1) × Pr(b1) 

Pr(c2|a1,b2) × 
Pr(a1) × Pr(b2) 

Pr(c2|a2,b1) × Pr(a2) 
× Pr(b1) 

Pr(c2|a2,b2) × Pr(a2) 
× Pr(b2) 

  

0 0.208 0 0.408 0.616 

 

We can also perform diagnosis of the system to see how alterations in the child nodes, or the outputs, 

can change our beliefs in the most likely cause for this observation in the root nodes. This is achieved 

through application of Bayes theorem, as provided in Equation 14. For this example, we introduce a 



94 
 

new network that contains two nodes: 1) the number of days in the month (with states X≤30 (A) and 

X>30 (B)) and 2) the Seasons (Figure 18). 

 

Figure 18: An example Bayesian network with Conditional Probability Tables. 

 

If we observe that the current season is winter (thus instantiating the winter state in the Season node 

to 100% with all other seasons equalling 0% respectively), we can use Bayes theorem to update our 

belief of how many days are in the month. The change in distribution is shown in Table 15. As such, 

we can update our beliefs in how many days are in the month based upon which Season we have 

found ourselves to be in (i.e., we have increased our belief that the month contains more than 30 days 

within it).  

 

Table 15: Probability distributions following evidence being found at a child node 

Days in Month 

Season: Winter 

Pr(SWinter|A≤30) × Pr(A≤30)/  Pr(SWinter) 

A≤30 0.486110833 

 Pr(SWinter |B>30) × Pr(B>30)/  Pr(SWinter) 

B>30 0.503472625 

 

Individually calculating the probability distributions of each node and state given an event occurring 

or a change in the probability distribution is time-consuming and computationally demanding. A range 

of Bayesian modelling programmes include Netica, Higun, Smile/GeNIe, and R-Packages, which have 

recently been compared in a review article (Pérez-Miñana, 2016b). The following work makes 

extensive use of the GeNIe programme (BayesFusion LLC, 2020). These user interfaces allow for 



95 
 

application of multiple instances of the chain rule, joint probability calculations, and the application 

of Bayes theorem.  

 

5.1.2.2 Bayesian network structure and parametrisation learning processes 

 

The combinations of nodes and connecting arcs that create a structure can be combined into a 

network through a range of operations. The Bayesian network development process can be learned 

through complex methods including; Naïve and Tree Augment Naive algorithms (Taalab, Corstanje, 

Mayr, et al., 2015), constraint-based algorithms (conditional independence tests to infer structures), 

score-based algorithms (using goodness of fit scores to infer structures) and hybrid algorithms (a 

combination of the prior approaches) (Marcot and Penman, 2019; Scutari, Graafland and Gutiérrez, 

2019). However, these algorithms can result in greater model complexity than an expert elicited 

network structure (Pham et al., 2021) and the learning process requires large quantities of data and 

displays high sensitivity to user input variables such as the number of states involved in discretisation 

(Alameddine, Cha and Reckhow, 2011). Expert opinion can either be combined with learning 

algorithms or applied on its own and thus implemented to define the structure of the network 

(Aguilera et al., 2011). Generally, within ecosystem service modelling, the elicitation of stakeholder 

and expert knowledge has been the dominant process used to define the Directed Acyclic Graph 

(Landuyt et al., 2013). Elicitation of knowledge from experts has been used in Bayesian modelling 

across a number of fields including but not limited too; Engineering (Li and Zhang, 2013), Mechanical 

Diagnosis (Chien, Chen and Lin, 2002), and Neuron Classification (López-Cruz et al., 2014). 

 

The Bayesian network structure creation and parametrisation process remains relatively similar 

regardless of the method chosen; the nodes of the network must be defined and identified, then the 

states associated with each node, and finally the connections between nodes. All nodes included in 

the network must either affect or be affected by the final output. Importantly, each node should be 

manageable, predictable, and observable at the relevant scale (M. Borsuk, Stow and Reckhow, 2004).  

Marcot et al., (2006) suggests that Bayesian networks should contain no more than five layers of nodes 

to avoid over complication and loss of information flow through the network. For large complex 

systems, it may be possible to split the model structure into modular sub-networks (or network 

fragments) that represent different components of the system (M. Borsuk, Stow and Reckhow, 2004; 

Laskey and Mahoney, 2013). The exact nature of each relationship between nodes in the network can 
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be constructed using externally elicited expert opinions (Maskrey et al., 2016), or the author’s own 

expert opinion (Meynecke, Richards and Sahin, 2017). 

 

The states of a node should represent the full distribution of values that the node may take and be 

mutually exclusive. A state should not be included if it is unlikely to be reached or is not relevant to 

the model objectives. Where a continuous data range is present, it may be discretised using either of 

two simple and commonly used discretisation techniques; the equal-width method and equal-

frequency method, which divide the range of values (minimum to maximum) into a predefined 

number of intervals of equal-width or intervals containing the same number of data, respectively 

(Muhlenbach and Rakotomalala, 2005). If possible, the discretisation process should include some 

expert input to ensure the intervals are logical with respect to the model objectives. After the creation 

of the network structure, the Conditional Probability Tables for each node need to be parametrised. 

Initial input variables and states can be gathered by literature review (Franco et al., 2016; Bakshan et 

al., 2017; Mantyka-Pringle et al., 2017), conversion from existing models (Landis et al., 2017), 

individual scoping consultations (Katic and Morris, 2016), open list variable distributions (Gambelli et 

al., 2017) exploratory expert workshops (Maskrey et al., 2016), or a mixture of literature review and 

expert elicitation (Bakshan et al., 2017). Identification of input variables is key, however, questions 

such as observability, predictive uncertainty from natural variation, and lack of knowledge mean 

choosing indicators is a balance of predictive precision and economic factors (M. E. Borsuk, Stow and 

Reckhow, 2004). 

 

Model parameterisation can occur through a variety of actions including; prior determined equations 

and model simulations (Ames et al., 2005; Vrebos et al., 2021; Bao et al., 2022), direct empirical 

measurements (Bressan et al., 2009; Jorayev et al., 2022), literature (Guisan and Zimmermann, 2000; 

Landis et al., 2017), expert or stakeholder knowledge (Martin et al., 2012; Gambelli et al., 2017; 

Meynecke, Richards and Sahin, 2017), or a mixture (Nash et al., 2010; Meynecke, Richards and Sahin, 

2017; Forio et al., 2020). In developing the structure and Conditional Probability Tables of the network, 

the use of qualitative information allows for integration of well-argued and informed interpretations 

of unquantifiable relationships. However, it lacks the explicitness and accountability of quantitative 

data (Busch et al., 2012). Qualitative data should therefore be used as a proxy indicator or initial stage 

model development tool to be validated by quantitative data.  
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5.1.3 Bayesian networks use in Environmental Sciences 

 

The application of Bayesian networks in environmental sciences has been systematically reviewed 

(Aguilera et al., 2011; Landuyt et al., 2013; Phan et al., 2016; Kaikkonen et al., 2021). A review of 

Bayesian networks in environment risk assessment identified that these have typically focused on 

freshwater and marine environments (71% of papers reviewed), rather than terrestrial and urban 

systems (29% of papers reviewed) (Kaikkonen et al., 2021). Bayesian networks have been 

implemented to model a range of ecosystem services, including; wildfire prevention (2.13% of papers 

reviewed), water regulation (8.51% of papers reviewed), pest prevention (6.38% of papers reviewed), 

genetic resource provision (31.91% of papers reviewed), freshwater provision (10.64% of papers 

reviewed), climate regulation (4.26% of papers reviewed), food and fibre provision (4.26% of papers 

reviewed), or a mixture of services (31.91% of papers reviewed) (Landuyt et al., 2013). The application 

of Bayesian networks in agriculture can be classified into five main themes; automated monitoring 

from sensor data, prediction from a base set of conditions, identification of primary causes of 

agricultural problems, classification problems (including land classification, disease identification etc), 

and decision support systems (Drury et al., 2017). There are strengths and weaknesses that affect the 

ability for Bayesian networks to be useful tools to assess environmental systems, as discussed below. 

 

5.1.3.1 Strengths of using Bayesian networks in Environmental Sciences 

 

Bayesian networks have the potential to include of both expert knowledge and empirical data. This 

facet can be important where empirical data is of limited availability, which is especially present in 

environmental modelling (Constantinou, Fenton and Neil, 2016). It can be additionally beneficial due 

to the range of validation tools available apart from quantitative validation, including qualitative 

evaluation through expert analysis (Marcot, 2012). Furthermore, Bayesian networks are a suitable 

option for participatory modelling where the transparency associated with their structures and 

probability distributions encourages participation, enhances communication, and provides a tool to 

facilitate communication with non-experts (McCann, Marcot and Ellis, 2006). Bayesian networks are 

suitable for adaptive management; the ability to update relationships and nodes independently allows 

adaptation of model structure with relative ease (Bicking et al., 2019), essential in the environmental 

modelling environment. Since Bayesian networks are modelled by means of probability distributions, 

risk and uncertainty can be estimated more accurately within the network, this makes Bayesian 

networks an appropriate tool for modelling environmental systems (Aguilera et al., 2011). 
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5.1.3.2 Weaknesses of using Bayesian networks in Environmental Sciences 

 

Despite the strengths of Bayesian networks for modelling environmental systems, these tools contain 

certain weaknesses as well. Bayesian networks have a limited capacity to model complex systems due 

to the absence of feedback loops and data discretisation. Feedback loops are a well-established 

concept in ecosystem modelling (Geary et al., 2020). This weakness can be overcome by implementing 

dynamic Bayesian networks where necessary. However, this would substantially increase model 

complexity (Imoto, Miyano and Matsuno, 2006). Whilst data discretisation can lead to loss of 

information or over-complication of the network (Myllymäki et al., 2002), preparatory data analysis 

can limit the impact of discretisation (Uusitalo, 2007a). A further weakness that stems from a prior 

strength is the role of expert knowledge in Directed Acyclic Graph and Conditional Probability Table 

construction. Experts can be inaccurate or encapsulate bias within probability distributions or this 

form of knowledge can be considered subjective and thus unscientific. The implementation of a 

structured approach to expert elicitation can limit the influence of these inaccuracies and biases and 

embed the same level of rigour provided by empirical data (Kuhnert, Martin and Griffiths, 2010). 

 

5.1.4 Aims 

 

Bayesian networks have previously been applied to a large variety of environmental ecosystems. 

However, they are yet to be applied for understanding the functioning and identifying the health of 

lowland peat soils that have been drained to allow for intensive agricultural exploitation. The 

importance of the functioning of these systems for ecosystem service delivery necessitates the 

development of tools to enable their sustainable management. Given the strengths of Bayesian 

networks in modelling environmental ecosystems, this work reported in this chapter aimed to define 

the nodes and connections that can be used to conceptualise the peat health in these systems. By 

combining a review of environmental science literature on peatlands and eliciting the expert 

knowledge of farmers and academics, we aimed to create the structure of a Bayesian network that 

identifies the essential indicators and functions required to infer peat health.  

 

We hypothesised that the Bayesian network structure created through expert opinion would include 

a range of physical, chemical and biological Peat Health indicator nodes. 
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5.2 Methodology 

 

Due to a lack of empirical datasets, creating the structure of Bayesian network for peat health was not 

possible using learning algorithms. Therefore, a mixture of expert knowledge elicitation and literature 

review was selected as the most appropriate approach for creating the network structure. Two expert 

groups were identified for knowledge elicitation: a Land Management Group and an Academic Group. 

Together, these groups represent a comprehensive knowledge base and include those that would use 

the output of the network to make management decisions. Members of the Academic Group were 

experts in the disciplines of Environmental Science or Agriculture at the University of Reading. The 

Land Management Group included agronomists and famers and were selected based on their regional 

and relevant local knowledge built over decades of farming on peat soils. Overall, around 20 members 

of the Academic Group and 10 members of the Land Management Group were consulted for the 

development of the Bayesian network structure. The expertise of an individual can be divided into 

four domains; (i) direct knowledge acquired directly from experience in the domain in question, (ii) 

indirect knowledge acquired through mentors or other experts (including literature), (iii) rules in which 

the domain operates (context-dependent heuristics) and (iv) the integration of the previous domains 

to generate an answer (Brooker, 2011). In the case of this work, group expertise was acquired through 

direct and indirect knowledge. 

  

The initial development of the structure can be conceptualised as two stages, the expert structure 

development and structure modification in consideration of constraints and limitations. Certain 

constraints were agreed through the development of the Bayesian network. The model would be 

geographically explicit to the lowland fens of East Anglia and represent agriculturally managed 

systems where drainage had been implemented. Nodes within the network were required to be 

simple and observable. Additionally, nodes selected were required to either be in pre-existing datasets 

or be able to be predicted using existing soil models.  

 

The iterative process of environmental model building has been well documented (Chen and Pollino, 

2012). Jakeman et al. (2006) details ten general iterative steps to model development and evaluation 

(Jakeman, Letcher and Norton, 2006). Key components for good practice include; clearly defining 

model purpose and all underlying assumptions, comprehensive model evaluation process, and 

transparent reporting of the whole modelling process (Crout et al., 2008). Therefore, before the expert 

knowledge elicitation process, the selected experts were contacted to confirm participation and 
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provided with information regarding the aim, approach, and motive for developing the Bayesian 

network, as described below.  

 

The Bayesian network was built with the aim of understanding the multi-functionality of a peat soil 

system. The purpose of the Bayesian network was to “map the continued capacity of the peat soil 

system to function as a vital living ecosystem”. It was made clear to experts that this required them to 

define the specific functions provided by a drained fenland ecosystem, not the general functions 

provided by all soils. The scope of the model was to identify peat health at a field scale. The motive 

for developing the soil health model was to improve understanding of peat health, identify the key 

indicators to assess peat health, and provide land managers with a decision support tool. Although it 

was noted that feedback loops do exist in environmental systems, the purpose of the modelling 

exercise was not to map feedback loops within the model or incorporate temporal representations. 

As such, the use of Bayesian networks was considered a valid approach to achieve the aim.  

 

Group elicitation exercises with each expert group were conducted online using MS Teams (Microsoft, 

2021). The elicitation process was conducted over six separate meetings between June to December 

2020, with each group in rotation (starting with the Academic group and then Land Management 

group), this would enable feedback in an alternative manner ensuring that model development 

remained relevant and applicable whilst capturing Peat Health. To conduct an effective meeting, the 

purpose of the exercise to develop a Bayesian Structure to establish Peat Health (as defined in the 

literature review) was introduced (or reintroduced) and the prior work established and revisited to 

keep experts up to date on model development at the start of each meeting. This enabled the setting 

of the assumption and ground rules in the expert’s mind to maintain focus and clarity for the meeting. 

Meetings were limited to 2 hours to avoid fatigue of experts. To allow for experts to provide their 

opinion, a range of modes of communication were accepted, including private and public messages 

(both before, during and after the elicitation exercise) and group discussion during the elicitation 

exercise. During the first meeting, experts were asked to provide feedback to enable an evaluation 

and development of the approach for further elicitation exercises. For example, feedback highlighted 

the need for a clear and simple example of a Bayesian network that was unrelated to the soil system 

in question to be provided to help experts understand what they were aiming to create.  

 



101 
 

Group elicitation exercises are considered to create a more scientifically accurate outcome than 

individual elicitation (Salerno, Bottoms and Peter-Hagene, 2017), although groups are also affected by 

decision biases (Stettinger et al., 2015). Due to the nature of the elicitation process, a modified Delphi 

approach to creating the Bayesian network structure was adopted. The Delphi process defining 

characteristics are anonymity, iterations, feedback, and aggregation of responses (Rowe, Wright and 

Bolger, 1991). Organisational limitations dictated that the anonymity usually associated with the 

Delphi method was not possible. Therefore, care was taken to avoid dominance or cues from 

supposed leaders of the group emerging. After a general introduction to the purpose of the study, 

participants were provided with pictures of sub-networks of a peat health network developed by the 

authors through a review of the literature. These sub-networks were based upon grouping of variables 

into functions that peatlands provide in the context of soil health and agriculture. To increase 

simplicity whilst maintaining the integrity of the model, an iterative process of literature reviews, focus 

group discussions, and interviews were conducted to eliminate variables that were deemed to not 

affect the final output node between June 2020 and December 2020. Experts were encouraged to 

review the model structure to reduce the number of nodes, and the number of connections between 

nodes. A large number of nodes, or connections between nodes, in a Bayesian network creates a 

scenario where the network becomes computationally problematic (Koller and Pfeffer, 1997). 

Furthermore, increasing the number of nodes between input variables and outputs can reduce the 

sensitivity of output nodes and increase its uncertainty. As such, simplicity can be seen as essential 

when constructing Bayesian networks (Marcot et al., 2006).  Guidance supplied by the facilitator was 

to keep node connections to a minimum (a maximum of 5 parent nodes connected to each child node) 

and, where this was exceeded, aggregating parent nodes or disaggregating child nodes was suggested. 

It is acknowledged that this can reduce the sensitivity of the network where excessive disaggregation 

is applied (Chen and Pollino, 2012). Model structure was confirmed when a quorum of 70% of experts 

agreed upon the final structure. 

 

5.3 Results and Discussion 

 

The peat health Bayesian network, derived from the elicitation of expert opinion combined with a 

review of the literature, contained four key functions that were each inferred by a sub-network 

(Carbon Respiration, Nitrogen Loss, Pathogen Suppression and Peat Structure), containing parent 

nodes (soil properties). The scientific basis for each sub-network is provided below. 
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5.3.1 Carbon Respiration Sub-Network 

 

A key function of soils is the storage and mineralisation of organic materials that provides energy and 

nutrients to soil organisms and crops. Drainage of peatlands leads to an alteration of the ecosystem, 

creating an imbalance favouring decomposition over accumulation of organic matter (Holden, 

Chapman and Labadz, 2004). Microbial organisms within the peat ecosystem play a pivotal role in 

carbon cycling, controlling anabolic and catabolic pathways (Bender, Wagg and van der Heijden, 

2016).  Whilst the cycling of carbon is an important function in soils, for peatlands, it was identified 

that this function would be inferred using CO2 Respiration. Managing decomposition rates is vital to 

allow for the continued capacity of peatlands to function, protecting the large quantities of carbon 

present within the soil.  

 

The respiration of carbon dioxide results from the activity of microbes within the soil decomposing 

organic matter. Experts identified the quantity and quality of organic matter as an important node in 

assessing the functioning of carbon respiration within the peat systems. The fundamental function of 

organic matter is the provision of metabolic energy for biological processes, yet organic matter is a 

complex composition of materials derived from plant photosynthesis and modified by decomposition 

processes (Huang, Li and Sumner, 2011). Organic matter can be modelled by allocating carbon to 

different conceptual pools with different turnover rates due to their intrinsic decomposability 

(Coleman and Jenkinson, 1996; Smith et al., 2019). Whilst organisms act upon pools of organic 

substrate in the peat, the decomposition process and microbial activity is modified by abiotic factors 

(Dondini et al., 2017). The nodes specifically selected for the final BN were specifically chosen because 

they were pools modelled in the ECOSSE model used to generate the probability distributions and 

relationships. Experts and the literature identified important abiotic factors that mediate carbon 

respiration, including texture and bulk density. Texture within mineral soils has been shown to be 

related to porosity and the movement of water and gas diffusion (Yiqi et al., 2006) and can therefore 

influence microbial access to substrates through the pore networks, altering respiration rates (Patel 

et al., 2021).  Texture in high organic matter soils has displayed that those with higher sand contents 

have better aggregation and a smoother feel, whereas increasing clay content display weaker clods 

and a fine tilth (Natural England, 2008). Whilst the impact of texture will increase as organic matter is 

lost from the system, its impact on microbial access is limited in comparison with bulk density. Within 

the ECOSSE model, texture is implemented to alter the partitioning between CO2 evolved and the 

building of the Biomass and Humified pools, that is, it determines the efficiency of decomposition 

under non-N limiting conditions. Experts also identified Bulk Density to be an important factor in 
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determining the respiration of carbon from the system. Like Texture, Bulk Density can be seen to 

control the movement of gas and water, mediate the accessibility of carbon, and indicate the 

availability of habitats for soil organisms (Huang, Li and Sumner, 2011). Furthermore, Bulk Density was 

deemed an important variable to infer the size of the carbon stock present within the peatland (Wang 

et al., 2021). The elicitation of expert knowledge and literature review led to the creation of the 

Carbon Respiration sub-network following quorum agreement as displayed in Figure 19. 

 

Figure 19: Carbon Respiration Sub-Network nodes and arcs as defined through multiple expert elicitation exercises as part 
of the larger Bayesian network structure.  

 

5.3.2 Nitrogen Loss Sub-Network 

 

The cycling of nutrients within a peat ecosystem is an essential function, defined as its ability to 

receive, store, make available and cycle macro and micro nutrients (Schröder et al., 2016). It would be 

impractical to focus on every macro and micronutrient cycle within the ecosystem, so a focus is placed 

on nitrogen within the model. Nitrogen is an essential nutrient for promoting crop production 

(Kibblewhite, Ritz and Swift, 2008) and exhibits a wide range of transformations which can lead to 

synergies and trade-offs for other services provided by soils, such as water quality and carbon 

mineralisation (Tilman et al., 2002). Nitrogen cycling has been shown to be important for drained peat, 

due to its lability and high potential to cause pollution (Vassiljev and Blinova, 2012; Vassiljev et al., 

2019). It is acknowledged that seasonal variations, soil conditions, and management practices can all 

limit the effectiveness of using available nitrogen as a soil health indicator (Gil-Sotres et al., 2005). 
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Nutrient cycling therefore defines the relationship between mineralised nitrogen, stored nitrogen, 

and nitrogen lost from the system through leaching or denitrification. A large proportion of nitrogen 

is protected in organic forms (95-99%), but this is unavailable to plants (Weil and Brady, 2017). 

Microbially driven processes control the mineralisation of nitrogen which is additionally dependent 

upon the C:N ratio alongside the microbial activity (Colman and Schimel, 2013). Experts identified that 

the quantity of nitrogen was intrinsically modelled in the Organic Matter node, and that total 

mineralisation, and thus, total mobilisation of the nutrients was not a concerning issue (although 

timing of mobilisation was). Past literature supports this opinion, displaying positive net mineralisation 

rates for drained peatlands (Wells and Williams, 1996; Säurich et al., 2019). Therefore, the most 

important component of nutrient cycling in peatlands, and thus the component retained for the peat 

health Bayesian network, was considered the loss of nitrogen from the system. Therefore, the nutrient 

cycling function was represented by the Nitrogen Loss node.  

 

Nitrogen may be lost through a range of different pathways reducing crop yield, and causing 

environmental pollution (Cameron, Di and Moir, 2013). Loss pathways include leaching of Dissolved 

Organic Nitrogen, nitrification and leaching of nitrate, denitrification and gaseous emission of N2O and 

N2, and removal of nitrogen through harvesting operations (Bowles et al., 2018). Nitrogen Leaching, 

Dissolved Organic Nitrogen and Nitrogen Denitrification were identified as important indicators of 

Nitrogen Loss. Leaching of nutrients is increasingly observed as an environmental and societal 

concern, and magnitude of loss is directly related to concentration of the nutrient within the soil 

porewater and the movement of the water (Rashmi et al., 2017), which is of great concern to nutrient 

rich peatlands. Dissolved Organic Nitrogen release from drained peatlands is of particular importance, 

with losses remain constant despite increasing degradation of peatlands (i.e. loss of Organic Matter 

and decreasing C:N ratio), and appears to be preferential lost from decomposition of Organic Matter 

in the peat (Kalbitz and Geyer, 2002). Finally, the process of denitrification under agricultural peat soils 

is another important loss pathway of Nitrogen from peat systems, leading to the emission of harmful 

N2O (Regina et al., 2004; Butterbach-Bahl et al., 2013; Espenberg et al., 2018). The ECOSSE model was 

used to model the nitrogen loss within the peat system. ECOSSE uses a simple C:N ratio of 10:1 in 

agricultural systems to calculate the amount of nitrogen in the system, and like carbon, calculates the 

turnover of nitrogen in respect to pools of available nitrogen with different turnover times. Thus, Peat 

Depth, Bulk Density and Organic Matter content were used to calculate the Total Organic Nitrogen 

contained within the system. The elicitation of expert knowledge and literature review led to the 

creation of the Nitrogen Loss sub-network following quorum agreement as displayed in Figure 20. 
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Figure 20: Nitrogen Loss Sub-Network nodes and arcs as defined through multiple expert elicitation exercises as part of the 
larger Bayesian network structure. 

 

5.3.3 Peat Structure Index 

 

The structure of soil influences a range of soil processes and functions including, but not limited to, 

biomass production, storage and filtering of water, storage and recycling of nutrients, carbon storage, 

habitat for biological activity, and physical stability and support for plants (Rabot et al., 2018). To infer 

the peat structure function, expert knowledge and literature review conferred that organic matter 

and bulk density should be used as inference nodes. Peat soils are highly complex porous media with 

distinct characteristic physical and hydraulic properties, but as the peat layer is oxidized and further 

compressed, the structure of the peat layer becomes degraded (Holden et al., 2006; Mustamo et al., 

2016; Rezanezhad et al., 2016). The oxidisation of peat leads to a reduction in the macropore 

structure, which facilitates water movement and solute transport, reducing saturated hydraulic 

conductivity, increasing bulk density and lowering porosity (Liu and Lennartz, 2019). The peat 

structure node therefore defines the current predicted structure of the peat to provide a habitat for 

organisms/biomass and to facilitate the flow and storage of water. The elicitation of expert knowledge 

and literature review led to the creation of the Peat Structure sub-network following quorum 

agreement as displayed in Figure 21. 
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Figure 21: Peat Structure Sub-Network nodes and arcs as defined through multiple expert elicitation exercises as part of the 
larger Bayesian network structure. 

 

5.3.4 Pathogen Suppression Index 

 

The Pathogen Suppression node considers the functioning of the peat to reduce the amount of disease 

through antagonistic relationships with pathogens. A healthy and functioning microbiome defends 

against soil‐borne pathogens through direct methods, such as antibiosis or parasitism, or indirectly by 

enhancing plant immune responses (Peralta et al., 2018). Experts identified Microbial Biomass and 

Rotation Diversity as important indicators to infer Pathogen Suppression function. General 

suppression in soil is considered a function of the aggregate capacity of diverse soil microbes to 

antagonize pathogen populations. Differences in microbiome composition, structure, and diversity 

dictate general and specific suppressive capacities yet remain poorly understood (Expósito et al., 

2017; Schlatter et al., 2017). However, increased total Microbial Biomass within soil systems has been 

shown to correlate with general soil suppressiveness (Schlatter et al., 2017; van Agtmaal et al., 2018; 

Bongiorno et al., 2019; Palojärvi et al., 2020). As such, increased biomass levels are inferred to increase 

general pathogen suppression of the peat. A diverse crop rotation and inputs significantly improves 

disease and pest management (He et al., 2019), influencing bacterial community composition (Peralta 

et al., 2018), and decreasing the incidences of disease on crops (Termorshuizen et al., 2006; Hiddink, 

Termorshuizen and van Bruggen, 2010; Fan et al., 2020).  Crop rotations can directly reduce inoculum 

density of pathogens, and alter the physical, chemical and biological environment in the soil, 

promoting changes to community composition (Peralta et al., 2018; Badial et al., 2020; Moura et al., 

2020). The elicitation of expert knowledge and literature review led to the creation of the Pathogen 

Suppression sub-network following quorum agreement as displayed in Figure 22. 
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Figure 22: Pathogen Suppression Sub-Network nodes and arcs as defined through multiple expert elicitation exercises as 
part of the larger Bayesian network structure. 

 

5.3.5 Complete peat health Bayesian network 

 

Peat health was defined as the continued capacity of the peat system to function as a vital living 

ecosystem. The capacity of the soil to provide these function stem from outputs of a range of biological 

processes within the living soil system, operating in complex interactions within abiotic conditions 

(Kibblewhite, Ritz and Swift, 2008). The above functions attempt to infer the functioning of the peat 

system using easily accessible and simple on-farm indicators/properties. Each of these functions can 

both be seen to improve or degrade the health status of a peat and their combination can influence a 

systems resilience (Lehmann et al., 2020). To establish whether a function was considered to be 

beneficial or detrimental to peat health, a modified version of the soil health gap concept was applied 

(Maharjan, Das and Acharya, 2020). A healthy functioning peat was considered to be one where the 

respiration of carbon is lower, the nutrient loss is low, the peat structure is good, and the pathogen 

suppression is present. The reverse will be true for an unhealthy system. The functioning of each 

component noted above will infer the health of the peat ecosystem, and the overall structure for 

inferring the health of a drained peat system is displayed in Figure 23.   

 

5.3.6 Future Structure Development 

 

Literature reviews and discussions with experts while creating the structure of the peat health 

Bayesian network revealed areas where improvements could be implemented if limitations and 

constraints were not present. Experts expressed concerns about the simplicity of the modelled 

variables. The aim of the modelling techniques was to identify a suite of variables that could infer each 

function and thus the health of the peat system. Developing simplistic models of processes should be 

preferred to more complex solutions (Wainwright and Mulligan, 2013). However, future iterations of 
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the Bayesian network could incorporate a more complex structure to allow an understanding of peat 

health with greater depth. This could include the inclusion of utility or decision nodes, such as the 

likelihood or satisfaction with a crop yield potential based upon the health of the system, or the 

decision to conduct a certain practice, such as tillage, and how this will affect the nodes within the 

network. Experts attempted to increase the complexity of the network by incorporating soil biological 

community indicators into the structure. Discussions focussed on what indicators were possible to 

reliably measure and how these should be incorporated into the network. Such biological indicators, 

indicative of soil health, include soil enzyme activity (Alkorta et al., 2003), mesofauna and arbuscular 

mycorrhizal fungi (Mahdi et al., 2017), and phospholipid analysis or bacteria/fungi diversity indexes 

(van Bruggen and Semenov, 2000). However, due to high spatial variability of these indicators, the 

presence of substantial functional redundancy, and the current limited understanding of which 

organisms perform certain soil functions (Reicosky, 2018), it was deemed inappropriate to include 

these biological indicators to infer peat health. As knowledge concerning the role of soil biology in 

peatland ecosystems develops and measurement becomes more routine, biological indicators could 

be incorporated into the Bayesian network. The current network represents processes that are 

biologically mediated (e.g. carbon and nitrogen cycling) without explicitly modelling the contribution 

of specific groups of organisms.
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Figure 23: Complete peat health Bayesian network structure with nodes and arcs used to infer the flow of information as defined through multiple expert elicitation exercises with the 
Academic and Land Management group after agreement by quorum. The network identifies the simplest combination of indicators to infer the health status of a lowland peat under 
agriculture. 
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The elicitation of expert knowledge highlighted the role of organic matter chemical composition in 

mediating the rate of organic matter decomposition and consequent release of CO2 from drained peat 

ecosystems. The increased degradation of peat after drainage, inferred by lower C:N ratio and reduced 

organic matter content, correlates with a higher specific basal respiration (Säurich et al., 2019). 

However, because we selected the ECOSSE model to parameterise the Conditional Probability Tables 

within the Carbon respiration sub-network (see Chapter 6) we were constrained by the design of the 

model, which does not have the utility to alter the C:N ratio (which was kept constant at 10:1). Future 

development of the Bayesian network could lead to the inclusion of C:N ratio as a node, thus altering 

the network structure to include the degradation status of the peat system. Experts commented that 

microbial activity (and thus CO2 respiration) can be altered by soil temperature, moisture content 

alteration of the groundwater table or displacement of CO2. These physical mechanisms drive mass 

flow of CO2 loss from soil systems (Kutsch, Bahn and Heinemeyer, 2010). A limitation of the network 

was that it aimed to provide a snapshot of the health of the system, meaning that the implementation 

of these factors was considered as a longer-term average over a single point in time. If the model were 

to be applied at a location different to where the meteorological data was obtained to run the ECOSSE 

model and parameterise the Conditional Probability Tables was collected, or if the model was used to 

project peat health for future climate change scenarios, then the network would need to be re-

parametrised. Future updates of the network may include further drivers of microbial decomposition, 

which could be incorporated into the network, especially if a different soil carbon and nitrogen model 

were used that accounts for these processes. 

 

It was noted that recent advances in our understanding of the mechanisms by which organic matter 

is chemically and physically protected from decomposition could be explicitly considered in future 

development of the model. Microbial community composition controls the fate of carbon compounds, 

yet, the protection mechanisms afforded by the abiotic environment control the decomposition rate 

of carbon in soils (Schimel and Schaeffer, 2012). Research has shown that the protection mechanisms 

of organic carbon present in mineral soils (occlusion and binding to minerals) are of little importance 

in peatlands (Han et al., 2016). Furthermore, intrinsic decomposability of organic matter, considered 

to be a cause of variation in carbon decomposition, has not been shown to correlate with CO2 

emissions (Reiche, Gleixner and Küsel, 2010; Bader, Müller, Schulin, et al., 2018; Leifeld, Klein and 

Wüst-Galley, 2020). Protection of carbon within the drained peat ecosystem rather occurs through 

the addition of fresh organic matter, which provides a preferential carbon source for biological 

communities (Bader, Müller, Szidat, et al., 2018). However, peat decomposition is not completely 
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negated by the addition of fresh organic matter since older carbon still mineralised, depending upon 

the degradation status of the peat (Bader, Müller, Szidat, et al., 2018). 

 

Experts identified pH as another important abiotic factor controlling respiration. pH regulates both 

chemical and biological reactions within the soil system, and can limit the production of CO2 in acidic 

conditions due to retarding effects on decomposition (Laiho, 2006). Organisms within the peat, and 

crops grown on it, can have different sensitivities to pH. However, an optimum pH for microbial 

activity and crop production typically ranges between 5.0 and 7.5 (Stirling et al., 2016). Natural 

peatlands contain a variety of organisms that have developed tolerances to the low oxygen availability 

and high acidity environment. However, soil biological community structure changes after drainage, 

indicating a change in the tolerance to abiotic conditions (Espenberg et al., 2018). Peatlands used for 

agricultural practices are regularly maintained at neutral pH (or within a reasonable range) and so it 

was not deemed necessary to include pH as a node in the Bayesian network. If the network were used 

for semi-natural peatlands or restored peatlands in the future, then this may necessitate including soil 

pH within the network. 

 

5.4 Conclusion 

 

Bayesian networks are an important tool for ecosystem modelling due to their ability to combine 

expert opinion with empirical data, engage stakeholders during the model construction process, and 

explicitly consider uncertainties. We used literature review and elicited expert opinion to define the 

structure of a Bayesian network which identified four key functions that infer the health of a peat soil. 

Using this approach, a simple and effective structure was developed that could then be further 

implemented into a Bayesian network by defining Conditional Probability Tables. Future 

improvements to the network structure were identified which could be implemented when 

constraints and limitations are eliminated or overcome. 
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Chapter 6: Evaluation of peat health under intensively managed agricultural systems using a 

Bayesian network approach. 

 

Abstract 

The concept of soil health has gained attention due to the understanding that soils deliver multiple 

ecosystem services in agricultural systems but are susceptible to degradation. As a result, several 

‘soil health tools’ have been developed that allow farmers and stakeholders to benchmark and 

compare soils within agro-ecosystems. These tools are however typically designed for use on 

mineral soils, despite the environmental and economic importance of lowland drained peatlands for 

agriculture and food security, particularly in the UK. Tools to assess soil health are often reductionist; 

generating scores based on the combination of soil property measurements without considering 

how the attributes of a soil interact to deliver the ecosystem functions and services that underpin 

soil health. Bayesian networks display simplified causal structures using mutually exclusive nodes 

and states, which are connected through arcs representing the flow of information with regards to 

the state of the system given observations made. Here we describe a Bayesian network to define the 

interactions, graphically and statically, between key soil properties that underpin soil processes that 

influence soil functions, which can be combined to infer the health of peatlands under intensive 

agriculture in a data poor environment. The Bayesian network was parameterised using a 

combination of expert opinion elicitation and biogeochemical modelling to predict the likelihood 

that a lowland drained agricultural peatland is healthy or unhealthy based upon measurable 

attributes (peat depth, organic matter content, soil texture, bulk density, microbial biomass, and 

crop rotation diversity). We validated the Bayesian network using published datasets and expert 

knowledge and conducted retrospective propagation scenario testing and sensitivity analysis. We 

demonstrate that the Bayesian network successfully distinguishes a deep well-structured peat, a 

deep compacted peat, a shallow well-structured peat, and a shallow compacted peat. The Bayesian 

network we created is a multi-functional tool to assess the peatland system in a holistic manner 

rather than focusing on a single function or arbitrary combination of measured properties. It is a 

sensitive metric that can be used by farmers to compare and benchmark fields and investigate the 

influence of land management on the degradation or restoration of ecosystem functions. We discuss 

the strengths and weaknesses of the Bayesian network and how it could be developed further in 

future iterations. 
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6.1 Introduction 

 

Soils are vital for the food security since they are responsible for 99% of the world’s food production 

(Hatfield, Sauer and Cruse, 2017). This reliance stems from the ability of soils to deliver multiple 

functions and ecosystem services that we benefit from (Power, 2010). However, not all soil types 

contribute equally to food security. Peatlands are disproportionally used for high-value agricultural 

crops due their inherent fertility and high value in terms of ecosystem service delivery, despite their 

susceptibility to degradation through intensive agricultural management (Parent and Illnicki, 2003; 

Dawson et al., 2010; Whitfield et al., 2011; Bonn et al., 2014; Evans et al., 2016). 

 

Recent developments have established the multi-functionality of soil systems by identifying and 

quantifying the physical, chemical, and biological properties that underpin the soil processes that 

deliver functions (Kibblewhite, Ritz and Swift, 2008; Bünemann et al., 2018; Tahat et al., 2020). As a 

result, an increased awareness on the effects of human intervention on the degradation of soil 

systems has become increasingly recognised (Jie et al., 2002; Montanarella, 2012; Stephens, Jones 

and Parsons, 2017). The development of sustainability goals within the UK has cumulated into the 

adoption of the soil health concept, the establishment of a Soil Health Action Plan (Department for 

Environment Food and Rural Affairs, 2018a), and the creation of a Lowland Peat Task Force, tasked 

with improving the condition of England’s farmed lowland peat (Department for Environment Food 

and Rural Affairs, 2020, 2021d). A key step towards improving peatland condition is the development 

of a method to measure the soil health of peatlands to compare and benchmark fields and investigate 

the influence of land management on the degradation or restoration of ecosystem functions. 

 

Current approaches to soil health assessment comprise three stages (Figure 24); (i) the selection of 

relevant soil properties or attributes through qualitative or quantitative methods, (ii) the scoring of 

selected attributes, and (iii), integration of scores into indices (Rinot et al., 2019). This approach 

emphasises simple and applicable methods that allow farmers and land managers to understand the 

current state of their land (Mukherjee and Lal, 2014; Askari and Holden, 2015; Igalavithana et al., 

2017; Purakayastha et al., 2019). However, the development of indices to map soil health often focus 

on single ecosystem functions or services the soil provides (e.g. agricultural productivity), rather than 

considering a holistic view of the entire multi-functionality of soil systems to provide a range of soil 

ecosystem functions and services (Reicosky, 2018; Rinot et al., 2019; Lehmann et al., 2020; 
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Friedrichsen et al., 2021). However, the relationship between soil properties, soil processes, soil 

functions, and ecosystem services are complex and non-linear, and ‘black-box’ (where underlying 

mechanisms are hidden) modelling techniques can be seen as inappropriate to assess the capacity of 

soil systems to function given their multi-functional nature (Taalab, Corstanje, Zawadzka, et al., 2015). 

Due to the complexity of these relationships, there is often insufficient data to adequately model 

them. However, expert knowledge can be used to provide understanding in a data poor environment. 

Therefore, the development of models to establish the health of soil systems, particularly peatlands 

under intensive agriculture, must incorporate expert-derived opinion alongside quantitative dataset 

measurements to represent soil health. One approach capable of combining expert opinion and 

experimental or modelled data is Bayesian networks. 

 

 

Figure 24: Approaches to Soil Health Index creation and assessment. Reproduced from Rinot et al., 

2019. 

 

6.1.2 Bayesian networks  

 

Bayesian networks are probabilistic graphical models that are formed of two components; a 

qualitative directed acyclic graph (DAG), and quantitative conditional probability tables (CPTs) 

(Landuyt et al., 2015). The DAG is formed of a set of variables (termed as nodes) which represent the 
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system being modelled and the arcs that connect nodes represent direct causal influence (Jensen and 

Nielsen, 2007). Each node represents a specific variable and is divided into a finite discrete and 

mutually exclusive number of states of which the observed node value must belong (Landuyt et al., 

2013). These nodes and connecting arcs can be constructed into a network based upon expert 

elicitations or learned through complex algorithms. However, use of algorithms to construct the 

network can increase model complexity in comparison to expert elicited network structure, and 

require further refinement and validation by experts (Pham et al., 2021). Whilst the DAG defines the 

structure of the modelled system, the CPTs define the relationships between a child node and its 

parents (Jensen and Nielsen, 2007). A CPT is required whenever two nodes are connected through an 

arc, indicating a causal relationship between the parent and child node. CPTs are parameterised using 

a range of methods including expert elicitation, pre-existing datasets, or the use of model simulations 

(Bowden, 2004; Barton et al., 2008; Zorrilla et al., 2010). The conditional probability of a child node 

exhibiting a specific state is determined by the probability that each of the parent nodes is in each 

possible state. Where a node has no parents, a simple probability distribution exists (Pearl, 1988a). 

 

A Bayesian network applies Bayes Theorem which describes the probability of an event, based upon 

prior knowledge of the conditions that are related to the event using Equation 16:  

 

Equation 16:  𝑃(𝐴/𝐵) =
𝑃(𝐵/𝐴) ×𝑃(𝐴)

𝑃(𝐵)
 

 

where P(A/B), the posterior, is the probability of A given B is observed, P(B/A) is the probability of B 

given A is observed, P(A), the Prior (or prior knowledge), is the probability of A, and P(B), the 

marginalization, is the probability of B being observed. 

 

Bayesian networks use Bayes’ Theorem to update beliefs of the probabilities associated with the 

states of each node within the systems in relation to observed new evidence. Bayes theorem can be 

used for both the downward and upward propagation of evidence (i.e. finds at a parent or child node) 

(Ames et al., 2005). This makes Bayesian networks a useful tool for analysing complex ecosystem 

services where observed data is not readily available (Landuyt et al., 2013).  
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Bayesian networks are increasingly used to analyse environmental systems, including grassland 

degradation risks (Zhou and Peng, 2021), ecosystem service provision (Landuyt et al., 2014; 

Poppenborg and Koellner, 2014; Landuyt, Broekx and Goethals, 2016; Bicking et al., 2019; Tang et al., 

2019), water quality management (Fox et al., 2017), wetland conservation (MacPherson et al., 2018), 

and digital soil mapping (Taalab, Corstanje, Zawadzka, et al., 2015). The usefulness of Bayesian 

networks within the ecosystem services paradigm is therefore well established. The strengths of using 

Bayesian network to monitor environmental systems includes the potential to include both expert 

knowledge and empirical data, the suitability for participatory modelling, the explicit treatment of 

uncertainties and the ability to validate the models through statistical and expert methodologies 

(Landuyt et al., 2013). 

 

For this study, we parametrised a Bayesian network to allow for the understanding and exploration of 

soil health on lowland peat. To achieve this, we examined four previously identified key functions of 

soil to provide a holistic overview of the processes underpinning the functioning of a peatland system 

that deliver ecosystem services. These four functions were Peat Structure, Carbon Respiration, 

Nitrogen Loss, and Pathogen Suppression. The Bayesian network development integrated data from 

a range of sources. Probability distributions created from hypothetical scenario runs of the ECOSSE 

model (Smith et al., 2019) and the elicitation of knowledge from experts to identify distributions 

where data was not present/available. ECOSSE outputs were validated against published datasets and 

expert elicited distributions validated against expert knowledge. The resulting network tests the ability 

to infer the subjective health of a peat ecosystem under intensive agriculture. The network can be 

used to examine the influence of key site-specific soil properties on the state of peat health, and vice 

versa. 

 

We hypothesised that the parametrised Bayesian network could distinguished between a (1) deep 

well structured peat, (2) a deep compacted peat, (3) A Shallow well-structured Peat, and (4) a 

Shallow compacted Peat 
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6.2. Methodology 

 

6.2.1 Study Location 

 

The Bayesian network was designed to be used to infer Peat Health across the lowland fenlands 

located in the East of England (Figure 1). This area is a low-lying flat landscape which drains into the 

Wash (a tidal estuary), much of the land lies below sea level, thus relying upon pumping stations and 

sluices to control water tables (Richardson and Smith, 1977). The land use of the area is predominately 

agricultural in nature (Karra et al., 2021). The drained peatland provides excellent conditions for arable 

and horticultural crop production, which has led to the area becoming vitally important to national 

crop production (Natural England, 2015). However, due to degrading conditions associated with 

drainage, exacerbated by intensive agricultural practices, the peatland area is reducing in size and 

depth (Natural England, 2010). Over the period of 2000 to 2020, the average annual rainfall in the 

area was around 550 mm, with mean annual maximum and minimum temperature equating to 15°C 

and 6.7°C respectively.  

 

6.2.2.1 Directed Acyclic Graph (DAG) Development 

 

A DAG framework was previously developed with an interdisciplinary group of experts and by 

reviewing literature. The group of experts consisted of experts ranging from academic fields (including 

Earth Science, Agriculture and Geography) alongside those within the industrial domain (including 

peatland farmers, agronomists, and farm advisers). The objective of the model was to build an 

understanding of the continued functioning of the peat ecosystem (termed peat health) which had 

been drained and is currently under agricultural land use. The DAG framework identified key functions 

associated with inferring the health of the system, and the measurable soil properties that can be used 

to assess functioning. The preliminary DAG underwent validation by returning to experts for feedback, 

further discussion, and modification. Modifications were also made to fit the structure of the soil 

biogeochemical model ECOSSE and to ensure that the parentless soil property nodes were attributes 

that could relatively easily be measured by land managers. The final DAG developed consisted of 21 

nodes and 31 arcs connecting nodes (Figure 25) and was created using the GeNIe modelling software 

(BayesFusion LLC, 2020).  
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The discretisation of states was determined after exploration of available datasets and through expert 

opinion. Where the elicitation of expert knowledge was used to identify CPTs, nodes were discretised 

into a maximum of three states to minimise the required number of permutations of parent node 

states that each required the expert to define probabilities of the child node being in each possible 

state. This restriction reduces issues associated with going beyond an experts knowledge base or 

incorporating bias (Pollino et al., 2007; Hart and Pollino, 2008; Aguilera et al., 2011). Discretisation of 

nodes representing continuous variables can lead to information loss and statistical inaccuracy if too 

few states are selected, whereas too many states can over-complicate a network (Myllymäki et al., 

2002). The challenges associated with discretisation of continuous variables were avoided, where 

possible, by analysis of an entire dataset for the variable in question, inferring the number of 

appropriate intervals, the significance of the breakpoints, and ensuring that intervals contain a 

reasonable number of observations (Uusitalo, 2007b). To achieve this, the Discretise function within 

the GeNIe Modeler software (BayesFusion LLC, 2020) was applied to the dataset produced by 

biogeochemical modelling (described in Section 6.2.3.2). This process allowed for analysis of node 

histograms, assessment of percentiles, and exploration of the range of values contained within each 

state following discretisation. The nodes and states are presented in Table 17. In several cases, 

including the Peat Health node, a traffic light system was used to label states whereby ‘Green’ 

represents a higher value or healthier peat, and ‘Red’ represents a lower value or unhealthier peat. 

 

6.2.3 Bayesian network Parametrisation 

 

The CPTs were created for the Bayesian network through a combination of expert knowledge and the 

use of the soil biogeochemical model ECOSSE (J. Smith et al., 2010). The ECOSSE model was used to 

populate the carbon respiration and nitrogen loss sub-networks in the Bayesian network. Where no 

datasets were available, CPTs were defined through the elicitation of expert knowledge. Expert 

knowledge was used to populate the peat structure and pathogen suppression sub-networks and to 

define how the four functions (carbon respiration, nitrogen loss, peat structure, and pathogen 

suppression) influence peat health. 
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6.2.3.1 Expert Elicitation 

 

The elicitation of expert opinion has associated challenges due to the quantity of information required 

and the ability of experts to quantify subjective beliefs (Kuhnert, Martin and Griffiths, 2010). A method 

and programme has been developed entitled the Application for Conditional Probability Elicitation 

(ACE), to extract probability distributions from experts using simple questions to capture the overall 

shape of probability distributions (Hassall et al., 2019). The ACE approach was implemented in this 

project to extract probability distributions from experts. The elicitation of expert knowledge was 

conducted following Kuhnert, Martin and Griffiths, (2010).  

 

 

Seven experts were carefully chosen for CPT probability elicitation, with three industrial experts and 

four academic experts. Experts were interviewed online using a modification to the ACE programme. 

Following the Delphi method (Ling and Bruckmayer, 2021), experts were asked to define their beliefs 

on the state of soil functions given the observed parent values (the conditional probability 

distributions). These conditional probability distributions were then aggregated to create the CPTs and 

shared with the experts to elicit further feedback. Aggregation and incorporation of the Delphi 

approach allowed us to incorporate the beliefs of experts that spanned multiple fields while reducing 

the undue influence of a single expert. Bias was minimised by developing a document that clearly 

explained the states, values, and descriptions of nodes and arcs defined within the network. This 

document was circulated to all experts before knowledge elicitation. During the elicitation sessions, 

each expert was provided with a verbal summary of the document, explained the purpose of the 

exercise, and asked the same questions as each other. 
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Figure 25: Bayesian network structure. Grey indicates parentless soil properties nodes. Green indicates soil function nodes. Purple indicates the Peat Health 
output node. Carbon pools, developed through the ECOSSE model, are decomposable plant material (DPM), resistant plant material (RPM), microbial 
biomass (BIO), and humus HUM)  
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6.2.3.2 ECOSSE Model 

 

The ECOSSE model was created to simulate carbon and nitrogen dynamics in highly organic soils from 

concepts derived for mineral soils in the RothC and SUNDIAL models (J. Smith et al., 2010). The ECOSSE 

model was selected as it was designed for use in highly organic Soils, and the required input features 

of the model were readily available and identifiable. The model could also be simulated across a range 

of sites and thus allowed for future development where necessary. The model uses a pool approach 

describing soil organic matter as pools of inert organic matter, humus, biomass, resistant plant 

material, and decomposable plant material. The ECOSSE model captures to major processes 

associated with C and N turnover (described in depth in the ECOSSE user manual (Smith et al., 2019)), 

but each is simulated using only simple equations driven by readily available data. This allows the 

model to be scaled from a field-based model to a national scale tool without losing accuracy or 

requiring complex data sets. In summary, as described in Smith et al 2019, plant C and N inputs, 

alongside inorganic and organic nutrient or manure applications are added in monthly timesteps to 

the decomposable plant material (DPM) and resistant plant material (RPM) pools. The inputs from 

vegetation are estimated by use of a plant input equation (Bradbury et al., 1993). During 

decomposition processes, material is exchanged between the organic matter pools according to first 

order rate equations, characterised by specific rate constant for each pool (the rate constants used 

are DPM 𝑘DPM = 10 yr-1, for RPM 𝑘RPM= 0.3 yr-1, for BIO 𝑘BIO = 0.66 yr-1, and for HUM 𝑘HUM = 0.02 yr-1) 

and modified according to rate modifiers depending on the temperature, moisture, crop cover, and 

pH of the soil. The model assumes that the enzymes within the soil profile responsible for organic 

matter turnover are in excess and, as such, aerobic decomposition is only dependent on the 

concentration of C in the decomposing pool. The N content of the soil follows the decomposition of 

the organic matter, with a stable C:N ratio defined for each pool at a given pH and N being either 

mineralised or immobilised to maintain this ratio. Nitrogen released from decomposing soil organic 

matter as ammonium (NH4
+) or added to the soil may be nitrified to nitrate (NO3

-). Carbon and N may 

be lost from the soil by the processes of leaching (NO3
-, dissolved organic C (DOC), and dissolved 

organic N (DON)), denitrification, volatilisation or crop offtake, or C and N may be returned to the soil 

by plant inputs, inorganic fertilizers, atmospheric deposition, or organic amendments. The soil is 

divided into 5cm layers to facilitate the accurate simulation of these processes down the soil profile 

to a depth of 3meters.  
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The ECOSSE model was used to quantify caron respiration and nitrogen loss for several site-specific 

scenarios that were systematically tested based on soil, environmental, and management input data 

described in Table 16. The combination of these scenarios was implemented through creating multiple 

input files for the ECOSSE model using MatLab (MATLAB, 2021) leading to over 15550 runs of the 

model. These combinations were compiled as they incorporated a full range of possible permutations 

which real-world values could take. The ECOSSE model initialisation to determine the initial sizes of 

the organic matter pools was simulated by an equilibrium run of the RothC model which runs under 

the assumption that the system is at a steady state. This method uses a spin-up approach that adjusts 

the decomposition rates using both plant inputs from measured net primary productivity and 

measured total organic carbon content. The initialisation processes are detailed in Smith et al 2010. 

After spin-up, the model was run over 2 years given known management operations (including tillage, 

fertiliser applications, crop type etc). The outputs of the last year of the modelling ECOSSE model were 

selected for development of the CPTs and averaged over an annual period to smooth out the influence 

of seasonal climatic variables. CPTs for the BN were created through the data learning function in 

GeNIe, where data was discretised and then a joint probability distribution created. 

 

Validation of the ECOSSE model could not be conducted through analysis of both pre-existing carbon 

respiration and nitrogen loss datasets specific to lowland fen regions in the UK. Rather, measurements 

exists for CO2 respiration from eddy covariance and static gas chamber measurements (Evans et al., 

2016) within the region. This study contains similar background soil data (Bulk Density, Depth and 

Organic Matter content) to allow for a comparison of CO2 respiration with BN classification. This will 

be principally achieved by classifying the CO2 measured respiration within the state, and observing 

whether inputting similar background soil data leads to the same state being observed in the BN.  
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Table 16:The ECOSSE input data (including sources, where necessary) used to simulate the carbon 
and nitrogen cycling in soils under a range of different conditions to generate a dataset used to 
parameterise the Bayesian network 

Input data Notes 

30-year average monthly 
rainfall (mm), temperature (oC) 
and potential 
evapotranspiration (mm). 
 
 

The ECOSSE model was run using 30-year average and monthly 
rainfall and temperature accessed through one of the Met 
Office long running historic weather stations located at NIAB 
Cambridge (Location: 543500E 260600N, Lat 52.245 Lon 0.102).  
(https://www.metoffice.gov.uk/pub/data/weather/uk/climate/
stationdata/cambridgedata.txt) 
 
Average Potential Evapotranspiration was calculated using 
CropWat version 8.0 (Smith, 1992). The programme calculates 
potential evapotranspiration using the Penman Montieth 
equation (Allen et al., 1994). 
 

Initial soil C content (kg/ ha) The ECOSSE model was run with soil organic carbon content 
ranging between 20% organic matter to 65% organic matter in 
5% intervals. Organic matter percentage was converted to 
organic carbon using a conversion factor of 0.5 (Pribyl, 2010; 
Klingenfuß et al., 2014). This was then multiplied by bulk density, 
depth, and volume to calculate carbon content in kg/ha. 
 

Soil Depth at which soil 
properties have been measured 
(cm) 
 

The ECOSSE model was run with peat depths of 20cm, 50cm and 
100cm.  

Soil Sand, Silt, and Clay content 
(%) 

The ECOSSE model was run for each of the 12 textural classes 
identified in Natural England Technical Information Note 037 
(2008) 
http://publications.naturalengland.org.uk/publication/32016 
 

Soil Bulk Density (g/cm3) The ECOSSE model was run with bulk density values between 0.2 
and 1.0 g/cm3 at 0.1 g/cm3 intervals. 

Soil pH The ECOSSE model was run with pH values between 5 and 9, at 
1-unit intervals. 

Crop Type, tillage operations, 
inorganic and organic manure 
applications for each simulation 
year 

The ECOSSE model was run with crop type and management 
operations established through conversations with local farmers 
and land managers. The crop rotation was a winter maize 
followed by either a single lettuce or double lettuce. 

Water Table depth (cm) The ECOSSE model was run with a water table depth set to either 
100cm or 50cm  
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6.2.4 Scenario testing 

 

The Bayesian network was tested using example scenarios to identify information flow through the 

network by predictive and retrospective propagation (Vrebos et al., 2021). This was achieved by 

instantiating either an input node or the Peat Health node and observing how this propagates through 

the Bayesian network and alters the probability distribution of the states of the other nodes. 

 

6.2.4.1 Predictive Propagation Scenario Testing  

 

Predictive propagation involves instantiating a parentless input node in the network to 100% 

probability distribution for one state and observing how this alters the probability distribution of child 

variables flowing down the network to the final output. There are a total of 69,984 parent state 

combinations available to assess. However, we examined four strategic scenarios to display the 

predictive power of the network for assessing Peat Health node. These four scenarios are broadly 

representative of the input node states expected for a deep well-structured peat, a deep compacted 

peat, a shallow well-structured peat, and a shallow compacted peat. Where no parent states were 

instantiated and the model was setup with each parent node having an equal probability of being in 

any of the available states, the probability distribution of the Peat Health node had a 26.4% probability 

of being in the Green state, 30.8% probability of being in the Amber state and 42.8% probability of 

being in the Red state.  

 

6.2.4.1 Retrospective Propagation Scenario Testing  

 

Propagation through instantiation of the end outcome allows observation of how information flows 

upwards through the network. By instancing the Peat Health node state, we can observe how changes 

to the measurable properties in the Bayesian network most likely contribute towards increasing or 

decreasing peat health. To do this, the Peat Health node states were instantiated to either 100% 

Green, 100% Amber, or 100% Red, and the changes to the parent probability distributions were 

measured.  
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6.2.5 Bayesian network Validation 

 

Marcot, 2012 presented a range of metrics to gauge Bayesian network performance and uncertainty 

(Marcot, 2012). Validation of Bayesian network outputs generally include stakeholder validation or 

sensitivity analysis but in some cases, validation is not discussed (Landuyt et al., 2013). We validated 

the Bayesian network using (i) expert opinion through face validity, (ii) K-fold cross validation, and (iii) 

sensitivity analysis. 

 

6.2.5.1 Expert Opinion Validation using the Face Validity Method 

 

Because the Bayesian network contains connections and nodes that represent subjective descriptors, 

expert opinion through face validity was used to validate the probability distributions of the network 

(Pitchforth and Mengersen, 2013). To avoid criterion contamination, the experts were individually 

asked to complete CPTs for the pathogen suppression node, the peat structure node, and the Peat 

Health node. Following this, all elicitation results were aggregated into a single CPT, and referred to 

the experts individually to assess the validity of the network. The network CPTs were considered valid 

if over 75% of experts agreed with the final aggregated CPT. This protocol provides greater robustness 

than face validity using a modified version of a control group and validation group (Pitchforth and 

Mengersen, 2013).  

 

6.2.5.2 K-Fold cross-validation of the ECOSSE dataset 

 

K-fold cross-validation can be used where a model is built and evaluated with the same dataset. This 

process, as stated in the GeNIe manual (BayesFusion LLC, 2020), sequentially divides the dataset into 

K parts of equal size, trains the network on K-1 parts, and tests it on the last, Kth part. This process is 

repeated K times, with different part of the data being selected for testing, until all subsets have been 

used. The value of K is a subjective choice, however, k=10 is a common selection to enable thorough 

analysis (Marcot, 2012) and was chosen here for this reason. Following this, Receiver Operating 

Characteristic (ROC) Curves were assessed using the GeNIe function. ROC curves are graphical plots 

that show the diagnostic ability of the model given the discrete classifiers set. They plot the true 

positive rate (sensitivity) in function of the false positive rate (Specificity) for different cut off points 

of a parameter. The Area Under the ROC (AUC) is calculated and can be viewed as equivalent to the 
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probability that a randomly chosen data point is correctly identified in a classifier rather than 

incorrectly y identified. As such, the ROC curve and AUC value indicate the diagnostic accuracy of the 

k-fold cross validation. 

 

6.2.5.3: Sensitivity Analysis 

 

Sensitivity analysis in Bayesian network modelling relates to determining the degree to which a new 

finding in a target node is explained by other variables (termed finding nodes), and essentially depicts 

the underlying probability structure of a model given prior probability distributions (Li and 

Mahadevan, 2017). Model sensitivity can be calculated as variance reduction for continuous variables 

or entropy reduction for categorical variables (Marcot 2012). We used the GeNIe software, which 

implements an algorithm developed by Kjaerulff and van der Gaag (2000), to  calculate efficiently a 

complete set of derivatives of the posterior probability distributions for each target node over each of 

the numerical parameters of the network (BayesFusion LLC, 2020). The output from this process 

indicates how a change in a parameter changes the posteriors of a target node. 

 

6.3 Results 

 

The final developed and populated Bayesian network can be seen in Figure 26. The network includes 

21 nodes and 31 arcs connecting parent and child nodes. The six parentless nodes (peat depth, organic 

matter content, soil texture, bulk density, microbial biomass, and crop rotation diversity) are all 

measurable attributes that can be defined for individual peatland fields. Nodes had between two and 

twelve states that defined the condition of the node. The quantitative boundaries of states are 

provided in Table 17. 
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Figure 26: The Bayesian network with populated CPT’s developed through expert opinion and outputs from the ECOSSE model. Yellow nodes indicate parentless 
soil properties. Green nodes indicate soil functions. The purple node is the Peat Health output. States are listed underneath the name of each node and the 
probability distribution given for the child nodes when there is an equal probability of parent nodes being in any of the given states. See Table 14 for a 
breakdown of the states.
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Table 17: Node titles and associated states and reference to be read in conjunction with Figure 26. Nodes with A, B, C,D,E 
state divisions are created through Discretisation of ECOSSE dataset into 5 equal width states. 

Node States Reference 

Organic 
Matter (%) 

10% to 65% in 5% intervals Peatlands in the UK are classified by depth and 
organic matter content, and generally over the UK 
requires at least 20% organic matter content 
(Lindsay, 2010); however, degradation leads to 
values falling below this level. The range of values 
was decided through literature review and expert 
knowledge (Holman, 2009; JNCC, 2011b; Bader, 
Müller, Schulin, et al., 2018; Säurich et al., 2019; 
Leifeld, Klein and Wüst-Galley, 2020) to 
incorporate a range of degraded peat systems. 
 

Peat Depth 
(cm) 

20  
50  
100  

Peat depths were modelled at 20, 50 and 100cm. 
These values were chosen to represent wasted, 
shallow and deep peats respectively (Holman, 
2009; JNCC, 2011b; Department for Environment 
Food and Rural Affairs, 2021a) 
 

Bulk Density 
(g/cm3) 

0.2 to 1.0 g/cm3 in 0.1 
intervals 

Analysis of literature and expert knowledge 
observed that bulk densities were modelled from 
0.2 g/cm3 to 1.0 g/cm3 since this encompassed 
values that can be observed through a transition 
of peat functioning towards mineral soil 
functioning (Holden et al., 2006; Mustamo et al., 
2016; Rezanezhad et al., 2016; Liu and Lennartz, 
2019). 
 

Total Soil 
Organic 
Carbon (kg C / 
Ha) 
 

A = <169246.2  
B = 169246.2 - 312120  
C = 312120 - 539399.9  
D = 539399.9 - 997172.9  
E = >997172.9 

Dataset analysis and use of expert knowledge: 
Division of ECOSSE outputs through Equal Count 
analysis 

Total Soil 
Organic 
Nitrogen (kg N 
/ Ha)  

A = <15266.58  
B = 15266.58 - 28546.08  
C = 28546.08 - 49415.5  
D = 49415.5 - 93738.42  
E= >93738.42  

Dataset analysis and use of expert knowledge: 
Division of ECOSSE outputs through Equal Count 
analysis 

Texture Sand, Loamy sand, Sandy 
loam, Loam, Silty loam, Silt, 
Clay loam, Sandy clay loam, 
Silty clay loam, Sandy clay, 
Silty clay, Clay 

As defined by Natural England Soil Texture Guide 
(Natural England, 2008) 

Decomposable 
Plant Material 
(Carbon) (kg C 
/ Ha) 

A = <20874.03 
B = 20874.03 - 39792.8 
C = 39792.8 - 67090.16 
D = 67090.16 - 106998.2 
E = >106998.2  

Dataset analysis and use of expert knowledge: 
Division of ECOSSE outputs through Equal Count 
analysis 
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Resistant Plant 
Material 
(Carbon) (kg C 
/ Ha) 
 

A = <55004.54 
B = 55004.54 - 92719.7 
C = 92719.7 - 142865.6 
D = 142865.6 - 225561.9 
E = > 225561.9  

Dataset analysis and use of expert knowledge: 
Division of ECOSSE outputs through Equal Count 
analysis 

Biomass 
Carbon (kg C / 
Ha) 

A = <5089.25 
B = 5089.25 - 8314.9 
C = 8314.9 - 12779.78 
D = 12779.78 - 22425.61 
E = >22425.61  

Dataset analysis and use of expert knowledge: 
Division of ECOSSE outputs through Equal Count 
analysis 

Humified 
Carbon (kg C / 
Ha) 

A = <41976.96 
B = 41976.96 - 115178.5 
C = 115178.5 - 297929 
D = 297929 - 586247.1 
E = > 586247.1  

Dataset analysis and use of expert knowledge: 
Division of ECOSSE outputs through Equal Count 
analysis 

CO2 
Respiration 
(kg C / Ha) 

High 
Medium 
Low 

Based upon Säurich et al., (2019) and Evans et al., 
(2016) datasets. CO2 respiration data (converted 
to kg Carbon/ per ha) was normalised to 1cm 
depth.  
 
High: Values greater than the median (> 58.697 Kg 
Carbon respired per Hectare per month) were 
noted to fall into the High state of CO2 Respiration.  
 
Medium: Values in between 22.589 - 58.697 Kg 
Carbon respired per Hectare per month were 
identified to fall into the Medium state. 
Low: Values below Quartile 1 were noted to fall 
into the Low state (< 22.589 Kg Carbon respired 
per Hectare per month).  
 

N2O (kg N / 
Ha) 

A = < 4.257575 
B = 4.257575 - 4.771425 
C = 4.771425 - 5.402425 
D = 5.402425 - 6.106492 
E = > 6.106492  

Dataset analysis and use of expert knowledge: 
Division of ECOSSE outputs through Equal Count 
analysis 

Dissolved 
Organic 
Nitrogen (kg N 
/ Ha) 

A = < 0.18975 
B = 0.18975 - 0.547525 
C = 0.547525 - 1.41135 
D = 1.41135 - 3.444833 
E = > 3.444833  

Dataset analysis and use of expert knowledge: 
Division of ECOSSE outputs through Equal Count 
analysis 

Nitrogen Loss 
(%) 

High 
Medium 
Low 

States defined by expert opinion and Dataset 
analysis. The method for calculating Nitrogen loss 
was to sum the nitrogen lost through Dissolved 
Organic Nitrogen, Leaching and Denitrification, 
following this, the summed value was divided by 
the Total Organic Nitrogen and normalised to 1cm 
depth.   
 
High:  High Nitrogen losses occurred where values 
exceeded the median (> 50% (0.00014%) 
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Medium: Nitrogen losses that occurred between 
the median and 1st quartile fall into this state 
(between 0.000048% – 0.00014%). 
 
Low: Lower than the 1st quartile indicate low 
nitrogen loss from the system (< 25% (0.000048%) 

Peat Structure Good 
Fair 
Poor 

States based upon literature review (Holden et al., 
2006; Mustamo et al., 2016; Rezanezhad et al., 
2016; Rabot et al., 2018) and expert assessment. 
 
Good: indicates a peat system that maintains a 
good structure despite drainage, with a high 
degree of porosity and high saturated hydraulic 
conductivity. 
 
Fair: indicative of a transitioning peat systems 
towards a mineral soil whose structure is 
degrading, with lower porosity, increasing bulk 
density, and reduced hydraulic conductivity.  
 
Poor: indicates a system with reduced hydraulic 
conductivity, poor drainage, low porosity and 
indicating poor structure for roots and habitat for 
biodiversity. This system mimics that towards a 
mineral soil in comparison to a peat. 
 

Microbial 
Biomass  

High 
Medium 
Low 

States based upon literature review (van Os and 
van Ginkel, 2001; Pankhurst et al., 2002; 
Kowalchuk et al., 2003; van Bruggen et al., 2015) 
and expert assessment. 
 
High: Associated with a high total microbial 
biomass, indicating higher potential for pathogen 
suppression through competition (> 175 mg/kg 
Microbial Biomass) 
 
Medium: Microbial Biomass is between (65 – 175 
mg/kg) indicating a system with  
 
Low: Associated with low total microbial biomass 
in the peat ecosystem and thus low underlying 
primary defence against pathogens (< 65 mg/kg 
Microbial Biomass) 
 

Rotational 
Diversity 

High 
Medium 
Low 

States defined through a review of the literature   
(Termorshuizen et al., 2006; Hiddink, 
Termorshuizen and van Bruggen, 2010; Peralta et 
al., 2018; He et al., 2019; Fan et al., 2020) and 
conceptualised by Expert Opinion. 
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High: Associated where crop rotation involves not 
growing the same family crops for over 5 years. 
This would be associated with wider range of 
carbon inputs to the system, the development of a 
diverse microbial community, and the interrupts 
the life cycle of pathogens. 
 
Medium: Associated to crop rotation which 
involves not growing crops of the same family 
within 2-5 years of each other. 
 
Low: Where crop rotation involves growing crops 
of the same family within 2 years of each other. 
This reduces influx of a range of plant debris and 
reduces the probability bacteria diversity 
increases. 
 

Pathogen 
Suppression 

Present 
Absent 

States divided into whether the function of the 
peat in providing pathogen suppression with 
either present, leading to a reduction in pathogen 
incidences during the growing season, or, absent, 
which indicates pathogens suppression is 
incorrectly occurring and incidences of  
 

Peat Health Green 
Amber 
Red 

Expert Opinion: 
 
Green: The system is functioning to a high capacity 
and has the continued capacity to function. No 
further action required. 
 
Amber: The system is beginning to decline in 
functioning, further monitoring is essential. 
 
Red: Associated with the poor functioning of the 
peat ecosystem. This would be correlated with a 
highly degraded system that requires immediate 
attention. 
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6.3.1 Scenario Testing 

 

6.3.1.1 Predictive Propagation Scenario Testing 

 

Scenarios were run that are broadly representative of the input node states expected for a deep well-

structured peat, a deep compacted peat, a shallow well-structured peat, and a shallow compacted 

peat and compared to the control scenario and it was observed how these altered the probability 

distribution of the Peat Health node in an expected manner (Table 18). The deep well-structured peat 

simulation increased the probability that the Peat Health node was ‘Green’ by 8.42% and the shallow 

compacted peat increased the probability that the Peat Health node was ‘Red’ by 7.13%. The 

predictive propagation scenario testing clearly indicates that the Bayesian network can distinguish a 

deep well-structured peat, a deep compacted peat, a shallow well-structured peat, and a shallow 

compacted peat. 

Table 18: Displaying the states of the model instantiated to predefined examples of healthy systems and the associated 
change to the probability distribution of the Peat Health node for the four predictive propagation scenarios examined, 
compared to a default simulation with an equal probability of parentless nodes being in any of the given states.  

 

Scenario State instantiation % Probability Change of Peat 
Health State 

1 – Deep well-structured Peat Bulk Density: 0.4 
Organic Matter Content: 40% 

Peat Depth: 100cm 
Rotation Diversity: High 

 

Green: +7.79  
Amber: -0.06  

Red: -7.73 

2 – Deep compacted Peat 
 

Bulk Density: 0.9 
Organic Matter Content: 40% 

Peat Depth: 100cm 
Rotation Diversity: Low 

 

Green: -1.48  
Amber: 0.02  
Red: +1.46 

3 – Shallow well-structured 
Peat 

Bulk Density: 0.4 
Organic Matter Content: 20% 

Peat Depth: 20cm 
Rotation Diversity: Low 

 

Green: -5.76 
Amber: -0.26 

Red: +6.01 

4- Shallow compacted Peat Bulk Density: 0.9 
Organic Matter Content: 20% 

Peat Depth: 20cm 
Rotation Diversity: High 

 

Green: -6.91 
Amber: -0.29 

Red: +7.20 
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6.3.1.2 Retrospective Propagation Scenario Testing  

 

The instantiation of the Peat Health node to 100% ‘Amber’ state created no observable alterations to 

the probability distributions of the parent nodes examined, with results showing <1% change in 

probability distributions compared to the control scenario where no parent states were instantiated. 

The instantiation of the Peat Health node to 100% ‘Green’ state resulted in changes to the probability 

distributions reflecting an increase in the probability of, higher organic matter content, lower bulk 

density, increased peat depth, higher microbial biomass, and greater rotational diversity. Instantiation 

of the Peat Health node to 100% ‘Red’ state altered probability distributions in a reverse manner to 

that of ‘Green’ state instantiation with similar magnitude of changes (albeit in the opposite direction).  

 

6.3.2 ECOSSE model evaluation: CO2 Respiration 

 

The probability distributions of the BN in comparison to measured soil properties can be seen in Table 

19. Sites were instantiated on properties which matched nearest to the measured values. The BN 

outputs, as developed through the ECOSSE model, showed a moderate ability to predict State 

Classification given through measured soil values. For shallow sites, averaging the probability 

distributions, the model correctly assessed the probability that the site would be in the low state 

35.5%. In comparison, it predicted the probability of the state being in either the Medium or High 

category 40% and 23.5% respectively. For the deeper sites, the model predicted that the probability 

of the low state was on average 55.5%, the Medium state 34.5% and the high state 10.5%. Peat sites 

within the region studied were relatively deep (all above 50cm), whereas in comparison, the ECOSSE 

model was run on depths of 20cm, 50cm and 100cm.  

 

Table 19: Results from instantiating the states of the ECOSSE model component of the Bayesian Network in comparison to 
examples from prior research. ECOSSE modelling showed an ability to identify the correct states based upon this 
instantiation. Site: EF-SA means East Anglia Fenlands – Shallow depth of peat (Agricultural land) and EF-DA means East 
Anglia Fenlands – Deep depth of peat (Agricultural land). Measured Soil Properties and selected parent node soil property 
state are in the order (Organic Matter (%), Peat Depth (cm), Bulk Density (g/cm3)) 

Measured Soil Values BN: ECOSSE modelled state 

Site 
Measured Soil 

Properties 
Kg C per hectare 

per cm 
State 

Classification 
Selected Parent 

Node States 
BN 

Distribution 

EF-SA 30.8, 75, 0.62 21.707 Low 30, 50, 0.6 
High: 0.31 

Medium: 0.38 
Low: 0.31 

 



134 
 

EF-SA 30.8, 75, 0.62 17.656 Low 30, 100,0.6 
High: 0.16 

Medium: 0.42 
Low: 0.42 

 

 

EF-DA 43.6, 200, 0.5 6.564 Low 40, 100, 0.5 
High: 0.14 

Medium: 0.39 
Low: 0.47 

 

 

EF-DA 43.6, 200, 0.5 5.413 Low 45, 100, 0.5 
High: 0.07 

Medium: 0.30 
Low: 0.64 

 

 
 

6.3.3 Bayesian network Validation 

 

6.3.3.1 Expert Opinion Validation using the Face Validity Method 

 

6.3.3.1.1 Pathogen Suppression 

 

The probability distributions elicited by individual academic and industry experts gathered through 

use of the ACE package had minor differences with the aggregated scores for the Pathogen 

Suppression node. Industry experts’ probability distributions were within ±1.38% of the aggregated 

scores for both the presence and absence of pathogen suppression given its parents. One industrial 

experts’ opinion differed substantially from the aggregated scores, with five of the nine probability 

distributions having a variation of over ±10%. The expert was questioned on their probability 

distributions but was confident in the distributions that they defined and so these were not altered. 

The academic experts’ probability distributions were within ±0.63% of aggregated scores. The final 

expert elicited aggregated probability distributions for the Pathogen Suppression node are provided 

in Appendix: Supplementary Information 2 (Table 20). 

 

6.3.3.1.2 Peat Structure 

 

The average difference between industry experts’ elicited probability distributions and aggregated 

distributions for the Peat Structure node was small. However, there were differences between the 

probability distributions elicited from academic experts and industry experts. On average, industry 

experts’ distributions were lower for ‘Poor’ Peat Structure given its parent’s states (-1.41%), similar 

for ‘Fair’ and ‘Good’ Peat Structure given its parent’s states (0.49% and 0.92% respectively). One 
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industry expert defined 30% of their probability distributions as ±10% different from the aggregated 

scores. This difference manifested itself as a greater confidence that the state of the Peat Structure 

node being in the ‘Good’ category given the combination of parent’s states. The expert self-declared 

a high degree of confidence in their elicited structure and a high degree of expertise in the subject. 

The average difference between academic experts’ elicited probability distributions and aggregated 

distributions was also small. On average, academic expert distributions displayed slight variations for 

‘Poor’ and ‘Good’ Peat Structure given its parent’s states (1.82% and -1.67% respectively), and limited 

differences for ‘Fair’ Peat Structure given its parent’s states (-0.15%). A single academic expert defined 

41% of their probability distributions as ±10% different from aggregated scores. However, unlike the 

industry expert, the academic expert did not consistently define the Peat Structure node state as 

either better or worse than the aggregated scores, given its parent’s states. The expert self-declared 

their confidence as ‘medium’ indicating they were reasonably confident in their final probability 

distributions. The final expert elicited probability distributions for the Peat Structure node are 

provided in Appendix: Supplementary Information (Table 21). 

 

6.3.3.1.3 Peat Health 

 

Expert elicited probability distributions for the Peat Health node resulted in a greater difference 

between experts than the Pathogen Suppression and Peat Structure nodes. The average difference 

between industry expert aggregated probability distributions and the overall aggregated probability 

distribution was relatively small for the ‘Red’ state (-0.99%), ‘Amber’ state (-0.63%), and ‘Green’ state 

(1.62%). Two industry experts defined probability distributions with over ±20% difference from the 

aggregated probability distribution (30.25% and 30.86% respectively). One of the industry experts 

showed a consistently higher degree of confidence that the Peat Health node is in the ‘Green’ State, 

given its parent’s states, in comparison to the aggregated probability distributions. The other industry 

expert who generated probability distributions substantially different to the aggregated distributions 

consistently defined the Peat Health node as less likely to be in the ‘Green’ state, given its parent’s 

states, compared to the aggregated probability distributions. The average difference between 

academic experts’ aggregated probability distributions and overall aggregated probability distribution 

was relatively small, with minor differences observed for the ‘Red’ state (1.5%), ‘Amber’ state (0.01%), 

and ‘Green’ state (-1.51%). However, two academic experts elicited probability distributions that were 

over ±20% different than the aggregated probability distribution (50.00% and 53.09% respectively). 

One academic expert considered the probability of the ‘Green’ state occurring over 10% lower than 

the aggregated probability distribution, indicating a decreased belief in Peat Health being in a ‘Green’ 
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state given its parent’s states. The other academic expert also predicted a lower probability of the 

‘Green’ state occurring, given its parent’s states, except where lower CO2 Respiration was observed, 

when the expert predicted a higher probability of the ‘Green’ state occurring. The final expert elicited 

probability distributions for the Peat Health node are presented in Appendix: Supplementary 

Information (Table 22). 

 

6.3.3.2 K-Fold Cross validation 

 

K-Fold cross validation was performed for all the CPTs generated with the ECOSSE biogeochemical 

model. This included the CO2 Respiration and Nitrogen Loss nodes and their respective parents. The 

overall accuracy the Bayesian network found during validation was 72.24%, correctly identifying 

22507 out of the total 31104 records building the sections of the network. CO2 Respiration showed a 

high degree of accuracy at predicting states through validation, correctly identifying 71.69% of 

observations (11149 out of the 15552 observations). Validation correctly predicted the ‘High’ state 

with 72.82% accuracy (3481 out of 4780 observations), the ‘Medium’ state with 66.85% accuracy 

(4077 out of 6099 observations), and the ‘Low’ state with 76.85% accuracy (3591 out of 

4673observations). For all states, Receiver Operating Characteristics (ROC) Curves were assessed, 

which express the quality of a model, independent of the classification decision. The ROC curves 

developed showed curves above the hypothetical classifier, indicating that the classifiers (i.e., ‘High’, 

‘Medium’ or ‘Low’) maintain high sensitivity to observations. An example ROC curve is provided in 

Figure 27. High and Low States for the CO2 Respiration node returned Area Under the Curve (AUC) 

scores of over 0.9 indicting they are excellent at accurately classifying observations, whereas the 

Medium state displayed a weaker AUC of 0.8.  
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Figure 27: Results indicate a strong ability of the Bayesian Network to correctly identify the state of the CO2 Respiration 
node. Displaying Receiver Operating Characteristics (ROC) curve for the CO2 Respiration node. The green Line is the ROC 
curve, indicating the sensitivity (i.e., the number of true positives as a percentage) against the specificity (i.e., the 
percentage of false positives). The grey line indicates a hypothetical curve that displays an inadequate level of accuracy.  

 

K-Fold cross validation of the Nitrogen losses node also a revealed a high degree of accuracy at 

predicting states through validation, correctly identifying 73.03% (11358 out of 15552) of 

observations. Validation correctly predicted the ‘High’ state for 88.17% of observations (6857 out of 

7777), however, the ‘Medium’ state, with a lower accuracy, for 42.06% (1635 out of 3887) of 

observations, and the ‘Low’ state for 73.71% (2866 out of 3888) of observations. For all states except 

one, ROC curves were above the hypothetical classifier class, and AUC scores above 0.9, indicating an 

excellent ability to accurately classify observations. The Nitrogen Losses nodes ‘Medium’ state had a 
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shallower ROC curve than the other states, indicating a weaker sensitivity and accuracy (AUC score 

0.80).  

  

Figure 28: Results indicate a strong ability of the Bayesian Network to correctly identify the state of the Nitrogen Loss 
node. Displaying Receiver Operating Characteristics (ROC) curve for the Nitrogen Loss node. The green Line is the ROC curve, 
indicating the sensitivity (i.e., the number of true positives as a percentage) against the specificity (i.e., the percentage of 
false positives). The grey line indicates a hypothetical curve that displays an inadequate level of accuracy.  

 

6.3.3.3 Sensitivity Analysis 

 

The sensitivity analysis of the Bayesian network using GeNIe revealed that all nodes within the 

network display a level of influence upon the Peat Health output node (Figure 29). Apart from the 

Texture node, it is the parentless input nodes that the Peat Health node is most sensitive to. The Peat 
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Depth and Organic Matter Content are the nodes that influence Peat Health more than the other 

nodes. This finding indicates that a shift in the probability distribution of the Peat Depth or Organic 

Matter Content is more likely to alter the probability distribution of the Peat Health node than any of 

the other nodes. 

 

6.4 Discussion 

 

The Bayesian network presented here is successfully distinguishes a deep well-structured peat, a deep 

compacted peat, a shallow well-structured peat, and a shallow compacted peat. Peat health is more 

likely to be in a ‘Green’ state (i.e., healthy) when deep and/or well structured (low bulk density, high 

organic matter content, deep depth, and high rotation diversity). Therefore, the model is a sensitive 

tool that represents current understanding of peatland processes in drained agricultural peat soils 

(Oleszczuk et al., 2008; C Kechavarzi, Dawson and Leeds-Harrison, 2010; Dawson et al., 2010). 

Peatlands are key resources for both food security and the provision of a range of beneficial functions 

that support multiple of ecosystem services. Peats, like all soil systems, are complex multi-functional 

systems that are influenced by the management practices applied to them. Unlike previous attempts 

to create soil health indices, the peat health Bayesian network includes multiple key functions 

peatlands provide, as elicited by experts (CO2 Respiration, Nitrogen Losses, Peat Structure, and 

Pathogen Suppression). Because the network was designed and parametrised using a combination of 

both expert knowledge and datasets generated by a soil biogeochemical model it goes further than 

previous models of individual peatland processes (Arah and Stephen, 1998; Yu et al., 2001; Ballard et 

al., 2011; Baird, Morris and Belyea, 2012) that rely on causal relationships that can be quantified by 

measurements.  
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Figure 29: Sensitivity analysis indicating the strength of the relationship present between the Peat Health node and the other nodes in the Bayesian network. 
The intensity of the colour indicates the strength of the relationship.  
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A key constraint imposed during the development and parameterisation of the model was to select 

nodes for which large datasets were available or obtainable and to avoid the requirement for 

sophisticated measurements to be made for the end user to run the model. The input data (parentless 

nodes) required to run the model and generate a probability distribution for peat health at a particular 

site or field includes Peat Depth, Organic Matter Content, Soil Texture, Bulk Density, Microbial 

Biomass, and Rotation Diversity. This contrasts with soil health indices that require time consuming or 

expensive measurements that are generally not available to farmers (Bruyn and Abbey, 2003; Idowu 

et al., 2009; Ritz et al., 2009; Morrow et al., 2016). Because the parentless nodes in our Bayesian 

network are all simple measurable attributes, the model is an accessible tool that allows farmers to 

assess the health of their peat fields in a data poor environment. If data associated with a particular 

parentless node is unknown then the model can still be run by parameterising that node either with 

the expert knowledge of the user (Troldborg et al., 2013), or by leaving that node with an equal 

probability of being in each state. 

 

Developing a bespoke tool to assess the health of drained lowland agricultural peatlands was essential 

because current tools are designed commonly for use on mineral soils and not appropriate for 

peatlands. For instance, a key property that is often used as an indicator of soil health is soil organic 

matter content (Weil and Magdoff, 2004; Obalum et al., 2017). Yet, because peat soils generally have 

a much higher organic matter content than mineral soils (Cannell et al., 1999; Reijneveld, van Wensem 

and Oenema, 2009), arbitrary use of a soil health index on peat soils would lead to the classification 

of peatlands as very healthy, even if expert intuition dictates that they are not in a healthy state. Soil 

microbial activity (represented in our Bayesian network as CO2 Respiration) is often considered a 

positive soil health indicator in mineral soils because the degradation of organic inputs (e.g. crop 

residues, manures, or root exudates) mineralises nutrients and makes them available to plants (Ferris 

and Tuomisto, 2015; Sahu et al., 2017). However, much of the CO2 respired from drained agricultural 

peatlands emanates from the peat itself (Kechavarzi et al., 2007; Bader, Müller, Schulin, et al., 2018; 

Taft, Cross and Jones, 2018), depleting the carbon stock of the peat, reducing its quality as a growing 

media, and contributing to the flux of greenhouse gases to the atmosphere (Musarika et al., 2017; 

Matysek et al., 2019; Peacock et al., 2019). Therefore, peatlands with high CO2 Respiration are 

considered, in our Bayesian network, less likely to be healthy than peatlands with low CO2 Respiration. 

Modelling this process presented challenges because deep peat contains more carbon down the soil 

profile and therefore respires more CO2, after drainage, than a shallow or wasted peat (as noted in 

Abdalla et al., (2014) where ecosystem respiration, simulated by the ECOSSE model, was observed to 

increase with increasing peat depth). However, we know that deeper peats are inherently more 
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“healthy” than degraded shallow or wasted peat in terms of their functioning and service provision 

(Natural England, 2010; Evans et al., 2016; Gewin, 2020). We addressed this dilemma in the design of 

the model by defining the units of the CO2 Respiration node as kg of C per ha per cm of peat. The result 

is a model that accounts for the negative influence of CO2 Respiration on peat health, but also accounts 

for the positive influence of Peat Depth on Peat Health (Säurich et al., 2019).  

 

6.4.1 Evaluation of use of the ECOSSE outputs  

 

The ability of ECOSSE to model both carbon and nitrogen cycling has been reviewed by previous 

authors. Heterotrophic respiration through ECOSSE simulations has correlated with total observed 

carbon (Dondini et al., 2016) and measured fluxes of CO2 from gas chamber and eddy covariance 

experiments in arable fields (Khalil et al., 2013), near natural peatlands (Abdalla et al., 2014), and short 

rotation forestry (Dondini et al., 2017). Evaluation of the ECOSSE model showed that outputs were in 

some instances over-estimating the quantity of CO2 respired from the peat. We reviewed the CO2 

outputs from the simulated ECOSSE runs in this study with eddy covariance respiration data from deep 

and shallow agricultural systems within the study area, the ECOSSE model showed a moderate ability 

to predict observed data, although not conclusive. This may indicate that the discretisation of the 

carbon respiration node into three states may have led to information loss within the network. Future 

development may increase the number of states to improve predictive ability of the network to assess 

CO2 loss from the drained peat ecosystem. 

 

Furthermore, the ECOSSE model has successfully simulated nitrogen dynamics in European croplands 

at monthly intervals (Bell et al., 2012). The ECOSSE model has also been used by national governments 

to estimate the effects of nitrogen fertilisers on greenhouse gas balances (Abdalla et al., 2016) and 

reviewed for predicting the environmental impacts of land use change on water, carbon and nitrogen 

cycling (Thomas, Bond and Hiscock, 2013). However, in the accuracy of the ECOSSE model outputs 

developed for the current Bayesian network are questionable. No datasets specific to East Anglian 

drained fenlands were available to assess the loss of nitrogen through denitrification, dissolved 

organic nitrogen or leaching of nitrogen pathways. We reviewed the ECOSSE outputs of nitrogen losses 

with results from a variety of studies, albeit from different climatic conditions, management practices 

and use of peat. Whilst we were not aiming to predict or evaluate the nitrogen losses to validate the 

ECOSSE model, we were looking to observe whether nitrogen losses were within appropriate ranges. 

ECOSSE outputs were generally inconsistent when compared with a range of peat soils across Europe 
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for nitrogen losses. For instance, denitrification losses from Peat soils across Europe observed 

significantly lower values than ECOSSE outputs (De Klein and Van Logtestijn, 1994, 1996; Zwart et al., 

2004; Vermaat and Hellmann, 2010). Studies that do exist for lowland fen agricultural sites displayed 

annual nitrogen losses through nitrous oxide release pathway displayed higher than expected values. 

However, these values were compared against a mixture of studies with either low organic matter 

soils (9% organic matter) or under varying management regimes across Europe (Regina et al., 2004; 

Bell et al., 2012). Tiemyer and Kahle (2014) noted that there are relatively few studies providing 

Nitrogen leaching values for drained peatlands. Given the excess of Nitrogen stored in peat 

ecosystems, the use of irrigation, and the drainage systems in place, excessive leaching of Nitrogen is 

likely present in these agricultural systems (Kløve et al., 2017). Leaching has been shown to be an 

increasing issue in drained peatlands, with excessive quantities of applied fertiliser leaching (Razzaque 

and Hanafi, 2005). It has been noted that the ECOSSE model may struggle to model leaching correctly 

due to water table and water movement descriptions (Bell et al., 2012). To improve the nitrogen 

cycling node, it is recommended that further sampling is conducted. The use of Nitrogen balances to 

observe inputs and outputs of Nitrogen from the system will allow examination on the sustainability 

of peat agroecosystems (Sainju, 2017; He et al., 2018). The required data for these balances matches 

the node structure of the peat health network and as such can easily be implemented in updating the 

network probability distributions to increase accuracy of the Network in identifying Nutrient Cycling 

function. 

 

6.4.2 Evaluation of the Bayesian network CPT’s 

 

It has been noted that Bayesian networks used in environmental modelling are not routinely validated, 

with over 37.7% receiving no validation (Aguilera et al., 2011). Evaluation of the model CPTs in the 

current work involved a mixture of quantitative and subjective review to allow for complete model 

validation. Experts who took part in the individual creation of CPT’s validated the aggregated 

distributions through face validity. It has been established that expert probability elicitation for 

Bayesian networks contains issues related to human capabilities (Renooij, 2001), where evaluation is 

based upon personal knowledge, commercial pressures, and attitude to the elicitation exercise, 

amongst other factors (Taalab, Corstanje, Mayr, et al., 2015). Overall, despite there being variation 

between an individual expert and the final aggregated distribution, a consensus was formed. The 

inclusion of a range of experts allowed for the development of a robust distribution, considering a 

wide range of viewpoints and concerns. However, the number of experts involved was limited and 

may have contributed towards the aggregated agreement due to a lack of diverse opinions. Experts 
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stated they were unlikely to disagree with the aggregated consensus of the probability distributions 

as they could not value their opinion on the distribution ahead of other experts. However, they noted 

that the aggregation method provided a safety net to allow them to express probability distributions 

with an increased degree of confidence. Given the data-poor and subjective nature of peat health, it 

was necessary to move forward with expert knowledge as an acceptable substitute for empirical data.  

 

Despite the problems associated with the overestimation of Nitrogen losses stemming from the 

ECOSSE model use, the networks developed and validated through K-fold cross validation showed a 

prediction of states with a high degree of accuracy. The challenges facing modelling of soil processes, 

including ecosystem respiration and nitrogen cycling, derive from their inherent complexity and lead 

to considerable uncertainty (Vereecken et al., 2016). As such, whilst the modelled outputs showed 

variations from actual observed values, the use of the ECOSSE model is a valid approach to 

understanding the carbon and nitrogen cycle across large scales using limited and easily accessible 

data inputs to create CPT’s. 

 

Further, the ECOSSE modelling predicted CO2 Respiration rates would be more probable to be 

classified in the higher state for lower bulk densities. Physical and chemical properties, including bulk 

density, of drained and cultivated peats have not shown clear correlations with CO2 emissions 

although a positive trend was observed (Norberg, Berglund and Berglund, 2018). This trend observed 

in our dataset may have resulted from the process of normalising the CO2 release over the depth of 

peat. If CO2 production was left unnormalized, the network would suggest that a deeper peat would 

be less healthy due to increased carbon content available for respiration. Prior work noted that as 

organic matter content decreases, bulk density increases (Mustamo et al., 2016; Rezanezhad et al., 

2016; Säurich et al., 2019), indicating that it would be unlikely to observe a situation in the real world 

where this would affect the network.  

 

6.4.3 Future Model Development 

 

The Bayesian network developed here can be successfully implemented to value the health of a 

drained peatland field given the input of easily measurable attributes. However, model development 

is an iterative process and, as such, areas for future improvement can be identified. For example, 
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populating the CPT’s through direct sampling strategies may increase the validity and applicability of 

the network, improving its ability to predict the functioning and health of the system.  

 

The current network required substantial modification from the original expert defined network 

structure elicited. This was due to limitations on sampling and dataset availability. As such, the 

structure of the network was altered to allow for the incorporation of nodes relevant to ECOSSE 

outputs. Future work to develop the model could revert the model structure towards the more 

complex structure identified in the initial elicitation before it was simplified. The benefit of the 

modular format of Bayesian networks allows for this type of modification (Landuyt et al., 2013). 

 

The software used to create the Bayesian network required the discretisation of the continuous 

ECOSSE data. The discretisation of the other nodes in the network was conducted through expert 

review. Discretisation has the potential to result in a loss of information. However, whilst multiple 

methods exist, the selection of one method over another cannot be justified, and it is instead 

recommended that caution is applied whenever discretising a state (Nojavan A., Qian and Stow, 2017). 

Within the work, a uniform count method was selected to discretise the nodes, dividing the variables 

into ten bins. This created equal probability of an event given an un-instantiated parent. Discretisation 

through uniform widths of states (i.e., dividing the range into equal parts) would have increased the 

influence of outlier or extreme variables and, as such, was deemed an inadequate method of 

discretisation. The discretisation of the data would have benefited from field sampling to provide a 

real-world division of states rather than a theoretical division.  

 

6.5 Conclusion 

 

The model developed and validated within this chapter highlights the power and capabilities of 

Bayesian networks for inferring the health of a drained peat ecosystem. The network allows for the 

development of a holistic view of the system, incorporating the multi-functionality of peatlands. The 

inclusion of both expert opinion and a biogeochemical model to parameterise the conditional 

probability tables allows for the assessment of these functionalities despite limited data present. 

Furthermore, the development of sub-functions of peat health is a powerful tool for including 

multidisciplinary approaches to understanding peat health. The development of this Bayesian network 

is a useful tool for understanding peat health and functioning of peatland ecosystems. 
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Chapter 7: General Discussion and Conclusion 

 

Healthy soils are fundamental for the development of sustainable production systems, increasing 

resilience to climate change, and providing the ecosystem services we benefit from. This PhD set out 

to develop effective and implementable tools to measure soil health on lowland peat, allowing 

farmers and land managers to identify sustainable management options. Literature reviewed in 

Chapter 2 outlined the threats which limit our capability to achieve food security. Of particular 

importance to this project was the degradation of soils and the declining productivity of agricultural 

land. The food production capabilities of the UK were reviewed, identifying East Anglia within the UK 

as a vital area for UK food security due, in part, to the extensive lowland peat that existed in the region. 

The formation and management of peatlands was discussed, and drainage for agricultural exploration 

was identified as a leading cause of soil degradation and the loss of ecosystem service provision. 

Methods to assess soil fertility and quality have been routinely used for many years. However, the 

current plateau in yields and the environmental degradation of agricultural systems has led to the 

emergence of soil health as a concept. A variety of soil monitoring techniques have been developed 

to assess soil health. However, these methods were typically developed for mineral soils. Soil organic 

matter is often used as a key soil health indicator, and this can lead to an overestimation of soil health 

when these assessment methods are applied to peat soils. Even very degraded peat soils have organic 

matter contents that are higher than very healthy mineral soils. This problem in assessing the soil 

health of peatlands points to a fundamental difference in the formation of these soils and the 

processes that lead to their degradation. Given the environmental and commercial importance of 

lowland peat to UK food security, creating methods to assess peat health is a vital step to enable 

sustainable management of these systems. 

 

This thesis outlines the creation of two statistical tools to assess soil health for lowland peat systems 

under intensive agriculture: a Principal Component Analysis (PCA) derived Peat Health Index 

(containing two indices), and a Bayesian network. These tools represent the first soil health indices 

specifically designed for lowland peat. The creation of these tools represents important progress 

towards assessing peat health, as recommended in the 25-year Environment Plan and the Lowland 

Agricultural Peat Taskforce.  

 

Soil health indices have previously been created using principal component analysis to identify 

suitable properties that serve as soil health indicators. In Chapter 3, this method was applied to 

lowland peat systems to identify indictors specific to lowland peat soils. Two indices were developed 
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that capture the variation in soil properties between Wasted, Shallow, and Deep peat soils: a 

Weighted and an Additive PHI. The results revealed that the Weighted PHI could fully distinguish a 

gradient of health at contrasting sites across drained peat ecosystems using a minimum dataset of 

four variables (cation exchange capacity, pH, Visual Evaluation of Soil Structure, and microbial 

activity). By comparison, the Additive PHI displayed a stronger correlation with farm key performance 

indicators such as crop yield and fertiliser use. These indices provide insights into the functioning of 

the peat, allowing farmers to identify degraded sites or areas requiring interventions. Both indices 

were reproduced, evaluated, and validated in Chapter 4. The process allowed reproducibility of the 

indices to be assessed across a larger spatial scale and identified key weaknesses that distorted results 

due to the inclusion of an unsuitable indicator (available nitrogen), which was subsequently removed 

from the indices. The indices successfully reinforced farmer’s subjective beliefs concerning the health 

of their fields. This study therefore developed indices which could be applied to quantitatively assess 

peat health and functioning, allowing fields to be quantitatively valued, benchmarked, and compared. 

 

A second approach to assess health of a peat soil under agricultural land management is described in 

Chapters 5 and 6 using Bayesian networks. A Bayesian network is based on probability distributions 

and allows exploration of uncertainty and risk within the network. Chapter 5 defines the structure of 

a Bayesian network to evaluate peatlands, identifying four key functions to infer peat health: carbon 

respiration, nitrogen loss, peat structure and pathogen suppression. The network represents the most 

simplistic combination of indicators and functions to infer peat health and can be viewed as a starting 

point for the development of a more complex (both in terms of structure and type of indicators used) 

network. The network structure was parameterised and evaluated in Chapter 6. This process used a 

combination of expert opinion (both academic and industry experts) and a biogeochemical model. The 

Bayesian network enables farmers to predict the health status of a lowland peat based upon 

measurable attributes. The network was validated using a combination of k-fold cross validation, 

propagation testing, and sensitivity analysis. The validation process demonstrated that the network 

could be used to distinguish between deep well-structured peat soils and shallow compacted peat 

soils. The modelling process allowed for a holistic assessment and insight of the multi-functioning 

nature of peat soils, blending the use of expert opinion and empirical data. 

 

The PCA derived Peat Health Indices described in Chapters 3 and 4 produces a simple soil health score, 

enabling quick assessment and comparison between sites. There are strengths and weaknesses of the 

Additive and Weighted PHI depend on the method of model validation used. Weighting of the index 
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strengthened its ability to predict degradation status and coincided better with farmer’s opinions of 

soil health. Use of the Additive PHI, without weighting, resulted in scores that had a stronger 

correlation with farm key performance indicators. However, these key farm performance indicators 

are heavily weighted towards the commercial interests of the farm rather than the holistic suite of 

ecosystem services provided by peatland soils. The specific indicators chosen to create the minimum 

dataset required to generate the index were dominated by physical and chemical soil properties. The 

selection was based upon the need for indicators to be measurable by farmers and easily 

interpretable. Biological techniques to assess population diversity and community distribution were 

deemed too complicated and uninterpretable to assess peat health and functioning.  Despite this, the 

physical and chemical indicators were interpreted in context of how these abiotic factors influence 

biological process within the soil using literature review. In identifying the variables used in the 

minimum dataset, the PCA approach assumes that the dataset to be analysed contains a wide range 

of properties and observed values. The soils used to develop the index represented a gradient soil 

health on fields that farmers identified to incorporate the greatest possible variation in peat 

properties. This approach was deemed an adequate for our purposes. However, a more extensive 

sampling network could have increased the probability that a full range of measurable values was 

observed.  

 

Instead of a simple peat health score, the Bayesian network produces a probability distribution for 

each node, allowing the user to explore the uncertainty associated with environmental systems. In 

comparison to the Peat Health Index approach, the Bayesian network results in greater complexity 

when benchmarking and comparing between sites (i.e., one output versus a distribution). The use of 

probability distributions can provide more information on the current state of a soil function as it 

incorporates the uncertainty that a state is achieved. This can provide farmers with a more nuanced 

understanding that enables land management decisions to be better informed. The development of 

the network required identifying key nodes and arcs to infer peat health through expert discussion. 

To maintain network simplicity and its ability to be used by farmers, an iterative process of node 

reduction was undertaken. The reduction may have led to a loss of information as nodes and arcs 

were either divorced or incorporated into one another. A parallel data reduction technique was 

implemented using PCA to identify the minimum dataset for the Peat Health Index. However, both 

approaches resulted in the selection of relatively similar indicators to identify peat health, indicating 

the strength of expert knowledge in this area. The use of expert opinion in creating and parameterising 

the Bayesian network allowed more opportunities to incorporate biological process. Although 

chemical and physical soil properties dominated the nodes the ECOSSE model was used to incorporate 
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the effect of these physical factors on biological processes through underlying equations. Further 

research is required to identify specific biological indicators of peat health. However, the approach of 

incorporating the processes that stem from biological interactions within the model rather than 

measuring them directly is an effective alternative to allow farmers to monitor the health of their 

systems. 

 

As discussed at the beginning of the thesis, peat health in this case considers the degradation of a peat 

system from its immediate post drainage state. Peatland degradation is a process that occurs over 

various timescales as noted in the review of the literature and is also influenced through agricultural 

practices. The tools developed through this thesis attempt to capture the short term, recognizable 

changes that a farm can measure and observe. The concept driving the development of these tools 

considered that these would be employed by farmers and land managers in tandem with current 

sampling strategies. That is, there would be an annual measurement of peat health and this resulting 

output would allow the indication of the trend which the health of the peat is travelling. The selection 

of indicators was required to be accessible and understandable by farmers, while also providing 

valuable commercial and environmental information. Useful indicators of the health status of peat 

will show an observable change to anthropogenic actions, allowing the implementation and adoption 

of sustainable management techniques. The selected indicators for both tools provided a range of 

biological, chemical and physical indicators that had altering response timescales, providing a clear 

and comprehensive indicator of health status transitioning. We should reinforce that the tools were 

developed for lowland peat systems under intensive agriculture. Further tools would be required to 

restore the health status of peat systems towards their natural functioning. 

 

As stated, the application of these tools to identify the health status of peat is focused upon lowland 

fen peats in East Anglia. This currently provides a limit on the applicability of the tools in the thesis to 

that location. For instance, the use of the ECOSSE model required parameterization through inputting 

local weather conditions that would influence the cycling of nutrients in the system and the 

management regime the current farm is employing. The application of the tool to other locations 

would require further parameterization. However, the concept behind the development of peat 

specific tools could be expanded to include tropical peat systems converted to plantations. Future 

work could explore how the implementation of these tools across tropical or other boreal systems 

alters the structure (i.e. the choice of indicators) and whether the current indicator selection is 

appropriate. It is highly likely that, with changes to the ECOSSE modelling, both tools in this thesis 



150 
 

could be applied to boreal and temperate parts of the northern hemisphere where peat has formed 

under high precipitation and low temperature climatic regions. Furthermore, the tools developed here 

could indicate sites where the health of the peat systems has degraded and thus would benefit from 

peatland restoration. This could be seen from the perspective of a farm group, where restoration and 

the incentives offered, outweigh the current profit from farming the area. Alternatively, this tool could 

be used by environmental advisers to identify sites which could benefit from restoration due to 

degradation and the possible ecosystem services and functions they could supply. 

 

As two different approaches to assessing soil health have been used here to develop different 

methods, the choice between which assessment method of soil health to use, PCA derived index or 

Bayesian network, is subjective in nature. The PCA derived index may be seen as a more ‘farmer 

friendly’ method to measure soil health. This is due to the assessment of key soil properties that are 

regularly sampled within current farm monitoring regimes. Furthermore, the simple equation used to 

derive the index can be easily understood, quickly interpreted, and benchmarked against other fields 

within the same farm or region. The Bayesian network analysis may be more appropriate for 

organisations providing information to key stakeholders. Groups with additional funding and time 

would be more appropriate to develop the Bayesian network. An example could be the IUCN (National 

Committee United Kingdom) Peatland Programme, which  has launched a PeatDataHub aiming to 

communicate peatland science and managing peatland monitoring data (IUCN, 2021). Currently the 

information includes water table data, photographs, and ancillary data. The Bayesian network could 

be incorporated within the data provision provided by the group, enabling sustainable management 

of peat systems. This would not only encourage the development of further Bayesian networks for 

different management systems, but also the continuous updating of the model given the 

advancement of our current knowledge. 

 

7.1 Suggestions for Future Work 

 

The development of the Bayesian network was impacted by the COVID-19 pandemic which delayed 

expert knowledge elicitation, prevented face-to-face meetings to facilitate expert knowledge 

elicitation, and eliminated the opportunity to gather data from field sampling during the 2020-2021 

season. As such, field data was not available to construct the Conditional Probability Tables of the 

Bayesian network. Therefore, an obvious next step would be to parametrise the Conditional 

Probability Tables through an extensive sampling campaign across lowland fen regions. The process 
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of sampling can improve the nature of the relationships between nodes in addition to reducing 

information loss through discretisation. Additionally, this process would identify whether any of the 

states in the model were unnecessary or missing, increasing the validity of the model. The use of the 

Bayesian network modelling process has highlighted a useful and practical tool to assess soil health 

and due to the nature of the approach, the network can be easily updated as new information or data 

becomes available through direct soil sampling. 

 

During this thesis, tools to assess peat health were developed exclusively on fields cultivated by a 

single farming cooperative who farm within a particular geographical area of the East Anglian fen 

region. This was because they were CASE partners on the PhD project, contributing funds and will 

likely be the primary beneficiary. Whilst the sampling strategies and determination of soil property 

distribution enabled examination of a wide range of peat states, further validation of these tools, could 

involve trials of the Peat Health Index and the Bayesian network across the region to allow for 

widespread validation. This process would enable identification of challenges and opportunities for 

each tool, enabling a more thorough evaluation of their applicability and informing further 

development. This would be a necessary step prior to integration within a national soil health 

monitoring scheme. Expanding the application of the network would require a re-parametrisation of 

the Conditional Probability Tables generated using the ECOSSE model since these require local climatic 

information alongside management practices, both of which are likely to vary across the country. The 

Bayesian network modelling process has been shown to be a novel but suitable tool to monitor the 

health of a peat soil. As such, this modelling process could be applied to other soil types (including 

mineral soils) and land management types (including forestry, paludiculture, grassland etc.) to enable 

a comprehensive context-specific approach to modelling soil health on a national scale. 
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9. Appendix 

 

Supporting Information 1 (Chapter 3) 

 

Some soil properties clearly recorded higher values in the Deep (healthy) peat and lower values in the 

Wasted peat (e.g., Organic Matter content, % Silt, % Clay, and Water Holding Capacity). Other soil 

properties recorded higher values in the wasted peat (e.g., % Sand and Bulk Density), whereas 

Microbial Activity and VESS recorded the highest values in the Shallow peat. Figure 30 displays the 

measured properties across the degradation gradient of drained peatlands. 

 

 

 

Figure 30: Boxplots of soil properties measured across a gradient of peat depths and initially 
retained for the Minimum dataset: A) cation exchange capacity (meq/100g), B) pH (pH Units), C) 
Solvita Burst (ppm CO2-C), D) Visual Evaluation of Soil Structure, E) available Nitrogen (mg/l), F) 
Organic Matter Content (%). 
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Figure 31: Boxplots of soil properties measured across a gradient of peat depths: A) Extractable 
Phosphorous (mg/kg), B) Extractable Potassium (mg/kg), C) Extractable Magnesium (mg/kg), D-F) 
Soil Texture (%), G) Bulk Density (g/cm3), H) Water Holding Capacity (%) 
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Supporting Information 2 (Chapter 6) 
 

Table 20: Conditional Probability Table (CPT) for the Pathogen Suppression node 

States of parent nodes 

Child node probability distribution given the states of the 

parent nodes 

Microbial 

Biomass 

Rotation 

Diversity 

Pathogen Suppression: 

Present Pathogen Suppression: Absent 

Low Low 5.00% 95.00% 

Low Medium 28.57% 71.43% 

Low High 51.43% 48.57% 

Medium Low 25.71% 74.29% 

Medium Medium 52.86% 47.14% 

Medium High 75.71% 24.29% 

High Low 46.43% 53.57% 

High Medium 75.71% 24.29% 

High High 94.29% 5.71% 

 

Table 21: Conditional Probability Table (CPT) for the Peat Structure node 

States of parent nodes 

Child node probability distribution given the states of the 

parent nodes 

Organic Matter 

Content 

Bulk 

Density 

Peat Structure: 

Poor 

Peat Structure: 

Fair 

Peat Structure: 

Good 

Low Low 28.67% 33.80% 37.53% 

Low Medium 45.15% 32.27% 22.59% 

Low High 61.33% 29.00% 9.67% 

Medium Low 17.11% 35.53% 47.36% 

Medium Medium 32.53% 34.93% 32.53% 

Medium High 45.76% 34.93% 19.31% 

High Low 7.44% 30.73% 61.82% 

High Medium 23.07% 32.93% 44.00% 

High High 40.89% 31.53% 27.58% 
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Table 22: Conditional Probability Table (CPT) for the Peat Health Node 

States of parent nodes 

 

Child node probability distribution 

given the states of the parent nodes 

Pathogen 

Suppression 

Peat 

Structure 

Specific 

Carbon 

Respiration 

Nutrient 

Use 

Efficiency 

Peat 

Health: 

Red 

Peat 

Health: 

Amber 

Peat 

Health: 

Green 

Present Good Medium High 23.04% 32.00% 44.96% 

Present Good Low High 13.53% 27.95% 58.51% 

Present Good High Medium 5.44% 13.62% 80.94% 

Present Good Medium Medium 25.68% 33.62% 40.70% 

Present Good Low Medium 16.86% 30.95% 52.19% 

Present Good High Low 10.50% 25.24% 64.26% 

Present Good Medium Low 32.95% 34.57% 32.48% 

Present Good Low Low 21.81% 34.43% 43.76% 

Present Fair High High 16.39% 29.14% 54.47% 

Present Fair Medium High 33.07% 34.24% 32.69% 

Present Fair Low High 22.00% 35.38% 42.62% 

Present Fair High Medium 14.93% 30.38% 54.69% 

Present Fair Medium Medium 38.44% 36.14% 25.41% 

Present Fair Low Medium 28.31% 35.57% 36.12% 

Present Fair High Low 21.25% 30.95% 47.80% 

Present Fair Medium Low 46.01% 31.67% 22.33% 

Present Fair Low Low 34.07% 34.81% 31.12% 

Present Poor High High 24.33% 34.43% 41.24% 

Present Poor Medium High 45.68% 32.38% 21.94% 

Present Poor Low High 34.47% 35.24% 30.30% 

Present Poor High Medium 27.68% 32.10% 40.23% 

Present Poor Medium Medium 51.29% 30.24% 18.47% 

Present Poor Low Medium 41.22% 34.81% 23.97% 

Present Poor High Low 31.83% 32.71% 35.46% 

Present Poor Medium Low 59.11% 27.67% 13.23% 

Present Poor Low Low 46.83% 33.10% 20.08% 

Absent Good High High 37.04% 33.81% 29.15% 

Absent Good Medium High 30.30% 35.95% 33.75% 
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Absent Good Low High 18.08% 34.24% 47.68% 

Absent Good High Medium 11.03% 27.90% 61.06% 

Absent Good Medium Medium 32.48% 35.10% 32.43% 

Absent Good Low Medium 25.12% 33.24% 41.65% 

Absent Good High Low 17.90% 32.81% 49.29% 

Absent Good Medium Low 42.08% 34.24% 23.68% 

Absent Good Low Low 31.58% 34.24% 34.18% 

Absent Fair High High 24.79% 34.52% 40.68% 

Absent Fair Medium High 45.30% 31.71% 22.98% 

Absent Fair Low High 34.26% 34.67% 31.07% 

Absent Fair High Medium 25.61% 33.95% 40.43% 

Absent Fair Medium Medium 49.08% 30.95% 19.96% 

Absent Fair Low Medium 38.44% 33.52% 28.04% 

Absent Fair High Low 30.51% 34.10% 35.40% 

Absent Fair Medium Low 56.41% 27.67% 15.93% 

Absent Fair Low Low 45.90% 30.95% 23.14% 

Absent Poor High High 36.69% 31.10% 32.22% 

Absent Poor Medium High 57.23% 27.81% 14.96% 

Absent Poor Low High 48.44% 30.38% 21.18% 

Absent Poor High Medium 38.65% 31.52% 29.83% 

Absent Poor Medium Medium 62.26% 25.81% 11.93% 

Absent Poor Low Medium 52.19% 29.95% 17.86% 

Absent Poor High Low 42.70% 31.90% 25.40% 

Absent Poor Medium Low 75.22% 17.90% 6.87% 

Absent Poor Low Low 58.23% 27.38% 14.39% 

 

 

 


