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Abstract
1.	 The	expansion	of	oil	palm	agriculture	across	Southeast	Asia	has	caused	significant	

biodiversity losses, with the reduction in habitat heterogeneity that accompanies 
the conversion of forest to oil palm being a major contributing factor. However, 
owing to their long commercial lifespan, oil palm plantations can support rela-
tively	high	 levels	of	vegetation	complexity	compared	 to	annual	 crops.	There	 is	
therefore potential for the implementation of management strategies to increase 
vegetation	 complexity	 and	 associated	 within-plantation	 habitat	 heterogeneity,	
enhancing species richness and associated ecosystem functioning within produc-
tive oil palm landscapes.

2.	 This	 study	 focusses	 on	 two	 species	 of	 asassin	 bugs	Cosmolestes picticeps and 
Sycanus dichotomus, which are important agents of pest control within oil palm 
systems.	 Using	 a	 Before-After	 Control-Impact	 experimental	 manipulation	 in	
Sumatra,	Indonesia,	we	tested	the	effect	of	three	alternative	herbicide	spraying	
regimes	and	associated	vegetation	complexity	treatments	on	assassin	bug	num-
bers.	Our	treatments	encompass	a	range	of	current	understory	vegetation	man-
agement practices used in oil palm plantations and include removing vegetation 
only	 in	 areas	 key	 to	harvesting	 (“Normal”),	 removing	 all	 understory	 vegetation	
(“Reduced”),	and	allowing	native	vegetation	to	regrow	naturally	(“Enhanced”).	We	
assessed	both	the	long-term	(18 months)	and	short-term	(within	2 weeks)	effects	
of our treatments following herbicide spraying.

3.	 Pre-treatment,	we	found	high	numbers	of	assassin	bugs	of	both	species	in	all	plots.	
Long-term	post-treatment,	the	abundance	of	both	C. picticeps and S. dichotomus 
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1  |  INTRODUC TION

A	growing	human	population	and	increasing	per-capita	demand	for	
cheaper	vegetable	oil	has	 led	to	the	rapid	expansion	and	 intensifi-
cation	of	vegetable	oil-producing	crops	globally	(Foley	et	al.,	2005; 
Phalan	et	al.,	2013; Wilcove & Koh, 2010).	Due	to	its	versatile	uses	
and high productivity in comparison to other oil crops, palm oil has 
become the most widely produced vegetable oil worldwide, with the 
crop playing an increasingly important role in global food security 
and	biofuel	supply	(Tan	et	al.,	2009;	Tilman	et	al.,	2011).	Nowhere	
is the growth in oil palm agriculture more evident than in Southeast 
Asia,	a	region	that	produces	89%	of	the	world's	palm	oil,	and	where	
oil palm plantation area has increased almost fourfold since the turn 
of	the	21st	century	(FAO,	2023).	Indonesia,	the	world's	leading	pro-
ducer of palm oil, is at the forefront of this production boom; here 
the palm oil industry has grown to become an invaluable contrib-
utor	 to	 the	 country's	 economic	 growth	 and	national	 development	
(Gatto	et	al.,	2015;	Purnomo	et	al.,	2020).	However,	as	plantations	
are	commonly	established	at	the	direct	expense	of	biodiverse	rain-
forest	habitat,	 this	expansion	has	also	caused	major	deforestation	
and	associated	biodiversity	loss	in	the	region	(Edwards	et	al.,	2014; 
Fitzherbert	et	al.,	2008; Gaveau et al., 2019;	Turubanova	et	al.,	2018).	
It	 is	estimated	 that	54%	of	 Indonesia's	14.6	million	hectares	of	oil	
palm plantations have been directly established on previously for-
ested	land	(Vijay	et	al.,	2016).

While retaining remaining forest habitats is vital for supporting 
tropical	biodiversity	(Gibson	et	al.,	2011;	Phalan	et	al.,	2011),	an	in-
creased awareness of the negative impacts of palm oil production 
means there is growing pressure on the oil palm industry to de-
velop sustainable management practices that improve biodiversity 
within	 plantations	 (Austin	 et	 al.,	 2017; Roundtable on Sustainable 
Palm	 Oil	 (RSPO),	 2020).	 One	 of	 the	 major	 drivers	 of	 biodiversity	
loss resulting from habitat conversion is the simplification of veg-
etation, both in terms of overall species richness and structural 
complexity	 (Drescher	 et	 al.,	 2016;	 Foster	 et	 al.,	 2011).	 Although	
oil	 palm	 plantations	 are	 significantly	 less	 complex	 than	 forests,	
their	 long	 25–30 year	 commercial	 lifespan	 and	 infrequent	 tillage	
(only	 occurring	 immediately	 pre-replanting)	 means	 they	 have	 the	

potential to develop considerably higher levels of understory veg-
etation	complexity	in	comparison	to	annual	vegetable	oil-producing	
crops,	such	as	soybean	and	rapeseed	(Barcelos	et	al.,	2015; Corley 
&	Tinker,	2015;	Luskin	&	Potts,	2011; Meijaard et al., 2018).	For	ex-
ample,	Luke,	Purnomo,	et	al.	(2019)	found	that	mature	oil	palm	plan-
tations	in	Sumatra,	Indonesia	can	support	an	understory	vegetation	
layer	consisting	of	120	different	fern	and	flowering	plant	species.	An	
established understory may act as a nectar source for pollinators, 
a food source for herbivores, provide cover for predatory species 
and	 benefit	 temperature-sensitive	 taxa	 by	 buffering	 the	 ground-
level	microclimate	(Hinsch,	2013;	Luskin	&	Potts,	2011; Norman & 
Basri, 2010),	potentially	having	a	net	positive	impact	on	overall	levels	
of biodiversity and ecosystem functioning.

Few	studies	have	investigated	the	impacts	on	biodiversity	of	lo-
cal-scale	management	practices	that	enhance	understory	complex-
ity	in	oil	palm	plantations.	Instead,	the	majority	of	research	that	has	
been carried out on management for heterogeneity within oil palm 
has	focussed	on	increasing	complexity	at	the	landscape-scale,	such	
as	 through	 retaining	or	 replanting	native	 trees	 in	 fragments	 (as	 in	
Lucey	&	Hill,	2012;	Lucey	et	al.,	2014;	Teuscher	et	al.,	2016; Zemp 
et al., 2019)	or	along	rivers	(as	in	Gray	et	al.,	2015; Gray et al., 2016; 
Luke,	Slade,	et	al.,	2019; Mullin et al., 2020;	Pashkevich	et	al.,	2022; 
Williamson et al., 2020; Woodham et al., 2019).	 Given	 that	 guid-
ance on local-scale management practices is already included in 
certain	 sustainability	 certification	 guidelines	 (such	 as	 those	 high-
lighted	within	 Principle	 7	 of	 the	 Roundtable	 on	 Sustainable	 Palm	
Oil's	 Principles	 and	 Criteria	 [Roundtable	 on	 Sustainable	 Palm	 Oil	
(RSPO),	2020]),	 and	 that	 such	 practices	 are	 likely	 to	 be	 relatively	
easily and cheaply adapted to fit with future updated guidelines, it 
is of key importance that the outcomes of such practices are bet-
ter	understood.	This	is	important	not	only	to	maximise	yield,	but	to	
also minimise the costs of production to biodiversity and the wider 
environment.

The	use	of	herbicides	to	control	weeds,	as	a	means	to	improve	
access	for	harvesting,	as	well	as	to	maximise	light,	water	and	nu-
trient availability for the crop, is common practice in oil palm ag-
riculture.	This	 typically	 involves	either	 targeted	 spraying	around	
individual palms and along pathways, as is common practice in 

declined in reduced understory plots, although this decline was only significant 
for C. picticeps	 (98%).	 In	 contrast,	 there	were	 no	 significant	 differences	 in	 the	
post-treatment abundance of either species in the short-term.

4.	 These	results	suggest	that	the	long-term	decline	in	assassin	bug	abundance	was	
likely to be caused by loss of vegetation, rather than any immediate effects of 
the	herbicide	spraying.	Our	findings	have	clear	management	implications	as	they	
demonstrate that maintaining vegetation in oil palm understories can benefit an 
important pest control agent.

K E Y W O R D S
assassin	bugs	(Reduviidae),	biological	control	agents,	habitat	heterogeneity,	integrated	pest	
management	(IPM),	oil	palm	agroecology,	tropical	agriculture,	understory	vegetation

 26888319, 2023, 4, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1002/2688-8319.12293 by T

est, W
iley O

nline L
ibrary on [26/11/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



    |  3 of 13STONE et al.

industrial plantations, or non-targeted blanket spraying, which is 
common	in	small-holding	plantations	(Corley	&	Tinker,	2015;	Lee	
et al., 2014; Rutherford et al., 2011; Wibawa et al., 2007).	 In	ad-
dition	 to	 impacting	 understory	 vegetation	 (e.g.	 Luke,	 Purnomo,	
et	 al.	 (2019)	 reported	 that	 understory	 floral	 species	 richness	 in-
creased	by	as	much	as	43%	in	non-sprayed	plantation	plots),	there	
is evidence that reduced herbicide application can lead to higher 
faunal	abundance	and	diversity.	This	includes	increased	web-build-
ing	 spider	 abundance	 (Spear	 et	 al.,	 2018),	 ground-dwelling	 ant	
abundance	(Hood	et	al.,	2020),	understory	insect	family	richness	
(Darras	et	al.,	2019),	 leopard	cat	activity	 (Hood	et	al.,	2019)	 and	
more	 abundant	 and	 diverse	 belowground	 macrofauna	 (Ashton-
Butt et al., 2018).	With	many	 of	 these	 taxa	 being	 directly	 asso-
ciated with important ecosystem services, such as pest control, 
decomposition and nutrient cycling, reduced herbicide application 
also has the potential to enhance the level of ecosystem function-
ing	within	plantations.	Therefore,	 reducing	herbicide	 application	
within oil palm agriculture is not only a potentially practical and 
cost-effective way to increase plantation-wide understory vegeta-
tion heterogeneity, but also has the potential to positively impact 
wider biodiversity and alleviate some of the negative ecological 
impacts	associated	with	agricultural	expansion.

The	 Reduviidae	 (assassin	 bugs)	 are	 a	 large	 and	 biologically	 di-
verse	family	of	predacious	insects,	with	approximately	7000	species	
described	globally	(Gil-Santana	et	al.,	2015).	Many	of	these	species	
play important roles as pest control agents within tropical agricul-
ture, including in oil palm plantations, where, due to their polyph-
agous nature, they prey on a wide variety of insect pests, including 
the two main groups of oil palm defoliators present in Southeast 
Asia:	 nettle	 caterpillars	 (Lepidoptera:	 Limacodidae)	 and	 bagworms	
(Lepidoptera:	 Psychidae)	 (Ambrose,	 2003; Cheong et al., 2010; 
Jamian et al., 2016; Wood & Kamarudin, 2019; Zulkefli et al., 2004).	
For	many	years,	synthetic	pesticides	were	used	to	control	pest	num-
bers in oil palm, however, their usage has now been largely phased 
out due to the wide-scale development of pest resistance, second-
ary poisoning of non-target organisms and potential risks to human 
health	(Gill	&	Garg,	2014;	Wilby	&	Thomas,	2002).	 Integrated	pest	
management	(IPM)	has	become	an	increasingly	important	alternative	
strategy	for	pest	control	in	oil	palm	agriculture	(Wood,	2002).	IPM	
ultimately aims to complement, reduce, or replace the application 
of pesticides, through careful monitoring of pests, targeted control 
strategies, and enhanced natural biocontrol by key native preda-
tor	species	(Kogan,	1998;	Toth,	2009),	including	assassin	bugs.	It	is	
therefore important from both a conservation and yield perspective 
to	 understand	 how	 understory	 vegetation	 complexity	 within	 oil	
palm plantations affects assassin bugs.

In	 this	paper,	we	 investigate	 the	 impacts	of	 three	oil	 palm	un-
derstory management strategies on two species of assassin bugs 
(Cosmolestes picticeps Stål, 1859 and Sycanus dichotomus	Stål,	1866),	
both of which are generalist predators and widely cited as effec-
tive	 pest	 control	 agents	 within	 Southeast	 Asian	 agroecosystems	
(Norman	 et	 al.,	1998;	 Sulaiman	&	Talip,	2021).	 To	 do	 this,	we	 use	
a	 large-scale	 and	 long-term	 before-after	 control-impact	 (BACI)	

management	 experiment	 that	 has	 varied	 levels	 of	 herbicide	 appli-
cations	with	resultant	effects	on	understory	vegetation	complexity	
in	mature	industrial	oil	palm.	As	applications	of	herbicides	could	af-
fect	assassin	bug	communities	both	long-term	(through	impacts	on	
understory	 vegetation	 structure)	 and	 in	 the	 immediate	 short-term	
(through	direct	toxicity	of	herbicide	exposure),	we	specifically	inves-
tigate both long- and short-term effects, asking the following key 
questions:

1.	 What	 are	 the	 long-term	 (18 months	 after	 treatment)	 effects	 of	
varying understory vegetation treatments on the abundance 
of Cosmolestes picticeps and Sycanus dichotomus?

2.	 What	are	the	short-term	(within	2 weeks	after	treatment)	effects	
of herbicide application on the abundance of Cosmolestes picticeps 
and Sycanus dichotomus?

2  |  MATERIAL S AND METHODS

2.1  |  Study site

Data for this study were collected in industrial oil palm plantations 
owned	and	managed	by	PT	Ivo	Mas	Tunggal,	a	subsidiary	company	
of	 Golden	 Agri	 Resources	 (GAR),	 with	 technical	 input	 from	 Sinar	
Mas	Agro	Resources	and	Technology	Research	Institute	(SMARTRI)	
in	 Riau	 Province,	 Sumatra,	 Indonesia	 (N0	 55.559,	 E101	 11.619)	
(Figure 1).	The	area	surrounding	the	plantations	is	dominated	by	oil	
palm agriculture and human infrastructure; the nearest intact forest 
(Siak	Kecil	Forest)	is	60 km	away,	and	the	nearest	degraded	forest	is	
15 km	away.	The	region	has	a	wet	tropical	climate,	with	an	average	
annual	rainfall	of	2350 mm	(average	monthly	rainfall	figures	for	the	
data collection period are shown in Figure S1).

The	 study	was	 conducted	 across	 two	 neighbouring	 plantation	
estates	 (Ujung	Tanjung	and	Kandista;	Figure 1),	 both	of	which	are	
RSPO	 certified,	 with	 GAR	 being	 an	 active	 member	 of	 the	 RSPO	
since	2005.	The	plantations	were	planted	between	1988	and	1993	
(see	Table S1	 for	exact	planting	dates	 for	each	experimental	plot),	
meaning	 oil	 palms	were	mature	 (aged	 20–27 years)	 at	 the	 time	 of	
data	collection	in	2013,	2014	and	2015.	Across	the	two	estates,	oil	
palms	were	 planted	 in	 staggered	 rows	 at	 a	 density	 of	 136 palms/
ha,	 or	 approximately	 8 m	 apart.	 The	 sites	 used	 in	 this	 study	make	
up	the	Biodiversity	and	Ecosystem	Function	in	Tropical	Agriculture	
Understory	 Vegetation	 Project	 (BEFTA-UVP).	 The	 BEFTA-UVP	 is	
a	 long-term	ecological	 experiment	 that	 investigates	 the	 effects	 of	
understory vegetation management in oil palm on biodiversity, eco-
system	functioning	and	yield	 (Luke	et	al.,	2020).	Project	sites	con-
sist	of	eighteen	plots,	arranged	into	six	triplets.	Each	plot	measures	
150 × 150 m	and	is	made	up	of	a	central	50 × 50 m	core	section	and	an	
outer	buffer	region.	All	plots	are	located	at	the	ends	of	three	neigh-
bouring	300 × 1000 m	plantation	planting	blocks,	such	that	the	mid-
dle	plot	in	each	triplet	is	155 m	from	each	of	the	outer	plots	within	
the	 triplet.	Triplets	are	 separated	by	at	 least	1 km	 (Figure 1).	Each	
plot	is	established	on	flat	ground,	10–30 m	a.s.l.,	and	is	bordered	by	
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an unpaved road and drainage ditch on one end, and by neighbouring 
oil	palm	on	the	remaining	three	sides.	A	stream	runs	through	two	of	
the plots.

Plots	were	established	in	October	2012,	with	understory	man-
agement	treatments	implemented	in	February	2014.	The	three	plots	
within	 each	 of	 the	 six	 triplets	were	 randomly	 allocated	 to	 one	 of	
three	understory	treatments	(hence,	there	were	a	total	of	six	plots	
for	each	understory	treatment)	 (Figure S2),	representing	the	range	
of common management strategies used within industrial and small-
holder oil palm plantations:

1. Normal understory vegetation complexity (hereafter referred to as 
“Normal”):	 This	 is	 standard	 industry	 practice	 used	 within	 the	
GAR	estates	and	 is	how	all	plots	were	managed	pre-treatment.	
It	 involves	 an	 intermediate	 level	 of	 herbicide	 spraying,	 with	
harvesting	 paths	 and	 circles	 (1.5 m	 radius	 areas	 around	 individ-
ual	 palm	 bases)	 being	 sprayed	 three	 to	 five	 times	 annually.	 All	
other vegetation elsewhere in the plots is allowed to regrow 
naturally,	 except	 for	woody	 shrubs	 and	 young	 trees,	which	 are	
removed manually.

2. Reduced understory vegetation complexity (hereafter referred to as 
“Reduced”):	This	is	the	highest	intensity	of	understory	vegetation	
management.	It	involves	a	high	level	of	herbicide	spraying,	with	all	
understory vegetation throughout the plots being sprayed three 
to five times annually, effectively killing all understory vegetation.

3. Enhanced understory vegetation complexity (hereafter referred to as 
“Enhanced”):	This	is	the	lowest	intensity	of	understory	vegetation	

management.	 It	 involves	no	herbicide	 spraying	and	only	 limited	
hand-cutting of woody vegetation to keep harvesting paths 
and areas around palm bases open and accessible. Cutting first 
took	place	1 year	after	treatments	started	and	was	then	carried	
out	at	the	same	frequency	as	herbicide	application	 in	the	other	
treatments.

For	 full	 details	 of	 the	 effects	 of	 the	 BEFTA-UVP	 experiment	
set-up and effects of the treatments on understory plant com-
munities,	 see	 Luke,	 Purnomo,	 et	 al.	 (2019)	 and	 Luke	 et	 al.	 (2020).	
Herbicides	 used	 included	 Glyphosate	 (Rollup	 480	 SL),	 Paraquat	
Dichloride	 (Rolixone	 276	 SL),	 metsulfuron-methyl	 (Erkafuron	 20	
WG),	and	Fluroxypyr	(Starane	290	EC).	Barring	6 days	of	geograph-
ically	 restricted	 pyrethroid	 based	 canopy	 fogging	 (see	 Pashkevich	
et	al.	(2022))	no	insecticides	were	used	in	the	plots	throughout	this	
study. Data collection was carried out during three separate time 
periods.	 To	 assess	 long-term	 effects	 of	 treatment,	 we	 collected	
pre-treatment data in September 2013 and post-treatment data in 
September	2015	in	all	eighteen	plots.	To	assess	short-term	effects	
of	treatment,	we	collected	data	in	February	2014,	just	before	(within	
2 weeks,	and	hereafter	referred	to	as	2014-Pre)	and	just	after	(within	
2 weeks,	 and	 hereafter	 referred	 to	 as	 2014-Post)	 herbicide	 appli-
cation	 in	 each	of	 the	 six	Normal	 and	 six	Reduced	 treatment	plots	
(Figure S2).	We	did	not	survey	the	six	Enhanced	treatment	plots	at	
this	time,	as	Enhanced	and	Normal	plots	were	the	same	at	this	point,	
owing	 to	not	 enough	 time	passing	 for	our	Enhanced	 treatment	 to	
take effect.

F I G U R E  1 Location	of	BEFTA-UVP	
plots	within	SMARTRI	estates	(Riau,	
Sumatra,	Indonesia).	The	18	plots	
(orange	squares)	are	arranged	in	triplets	
throughout	the	Ujung	Tanjung,	and	
Kandista	Estates	(coloured	in	green).	
The	maps	were	created	using	ArcMap	
10.5.1	(Environmental	Systems	Research	
Institute,	2017),	and	library	“maps”	in	R	
statistical	package	(Brownrigg,	2016),	with	
reference	to	maps	produced	by	SMARTRI.	
[This	figure	has	been	adapted,	with	the	
permission of the authors, from a figure 
included	in	Luke	et	al.,	2020].
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    |  5 of 13STONE et al.

2.2  |  Assassin bug surveys

We surveyed adult Reduviidae of the species Cosmolestes picticeps 
and Sycanus dichotomus	(the	two	most	common/conspicuous	assas-
sin bug species found within the plantation sites according to local 
counterparts)	along	transects	in	the	core	of	each	study	plot.	Transect	
walks consisted of a recorder walking at a steady pace, counting any 
adult C. picticeps or S. dichotomus that were visible or flew up in front 
of	 the	 recorder	 (without	deliberately	disturbing	vegetation)	within	
a	5-m-sided	cube	of	space	in	front	of	them.	This	meant	that	it	was	
important that both species could be easily distinguished visually 
from each other and from other Reduviidae present within the plan-
tations.	This	was	only	achievable	for	adult	C. picticeps and S. dichoto-
mus	(Figure 2),	meaning	that	earlier	developmental	stages	(eggs	and	
nymphs)	 were	 not	 recorded.	 Identifications	 were	 made	 following	
guidance	from	local	counterparts.	The	transect	was	200 m	in	length	
and	followed	the	edge	of	the	central	50 × 50 m	core	section	within	
each plot, although we did not re-record areas of overlap at the end 
of	the	transect.	Transects	were	walked	between	9:00	and	17:00	and	
were	not	conducted	when	it	was	raining.	Two	repeat	surveys	of	each	
plot were carried out on separate days in each sampling period, with 
total counts for each of the plots being averaged and rounded to the 
nearest	whole	number	for	analyses,	except	for	2014-Pre	and	2014-
Post,	when	time	constraints	meant	that	only	one	visit	was	possible	
per	 transect	 before	 and	 after	 treatment.	 Therefore,	 for	 our	 long-
term analyses, the response variable was mean number of assassin 
bugs	per	50 × 50 m	transect	over	2 days	of	sampling.	For	our	short-
term analyses, the response variable was number of assassin bugs 
per	50 × 50 m	transect.	We	found	that	there	was	variation	in	counts	
between the two repeat surveys in each plot, but with a significant 
correlation	 between	 counts	 (Figure S3).	 By	 averaging	 surveys,	we	
therefore reduced some of the stochastic variation related to indi-
vidual surveys.

2.3  |  Statistical analyses

We	 carried	 out	 all	 statistical	 analyses	 in	 R	 version	 4.1.2	 (R	 Core	
Team,	 2021)	 using	 R	 Studio	 version	 2021.09.1 + 372	 (R	 Studio	
Team,	 2021).	 For	 data	 wrangling	 and	 exploration,	 we	 used	 readxl 
(Wickham	 &	 Bryan,	 2023),	 tidyverse	 (Wickham,	 2019),	 data.table 
(Dowle	 &	 Srinivasan,	2023)	 and	 plyr	 (Wickham,	2016b),	 following	

the	data	exploration	procedure	outlined	by	Zuur	et	al.	 (2010).	For	
data visualisation we used cowplot	 (Wilke,	2020),	 lemon	 (Edwards	
et al., 2022)	and	ggplot2	(Wickham,	2016a).

We separately analysed the long-term and short-term impacts 
of understory vegetation treatment on C. picticeps and S. dichoto-
mus	using	Bayesian	generalised	linear	regression	models	(hereafter,	
GLMMs).	We	fitted	GLMMs	using	brms	(Bürkner,	2017)	and	the	No-
U-Turn	 sampler	 (NUTS)	 algorithm	 in	 Stan	 (Carpenter	 et	 al.,	 2017).	
We fitted five candidate models for each response: a parent model 
(Time*Treatment)	 and	 four	 derivative	 models	 (Time + Treatment, a 
Time-only model, a Treatment-only	 model	 and	 a	 null	 model),	 with	
‘Time’ being a categorical variable with two categories representing 
different sampling time points: after treatment in September 2015 
(A)	and	before	treatment	in	September	2013	(B),	and	‘treatment’ rep-
resenting one of the three vegetation management types: Normal 
(N),	Reduced	 (R)	or	Enhanced	 (E).	We	 included	Triplet as a random 
intercept effect in all models, to account for potential spatial auto-
correlation, triplet-specific differences in environmental conditions 
and timing of sampling in our modelling. Triplet	has	six	variables:	UT1, 
UT2,	UT3, K1, K2 K3,	corresponding	to	the	six	triplets	of	BEFTA-UVP	
plots	 in	Ujung	Tanjung	 (UT)	 and	Kandista	 (K)	estates.	As	we	were	
modelling	count	data,	all	models	were	fitted	to	Poisson	distributions.	
We	checked	Poisson	models	for	over-dispersion	and	found	that	they	
were	 not	 over	 dispersed	 (and	 therefore	 negative	 binomial	models	
were	not	needed).	We	verified	that	negative	binomial	distributions	
did not improve model fits by calculating and comparing the leave-
one-out	 cross-validation	 information	 criterion	 (LOOIC)	 of	 these	
models	to	that	of	our	Poisson-distributed	models.	Owing	to	the	high	
proportion	of	zeros	within	our	dataset	(particularly	for	S. dichotomus, 
with	no	 individuals	 recorded	 in	58%	of	 transects	 in	 the	 long-term	
data	set	and	42%	of	 transects	 in	 the	short-term	data	set),	we	also	
verified	that	zero-inflated	models	were	not	required.

We	ran	all	GLMMs	for	50,000	 iterations	using	four	chains	and	
a thinning rate of 10. We discarded the first 8000 iterations as 
warm-up/burn-in samples and controlled the behaviour of the 
NUTS	 algorithm	 to	 decrease	 the	 number	 of	 divergent	 transitions	
(adapt_delta = 0.99).	We	 fitted	normal	 (0,10)	 priors	on	model	 inter-
cepts, normal	 (0,10)	priors	on	fixed	effects,	and	normal	 (0,1)	priors	
on the standard deviation of random effects. When testing nega-
tive	binomial	and	zero-inflated	models,	we	fitted	gamma	(0.01,0.01)	
priors on the negative binomial shape parameter and beta	 (0.1,0.1)	
priors	on	the	zero-inflated	parameter.	We	chose	weakly	informative	

F I G U R E  2 Photo	of	adult	(a)	
Cosmolestes picticeps	and	(b)	Sycanus 
dichotomus,	taken	within	the	BEFTA-UVP	
plots	(credit	Edgar	Turner).	Cosmolestes 
picticeps typically measures ~1.5 cm	in	
body length and Sycanus dichotomus 
typically measures ~3 cm.
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6 of 13  |     STONE et al.

priors, to regulate the posterior distributions of our models such that 
they	were	kept	within	a	reasonable	range	of	values	(i.e.	they	did	not	
stray	too	far	from	the	underlying	datasets).	For	details	of	each	of	the	
models fitted during analyses see Table S2.

We	determined	that	mixing	was	sufficient	by	inspecting	Markov	
chain	Monte	Carlo	 (MCMC)	 trace	plots,	 ensuring	 that	Rhat	values	
were <1.1,	the	ratio	of	effect	sample	size	to	total	sample	size	was	
>0.1, and no autocorrelation was present within the MCMC chains 
(Muth	et	al.,	2018).	We	validated	models	by	verifying	 that	no	pat-
terns	were	present	when	Pearson	residuals	were	plotted	against	fit-
ted values, included covariates, and random effect levels. We then 
used posterior predictive checks to ensure that attributes of data 
that were simulated from each model accurately reflected the real 
dataset	from	which	each	model	was	generated.	For	example	model	
validation plots see Figures S4–S9. Model validation and posterior 
predictive	checks	required	bayesplot	(Gabry	&	Mahr,	2022)	and	tidy-
bayes	(Kay,	2023).

After	generating	and	validating	all	candidate	models,	we	took	an	
information	criterion	approach	 to	choose	a	model	of	best	 fit.	This	
model selection process involved calculating and comparing each 
model's	LOOIC.	We	selected	the	model	with	the	 lowest	LOOIC	as	
the	optimal	model	(i.e.	a	model	that	explained	the	most	variation	in	
the	 data	 with	 the	 fewest	 parameters),	 unless	 the	 standard	 errors	
of	the	LOOIC	overlapped	with	that	of	another	candidate	model,	 in	
which case we selected the model with fewer parameters as the op-
timal	model	(Gabry	et	al.,	2019).	If	the	null	model	was	not	the	opti-
mal	model,	we	 report	model	estimates	and	95%	credible	 intervals	
for	fixed	effect	parameters,	and	used	emmeans	(Lenth	et	al.,	2018)	to	
conduct post-hoc analyses by computing estimated marginal means 
for each factor level and comparing these in a pairwise fashion. We 
concluded	that	factor	levels	were	meaningfully	different	if	the	95%	
highest posterior density interval of the median point estimate cal-
culated	from	our	comparisons	did	not	overlap	with	zero.

3  |  RESULTS

Assassin	bugs	were	relatively	abundant	throughout	the	plots,	with	a	
total of 622 individuals recorded across the three sampling periods 
(September	2013,	February	2014,	and	September	2015),	represent-
ing an average density of 104 assassin bugs recorded per hectare. 
Across	the	study,	C. picticeps	was	far	more	abundant	(542	individu-
als,	and	87%	of	total	abundance)	than	S. dichotomus	(80	individuals,	
and	13%	of	total	abundance).

3.1  |  Long-term effects of understory 
vegetation treatments

Four	hundred	and	thirty-six	assassin	bugs	(394	C. picticeps and 42 S. 
dichotomus)	were	recorded	for	use	in	long-term	treatment	analyses;	
264	 (239	C. picticeps and 25 S. dichotomus)	 in	 2013	 and	172	 (155	
C. picticeps	 and	17	S. dichotomus)	 in	2015.	Per-plot	 abundance	 for	

C. picticeps was significantly affected by the interaction between 
sampling	 period	 and	 treatment	 type,	 with	 the	 maximum	 model	
(Cosmolestes Picticeps ~ Time*Treatment + (1|Triplet))	being	the	optimal	
model	 (R2 = 52.1 ± 5.7%;	Figure 3a).	Post-hoc	analyses	showed	that	
there were no differences in pre- and post-treatment abundances 
of C. picticeps	for	Enhanced	(Model	estimate	(95%	credible	interval)	
for	pre-Enhanced = 5.669	(3.592–8.488);	for	post-Enhanced = 6.458	
(4.206–9.765))	and	Normal	 (Model	estimate	 (95%	credible	 interval)	
for	 pre-Normal = 7.435	 (4.886–10.884);	 for	 post-Normal = 6.162	
(3.993–9.238))	 treatments.	 However,	 for	 the	 Reduced	 treatment	
(Model	 estimate	 (95%	 credible	 interval)	 for	 pre-Reduced = 7.242	
(4.681–10.832);	 for	 post-Reduced = 0.116	 (0.005–0.619)),	 per-plot	
abundance of C. picticeps	was	98%	lower	in	2015	than	in	2013	(av-
erage	 abundances	 of	 1	 and	 45	 respectively,	 across	 the	 six	 plots;	
Figure 3e).	 In	 contrast,	 for	 S. dichotomus we found no significant 
effects of understory vegetation treatment, season, or the interac-
tion between these variables, with the Null model being the optimal 
model	 (R2 = 6.3 ± 6.3%;	Figure 3b).	This	was	despite	per	plot	abun-
dances of S. dichotomus	in	the	Reduced	treatment	plots	being	86%	
lower	in	2015	than	in	2013	(average	abundances	of	1	and	7,	respec-
tively,	across	the	six	plots;	Figure 3e).

3.2  |  Short-term effects of understory 
vegetation treatment

One	hundred	and	eighty-six	individuals	(148	C. picticeps & 38 S. di-
chotomus)	were	recorded	in	the	2014	season:	114	(91	C. picticeps & 
23 S. dichotomus)	immediately	before	treatment	application,	and	72	
(57	C. picticeps & 15 S. dichotomus)	 immediately	 after.	 For	 the	 im-
mediate pre and post dataset, we found no effects of understory 
vegetation treatment, season or the interaction of these variables 
on either C. picticeps or S. dichotomus, as the null model was the op-
timal	model	 for	 both	 species	 (R2 = 10.1 ± 8.1%	 and	R2 = 6.5 ± 6.3%;	
Figure 4).

4  |  DISCUSSION

In	this	study,	we	tested	whether	different	levels	of	understory	vege-
tation	management	(“Normal”—herbicide	spraying	to	remove	under-
story	vegetation	only	in	areas	key	to	harvesting,	“Reduced”—spraying	
all	understory	vegetation,	and	“Enhanced”—no	spraying	and	allowing	
understory	vegetation	to	regrow	naturally)	affected	two	species	of	
assassin	bug	(C. picticeps and S. dichotomus)	in	mature	oil	palm	plan-
tations. We found that assassin bugs were common across our plots, 
with 622 individuals recorded throughout our study. C. picticeps was 
found to be far more abundant than S. dichotomus within the plots 
sampled	(respective	ratio	6.8:	1);	this	matches	well	with	figures	pre-
sented	by	Jamian	et	al.	 (2016),	 the	only	other	study	that	we	could	
find to have recorded numbers of both species within oil palm ag-
riculture.	This	is	potentially	due	to	S. dichotomus being considerably 
larger than C. picticeps, with large-bodied insects often being rarer 
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    |  7 of 13STONE et al.

than	smaller-bodied	insects	in	ecosystems	(Siemann	et	al.,	1996).	We	
found a significant negative long-term effect of reduced understory 
vegetation on C. picticeps	(per-plot	abundance	in	reduced	vegetation	
treatments	was	 98%	 lower	 18 months	 post-treatment	 than	 it	 was	
pre-treatment),	but	not	 for	S. dichotomus numbers, although there 
was also a trend for S. dichotomus	abundance	to	decline	(86%	decline	
over	the	same	period).	In	contrast,	there	was	no	significant	observed	
effect	 of	 the	 enhanced	 vegetation	 treatment	 (where	 no	 herbicide	
was	applied)	on	abundance	of	either	species	over	the	same	time	pe-
riod. We also recorded no significant changes in assassin bug num-
bers immediately post treatment in 2014, indicating that there were 
no detectable immediate effects of herbicide spraying.

4.1  |  Long-term effects of understory 
vegetation treatment

The	 strong	declines	we	observed	 in	 the	 abundance	of	C. picticeps 
in reduced vegetation treatment plots, but not normal or enhanced 

vegetation plots, suggests that understory vegetation plays a vital 
role	 in	 the	 survival	 of	 this	 species.	 This	may	 be	 a	 direct	 result	 of	
the structure provided by an established understory, as the leaves 
and stems of herbaceous plants often provide the primary sub-
strate	 for	assassin	bug	oviposition	 (Ambrose	&	Livingstone,	1989).	
Furthermore,	it	is	possible	that	eggs	laid	onto	vegetation	before	her-
bicide	application	may	have	experienced	reduced	hatching	success	if	
plants died before nymphs emerged, with long-term effects on adult 
numbers.	 The	 lower	 abundance	 of	C. picticeps in reduced vegeta-
tion plots may also be linked to the fact that understory vegetation 
likely supplies a vital food source for assassin bugs, by providing re-
sources for small invertebrate prey, as shown by previous findings 
from	the	BEFTA-UVP	(Ashton-Butt	et	al.,	2018; Hood et al., 2020; 
Spear et al., 2018),	as	well	as	work	carried	out	by	Darras	et	al.	(2019)	
and	Teuscher	et	 al.	 (2016),	who	 reported	 that	 a	more	diverse	and	
structurally	complex	oil	palm	understory	promoted	higher	inverte-
brate	 abundance	 and	 richness.	 The	 cover	 provided	 by	 understory	
vegetation may also be a factor, as it can act as a refuge from preda-
tion, as well as creating more favourable microclimatic conditions 

F I G U R E  3 Average	per-plot	abundance	of:	(a)	Cosmolestes picticeps	&	(b)	Sycanus dichotomus	both	before	(6 months	pre-treatment)	and	
after	(18 months	post-treatment)	treatment	in	Enhanced,	Normal	and	Reduced	plots.	Boxplots	display	median	and	interquartile	ranges	(IQR),	
and	whiskers	incorporate	data	that	are	1.5*IQR.	The	mean	abundance	in	each	of	the	18	plots	(6	replicate	plots	per	treatment)	is	represented	
by	a	dot;	the	size	of	the	dot	is	determined	by	how	many	plots	share	the	same	abundance.	Stacked	bar	graphs	(c–e)	illustrate	total	number	of	
Cosmolestes picticeps and Sycanus dichotomus before and after treatment in each of the three treatment types.

(a) (b)

(c)

(d)

(e)
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8 of 13  |     STONE et al.

for assassin bugs, such as cooler temperatures and higher humidity. 
Finally,	some	assassin	bug	species,	including	C. picticeps, are known 
to	supplement	their	diet	with	extrafloral	nectar	(Jamian	et	al.,	2016);	
therefore, access to a more diverse floral understory might also re-
sult	in	higher	assassin	bug	numbers.	Overall,	it	is	likely	that	a	com-
bination of mechanisms drive C. picticeps abundance within oil palm 
plantations, and that by removing understory vegetation, assassin 
bug survival, reproductive and immigration rates decrease, while re-
location rates to more-favourable areas increase.

Although	 the	 abundance	 of	 C. picticeps is significantly asso-
ciated with the presence of understory vegetation, there was no 
clear observable difference between C. picticeps numbers in normal 
and	enhanced	vegetation	plots.	This	could	be	because	normal	veg-
etation plots only receive herbicide along access paths and in the 
area surrounding palms, and indicates that the levels of understory 
maintained in normal plots are sufficient to support assassin bugs at 
abundances	 similar	 to	 those	 in	enhanced	plots.	This	 suggests	 that	
current	herbicide	management	regimes	in	GAR	plantations	are	not	
having	a	negative	impact	on	assassin	bug	numbers.	The	lack	of	dif-
ference	 in	understory	vegetation	 complexity	between	normal	 and	
enhanced	plots	has	also	been	recorded	in	other	BEFTA-UVP	studies.	
Indeed,	Luke,	Purnomo,	et	al.	(2019)	found	that	the	species	richness	
and biomass of understory vegetation did not differ between the 
two treatment types more than a year after treatment, while studies 
in	the	system	on	different	invertebrate	taxa	that	recorded	reduced	

abundance	 in	 reduced	 vegetation	 plots	 (Hood	 et	 al.,	2020; Spear 
et al., 2018),	have	also	reported	a	lack	of	difference	between	normal	
and enhanced vegetation treatments.

The	 lack	of	a	significant	difference	 in	S. dichotomus abundance 
between treatments is most likely related to the lower overall num-
bers of S. dichotomus observed throughout our plots, making it 
harder	to	detect	any	significant	effects	of	treatment.	If	true,	this	in-
dicates that many of the factors that influenced the reduction in C. 
picticeps abundance are also likely to impact S. dichotomus.	Indeed,	
previous research indicates that the ability to access, and preference 
for different within-plantation vegetation stratum is similar for both 
species	 (Jamian	 et	 al.,	 2016; Norman & Basri, 2010).	 However,	 it	
could also be that S. dichotomus, being considerably larger than C. 
picticeps, is more dispersive and therefore less affected by the spa-
tial	 scale	at	which	 treatments	were	applied	 (150 × 150 m	plots).	 Its	
size	also	means	that	its	surface	area	to	volume	ratio	is	lower,	poten-
tially allowing it to be more robust to impacts mediated by changes 
in	microclimate,	such	as	increased	aridity	(Kühsel	et	al.,	2017).

4.2  |  Short-term effects of understory 
vegetation treatment

There	was	no	clear	short-term	effect	of	spraying	herbicides	on	assas-
sin bug numbers, suggesting that the herbicide spraying itself does 

F I G U R E  4 Per-plot	abundance	of:	(a)	Cosmolestes picticeps	&	(b)	Sycanus dichotomus for both immediately pre- and immediately post-
treatment	in	Normal	and	Reduced	plots.	Boxplots	display	median	and	interquartile	ranges	(IQR),	and	whiskers	incorporate	data	that	are	
1.5*IQR.	The	abundance	in	the	12	plots	(6	replicate	plots	per	treatment)	is	represented	by	a	dot;	the	size	of	the	dot	is	determined	by	how	
many	plots	share	the	same	abundance.	Stacked	bar	graphs	(c	and	d)	illustrate	total	number	of	Cosmolestes picticeps and Sycanus dichotomus 
before and after treatment in the two treatment types.

(a) (b)
(c)

(d)
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    |  9 of 13STONE et al.

not	have	an	immediate	effect	on	assassin	bugs.	This	again	indicates	
that factors associated with changes in understory vegetation com-
plexity	are	more	likely	to	be	driving	differences	in	assassin	bug	num-
bers	in	oil	palm	plantations.	As	we	sampled	very	soon	after	spraying	
in the Reduced vegetation plots, much of the vegetation, although 
dead or dying, was still present, providing some benefit for foraging 
and as refuge from predation and microclimate. Similarly, any prey 
insects attracted by this vegetation may still have been present. 
However, as adult assassin bugs readily fly when disturbed, it is likely 
that many may have avoided direct contact with herbicides during 
spraying,	potentially	explaining	this	 lack	of	effect.	Furthermore,	as	
it	 was	 only	 adults	 that	were	 recorded,	 any	 potential	 toxic	 impact	
of herbicide application on flightless nymphs would not have been 
picked	up	in	our	short-term	abundance	figures.	It	must	also	be	noted	
that due to logistical constraints, we were unable to carry out two 
surveys pre and post treatment in 2014, so it is possible that the 
lower numbers in this analysis could have reduced the chance of 
detecting	any	differences.	Indeed,	C. picticeps numbers were lower 
immediately post-treatment in the Reduced plots, although this dif-
ference was not detected statistically in our modelling.

4.3  |  Management implications

The	 results	of	 this	 study	have	 several	management	 implications.	
As	both	C. picticeps and S. dichotomus are known to be effective 
predators of several major oil palm pests, the relatively high abun-
dance we recorded indicates that both species are potentially 
important pest control agents in the plantations we studied, re-
flecting findings in oil palm systems in other parts of the tropics 
(Ahmad	et	al.,	2020; Jamian et al., 2016; Norman & Basri, 2010).	
Given the drop in assassin bug numbers we detected within re-
duced vegetation treatment plots, it is our advice that the blanket 
spraying of herbicides in oil palm plantations should be actively 
avoided. We instead suggest that plantations in which blanket 
spraying	 is	 standard	 practice	 (e.g.	 in	 many	 smallholdings,	 Lee	
et al., 2014),	 should	 switch	 management	 practice	 to	 a	 targeted	
herbicide	approach	as	a	matter	of	priority.	There	is	also	a	growing	
body of research that highlights the potential associated risk of 
herbicide	application	to	human	health	 (Abdul	et	al.,	2021; Kim & 
Kim, 2020; Myers et al., 2016),	so	such	a	reduction	in	application	is	
also	likely	to	come	with	additional	benefits	for	growers.	Our	find-
ings also suggest that in order to enhance assassin bug numbers 
in oil palm, the implementation of more proactive management 
strategies, such as the planting of beneficial understory species, 
as	highlighted	 in	Jamian	et	al.	 (2016),	are	required.	Owing	to	the	
role	of	assassin	bugs	as	pest	control	agents	(Ambrose,	2003),	it	is	
likely that if understory vegetation is maintained and assassin bug 
numbers are boosted, it could also result in enhanced pest control 
services and lower herbivory, with potential benefits to palm oil 
yield.	This	is	in	line	with	a	growing	pool	of	evidence	that	highlights	
the	 importance	 of	 floral	 diversity	 and	 structural	 complexity	 of	
vegetation for increasing the abundance of invertebrate predators 

and	parasitoids	of	crop	pests	(Chaplin-Kramer	et	al.,	2011;	Landis	
et al., 2000;	Langellotto	&	Denno,	2004; Wratten et al., 2002).	It	
is therefore our recommendation that clear directives concern-
ing	reducing	herbicide	usage	within	oil	palm	crop	matrices	(either	
through	 limiting	 the	 frequency	of	 general	 application	or	 limiting	
application	to	distinct	zones,	i.e.	access	pathways)	should	be	inte-
grated	within	major	certification	and	sustainability	guidelines.	For	
example,	under	Principle	7	of	the	Roundtable	on	Sustainable	Palm	
Oil's	Principles	and	Criteria	for	the	Production	of	Sustainable	Palm	
(Roundtable	 on	 Sustainable	 Palm	Oil	 (RSPO),	2020),	 a	 new	 sub-
point	within	 section	7.1	 (Section	 criteria:	 Pests,	 diseases,	weeds	
and invasive introduced species are effectively managed using ap-
propriate	 integrated	pest	management	techniques)	could	be	cre-
ated.	This	would	provide	guidance	on	levels	of	herbicide	usage,	as	
well as highlight the importance of maintaining understory veg-
etation in boosting pest control agents within oil palm agriculture, 
citing	this	study	as	well	as	others	published	from	the	BEFTA-UV	
Project	(e.g.	Hood	et	al.,	2019, 2020; Spear et al., 2018).

Our	 findings	 highlight	 the	 importance	 of	 understory	 vegeta-
tion for supporting biodiversity in oil palm, as well as potential 
associated pest control benefits. Given that several ecological fac-
tors are likely driving these results, further research that aims to 
provide a clearer understanding of the weighting of such factors 
could help with directing future management strategy. More work 
is	also	required	urgently	to	assess	the	practicality	of	 implement-
ing such lower intensity management across oil palm plantations, 
particularly	the	long-term	impacts	on	pest	numbers	and	yield.	As	
herbicide applications can constitute a significant component of 
the	costs	of	oil	palm	management	(Levin	et	al.,	2012),	it	is	also	pos-
sible that such a change could benefit profitability, while reducing 
any	negative	external	effects	of	chemical	applications	on	human	
health. With oil palm now grown on over 28 million hectares 
globally	 (FAO,	2023),	 these	relatively	simple	changes	to	manage-
ment practices have the potential to have widespread ecological 
benefits.
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SUPPORTING INFORMATION
Additional	 supporting	 information	 can	 be	 found	 online	 in	 the	
Supporting	Information	section	at	the	end	of	this	article.
Figure S1.	Average	monthly	rainfall	 in	millimetres	(blue	line)	across	
the	Kandista	and	Ujung	Tanjung	plantation	estates,	over	the	course	

of	the	study.	Vertical	green	bars	highlight	the	three	sampling	periods	
in which assassin bugs were recorded and the red line indicates 
when	experimental	treatments	were	implemented.
Figure S2.	Plot	set	up	of	the	BEFTA	Understory	Vegetation	Project.	
Each	panel	(A	and	B)	represents	a	triplet	of	experimental	plots.
Figure S3. Correlation plots to determine the relationship between 
repeat surveys of Cosmolestes picticeps and Sycanus dichotomus, with 
first sample count on x-axis	and	second	sample	count	on	y-axis.
Figure S4.	 Example	 of	 density	 (left)	 and	 trace	 (right)	 plots	 to	
determine	that	mixing	of	MCMC	chains	was	good.
Figure S5.	Example	visualisation	of	the	“Eff.	Sample”	value,	used	to	
estimate	the	effective	sample	size.
Figure S6.	 Example	 visualisation	 to	 determine	 that	 there	 was	 no	
autocorrelation of the MCMC chains in our modelling.
Figure S7.	Example	diagnostic	plots	created	during	model	validation.
Figure S8.	Example	posterior	predictive	check	plots	created	during	
model validation.
Figure S9.	Example	posterior	predictive	check	plots	created	during	
model validation.
Table S1.	 Details	 of	 the	 BEFTA-UVP	 plots	 at	 which	 data	 were	
collected, including- estate name, triplet number, plot name, 
understory	 vegetation	 treatment	 (randomly	 allocated	 to	 the	 plot),	
and	 date	 (data	 provided	 by	 SMARTRI)	 that	 palms	 were	 planted	
within each plot.
Table S2.	 Models	 fitted	 to	 assess	 the	 effects	 of	 the	 BEFTA-UVP	
treatments on assassin bug numbers.
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