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Abstract: Parameter identification for wildfire forecasting models often relies on case-by-case tuning
or posterior diagnosis/analysis, which can be computationally expensive due to the complexity
of the forward prediction model. In this paper, we introduce an efficient parameter flexible fire
prediction algorithm based on machine learning and reduced order modelling techniques. Using
a training dataset generated by physics-based fire simulations, the method forecasts burned area
at different time steps with a low computational cost. We then address the bottleneck of efficient
parameter estimation by developing a novel inverse approach relying on data assimilation techniques
(latent assimilation) in the reduced order space. The forward and the inverse modellings are tested
on two recent large wildfire events in California. Satellite observations are used to validate the
forward prediction approach and identify the model parameters. By combining these forward and
inverse approaches, the system manages to integrate real-time observations for parameter adjustment,
leading to more accurate future predictions.

Keywords: wildfire prediction; machine learning; reduced-order modelling; convolutional autoencoder;
data assimilation; latent assimilation; parameter identification

1. Introduction

There has been a significant increase in wildfire frequency in many parts of the world
in the past few decades, causing losses of lives, huge economic costs and lethal effects of air
pollution [1]. According to Verisks 2021 Risk Analysis [2], over four million properties in the
U.S. were identified as being at high or extreme risk from wildfire. Accurate and efficient
near-real time wildfire predictions, which can be used to make decisions about fire fighting
strategy, are crucial for short-term fire emergency response as well as longer-term fire risk
assessment [3]. However, the ability to forecast/simulate the spread of wildfires is currently
limited because of the complexity of fire dynamics and the processes that control this [4].
State-of-the-art fire spread modelling techniques, based on, for instance, computational
fluid dynamics (CFD) [5], statistical regression [6] or Cellular Automata (CA) [7,8], are not
fast enough to produce real time predictions for massive wildfires. In the past few years,
data-driven and reduced-order modelling (ROM) techniques have been used to decrease the
computational burden for high dimensional dynamical systems in several areas, including
air pollution [9], fluid dynamics [10] and numerical weather prediction (NWP) [11]. Rather
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than learning the full physical space, the Machine Learning (ML) approaches seek to predict
some latent variables of much lower dimension derived from data compression [10,12,13].

A variety of ROMs have been developed for dynamical systems, such as Principal
Component Analysis (PCA) (also known as Proper Orthogonal Decomposition (POD) for
dynamical systems) [14], information entropy based methods [15], Convolutional Autoen-
coder (CAE) [16], Variational Autoencoder (VAE) [17] and the recently developed Singular
Value Decomposition (SVD) Autoencoder (AE) [18,19]. The advantage of Deep Learn-
ing (DL)-based approaches (e.g., CAE) compared to projection-based methods (e.g., PCA)
has been widely noted [10,20], especially for highly non-linear systems. In addition,
non-intrusive ROM attempts to establish the input-output function of the model param-
eters and the reduced basis through interpolation [21–23], regression [24,25] or machine-
learning [9,26] algorithms. A DL reduced surrogate modelling has been introduced in the
recent work of [27] to perform near real-time fire forecasting for individual fire events. This
surrogate model based on long short-term memory (LSTM) (a variant of Recurrent Neural
Networks (RNNs)) was trained and evaluated in a latent space obtained via ROM. The
efficiency and accuracy of the model were numerically demonstrated in reconstructing
several massive fire events. However, although the RNNs provides accurate predictions in
an iterative manner, individual surrogate models are required for different sets of model
parameters (e.g., the impact coefficient of the wind speed, the empirical burning probability
according to different vegetation types etc). As stated in [27] the generalisability of the
approach in terms of model parameters and initial conditions should be improved in an
operational context.

A second limitation of current fire modelling approaches is related to the difficulties of
parameter estimation, especially when accounting for local features such as wind and fuel
resources. As summarised in [8], a variety of algorithms [7,28,29] have been developed
to nowcast/forecast regional fire progress relying on local geological and meteorological
variables such as elevation, vegetation and wind speed. Parameter estimation is crucial
for wildfire models to reduce the prediction bias. For both raster- (e.g., CA) and vector-
based (e.g, level-set methods [30,31]) techniques, key model parameters are generally
obtained via numerical experiments or by fire (or region) specific optimisation (e.g., [7,32]).
The requirement of parameter/hyperparameter tuning for different fire events (often
"manually" as described in [33]) is not only computationally demanding but also limits
generalisability. Much effort [33–37] has been made to enhance and generalise the parameter
identification in wildfire modelling, which can be viewed as an inverse problem of fire
forecasting. The work of [35] introduced a new uncertainty quantification approach for
more efficient parameter calibration based on polynomial chaos expansion. The work
of [36] made use of an ensemble Kalman filter (KF) to assimilate parameters related to wind
effects given observations of the actual burning area. However, despite achieving promising
results in a small scale computational domain (180 m × 180 m), the computational cost
and sensitivity to observation error increased when the method was applied to large
fire events since the KF is performed in the full observation space. In the very recent
work of [37], the authors proposed a general algorithm scheme for parameter tuning in
level set methods, which consists of iterative applications of the forward model between
two consecutive observations of burned area until the stopping condition is satisfied.
This iterative method can be computationally heavy. Moreover, as stated in [37], the
approach can only perform parameter estimation between two real-time observations. In
fact, parameter calibration/identification on ML surrogate models is even more challenging
because the underlying physical parameters impact the model output in an indirect way
where few explicit equations can be established [38].

In this paper, we develop a novel data-driven approach for burned area forecasting
which is flexible regarding initial model parameters. Using inverse modelling based on
Latent Assimilation (LA) [39,40] techniques, our approach can be used for parameter
estimation with a low computational cost. We use a high-fidelity physics-based simulator,
specifically an operating probabilistic CA simulator [7] with local geophysical features
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such as vegetation, slope and wind speed, to generate a dataset to train ML surrogate
models for forward prediction. Our aim is to build a robust latent space which is valid
for simulation data with different physical parameters. Thus, it will be more adaptable
when compressing unseen observations. We therefore compare several different ROMs,
namely PCA, CAE and SVD AE, for real wildfire events and evaluate their performance
based on: (i) the reconstruction accuracy with respect to unseen simulated data and
satellite observations; (ii) the forward fire prediction model once combined with ML
approaches; (iii) the inverse modelling for parameter identification; (iv) the forecasting
of future fire propagation using estimated/adjusted parameters. After ROM, we aim to
learn the dynamics of the latent variables which represent the evolution of the burned area.
In this study, both shallow (K-nearest Neighbours (KNN), Random Forest (RF)) and deep
machine learning algorithms (Multi Layer Percepton (MLP)) are implemented. The former
has the advantage of less offline training complexity and good interoperability while deep
learning methods often provide more accurate predictions. Physics-related parameters
are considered as model inputs. Once the forward model is computed, online parameter
tuning is crucial when predicting unseen fire events. Here, we employ the Generalised
Latent Assimilation (GLA) approach [41] for parameter estimation by first applying the
pre-trained data compression operators to the observed data to obtain latent vectors and
then using these latent vectors as inputs in the Data Assimilation (DA) approach where the
transformation operator (i.e., the mapping from the state space to the observation space)
is defined by the ML forward predictor. DA is a standard method for inverse problems
when there is an initial estimate of the state vector or background state [42,43]. In this
study, the state vector consists of a set of physical parameters. Our inverse modelling is
capable of incorporating one or several observations at different time steps for parameter
estimation, and thus the ML forward model can deliver more accurate future forecasting.
Applying DA with a ML transformation function is challenging due to the complexity
and the non-differentiability of ML functions. To tackle this bottleneck, we use the GLA
approach introduced by [41]. Evaluating the ML function on a local ensemble of perturbed
samplings around the background state, smooth surrogate functions are used to locally
approximate the ML-based transformation operator, allowing DA to be carried out with a
low computational cost. The GLA scheme is applied to parameter estimation and extended
to a Four-dimensional variational data assimilation (4Dvar) [44] framework with time-
dependent observations.

In summary:

• We propose a parameter flexible data-driven algorithm scheme for burned area fore-
casting which can combine different approaches of ROM and ML prediction tech-
niques with a large range of model parameters.

• We develop an inverse model to address the bottleneck of parameter identification in
fire prediction models by using the recently developed GLA algorithm,

• We test the parameter flexible data-driven model and the inverse model for recent
massive fire events in California where the data used for the assimilation are satellite
observations (ORNL DAAC. 2018. MODIS and VIIRS Land Products Global Subsetting
and Visualization Tool. ORNL DAAC, Oak Ridge, Tennessee, USA) of burned area.

The resulting data-driven wildfire model with identified parameters allows fire propa-
gation to be predicted in near-real time, which makes it suitable for use in the context of
emergency response and fire fighting.

2. Data Generation and Study Area

In this section we describe the models employed to generate the data used to train the
parameter flexible data-driven model for burned area forecasting, and provide information
on the study area and the satellite observations.
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2.1. Cellular Automata Fire Simulation

We make use of an operational CA model [7], for generating the training and testing
data. The performance of this CA model was originally tested by predicting the Spetses
fire in 1990 in Greece [7]. The model uses square meshes to simulate the random spatial
spread of wildfires as shown in Figure 1. The use of regular square meshes reduces the
computational cost for large fire events compared to using unstructured meshes. Four
states are assigned to represent a cell at a discrete time:

• state 1: the cell can not be burned;
• state 2: the cell is burnable but has not been ignited;
• state 3: the cell is burning;
• state 4: the cell has been burned.

At each discrete time step, fire propagation into neighbour cells (i.e., state 3 −→ state 4)
is stochastic, following the probability,

Pbun = ph(1 + pveg)(1 + pden)ps pw (1)

where ph is the burning probability. pveg, pden, ps and pw are related to the local canopy
density, canopy cover, landscape slope and wind speed/direction of the receiving cell,
respectively. The actual values of these physical fields for corresponding areas were
obtained from the Interagency Fuel Treatment Decision Support System [45]. The slope
effect ps is modelled following [46], that is,

ps = exp(aθs). (2)

where a is a dimensionless constant that can be adjusted. The slope angle θs in the CA
modelling [7] is calculated by:

θs =


tan−1

(
E1−E2

l

)
for adjacent cells

tan−1
(

E1−E2√
2l

)
for diagonal cells

(3)

where E1 and E2 are the altitude of the cells and l is the cell length. To integrate the wind
effect, we adapt the modelling in [7], that is,

pw = exp(c1Vw) ft, ft = exp(Vwc2(cos(θw)− 1)) (4)

where Vw denotes the wind speed in m/s and θw represents the angle between the wind
direction and the potential fire spread direction as illustrated in Figure 1. c1 and c2 are two
tunable coefficients of wind effect. Spotting, i.e., fire starts beyond the fire edge due to wind-
transport of flaming embers, is also considered [7]. The wind data of the corresponding
area and date for different fire events were extracted from the dataset of [47]. Wind speed
and direction are considered as spatially constant over the 27 km × 27 km grid cell, as
shown in Figure 1. The time step of the CA simulation is roughly equivalent to 30 min. To
be exact, 40 CA steps are equivalent to 24 h in real time [27].

The operational parameters ph, a, c1, c2 can have a large impact on the fire forecast.
In [7], these parameters are fixed as

ph = 0.58, a = 0.078, c1 = 0.045, c2 = 0.131, (5)

resulting from the minimisation of a cost function that fits the observations in the specific fire
event modelled. These values are used as initial guess in the parameter identification algorithm.
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Figure 1. Wind effect in the CA modelling.

2.2. Study Area and Observation Data

We evaluate the performance of our modelling approaches using two recent massive
fire events in California, namely the Chimney fire in 2016, and the Ferguson fire at 2018
(Table 1). The vegetation density in the area of the Chimney fire was higher than that in the
Ferguson fire, resulting in a much faster rate of propagation. Thus, the two fires provide
contrasting behaviour and thus a good basis for assessing the robustness of our modelling.
The area indicated in Table 1 represents the study area of both fire events, which is different
from the total burned area. The averaged wind speed (mph, meters per hour) for the
first 6 days is also indicated for both fire events. We use active fire data generated from
Moderate Resolution Imaging Spectroradiometer (MODIS) and Visible Infrared Imaging
Radiometer Suite (VIIRS) satellites. MODIS provides thermal observations globally four
times a day (Terra at 10:30 and 22:30; Aqua at 13:30 and 01:30 local time) at a resolution of
about 1 km [48]. VIIRS thermal data provides improved fire detection capabilities every
12 h (at 13:30 and 1:30 local time) [49]. In this study, the level 2 VIIRS I-band active fire
product (VNP14IMG) with a resolution of 375 m is combined with the MODIS fire products
(MOD14 and MYD14) at 1 km to derive continuous daily fire perimeters, using the natural
neighbour geospatial interpolation method [50]. Both MODIS and VIIRS data are available
2.5 h after the observations time, allowing near real-time fire updating.

Table 1. Study areas of the Chimney and the Ferguson wildfire events in this work. The latitude and
the longtitude represent the centre of the fires. The averaged wind speed of the first 6 days of fire
propagation is also indicated.

Fire Latitude Longitude Area Duration Start Wind

Chimney 37.6230 −119.8247 ≈246 km2 23 days 13 August
2016 23.56 mph

Ferguson 35.7386 −121.0743 ≈185 km2 36 dyas 13 July
2018 18.54 mph

3. A Parameter Flexible Data-Driven Model for Burned Area Forecasting: Methodology

In this section we describe the models we designed based on existing algorithms for de-
veloping a parameter flexible data-driven model for burned area forecasting, specifically the
models for compressing/reducing the data, the predictive models in the low-dimensional
space and the LA approach for parameter estimation.

3.1. Reduced-Order Modelling

The CA model provides a source of time series data which is used to train the ML
predictive models. The size of the final dataset mandates the use of ROM techniques. To
build a low dimensional latent space for burned area with high accuracy of reconstruction
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after decoding/decompression, we integrate and compare three different compression
approaches. The burned area in the full space (obtained from simulators or satellite
observations) and the encoded low-dimensional space at time t is denoted as yt and ỹt
respectively.

3.1.1. Principle Component Analysis

We first apply the PCA method for encoding the physical fields of burned areas. A
set of ny simulated fields {y(i)

t }{i=0...ny} at a fixed time t are flattened and combined in
a matrix,

Yt =
[
y(0)

t

∣∣∣y(1)
t

∣∣∣ . . .
∣∣∣y(ny)

t

]
. (6)

In this study, ny represents the number of different sets of model parameters, which
will generate different burned areas at time t through the CA modelling. The ROMs at
different time steps are performed individually. For the sake of simplicity, we adopt the
notation y, Y for yt, Yt in the rest of Section 3.1. We compute and decompose the empirical
covariance Cy,

Cy =
1

ny − 1
YYT = LYDYLY

T . (7)

Here, each column of LY is a principal component (PC) of Cy and DY is a diago-
nal matrix formed by the associated eigenvalues {λY,i, i = 0, . . . , ny − 1} in decreasing
order, i.e.,

DY =

λY,0
. . .

λY,ny−1

. (8)

A projection matrix LY,q of truncation parameter q(1 ≤ q ≤ ny) is constructed by
extracting the q first columns in LY. For each flattened field y, the PCA-encoded latent
vector ỹ is obtained via

ỹ = LY,q
Ty. (9)

An approximation of the full field vector can be computed through PCA-decoding,

yPCA = LY,qỹ = LY,qLY,q
Ty. (10)

3.1.2. Convolutional Autoencoding

Autoencoding is an unsupervised DL approach that learns how to perform efficient
data compression from the training dataset. A typical autoencoder consists of an encoder E
which compresses the input vector to the latent variables and a decoder D to reconstruct
the data back from the low-dimensional representation, i.e.,

ỹ = E(y) and yCAE = D(ỹ). (11)

Both encoders and decoders can be constructed via Neural Networks (NNs), but
this is problematic for high-dimensional data because of the large number of parameters.
Furthermore, NNs treat all input variable similarly causing difficulties in representing
local image features. CAE overcomes these problems by using convolutional layers in the
NN structure. Convolutional layers make use of multi-dimensional filters to capture local
patterns. The size of the filter is fixed in each convolutional layer. Pooling layers are then
added to reduce the dimension (i.e., number of neurons). When decoding, Upsampling
layers can be used to reconstruct the NN input. For more details about Convolutional



Remote Sens. 2022, 14, 3228 7 of 24

Neural Network (CNN) and CAE, interested readers are referred to [51]. CAE requires
training of fewer parameters and recognizes spatial patterns thanks to multi-dimensional
filters. We train the convolutional encoder and decoder jointly using the mean square
error (MSE) loss function,

J(E ,D) = 1
Ntrain

Ntrain

∑
j=1
||yj −D ◦ E(yj)||2. (12)

3.1.3. Singular Value Decomposition Autoencoding

Since training a CAE is time consuming for high dimensional problems, we implement
a training-efficient autoencoder, known as SVD AE or POD AE, which combines the PCA
approach and the ML-based AE. Dimension reduction is performed in two steps. PCA
is first applied to obtain the full set of PCs of the dynamical system, followed by a dense
autoencoder (E ′,D′) with fully connected layers to reduce the system dimensions further,

ỹ = E ′
(
LY

Ty
)
, while ySVD AE = LYD′(ỹ). (13)

Thus, both the input and the ouput of the encoder E ′ and the decoder D′ are the
principle components of the full system. Combining PCA and ML autoencoding means
this approach has both the efficiency of PCA and the power of CAE for dealing with chaotic
systems. SVD AE can handle data with both structured or unstructured geometry.

3.2. Forward Problem: Machine Learning Prediction

We implement different ML regression approaches to predict the latent variables ỹt at
different time steps using model parameters x = [c1, c2, ph, a], i.e.,

ỹt = f ML
t (x). (14)

Training is performed on an ensemble of perturbed parameter sets, generated via
Latin Hypercube Samplings (LHSs) within the range,

ph ∈ [0.00, 0.70], a ∈ [0.00, 0.14], c1 ∈ [0.00, 0.12], c2 ∈ [0.00, 0.40], (15)

based on the parameter values given in the literature and some preliminary experimenta-
tion. We generated a 2300-member ensemble (i.e., 2300 simulations with different model
parameters), which was then split into training and testing datasets of 1000 members and a
300-member validation dataset. The training and the testing datasets are used for both fire
events, and the two fire events were simulated via CA until 8 days after the ignition.

3.2.1. Random Forest Regression

We first use random decision forests RF model, an ensemble ML approach based on
Decision Trees (DTs), to predict the latent variables derived from ROM. RFs employ a
bagging approach, which trains a set of individual prediction models simultaneously using
a random subset of the training data. The number of individual models nDT, the maximum
depth dDT of each DT and the number of features nfeatures considered for the tree split
are hyperparameters in RFs modelling and obtained based on hyperparameter tuning on
the validation dataset. Here, we use Classification And Regression Tree (CART) with gini
coefficients [52] for tree splitting in the DT framework.

3.2.2. K-Nearest Neighbours Regression

We also use KNN for latent variable prediction. KNN is a non-parametric machine
learning method where the model outputs only depend on the k local training samples
(denoted as Nk(x)) which are the closest to the input vector x. As a consequence, the
function is only approximated by local samples and no pre-training is required. The
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weight of each training sample xi (for xi ∈ Nk(x)) is proportional to the inverse of the L2
distance, i.e.,

y = ∑
xi∈Nk(x)

wiyi, where wi =

1
||x−xi ||2

∑xj∈Nk(x)
1

||x−xj ||2

. (16)

To search the ensemble of nearest samples (i.e., Nk(x)), we use the kd-tree algo-
rithm [53] which is appropriate for low-dimensional data (here, dim(x) = 4). The maximum
leaf size of the kd-tree is fixed as 30.

3.2.3. Multi Layer Perceptron

We also apply a deep learning (MLP) approach in the latent space to predict the fire
propagation. Since the problem is of a relatively small dimension (i.e., dim(x) = 4 and
dim(y) ≤ 50), a fully-connected NN structure with two hidden layers is employed, that is,

dim(x) = 4 −→ nMLP,1 −→ nMLP,2 −→ dim(y), (17)

where nMLP,1 and nMLP,2 denote the number of neurons in both hidden layers, respectively.
The pipeline of the forward modelling, involving data generating, ROM, and prediction in
the latent space is illustrated in Figure 2.

Figure 2. Flowchart of the forward prediction model with CA and ROM for a specific ecoregion. The
data generation is performed with a set of parameters perturbed using LHS.

3.3. Inverse Problem: Latent Data Assimilation

The choice of model parameters significantly impacts the fire spread forecast. Thus,
parameter calibration using real-time observations is crucial for both physics- and ML-
based prediction models. We develop a novel parameter identification method based
on the GLA algorithm with time-variant observations to solve the inverse problem. To
reduce the computational burden, the observations are first encoded into low-dimensional
latent spaces.



Remote Sens. 2022, 14, 3228 9 of 24

3.3.1. Four Dimensional Variational Approach

We employ data assimilation for model parameter identification by fitting the encoded
observations {ỹt} within an observing window Tobs = {t1, . . . , tnobs} by implementing
4Dvar algorithm [44] using the ML forward models and defining the loss function as:

J (x) =
1
2
||x− xb||2B−1 +

1
2 ∑

t∈Tobs

||ỹt − f ML
t (x)||2

R̃t
−1 (18)

where B, R̃t represent the prior error covariance matrices [54,55] associated to the states
and encoded observations, respectively. These covariance matrices are set to be diagonal in
the latent space in this study. Minimising the 4Dvar loss function (Equation (18)) leads to
the analysis state,

xa = argmin
x

(
J (x)

)
. (19)

The minimisation of 4Dvar is performed using the LBFGS approach [56], where each
minimisation iteration can be written as:

x(k+1) = x(k) − lrate
[
Hessian(J )xk

]−1∇J (x(k)). (20)

Here, k is the current iteration number and lrate > 0 is the learning rate of the descent
algorithm.

Hessian
(
J (x = [x0, . . . , xnx−1])

)
i,j
=

∂2J
∂xi∂xj

(21)

is the Hessian matrix of the cost function J . The computation of Hessian(J ) is thus
required for implementing variational assimilation.

3.3.2. Generalised Latent Assimilation

Since the model parameters and the encoded observations ỹt are mapped through
ML functions, the direct computation of Hessian(J ) can be difficult due to the high non-
linearity and the large number of model parameters. The recent work of [41] proposed a
new assimilation approach GLA to tackle this bottleneck in current Latent Assimilation
methods, where local Polynomial Regressions (PRs) are performed in a neighbourhood of
the background state to build a smooth local surrogate function to facilitate the computation
of the Hessian matrix in the optimisation loops. Here, LHS is performed to build a PR
learning ensemble {xq

b}q=1..ns around the background state within certain range rs (i.e.,
sampling from [(1± rs)x0, . . . , (1± rs)xnx−1]). We then fit the ML model output by a local
polynomial function H̃p

t , i.e.,

H̃p
t = argmin

P∈P(dp)

( ns

∑
q=1
||p(xq

b)− f ML
t (xq

b)||
2
2
)1/2, (22)

where P(dp) represents the set of polynomial functions of degree dp. {dp, ns, rs} are consid-
ered as hyperparamters of the algorithm. We extend the GLA to a 4Dvar framework with
time-dependent observations, as shown in Algorithm 1.

Once the analysis state (i.e., assimilated parameters) xa is obtained, forecasts of future
burned area at time t can be made,

ypred
t = Dy

(
f ML
t (xa)

)
. (23)

The pipeline of the inverse modelling for parameter estimation is illustrated in Figure 3.
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Algorithm 1: 4Dvar GLA

Inputs: xb, B, {R̃t}, {ỹt}, { f ML
t } for t ∈ Tobs

Paramters: dp, rs, ns
x0 = xb, k = 0

for t ∈ Tobs do
{xq

b}q=1..ns = LHS Sampling{dp ,rs ,ns}(xb)

for q = 0 to ns do
ỹq

t = f ML
t (xq

b)
end
H̃p

t = PRtrain
(
input:{xq

b}, output:{ỹq
t }, q = 1..ns

)
end

xa = argmin
x

(
1
2 ||x− xb||2B−1 +

1
2 ∑t∈Tobs

||ỹt − H̃
p
t (x)||2R̃t

−1

)
outputs: xa

Figure 3. Flowchart of the inverse model for parameter identification using GLA.

3.4. Hyperparameter Tuning

To select the most appropriate data compression methods, we apply the three different
ROM approaches and evaluate their performance on the unseen test dataset and satellite
observations. Forward models are trained on simulated burned areas individually 2, 4,
6 days after the ignition of each fire in order to capture the time of the fastest propagation.
We set the burned and burning cells to 1 while unburned cells are set to 0. A threshold of
0.5 is set to classify the output cells after reconstruction to the full space. The performance
of different ROMs and prediction models is evaluated using both the test dataset (obtained
via CA simulations) and the satellite observations. Hyperparameter tuning is carried out
for both the forward and inverse models on the validation dataset as shown in Table 2. For
both fire events, the NN structures of CAE and SVD AE are similar. The exact networks for
the Chimney fire are shown as an example in Table 3.
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Table 2. Hyperparameter grid search space.

Model/Hyperparameters Grid Search Space Final Set

CAE
Filter, Strides, Pooling size / Table 3

Activation {ReLu, LeakyReLu, Sigmoid} Table 3
Optimizer {Adam, SGD} Adam
Batch size {16, 32, 64} 32

RF
split criteria {‘gini’, ‘entropy’} ‘gini’

nDT {10, 50, 100} 100
nfeatures {‘log2’, ‘sqrt’} ‘sqrt’
KNN

k {5, 10, 20} 5
Metric {L1, L2} L2
MLP

nMLP,1 {10, 20, 30} 20
nMLP,2 {30, 40, 50} 30

Activation {ReLu, LeakyReLu, Sigmoid}
Optimizer {Adam, SGD} Adam

GLA
dp 2–6 4
ns {200, 500, 1000, 2000} 1000
rs 50–200% 80%

Table 3. NN structure of the CAE with ordered meshes where the latent dimension q ∈ {10, 20, 30, 40, 50}.

Layer (Type) Output Shape Activation

Encoder
Input (899, 982, 1)

Conv 2D (10 × 10) (899, 982, 4) ReLu
MaxPooling 2D (5 × 5) (180, 197, 4)

Conv 2D (4 × 4) (180, 197, 4) ReLu
MaxPooling 2D (3 × 3) (60, 66, 8)

Conv 2D (3 × 3) (60, 66, 8) ReLu
MaxPooling 2D (3 × 3) (20, 22, 8)

Conv 2D (2 × 2) (20, 22, 8) ReLu
MaxPooling 2D (2 × 2) (10, 11, 8)

Flatten 880
Dense (q) q LeakyReLu (0.3)
Decoder

Input q
Dense (110) 110 LeakyReLu (0.3)

Reshape (10, 11, 1)
Conv 2D (2 × 2) (10, 11, 8) ReLu

Upsampling 2D (2 × 2) (20, 22, 8)
Conv 2D (3 × 3) (10, 11, 8) ReLu

Upsampling 2D (3 × 3) (60, 66, 8)
Conv 2D (4 × 4) (60, 66, 8) ReLu

Upsampling 2D (3 × 3) (180, 198, 8)
Conv 2D (5 × 5) (180, 198, 4) ReLu

Upsampling 2D (5 × 5) (900, 990, 4)
Cropping 2D (1, 8) (899, 982, 4)

Conv 2D (8 × 8) (899, 982, 1) Sigmoid

4. Results and Analysis

In this section, we present and analyse the numerical results from ROM, ML forecast-
ing and GLA parameter estimation using simulated data and satellite observations.
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4.1. Reconstruction Accuracy of Reduced Order Modellings

To compare different ROMs, we compute the relative reconstruction error after decoding,

εrec =
||y− y{PCA, CAE, SVD AE}||1

dim(y)
, (24)

where ||.||1 denotes the one-norm, in other words, the number of mis-predicted pixels.
With the same number of latent variables for different ROMs, εrec represents the efficiency
of data compression strategies which is crucial for predictions latter. The evolution of
εrec against the truncation parameter (i.e., the dimension of the latent space) is shown in
Figure 4 for both the Chimney and the Ferguson fire events at both the day 2 and the day
4. The estimation of εrec was made using all 1000 simulations in the test dataset of CA
simulations (Figure 4a,c) while the εrec for the real fire (Figure 4b,d) is evaluated using the
satellite observation (a single image) at day 4.
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Figure 4. Relative reconstruction error of satellite observations and CA simulations in the test dataset
against the dimension of the latent space.

Reconstruction errors increase with time from the start of the fire for both fires as
shown in Figure 4b,d. The reconstruction errors for the satellite images are larger than
those for the test data, which is to be expected since the autoencoders were trained entirely
using simulated data. The PCA and SVD AE approaches have lower reconstruction errors
than CAE in the test dataset generated by CA simulations. However, CAE shows better
performance against the satellite data than either PCA or SVD AE. The differences between
the three approaches are also seen in the predictions of burnt area. In Figures 5 and 6,
we show the reconstruction of different ROMs for two sets of model parameters where
the original CA simulations are represented by sub-figures (a,i) for each fire. The PCA
and SVD AE approaches are better at representing local variability in burnt area in the
test dataset (Figures 5 and 6f–h,n–p). However, overfitting to the CA dataset means that
they are less good than CAE at predicting the satellite observations (Figure 7). On the
other hand, CAE produces more continuous burned areas compared to PCA and SVD AE
because of the convolutional layers in compressing and reconstructing the images. These
findings are consistent with the results obtained in Figure 4 and the earlier analysis of other
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fire events [27] . The Ferguson fire has a higher average vegetation density, leading to a
considerably faster fire spread than in the Chimney fire (Figure 5 and 6). This is seen in both
the CA simulations and the observations of burned area. It would be possible to improve
the performance of these ML-based ROMs, particularly the CAE and SVD AE) approaches,
by increasing the size of the training dataset, but this would increase the computational
cost since the CA simulation is relatively slow. Because most of the ROMs achieve a stable
performance for q ≥ 30, we fix the dimension of the latent space as q = 30 for both forward
and inverse modellings in the rest of this paper.

(a) CA (b) PCA (c) CAE (d) SVD AE

(e) Colorbar error (f) Error PCA (g) Error CAE (h) Error SVD AE

(i) CA (j) PCA (k) CAE (l) SVD AE

(m) Color vegetation (n) Error PCA (o) Error CAE (p) Error SVD AE

Figure 5. Reconstruction of CA simulations for 2 examples in the test dataset of the Chimney fire at
day 4.
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(a) CA (b) PCA (c) CAE (d) SVD AE

(e) Colorbar error (f) Error PCA (g) Error CAE (h) Error SVD AE

(i) CA (j) PCA (k) CAE (l) SVD AE

(m) Color vegetation (n) Error PCA (o) Error CAE (p) Error SVD AE

Figure 6. Reconstruction of CA simulations for 2 examples in the test dataset of the Ferguson fire at
day 4.

4.2. Prediction Performance of the Forward Model

Having compressed the full space of burned area into low-dimensional latent variables,
we apply the models introduced in Section 3.2 to predict fire propagation in these reduced
spaces using the same training, validation and test datasets as for ROMs. Comparisons of
the predictions of latent variables on the test dataset against the true compressed values
is illustrated in Figure 8. We focus on the most important PC (i.e., the one associated to
λY,0) for the PCA approach and the latent variables with highest variance for CAE and
SVD AE. For clarity, the samples in each sub-figure are reordered in increasing order along
the true compressed values (i.e., red curves). Since CA generates probabilistic simulations,
the same set of model parameters may lead to different simulations of burned area which
introduces some uncertainties in the ML approaches as observed in Figure 8. Nevertheless,
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the predictions for the test dataset are still reasonably accurate and show the advantage
of DL-based approaches. We show the forecasting error εpred (defined similarly to εrec) in
the full space after decoding in Table 4. Good prediction accuracy (with an error below
5% in the full space) can be achieved by each combination of ROM and ML approaches.
The PCA and SVD AE approaches produce slightly more accurate predictions compared to
CAE-based approaches due to the reconstruction error on the CA test dataset, as discussed
in Section 4.1. The predicted burned areas using CAE are more continuous.

(a) obs (b) PCA (c) CAE (d) SVD AE

(e) Colorbar error (f) Error PCA (g) Error CAE (h) Error SVD AE

(i) obs (j) PCA (k) CAE (l) SVD AE

(m) Color vegetation (n) Error PCA (o) Error CAE (p) Error SVD AE

Figure 7. Reconstruction of the satellite observation for the Chimney (a–h) and the Ferguson (i–p)
fire at day 4.

The training time of ML approaches (i.e., KNN, RF and MLP) in the latent space
differs slightly when combined with different ROMs. As an example, we show the training
time in the reduced space of CAE in Table 5. The main computational cost for online
prediction is decoding, since the evaluation of trained ML algorithms is very fast. We
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show the results of RF coupling with different ROM approaches, but using KNN or MLP
produces similar results. In Table 5, only the training of CAE is performed with one
NVIDIA P100 GPU (RAM of 16 Gb) of Google Colab environment. The other works
including CA, are carried out with Colab Intel CPUs (2.30 GHz and 26.75 Gb RAM). The
ROM and ML-based online predictions (especially with CAE and PCA), are much faster
than the physics-based CA simulations. The online prediction of SVD AE is relatively slow
because its decoding involves a large number of principle components. Comparing the
results in Tables 4 and 5 and Figure 4, SVD AE is out-performed by PCA in terms of both
reconstruction/prediction accuracy and online efficiency. We, therefore, only focus on PCA
and CAE for parameter estimation.

Table 4. Averaged prediction error for Chimney and Ferguson fires at day 4 in the full physical space
after decoding. The dimension of the latent space is fixed as q = 30.

ML Approache
Chimney Ferguson

PCA CAE SVD AE PCA CAE SVD AE

KNN 1.87% 4.95% 1.88% 2.00 % 3.30% 2.73%

RF 1.70% 4.91% 1.80% 1.89% 3.27% 2.45%

MLP 1.71% 4.54% 1.59% 2.13% 3.11% 2.54%

Table 5. Averaged computational time for offline training (on the training dataset of 1000 samples) and
online prediction(for each sample including decoding) for different ROMs using RF. The dimension
of the latent space is fixed as q = 30.

Fire
Offline ROM and ML Training Online Prediction

PCA CAE SVD AE KNN RF MLP CA PCA CAE SVD AE

Chimney 101.06 s ≈1 h 38 min 414.55 s 0.02 s 0.67 s 108 s ≈35 min 0.52 s 0.41 s 14.47 s

Ferguson 97.50 s ≈1 h 29 min 316.61 s 0.02 s 0.54 s 116 s ≈29 min 0.25 s 0.31 s 18.62 s

0 200 400 600 800 1000

−2300

−2200

−2100

−2000

−1900

(a) PCA-KNN (C)

0 200 400 600 800 1000
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5
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(f) SVD AE-RF (C)

Figure 8. Cont.
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Figure 8. Prediction results of latent variables (with the highest variance in each case) for q = 30
in the test dataset for both Chimney (C) and Ferguson (F) wildfires at day 4. The x-axis represents
reordered samples according to their true latent values

4.3. Parameter Estimation of the Inverse Model

We use observations of day 2 and day 4 to improve parameter estimation following
the flowchart shown in Figure 3 and test the algorithm performance for the accuracy of
predictions on day 6 for both fire events. The CA simulation using the true parameters
in the test dataset is considered as the ground truth. Only slight differences are found
between the third and the fourth columns of Figure 9, which confirms the accuracy of the
forward modelling. The predictions with assimilated parameters (i.e., CAE-MLP(xa)) are
much closer to the CA simulations (i.e., CA(xt)) regarding the background predictions
(i.e., CAE-MLP(xb)) using by-default values (Equation (5)) of parameters. The strength of
GLA when dealing with satellite data can be seen in Figure 10, where the preprocessed
satellite images of day 2 and day 4 (Figure 7a,i) have been used as observations in GLA for
parameter estimation after encoding. Since both the forward prediction models and the
ROMs are trained using simulated data, their adaptation to satellite images is imperfect.
Nevertheless, the GLA produces a better forecast of observed burned area (Figure 10c,h) for
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both CAE-MLP and PCA-MLP approaches. The predictions performed using assimilated
parameters (Figure 10b,e,g,j) are much closer to the satellite observations (Figure 10c,h)
regarding initial guesses (Figure 10a,d,f,i). Quantitative comparison of averaged relative
error (Equation (24)) is shown in Table 6. A considerable reduction of prediction error for
all combinations of ML and ROM approaches can be observed. This is coherent with our
analysis of Figures 7 and 10. Thus, GLA preforms well in correcting both the overestimation
(Ferguson fire) and underestimation (Chimney fire) of model parameters. The predictions
of future burned area of day 6 made by assimilated parameters are much closer to the
observations than the predictions using prior parameters. Further more, the low compu-
tational time of GLA (evaluated on the test dataset since only one satellite observation is
available for each fire at day 6), allows efficient online parameter estimation, facilitating
near real-time fire assimilation/monitoring.

Table 6. Relative prediction error and the averaged computational time (only the LA for parameter
estimation) for the Chimney and the Ferguson fire at day 6 with assimilated parameters.

Fire Data Forward
PCA CAE

Prior Posterior Time Prior Posterior Time

Chimney CA(test) KNN 10.1% 6.0% 0.98 s 11.1% 7.5% 0.52 s

RF 10.4% 5.7% 0.78 s 10.2% 6.6% 0.45 s

MLP 10.9% 6.3% 1.25 s 10.6% 5.0% 0.46 s

observation MLP 8.3% 5.0% 9.65% 6.5%

Ferguson CA(test) KNN 30.5% 20.3% 0.74 s 21.3% 9.4% 0.60 s

RF 27.0% 22.5% 0.60 s 23.1% 13.6% 0.58 s

MLP 30.7% 17.9% 0.76 s 22.4% 12.6% 0.88 s

observation MLP 41.6% 14.8% 23.8% 11.9%

(a) CA(xt) (b) CAE-MLP(xb) (c) CAE-MLP(xa) (d) CAE-MLP(xt)

(e) CA(xt) (f) CAE-MLP(xb) (g) CAE-MLP(xa) (h) CAE-MLP(xt)

Figure 9. Cont.
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(i) CA(xt) (j) CAE-MLP(xb) (k) CAE-MLP(xa) (l) CAE-MLP(xt)

(m) CA(xt) (n) CAE-MLP(xb) (o) CAE-MLP(xa) (p) CAE-MLP(xt)

Figure 9. Machine learning (DL) prediction of burned area at day 6 for both fire events (Chimney (a–h)
and Ferguson (i–p)) using original (xb) and assimilated (xa) parameters compared to CA simulations
(considered as ground truth here) for 2 examples in the test dataset.

(a) CAE-MLP(xb) (b) CAE-MLP(xa) (c) obs

(d) PCA-MLP(xb) (e) PCA-MLP(xa)

Figure 10. Cont.
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(f) CAE-MLP(xb) (g) CAE-MLP(xa) (h) obs

(i) PCA-MLP(xb) (j) PCA-MLP(xa)

Figure 10. Machine learning (DL) prediction of burned area at day 6 for both fire events using original
(xb) and assimilated (xa) parameters compared to satellite observations. The results of both CAE-MLP
(a,b,f,g) and PCA-MLP (d,e,i,j) are demonstrated.

5. Conclusions

Current tools for dynamical wildfire forecasting are difficult to apply for real-time
fire forecasting. We have developed a scheme which combines different reduced-order
modellings and data-driven prediction models for efficient parameter-flexible burned area
forecasting. We have extended the Latent Assimilation framework to time-variant (i.e.,
4Dvar) optimisation problems. Our parameter estimation approach can be adjusted effi-
ciently using available observation data in near real-time. The results clearly demonstrate
the efficiency and the robustness of the proposed approach. The method relies on ML
from physics-based CA simulations; such simulations have been successfully run for many
different regions (e.g., [57,58]) and thus our approach should be generalisable to other
regions and ecosystems. The system represented in this study is also data-agnostic, and
could easily be applied to other dynamical systems.

Nevertheless, although the reduced-order modelling and the forward prediction
methods achieved a precise reconstruction on the test dataset (also generated by the CA
model), there are still difficulties in predicting real-time satellite images. Further efforts
to improve the adaptive capability of the current system when dealing unseen satellite
data could focus on, for instance, enhancing the regularity of autoencoding via variational
autoencoders [17], online fine tuning [59] and domain adaption techniques [60]. Our
approach requires individual ROMs and ML prediction models for different ecoregions,
which could be computationally expensive for offline simulation and training. It may be
possible to overcome this limitation, by using fire prediction models on a global scale with
sparser grids, which yields a tradeoff between forecasting accuracy and generalisability.
Further work to improve the forward and inverse modellings could focus on learning from
more complex fire simulations, for example simulations which take into account of fuel
moisture, the incidence of spotting or surface-to- crown transitions
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NN Neural Network
DNN Deep Neural Network
ML Machine Learning
LA Latent Assimilation
DA Data Assimilation
PR Polynomial Regression
AE Autoencoder
VAE Variational Autoencoder
CAE Convolutional Autoencoder
VAE Variational Autoencoder
BLUE Best Linear Unbiased Estimator
3D-Var 3D Variational
RNN Recurrent Neural Network
CNN Convolutional Neural Network
LSTM long short-term memory
POD Proper Orthogonal Decomposition
PCA Principal Component Analysis
PC principal component
SVD Singular Value Decomposition
ROM reduced-order modelling
CFD computational fluid dynamics
1D one-dimensional
2D two-dimensional
NWP numerical weather prediction
MSE mean square error
S2S sequence-to-sequence
R-RMSE relative root mean square error
BFGS Broyden–Fletcher–Goldfarb–Shanno
LHS Latin Hypercube Sampling
AI artificial intelligence
DL Deep Learning
PIV Particle Image Velocimetry
LIF Laser Induced Fluorescence
KNN K-nearest Neighbours
DT Decision Tree
RF Random Forest
KF Kalman filter
CART Classification And Regression Tree
CA Cellular Automata
MLP Multi Layer Percepton
GLA Generalised Latent Assimilation
3Dvar Three-dimensional variational data assimilation
4Dvar Four-dimensional variational data assimilation
MODIS Moderate Resolution Imaging Spectroradiometer
VIIRS Visible Infrared Imaging Radiometer Suite
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