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Abstract

Reserve power systems are widely used to provide power to critical infrastructure

systems in the event of power outages. The reserve power system may be subject

to regulation, typically focussing on a strict operational time commitment, but the

energy involved in supplying reserve power may be highly variable. For example,

if heating or cooling is involved, energy consumption may be strongly influenced

by prevailing weather conditions and seasonality. Replacing legacy assets (often

diesel generators) with modern technologies could offer potential benefits and ser-

vices back to the wider electricity system when not in use, therefore supporting a

transition to low-carbon energy networks. Drawing on the Great Britain telecom-

munications systems as an example, this paper demonstrates that meteorological

reanalyses can be used to evaluate capacity requirements to maintain the regu-

lated target of 5-days operational reserve. Across three case-study regions with

diverse weather sensitivities, infrastructure with cooling-driven electricity demand

is shown to increase energy consumption during summer, thus determining the

overall capacity of the reserve required and the availability of ‘surplus’ capacity.
Lower risk tolerance is shown to lead to a substantial cost increase in terms of

capacity required but also enhanced opportunities for surplus capacity. The use of

meteorological forecast information is shown to facilitate increased surplus capac-

ity. Availability of surplus capacity is compared to a measure of supply–stress
(demand-net-wind) on the wider energy network. For infrastructure with cooling-

driven demand (typical of most UK telecommunication assets), it is shown that

surplus availability peaks during periods of supply–stress, offering the greatest

potential benefit to the national electricity grid.
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1 | INTRODUCTION

Critical infrastructures are facilities necessary for a coun-
try to function or protect against danger to the public; for
example, hospitals, transport services and communica-
tions infrastructure (CPNI, 2021). It is therefore vital that
the operation of critical infrastructure is resilient to a
wide spectrum of risks including external threats (such as
threats from human conflict, extreme weather events and
cyber attacks) and systemic threats (organizational or
equipment failure, or long-term unsustainable practices
(Guthrie & Konaris, 2012)).

Energy sector adaptation and mitigation of climate
and ecological breakdown can complement aims to
improve living standards, but requires a shift towards
prioritization of energy sufficiency and global energy
redistribution (Kikstra et al., 2021; Millward-Hopkins
et al., 2020). In mid- and high-income nations, main-
taining the operation of critical infrastructure in the
event of electrical power loss is typically achieved through
dedicated reserve generation capacity and offers strong
social and economic benefits (Chawla et al., 2018;
Guerrero et al., 2007). Ensuring the reliability of existing
reserve systems and a global roll-out is therefore para-
mount to supporting a range of sustainable development
goals.

On-site reserve is typically designed to provide a pre-
defined level of resilience, for example, a specific opera-
tional time commitment for delivering a minimum
N-days of power in the event of an outage. To date, most
of this reserve has been provided via fossil fuel (gas or
diesel) generators. However, to improve performance and
achieve carbon emission reductions, new reserve genera-
tion systems based partially or fully on storage technolo-
gies, such as lithium-ion batteries or hydrogen fuel cells,
can be considered to supplement and replace ageing
reserve power fleets (Borzenko & Dunikov, 2017; Li, Niu,
et al., 2018). Lifetime costs of these new technologies
have already reduced substantially over recent decades
and are projected to reduce significantly from 2020 to
2050 (Li, Lu, et al., 2018; Schmidt et al., 2019).

Flexible use of decarbonized reserve generation
capacity may also offer wider benefits to national power
systems. Currently, critical infrastructure reserve power
supplies are typically rarely utilized and operate only in
unusual situations when normal power supply is inter-
rupted. However, as national-scale electricity networks
seek to integrate ever larger shares of weather-dependent
renewables (i.e., wind and solar power), the need for
ancillary services (such as short-term operating reserve
(National Grid ESO, 2019)) to manage weather risk
increases. Flexible use of reserve generation capacity,
when it is not required for its primary ‘backup’ role,

could help to provide many of these valuable ancillary
services.

Weather-driven models of energy demand are well
established, with published literature typically focus-
sing on national electricity grid demand (Taylor &
Buizza, 2003). Studies on specific sectors can apply
more complex models embedding different physical
responses, for example in residential heating (Fumo &
Rafe Biswas, 2015). Weber et al. (2018) demonstrate cli-
mate change impacts on backup energy storage consid-
ered at a continental scale in Europe. However, we
address a perceived gap in published literature for the
application of meteorological data to understanding
drivers of critical infrastructure demand, making link-
age to weather and climate risk to the reserve power
infrastructure. Additionally, the exploration of ‘sur-
plus’ capacity (introduced in Figure 1) is novel and
opportune.

This paper, therefore, investigates the extent to which
rarely-used critical infrastructure reserve power supplies
can be released as ancillary services back to the wider
power system, without compromising resilience.
Specifically, we seek periods of ‘surplus capacity’ where
the anticipated 5-day consumption of the protected critical
infrastructure asset is less than the total installed backup
generation capacity, although this concept can be applied
to a more generalized N-day case.

The additional revenue derived by identifying and
allocating surplus capacity in this way may support both
the security and decarbonization of the wider grid, whilst
offsetting some of the installation costs of the reserve
power supply technology itself (Mustafa et al., 2021).

The paper is structured as follows: the underlying
datasets are described in Section 2; weather-driven
models of GB telecommunication systems' electricity con-
sumption are developed using empirical data spanning
2016–2020 in Sections 3 and 4; in Section 5, these models
are then applied to a longer 41-year temperature dataset to
establish an extended baseline climatology of consumption
over time. The resulting consumption climatology is then
used to address the following scientific challenges:

1. To understand and quantify how the total reserve
energy capacity required for the GB telecommunica-
tion system is impacted by differing levels of risk toler-
ance. (Sections 5.2 and 5.3).

2. To assess and understand how the total reserve energy
capacity varies seasonally and hence to identify
periods and quantities of surplus capacity available,
given an expressed risk tolerance. (Sections 5.4–5.6).

3. To understand how the availability of surplus capacity
relates to supply stress on the wider electricity net-
work. (Section 5.7).
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2 | DATASETS

We develop a temperature-driven model of telecommuni-
cations service provider BT's infrastructure electricity
demand, based on data spanning 2016 to 2020. For
context, BT uses just under 1% of UK electric grid
energy, whilst overall healthcare electricity consump-
tion in the UK is just under 0.5%.1 The model's key
features reflect those observed in the metered infra-
structure demand datasets: weekday patterns driven by
human behaviour and day-to-day variability largely
explained by cooling power requirements. Analyses are
conducted at both regional and national aggregate
levels, with regions corresponding to the 14 British
Distribution Network Operator geographic zones
(National Grid ESO, 2020).

In this section we describe the datasets used, specifi-
cally: BT electricity consumption data (2.1), temperature
records (2.2) and nation-wide electricity consumption
and renewable generation (2.3).

2.1 | Infrastructure electricity demand

Metered infrastructure electricity demand data is shown
in Figure 2a (quality control has removed unphysical

readings). Data is anonymized to preserve sensitive infor-
mation. The significant features are an overall downward
trend related to operational energy efficiency improve-
ments over time, substantial peaks in the summer
(in particular, due to increased cooling requirements for
network equipment locations) and smaller increases in
the winter months due to heating requirements. There
is also a weekday pattern in infrastructure demand,
with weekends being slightly lower than the workdays
(on average by 1%), as seen in Figure 2b. The impact
of weekday variability on total infrastructure metered
demand measured in each region is between
2.5% to 4.9%.

In the present context, we seek to understand and
model the impact of meteorological drivers on BT's con-
sumption. It is therefore desirable to remove the effects
of long-term technological and behavioural trends and
patterns such as the day-of-the-week effect. This process
is described in Figure 2 and Equation 1:

D tð Þ¼ D tð Þ
Dweekday tð Þ� ctrend tð Þ ð1Þ

The anomaly normalized infrastructure demand D, a
function of time t (daily resolution), is calculated by
dividing infrastructure demand D (shown in Figure 2a)
by weekday pattern Dweekday (shown in Figure 2b) and
then subtracting the long-term trend ctrend (shown in
Figure 2d).

FIGURE 1 Schematic demonstrating the concept of surplus capacity, in the specific case of a 5-day reserve commitment. A critical

infrastructure system has a fixed capacity of installed reserve (shown left shaded light green, height given in units of capacity per day and

width in the delivery obligation time). Outside of the periods with very high infrastructure demand, the 5-day consumption (light blue) is

some amount less than the installed capacity, leaving a portion of ‘surplus’ (dark green). If this surplus can be accurately anticipated, it may

be utilized for other purposes without impacting the N-day reserve delivery commitment.

1Estimates based on data from Watson (2022); Short et al. (2015);
Department for Business, Energy, and Industrial Strategy (2022)
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Sensitivity tests showed that static values for Dweekday

(as opposed to seasonally or annually evolving values)
were sufficient in capturing day-of-the-week fluctuations
in infrastructure demand.

Longterm infrastructure demand trend ctrend, calcu-
lated as the 1-year centred window running mean, is
believed to result from operational energy efficiency
improvements. In most regions, ctrend evolves gradually
and continuously. Three out of the 14 regions contain
discontinuous changes related to faster energy efficiency
improvements.

2.2 | Temperature

The MERRA2 global weather reanalysis (Gelaro
et al., 2017) is used as a source for temperature time-
series.2 Daily gridded 2 m air temperature data is con-
verted into regional timeseries by averaging over a

latitude-longitude box for each distribution network
operator zone (Figure 3). The resulting regional tempera-
ture data, T, is used in model fitting (2016–2020) and
later as input to simulated infrastructure demand
(1979–2020).

2.3 | GB-aggregated grid demand-
net-wind

The transmission system operator controls the transport
of electricity on the wider electricity network, and in
GB is served by National Grid ESO. From Bloomfield
et al. (2016, 2020a), we use reanalysis-derived grid
demand and wind power. The demand–supply impact
of weather and climate on the power system is the elec-
tricity grid demand minus wind power generation.
These nationally aggregated daily variables are imple-
mented with a single model realization, derived from
MERRA2 data spanning 1979–2017, and without week-
day varying component or residual noise. An analo-
gous approach is taken in modelling weather-driven
infrastructure electricity consumption in Section 3. We
assume an installed wind power capacity of 24.5 GW in
2020 (Spry, 2023).

(a) (b)

(c)

(e)

(d)

FIGURE 2 Processing steps for BT

metered infrastructure demand, depicted

for national data. Steps are reproduced

at a regional level. Panels show: (a)

Quality controlled data D. (b) Weekday

pattern Dweekday is identified from a.

(c) Normalized infrastructure demand

(the result of dividing out b from a).

(d) Long-term trend ctrend is identified

from c. (e) Anomaly normalized

infrastructure demand (longterm trend

d is subtracted from c) uses the symbol

D and forms the basis for analysing the

infrastructure demand response to

temperature.

2Daily temperature timeseries for the gridboxes defined in Figure 3 are
not sensitive to the choice of reanalysis. For example, ERA5 and
MERRA2 outputs are highly correlated. However, a model
incorporating additional meteorological variables (for example
windspeed, precipitation) may require further consideration on the
choice of reanalysis product.
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3 | WEATHER-DRIVEN MODEL OF
INFRASTRUCTURE ELECTRICITY
DEMAND

Figure 4 shows the metered infrastructure demand to
temperature response. Panel a presents the typical pattern
seen in most BT regions: warmer temperatures increase
infrastructure demand above a threshold (approximately
10�C), consistent with the need for cooling equipment
dominating BT's overall energy usage nationally. In panel
b, the region displayed (London) shows a particularly
strong cooling response and no detectable heating
response. In one region, Northern Scotland, there is a
markedly contrasting behaviour with cooler temperatures
(below 10.2�C) and differences in infrastructure
temperature-sensitivity causing increased infrastructure
demand, consistent with the dominance of office heating

in energy usage. Elsewhere, the HDD effect is of much less
significance than the CDD effect, but in most regions has
at least a measurable impact. In all cases, it is noted that
there is some spread in the temperature-demand relation-
ship, indicative of other factors impacting infrastructure
demand (and explored further in Section 4).

Infrastructure electricity demand is modelled with
Heating and Cooling Degree Days (Taylor & Buizza,
2003). Our degree day functions take input of regional
daily timeseries of temperature (T tð Þ) and are defined in
Equation 2:

HDD Tð Þ¼
THDD�T if T <THDD

0 otherwise

(

CDD Tð Þ¼
T�TCDD if T >TCDD

0 otherwise

( ð2Þ

FIGURE 3 Gridboxes used to

extract Temperature (2 m) from

MERRA2, for the 14 Distribution

Network Operator zones. Re-analysis

gridpoints are displayed as dots, with

0.50 � 0.625 spacing

(latitude � longitude resolution). Zone

averages of temperature are calculated

by weighting by the square of land-sea

fraction for intersecting grid-points.

Boundary co-ordinates are given in

supporting information Table S1.

(a) (b) (c)

FIGURE 4 BT daily metered infrastructure demand (reconstructed to 2020 trend), in the three case study regions: GB, Cooling-Driven

(London) and Heating-Driven (North Scotland). Values are normalized to remove weekday effects. Black curves indicate deterministic

model fit.
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In each region, these functions are used in fitting a
new model of D by ordinary least squares. In each case,
we allow the model to select terms, which are up to qua-
dratic in HDD and CDD, and we neglect terms, which
are shown to be negligible (using stepwise regression).
In each case, the optimal fit identified either matches
the form of Equation 3, or in some cases this form was
detected as one of multiple fits whose error metrics
are consistent. For simplicity, we then impose all
models to take the form of linear HDD and qua-
dratic CDD:

D Tð Þ¼D0þαHDD�HDD Tð ÞþαCDD�CDD Tð Þ2 ð3Þ

The degree day functions are as defined in Equation 2,
and D Tð Þ is the modelled infrastructure demand. Inter-
cept D and co-efficients for the three different regional
models studied in detail given in Table 1.

Three regions are selected to represent distinct
temperature-demand sensitives. Whilst ‘North Scotland’
has a strict geographical significance for BT (i.e., the
data has a correspondence to real infrastructure
installed across that region), the characteristic behav-
iour may be entirely relevant for a completely
different type of infrastructure installed elsewhere,
which could be, for example, a hospital in South
Wales, or an office in North England, depending on
the temperature-demand relation present. The three
‘regions’ are chosen to give as wide a representation
as possible of different behaviours of infrastructure
electricity consumption. Henceforth, to make it clear
that these case studies should be considered for their
specific temperature-demand behaviours, we refer to
the regions as ‘Cooling-Driven’ (London), ‘Heating-
Driven’ (North Scotland), and ‘GB’ (the sum total
over subregions, reflecting a combination of heating
and cooling behaviours, with behaviour broadly repre-
sentative of other subregions).

Parameter uncertainty ranges are calculated by a ran-
dom bootstrap sampling of daily infrastructure demand.
The variation in temperature thresholds (THDD andTCDD)
calculated from sampling is below 1�C, whilst gradient
parameters vary by less than 10% of their respective mean
values.3

4 | STOCHASTIC WEATHER-
DRIVEN MODEL OF
INFRASTRUCTURE ELECTRICITY
DEMAND

The models introduced in Section 3 are deterministic,
that is, for a known set of weather conditions, there is a
singular estimate of the infrastructure demand D. As
noted in Section 3, there is a spread in the temperature-
demand relationship. The output from the deterministic
model can be interpreted as the expected D for a given
set of weather conditions. The actual D which would be
recorded on such a day may be either higher or lower
than this expected value due to ‘other factors’ which are
not being expressly modelled. In some cases such factors
may be weather related—for example, additional vari-
ables such as humidity or wind speed—or from non-
weather-related sources. However, no additional
meteorological- or calendar-related impacts were
detected in the BT consumption dataset.

The reduced variability in (deterministic) modelled D
alters the probability distribution of demand, especially
significant near the extreme tails. In the context of
estimating reserve requirements it is therefore useful
to represent the effect of these ‘other factors’ stochas-
tically. We introduce a first-order autoregressive
stochastic term, which encompasses the missing
variability. A pseudo-random, normally distributed
first-order autoregressive timeseries is constructed for
the residual infrastructure demand component Dres

(i.e., the difference between modelled infrastructure
demand and observed (metered) infrastructure demand
after removing the effects of long-term trends). The calcu-
lation of this daily demand timeseries is shown in
Equation 4:

Dres tð Þ¼ ρ1Dres t�1ð ÞþZ tð Þ ð4Þ

Dres tð Þ, the residual infrastructure demand at step t is
related to the previous time step multiplied by residual
lag first-order autocorrelation ρ1. The timeseries is ini-
tialized at Dres 0ð Þ¼Z 0ð Þ. The normally distributed ran-
dom component Z has mean 0 and standard deviation σZ
related to the standard deviation of the infrastructure
demand residual (Chatfield, 2003) and given in
Equation 5:

σZ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1�ρ21

q
�σres ð5Þ

The residual standard deviation σres introduces vari-
ability equivalent to that of observations minus model
(but accounting for long-term trend).

3Bootstrap sampling was conducted by creating new 5-year timeseries
based on the grid demand data 2016–2020, and randomly re-sampling
the years. A bootstrap size of 41 was used. Further tests limiting the
data to a 3-year window at the start/end (ie. 2016–2018 and 2018–2020)
showed parameters consistent and within the uncertainty range of the
full 5-year version, indicating that despite long term trends in the mean
energy use, the weather sensitivity was consistent.

6 of 19 FALLON ET AL.Meteorological Applications
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Stochastic realizations are obtained by combining the
deterministic and residual stochastic components, des-
cribed in Equation 6:

D rð Þ tð Þ¼D T tð Þð ÞþD rð Þ
res tð Þ ð6Þ

Each stochastic realization r of modelled demand
D tð Þ corresponds to a different random sampling of the
normally distributed term Z in Equation 4. The modelling
of the stochastic noise term as normally distributed and lag
1 is justified in the supporting information in Figures S2–S4.
Infrastructure demand D tð Þ in physical units (kWh) is
obtained by applying the inverse of Equation 1 to each
realization D rð Þ with some minor modifications:

D rð Þ tð Þ¼ D rð Þ tð Þþ ctrend t2020ð Þ
� �

�D�
weekday tð Þ ð7Þ

Instead of re-applying the original trend c tð Þ (which
only spans 2016–2020), we apply the static trend

coefficient ctrend t2020ð Þ evaluated for mid-2020 (1st July)
so that the modelled infrastructure demand is relevant
to the most recent estimate of infrastructure energy
efficiency. Additionally, the stochastic model cycles
through different possible combinations of the
weekday pattern coinciding on calendar dates:
D�
weekday tð Þ¼Dweekday tþ rmod7ð Þð Þ, the modulo offsets

the weekday pattern of the realization by a constant
number of days ranging 0 to 6, specific to realization
number r. This ensures that the (non-meteorological)
weekday effect is not unfairly suppressing/amplifying
particular weather events that happen to overlap particu-
lar days of the week.

The distribution of daily infrastructure demand is
shown in Figure 5. Histograms are calculated: 41�7
years of daily infrastructure demand deterministic model
(from 41 years of MERRA2 data and seven implementa-
tions of the weekday cycle); 1750 realizations of the sto-
chastic model (250 of each weekday offset); and 5 years of
metered data (reconstructed to remove the underlying

TABLE 1 Degree day threshold

parameters (�C). The thresholds
determine the extent of the heating and

cooling degree day domains.

Region THDD
∘C TCDD

∘C D0% αHDD%
∘C�1 αCDD%C�2

GB 5.3 9.1 �1.58 0.15 0.12

Cooling-driven 6.9 6.9 �3.36 �0.2 0.08

Heating-driven 10.2 11.95 �3.91 1.1 0.07

Note: The infrastructure demand when not in either heating or cooling regime has value D0 (%). The
heating and cooling responses are further characterized by gradients, αHDD, αCDD, measured in units, %�C�1

and %�C�2 respectively. Regions shown are GB, Heating-Driven (North Scotland) and Cooling-Driven

(London), as in Figure 4, and a complete dataset covering all regions is given in supporting information
Section 2, Figure S1 and Table S2.

(a)

(d) (e) (f)

(b) (c)

FIGURE 5 Probability distributions of Infrastructure Demand D Tð Þ in rescaled units, full distribution (a–c) and top 1% of distribution

(d–f). The reconstructed metered infrastructure demand is the original metered infrastructure demand rescaled to 2020 (applying a correction

for removing the long-term trend ctrend by applying Equation 1, and then converting back into physical units with a static trend coefficient in

Equation 7, with r¼ 0 for real calendar days). Scale is hidden in order to protect proprietary information of BT's infrastructure demand data.

FALLON ET AL. 7 of 19Meteorological Applications
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long term trend). The probability distribution of the
deterministic model is a poor match for the metered data,
with two large spikes (corresponding to week-day and
weekend infrastructure demand) and unrealistic lower
distribution bound cutoff (if the temperature is such that
there is no degree day induced demand, and it occurs on
a Sunday, then the demand cannot be reduced any
further). The stochastic model, however, re-introduces
missing variability and provides a very accurate distribu-
tion fit for the GB/cooling-driven regions in particular.
Whilst the metered data only samples five weather years,
the stochastic model has thousands of realizations of
41 weather years, and is therefore a more representative
weather-driven infrastructure demand distribution.

Figure 5 panels d–f show that, encouragingly, the
right-hand tails of the stochastic models closely match
the reconstructed infrastructure demand. The increased
sample sizes of the stochastic models yield smoother
probability distribution tail-ends than the metered infra-
structure demand.

Extreme values are limited by the adopted normal
distribution (probability of extreme values of demand are
distributed � e�D2

) and further by first-order correlation
of the residual stochastic component (Equation 4). This
model, with a large number of realizations (n¼ 1750)
and spanning 41 years of weather input, should act as the
most complete and accurate dataset from which we can
derive estimates of possible infrastructure demand events
and implications to reserve power infrastructure.

5 | RESULTS

5.1 | Infrastructure demand climatology

Figure 6 shows the 41-year climatology of modelled sto-
chastic infrastructure demand, in each of the three
regions. Additionally, the grid electricity demand-net-wind
(deterministic model) is shown in panel d; ‘demand-net-
wind’ is the shortfall of electricity load to be met by

(a)

(b)

(c)

(d)

FIGURE 6 Climatology of daily infrastructure demand of GB, Heating-Driven (North Scotland) and Cooling-Driven (London) BT

regions and of the grid demand-net-wind (Bloomfield et al., 2020a). Shaded areas are raw daily-climatology percentiles (sampling 41 weather

years and 1750 stochastic realizations for BT infrastructure demand). Dashed lines use 15-day rolling median smoothing.
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generation after subtracting the wind power generation,
calculated by Bloomfield et al. (2020a). We do not explic-
itly model solar power, which is partially embedded in the
grid demand model.

The Heating-Driven region has similar characteristics
to the grid demand-net-wind, peaking in winter (cold
weather) and suppressed weather-driven variability
and low overall demand in summer. Conversely,
GB and Cooling-Driven infrastructure demand vari-
ability and peaking are most significant in summer
months. Given the significant seasonal variation in
infrastructure demand, we can also expect to see sea-
sonal variation in the 5-day (or N-day) energy con-
sumption and hence the level of reserve capacity that
must be available.

5.2 | Reserve capacity & seasonal
variation

For critical reserve power infrastructure subject to strict
operational time commitments (N-day reserve power),
the installation capacity is determined by a small number
of infrastructure high-demand events. Simply selecting
the highest N-day energy consumption event observed in
the original metered infrastructure demand data as a ref-
erence for the necessary reserve capacity is precarious
since the dataset is limited and unlikely to reflect the
most extreme values that could be expected if a longer
baseline period was made available. Choosing the high-
est N-day energy consumption event from the simu-
lated infrastructure demand (Sections 3 and 4) is an
improvement, exposing the data to decades of weather
events as well as many different realizations of the ‘sto-
chastic’ component, ensuring a wide range of plausible
outcomes for the combined effects of meteorological
and non-meteorological impacts are explored. How-
ever, in this latter case, the value of the greatest N-day
energy consumption is limited by the number of sto-
chastic realizations, and since the model uses
(unbounded) normally distributed noise, there is no
upper bound to what the highest N-day energy con-
sumption could be.

Therefore, in order to make a planning decision based
on full use of the available weather information, but
without arbitrary factors related to the model implemen-
tation, we must frame the problem in terms of a risk of
exceeding the installed reserve capacity E.

We introduce indicator function X tið Þ to describe
whether the infrastructure demand accumulated over
N-days (from time ti to tiþN�1) could have theoretically
been supplied (0) or is exceeded (1) if reserve power had
been relied upon:

X tið Þ¼ 1 if
PN�1

j¼0 Diþj
� �

>E

0 otherwise

(
ð8Þ

The statement
PN�1

j¼0 Diþj
� �

>E yields true if the N-
day infrastructure electricity consumption exceeds the
installed reserve capacity E. For convenience, we denote
exceedance indicator X tið Þ for a given year y of a given
stochastic realization r as Xy,r tdð Þ where td is the corre-
sponding day of the year. With no prior information
about the infrastructure demand levels, the likelihood PX

that in a given year, the N-day energy consumption will
exceed the reserve capacity E on one or more occasions is
as follows:

PX ¼ 1
NyNr

XNy

y¼1

XNr

r¼1

1�
YNd

d¼1

1�Xy,r tdð Þ� � !
ð9Þ

The probability of exceedance PX is defined by aver-
aging over years and realizations the complement toQNd

d¼1 1�Xy,r tdð Þ� �
(i.e., the complement to no exceed-

ance events occuring). Subscript r denotes a unique sto-
chastic realization and y the calendar year (from 1979 to
2020) for the exceedance indicator X . The limits Ny, Nr ,
Nd are the number of years, realizations, and days in a
year, respectively. The open script font for PX emphasizes
that it is the probability of one or more instances over a
period of time Nd where X tið Þ¼ 1.

The relation between PX and E is demonstrated in
Figure 7, for the three case study regions, with the
reserve commitment of N ¼ 5. In the normalized units,
1 unit of energy equals the mean daily infrastructure
demand, hence 5 units are equal to 5 average days of con-
sumption, and so forth. In addition to the full-year case
(black dashed line), we plot lines corresponding to mete-
orological seasons. In these cases, Equation 9 is revised,
so that time indexes 1 to Nd correspond to the respective
season.

As risk aversion is relaxed, the installed reserve
capacity is reduced whilst the probability of exceedance
PX increases. For risk-averse behaviour approaching
PX ¼ 0, steeper gradients indicate an increasing cost for
more marginal gains in risk reduction. The GB and
Cooling-Driven regions experience the maximum energy-
consumption events in late July/early August (consecu-
tive days in the upper percentiles of Figure 6), hence, the
relation between probability of exceedance PX and
installed capacity E is the same in a given year as it is for
a given JJA (shown by the two respective curves match-
ing in Figure 7). In the Heating-Driven region, it is DJF that
closely matches the full-year relation. Demand-inducing
low-temperature extremes spread beyond just DJF

FALLON ET AL. 9 of 19Meteorological Applications
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(see Figure 6 Heating-Driven region), so the full-year
curve sits slightly above the DJF curve.

An interpretation of the risk framework for BT's GB
region using Figure 7, a reserve capacity (given on y-
axis) of 5.56 normalized units has 25% probability PX

(given on x-axis) of energy consumption exceeding
levels that could be supplied by the installed reserve
capacity in a given year. Increasing the installed reserve
capacity by 2.6% (to 5.71, slightly higher on the y-axis)
reduces the exceedance probability to below 0.5%
requires an additional 1.2% to 2.5% reserve capacity
(5.78 to 5.85 units). Off-peak seasons have significantly
reduced capacity requirements (corresponding to the
overall lower infrastructure demand levels and variabil-
ity, see Figure 6). There is a sizable minimum amount
of surplus capacity that can be assumed to be available
with near-certainty during these off-peak seasons, cal-
culated from the gap between the full-year curve and
off-peak season curve.

5.3 | Reserve-exceedance coincidence

The hazard faced by operators is not just risk of exceed-
ance but the combination of reserve power being
required at the same time. This hazard is sensitive to the
total variability in energy consumption and the installed
reserve capacity. To optimize managing the cost of haz-
ard avoidance, the operator may in practice tolerate

higher values of PX , if relying on a low probability of
needing N-days of reserve.

This tradeoff can be formulated in terms of the under-
lying probabilities. First, we introduce indicator function
R tið Þ, showing when reserve capacity is required for a full
N day period starting at day ti:t

R tið Þ¼ 1 if  reserve required ti to tiþN�1

0 otherwise

�
ð10Þ

The likelihood of requiring reserve power for N days
from a given start day is constant probability
PR ¼P R tið Þ¼ 1ð Þ. Each model realization has a unique
corresponding realization of timeseries R tið Þ and
the value of PR may be adjusted to reflect plausible
prevalence. The assumption made of constant PR is
unrealistic, as PR is likely to have seasonal variability
and its own weather sensitivity, however, modelling a
time-dependency for PR is beyond the scope of our
calculations.

The coincidence indicator C tið Þ is introduced to mark
the hazard of having both reserve requirement R tið Þ and
reserve exceedance X tið Þ:

C tið Þ¼R tið Þ �X tið Þ ð11Þ

The hazard probability in a given year without prior
knowledge is calculated analogously to Equation 9:

(a) (b) (c)

FIGURE 7 Capacity-exceedance relation (see Equation 9) shows the probability that N-day energy consumption exceeds reserve

capacity at least once in a given season/year, in the case N ¼ 5. Dashed line shows the full-year, whilst other lines correspond to

meteorological seasons: December–February (DJF), March–May (MAM), June–August (JJA) and September–November (SON). In the

normalized units (y-axis), 1 unit of energy is equal to the mean daily infrastructure demand.
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PC ¼ 1
NyNr

XNy

y¼1

XNr

r¼1

1�
YNd

d¼1

1�Cy,r tdð Þ� � !
ð12Þ

The probability of coincidence PC is defined by aver-
aging the complement to

QNd
d¼1 1�Cy,r tdð Þ� �

(i.e., the
complement to no coincidence events occuring) over
timeseries years and realizations. Similar to Figure 7, but
instead demonstrating the capacity-coincidence relation,
Figure 8 demonstrates how changes in the likelihood (PR)
of a full 5-day reserve event relates the installed reserve
capacity to the probability of a coincidence failure.

Most decision-makers will focus on the left side of the
plot, where PC is low; here, the gradient is strongly
impacted by changes to PR. Being more risk-tolerant (i.e.,
willing to accept a higher chance PC of failure) greatly
reduces the reserve requirement, particularly when there
is only a small chance (PR) of needing to draw on the
reserve.

Figure 8 shows that when taking into account the
finite probability of the reserve capacity actually being
needed (in addition to the infrastructure demand exceeding
the installed capacity), less reserve capacity is needed for a
given hazard threshold. The figure also shows the obvious
result that a decision-maker assuming lower risk of R¼ 1
has a lower requirement for installed reserve capacity.

However, in the extreme case where the installed
capacity is so low as to never meet a full N-days require-
ment, risk management policy is essentially a bet on the
occurrence of R¼ 1. This lower-limit on the installed

capacity corresponds to lines in Figure 8 where the
PC—Capacity relation drops off, becoming a vertical line
below that point and this occurs at a PC value equal to
the probability of reserve, integrated over the year, that
is, 1� 1�PRð Þ365. This is visible in Figure 8 panel a (GB),
but too low to be visible in panels b, c.

The Cooling-Driven region again has the highest
capacity requirements due to the greater CDD sensitivity,
resulting in higher energy consumption during the most
extreme events. The Heating-Driven region (which expe-
riences both heating, and to a lesser extent cooling,
behaviour) has the steepest gradients, owing to the
greater total variability of energy consumption across
the full-year (compared to GB and Cooling-Driven where
weather-driven variability occurs from exposure to high
temperatures primarily in summer months).

5.4 | Surplus variability

As discussed previously (Figure 6), there is a clear sea-
sonal and meteorological dependence of BT's infrastruc-
ture electricity demand, and hence the energy required to
meet their 5-day reserve requirement varies similarly
(Figures 7 and 8). Consistent with this, if the installed
capacity of the reserve remains constant throughout the
year, there are periods where the full installed capacity is
not required, referred to here as ‘surplus’.

Having developed a framework for linking risk prefer-
ence to the installed reserve capacity levels, we now seek

(a) (b) (c)

FIGURE 8 Capacity-coincidence hazard relation (see Equation 12). Figure shows the probability that N-day energy consumption

(N ¼ 5) will exceed the reserve capacity at the same time that N-day's reserve power is required, at least once in a given year. A range of

reserve probability, PR, defined in terms of likelihood of an N-day reserve requirement on any given day, results in adjusted capacity-

coincidence curves. An increase in PR is associated with increase in hazard risk PC . The dashed line represents hazard risk equal to

exceedance risk, that is, PR ¼ 100% and therefore PC ¼PX . The normalized energy units are as previously described.
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to quantify how much surplus capacity can be exploited
for benefits beyond its use as a backup power source.
This introduces an additional hazard: if too much surplus
is used during a period of low infrastructure demand,
there may not be sufficient stored energy for N-day
reserve power operation during a subsequent period of
higher infrastructure demand.

For a system with a likelihood PR of having to use the
reserve capacity for N-days from a given starting day,
there is probability 1� 1�PRð Þ365 of one or more periods
requiring N-day's reserve power in a given year. Con-
sider, for example, a decision-maker operating a system
with N-day reserve probability PR ¼ 1=365 on any given
starting day, and whose risk preference is for up to 1%
probability of at least one coincidence event in a given
year (i.e., they are aiming for a 99% assurance of meeting
reserve power commitments for an entire year). In the
absence of any reserve power system present, the value
PR ¼ 1=365 evaluates to a 63% likelihood of failure in a
given year. However, this risk can be mitigated by installing
a quantity of reserve power. In the example systems, instal-
ling 5.43, 5.66, 5.49units of reserve power in the GB,
Cooling-Driven and Heating-Driven regions, respectively,
ensures that PC <1% (likelihood of a coincidence event
where reserve is both required and insufficient for N-day
supply) is satisfied, a significant improvement over the
‘natural’ failure likelihood of 63% when PR ¼ 1=365.

Given that the installed capacity remains constant,
the surplus capacity is calculated by subtracting N-day

energy consumption from the installation capacities iden-
tified. The annual levels of safe seasonal surplus capacity
resulting from the stochastic model are shown in
Figure 9, as functions of day of the year.

In Figure 9, ‘worst case’ levels of surplus observed in
the stochastic model on a given day of the year (or within
1 week either side) are depicted by the lower dashed
curve. For some periods of the year, the ‘worst case’
levels of safe seasonal surplus still leave a significant
baseline amount (shaded green). As long as the 41 years
weather data and (1750 realizations of stochastic compo-
nent) are representative of the full range of infrastructure
demand levels that could be experienced, then these
shaded green areas give a strong indication of safe levels
of reserve almost guaranteed to be available even during
the most extreme weather events historically observed for
that time of year. Using surplus in excess of the ‘safe’
levels may sometimes be possible, but induces an addi-
tional exceedance hazard (i.e., the overall risk of the
reserve not meeting 5-day commitments would be
increased). Such operation would require skilful forecasts
of infrastructure demand levels at least N-days ahead, to
support decisions on how much surplus above safe levels
can be utilized for non-reserve purposes.

Periods when the climatological surplus minima
crosses below zero indicate that even if dedicating all
capacity towards reserve power (setting the amount of
surplus to zero), there is the possibility of not meeting
the requirements for supplying sufficient reserve

(a)

(b)

(c)

FIGURE 9 For three example systems, reserve capacity installation Einst is set such that the probability PC in a given year of failure to

meet N-day delivery requirements whilst reserve is in use is 1. Green-shaded regions show levels of surplus capacity, and grey-shaded

regions show tolerated risk concentrated in periods where infrastructure demand is highest. Orange shaded regions show the inter quartile

range of N-day ahead surplus capacity. Dashed lines indicated a 15 day rolling window of the climatological minima and maxima (i.e., the

highest value to occur on a given day of the year or during the neighbouring 7 days either side).
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capacity. This tolerated risk is shaded grey. In this situa-
tion of energy consumption exceeding installed reserve,
all capacity should be made available for reserve power
operation.

5.5 | Surplus allocation relation to risk
tolerance

Let us consider a decision-maker with access only to cli-
matological information: only the historic weather and
infrastructure demand data is known. The climatological
decision-maker will base their choices of surplus alloca-
tion on the climatological worst-case (i.e., allocating the
‘green’ levels of surplus capacity shown in Figure 9).

We continue with the assumption of PR ¼ 1=365, but
now explore a range of risk tolerances in addition to
PC ¼ 1%.

Surplus accumulated annually for systems installed to
meet a variety of different PC values are shown in
Figure 10a. Increasing PC reduces the level of reserve
capacity required, which therefore also reduces the
annual surplus accumulation. In all three regions,
increasing PC results in a reduction to the accumulated
surplus.

The Cooling-Driven region (with greatest temperature
sensitivity) shows the highest levels of accumulated sur-
plus capacity. At lower PC values, the Heating-Driven
region has the least opportunity in surplus capacity oper-
ation, although it does outperform GB at PC ¼ 5%; toler-
ated risk in the Heating-Driven region is spread out over
a longer period, so an increase to PC has comparatively
lower impact on the installed capacity E. Most of the
change in surplus served relates directly to shifting

the green region vertically on the graph by some constant
offset, it is only the interface between the surplus and
exceedance periods (green and grey) that a minor non-
linear contribution to surplus capacity further affects the
results.

5.6 | Surplus allocation relation to
forecast information

A decision-maker with a robust weather-driven model of
infrastructure demand should be able to make quite
accurate forecasts of the deterministic component, albeit
limited to the skill of temperature forecasts up to 5-days
ahead, and errors accumulated in model conversion from
temperature to infrastructure demand.

Consider two further decision-makers. First, a
decision-maker with access to a perfect forecast of the
weather-driven infrastructure demand but no informa-
tion about the stochastic component, which we label the
deterministic decision-maker. Second, a decision-maker
with perfect forecast knowledge of both weather-driven
and stochastic infrastructure demand components, which
we label the perfect decision-maker. In this theoretical
excercise, these cases can show the potential value, in
terms of increased surplus allocation, of using forecast
information in the decision-making, and demonstrate the
importance of sampling the residual variance in order to
estimate upper-bounds to a perfect decision-maker.

In the case of perfect information, a decision-maker
knows precisely how much surplus to allocate for the
N-days ahead and will maximize the amount of surplus
at no risk of exceedance. The deterministic decision-
maker has to reduce their forecast allocation of surplus

FIGURE 10 Accumulated surplus under different scenarios (for probability of N-day reserve needed PR ¼ 1=365, for N ¼ 5). Left:

Installed capacity values E (relating to specific coincidence probability tolerances PC) and resulting accumulated surplus (normalized units).

Right: With E PC ¼ 1%ð Þ, we explore surplus accumulated under three different decision-making scenarios. Error bars show the 5% to 95%

range in outcomes across years and realizations.
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by a constant offset value, matching the upper limit of
stochastic-driven energy consumption. Theoretically, this
is unbounded, however, we choose a finite value corre-
sponding to 5 σ deviation, so that there is almost no dis-
cernible increase in risk. In reality, perfect forecast
information would not be possible, so this case presents
an upper-bound of skill.

In Figure 10b, we see gains in the accumulated sur-
plus when using better forecast information, with the per-
fect decision-maker benefiting the most. The approach
outlined introduces little-to-no risk from increasing surplus
operation above seasonally safe levels, demonstrating the
potential value of forecast information. Sub-seasonal energy
forecasts (derived from meteorological forecasts) may aid
decision-makers to exploit this large potential value, by
anticipating N-day demand (and hence surplus levels)
1–4 weeks ahead (Gonzalez et al., 2021; Goutham
et al., 2022). These forecasts could, for example, allow par-
ticipation in the futures markets, with the amount of sur-
plus capacity traded on the market increased up to realtime
as forecast skill improves at shorter lead times (Dorrington
et al., 2020).

An approach for decision-making under this uncer-
tainty could explore trade-offs of adopting a more risky
operational strategy (allowing a small but finite probabil-
ity of exceedance based on forecast information) in con-
junction with a more risk-averse planning strategy
(i.e., over-building reserve-capacity). This would more
evenly distribute risk across the year, instead of concen-
trating risk around climatological infrastructure demand
highs and the gains in surplus allocation could further
offset building costs.

5.7 | Meteorological drivers of surplus
and grid electricity load

BT's national ‘GB’ infrastructure demand peaks in sum-
mer due to the strong CDD effect, contrasting with the
grid demand and demand-net-wind which have strong
winter peaking. The Cooling-Driven region has a com-
paratively stronger CDD dependence and, in fact, no
overall HDD effect (instead, the negative coupling coeffi-
cient acts to extend the cooling impact to lower tempera-
ture ranges). The Heating-Driven region is an outlier
from other BT regions, instead acting more in line with
the grid demand and demand-net-wind, with strong
HDD coupling and a weak cooling effect. As the amount
of installed wind power capacity is increased, the grid
demand-net-wind is increasingly sensitive to wind,
although HDD impacts still play an important role in
explaining grid demand-net-wind in Britain (Boßmann &
Staffell, 2015).

Having explored the potential role of surplus capacity
in the different weather-driven systems (GB/Cooling-/
Heating-Driven), we now seek an understanding of the
wider electricity-network behaviour in relation to surplus
allocation and whether the surplus is available at a time
when the wider grid might need it. Using the Bloomfield
et al. (2020a) dataset for grid demand-net-wind
(MERRA2, spanning 1979–2017), we compare the deter-
ministic components of the infrastructure demand to the
wider network.

Grid demand-net-wind is characterized by strong
temperature and wind sensitivity (Beerli & Grams, 2019;
Bloomfield et al., 2020b). In winter, there is heightened
weather-driven variability (large differences between a
cold, low-wind day compared to a mild, windy day). In
summer, it is on average lower, has a reduced weather-
driven variability, and the distribution of demand-net-wind
values is positively skewed. This seasonal difference is seen
when comparing panel g in Figures 11 and 12. Marginal
distributions of the three modelled systems' surplus capacity
are shown in panels a—c, and the joint probability distribu-
tions in panels d—f.

In winter, the GB and Cooling-Driven regions are
narrowly concentrated around a high surplus (towards
0.4 to 0.5 and 0.8 to 0.9, respectively). The Heating-
Driven region surplus capacity has a weak negative corre-
lation to grid demand-net-wind, although this value is
not significant at r¼�0:33.

In summer, the Heating-Driven region is narrowly
concentrated at high surplus capacity (similar to the
behaviour of GB and Cooling-Driven in the winter
period). The grid demand-net-wind does not reach near
the maximums experienced in winter (during cold, less-
windy periods). There is no correlation between grid
demand-net-wind and surplus capacity (R2 is less than
0.02 in each region).

A reserve power system operating in a GB or Cooling-
Driven regime has significant potential to provide balan-
cing services to the wider electricity network. Figure 11
motivates making surplus available during winter
periods, whilst Figure 9 shows this to be possible. These
non-reserve purposes may involve storing energy during
low demand-net-wind periods, and releasing energy dur-
ing high demand-net-wind periods.

Figure 10 indicates that use of forecasts can increase
the amount of surplus made available for non-reserve
purposes in a given year. Skilful forecasts may also allow
Heating-Driven type systems to intermittently provide
surplus capacity during the winter period, however, there
is no consistent safe level, and Figure 11 panel f shows
some negative correlation, possibly indicating that the
surplus is less likely to be available during high demand-
net-wind periods.
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6 | DISCUSSION

In any critical infrastructure, decision-makers will have a
dialogue with industry regulators to discuss the cost-risk
trade-offs and the extent to which some risks are consid-
ered unreasonable to mitigate. We have developed a
framework for decision-makers to assess trade-off
between installed reserve capacity and risk of failure,
using a range of plausible values PR for the probability of
needing N-day reserve capacity, and a range of permissi-
ble hazard risks PC.

This framework makes some simplifying assump-
tions: we do not discuss the implications of longer
(or shorter) periods of reserve power usage. In our case
study, we made the assumption that PR has no time-of-
year dependency; it is more likely, however, that in real-
ity, reserve capacity will be required in grid failures
induced by extreme weather such as storms and heat-
waves, both of which have a strong seasonal dependence.
It is worth considering this context when analysing
results: unless correlations between R tið Þ and X tið Þ are
explicitly modelled, one should err towards choosing a

more risk-averse value for reserve capacity to account for
this simplification (or consider increasing the value of PR

to an upper bound).
For some critical infrastructure operators, past occur-

rences of operating N-day's reserve power may be rare or
have never occurred; the event may be considered a black
swan event, so PR is unknown. In such cases, it is up to
the decision-maker (and regulator) to agree upon appro-
priate quantities of reserve capacity to be installed, and
the resulting exceedance probabilities.

Figure 10 shows the high potential value, in terms of
surplus allocation, in using extended range forecasts in
the decision-making. The theoretical upper limits,
described by the deterministic (meteorological forecast
only) decision-maker and so-called perfect decision-
maker (correctly predicting the precise meteorological
and noise impacts to infrastructure demand), are much
higher than the baseline climatological yields. Assuming
that the infrastructure temperature-demand relation is
well modelled, forecast skill in predicting the determinis-
tic component of infrastructure demand should be high
in the week ahead, and measurable up to 4 weeks ahead,

(a)

(d) (e) (f) (g)

(b) (c)

FIGURE 11 Bi-variate distributions (panels d–f) and respective marignal distributions (panels a–c and g) demonstrate how grid

demand-net-wind (from Bloomfield et al. (2020a)) relates to infrastructure demand (GB, Cooling-Driven and Heating-Driven). Data is from

the extended winter period (December–March).
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allowing week-ahead allocation of surplus comparable to
the theoretical ‘deterministic’ decision-maker. Any addi-
tional skill in predicting the stochastic component, for
example through employment of an ARIMA model
(Weisang & Awazu, 2008), could see surplus allocation
between the bounds of ‘deterministic’ ‘perfect’ decision-
makers. This theoretical exercise demonstrates the value
to decision-making to allocate surplus using accurate
forecasts, although as no ‘perfect’ forecast is possible this
upper bound is higher than what may be achieved in
reality.

Forecast lead times from day-ahead to extended range
are relevant for applications in the energy sector and
across industries (Bloomfield et al., 2021; Domeisen
et al., 2022; White et al., 2017), with extended range
allowing participation in trading ancillary service capac-
ity weeks ahead, and shorter-range important for accu-
rately knowing day and week ahead surplus availability.
Forecasts can also be used to predict and warn of exceed-
ance events. Decision-makers may benefit greatly from
adopting a risk-tolerant approach, compensated by addi-
tional increases in reserve capacity, more evenly distrib-
uting risk across the year whilst increasing surplus
annual accumulation.

There are multiple possible uses for surplus capacity,
including ancillary services such as frequency balancing
and peak-load shaving. The added value of surplus capac-
ity can be captured with different metrics relevant to
these different use cases.

7 | CONCLUSION

The transition to a low-carbon energy system offers chal-
lenges and opportunities for rethinking how we plan and
use energy. In this paper, we explore the synergies
between the need for clean ‘backup’ energy sources for
critical infrastructure, and the potential for utilization of
‘surplus’ capacity in these resources in order to meet
other energy needs (particularly ancillary services to the
wider national power system).

Weather-driven models of infrastructure electricity
demand, including a stochastic representation of residual
uncertainty, were developed for three example critical
infrastructure systems (based on BT regions). In each
case, these models were used to estimate the size of the
energy-reserve required to provide 5-day operational
capacity in the event of regional power outage or black

(a)

(d) (e) (f) (g)

(b) (c)

FIGURE 12 As in Figure 11, but showing the Extended Summer period (June–September).
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swan events. The size of the store required is dependent
on the risk tolerance of the critical infrastructure asset,
and is linked to coincidence risk; the probability of both
having a power system outage and having a 5-day infra-
structure demand period which exceeds the total reserve
capacity.

For the systems examined, a clear seasonal behaviour
was observed (corresponding to energy-use driven pri-
marily by heating, cooling, or a mixture of both). This
clearly indicates that a reserve energy supply designed to
meet 5-days of infrastructure demand during the peak
season will have surplus capacity in the off-peak season.
For cooling-dominated systems, which describes the bulk
of the BT case study and approximately 0.5% to 1% of GB
grid demand, the greatest surplus occurs at times of
greatest value to the wider power system (i.e., during the
winter when the need for generation capacity is greatest
on the national power system as a whole).

The existence of clear seasonal variations in energy
consumption provide a direct pathway to estimate the
‘surplus’ storage that can be further enhanced by meteo-
rological forecasts. Use of skilful medium to extended
range forecasts to identify infrastructure demand levels in
advance (i.e., identify periods where the amount of surplus
that can be released is greater than that which would be
expected on a purely climatological basis alone), may prove
highly valuable. For context, a simple test case with a perfect
forecast doubled the available surplus.

The approaches outlined in this paper employ a
weather reanalysis dataset in order to calculate
weather- and seasonally-varying impacts to reserve
power infrastructure planning and operation. A key
observation in developing this analysis is the impor-
tance of including a stochastic representation of the
residual uncertainty associated with the infrastructure
demand. Failing to represent these processes lead to
substantial errors in the size of capacity installed with
respect to risk tolerance.

The comparison of decision-making under climato-
logical, deterministic-only and perfect forecasts (including
the stochastic component) suggest improvements in the
amount of surplus that can be allocated. However, it
should be emphasized that the weather in the reanalysis
should not be considered fully representative of present
and near-future events, with the sample range unable to
fully explore decadal variations and current climate
change impacts. Into the future, impacts of climate and
ecological breakdown and industry response such as heat
and transport electrification, will greatly affect weather-
drivers of infrastructure demand and what is required
from reserve systems, for example driving increased grid
demand-net-wind load and variability in winter months
(Bloomfield et al., 2016; Boßmann & Staffell, 2015;

Peacock et al., 2023). Practical application of the
approaches outlined should consider implementing cli-
mate impacts into modelling, alongside other projected
system changes (such as reductions in the infrastructure
temperature-demand sensitivity if more efficient equip-
ment is installed in future).
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