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Abstract: This study presents a novel statistical and computational approach using nonparametric
regression, which capitalizes on correlation structure to deal with the high-dimensional data often
found in pharmacogenomics, for instance, in Crohn’s inflammatory bowel disease. The empirical
correlation between the test statistics, investigated via simulation, can be used as an estimate of
noise. The theoretical distribution of −log10(p-value) is used to support the estimation of that
optimal bandwidth for the model, which adequately controls type I error rates while maintaining
reasonable power. Two proposed approaches, involving normal and Laplace-LD kernels, were
evaluated by conducting a case-control study using real data from a genome-wide association study
on Crohn’s disease. The study successfully identified single nucleotide polymorphisms on the
NOD2 gene associated with the disease. The proposed method reduces the computational burden
by approximately 33% with reasonable power, allowing for a more efficient and accurate analysis of
genetic variants influencing drug responses. The study contributes to the advancement of statistical
methodology for analyzing complex genetic data and is of practical advantage for the development
of personalized medicine.

Keywords: DNA sequence; correlation structure; high-dimensional data; nonparametric regression;
case-control study

MSC: 62G05; 62P10

1. Introduction

The exploration of single nucleotide polymorphisms (SNPs), associated with the risk
of complex diseases, is a pivotal objective in modern genetics research. This knowledge
promises to advance our comprehension of the underlying biological mechanisms of such
diseases and enables the creation of personalized risk profiles for public health benefits. In
pursuit of these goals, genome-wide association studies (GWAS) have gained considerable
popularity as an effective approach for identifying common genetic variations linked to
diseases [1]. This approach has successfully revealed the SNPs associated with conditions
like type 2 diabetes, breast cancer, and prostate cancer [2,3].

In a standard GWAS, researchers analyze a large number of SNPs, often in the hun-
dreds of thousands, within populations comprising thousands of individuals with the
disease and an equivalent number of healthy controls [4]. The primary aim is to identify
specific genetic loci associated with the disease. This process usually involves two distinct
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phases: an initial discovery phase, where potential susceptibility loci are identified, and
a subsequent validation stage, in which these SNPs are confirmed in a separate group
of study participants. In the discovery phase, the primary analytical approach revolves
around individual SNPs. Researchers examine the relationship between each SNP and the
disease, compute p-values, and subsequently rank the SNPs based on these p-values. Only
those SNPs with p-values falling below a specific threshold progress to the validation stage.

However, single-SNP analysis, while valuable for identifying disease susceptibility
variants, has its limitations, especially in achieving genome-wide significance. Conduct-
ing numerous tests poses challenges in meeting the required significance threshold. In
high-dimensional GWAS with hundreds of thousands of SNPs, each test is conducted at
some nominal significance level, potentially leading to a high number of false positives
(FPs) [5–7]. This limitation arises from the difficulty of detecting SNPs with minor effects
genuinely associated with the disease. It is, therefore, highly desirable to have available
test procedures that result in a low number of FPs in GWAS. Many methods have been
proposed to deal with this challenge [7–11].

The permutation test is widely acknowledged to be effective in controlling the er-
ror rate when testing multiple hypotheses. However, its computational cost in high-
dimensional studies can be substantial [12–14]. Alternatively, the Bonferroni correction,
a commonly employed method for error rate control, has well-documented limitations.
It becomes overly conservative, especially when test independence assumptions are vi-
olated [15,16]. Moreover, when applied to a large number of tests, it necessitates excep-
tionally low nominal significance levels for individual tests to maintain an acceptable
overall type I error rate [17]. Researchers have also explored approaches to determine less
conservative nominal thresholds based on the formal calculation of the effective number of
independent tests [18–22]. For instance, Meinshausen et al. [22] introduced a slightly more
powerful method that modifies the free step-down algorithm of Westfall and Young. This
approach calculates bootstrapped estimates of adjusted p-values to consider correlations.

In this research, a common challenge in genetic studies is tackled, where the causal
SNP is often absent in the genotyped data. Instead, the genotyped SNPs are frequently in
linkage disequilibrium (LD) with the causal SNP [15,23]. As a result, single-SNP analysis
yields modest effects, given that each SNP inadequately represents the causal SNP.

In the initial part of this research, we derive estimators for the pairwise correlation
among the common test statistics commonly used in association models and explore how
these correlations behave as the sample size increases through simulations. Subsequently,
this correlation estimation is utilized to create a novel nonparametric regression method
tailored to interpret the outcomes of individual marker tests.

This method treats the p-value as a succinct representation of information related to a
null hypothesis. Regardless of the distribution of the test statistic, the p-value conforms to a
uniform distribution within the interval (0, 1) when the null hypothesis holds. The primary
objective of this approach is to establish a robust methodology that leverages the positions
and correlations of markers to identify genuine disease-gene associations within genomic
studies while simultaneously minimizing false positives.

The proposed method operates on the premise that the majority of markers are un-
related to the disease, resulting in a collection of p-values from single marker tests pre-
dominantly comprising nonsignificant outcomes or noise, occasionally interspersed with
genuine signals of disease-gene association. Hence, our challenge lies in distinguishing
these rare signals from the background noise. This context shares similarities with other
fields, such as microarray experiments, where nonparametric regression methods are
commonly used to mitigate systematic biases arising from data acquisition technology.

Furthermore, an innovative nonparametric regression approach is applied to identify
the significant regions associated with disease-related genes in high-dimensional genome-
wide datasets. The methodology is demonstrated using the WTCCC dataset, with a specific
focus on Crohn’s disease [24]. While nonparametric regression is a well-established data
analysis technique, the challenge of selecting appropriate bandwidths persists. Recent
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studies have explored Bayesian-based approaches for global bandwidth selection, which
are well-documented in the literature [25–28].

Hence, the theoretical foundations of nonparametric regression are explored, with a
specific focus on kernel smoothing as the chosen method to address bandwidth selection
challenges. Critical aspects of nonparametric regression models, including considera-
tions related to bandwidth selection and kernel functions, are comprehensively discussed.
Additionally, a new theorem that establishes the relationship between test statistics in
multiple hypothesis tests is developed, proven, and evaluated. This theorem plays a central
role in the proposed methodology and holds promise for broader applications in various
multiple-testing scenarios.

The nonparametric regression method for GWAS is developed through a combination
of theoretical foundations and simulated data. The validity of the theorem is confirmed
through simulations using genome-wide study data, and it is also used to validate a novel
approach for determining the appropriate bandwidths when fitting kernel regression mod-
els. The theoretical distribution of p-values for single-SNP tests is established, and the
impact of the bandwidth on the number of significant SNPs is quantified. Furthermore, a
novel bandwidth selection method is proposed and theoretically evaluated, leveraging data
correlations and offering computational advantages over the current techniques. Kernel
functions based on SNP correlations are developed, and criteria for defining threshold val-
ues to identify statistically significant associations are established. Simulations demonstrate
that the proposed bandwidth selection method produces robust bandwidths, regardless of
the number of SNPs and study size. Finally, this methodology is applied to the WTCCC
study, focusing on Crohn’s disease.

2. Materials and Methods
2.1. Structure of Correlations

The first task will be that of quantifying the occurrence of spurious correlations
between independent variables. Suppose that response variable Y is independent of each of
two predictor variables, denoted as X1 and X2. A random sample of size n will be observed,
denoted as (yi, x1i, x2i), where i = 1, . . ., n.

Two linear regression models are proposed to model the relationship between the
response variable and the predictors:

Yi= β01 + β1X1i + ε1i and Yi= β02 + β2X2i + ε2i.

Here, β1 and β2 represent the effects of X1 and X2 on Y, respectively. The errors ε are
assumed to be independent and are identically distributed (iid) random variables with
mean zero and constant variance. To test the significance of the regression coefficients, the
null hypotheses H0,j : β j = 0 versus the alternative hypotheses H1,j : β j 6= 0 for j = 1, 2 are
considered. The test statistic

Tn,j=
β̂ j

se
(

β̂ j
) ,

where β̂ j is the estimated value of β j and se
(

β̂ j
)

is its estimated standard error, is used.
Under the assumptions of normality and constant variance of the error, this test statistic
clearly follows a t-distribution with n− 2 degrees of freedom.

It follows that if the sequence of test statistics Tn,j converges in distribution to the
test statistics Tj, then the sample correlation coefficient ρX1,X2 can be used as a consistent
estimator of the correlation ρT1,T2 between test statistics.

Proposition 1. Under the stated assumptions, lim
n→∞

ρT1,T2(n) = ρX1,X2 , where ρT1,T2(n) is the
correlation between Tn,1 and Tn,2, and ρX1,X2 is the correlation between X1 and X2.

Proof. Assuming without loss of generality (WLOG) that X1 and X2 have been scaled to
σ2

j = 1, the test statistics are given by
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Tj=
∑n

i=1
(
Xji − X j

)(
Yi −Y

)
Sj

√
∑n

i=1
(
Xji − X j

)2
; j = 1, 2. (1)

Here, s2
j is an unbiased and consistent estimator of σ2

j , and ∑n
i=1
(
Xji − X j

)2/n con-

verges in probability to σ2
j by the weak law of large numbers. Slutsky’s theorem [29] can be

applied to show that ∑n
i=1
(
Xji − X j

)2 P
→

nσ2
j is for large n.

Given that Y and Xj are independent and E
(
Xji − X j

)
= 0, the expected value of the

numerator in Equation (1) can be written as

E
[
∑n

i=1

(
Xji − X j

)(
Yi −Y

)]
= ∑n

i=1 E
(
Xji − X j

)
E
(
Yi −Y

)
= 0.

Thus, for large n, the value of ρT1,T2(n) can be approximated as

ρT1,T2(n) ≈
E
[
∑n

i=1
(
X1i − X1

)(
Yi −Y

)
∑n

i′=1
(
X2i′ − X2

)(
Yi′ −Y

)]
nσ2

j
,

where σ2
j is the model’s variance.

Expanding the product and utilizing the pairwise independence of {X 1, X2} and Y
leads to the further simplification of ρT1,T2(n) as

ρT1,T2(n)=
1

nσ2
j

{
∑n

i=1 E
[(

X1i − X1
)(

X2i − X2
)]

E
(
Yi −Y

)2
+ ∑n

i 6=i′ E
[(

X1i − X1
)(

X2i′ − X2
)]

E
[(

Yi −Y
)(

Yi′ −Y
)]}

.

Since X1i and X2i′ are independent for i 6= i′ and the correlation coefficient is invariant
to a change in location, it follows that

∑n
i 6=i′ E

[(
X1i − X1

)(
X2i′ − X2

)]
E
[(

Yi −Y
)(

Yi′ −Y
)]

= 0,

and hence for large n,
ρT1,T2(n) ≈

1
nσ2

j
∑n

i=1 ρX1,X2 σ2
j

= ρX1,X2

�

The aforementioned relationship, established via simulation, connects the correlation
ρT1,T2(n) (based on samples of size n of the−log10 transformed p-values obtained from tests
for no association between Y and Xj; j = 1, 2) with the widely used−log10 transformation of
GWAS data. Similar (but not identical) results have appeared elsewhere in the literature [30].
Although important, the nonlinear nature of the composite function −log10(p-value) makes
it challenging to derive the relationship analytically. This nonlinearity also renders the
correlation coefficient non-invariant under such transformations, as will be discussed in
the subsequent section.

2.2. Empirical Pairwise Correlation of Tests

GWAS focuses on the identification of genetic variants associated with disease. SNPs,
which consist of a single base pair variation in the DNA sequence, are the most commonly
used genetic variants considered in such studies. Estimating the correlation between SNPs
is crucial to understanding the genetic architecture of the trait under investigation. In this
section, a method is proposed to estimate the correlation between SNPs via simulation.
We evaluate genotype data on Chromosome 16 from the Wellcome Trust Case Control
Consortium (WTCCC) study of Crohn’s disease, which included 1504 unaffected individu-
als. To preserve the correlation structure of the SNPs, a pair of haplotypes was randomly
sampled for each individual. Individuals from the 1958 British birth cohort were randomly
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selected and assigned disease status based on the disease-associated SNP rs3789038. The
analysis was repeated on 3000 replicates, each consisting of 1500 randomly drawn cases
and 1500 controls, containing 14,292 SNPs each. Since 813 SNPs had no variations, only
13,479 SNPs were considered. To reduce the computation time, an arbitrary number of
1000 randomly selected SNPs were used to calculate the p-values for each single SNP test.

The random variable Uk was defined as −log10(pk), where the pk are the p-values ob-
tained from the single SNP tests of association between disease and the kth SNP, k = 1, . . ., m.
Here, m is the number of SNPs used to estimate the pairwise correlations between the
tests, denoted as ρUk ,Uk+1 (see Section 2.1 for details). The estimated pairwise correlations
based on pairs of alleles (r2

k,k+1) were plotted, as shown in Figure 1. The results indicate a
clear linear trend between ρ̂Uk ,Uk+1 and r2

k,k+1, with an estimated slope of 0.996 when using
linear least squares regression. These findings suggest that the correlation between test
statistics can be reasonably estimated by the correlation between single SNP tests measured
using r2

k,k+1, providing important insights into the genetic structure of the trait of interest
at the DNA sequence level. In addition, the variance of the data points increases when
the correlation between SNP tests (ρ̂Uk ,Uk+1) is close to 0. This is due to the fact that low
correlation values make the estimation of the relationship between variables less stable
and conversely for high correlation values. Hence, data points tend to cluster more closely
together when the values of ρ̂UkUk+1 and r2

k,k+1 are close to one.
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k,k+1.

2.3. Distribution of −log10(p-Values)

The established theoretical distribution of the transformed −log10(p-value) obtained
from a single SNP test serves as the basis for the development of an approach for bandwidth
selection and the construction of thresholds.

Proposition 2. Consider a statistical hypothesis test using a positive-valued test statistic U with
a continuous null distribution function F, where the null hypothesis is rejected for large values of
U and the corresponding p-value of the test can be calculated as p = 1− F(u). Under the null
hypothesis, the distribution of Uk is an exponential with parameter λ = ln10.

Proof. The probability integral transformation establishes that the transformation
p = 1− F(u) is 1-1, and thus, F(u) follows a uniform distribution on interval [0, 1]. Through
the application of the change in the variable rule, the distribution of p is also uniform on
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[0, 1]. Furthermore, it follows that the probability density function of U, denoted as f (u),
can be expressed as

f (u) = f (p)
∣∣∣∣dp
du

∣∣∣∣.
Since f (p) = 1 and dp

du = −10−uln10, we can write∣∣∣∣dp
du

∣∣∣∣ = ln(10)e−uln10 for u ≥ 0,

which is the density for the exponential with parameter λ = ln10. �

The above proposition provides the mean and variance of Uk = −log10(pk), where pk
is the unobserved p-value from the kth single SNP test, for k = 1, . . ., m. Specifically, it shows
that the mean and variance of Uk are E(Uk) = 1

ln10 and Var(Uk) = 1
(ln10)2 , respectively.

Moreover, based on the results of the study in Section 2.1, the covariance of Uk and Uk′
where k 6= k′, can be approximated as:

σUkUk ′ ≈
r2

kk′
(ln10)2 (2)

2.4. Optimal Bandwidth Selection Method

Consider the nonparametric regression model given by:

uk = q(xk) + εk,

where uk represents −log10(pk), xk represents the base pair position of the kth SNP, and the
errors εk, k = 1, . . ., m, have a common variance. Methods for the bandwidth selection are
here proposed based on fitting a curve that yields an acceptable estimate of the noise in the
data under the null hypothesis, according to the mean of the squared residuals, denoted by
MSR:

MSR =
1
m∑m

k=1 ε2
k.

In particular, a bandwidth h can be selected such that it satisfies the condition:

1
m∑m

k=1(uk − ûk)
2 = E(MSR),

where ûk is the fitted value of uk. The average squared residuals for the fitted model are
thus made equal to E(MSR) through the selection of h.

In order to determine the expectation E(MSR), we use the fact that E
(
ε2

k
)
= σ2

εk
.

Therefore,

E(MSR) =
1
m∑m

k=1 σ2
εk

,

where σ2
εk

= σ2
Uk

under the assumption that the uk are independent. It follows that the
distribution of the −log10(p-value) evaluated under the null hypothesis is given by

E(MSR) =
1

(ln10)2 . (3)

Yatchew [31] proposed a method for estimating the residual variance of the regression
of u on x, given by s2

d = 1
2n ∑m−1

k=1 (uk+1 − uk)
2 when using the rearranged data as considered

in the present work. Assuming xk is close to xk+1, then uk ≈ uk+1, and

s2
d =

1
2m∑m−1

k=1 (uk+1 − uk)
2 =

1
2m∑m−1

k=1 (εk+1 − εk)
2. (4)
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By expanding Equation (4), therefore

s2
d ≈

1
m

m

∑
k=1

ε2
k −

1
m

m−1

∑
k=1

εkεk+1,

which, upon taking expectation, provides

E
(

s2
d

)
≈ E(MSR)− 1

m∑m−1
k=1 E(εkεk+1).

Substituting E(MSR) using Equation (3) and using the fact that E(εk) = 0 and
Cov(εk, εk+1) = E(εkεk+1)− E(εk)E(εk+1), then

E(εkεk+1) = Cov(εk, εk+1).

The term E(εkεk+1) can be evaluated using Equation (2), and the properties of the
covariances are preserved under linear transformations. This gives

E(εkεk+1) ≈
r2

k,k+1

(ln10)2 .

Therefore,

E
(

s2
d

)
≈ 1

(ln10)2

(
1− 1

m∑m−1
k=1 r2

k,k+1

)
, (5)

which justifies the selection of the optimal bandwidth h satisfying the condition that the
average squared residuals for the fitted model equal s2

d.
The criterion in Equation (5) shows that s2

d can be interpreted as an estimate of the
noise that is adjusted for the correlation structure of the neighboring SNPs.

2.5. Logistic Regression

Logistic regression is a powerful method and is suitable when the response variable is
binary. It is an alternative to Pearson’s χ2 test and can be extended to multiple predictor
variables. The relationship between the response and predictor variables is not linear (as in
linear regression); instead, the logit function models their probabilities.

In this study, the response takes the value of 1 if an individual is a case and 0 if the
individual is a control. For a given genotype gi for n individuals, let πi be the conditional
probability of the ith individual being a case. The logistic model for the relationship
between πi and gi is:

logit(πi) = β0 + β1gi,

where

logit(πi) = ln
(

πi
1− πi

)
.

Using an additive genetic model, the probability of an individual being a case given
the D copies of the rare allele of the disease-associated SNP is:

πi =
eβ0+β1D

1 + eβ0+β1D ,

where the parameter β0 is the baseline risk for the disease and β1 is the gene effect or
log-odds ratio.

In this study, the additive model for simulations is employed and assumes its applica-
tion in the analysis of the WTCCC data. Nonetheless, for the single SNP analysis, a logistic
regression model is utilized, which provides a more efficient but asymptotically equivalent
alternative to Pearson’s χ2.
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2.6. Kernel Regression

Kernel regression is a nonparametric regression method that estimates an arbitrary
function of x, q(xk), using a kernel function, K. Unlike linear regression, the form of q(·) is
not known in advance. This approach can be seen as akin to nonlinear regression without
explicitly stating the form of the function q(·). The Nadaraya–Watson’s estimator [32] is a
popular method that uses a kernel K and bandwidth h to estimate the fitted value of uk as
follows:

q̂(x, h) =
∑m

k=1 wkuk

∑m
k=1 wk

.

The weights wk are determined by applying the kernel function and are given by

wk =
K
(

x−xk
h

)
∑m

k=1 K
(

x−xk
h

) , k = 1, . . . , m.

Clearly, the magnitude of the weights is determined by the chosen value of the
bandwidth h. The weights used in the present work depend on the distance between SNPs
and not on their correlation, with those SNPs located closer to the kth SNP contributing
more to the fitted value ûk. This assumption is reasonable, as SNPs that are physically closer
to the disease-associated gene are more likely to be linked with it and, thus, themselves
associated with the disease. The weights assigned to uk can be calculated using a normal
kernel and a fixed bandwidth, as shown below:

wk =
e
−1
2 (

x−xk
h )

2

∑m
k=1 e

−1
2 (

x−xk
h )

2 , k = 1, . . . , m.

However, since the correlation between the SNPs depends not only on their distance
but also on other factors, it may not always be desirable to use this approach. To account
for correlations in the test procedure, kernels based on the pairwise linkage disequilibrium
(LD) between SNPs can be used. If a disease is caused by an unknown number of disease
loci and a number of loci of known position can be calculated from the available data, then
the markers with the largest amounts of LD will be closest to the disease loci, assuming
that the LD distance relationship holds precisely within a genomic region [33].

To ensure that the weights are not linear, the Laplace-LD kernel can be used, where
SNPs in strong LD with the kth SNP contribute substantially more to the fitted value ûk.
The Laplace-LD kernel obtains its name from its similarity to the Laplace distribution; the
corresponding weights can be calculated as follows:

wk =
e
−1

h∗LDk

∑m
k=1 e

−1
h∗LDk

, k = 1, . . . , m,

where the value of h > 0 determines the relative contributions.

3. Results
3.1. Simulation Results

The simulation study used the R programming suite [34] to analyze 14,292 SNPs
located on Chromosome 16 within a dataset of 1504 controls obtained from the WTCCC.
Following the exclusion of 813 SNPs with no observed variations, the analysis was carried
out on the remaining 13,479 SNPs. These SNPs were subjected to the method described in
Section 2.4 for the purpose of determining an appropriate bandwidth denoted as h. The
criterion for the bandwidth selection was that the average squared residuals should be equal
to s2

d—an estimate of the noise—while accounting for the correlation with neighboring SNPs.
A scatterplot of s2

d against the variance σ̂2 = ∑m
k=1 (uk − u)/(m− 1) of the −log10(p-value)

estimated from the simulated data, assuming no genetic association (Figure 2), provides
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additional support for the proposed method. The estimated slope of the regression line was
0.74, indicating that s2

d slightly underestimates the true noise. This is, in fact, acceptable
since the goal of the present work is to identify local structures in the data. Furthermore,
determining the correlation between the estimated noise terms using s2

d and SNP correlation
appreciably lowers the overall computational cost. The strong alignment of the data points
along a straight line and their tight clustering reveal a strong relationship between the
values of s2

d and σ̂2, suggesting that the estimate is a reliable approximation.
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d against the estimated variance σ̂2 of −log10(p-values).

To evaluate the efficiency of the proposed method, cases and controls were generated,
assuming that the randomly selected SNP rs3789038 is located in gene HMOX2 on chromo-
some 16 (referred to as the disease-associated SNP). Cases were generated based on the
disease model with probability:

πi =
eβ0+β1D

1 + eβ0+β1D ,

where D is the number of copies of the rare allele in the disease-associated SNP and β1 is
the gene effect. Simulation studies for β1 =0.2 and 0.4, based on 3000 replicates (1500 cases
and 1500 controls), indicated that both methods showed promise when using small gene
effects and were therefore retained for further investigation of more than one causal SNP.

In order to determine the appropriate bandwidth values for the proposed method,
the average value of s2

d based on 3000 replicates was calculated as s2
d = 0.1380. The optimal

bandwidth was then obtained by plotting the estimated MSR for normal and Laplace-LD
kernels with different bandwidths, as shown in Figure 3. The horizontal line represents the
estimated s2

d of the noise in 13,479 considered −log10(p-values) obtained from the single
SNP tests. The optimal bandwidth for the normal kernel was found to lie in the range of
20,000 to 45,000, with a value of roughly 25,000 determining approximately equal MSR and
s2

d values. For the Laplace-LD kernel, the optimal bandwidth was roughly 40, with values
in the range of 30 to 60 producing similar MSR values as with the normal kernel. Note that
the bandwidth ranges are not centered around s2

d, consistently with the observation that s2
d

underestimates the noise in the data.
Bandwidths of 20,000, 25,000, and 40,000 were used for the normal kernel, and 30, 40,

and 50 were used for the Laplace-LD kernel. The results were compared with Bonferroni
corrections α′0.05, α′0.01, and α′0.001. In practice, identifying significant regions rather than
significant SNPs for the disease might be relevant, as there is no guarantee that a disease-
predisposing SNP will be identified in the GWAS. Disease regions consisting of the SNPs
within 100,000 base pairs of the disease-associated SNPs were constructed. The estimated
true positive (TP) rate is the number of times at least one of the two disease regions was
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detected out of the replicate runs, while the false positive (FP) rate is the number of SNPs
found to be significant that are not in any of the disease regions.
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Simulations of disease-associated SNPs with low and moderate correlations, with a
gene effect size of 0.2 (Figure 4) and a gene effect size of 0.4 (Figure 5), show that increasing
bandwidths led to higher TP and FP rates. The Laplace-LD kernel had similar FP rates as
those obtained with Bonferroni corrections but had consistently higher TP rates. The plots
of the TP rates for all SNPs were close to one, while the observed FP rates were less than
the Bonferroni corrections.
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Figure 5. The ROC curve of false positives (FPs) and true positives (TPs) for detecting at least one
SNP with (a) low correlation and (b) moderate correlation and gene effect size β1 = 0.4.

The plots indicate consistently lower FP rates using the Laplace-LD kernel compared
to the normal kernel. Figure 6 provides further insight, showing similarly strong signals of
the disease-gene association at around 4 × 106 base pairs and between 6 × 106 and 8 × 106

base pairs for both kernels.
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The proposed methods offer notable advantages in terms of computational efficiency,
particularly when compared with the single SNP analysis. The analysis presented in Table 1
illustrates that the normal and Laplace-LD kernels, as proposed, exhibit significantly
reduced time requirements. These results are based on simulations conducted using the R
version 4.1.0 on hardware featuring an Intel (R) Core (TM) i7-1255U processor.

Table 1. The time required to execute each simulation replicate for the methods.

Average Time Consume per Replicate Method

3.5 min Normal kernel, h = 25,000
4.1 min Laplace-LD kernel, h = 40
6.0 min Single SNP

3.2. Application to Real Data

The GWAS data from the WTCCC study were processed with the proposed methods
for detecting significance. The dataset consists of 14,292 SNPs on Chromosome 16 from
2005 cases of Crohn’s disease and 3004 controls. Evidence of disease-gene association was
reported by the WTCCC at SNP rs17221417, located on gene NOD2, with the significant
region spanning 1,250,000 base pairs on either side of rs17221417. The normal and Laplace-
LD kernels were applied with the chosen bandwidths h = 40,000 and h = 20, respectively,
while accounting for the fact that s2

d is expected to underestimate the true noise in the
data. The significant SNPs within the regions are listed in Table 2. Both methods detected
a larger region (region 1) located at around 4.9 × 107 base pairs and contained a cluster
of 23 SNPs (rs1981760 to rs11076540) on gene NOD2. However, the region 2 detected,
containing rs11644392 located within an intron at locus NR-002453.4, was not reported in
the WTCCC study.

Table 2. Significant SNPs from the WTCCC study of Crohn’s disease dataset on Chromosome 16
using the proposed methods.

Significant SNPs in Region 1 Method

rs1981760-rs11076540 Normal kernel
rs6500315-rs7199150 rs7186163-rs2066849

rs1981760-rs11076540 rs7205760 Laplace-LD kernel

Significant SNPs in Region 2

rs4471699 rs11644392 rs11863150 Normal kernel
rs11644392 Laplace-LD kernel

4. Discussion and Conclusions

Given the evident need for advancements in the area of correlation structure and
bandwidth selection in GWAS, the present work introduces a possible method to attack
this problem and shows the potential of this approach. The method’s applicability to
real genetic data, such as the WTCCC dataset with a specific focus on Crohn’s disease,
has been showcased: the successful identification of clusters of disease-associated SNPs
demonstrates the practical value of this approach in real-world genetic studies.

This study supports the applicability of this novel model-free method for effectively
handling high-dimensional genetic data, with a focus on genome-wide association studies
(GWAS). The approach capitalizes on the inherent correlations between tests, successfully
mitigating the power loss typically associated with other multiple correction methods. By
efficiently estimating the correlation structure and addressing the key aspects of kernel
regression, the method described offers a robust result that can adjust to various datasets
in GWAS.

There are promising directions for future research. A comprehensive simulation study
could be undertaken to compare this new method’s performance with that of other existing
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approaches, such as the Nadaraya–Watson and local linear estimators. A comparative analysis
would investigate the method’s adaptability and robustness across different genomic regions,
including the examination of disease-associated SNPs close to chromosome boundaries.

Evaluation of these new methods, particularly concerning the normal and Laplace-LD
kernels, highlights their computational efficiency and reliability. Future investigations
should explore the optimal bandwidth selection process within the correlation structure,
considering diverse scenarios and data types. Further refinement and improvement in the
method’s applicability in the realm of high-dimensional genetic studies will ultimately
advance our comprehension of complex diseases.
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