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Ecologists have long documented that the world’s biota is spatially organised in regions 
with boundaries shaped by processes acting on geological and evolutionary timescales. 
Although growing evidence suggests that historical human impact has been key in 
how biodiversity is currently assembled, its role as a driver of the geographical organ-
isation of biodiversity remains unclear. Using non-volant terrestrial mammals we set 
up a bioregionalization procedure focused on two datasets, one describing the current 
ranges of terrestrial mammals, and another describing their potential natural ranges in 
absence of historic anthropogenic land use. We then quantified the relative importance 
of anthropogenic land use (5000 and 2000 years ago, and present time) to predict 
the current and natural biogeographical regions across the Earth. In general, past and 
present human land use were important predictors of current bioregions but did not 
largely contribute to predict natural bioregions. Past anthropogenic land use seems to 
have left an imprint on the taxonomic differentiation of some of the largest biogeo-
graphical realms, whereas land use at present stands out as a driver of the taxonomic 
differences between medium-sized subregions, i.e. within and among continents. Our 
findings suggest that anthropogenic actions during the last millennia have had a far-
reaching effect on the spatial organisation of the Earth’s non-volant mammals.

Keywords: bioregionalization, historic anthropogenic land use, terrestrial mammals

Introduction

How is the world’s biodiversity organized, and why do large-scale patterns of tax-
onomic diversity change through natural geographic regions? These questions have 
attracted the attention of naturalists since the early 19th century (von Humboldt 
1806, Wallace 1876, Ricklefs 2004, Daru et al. 2017, Dinerstein et al. 2017). A key 
step in understanding the organisation of biodiversity is to identify the assemblage 
of regions based on their shared organisms (Wiens 2011). Wallace was among the 
first to propose that the world’s fauna is organized hierarchically in broad regions 
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shaped by geographic and climatic factors (Wallace 1876). 
About 150 years later, the development of multivariate ana-
lytical techniques together with an increase in the availability 
of global species distribution databases have led to revalua-
tions of Wallace’s proposal (Kreft and Jetz 2010, Procheş and 
Ramdhani 2012, Holt et al. 2013, Rueda et al. 2013) and 
the improvement of our understanding about the extrinsic 
determinants driving the main dissimilarities among biore-
gions (Ficetola et al. 2017). Broadly, what we know is that 
the interplay of multiple factors has jointly contributed to the 
formation of bioregions, but their prominence varies across 
the globe (Riddle and Hafner 2010, Ficetola et al. 2017, 
Mazel et al. 2017). Processes acting deeper in the past, like 
plate tectonics, are the most important in explaining the sep-
aration between strongly divergent biogeographical realms. 
Factors representing present-day ecological barriers, like cli-
matic heterogeneity, determine the separation between less 
dissimilar regions, i.e. within and among continents; while 
mountains – the third factor in importance – operate at all 
levels of biogeographical differentiation (Ficetola et al. 2017). 

The potential role of anthropogenic impact in shaping 
bioregions has been largely ignored because extant biogeo-
graphical regions have traditionally been assumed to reflect 
the natural organisation of biodiversity that resulted from 
ecological, historical, and evolutionary processes acting over 
millions of years (Lomolino et al. 2010). Yet, rising evidence 
showing that human-mediated species introductions are 
already affecting extant biogeographic regions (Capinha et al. 
2015, Bernardo-Madrid et al. 2019) challenges this view. 
Furthermore, accumulating evidence shows that Quaternary 
human activities induced shifts in the plant and animal com-
munities we see today (Lyons et al. 2016), and there is little 
doubt that modern humans have been a major driver in the 
extinction of large mammals during the late Pleistocene and 
early Holocene (Sandom et al. 2014, Smith et al. 2018). 
Moreover, archaeological, palaeoecological and genetic data 
suggest that cumulative human transformation of ecosystems 
over millennia has resulted in dramatic changes in composi-
tion, community structure, richness and genetic diversity of a 
diverse array of organisms across taxonomic groups (Ellis et al. 
2013, 2021, Boivin 2016, Mottl et al. 2021). This body of evi-
dence raises the question of whether historical anthropogenic 
pressures may have been large enough to leave an imprint 
detectable today on biogeographical assemblages globally. 

To answer this question, we set up a bioregionalization and 
analytical procedure focused on two datasets; one describing 
the current distribution ranges of global terrestrial mammals, 
and another set inferring their present natural ranges, which 
represents estimates of where species would potentially live 
without anthropogenic pressures (Faurby and Svenning 2015, 
Faurby et al. 2018). Using both types of distribution ranges we 
build hierarchical bioregionalizations and compute models to 
identify the variables (plate tectonics, climatic heterogeneity, 
mountains, and anthropogenic land use over the Holocene, 
specifically 5000 and 2000 years ago as well as present time) 
that best predict the assemblage of species in bioregions. We 
hypothesize that if anthropogenic land use has had a notable 

effect on the biogeographical assemblages and boundaries as 
we know them, then 1) the biogeographic configurations built 
using current distribution ranges will differ from those based 
on natural ranges; and 2) human land use should predict the 
biogeographic patterns obtained using current ranges, but not 
patterns obtained using natural ranges. 

Material and methods

Generating presence–absence matrices using range 
distributions

Current and natural distribution ranges of terrestrial mam-
mals were obtained from PHYLACINE 1.2 (Faurby et al. 
2018), which contains range maps for all 5831 known mam-
mal species that lived since the last interglacial (~ 130 000 
years ago until present). Ranges for current extant species 
contained in PHYLACINE are IUCN (2016) distribution 
maps, whereas present natural ranges represent estimates of 
where species would potentially live if they had never expe-
rienced anthropogenic pressures, and – in the case of extinct 
species – had not gone extinct (Faurby and Svenning 2015 
for details). Note that Faurby and Svenning (2015) did not 
use present or past human land use variables to estimate 
PHYLACINE natural ranges, thus, natural ranges were not 
defined considering the predictors we test here avoiding cir-
cularity. Both current and natural ranges in PHYLACINE 
are projected to Behrmann cylindrical equal area rasters with 
a cell size of 96.5 by 96.5 km. Using these data, we gener-
ated two presence–absences matrices, one for the current and 
one for the natural ranges, in which every row represents a 
grid cell and every column a species. From these matrices we 
excluded 1) Homo species; 2) bats, because their high disper-
sal capacity and their almost global distribution make it dif-
ficult to establish clear biogeographical boundaries (Wallace 
1876); 3) marine mammals, including polar bears, and other 
fully aquatic species (https://marinemammalscience.org/
science-and-publications/list-marine-mammal-species-sub-
species for a full list of marine species not included); 4) cells 
containing less than 50% of land area to approximate equal-
size samples; and 5) cells containing fewer than five species to 
reduce potential distortions caused by having few taxa (Kreft 
and Jetz 2010). These exclusion criteria rendered a total of 14 
087 cells representing 3960 terrestrial mammal species for 
the current matrix, and 14 151 cells representing 4306 for 
the natural matrix. 

Given that differences between the biogeographical con-
figurations of current and natural bioregions could be driven 
by the huge distribution ranges typical of extinct megafauna, 
we also built presence–absence matrices using only the extant 
current mammals (i.e. not including fossil ranges) that have 
had range contractions (i.e. have and estimated natural dis-
tribution range in PHYLACINE different from the IUCN 
current range). Overall, we obtained 536 extant mammals 
whose distribution ranges have changed. Note that a few 
extant species became extinct on some continents as part 
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of the megafauna extinction event but survived on others. 
Consequently, we adjusted distribution ranges for those con-
tinentally extirpated species. To do that, first we did a litera-
ture review (Barnosky et al. 2004, Koch and Barnosky 2006) 
to find those species that had become extinct prehistorically 
on some continents but survived on others (Eurasia was con-
sidered a single continent) (Supporting information for spe-
cies selected). Then, we excluded any portion of the species’ 
range found on that continent. 

Building biogeographical regionalizations

To each of the presence–absence matrices we applied a 
machine-learning algorithm referred to as affinity propagation 
(AP hereafter) (Frey and Dueck 2007) to build biogeographi-
cal regionalizations at different biogeographical resolution. 
We chose AP because it can compress massive datasets very 
efficiently (i.e. with lower error in comparison with other 
clustering methods, Frey and Dueck (2007) for details), and 
its good performance in hierarchical bioregionalization pro-
cedures (from few grid cells to large realms) has already been 
demonstrated in a previous work (Rueda et al. 2013). The 
AP algorithm works by detecting special data points called 
exemplars, and by a message-passing procedure it iteratively 
connects every data point to the exemplar that best represents 
it until an optimal set of exemplars and clusters emerges. In 
contrast to algorithms in which exemplars are found by ran-
domly choosing an initial subset of data points, AP takes as 
input measures of ‘similarities’ between pairs of data points 
(grid cells here) and simultaneously considers all the points as 
potential exemplars. The optimal set of exemplars is the one 
for which the sum of similarities of each point to its exemplar 
is maximized. 

We first used the presence–absence matrices to calcu-
late pairwise similarities between pairs of cells, and selected 
Hellinger distance as a similarity index. The Hellinger dis-
tance is a modification of the Euclidean distance (Legendre 
and Gallagher 2001) and is used to avoid the ‘double-zero’ 
problem, i.e. when two sites that have no species in com-
mon are assigned the same distance as two sites that share the 
same species; and the ‘species–abundance paradox’, which 
frequently occurs when two sites share only a small fraction 
of all the species in the same regional pool. This is expected 
to be a particular problem at the margins of biogeographical 
regions where sites may be quite different from one another 
rather than in the centre of a region where sites are likely 
to be very similar in their species assemblages (Legendre and 
Legendre 1998, Gagné and Proulx 2009). We then used a 
protocol based on a successive application of AP (Rueda et al. 
2013) to obtain a biogeographical upscaling from the smallest 
possible bioregions (i.e. the highest biogeographical resolu-
tion) to the largest ones. We performed an initial AP analysis 
involving all grid cells of the similarity matrix. This first AP 
run generates the optimal solution of the highest resolution 
bioregions, while also identifying its exemplars. We obtained 
1128 clusters and exemplars for the current distributions and 
1053 for the natural distributions. Then, using the exemplars 

as the new units of analysis, we again conducted an AP, i.e. 
we calculated a new similarity matrix and re-run a new AP. 
This process was repeated until a small and coherent number 
of large clusters emerged; specifically, four runs were needed 
to get nine (with the current distributions) and eight (with 
the natural distributions) large bioregions (Supporting infor-
mation). Finally, to obtain maps of each clustering result, 
we classified each grid cell (row) of every presence–absence 
matrix according to the cluster to which they were assigned 
in its corresponding AP analysis. AP analyses were per-
formed using the ‘APCluster’ R package (www.r-project.org, 
Bodenhofer et al. 2011).

Assessing differences in biogeographical 
configurations

The degree of similarity between clusters (i.e. bioregions) 
of current and natural bioregions was estimated using the 
Jaccard index. For that, we used the cluster_similarity func-
tion of the ‘clusteval’ R package (www.r-project.org, Ramey 
2012). This function computes the similarity between two 
clusterings of the same data. Jaccard index ranges between 0 
(no similarity) to 1 (perfect match). 

Predictors

To each of the cells of the presence–absence matrices we 
assigned a mean value of several predictors. We considered 
variables previously tested as determinants of biogeographi-
cal boundaries related to climatic heterogeneity, orographic 
barriers, tectonic movements, and instability of past climate 
(Ficetola et al. 2017) plus variables related to anthropogenic 
land use over the Holocene. In particular, we tested four 
climatic variables: annual total precipitation, mean annual 
temperature, seasonality in temperature, and seasonality in 
precipitation. All climatic variables were extracted from the 
WorldClim dataset (Fick and Hijmans 2017) up-scaled at a 
96.5 km resolution. These variables represent both average 
conditions and variability within years and have been shown 
to be determinants of vertebrate distributions (Sexton et al. 
2009). Climatic conditions have strongly shifted over the 
Quaternary period, and have been shown to play a role in 
the present-day species distributions, endemism, and assem-
blages (Araújo et al. 2011). To test for the potential effect 
of past climate change or stability, we calculated the average 
velocity of climate change since the Last Glacial Maximum 
(LGM; ~ 22 000 years ago) and since the Mid-Holocene 
(MH; ~ 6000 years ago) (Sandel et al. 2011). For that, we 
used the mean annual temperature and annual total precipi-
tation for the MH and the LGM calculated by means of the 
model for interdisciplinary research on climate (MIROC-
ESM) (Watanabe et al. 2011). 

Plate tectonics are responsible of the long-term isolation 
of the biotas, whereas mountain ranges represent major bar-
riers to dispersal for most mammals (Lomolino et al. 2010, 
Ficetola et al. 2017). Plate tectonics were obtained from Bird 
(2003). Each grid cell was assigned the tectonic plate to which 
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it belongs. We removed those cells that were represented by 
more than one tectonic plate to avoid potential wrong ‘co-
occurrence’ patterns, i.e. mixing faunistic elements separated 
by different plates even though the species do not actually 
co-occur. We used the GTOPO30 to calculate the difference 
between minimum and maximum elevation per grid cell to 
obtain a metric of elevational variance aimed to capture the 
complexity of topographic changes. 

Finally, past anthropogenic land use was obtained from 
Ellis et al. (2013). This dataset consists of two global spa-
tially explicit reconstructions two main models of land use 
across the Holocene, HYDE and KK10 models. We chose the 
more realistic KK10 model, which assumes that humans use 
land more intensively when population density is high and 
land scarce (Kaplan et al. 2011). In counterpoint, the HYDE 
model omits land-use intensification and predicts that except 
for the developed regions of Europe, human use of land was 
insignificant in every biome and region before 1750 (start of 
the industrial revolution). The KK10 model dataset contains 
raster information for human land use for 10 different time 
periods; 8000, 5000, 3000, and 2000 years ago, and 1000, 
1500, 1750, 1900, 1950, and 2000 of the present era. We 
first selected four different time spans: 8000, 5000, and 2000 
years ago, and current (year 2000 of the present time), but 
the descriptor of land use 8000 years ago was not included in 
the random forest models due to its low variability at global 
level (Supporting information). 

Evaluating potential drivers of the biogeographical 
configurations

We used random forest classification models (Breiman 2001) 
to assess the factors that may predict the classification of cells 
bioregions and to estimate the relative importance of the pre-
dictors. Note that random forest models were only carried 
out for large and medium-sized bioregions or subregions, 
as some of the predictors (e.g. plate tectonics) do not make 
ecological sense to explain smaller bioregions. Random forest 
is a machine learning method based on a combination of a 
large set of decision trees. Each tree is trained by selecting a 
random set of variables and a random sample from the train-
ing dataset (i.e. the calibration dataset). The accuracy of the 
models is given by the out-of-bag (OOB), an estimate of the 
misclassification rate that represents an unbiased error rate of 
the model that is calculated by counting how many cases in 
the training set are misclassified and dividing the number by 
the total number of observations. 

First, we split every dataset into training set (70% data, 
used to fit the model) and test set (30% data, used to evalu-
ate the performance of the model). Second, with the train-
ing set we performed cross-validation to evaluate different 
hyper parameters of the model using grid random search 
(Supporting information). Random forests main hyper 
parameters include the number of decision trees in the forest 
(ntree) and the number of features considered by each tree 
when splitting a node (mtry). Values for ntree ranged between 
7505 to 4604, while values for mtry ranged between 3 and 

7 (Supporting information). Third, we run the Random 
Forest classification models using the training dataset and, 
finally, we estimated the accuracy of our models by checking 
the predictions against the actual values in the test dataset. 
Random forest models were computed using the R package 
‘RandomForest’ (Liaw and Wiener 2002). Additionally, we 
also defined classification models using XGBoost (R package 
‘xgboost’, www.r-project.org, Chen et al. 2023) to compare 
algorithm performance in terms of accuracy. Here, we report 
results from random forest as it had better overall accuracy.

Random forests are able to disentangle interacting effects 
and identify non-linear and scale-dependent relationships 
that often occur at the scale of the analysis performed here 
among multiple correlated predictors (Cutler et al. 2007). 
Evidence from genomic studies suggests that variable impor-
tance measures may show a bias towards correlated predictor 
variables (Nicodemus et al. 2010), hence we eliminated those 
predictors showing a moderate to high Pearson’s correlation 
(r > 0.50, Supporting information). As a result, our final 
models included seasonality in temperature and precipitation 
as representatives of climate heterogeneity; velocity of climate 
change since the LGM and the MH to the present as repre-
sentatives of past climate change; plate tectonics; variation in 
elevation representing mountains; and human land use at the 
present, 5000, and 2000 years ago. Human land use 5000 
and 2000 years ago showed a large correlation (r = 0.87), so 
we decided to perform separate models for each time period. 
Globally the correlation between human land use at present 
and 2000 years ago is relatively low (r = 0.29); however, we 
also decided to perform independent models for both pre-
dictors because Pearson’s coefficient using modified t-test 
(below) showed that the correlation between both variables is 
influenced by spatial autocorrelation. 

Since our models include spatial data, the selection of 
predictors with random forest could be partly influenced by 
spatial autocorrelation. To assess this point, we performed 
correlations between predictors using the method of t-test 
modification (Clifford et al. 1989, Dutilleul 1993) to incor-
porate spatial structure in the Pearson’s correlations. This is a 
hypothesis testing procedure based on a modification version 
of the correlation coefficient that takes into account the spa-
tial structure of the predictors. This analysis was computed 
using the function modified.ttest of the R ‘SpatialPack’ package 
(www.r-project.org, Vallejos et al. 2020). The results showed 
evidence of spatial autocorrelation in many of the correlations, 
even for low Pearson’s correlation values (Supporting informa-
tion). Therefore, to account for spatial autocorrelation we also 
run random forest classification models incorporating spatial 
structure as a possible predictor. To do that we first generated 
Morans’s Eigenvector Maps (MEMs) (Dray et al. 2006), and 
ranked and reordered them based on their Moran’s I. These 
eigenvectors can be included in model as spatial predictors. 
Here we include the first three eigenvectors. MEMs were cal-
culated using the mem function from the ‘spatialRF’ package 
in R (www.r-project.org, Benito 2021).

The algorithm used in the process of regionalization 
only uses species presence–absences, which means that 
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humans can only have a role if present and if causing local 
extinctions, thereby changing the amount of shared species 
between grid cells. At the largest biogeographical scale two 
bioregions, Madagascar and Australia, appear characterised 
by an extremely low historical human land use (Supporting 
information). Note that in both cases human pressures may 
be poorly captured by the input layers of the KK10 model 
used to define the variables of past anthropogenic land use, 
as the role of pre-historic human impact in the extinction 
of the megafauna of both Australia and Madagascar is well 
known (Miller et al. 2005, Hansford et al. 2018). In any 
case, the ‘false’ absence of human impact could incorrectly 
give support for historical land use as a cause. Besides, both 
regions have a 100% endemicity for non-flying mammals, 
meaning that humans cannot change their clustering without 
introducing species. Therefore, to assess to what extent these 
factors might be affecting the results, we also ran the mod-
els excluding Australia and Madagascar. Finally, we note that 
our models are unbalanced regarding the number of climate 
versus human land use variables, which overemphasize the 
importance of human impact. To evaluate this possibility, we 
also fitted models without climate variables. 

Calculating global and local predictor importance

We measured variable importance using the mean decrease 
in accuracy, which is obtained by permuting randomly each 
variable and assessing the decrease in classification accuracy 
of the model (Liaw and Wiener 2002). Thus, the greater the 
loss of accuracy due to the permutation (or exclusion) of a 
single variable, the more important that variable is consid-
ered, i.e. variables with a large mean decrease in accuracy are 
more important for classification of the data.

Random forest also calculates the local variable importance, 
which defines the importance of a variable in the classification 
of a single sample (grid cell here) and therefore shows a direct 
link between variables and samples (Touw et al. 2012). The 
local importance score is derived from all trees for which the 
sample was not used to train the tree. For each sample, the per-
centage of votes for the correct class in the variable permuted 
OOB data is subtracted from the percentage of votes for the 
correct sample in the original OOB data (i.e. the untouched 

OBB data) to assign a local importance score. The score reflects 
the impact of a variable on correct classification of a given sam-
ple: negative (i.e. the variable does not positively contribute 
to the classification), 0 (the contribution is neutral) and posi-
tive (the variable positively contributes to the classification). 
Given that local importance values are noisier than global 
importance ones we run the same classification five times (five 
per biogeographical scale) and averaged the local importance 
scores to obtain a robust estimation of local importance values 
(Touw et al. 2012). We present maps of mean local impor-
tance values for present and past human land use. In these, it is 
important to note that high local importance can reflect both 
areas where human land use was high and areas where it was 
negligible, i.e. both are equally valuable for the classification 
analysis (Supporting information). To facilitate interpretation, 
in the main text we present maps of local importance only for 
areas where land used was > 10%.

All analyses were performed in the R ver. 4.3.0 (www.r-
project.org).

Results

Bioregionalizations

Both for the current and natural bioregionalizations we iden-
tified a hierarchical system of biogeographic regions with four 
levels (Fig. 1). For current mammalian ranges, the broadest 
delineation of nine large bioregions was mostly consistent 
with the original maps of Wallace’s realms and subregions 
(Fig. 1a). For natural mammalian ranges, the eight biore-
gions obtained showed a different biogeographic arrange-
ment with respect to the nine large current ones, especially in 
the Northern Hemisphere (Supporting information). Thus, 
while the natural broadest bioregions show a single Holarctic 
region, in the current ones this is separated into a Nearctic 
and a Palearctic region. Differences between current and nat-
ural bioregions extended to the subregions or medium-sized 
bioregions and smaller bioregions (Supporting information) 

and were confirmed for the bioregionalizations carried out 
with the 536 species with different natural and current ranges 
(Supporting information). 

Figure 1. Current and natural broader regions or realms. Only results for the broader regions are shown here: nine current bioregions (a), 
and eight natural bioregions (b). The greatest differences between both biogeographical configurations are more relevant in the Northern 
Hemisphere, where, for the natural bioregions, the Palearctic and the Nearctic are united forming a great extension, the typical biographical 
boundary between the Nearctic and the Neotropical realms disappears and extends towards the north, and India is no longer part of the 
Asian region and is included instead within the ‘Saharo-Arabian’ region. 
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Global importance of predictors of the 
biogeographical patterns for regions and subregions

For the broader bioregions, human land use at present had 
a moderate relevance in the classification models (Fig. 2a). 
In contrast, past human land use (5000 and 2000 years 
ago) was the third most important predictor of the biogeo-
graphic structure of current realms behind plate tectonics 
and seasonality in temperature (Fig. 2c, e), with a moderate, 
non-negligible predictive value (~ 22 and 21% of cells clas-
sified correctly when the model was run just with human 
land use 2000 and 5000 years ago, respectively, Fig. 3). In 
broad accordance with our prediction, past and present 
human land use were poorer predictors of natural bioregions 
(Fig. 2b, d, f ). Results were consistent also if we excluded 
Australia and Madagascar (Supporting information). The 
misclassification rate (out-of-bag, OOB hereafter) for these 
set of models was quite low, never exceeding 3.6%, and the 
model accuracy ranged around 0.97. For medium-sized bio-
regions or subregions, past and present human land use were 
the second predictors in importance for the current biore-
gions (Fig. 4a, c, d; OOB values in general < 8.6%, model 
accuracy 0.92–0.94). As hypothesized, the importance of 
land use at present was smaller for the natural bioregions; 
although, unexpectedly, past land use remained a strong 
driver (Fig. 4b, d, e). 

Results for models accounting for the spatial autocorre-
lation (Supporting information) showed a similar tendency, 
especially for the broader bioregions and past human land 
use (OOB values in general < 2.5%, model accuracy 0.98–
0.99). In fact, for these models the differences for past human 
impact are sharpened when current broader bioregions are 
compared with the natural ones. On the contrary, the impor-
tance of human land use at present fades in favor of other 
predictors when the spatial structure is taken into account for 
both current and natural broader bioregions. For medium-
sized bioregions, the importance of plate tectonics decreases 
and it is no longer the main predictor (OOB values in gen-
eral < 3.8%, model accuracy 0.96–0.97). When accounting 
for spatial autocorrelation the importance of human land 
use at present becomes greater for current bioregions and 
decreases for natural bioregions. However, the past human 
land use has a completely opposite effect to that expected 
since it becomes the main predictor of medium-sized natural 
bioregions, implying that spurious factors might be acting 
on this scale.

Models without climatic variables had lower accuracy as 
expected but did not alter our main findings with similar 
variable importance rankings that support the role of human 
land use (Supporting information). 

Local importance of predictors of the 
biogeographical patterns

Maps showing local importance scores revealed differences in 
the location of grid cells where past and present human land 
use have been analytically important for the classification of 

the broader current bioregions (Fig. 5). The cells where human 
land use at present was most relevant are located in southern 
Africa, the easternmost boundary between the Palearctic and 
the Asian regions, and part of the northern boundary between 
the Palearctic and ‘Saharo-Arabian’ regions (Fig. 5a). The 
cells where human land use 2000 years ago was more impor-
tant are located mainly throughout Central America and the 
Andes mountain range, Europe except for the northernmost 
part, most of the Asian region, and the boundary between 
the Palearctic and the Asian regions (Fig. 5b). The cells where 
human land use 5000 years ago was more important mostly 
coincided with those of 2000 years ago, but with minor scores 
of importance (Fig. 5c). Some of these areas coincided for 
the broader natural bioregions, yet the importance of Central 
America and the Andes for the classification of natural bio-
regions weakened (Fig. 5e–f ) whereas the importance of the 
area of southern India increased (Fig. 5d–f ). 

For the medium current bioregions, the grid cells where 
the human land use at present was most relevant for the clas-
sification of bioregions included those highlighted for the 
broader bioregions plus most part of Europe, southern India, 
eastern Australia, and a large area of the Nearctic (Fig. 6a). 
When focusing on the human land use 2000 years ago, the 
areas affected by human land use were similar to those of the 
broader bioregions plus a Sub-Saharan area crossing Africa 
from west to east (Fig. 6b). Again, the cells where human 
land use 5000 years ago was more important mostly coin-
cided with those of 2000 years ago, but it is noteworthy that 
the importance of the Sub-Saharan area disappears (Fig. 6c). 
The location of cells affected by human land use for the 
medium natural bioregions quite coincided with that for cur-
rent bioregions but with less importance scores generally in 
Central America and the Sub-Saharan area (Fig. 6e–f ).

Discussion

Our study shows that human activity during the last few 
millennia has left its mark on the spatial organisation of the 
Earth’s biodiversity. First, we show that biogeographical con-
figurations based on current and natural mammal distribu-
tions differ, particularly in the Northern Hemisphere. These 
differences were not solely the result of including extinct 
megafauna – with huge distribution ranges – in the natu-
ral biogeographic regions, as biogeographical patterns for 
the 536 extant terrestrial mammals with different current 
and natural ranges confirmed our findings. Second, we find 
that human land use is an important predictor of current 
bioregions but does not largely contribute to predict natural 
bioregions. For example, for the broader regions or realms, 
past human land use was the third most important predictor 
behind plate tectonics and temperature seasonality, but was of 
minor importance on natural regions. The difference between 
current and natural bioregions for past human land use was 
even more exacerbated when spatial autocorrelation was con-
sidered, such that past human land use became the second 
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most important factor after plate tectonics in predicting the 
configuration of the current broader bioregions. This implies 
that past anthropogenic actions have seemingly left a percep-
tible biogeographical imprint on the assembly of the global 
realms we recognize today. Moreover, for the medium-sized 

subregions, human land use at present was among the first 
most important predictors, suggesting that recent human 
activity is already causing changes in the biogeographical 
assemblages at the subregional scale, i.e. within and among 
continents. Again, the importance of human land use at 

Figure 2. Ranking of importance values for the drivers of taxonomic differentiation for the current and natural broader bioregions. Above 
panels show importance values from models with human land use at present for (a) current and (b) natural bioregions, while the panels 
below show importance values from models with human land use 2000 years ago for (c) current and (d) natural bioregions, and human 
land use 5000 years ago for (e) current and (f ) natural bioregions. The numerical values associated with each horizontal bar are mean 
decreased in accuracy values (i.e. how much the accuracy decreases when the variable is excluded from the model) and represents variable 
importance. Importance was measured by the drop-in classification accuracy after predictor randomization in random forests. Consequently, 
higher values of mean decreased in accuracy indicate variables that are more important to the classification. Values from 0 to 1 in the x-axis 
represents relative importance values (i.e. division of each value of mean decrease in accuracy by the largest value) and show a ranking of 
variable importance. OOB (out-of-bag) represents the percentage of cells misclassified in each model. VCC = velocity of climate change; 
MH = Mid-Holocene; LGM = last glacial maximum; annual P = annual precipitation; mean T = mean annual temperature; ya = years ago; 
Var. in elevation = variation in elevation.
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present increased as a predictor of current medium-sized sub-
regions when the spatial autocorrelation was considered. 

The mammalian distributions that we know today are 
not only a reflection of the most recent human actions but 
also those exerted during the last few millennia (Faurby and 
Svenning 2015, Polaina et al. 2020). Recent studies had 
already shown that human actions in the present, in terms 
of human-mediated species introductions, can be evident 
at biogeographical scales (Capinha et al. 2015, Bernardo-
Madrid et al. 2019), but here we also show evidence of an 
effect of past human land use. What has happened from 5000 
years ago that has left a noticeable footprint in the Earth's 
biogeographical regions? This period coincides with the 
emergence of an ‘intense’ agricultural land expansion and the 
settlement of densely populated areas in the Mediterranean, 
southwest Asia, south Asia, and eastern China (Kirch 2005, 
Ellis et al. 2013, Stephens et al. 2019). Long-term impacts to 
enhance agricultural productivity, including forest clearing, 
increased fire frequencies, species invasions, and soil erosion, 
were already apparent in some regions at this time (Ellis et al. 
2013, Boivin et al. 2016), and may have transformed vegeta-
tion structure and species composition across many regions, 
from the Mediterranean to the Tropics (Stephens et al. 2019, 
Zheng et al. 2021). In fact, reconstructions suggest that 
> 20% of Earth’s temperate woodlands had been already 
impacted by humans by the late Holocene (Ellis et al. 2013). 
Indeed, our results on local importance show the match 
between some of the biogeographical boundaries and regions 
of the New World and the distribution – and presumed 
impact – of ancient Mesoamerican and South American pre-
European civilizations (Richard 1997, Dunning et al. 2012). 
In the Old World, we note the prominence of past human 
land use covering most of the Asian realm territory, associated 
to the rise of rice cultivation in eastern, southern, and south-
east Asia over the Holocene (Silva et al. 2015, Zheng et al. 
2021). Actually, cumulative archaeological data show that 
the scale of agriculture and land use in these regions was 

significant; expansion of land area used for livestock and 
rice Oryza sativa paddy agriculture in southern Asia was suf-
ficient to increase atmospheric methane emissions between 
4000 and 1000 years ago (Fuller et al. 2011). Moreover, 
the atmospheric CO2 decline registered between 1570 and 
1620 has been attributed to the uptake by vegetation follow-
ing the agriculture abandonment caused by the population 
crash after the arrival of Europeans in America (Lewis and 
Maslin 2015). Past human land use can also partly explain 
differences between the southern Palearctic boundary and the 
Afrotropic below the Sahara. Both can be related to the trans-
formation of European and Near Eastern landscapes during 
the Roman period (Butzer 2005), and the expansion of sor-
ghum Sorghum bicolor cultivation 3000 to 2000 years ago in 
Sub-Saharan Africa (Boivin et al. 2016). 

While we found differences in importance of human land 
use 5000 and 2000 years ago between current and natu-
ral medium-sized bioregions, we were surprised that past 
human land use was an important determinant of natural 
bioregions, which were based on distributions of mammals 
in the absence of human impact. These results could reflect 
an overlap between human land use and biogeography. If the 
distribution of humans during the middle and late Holocene 
reacted to the same drivers as the distributions of terrestrial 
mammals, human land use could appear as a predictor even 
if it had no causal effect. In fact, the importance of this vari-
able appears to be a consequence of how human land use 
was distributed globally 5000 and 2000 years ago, or more 
accurately where human activity was largely absent. Note 
that while current human land use is distributed over wide 
areas of the planet, that of 5000 and 2000 years ago was 
centralized in specific areas coinciding with the distribution 
of ancient civilizations. This means that, on a subregional 
scale, many bioregions can be well predicted by the absence 
of human land use. Indeed, an additional analysis that 
excluded subregions with no reported human land use 2000 
years ago showed very little importance of past human land 

Figure 3. Diagrams describing the accuracy in classification of the three most important drivers of the current broader bioregions for models 
including human land use 2000 and 5000 years ago. Values indicate the percentage of cells correctly classified (1-OOB error) in their bio-
region, and are obtained from running random forest classification models for each individual variable, by pairs and for the three most 
important factors together. Note that the number of variables modifies the parameters of the models and causes there to be a variation in 
the out-of-bag (OOB) when compared with models containing all variables. 
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use for both current and natural medium-sized bioregions 
(Supporting information). 

While our results show perceptible impacts of past human 
land use on current biogeographical patterns for terrestrial 
mammals, there are some limitations in the available data 
that could potentially bias our results. First, IUCN distribu-
tion ranges do not represent true areas of habitat, meaning 
that there may be a fair amount of unsuitable habitat in the 
ranges resulting in errors of commission (Brooks et al. 2019). 
Yet, our approach (assigning presences to grid cells) does not 
assume a given species is found in all areas of a cell, but rather 

that it could be found in some areas, which for cells of the 
size considered here (96.5 × 96.5 km) should greatly reduce 
commission errors. Second, IUCN distribution maps are the 
most comprehensive global source of range data for terres-
trial mammals; however, we are aware that sampling effort, 
that influences range definition, varies across the world. 
Unfortunately, that spatial bias is also present in other avail-
able sources, like GBIF, in which nation-wide differences in 
funding and data sharing have led to huge differences in data 
contributions (Yesson et al. 2007, Beck et al. 2014). Third, 
while in PHYLACINE (Faurby et al. 2018) it is claimed 

Figure 4. Ranking of importance values for the drivers of taxonomic differentiation for the current and natural medium-sized bioregions or 
subregions. Above panels show importance values from models with human land use at present for (a) current and (b) natural bioregions, 
while the panels below show importance values from models with human land use 2000 years ago for (c) current and (d) natural bioregions, 
and human land use 5000 years ago for (e) current and (f ) natural bioregions. Specifications as in Fig. 2. 
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Page 10 of 13

that ‘both current ranges and present natural ranges can be 
compared to estimate macroecological relationships with 
and without anthropogenic pressures’, there is uncertainty in 
the reconstructions of present natural ranges ranging from 
high certainty for species with recent, documented human-
induced range expansions or reductions to more uncertain 
inferences based on fossil co-occurrences. Uncertainly may be 
higher among extinct megafauna which could drive the con-
figuration of natural bioregions. Importantly, our study does 
not claim that the delineated natural bioregions are the real 
bioregions that should exist in the absence of human impacts, 
instead this is a counterfactual scenario for comparison. 

Finally, we acknowledge that although our work is framed 
in two specific moments (5000 and 2000 years ago), the 
effects shown do not necessarily have to have occurred 5000 
years ago, but possibly earlier. We have not been able to dem-
onstrate this point since information available for 8000 years 
ago has low variability at global level. Existing models of long-
term changes in global land use, as the KK10 model used here, 
differ in their representation of these early transformations as 
they are dependent on limited disparate empirical data from 
archaeology and paleoecology (Stephens et al. 2019). Efforts 
to map land-cover change over the past 10 000 years using 
pollen data have recently increased (Stephens et al. 2019) and 

possibly in the next few years we will already be able to use 
high-quality global reconstructions combining both land-use 
and land-cover change that will help us to understand better 
the impact of early civilizations on the present-day biodiver-
sity patterns. 

In summary, our results show the value of consider-
ing impacts of past human actions to understand the cur-
rent organisation of biodiversity globally. Previous studies 
have documented lasting effects of human land use changes 
during the last millennia on current biodiversity patterns ( 
Dambrine et al. 2007, Haberle 2007, van der Sande et al. 
2019), but this is the first time the signal has been recognized 
on the taxonomic differentiation of the largest realms. Some 
of the biogeographical boundaries proposed by Wallace 140 
years ago (Wallace 1876) were likely already showing the 
influence of anthropogenic actions. The human transforma-
tion of ecosystems that occurred in large terrestrial extensions 
coinciding with the distribution of ancient civilizations, 
makes past human land use important to discern taxonomic 
differences among the large biogeographical zones of the 
world. It is certainly difficult to disentangle direct causal 
effects from correlative relationships in non-experimental 
large-scale studies such as this. We know the same geo-
graphic and environmental characteristics that influenced 

Figure 5. Maps of the local importance of present and past human land use for the current and natural broader bioregions when percentage 
of human land use was > 10% in each grid cell. The local importance shows the importance of the variable (human land use here) for the 
classification of a single sample (grid cells). The score of the legends shows the impact on correct classification of grid cells, with blue colors 
indicating from negative to 0 values (incorrect to neutral classification), and yellow, orange and red indicating positive values (correct clas-
sification). In these maps, white cells imply human land use values < 10%.
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the distribution across space and time of mammals likely 
also influenced the distribution of our ancestors (Lomolino, 
2018). However, we considered several of those predictors 
and still found a global imprint of past human actions on the 
patterns of distribution of global diversity. Our results force 
us to reflect on how the much more widespread and severe 
changes that have occurred since the beginning of the indus-
trial revolution will affect the organisation of biodiversity in 
the future. We show here the effects of recent human actions 
are already detectable at the subregional scale. Although it 
may seem like an unlikely or distant future, the possibility 
that human activities become the main driver that shapes 
Earth’s biodiversity, above historical geomorphological or cli-
matic processes, cannot be ignored. 
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datasets/used_planet. Sources are all described clearly in the 
manuscript. 

Data are available from the Dryad Digital Repository: 
https://doi.org/10.5061/dryad.cfxpnvxcn (Rueda et al. 2023).

Supporting information

The Supporting information associated with this article is 
available with the online version.
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