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Abstract

Data assimilation is a statistical technique that combines information from observations

and a mathematical model in order to make the best estimate of a state at the current time,

where the best estimate is known as the analysis. Basic data assimilation theory relies on

the assumption that the background, model and observations are unbiased. However, this

is often not the case and, if biases are left uncorrected, can cause significant systematic

errors in the analysis. When bias is only present in the observations, VarBC (Variational

Bias Correction) can correct for observation bias, and when bias is only present in the

model, WC4DVar (Weak-Constraint 4D Variational Assimilation) can correct for model

bias. However, when both observation and model biases are present, it is unknown how the

different bias correction methods interact, and the role of anchor (unbiased) observations

becomes crucial for providing a frame of reference from which the biases may be estimated.

We highlight the importance of correctly specifying the background error statistics

in VarBC to ensure that the analysis is more precise than the prior estimate. We then

demonstrate the characteristics needed in anchor observations to effectively reduce the

contamination of biases in the analysis, when one or both types of bias are corrected for.

We find that the location and timing of anchor observations is important in their ability

to reduce the contamination of bias, as well as having precise anchor observations. In

this thesis we study the mathematical theory underpinning VarBC and WC4DVar, and

demonstrate our results in a toy numerical system.
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Chapter 11

Introduction2

The mathematical models that describe the dynamics of the atmosphere are sensitive to3

their initial conditions, which means that small errors in the initial conditions grow into4

larger errors in the forecast. To minimise errors in the initial state, observations are in-5

corporated with the model in a technique known as data assimilation, which provides a6

better estimate of the initial state, known as the analysis, and thus provide more accurate7

and more precise forecasts. Satellite observations are vital for improving weather fore-8

casts (English et al., 2013; Eyre et al., 2022), but satellite radiance data often contain9

significant biases (Dee & Uppala, 2009) which would reduce the accuracy of the numerical10

weather predictions. Thankfully, most centres now correct for observation bias using a11

technique known as VarBC (variational bias correction) (Dee, 2004), which allows more12

of the satellite data available to be used effectively. VarBC has been developed under the13

assumption that model biases are negligible. However, when both observation and model14

biases are present, the observation bias is 'corrected' towards the model’s (biased) clima-15

tology, leading to an incorrect observation bias correction and therefore a biased analysis.16

To overcome this, unbiased observations (known as anchor observations) are used as an17

unbiased reference point to anchor the observation bias correction to the truth. Unfor-18

tunately, typical anchor observations such as radiosondes can be sparse and infrequent19

1



(ECMWF Geographical Coverage, 2023). Therefore it is important to know how to use1

anchor observations effectively so that they can have the most impact, and it is important2

to have knowledge of where newer developments of anchor observations, such as radio3

occultation measurements, are needed the most.4

Most previous studies have focused on the overall consequences of correcting for obser-5

vation bias in the presence of model bias (e.g. Auligné et al., 2007; Dee & Uppala, 2009;6

Han & Bormann, 2016) (or vice versa, the overall consequences of correcting for model7

bias in the presence of observation bias (Laloyaux et al., 2020a)). They have touched on8

the importance of unbiased reference information such as anchor observations, but have9

not studied the characteristics of anchor observations needed to effectively reduce the con-10

tamination of bias. Eyre (2016) discussed the importance of using anchor observations11

when correcting for observation bias in the presence of model bias, presenting results from12

a scalar system, and highlighted the consequences of giving too much weight to previous13

estimates of the state, rather than to the anchor observations.14

This thesis aims to understand the multivariate theory of why observation bias correc-15

tion can give inaccurate or imprecise results, and to understand the role of anchor obser-16

vations in improving these results. We will study the equations of VarBC and illustrate17

our results in a simple numerical system. By understanding the underlying theory behind18

VarBC, we will begin to be able to explain why more complicated systems can struggle,19

and therefore where future research and developments should focus their improvements of20

operational VarBC.21

The structure of the thesis is as follows. In chapter 2 we will describe the background22

theory needed for the rest of the thesis. We will begin by describing basic data assimilation23

theory in section 2.1. We will then describe the operational observing network in section24

2.2, and how VarBC corrects for observation biases in section 2.3. We will discuss the25

mathematical models in use in numerical weather prediction in section 2.4, and how model26

biases can be corrected for using a technique known as WC4DVar (weak-constraint 4-27

2



dimensional variational assimilation) in section 2.5. In chapter 3 we will present the current1

state of work on observation bias correction and identify the gaps that will be addressed by2

our work, with the final section (section 3.3) highlighting our research questions which we3

will answer throughout the thesis. Chapter 4 is our first results chapter, with results and4

discussion on the negative impact that mis-specifying background error statistics has on5

the analysis in VarBC. In chapter 5, we describe the set up of an idealised numerical system,6

that is used to illustrate results of the subsequent chapters. In section 5.1 we discuss the7

simple model chosen and in section 5.2 we describe the set up of the data assimilation8

system, including how we generated the observations, background and constructed the9

bias correction schemes. In chapters 6 and 7 we present results for the role of anchor10

observations in VarBC, in the presence of both observation and model biases: in chapter 611

we study a VarBC system in the context of 3-dimensional variational assimilation, focusing12

on the importance of the location of the anchor observations; in chapter 7 we study a13

VarBC system in the context of 4-dimensional variational assimilation, focusing on the14

importance of the timing of the anchor observations. Chapter 8 is our final research15

chapter, which compares: correcting for observation bias in the presence of model bias,16

correcting for model bias in the presence of observation bias, and correcting for both17

sources of bias simultaneously. Finally, we present our overall conclusions and discussion18

in chapter 9.19

3



Chapter 21

Background data assimilation2

theory and sources of Earth3

observations4

In this chapter we will discuss the background information needed to understand the ma-5

jority of the thesis. In section 2.1 basic data assimilation theory will be introduced, both6

for 3D and 4D variational assimilation. In section 2.2 we will introduce the current observ-7

ing network and discuss the uncertainties associated with different observations. We will8

then describe current bias correction techniques to account for some of these uncertainties9

in section 2.3, with a particular interest in VarBC (variational bias correction). In sec-10

tion 2.4 we will introduce the mathematical models used in numerical weather prediction11

and discuss how errors can arise in them. Finally, in section 2.5 we will discuss a model12

bias correction technique known as WC4DVar (weak-constraint 4-dimensional variational13

assimilation).14

4



2.1 Data assimilation in NWP1

In numerical weather prediction (NWP), we have access to prior information from pre-2

vious forecasts and current observations of surface and atmospheric geophysical fields.3

Bayes’ theorem combines the probability that a prior event will occur with the conditional4

probability of a current event, so can be used to link data from forecasts and observations5

(Efron, 2013). Bayes theorem is given by,6

p(x|y) = p(y|x)p(x)
p(y)

, (2.1)

where x and y are random variables and p indicates a probability distribution function.7

In NWP, we can define y ∈ Rm to be the data from observations and x ∈ Rn to be the8

state we are interested in modelling. Therefore p(x), the probability distribution function9

(pdf) describing the state, is the prior pdf that contains all of the previous knowledge10

about the system before assimilating the new observations; p(y|x) is the likelihood of the11

observations, given the state; and p(y) is the prior probability of the observations (Lorenc,12

1986).13

If we assume that the errors in the model state and the observations are Gaussian and14

unbiased, then the pdfs for the prior and the observation likelihood are,15

p(x) =
1

(2π)
n
2 |Bx|

1
2

exp
(
− 1

2
(x− xb)TB−1

x (x− xb)
)
, (2.2)

p(y|x) = 1

(2π)
m
2 |R|

1
2

exp
(
− 1

2
(y− h(x))TR−1(y− h(x))

)
, (2.3)

where | · | indicates the determinant; xb is known as the background state and is generated16

by a previous forecast; h(x) is known as the observation operator, which is a function that17

transforms the state from the vector space of the model variables into the vector space18

of the observations; Bx ∈ Rn×n is known as the background error covariance matrix and19

5



R ∈ Rm×m is known as the observation error covariance matrix. Bx is the matrix that1

describes the covariance of errors in the background and R is the matrix that describes2

the covariance of the errors in the observation process, for example instrument errors and3

representativeness errors (Bouttier & Courtier, 2002). The diagonals of the background4

and observation error covariance matrices are the error variances, which describe how5

precise the background states and observations are expected to be. The off-diagonals6

are the error cross covariances between the components of the background state (for the7

background error covariance matrix) or between the observations (for the observation8

error covariance matrix). It is assumed that the background and observation errors are9

uncorrelated.10

Therefore, by combining equation (2.1) with equations (2.2) and (2.3), the posterior11

pdf of the state given the observations, is proportional to12

p(x|y) ∝ 1

(2π)
n
2 |Bx|

1
2 (2π)

p
2 |R|

1
2

exp
{
−1

2

(
(x−xb)TB−1

x (x−xb)+(y−h(x))TR−1(y−h(x))
)}
.

(2.4)

The probability distribution function with the smallest variance will give the most precise13

estimate. If the statistics are of Gaussian form, then the state with the minimum a14

posteriori variance (the mean) is also the state with the maximum a posteriori probability15

(the mode) (Van Leeuwen & Evensen, 1996). The maximum a posteriori probability is16

known as the MAP estimate. Therefore, to find the minimum error variance estimate,17

the MAP estimate can be found by minimising the negative of the expression inside the18

exponential function of equation (2.4), i.e.19

max
x

p(x|y) = min
x

1

2

(
(x− xb)TB−1

x (x− xb) + (y− h(x))TR−1(y− h(x))
)
. (2.5)

The function to be minimised is known as the cost function. When observations are20

only taken at one time step then the cost function for 3DVar (3-dimensional variational21

6



assimilation) is given by (Lorenc, 1986)1

J(x) =
1

2
(x− xb)TB−1

x (x− xb) +
1

2
(y− h(x))TR−1(y− h(x)). (2.6)

Minimising the cost function simultaneously minimises the difference between the state2

and the background in the first term and minimises the difference between the state and3

the observations in the second term. The first product in equation (2.6) measures the4

difference between the state x and the prior state xb. This is weighted by the inverse of5

the error covariance matrix Bx, which describes the uncertainty in the background state.6

The second product in equation (2.6) measures the difference between the observations y7

and the state in observation space h(x). These are weighted by the inverse of the error8

covariance matrix R, which describes the uncertainty in the observations. Both Bx and9

R are symmetric and positive definite.10

In order to explicitly minimise equation (2.6), it is assumed that h(x) is approximately11

linear. Therefore, h(x) can be approximated by the first order Taylor expansion around12

xb to give,13

h(x) ≈ h(xb) +H
∣∣
xb(x− xb), (2.7)

where H
∣∣
xb ∈ Rm×n is the Jacobian of h(x) with respect to x at xb, which for simplicity,14

we will denote as H. Differentiating equation (2.6) with respect to x gives,15

∇J(x) = B−1
x (x− xb)−HTR−1(y− h(x)), (2.8)

Substituting equation (2.7) into equation (2.8) linearises the gradient of the cost function,16

∇J(x) = B−1
x (x− xb)−HTR−1(y− (h(xb) +H(x− xb))). (2.9)

The state that minimises equation (2.6) will be the best estimate of the state, given pre-17
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vious knowledge of the state from the background and observations. In data assimilation1

this is known as the analysis state and is denoted by xa (Lorenc, 1986). By substituting x2

with xa in equation (2.9), equating equation (2.9) to 0 and rearranging, the state analysis3

is given by,4

xa = xb + (B−1
x +HTR−1H)−1HTR−1(y− h(xb)), (2.10)

where y − h(xb) is known as the innovation vector. The product of error covariance5

matrices can be rewritten using the Sherman-Morrison-Woodbury formula to give,6

(B−1
x +HTR−1H)−1HTR−1 = BxH

T(HBxH
T +R)−1 := K, (2.11)

which is denoted as K and is known as the Kalman gain matrix. In this thesis we will use7

the form of K as given on the right hand side of equation (2.11) as it is does not include8

explicit inverses of Bx and R.9

Therefore substituting K back into equation (2.10) gives us (Lorenc, 1986),10

xa = xb +K(y− h(xb)), (2.12)

which is known as the best linear unbiased estimate (or BLUE) solution, when Gaussian-11

ity is assumed and the observation operator is approximately linear. The solution, given12

by the analysis xa, depends linearly on the difference between the observations and the13

background state. The Kalman gain matrix describes the sensitivity of the state to the ob-14

servations: if K is small then the state analysis will be more dependent on the background15

and if K is large then the state analysis will be more dependent on the observations. As16

the solution to equation (2.12) requires explicitly minimising the cost function, equation17

(2.6), it is in general too computationally expensive to calculate the BLUE for a realistic18

system, but it is useful in understanding the theory behind the bigger systems. Oper-19

ationally, equation (2.6) would be minimised by using numerical minimisation methods20

8



such as the conjugate gradient method or quasi-Newton methods (e.g. Liu et al., 2018;1

Gratton & Tshimanga, 2009; Courtier et al., 1994).2

The BLUE solution can be used to understand the errors in the analysis. The analysis,3

background and observation errors can respectively be denoted as4

ϵax = xa − xt, ϵbx = xb − xt, ϵo = y− h(xt), (2.13)

where xt is the true state and ϵ denotes the error.5

The analysis error can then be defined in terms of the background and observation6

errors. This can be calculated by first subtracting the true state from both sides of7

equation (2.12) and then adding and subtracting h(xt) from within the innovation vector8

to give,9

xa − xt = xb − xt +K(y− h(xt) + h(xt)− h(xb)). (2.14)

The analysis, background and observation errors from equation (2.13) can be substituted10

into equation (2.14). Then writing xt as xb − ϵbx, equation (2.14) becomes,11

ϵax = ϵbx +K(ϵo − (h(xb)− h(xb − ϵbx))). (2.15)

Approximating h(xb− ϵbx) using the Taylor expansion about the background state cancels12

the h(xb) term, so that equation (2.15) becomes,13

ϵax = ϵbx +K(ϵo −Hϵbx), (2.16)

∴ ϵax = (I−KH)ϵbx +Kϵo, (2.17)

where we have again used thatH is the Jacobian of the observation operator h with respect14

to the state at the background state xb.15

9



The expectation value of the error is formally defined as,1

⟨ϵ⟩ =
∫ ∞

−∞
ϵp(ϵ)dϵ, (2.18)

where ϵ is the error and p(ϵ) is the probability distribution function of the error (Baoding,2

2007). Taking the expected value of equation (2.17) gives the expected value of the state3

analysis errors,4

⟨ϵax⟩ = (I−KH)⟨ϵbx⟩+K⟨ϵo⟩, (2.19)

where the angled brackets denote the expected value. Taking the expected value of the5

errors is a generalisation of the mean error. Therefore, if the expected value of the errors6

is zero, this implies that the error is unbiased. Since so far we have assumed that the7

observation and background errors are both unbiased, equation (2.19) implies that the8

expected value of the analysis error is zero and therefore the state analysis is also unbiased.9

Assuming that the background and observation errors are unbiased, the background10

and observation error covariance matrices can be expressed as the expected value of11

the background/observation errors multiplied by their respective transposes (Bouttier &12

Courtier, 2002),13

Bx = ⟨ϵbxϵbTx ⟩, R = ⟨ϵoϵoT⟩. (2.20)

When Bx and R are expressed in this way, we will refer to them as the true background14

and observation error covariance matrices for the system.15

The analysis error covariance matrix, A, can be defined similarly as16

A = ⟨ϵaxϵaTx ⟩. (2.21)

By substituting equation (2.17) into equation (2.21), A can be expressed in terms of the17

10



background and observation errors as,1

A = ⟨((I−KH)ϵbx +Kϵo)((I−KH)ϵbx +Kϵo)T⟩. (2.22)

It is assumed that the background and observation errors are uncorrelated such that2

⟨ϵoϵbTx ⟩ = 0 and ⟨ϵbxϵoT⟩ = 0. Then substituting equation (2.20) into equation (2.22) gives3

the most general expression for the analysis error covariance matrix,4

A = (I−KH)Bx(I−KH)T +KRKT. (2.23)

When K is dependent on the true background and observation error covariance matri-5

ces, as defined in equation (2.20), we can simplify A further. We will show the derivation6

here, and in chapters 3 and 4 we will extend the derivation to the VarBC case analyse the7

analysis error covariance matrix in the case when the background error covariance matrix8

is ill-defined. First, we expand the second brackets in equation (2.23) and factorise the9

resulting last three terms by KT,10

A = (I−KH)Bx + (−BxH
T +KHBxH

T +KR)KT. (2.24)

Substituting K = BxH
T(HBxH

T +R)−1 from equation (2.11) into the second brackets11

in equation (2.24) gives,12

A = (I−KH)Bx+(−BxH
T+BxH

T(HBxH
T+R)−1HBxH

T+BxH
T(HBxH

T+R)−1R)KT.

(2.25)

Factorising out the the last two terms in the second brackets leaves,13

A = (I−KH)Bx + (−BxH
T +BxH

T(HBxH
T +R)−1(HBxH

T +R))KT. (2.26)

11



Therefore, cancelling out the terms multiplied by KT leaves the optimal analysis error1

covariance matrix, given by2

Aopt = (I−KH)Bx (2.27)

Equation (2.27) shows that the analysis error covariance matrix in an optimal system will3

always have elements that are reduced from the equivalent elements in the background4

error covariance matrix by the term −KH, as the analysis is a combination of the back-5

ground and the observations.6

So far we have only studied the 3-dimensional case, which is where observations from7

one point in time are compared to a model at the same time. An equivalent state analysis8

can be formed for the 4-dimensional case, which compares observations with a model9

across a time window in order to get the best fit of the analysis in the whole window10

instead of at just one time step. The cost function for 4DVar (4-dimensional variational11

assimilation) is given by,12

J(x0) =
1

2
(x0 − xb

0)
TB−1

x (x0 − xb
0) +

1

2

N∑
i=0

(yi − hi(xi))
TR−1

i (yi − hi(xi)), (2.28)

where x0 is the state at the initial time of the window; i is the observation time; N + 113

is the total number of time steps where states are observed; and xi is the state at time i14

given by,15

xi = mi−1(xi−1) = m0→i(x0), (2.29)

where mi−1(·) is the model that evolves the state from time i− 1 to time i and m0→i(·) is16

the model that evolves the state from the initial time to time i, given by,17

m0→i(x0) = mi−1(mi−2(...m0(x0)...)). (2.30)

In equation (2.28), the summation has been taken over independent observation times.18
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This means we are assuming that the observations at different times are uncorrelated1

(Thépaut et al., 1993). Many operational centres now use 4DVar (Gustafsson et al., 2018;2

Kwon et al., 2018) to numerically estimate the state analysis, but here we will explicitly3

minimise equation (2.28) to understand how the errors in the background and observations4

can contaminate the analysis.5

To minimise equation (2.28), we first take the gradient of the cost function with respect6

to the initial state x0,7

∇J = B−1
x (x0 − xb

0) +
N∑
i=0

MT
0 ...M

T
i−1H

T
i R

−1
i (yi − hi(m0→i(x0))), (2.31)

where MT
i for i = 0, ..., N is the transpose of the Jacobian of mi(·), known as the adjoint8

model at time i. Equation (2.31) can be rewritten by writing the summation in vector9

form to give,10

∇J = B−1
x (x0 − xb

0) + Ĥ
T
R̂

−1
d̂, (2.32)

where the hat notation denotes a matrix in time and Ĥ, R̂ and d̂ are given by,11

Ĥ =



H0

H1M0

...

HNMN−1...M0


, R̂ =


R0 ... 0

. . .

0 ... RN

 , (2.33)

d̂ =



y0 − h0(x0)

y1 − h1(m0(x0))

...

yN − hN (m0→N (x0))


. (2.34)

Approximating hi(m0→i(x0) using the Taylor expansion around xb
0 , as in equation12
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(2.7), linearises the innovation vector to give,1

d̂ =



y0 − (h0(x
b
0) +H0(x0 − xb0))

y1 − (h1(m0(x
b
0)) +H1M0(x0 − xb0))

...

yN − (hN (m0→N (x
b
0)) +HNMN−1...M0(x0 − xb0))


(2.35)

By substituting equation (2.35) into equation (2.32) and setting equation (2.32) to zero2

gives the state analysis for the 4-dimensional case,3

xa
0 = xb

0 + (B−1
x + Ĥ

T
R̂

−1
Ĥ)−1Ĥ

T
R̂

−1
d̂
b
, (2.36)

where d̂
b
is equation (2.34) when x0 = xb

0 . Using the Sherman-Morrison-Woodbury4

formula to rewrite (B−1
x + Ĥ

T
R̂

−1
Ĥ)−1Ĥ

T
R̂

−1
as BxĤ

T
(ĤBxĤ

T
+ R̂)−1 as in equation5

(2.11) gives,6

xa
0 = xb

0 +BxĤ
T
(ĤBxĤ

T
+ R̂)−1d̂

b
, (2.37)

which is the form of the 4-dimensional state analysis equation that we will use in this7

thesis.8

Note that in 4DVar, Bx is defined as a static matrix, but can be considered to be9

quasi-static, as the implied covariances are given by MBxM
T. This means that although10

at the beginning of the window, Bx is given by the static background error covariance11

matrix, it will evolve throughout the window according to the model dynamics. This is12

an important advantage of 4DVar to 3DVar.13

2.2 Observing network14

Data assimilation requires a range of observations to give global coverage and to give15

information on many variables in a dynamical system. Observations can come from, for16

14



example, satellites, land surface measurements, marine measurements, upper air mea-1

surements and ground-based radar, respectively giving observations of radiances, air/sea2

temperatures, humidity, wind speed/direction, pressure and rainfall, to name a few.3

A large part of the observing network is made up of satellite observations, which have4

made a large contribution to the improvement of NWP forecasts (English et al., 2013;5

Eyre et al., 2022). There are two types of Earth observation orbits: polar orbiting/LEO6

(low Earth orbiting) satellites and geostationary satellites (Eyre, 2000). Polar orbiting7

satellites follow an orbit that crosses both polar regions. They are relatively close to the8

Earth, normally about 850 km above the surface, so have high horizontal resolution, but9

are only able to get one or two observations of a particular point per day. Geostationary10

satellites rotate at the same speed as the Earth, which means they always observe the11

same location, so they have great temporal resolution. However, to rotate at the same12

speed, geostationary satellites must be approximately 35800km away from the surface13

which means that they have a lower horizontal resolution than polar orbiting instruments14

with the same field of view.15

Satellites provide various information, which can either be heavily pre-processed to16

extract model variables such as temperature and humidity, or can be taken as raw mea-17

surements. Some examples of the preferred data types for assimilation options, as reviewed18

in Eyre (1997) and updated in Eyre et al. (2022) are:19

• passive temperature/humidity soundings (as radiances);20

• wind information, in the form of atmospheric motion vectors (AMVs) where features21

are tracked using geostationary satellites;22

• passive microwave imagery which give information on water vapour, cloud water and23

ice, precipitation and wind speed, but in recent years there has been a move towards24

assimilating microwave imagery as radiances;25

• passive visible/infra-red imagery, primarily giving information on water vapour;26

15



• radio occultation (RO), known as GPS-RO, which retrieves the refractivity or bend-1

ing angle, which can be related to meteorological variables, as described below in2

equation (2.39).3

In this thesis we will focus on satellite radiances and radio occultation.4

In order to compare radiance observations with model states such as temperature and5

pressure, the observation operator, h(x), is a form of the radiative transfer equation, which6

models the radiative processes along an optical path, thus predicting the model’s version7

of the radiance observations. An approximate radiative transfer equation that is used to8

model the atmosphere upwelling radiance L(ν, θ) at a frequency ν and viewing angle θ,9

neglecting scattering effects, is given by,10

L(ν, θ) = (1−N)LClr(ν, θ) +NLCld(ν, θ) (2.38)

where N is the fractional cloud cover (assumes unit cloud top emissivity), and LClr(ν, θ)11

and LCld(ν, θ) are the clear sky and fully cloudy top of atmosphere upwelling radiances.12

The clear sky top of atmosphere upwelling radiance data is a function made up of radi-13

ances from the surface and radiances emitted by the atmosphere, which are dependent14

on frequency, viewing angle, mixing ratios, surface emissivity and temperature. The fully15

cloudy top of atmosphere upwelling radiance is a function of frequency, viewing angle,16

temperature and cloud top temperature (Eyre, 1991; Eyre & Woolf, 1988; Saunders et al.,17

1999, 2018). The combined radiance observations from IASI (Infrared Atmospheric Sound-18

ing Interferometer), AIRS (Atmospheric Infrared Sounder) and AMSU-A (Advanced Mi-19

crowave Sounding Unit-A) instruments have the largest observation impact on numerical20

weather prediction systems compared to any other observation type (Lorenc & Marriott,21

2014). Radiance observations give global coverage, with observations of the same location22

generally available twice daily (Met Office NRT Quality Monitoring , 2023).23

RO uses both GPS (global positioning system) and LEO satellites. Data is received24

16



from the LEO satellite whenever a GPS satellite rises or sets such that its ray path can1

traverse the Earth’s atmospheric limb. The ray is refracted through the atmosphere and2

can be characterised by the bending angle, as shown in figure 2.1, which can be transformed3

to a vertical profile of refractive indexes (Kursinski et al., 1997). The refractive index and4

refractivity can then be related to meteorological variables by the following approximation5

(Eyre et al., 2022),6

N = κ1
p

T
+ κ2

e

T 2
+ κ3

ne
f2

+ κ4W (2.39)

where N = (n− 1)× 106 is the refractivity with n the refractive index; p is pressure; T is7

temperature; e is the water vapour pressure; ne is the electron density; f is the frequency;8

W is the liquid water density; and κi for i = 1, .., 4 are empirically derived coefficients.9

RO provides information on temperature for the stratosphere and upper troposphere and10

humidity for the lower troposphere, due to different terms in equation (2.39) becoming11

more/less significant at different atmospheric levels.12

Figure 2.2 shows the horizontal distribution of all assimilated GPS-RO data for a given13

6 hour 4DVar assimilation window, which has been taken from ECMWF Geographical14

Coverage (2023). The observations are distributed fairly evenly across the horizontal15

domain, with good coverage over both the land and ocean. As the data comes from a 616

hour window, this shows that the majority of the Earth is observed at least twice every 1217

hours, but the observation time for a particular location depends on when the satellites18

are in the correct position for that location.19

Another important source of observation data used in NWP is radiosondes, which have20

been used in NWP for over seven decades and provide upper air temperature, pressure,21

humidity and wind measurements (Sun et al., 2013). There are approximately 800 land22

stations that report temperature measurements regularly, which usually give data either23

once or twice a day (Ingleby, 2017). There is also some coverage over the oceans, when24

radiosondes are released from ships, but this is very limited. The density of radiosondes25
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Figure 2.1: A schematic diagram of an LEO (low earth orbiting) satellite receiving a sig-
nal from the GNSS (global navigation system satellite) that has been refracted in the atmo-
sphere. Note that the bending angle has been exaggerated for the illustration. Figure from
Gleisner et al. (2022) under the Creative Commons Attribution 4.0 International License:
http://creativecommons.org/licenses/by/4.0/
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Figure 2.2: Geographical coverage of GPS-RO data on 18th October 2023 at 00UTC. Figure from
ECMWF website, accessed on 18th October 2023 (ECMWF Geographical Coverage, 2023)

19



increases in the northern extratropics, as can be seen in figure 2.3 which shows the tem-1

perature radiosonde data coverage from 5 radiosonde types from ECMWF on the 13th2

February 2023 at 12UTC. This shows the disparity between the radiosonde data coverage3

between the land and the ocean and thus between the northern and southern hemispheres.4

There are also large gaps in the radiosonde coverage across Africa, south-western Asia and5

Australia, which can be due to, for example, less funding for meteorological observations,6

less populated areas, or difficult to access land coverage.7

Figure 2.3: Geographical coverage of used radiosondes that gave temperature data on 13th February
2023 at 12UTC. Figure from ECMWF website, accessed on 14th February 2023 (ECMWF Geo-
graphical Coverage, 2023).
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Errors arise across all observation types and can be categorised into random and sys-1

tematic error; a systematic error (bias) is an error that does not average out to zero,2

whereas a random error averaged across many realisations would give zero. Errors can3

occur due to damaged, old or limited observations, approximations in the observation4

operator and representativity between the state and observation. Random error can be5

accounted for within a data assimilation system through the use of R, the observation er-6

ror covariance matrix, as discussed in section 2.1, but biases cause an additional problem7

to the DA system, as DA theory is based on the assumption that observation errors are8

unbiased.9

Radiance observations have a large impact on the NWP DA system, but also contain10

significant biases (Dee & Uppala, 2009). Radiance biases can be due to problems with an11

instrument’s calibration, deficiencies in the instrument, and due to the assumptions made12

in the radiative transfer equation, to estimate variations of equation (2.38). The magni-13

tudes of the biases vary across instruments and channels, but can be up to approximately14

3.5K, when transferred to the model variable temperature (Saunders et al., 2013). By15

comparing the observations with the background state, it has been found that the bias16

can be parameterised into three structures: the scan bias, the air mass thickness bias,17

and the orbital bias. The edges of a scan tend to have a larger bias compared to the18

centre, as can be seen in figure 2.4, which is from Harris and Kelly (2001) and shows the19

uncorrected scan bias across the satellite’s swath in different latitudinal bands. This bias20

occurs as the radiation measurements across a satellite’s swath are different, even if view-21

ing a horizontally homogeneous atmosphere, due to different solar radiation effects such22

as, reflection off the clouds and surface, and scattering in the upper atmosphere (Wark,23

1993). Biases that occur due to mis-representing the physics of the atmosphere have been24

shown to be correlated with the air mass thicknesses, as different air mass thicknesses are25

a good representation of different parts of the state, such as temperature or humidity (He26

et al., 2016). Finally, the SSMIS (Special Sensor Microwave Imager/Sounder) and MWRI27
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(Microwave Radiation Imager) instruments suffer from specific instrument biases, which1

are caused by the open design of the conical scanners. Although this leads to errors due2

to poor calibration and due to solar intrusion (solar radiation hitting the inside of the3

instrument and therefore affecting the observations), the periodical nature of the errors4

means that the general structure of the biases remains the same across each orbit, hence5

these biases are known as orbital biases (Booton et al., 2014).

Figure 2.4: Uncorrected scan bias by latitude band, NOAA 12, MSU 2, February 1997. Figure
from Harris and Kelly (2001), copyright ©2001 John Wiley & Sons, Ltd

6

RO measurements in the lower atmosphere contain cold biases due to the large refrac-7

tivity gradients in the lower troposphere and to the spatial distribution of water vapour8

(Ao et al., 2003). RO measurements above 5km do not need to be bias-corrected as any9

22



biases occurring in the bending angles are small in comparison to other biases within the1

DA system (Healy & Thépaut, 2006; Cucurull et al., 2014).2

Radiosondes also contain biases in their raw data, which are mainly caused by radiative3

effects; a warm bias is present during the day due to sunlight heating the sensor and a4

cold bias is present at night as the sensor emits longwave radiation. There are also some5

smaller biases caused by lags in sensor response to changing temperatures as the radiosonde6

rises. An attempt to correct these biases at each radiosonde site is made, based on simple7

algorithms given by the radiosonde manufacturers and meteorological agencies (Sun et8

al., 2013). Therefore, radiosondes are considered to be unbiased when used in the data9

assimilation system.10

2.3 Observation bias correction11

Radiance observations have the largest impact in reducing forecast error in a data assimi-12

lation compared to other observations, but only if their biases can be corrected (Cardinali,13

2009). There are broadly three types of observation bias correction technique. The first is14

a static bias correction, which is currently used to correct some scan biases and has been15

used to correct air mass biases. It works by estimating the bias by comparing observa-16

tions and the background states, and correcting the observations using an assumed bias17

correction function (Harris & Kelly, 2001). The estimated bias is not usually updated at18

the beginning of each cycle, so if the observation biases vary over time, the bias estimates19

need to be manually updated.20

The next observation bias correction technique is defined as the “offline” bias correc-21

tion in Auligné et al. (2007). The bias coefficient is calculated by minimising a similar22

cost function to equation (2.6), but which is dependent on on a new parameter: β, the23

bias coefficient, where there would be a unique bias coefficient for each channel of each24

instrument. This minimisation is performed prior to the estimation of the state analysis.25
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Therefore, like the static technique, the offline correction is dependent on the state back-1

ground, but unlike the static technique, is updated at each cycle. This allows the bias2

coefficient to react to changes in the observation bias, due to, for example, an instrumen-3

tal failure or contamination, but is quite susceptible to contamination from biases in the4

background (Eyre, 2016).5

The final observation bias correction technique is known as VarBC (variational bias6

correction), which adaptively calculates the bias coefficient, β, by defining the cost func-7

tion, equation (2.6), to be dependent on both the state and the bias coefficient, such8

that the bias coefficient is updated at the same time as the state (Dee, 2004). VarBC is9

the most common operational observation bias correction technique for satellite radiances10

(Gustafsson et al., 2018; Kwon et al., 2018), as it is updated at each cycle and is the least11

affected by model bias (Eyre, 2016), so this thesis will only study VarBC further.12

In VarBC, a bias correction function is added to the observations to be corrected, such13

that the kth observation type (for example, an individual channel of a particular satellite14

instrument) is estimated to be,15

yk = hk(x) + eo + ck(x
b) (2.40)

where yk is the kth observation type; hk is the corresponding observation operator; x is16

the state; eo is the random error in the observation; ck is the bias correction function.17

Operationally, the bias correction function for the kth observation type is given by18

ck(x
b) = sk +

rk∑
i=1

βk,ipk,i(x
b) (2.41)

where sk is constant per scan angle and is used to partially describe the scan angle bias;19

pk,i are the rk predictors used for the kth observation; and βk,i are the corresponding20

observation bias correction coefficients that are updated at each cycle in VarBC for each21

observation type (Cameron & Bell, 2018). The vector β ∈ Rr is defined to hold all22
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values of βk,i and the function c(x,β) ∈ Rm1 is defined to hold the bias correction for all1

observations that are bias-corrected, where m1 is the number of biased observations. For2

simplicity, we will refer to β as the observation bias coefficient.3

Generally, the following predictors are used operationally: air mass thicknesses, which4

are the differences in height between different pressure levels; Legendre polynomials to5

describe the spatial variation of bias across a scan; Fourier series to describe orbital bias6

(only used for SSMIS and MWRI); and a constant predictor which is not dependent on7

location, which is given by pk,0 = 1 (Cameron & Bell, 2018; Di Tomaso & Bormann, 2011;8

Dee & Uppala, 2009).9

In figure 2.5 we have reproduced a global map from the Met Office from the ATMS10

instrument on the 9th April 2013, of the air mass thickness predictors p1 and p2, which are11

the thicknesses between 850-300hPa (figure 2.5a) and 200-50hPa (figure 2.5b) respectively.12

Air mass thicknesses are a function of temperature, so as the temperature increases, the13

thicknesses will increase. It has been shown that there are high correlations between14

radiance biases and some air mass thicknesses, reflecting the channel weighting functions15

and the background error correlations (Harris & Kelly, 2001). Figures 2.5a and 2.5b show16

that, in general, as one thickness increases, the other decreases, for example around the17

equator, the lower altitude thickness bias is positive, whereas the higher altitude thickness18

bias is negative. However, this relationship is not linear: there are locations where one19

thickness picks up a bias that the other does not, for example at 60°N, 170°W there is a20

location of positive bias in figure 2.5b that has zero bias in figure 2.5a.21

In figure 2.6 we have produced a similar global map, but of p6, one of the scan angle22

bias predictors. In general, satellite swaths will have a larger bias on the edges, compared23

to the centre, but as the relationship is not as simple as a quadratic curve, the scan24

angle biases are depicted by a Legendre polynomial, with each predictor representing the25

different polynomial terms. Figure 2.6 shows the positive values of the predictor on the26

edges of the swath, which dip to negative in the middle.27
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(a)

(b)

Figure 2.5: Air mass thickness bias predictors p1: 850-300hPa (a) and p2: 200-50hPa (b) on world
maps for the ATMS (Advanced Microwave Technology Sounder) satellite on the 9th April 2013.
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Figure 2.6: Bias predictor p6, a scan angle bias predictor.

In VarBC a new control vector is defined as the state and the observation bias coeffi-1

cient, given by,2

v =

x

β

 ∈ Rn+r, (2.42)

where n is the size of the state and r is the size of the observation bias coefficient. A new3

background error covariance matrix, dependent on both the state and the observation bias4

coefficient, is defined as,5

Bv =

Bx 0

0 Bβ

 ∈ R(n+r)×(n+r), (2.43)

where Bx is the state background error covariance matrix as defined in equation (2.20);6

Bβ is the observation bias coefficient background error covariance matrix and is a measure7

of how large the observation bias coefficient background errors are. It is assumed that the8
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background error covariances between the state and the observation bias coefficient are1

zero (Dee, 2004). The observation operator acting on the control vector, which contains2

the bias correction and the observation operator that transforms the state to observation3

space, is defined as,4

hv(v) = h(x) + c(xb,β), (2.44)

where the bias correction function is dependent on a previously derived background state,5

but the observation bias coefficient β is variable. The bias correction function c(xb,β)6

will be zero for observations that are not bias-corrected within VarBC.7

Therefore, the cost function for VarBC is given by,8

J(v) =
1

2
(v− vb)TB−1

v (v− vb) +
1

2
(y− hv(v))

TR−1(y− hv(v)), (2.45)

where vb is the background of the state and bias coefficients; y is the vector that contains9

all observations; and R is the observation error covariance matrix, as defined in equation10

(2.20) (Auligné et al., 2007).11

In order to explicitly minimise equation (2.45), it is assumed that hv(v) is approxi-12

mately linear. The term hv(v) can be approximated using the Taylor expansion about vb
13

by approximating h(x) and c(xb,β) separately,14

h(x) ≈ h(xb) +H(x− xb) (2.46)

c(xb,β) = c(xb,βb) +Cβ(β − βb). (2.47)

where Cβ ∈ Rm1×r is the Jacobian of c(xb,β) with respect to the observation bias coeffi-15

cient β at xb and βb and m1 is the number of bias-corrected observations. The linearised16

observation operator and bias correction can be stored in one matrix as,17

Hv =

(
H, Cβ

)
∈ Rm1×(n+r). (2.48)
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Differentiating equation (2.45) and equating it to zero, as in equations (2.8) to (2.12),1

gives the minimum of the cost function for VarBC, which we will refer to as the analysis2

control vector, given by,3

va = vb +Kv(y− hv(v
b)), (2.49)

where the superscripts a and b denote the analysis and background respectively; and Kv4

is the Kalman gain matrix for v, given by,5

Kv = BvH
T
v (HvBvH

T
v +R)−1 ∈ R(n+r)×m1 . (2.50)

The Kalman Gain matrix, Kv, can be split into its x and β parts as follows,6

Kv =

Kx

Kβ

 , (2.51)

where7

Kx = BxH
T(HvBvH

T
v +R)−1 ∈ Rn×m (2.52)

Kβ = BβC
T
β (HvBvH

T
v +R)−1 ∈ Rr×m. (2.53)

Since Bv is block diagonal, equation (2.49) can be split into its state and observation8

bias coefficient parts:9

xa = xb +Kx(y− hv(v
b)), (2.54)

βa = βb +Kβ(y− hv(v
b)). (2.55)

Equations (2.49), (2.54) and (2.55) can be used to derive expressions for the errors in10

both the state and the observation bias coefficient in an equivalent method to calculating11

the state analysis error equation for the general 3D DA case in equations (2.14)-(2.17).12
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The errors in the control vector, state and observation bias coefficient analysis, background1

and observations are given by,2

ϵav = va − vt =

ϵax

ϵaβ

 =

xa − xt

βa − βt

 , (2.56)

ϵbv = vb − vt =

ϵbx

ϵbβ

 =

xb − xt

βb − βt

 , (2.57)

ϵov = y− hv(v
t) = y− h(xt)− c(xt,βt), (2.58)

where the t superscript denotes the true value of the state, bias coefficient or control3

vector respectively. The true bias coefficient is the theoretical vector that would perfectly4

correct the observation bias in the bias correction. The control vector analysis equation,5

equation (2.56), can be written in terms of the background and observation error equations.6

Subtracting the true control vector from both sides of equation (2.49) and adding and7

subtracting h(vt) in the innovation vector gives,8

va − vt = vb − vt +Kv(y− hv(v
t) + hv(v

t)− hv(v
b)). (2.59)

Substituting the analysis, background and observation control vector error equations from9

equations (2.56)-(2.58) and substituting vt = vb − ϵbv into the expanded hv(v
t) gives,10

ϵav = ϵbv +Kv(ϵ
o
v + h(xb − ϵbx) + c(xb − ϵbx,β

b − ϵbβ)− hv(v
b)). (2.60)

Approximating h(xb − ϵbx) and c(x
b − ϵbx,β

b − ϵbβ) using the first order Taylor expansion11

around xb and βb respectively gives,12

ϵav = ϵbv +Kv(ϵ
o
v − (H+Cx)ϵ

b
x −Cβϵ

b
β), (2.61)
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whereCx is the Jacobian of the bias correction with respect to the state x. In this thesis we1

will assume that the errors that come from mis-specifying the state in the bias correction2

function are very small, so that we can ignore the Cx term. Operationally, this is realistic3

as the bias correction function (equation (2.41)) only changes over large regions of the4

state, so inaccuracies in the state will be negligible. We can therefore assume Cx ≈ 0.5

Rearranging equation (2.61) to factorise the background errors together gives,6

ϵav = (I−KvHv)ϵ
b
v +Kvϵ

o
v. (2.62)

Equation (2.62) can be separated into its x and β parts using equations (2.56)-(2.58) to7

give,8

ϵax = (I−KxH)ϵbx −KxCβϵ
b
β +Kxϵ

o
v, (2.63)

ϵaβ = (I−KβCβ)ϵ
b
β −KβHϵbx +Kβϵ

o
v. (2.64)

Equation (2.63) differs from the state analysis error equation when not using VarBC,9

equation (2.17), as equation (2.63) is dependent on both the state background error and10

the bias coefficient background error. Taking the expected value of equations (2.63) and11

(2.64) gives,12

⟨ϵax⟩ = (I−KxH)⟨ϵbx⟩ −KxCβ⟨ϵbβ⟩+Kx⟨ϵov⟩, (2.65)

⟨ϵaβ⟩ = (I−KβCβ)⟨ϵbβ⟩ −KβH⟨ϵbx⟩+Kβ⟨ϵov⟩. (2.66)

Equations (2.65) and (2.66) show that the biases in the state and observation bias co-13

efficient analyses are dependent on both the biases from the state and observation bias14

coefficient backgrounds.15

As in equation (2.20), assuming that the background errors are unbiased, the control16

vector background error covariance matrix can be expressed as the expected value of the17
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background error multiplied by its transpose,1

Bv = ⟨ϵbvϵbTv ⟩. (2.67)

Assuming that the analysis errors are unbiased, which means from equations (2.65) and2

(2.66) that assuming the observations have been correctly bias-corrected and that the3

background errors are unbiased, the analysis error covariance matrix for the control vector4

can also be expressed as,5

Av = ⟨ϵavϵaTv ⟩. (2.68)

By substituting equation (2.62) into equation (2.68) and following the same method as in6

equations (2.22) to (2.23), Av can be expressed in terms of the background and observation7

errors as,8

Av = (I−KvHv)Bv(I−KvHv)
T +KvRKT

v . (2.69)

The analysis error covariance matrix Av is a matrix which can be split into its state and9

bias coefficient parts as,10

Av =

Ax Axβ

Aβx Aβ

 ∈ R(n+r)×(n+r), (2.70)

where Ax describes the covariances in the state analysis errors; Aβ describes the covari-11

ances in the observation bias coefficient analysis errors; and Axβ and Aβx describe the12

covariances between the state analysis errors and the observation bias coefficient analysis13

errors. Therefore, in the case where the true background and observation error covari-14

ance matrices are used within the system such that Kv is optimal and following the same15

method as for the general DA case (equations (2.24) - (2.27)), the optimal control vector16
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analysis error covariance matrix is given by,1

Av,opt = (I−KvHv)Bv. (2.71)

Equation (2.71) has the same form as equation (2.27), but includes both the state and the2

observation bias coefficient.3

The VarBC analysis equations (2.54) and (2.55) can also be calculated in a 4D system,4

by extending general 3D DA theory to 4D DA theory (equations (2.12) to (2.37)). By5

defining the observation operator on v at the ith time step as,6

hvi(v) = hi(m0→i(x0)) + ci(m0→i(x0)
b,β), (2.72)

where m0→i is the model that takes the state from the initial time step to the ith time7

step as defined in equation (2.29) and both the observation operator transforming x0 to8

observation space and the bias correction function are dependent on time. Note that even9

if h and c do not explicitly change in time, their evaluation will change in time as xi10

changes in time. Therefore the linearised observation operator and bias correction are11

given by,12

Ĥ =


H0M0→0

...

HNM0→N

 ∈ R(N+1)m1×n, Ĉβ =


Cβ0

...

CβN

 ∈ R(N+1)m1×r, (2.73)

which can be defined in one matrix as13

Ĥv =

(
Ĥ, Ĉβ

)
∈ R(N+1)m1×(n+r). (2.74)
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Therefore the analysis equations for 4DVarBC (4-dimensional VarBC) are given by1

xa
0 = xb

0 + K̂xd̂
b

v, (2.75)

βa = βb + K̂βd̂
b

v, (2.76)

where K̂x and K̂β are the time dependent Kalman gain matrices for the state and bias2

coefficient given by3

K̂x = BxĤ
(
ĤBxĤ

T
+ ĈβBβĈ

T
β + R̂

)−1
, (2.77)

K̂β = BβĈ
T
β

(
ĤBxĤ

T
+ ĈβBβĈ

T
β + R̂

)−1
(2.78)

and d̂
b

v is the time dependent innovation vector given by4

d̂
b

v =



y0 − h0(x
b
0)− c0(x

b
0 ,β

b)

y1 − h1(m0(x
b
0))− c1(m0(x

b
0),β

b)

...

yN − hN (m0→N (x
b
0))− cN (m0→N (x

b
0),β

b)


. (2.79)

We will use the 4DVarBC analysis equations in chapter 7.5

In the next section we will discuss the different models used in data assimilation for6

numerical weather prediction, how uncertainties can occur, and how we can correct for7

model biases.8

2.4 Models used in NWP9

Mathematical models in NWP are equations that are used to represent the evolution of the10

atmosphere. They describe the approximate physics and dynamics of the atmosphere to11

give information on, for example, temperature, pressure and zonal/meridional velocities,12
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which are known as the model states. Models are used in NWP both to give temporally1

continuous global information and to create forecasts of the weather for the next days2

and weeks. The atmospheric dynamics can be approximated numerically by discretising3

the equations into grid boxes to cover the given region of interest. Their scales can vary4

from the global, where the Earth’s atmosphere is projected onto a grid with grid boxes5

representing around 10km in length, to regional scales, where smaller regions, such as the6

UK, are projected onto grids with grid boxes representing 1-3km each (Gustafsson et al.,7

2018).8

Most global models solve the compressible non-hydrostatic equations of motion (Walters9

et al., 2017; Prill et al., 2022; Gustafsson et al., 2018). Using the non-hydrostatic model10

allows smaller scale dynamics to play a role in the evolution of the model when using a11

high resolution grid scale (Staniforth & Wood, 2008). Some centres use nested models,12

which use the same model for both global and regional scales (Gustafsson et al., 2018).13

There are nested short to medium range forecasts which have high resolution grid boxes:14

used to give a more detailed representation of smaller scale atmospheric processes as well15

as to represent surface features such as coastlines and orography. The global configura-16

tions provide short to medium-range weather forecasts and are used in the nested models17

as the boundary conditions for the regional models.18

As is the case with observational error, models also contain sources of uncertainty19

which can cause both systematic and random errors. In a model simulation, three types20

of uncertainty can occur: initial condition uncertainty; boundary condition uncertainty;21

and model uncertainty. When the model is very sensitive to the initial conditions, a small22

perturbation from the true value changes the model drastically. Data assimilation helps23

to reduce initial condition uncertainty, as it compares the most recent model forecast with24

the latest observations to provide more accurate initial conditions. Boundary condition25

uncertainty occurs both at the boundaries of regional models, as only a limited domain is26

modelled, as well as on the boundaries between atmosphere and the land/ocean. Model27
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uncertainty stems from both structural and parametric uncertainty. As parameters vary,1

sometimes the solution can bifurcate to an entirely different behaviour. Therefore, as-2

sumptions made in the parameters of models, or in the models themselves can lead to3

both systematic and random model error as the model variables and their dynamics are4

misrepresented.5

Some amount of random model error can be accounted for within the system by us-6

ing perturbations to atmospheric state variables to give an ensemble of forecasts. The7

perturbations are amplified by chaotic processes, resulting in forecasts that diverge from8

each other and thus give a better understanding of the model error present in forecasts9

(Slingo & Palmer, 2011). The use of ensemble systems will not be discussed in this thesis.10

However, systematic model error is more difficult to account for and can arise due to a11

variety of reasons, with some examples given below.12

There are known temperature and humidity biases in the upper troposphere/lower13

stratosphere. Temperature biases have been observed at the ECMWF (European Centre14

for Medium-Range Weather Forecasts) and Met Office in the extratropical lowermost15

stratosphere to be within 0.3K in short forecasts of less than 24 hours (Dyroff et al.,16

2015; Carminati et al., 2019), but if left to run, this bias will grow. Moist biases have been17

found in both the IFS (Integrated Forecasting System - ECMWF) and MetUM (Met Office18

Unified Model) in the lowermost stratosphere, with a maximum of approximately 170%19

of the observed values (Bland et al., 2021). Humidity biases will also cause collocated20

cold biases due to the additional radiative cooling (Forster & Shine, 2002; Maycock et al.,21

2011).22

At the extratropical tropopause there are sharp vertical gradients of water vapour, po-23

tential vorticity and temperature that the NWP models struggle to resolve, which creates24

a moist bias in the lower stratosphere, leading to a cold bias (Krüger et al., 2022; Stenke25

et al., 2008). There is some uncertainty in the cause of the moist bias, but explanations in-26

clude: the misrepresentation of dynamical transport and mixing processes; and numerical27
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diffusion and insufficient model resolution in the semi-Lagrangian advection scheme (al-1

though a moist bias of similar order is also found in Eulerian formulated models) (Krüger2

et al., 2022).3

Temperature biases have also been shown to be caused by the under-representation of4

aerosols in NWP models. There tends to be a cold bias in regions with a high concentration5

of aerosols, for example over India and China, due to anthropogenic activity. There also6

exists aerosol-caused warming effects, which tend to be over remote areas or oceans, where7

aerosol-radiation interaction or aerosol-cloud interaction seem to have large effects on the8

temperature (Huang & Ding, 2021).9

The air that flows over and around hills and mountains causes a drag on the atmo-10

sphere, and is another large source of uncertainty in NWP due to the governing role the11

orographic drag has on the atmosphere’s general circulation. Global models now have12

sufficient resolution to resolve large-scale mountain waves, which have an impact on the13

location of midlatitude jets (Brayshaw et al., 2009). However, the drag exerted on the at-14

mosphere due to subgrid-scale orography, which generates gravity waves that create drag15

forces on flows up to the stratosphere and mesosphere (Bacmeister, 1993), still needs to16

be parametrised and is parametrised differently depending on the horizontal scales of the17

orographic features and across different models. The representation of this orographic18

drag is still a cause of major uncertainty in NWP models (Elvidge et al., 2019).19

2.5 Model bias correction20

Strong-constraint data assimilation assumes that the model is perfect (ie. has no error)21

so that the state at the i+ 1th time step is given by,22

xt
i+1 = mi(x

t
i) (2.80)
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where mi is the model that evolves the true state xt at time i to time i+1, as in equation1

(2.29). However, as we have seen that model biases do exist, there are several ways that2

they can be corrected. Longer timescale biases within the model climatologies can be3

handled by adding constant artificial sources and sinks to the equations of motion (Saha,4

1992), whereas methods which allow corrections of shorter timescale model errors use5

the difference between analyses and 6-hour forecasts to calculate an explicit correction6

(Jean ThiéBaux & Morone, 1990). This thesis will focus on another method known as7

WC4DVar (weak-constraint 4-dimensional variational assimilation), in which model error8

is accounted for by relaxing the assumption that the model is perfect and calculating the9

model error simultaneously with the estimate of the state (Sasaki, 1970; Derber, 1989). We10

have chosen to focus on WC4DVar as it has been used operationally to correct for model11

bias (Laloyaux et al., 2020a) and is a comparable method to VarBC, as both methods12

correct for the biases adaptively within the data assimilation system.13

WC4DVar is used to estimate model error between time steps in an assimilation win-14

dow or forecast. In this formulation of 4DVar, an extra parameter η is included within15

the variational assimilation to represent model error. Therefore, in the weak-constraint16

formulation, equation (2.80) is extended to,17

xt
i+1 = mi(x

t
i) + ηt

i+1, (2.81)

where ηt
i+1 is the true model error that comes from evolving the state between time i and18

i+ 1. If the model error is approximately equal at each time step within the assimilation19

window such that ηt
i = ηt

i+1, then the model error ηt describes a bias, such that WC4DVar20

can be used to solve model bias. In this thesis, we assume the model error is constant,21

such that ηt will be referred to as the model bias. As each xi can be written in terms22

of the state at the previous time step, xi+1 can be written in terms of x0 and ηt in the23
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following way:1

xt
i+1 = mi(mi−1(...(m0(x

t
0) + ηt)...) + ηt) + ηt := m̃0→i+1(x

t
0,η

t), (2.82)

where the model taking the state from the initial time step to the (i+1)th time step when2

model bias is present, is a function of both the state and ηt and is denoted as m̃0→i+1.3

In reality, the true model bias is unknown so the model bias is estimated, which is4

defined as η, known as the model bias parameter. The error in η is assumed to be5

Gaussian with random error, with mean 0 and error covariance matrix Q. In order to6

make the best estimate of the state and the best estimate of the model bias parameter, x07

and η are simultaneously calculated in each assimilation cycle (Wergen, 1992; Zupanski,8

1993; Bennett et al., 1996; Vidard et al., 2004). Defining the control vector as a vector9

that holds both the state and the model bias parameter, gives,10

p =

x0

η

 ∈ R2n, (2.83)

where x0 ∈ Rn is the state at the initial time in the assimilation window; and η ∈ Rn is11

the model bias parameter. Defining the background error covariance matrix as the state12

and model bias parameter parts gives,13

Bp =

Bx 0

0 Q

 (2.84)

where Bx ∈ Rn×n is the state background error covariance matrix as defined in equation14

(2.20) and Q ∈ Rn×n is the model error covariance matrix which describes the random15

error in the estimate of the model bias parameter. It is assumed that the background16

error covariances between the state and the model bias parameter are zero.17

When the state at a particular time step is given by the model evolution of the initial18
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state plus the model bias parameter, the observation operator is therefore a function of1

both the state and the model bias parameter,2

hpi(xi) = hi(m̃0→i(x0,η)), i = 1, ..., N, (2.85)

hp0(x0), i = 0. (2.86)

Then the cost function in terms of p (Laloyaux et al., 2020a) is given by,3

J(p) =
1

2
(p− pb)TB−1

p (p− pb) +
1

2

N∑
i=0

(yi − hi(xi))
TR−1

i (yi − hi(xi)). (2.87)

Considering xi as a function of x0 and η (xi = m̃p,0→i(x0,η)) and approximating hi(xi)

by the first order Taylor expansion around xb
0 and ηb gives,

hi(xi) ≈ hi(m̃p,0→i(x
b
0 ,η

b)) +Hx,iMi−1 × ...×M0(x0 − xb
0)

+Hx,i(
i−1∑
j=1

Mi−1 × ...×Mj + I)(η − ηb), (2.88)

where Hx,k and Mk are the linearised observation operator and model with respect to x04

at the kth time step and I is the identity matrix.5

Therefore the gradient of the cost function, equation (2.87), is given by,6

∇J = B−1
p (p− pb)− Ĥ

T
p R̂

−1
d̂p. (2.89)

The hat symbols denote matrices that hold values from more than one time step. d̂p7

contains the innovation vectors yi − hi(xi) for all i ∈ [0, N ] and Ĥp is the linearised8

observation operator with respect to both x and η, given by,9

Ĥp =

(
Ĥpx , Ĥpη

)
(2.90)

40



where we have defined1

Ĥpx =



Hx,0

...

Hx,iMi−1...M0

...

Hx,NMN−1...M0


, (2.91)

Ĥpη =



0

...

Hx,i(
∑i−1

j=1Mi−1...Mj + I)

...

Hx,N (
∑N−1

j=1 MN−1...Mj + I)


. (2.92)

Note that Ĥpη is the linearised observation operator with respect to η, but, as hi is a2

function of xi (which is a function of x0 and η) the linearised observation operator is3

calculated via the chain rule, such that Ĥpη is dependent on Hx.4

Using the same method as in equations (2.8) to (2.12), the gradient of the cost function5

for WC4DVar can be rearranged to give the analysis vector for both the state and the6

model bias estimate,7

pa = pb +BpĤ
T
p (ĤpBpĤ

T
p + R̂p)

−1d̂
b

p. (2.93)

We denote BpĤ
T
p (ĤpBpĤ

T
p + R̂p)

−1 = Kp as the Kalman gain matrix for WC4DVar.8

Equation (2.93) can be split into the state and model bias parameter by first separating9

Kp,10

Kp =

Bx 0

0 Q


Ĥ

T
px

Ĥ
T
pη

[(Ĥpx , Ĥpη

)Bx 0

0 Q


Ĥ

T
px

Ĥ
T
pη

+ R̂
]−1

. (2.94)
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Therefore, substituting equation (2.94) into equation (2.93) and splitting p into its x0 and1

η parts gives the state and model bias parameter analyses,2

xa
0

ηa

 =

xb
0

ηb

+

BxĤ
T
px [ĤpxBxĤ

T
px + ĤpηQĤ

T
pη + R̂]−1d̂

b

p

QĤ
T
pη [ĤpxBxĤ

T
px + ĤpηQĤ

T
pη + R̂]−1d̂

b

p

 . (2.95)

Laloyaux et al. (2020a) explored the use of these coupled equations in correcting for3

systematic errors arising in a simple two-layer quasi-geostrophic channel model. They4

suggested that WC4DVar could be used to correct for model biases if the background and5

model error covariances have different spatial structures. This is achievable operationally,6

as model biases, which have large scales, are more prominent in the stratosphere, and7

background (initial condition) errors are more prominent in the troposphere, which have8

smaller scales across shorter timescales. As a result of this, and the large amount of radio9

occultation data available in these areas, WC4DVar is now implemented at ECMWF in10

the stratosphere, reducing temperature biases in the analysis by up to 50% (Laloyaux et11

al., 2020b).12

The error equations for the analyses, backgrounds and observations in WC4DVar are13

given by,14

ϵax = xa
0 − xt

0, ϵbx = xb
0 − xt

0, (2.96)

ϵoi = yi − hi(x
t
i) = yi − hi(m̃0→i(x

t
0,η

t)), (2.97)

ϵaη = ηa − ηt, ϵbη = ηb − ηt. (2.98)

In order to write the state and model bias parameter analysis error equations in terms15

of the background and observation error equations, we initially need to expand d̂
b

p. For16

simplicity we expand d̂
b

p at the ith time step, but this can easily be extended to the full17
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vector. Initially, we write out the full definition of db
pi
,1

db
pi

= yi − hi(m̃0→i(x
b
0 ,η

b)). (2.99)

Next we add and subtract the true observation operator at the ith time step,2

db
pi

= yi − hi(m̃0→i(x
t
0,η

t)) + hi(m̃0→i(x
t
0,η

t))− hi(m̃0→i(x
b
0 ,η

b)). (2.100)

Substituting equation (2.97) into equation (2.100) and substituting the background state3

and background model bias parameter for their respective background errors plus their4

truths (as in equations (2.96) and (2.98) respectively) gives,5

db
pi

= ϵoi + hi(m̃0→i(x
b
0 − ϵbx,η

b − ϵbη))− hi(m̃0→i(x
b
0 ,η

b)). (2.101)

Approximating the observation operator using a first order Taylor expansion around the6

true state and true model bias parameter, and cancelling out the observation operator7

terms gives db
pi

in terms of the background and observation errors,8

db
pi

= ϵoi −Hx,iMi−1 × ...×M0ϵ
b
x −Hx,i(

i−1∑
j=1

Mi−1 × ...×Mj + I)ϵbη . (2.102)

Therefore, by using the definitions of Ĥpx and Ĥpη from equations (2.91) and (2.92)9

respectively, the full innovation vector can be written in terms of the observation and10

background errors as,11

d̂
b

p = ϵ̂o − Ĥpxϵ
b
x − Ĥpηϵ

b
η , (2.103)

where ϵ̂o is the vector that holds the observation errors at all times.12

In order to calculate the state analysis error equation in terms of the background and13

observation errors, we subtract xt
0 from both sides of the state part of equation (2.95),14

43



and substitute the analysis and background error equations, equation (2.96). Finally, we1

substitute equation (2.103) for d̂
b

p. Therefore the state analysis error equation is given by,2

ϵax = ϵbx +BxĤ
T
px [ĤpxBxĤ

T
px + ĤpηQĤ

T
pη + R̂]−1(ϵ̂o − Ĥpxϵ

b
x − Ĥpηϵ

b
η) (2.104)

Similarly, by subtracting ηt from both sides of the model bias parameter part of3

equation (2.95), substituting the error equations from equation (2.98) and substituting4

equation (2.103) for d̂
b

p, gives the model bias parameter analysis error equation as,5

ϵaη = ϵbη +QĤ
T
pη [ĤpxBxĤ

T
px + ĤpηQĤ

T
pη + R̂]−1(ϵ̂o − Ĥpxϵ

b
x − Ĥpηϵ

b
η). (2.105)

Both the state and model bias parameter analysis errors are dependent on the state and6

model bias parameter background errors. This shows that, when the system is cycled,7

errors in the state are coupled with errors in the model bias parameter.8

2.6 Summary9

In chapter 2 we have introduced basic variational data assimilation theory and have demon-10

strated how data assimilation combines data from observations and mathematical models.11

We have shown that both observations and models are sources for uncertainty, which can12

have a significant impact on an accurate estimate of the state if the error is systematic,13

rather than random. To combat these biases, we have shown two adaptive bias correc-14

tion techniques that are designed to correct for observation and model biases respectively,15

by including an additional parameter in the control vector. In chapter 3 we will present16

several studies that explore bias correction in data assimilation, which will motivate our17

research questions.18
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Chapter 31

Motivation for research questions2

In this thesis we wish to understand how best to correct for observation and model bi-3

ases, using VarBC and WC4DVar respectively, and how to reduce the contamination of4

model/observation biases when correcting for observation/model biases by utilising unbi-5

ased observations. In this chapter we will discuss some important studies in the field of6

data assimilation to understand where the gaps in knowledge lie, in order to form our re-7

search questions that will create the basis of this thesis. In section 3.1 we will discuss how8

the background error covariance for the state and observation bias coefficient are chosen9

operationally within VarBC, and present a previous study on the impact of mis-specifying10

the state background error covariance matrix in a general DA system. In section 3.2 we11

will discuss previous studies on observation/model bias correction and their reliance on12

unbiased reference data. In section 3.3 we pose our research questions.13

3.1 Specifying background error covariances in VarBC14

We have shown in chapter 2 that, in data assimilation, the background error covariance15

matrix describes the relationships between the errors in the background states. In VarBC16

the background error covariance matrix is made up of the state and observation bias17
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coefficient background error covariance matrices, as was shown in equation (2.43). Op-1

erationally, both the state and observation bias coefficient background error covariance2

matrices are only approximations of the true background error covariance matrices of the3

system, which means that the optimal background error covariance matrices are not used.4

Eyre and Hilton (2013) demonstrated the impact of mis-specifying the state background5

error covariance matrix in a data assimilation system without bias correction, but there6

have not been any studies on the mis-specification of the background error covariance7

matrices in VarBC.8

In this section we will initially describe how the state and observation bias coefficient9

background error covariance matrices are estimated operationally, by following two papers:10

Bannister (2008a) and Cameron and Bell (2018). We will then describe the method of11

quantifying the impact of mis-specifying the state background error covariance matrix in12

Eyre and Hilton (2013), so that we can extend this method to a VarBC system in chapter13

4. The discussion of these papers will lead to developing research question 1, which will14

be explained in section 3.3.15

Bannister (2008a) describes the role of Bx to spread information (both about the16

background and observations) horizontally and vertically so that information is shared17

across the domain and between variables. In a cycled system, the trueBx can be calculated18

by evolving the analysis error covariance matrix from the previous cycle forward to give19

the forecast error covariances using the Kalman filter equations (Kalman, 1960). These20

evolve the previous analysis error covariance matrix according to the model and account21

for some model error. The forecast error covariances Pf are given by,22

Pf = M0→NP
aMT

0→N +Q, (3.1)

where Pa is the analysis error covariance matrix from the previous cycle; M0→N is the23

Jacobian of the forecast model from the beginning to the end of the assimilation window,24
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as described in equation (2.31); and Q describes the error variances in the model. If Pf
1

were known, then it would be the optimal choice for Bx, given the linearity, Gaussianity2

and unbiased model property assumptions hold. However, operationally it would be too3

computationally expensive to calculate Pf explicitly, as Pf would require matrix multipli-4

cations of matrix dimension n× n, where n is the size of the state. In a global system, n5

could be all state variables (temperature, pressure, humidity etc) across all latitude and6

longitude values, as well as all vertical values, so n could have a size of approximately 109.7

Therefore, Bx is taken to be an approximation of the background error statistics in the8

system.9

In Bannister’s 2008 review paper (Bannister, 2008a), three methods are described to10

estimate the background error covariance matrix. The first method relates the innovation11

vector to the background and observation errors, which means that the background errors12

of model variables that are directly observed can be approximated (Rutherford, 1972).13

However, this method is limited to the number of in-situ observations (such as radiosondes)14

available and can only be calculated for background variables that have direct observations.15

The NMC (National Meteorological Centre) method (Parrish & Derber, 1992) uses the16

statistics of the differences between pairs of forecasts valid at the same time but taken17

from different initial times. As the forecast differences are usually averaged over a period18

of a few months, the NMC method is useful for estimating climatological background19

error covariances (Bouttier, 1996). However, this method struggles in poorly observed20

locations as there will be smaller updates to the forecasts in those regions. The ensemble21

method uses an ensemble of forecasts, to calculate the statistics of the difference between22

ensemble members (based on Houtekamer et al., 1996). As the ensemble method uses23

forecasts from the current time it is able to produce a more flow-dependent Bx than24

the NMC method. However, it can only provide as many modes of errors as there are25

ensemble members. Therefore operationally, a mixture or combination of these methods26

is used to estimate the state background error covariance matrix, with some centres using a27
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hybrid approach that combines a climatological state background error covariance matrix1

with a flow-dependent background error covariance matrix that includes 'errors of the2

day' (Gustafsson et al., 2018). However, the calculation of the state background error3

covariance matrix is, unfortunately, still only an estimate of the true background error4

covariance matrix.5

Unfortunately, there have been far fewer studies into how the observation bias coef-6

ficient background error covariance matrix Bβ in VarBC should be calculated. The bias7

coefficient background error covariance matrix, Bβ, determines how large the update on8

the estimate of β will be, given the uncertainty in the previous estimate. The uncertainty9

in the observation bias coefficient can originate from the assumed structure of the obser-10

vation biases, as well as the model error impacting the previous estimate. The methods11

used to estimate the state background error covariance matrix cannot be used for the12

observation bias coefficient background error covariance matrix, as it is assumed that the13

observation bias coefficients are roughly constant between assimilation windows, such that14

the previous analysis observation bias coefficient is taken to be the background observation15

bias coefficient of the subsequent cycle (Dee, 2005). At the Met Office, the method for16

approximating Bβ is given in Cameron and Bell (2018). Bβ is approximated as diagonal,17

with error variances Vβi defined by,18

V −1
βi

=
Nbgerr

m1

m1∑
k=1

p2k,iR
−1
k , (3.2)

where pk,i are the predictors corresponding to the ith observation bias coefficient for the19

kth bias-corrected observation type, as defined in equation (2.41); Rk are the k observa-20

tion error variances; m1 is the number of bias-corrected observations; and Nbgerr is the21

weighting (divided by m1) given to the observations when determining the observation22

bias coefficient. Nbgerr is defined at the Met Office so that the difference between the23

initial estimate of β and the best estimate of β halves in ht cycles, such that Nbgerr is24
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given by,1

Nbgerr = max(mavg,mmin)
1

2
1
ht − 1

, (3.3)

with mavg the expected number of observations per cycle for the given channel; mmin2

is the minimum number of observations; and ht is the chosen difference halving time3

in units of data assimilation cycles. mmin is included in case there is a period of low4

observation numbers, to stop the observation bias coefficient being based on a very small5

number of observations. In the usual case when mavg > mmin, the difference halving time6

is determined by ht (which at the Met Office is 8 DA cycles, corresponding to 2 days).7

This results in a minimum difference halving time across all observations, which means8

the observation bias coefficient can be calculated from information from all bias-corrected9

observations. The calculation of the bias coefficient background error covariance matrix10

is also clearly an approximation and is defined to limit how much the bias coefficient can11

vary between each cycle, rather than the true bias coefficient background error covariance12

matrix.13

We have shown that it is too computationally expensive to calculate the true back-14

ground error covariance matrices for the state and observation bias coefficient and that15

operationally, only assumptions can be used. Eyre and Hilton (2013) showed the impact16

of mis-specifying the state background error covariance matrix on the analysis error co-17

variance matrix in a system without bias correction, but as the bias coefficient background18

error covariance matrix may also be mis-specified, this is clearly a problem that can be19

extended to the VarBC case. We will describe Eyre and Hilton’s method here as we will20

extend it to include VarBC in chapter 4. Eyre and Hilton (2013) began with the general21

equation for the analysis error covariance matrix, given by equation (2.23) and repeated22

here for simplicity:23

A = (I−KH)Bx(I−KH)T +KRKT. (3.4)

If the background error covariance matrix used in the system is the true background error24
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covariance matrix, then the optimal K is given by,1

K(Bx) = BxH
T(HBxH

T +R)−1, (3.5)

where although K is dependent on Bx, H and R, it is denoted to be a function of Bx2

as this dependency is what is being investigated. Therefore the optimal analysis error3

covariance matrix is given by,4

Aopt = (I−KH)Bx, (3.6)

as was derived in equation (2.27). As the state background error covariance matrix is5

usually only an approximation, Eyre and Hilton (2013) consider a sub-optimal case of6

equation (3.4), whereby Bx is an approximation, denoted by Ba
x. Therefore the sub-7

optimal K, denoted by Ka would be given by,8

Ka(Ba
x) = Ba

xH
T(HBa

xH
T +R)−1 =: Ka (3.7)

and thus the sub-optimal analysis error covariance matrix would be given by,9

Asub = (I−KaH)Bx(I−KaH)T +KaR KaT. (3.8)

Note that equation (3.8) is now linear in Bx, as the true Bx comes from multiplying the10

background error in the system with its transpose, whereas Ba
x in Ka originates from using11

a mis-specified background error covariance matrix in the DA system. By multiplying out12

the brackets from the first term in equation (3.8), Asub can be rewritten in terms of the13

optimal analysis error covariance matrix (Aa
opt), which is equal to Aopt in equation (3.6),14
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but using Ba
x instead of Bx, plus an additional term,1

Asub = Aa
opt + (I−KaH)(Bx −Ba

x)(I−KaH)T, (3.9)

(see also section 4.2) (Watts & McNally, 1988). In order to demonstrate the impact of the2

difference term on the sub-optimal state analysis error covariance matrix, Eyre and Hilton3

set up a simple numerical system. Their simple experiment consisted of one state variable4

which was directly observed by one observation, such that the Jacobian of the observation5

operator was H = 1, with observation error variance R = 1 (H and R are no longer in6

bold to show that they are scalar). Their assumed background error variance is constant,7

given by BA = 1 and they vary the true background error variance. For each value of8

the true background error variance, the optimal and sub-optimal analysis error variances9

are plotted, shown in figure 3.1 as blue diamonds and red crosses respectively. Figure 3.110

comes from Eyre and Hilton (2013). When BA is smaller than the true background error11

variance (ie. the right hand side of the figure, B > 1), then the background error variance12

has been underestimated, so the system risks giving too much weight to the background13

state. When BA is greater than the true background error variance (ie. the left hand side14

of the figure, B < 1), then the background error variance has been overestimated, so the15

system risks giving too much weight to the observations. In figure 3.1, the 1-1 line has16

been plotted as the solid black line which shows the value of the analysis error variance if17

it were equal to the true background error variance.18

The process of data assimilation is used in order to make a better estimate of the19

state, by combining the observations and background. Therefore, it is assumed that the20

analysis error variance will be 'better' (ie. smaller) than the background error variance.21

From the equation for Aopt, equation (3.4), this is known to be the case for the optimal22

analysis error variance, and is shown in figure 3.1, as Aopt is always smaller than the23

true background error variance (the black line). However, figure 3.1 shows that there is a24
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Figure 3.1: Analysis error variance, A, as a function of the true background error variance, B,
where the assumed background error variance is BA = 1, and the assumed (and true) observation
error variance is R = 1. Aopt is calculated from equation (3.6) and A is Asub from equation (3.9).
The diagonal line through the origin is the line A = B. The dashed vertical line shows the value of
B = Bd, at which the analysis enters the danger zone for Asub. ©British Crown Copyright, the
Met Office, from Eyre and Hilton (2013). Reproduced by permission of John Wiley and Sons Inc.

range, defined by Eyre and Hilton as the “danger zone”, where Asub is greater than the1

true background error variance, shown by the shaded region. In this region, using data2

assimilation would actually be detrimental to the estimate of the state and highlights the3

danger of overestimating the value of the background error variance.4

The existence of the danger zone is a cause for concern when estimating the state5

background error covariance matrix in a system without bias correction. In VarBC, the6

observation bias coefficient background error covariance matrix is also only an estimate of7

the true background error covariance matrix, which therefore poses the question of what is8

the effect of mis-specifying both the state and the observation bias coefficient background9

error covariance matrix in VarBC? This leads to research question 1, given in section 3.3,10

and will be studied and discussed in chapter 4, by extending the work by Eyre and Hilton11

(2013) which has just been described.12
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3.2 Correcting for either observation or model bias and the1

importance of unbiased observations2

Standard data assimilation methods assume that there are no biases present in the system.3

However, as shown in sections 2.2 and 2.4, biases can occur in both observations and in4

the model. Dee (2005) discusses the complications of having both observation and model5

biases present. If the source of the bias (ie. observation or model) is unknown, Dee suggests6

that it could be better to use 'bias-blind' data assimilation, whereby no bias correction7

technique is used, otherwise the source of the bias may be wrongly attributed, which can8

lead to a biased analysis. If the source of the bias is known and can be characterised by9

known parameters, then both observation and model biases can be corrected by including10

additional parameters into the data assimilation system, as described in chapters 2.3 and11

2.5 respectively. The separation of biases requires additional reference information, for12

example, knowledge of the causes of biases, or independent observations.13

Some observations are used to anchor biased observations and/or biased models to the14

truth, which are known as anchor observations (Eyre, 2016). Anchor observations will not15

be completely free of biases, but we assume that the biases they contain are significantly16

smaller than other biases in the system, or have been bias-corrected prior to use in the data17

assimilation cycle. Currently, several types of observations are used as anchor observations18

within NWP systems. Radiosondes are used to anchor temperature, pressure and humidity19

in the troposphere, but as was shown in figure 2.3, these measurements are mostly over20

the land in the northern hemisphere. RO measurements provide anchor information about21

temperature in the stratosphere and upper troposphere with good spatial coverage across22

the Earth. Some radiance observations are used as anchor observations, as it is assumed23

that the model bias is much bigger than the observation bias in the variables that they24

observe, or they are bias-corrected prior to use in the DA system. For example, AMSU-25

A channel 14 is used to anchor the upper stratosphere (Di Tomaso & Bormann, 2011);26
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selected hyperspectral infra-red window channels are used to anchor skin temperature at1

the Met Office; and selected ozone channels from hyperspectral infrared instruments are2

used to anchor the upper tropospheric/lower stratospheric ozone analysis at ECMWF3

(Han & McNally, 2010). However, the assumption that observation biases are small for4

these observations can be wrong, for example biases in the observation operator may be5

large (Han & Bormann, 2016).6

In this section we will explore three studies that discuss correcting for observation7

and/or model biases: Eyre (2016), Laloyaux et al. (2020a) and Lorente-Plazas and Hacker8

(2017). In this thesis we are interested in how one bias can be corrected for, when the9

other bias is present. The first study (Eyre, 2016) demonstrates the importance of unbiased10

observations when correcting for observation bias in the presence of model bias. We will11

discuss the results from their scalar theoretical example in this section and, in sections 6, 712

and 8, we will further this discussion by extending the theoretical study from a scalar to a13

vector system. The second study (Laloyaux et al., 2020b) demonstrates when WC4DVar14

is able to correct for model bias and the effect of correcting for it in the presence of15

observation bias. In this section we will discuss the results, with particular interest on16

when both biases are present. In chapter 8 we will extend this by exploring the role of17

unbiased observations when correcting for model bias in the presence of observation bias.18

The final study (Lorente-Plazas & Hacker, 2017) demonstrates the ability of a simple19

numerical system in the presence of both observation and model biases to correct for one20

or both of the biases. We will discuss their experiments and results, as in chapter 8 we21

will set up a similar numerical system, but that also includes unbiased observations. We22

will extend the work of Lorente-Plazas and Hacker (2017) to understand the importance23

of the unbiased observations when correcting for either type of bias.24

Eyre (2016) explores the use of anchor observations, as additional reference informa-25

tion when correcting for observation biases in the presence of model bias in a simple26

scalar system. By defining the analysis as the weighting between the background, anchor27
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observations and bias-corrected observations, Eyre analytically studied how the anchor1

observations could limit the contamination of model bias on the analysis in a scalar sys-2

tem. Eyre (2016) described three simple experiments to test the sensitivity of the fraction3

of analysis bias to model bias when different weightings and model relaxation rate were4

used.5

In the first experiment, the weighting given to the anchor observations was varied,6

whilst keeping the total weight of both the biased and anchor observations constant.7

Keeping the total observation weight constant implicitly kept the background weighting8

constant as the background and observations weights were constrained to sum up to 1.9

When no weight was given to the anchor observations, the analysis bias was given by10

the model bias. When no weight was given to the biased observations then the fraction11

of analysis bias to model bias dramatically reduced. Therefore, this experiment showed12

that, when less weight is given to the anchor observations, the analysis will have a greater13

contamination from model bias.14

In the second experiment, the importance of the weighting of both observations com-15

pared to the background was tested, by varying the total observation weight and thus16

reducing the background weight. The anchor and biased observation weights were taken17

to be equal. When the observation weight was zero, the analysis bias was given by the18

model bias. When the background weight was zero, the model bias did not influence the19

analysis bias at all. Therefore, as more weight went towards the background, there was a20

greater contamination of model bias on the analysis.21

In the third experiment, the rate that the model relaxed to its climatology was varied.22

When the model relaxation rate was zero, the analysis bias was independent of the model23

bias, but as the relaxation rate was increased, the analysis bias became a larger fraction24

of the model bias.25

The second and third experiments showed that the contamination of model bias on26

the analysis would be reduced, if the calculation of observation bias coefficients came from27
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data where model biases were small and slowly varying, or calculated in regions where1

there are many anchor observations, such as the troposphere in the northern hemisphere.2

Overall, Eyre (2016) demonstrated that model bias will contaminate the observation3

bias correction, and that anchor observations play an important role in mitigating the4

damaging effects of model bias. However, what is not discussed is the role of anchor5

observations within a non-scalar system.6

Some research has been carried out to understand how model bias can be corrected7

using WC4DVar. Laloyaux et al. (2020a) used WC4DVar in a simple numerical system8

(both with and without observation biases) to correct for model bias and then applied9

this to the ECMWF system in Laloyaux et al. (2020b). Laloyaux et al. (2020a) tested10

how well the simple system was able to differentiate between background and model error11

by using one of two different model error covariance matrices in their experiments. One12

model error covariance matrix Qs was defined to have short length scales, such that it13

was equal to the given background error covariance matrix (Qs = Bx). The second14

model error covariance matrix Ql was defined to have large length scales, so that it was15

different to the background error covariance matrix and to align with the hypothesis that16

model error has longer length scales to background error. Experiments were undertaken17

to demonstrate how WC4DVar could distinguish between background and model error,18

and how it performs in the presence of observation bias.19

In experiments without observation biases, Laloyaux et al. (2020a) found that the20

experiment that used Qs struggled to estimate model bias, as WC4DVar was attributing21

the model error to background error. However, when Bx and Q had different length scales22

(ie. Ql was used), WC4DVar was able to correctly attribute the model error, and thus23

performed well in correcting for the model bias. They repeated the experiment using Ql24

when the observations were limited to one area (instead of being homogeneous across the25

domain), to simulate, for example, many observations taken around an airport. In this26

case, they found that WC4DVar was unable to estimate the model error in regions without27
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observations, despite having a scale separation between Bx and Ql.1

In their final experiment, Laloyaux et al. added an uncorrected bias to all observations2

within the system. As was found in Dee (2005), they found that there was less overall bias3

in the analysis if model bias correction was not used at all, because the model bias was4

wrongly corrected towards the observation bias when model bias was explicitly accounted5

for.6

Overall, Laloyaux et al. (2020a) demonstrated that model bias could be corrected7

for using WC4DVar, if the length scales of the background and model error covariance8

matrices were significantly different and if observations were available across the domain.9

The separation of scales can be achieved if the model error covariance matrix is restricted10

to represent errors on length-scales where the spectral energy density of background errors11

is small. This is a well-verified approximation in the IFS, as model biases are prevalent12

in the stratosphere and initial condition errors on smaller spatial and temporal scales are13

prevalent in the troposphere (Laloyaux et al., 2020b). However, Laloyaux et al. (2020a)14

also showed that WC4DVar failed in the presence of biased observations, so concluded15

that unbiased observations were crucial in correcting for model bias in the presence of16

observation bias. In the stratosphere, the use of unbiased observations is very achievable,17

due to the large amount of radio occultation data available, but in the lower or upper18

atmosphere, unbiased observations can be more sparse.19

Both Eyre (2016) and Laloyaux et al. (2020a) have shown the need for unbiased obser-20

vations when correcting for one bias in the presence of the other, but more work needs to21

be done to understand what characteristics are needed in anchor observations to properly22

mitigate the contamination of bias. How does the location of the anchor observations in23

space and time influence their ability to reduce the contamination of model bias? How24

does the state background error covariance matrix transfer information between observed25

and unobserved states? This gap in knowledge in the use of unbiased observations in bias26

correction schemes leads to research question 2, discussed in section 3.3.27
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In Lorente-Plazas and Hacker’s (2017) paper, the interaction between observation and1

model biases without unbiased observations in data assimilation is tested. Lorente-Plazas2

and Hacker (2017) performed several numerical experiments on a simple system to test how3

much bias filtered into the state analysis when each bias was corrected for, by including4

additional parameters into the control vector, as in VarBC and WC4DVar (as discussed5

in chapter 2, sections 2.3 and 2.5). The experiments used Model III developed by Lorenz6

(2005), because the model had large-scale correlations between neighbouring grid points7

and it combined small and large scales, which can be compared to the interaction between8

mesoscales and synoptic scales in the atmosphere. Model bias was added to the system9

by changing the forcing term in the model that evolved the system forwards in time.10

Observation bias was added to the observations by either adding a constant homogeneously11

to all observations; or by spatially varying the observation bias. The latter case will not12

be discussed here. Two types of experiments were described in order to compare how well13

the bias corrections performed in comparison to not bias-correcting: bias-aware, where14

the biases were explicitly corrected for; and bias-blind, where biases were ignored, both15

of which were described in Dee (2005). In this way, the contamination of the model and16

observation biases were isolated and they were able to demonstrate the contamination of17

one bias when the other was being corrected.18

In total, nine experiments were presented with different combinations of biases present,19

and corrected for: one control experiment which had no observation or model biases, with20

no bias correction; three 'bias-blind' experiments that had observation and/or model21

biases that were not corrected for; five bias correction experiments that had observation22

and/or model biases present and one/both were corrected. Each experiment used 10023

ensemble members which had random error in the observations with error variance = 0.524

and random error in the background state, where the error variance was calculated using25

the Kalman filter and inflated by a mean factor of 1.1 and standard deviation of 0.6 at26

the initial time.27
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In the control experiment, the state RMSE (root mean square error) was equal to the1

standard deviation, with a negligible bias. In the completely bias-blind experiments, the2

state RMSEs and the magnitudes of the biases were comparable when only one source3

of bias was present, although the signs of the biases were opposites. As the state RMSE4

and the standard deviations of the bias-blind experiments were similar, these biases were5

chosen for the later experiments.6

Figure 3.2: Time series of prior RMSE for different experiments (colours) using (a) a perfect
model with and without spatially constant observation bias = 0.3, and (b) an imperfect model with
model bias = 2. Legends show specified observation biases and the augmented vector estimated
in the assimilation. From Lorente-Plazas and Hacker (2017) ©American Meteorological Society.
Used with permission.

Figure 3.2 comes from Lorente-Plazas and Hacker (2017) and shows the time series7

of the state RMSE for eight of the experiments described above (other than when both8

model and observation biases were added, but only model bias was corrected for), when9

a perfect model was used (figure 3.2a) and when a biased (imperfect) model was used10

(figure 3.2b). We will focus on figure 3.2b, where both observation and model biases were11

present.12

When the experiment was bias-blind to both observation and model biases (green line,13
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figure 3.2b), the state RMSE was surprisingly small, despite not correcting for either bias.1

This was due to the experiment design, as the observation and model biases had opposite2

signs, so combining them naturally cancelled them both out.3

When observation bias was corrected, but the system was bias-blind to the model bias4

(red line, figure 3.2b), the state RMSE was much larger compared to the other experiments5

and diverged as time evolved. However, when model bias was corrected, but the system6

was bias-blind to observation bias (gold line), the state RMSE was much lower. Later7

experiments suggested that this was because the state was more sensitive to error variances8

in the background observation bias estimate than error variances in the background model9

bias estimate. If only one bias was corrected, then the non-corrected bias would filter10

into the bias-corrected estimate. Therefore, uncorrected model bias would have a larger11

impact on observation bias correction as it was absorbed into the observation bias estimate12

and therefore affected the state estimate, whereas when uncorrected observation bias was13

absorbed into the model bias estimate, it did not have as large an effect on the state14

estimate.15

When both model and observation biases were corrected for (blue line), the state16

RMSE was the lowest of all the experiments when both observation and model biases17

were present. Lorente-Plazas and Hacker suggested that knowledge of the a priori model18

error appeared to be unnecessary, and the system only needed to know that model bias19

existed. Although, they did acknowledge that in a complex geophysical model, the form20

of a parametric model to represent model errors is not always known.21

Lorente-Plazas and Hacker (2017) demonstrated that in the presence of both obser-22

vation and model biases, correcting for model bias and not observation bias reduced the23

state RMSE more than only correcting for observation bias, but correcting for both biases24

simultaneously reduced the state RMSE the most. However, their experiments do not25

include any unbiased observations when both sources of bias were present, which both26

Eyre (2016) and Laloyaux et al. (2020a) showed to be crucial in anchoring the bias correc-27
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tion techniques. This raises the question of how well both VarBC and WC4DVar perform1

comparatively to each other in the presence of both sources of bias, when unbiased ob-2

servations can be used. This therefore leads to research question 3, which is discussed in3

section 3.3.4

3.3 Research questions5

In chapter 3 we have presented important studies in the field of bias correction in data6

assimilation to understand where the gaps in knowledge lie. We will consider the following7

research questions which will be the basis for the rest of this thesis:8

9

RQ 1: What are the consequences of mis-specifying the background error10

statistics in VarBC?11

The background error covariance matrices for both the state and the observation bias12

coefficient are not exactly known and, operationally, are an estimate of the true back-13

ground error covariance matrix (Bannister, 2008a; Cameron & Bell, 2018). Eyre and14

Hilton (2013) showed the damage that a mis-specified state background error covariance15

matrix can make in a 3DVar data assimilation system without bias correction, but did16

not investigate the impact of mis-specifying the background error covariance matrices in a17

VarBC system. We will demonstrate the impact that mis-specifying both Bx and Bβ have18

on the state and bias coefficient analysis error covariance matrices, when using VarBC.19

RQ 1 will be answered in chapter 4.20

21

RQ 2: What criteria are needed in the anchor observations in order to suc-22

cessfully reduce bias in the analysis when both model and observation biases23

are present but only observation bias is accounted for?24

Eyre (2016) and Laloyaux et al. (2020a) both demonstrated the need for anchor obser-25
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vations when correcting for observation/model bias in the presence of both sources of bias,1

so that the bias correction was not corrected towards the wrong source of bias. However,2

neither studied which properties of anchor observations were more important in reducing3

the contamination of bias within a bias correction scheme. Therefore, we will study the4

following:5

• RQ 2.1: Where are anchor observations most effective in reducing the6

contamination of bias? In chapter 2.2, we have discussed that, geographically,7

anchor observations do not cover all atmospheric variables across the Earth. There-8

fore, where do anchor observations need to lie in comparison to model biases and9

biased observations in order to successfully mitigate the contamination of model bias10

on the observation bias correction? RQ 2.1 will be answered in chapter 6.11

• RQ 2.2: When are anchor observations most effective in reducing the12

contamination of bias? In 4DVar, observations can be spread throughout the13

assimilation window. Does the ability of anchor observations to reduce the contam-14

ination of bias in the bias correction differ, depending on whether they are closer to15

the beginning or end of the window? RQ 2.2 will be answered in chapters 7 and 8.16

• RQ 2.3: Does the quality of the anchor observations matter in reducing17

the contamination of bias? Eyre (2016) demonstrated how the weighting given18

to the anchor observations impacted how sensitive the bias in the analysis was to19

the model bias. In a non-scalar system, how do the error covariances between the20

background errors and the observation errors interact, and would it be better to21

have a full coverage of anchor observations with low precision, or a smaller coverage22

with higher precision? RQ 2.3 will be answered in chapters 6, 7 and 8.23

RQ3: How important are anchor observations when correcting for model24

and/or observation bias?25
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Lorente-Plazas and Hacker (2017) compared correcting for observation and/or model1

bias in the presence of both biases and found that correcting for only model bias reduced2

the error in the state analysis more than only correcting for observation bias, although3

they found correcting for both simultaneously reduced the error even more. Operationally,4

bias correction methods are mostly used when anchor observations are available. There-5

fore, what difference does using anchor observations make when trying to correct one or6

both biases in the presence of both? How much better do the bias correction methods7

perform when they are able to use anchor observations to mitigate the contamination of8

bias? RQ 3 will be answered in chapter 8.9

10

These research questions will be tackled by analytically studying the relevant analysis11

equations in VarBC or WC4DVar and will be illustrated using simple numerical systems.12

These techniques will allow us to understand the basic theory and to visualise the equa-13

tions, which allows us to interpret the equations in both scalar and vector systems under14

specific assumptions.15

3.4 Summary16

In chapter 3 we have presented several papers that have demonstrated bias correction17

techniques when both model and observation biases were present. We showed the need18

for more understanding of when unbiased observations are able to disentangle model and19

observation biases and developed research questions which will be used to shape the re-20

maining ideas discussed in this thesis. In the next chapter we will answer research question21

1, by studying the effect of mis-specifying the observation bias coefficient background error22

covariance matrix in VarBC.23
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Chapter 41

Mis-specification of background2

error statistics on a VarBC system3

4.1 Introduction4

As already discussed in section 2.3, VarBC is very important operationally as it allows the5

use of biased radiance observations in NWP. However, we showed in section 3.1 that the6

background error covariance matrices of both the state and the observation bias coefficient7

are only approximations of the true background error covariance matrices. In this chapter8

we will study the implication of mis-specifying both Bx and Bβ in VarBC.9

In section 3.1 we gave an overview of Eyre and Hilton (2013), which demonstrated how10

mis-specifying the state background error covariance matrix can cause the state analysis er-11

ror covariance matrix to be larger than the background error covariance matrix in a 3DVar12

system. In section 3.1 we also discussed how, when using VarBC, the observation bias co-13

efficient background error covariance matrix is only an estimate of the true background14

error covariance matrix, designed to limit the growth in the observation bias coefficient,15

rather than reflect the 'true' bias coefficient background error covariance matrix (Cameron16

& Bell, 2018). Therefore, in this chapter we extend the work of Eyre and Hilton (2013)17
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to include VarBC, in order to answer research question 1: what are the consequences of1

mis-specifying the background error statistics in VarBC? We will demonstrate the effect of2

under- and overestimating both the state and observation bias coefficient background error3

covariance matrices on the state and observation bias coefficient analysis error covariance4

matrices, in order to highlight the consequences of mis-specifying them.5

We will start by calculating the VarBC analysis error covariance matrix equation when6

the background error covariance matrix is mis-specified, by following the method in Eyre7

and Hilton (2013). The results are then presented in a simple scalar system to give further8

understanding.9

4.2 Sub-optimal analysis error covariance matrix equations10

for the state and observation bias coefficient11

In section 2.3 the analysis error covariance matrix in a VarBC system that contains both12

the state and observation bias coefficient analysis error covariance matrices, was given in13

its most general form in equation (2.69) as,14

Av = (I−KvHv)Bv(I−KvHv)
T +KvRKT

v ∈ R(n+r)×(n+r), (4.1)

where Kv is the sensitivity of the control vector to the observations; Hv is the linearised15

observation operator which is a Jacobian of the control vector with respect to the state16

x and the observation bias coefficient β; Bv is the background error covariance matrix17

for both x and β; and R is the observation error covariance matrix. Note that equation18

(4.1) is equivalent to equation (2.69) and has just been repeated here for convenience19

for the reader. If the background and observation error covariance matrices are the true20

background and observation error covariance matrices, then Kv is optimal. In this case,21

we showed in equation (2.71) that the optimal analysis error covariance matrix can be22
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written as,1

Av,opt = (I−KvHv)Bv, (4.2)

which is equivalent to equation (2.71), but has been shown here again for convenience.2

However, when the background error covariance matrix is mis-specified, i.e. the as-3

sumed background error covariance matrix Ba
v inputted into the system is not equal to the4

true background error covariance matrix Bv, then the Kalman gain matrix will be given5

by,6

Ka
v = Ba

vH
T
v (HvB

a
vH

T
v +R)−1, (4.3)

where we have denoted Ka
v to be the suboptimal Kalman gain matrix when the assumed7

background error covariance matrix is used. Note that, operationally, the observation8

error covariance matrix would also only be an assumption of the truth, but, as we are9

only interested in the effect of mis-specifying the background error covariance matrix in10

this work, we assume the true R has been used. Then, following the same method as11

in Eyre and Hilton (2013) but for the control vector that contains both the state and12

the observation bias coefficient, we can calculate the sub-optimal analysis error covariance13

matrix. Substituting Ka
v into equation (4.1) gives,14

Aa
v = (I−Ka

vHv)Bv(I−Ka
vHv)

T +Ka
vRKaT

v . (4.4)

The analysis error covariance matrix, Aa
v, is still dependent on the true Bv as Bv comes15

from the background errors in the data assimilation system itself, whereas the Ba
v in Ka

v16

comes from the assumed error covariance matrices inputted into the system. As Ka
v is17

no longer dependent on Bv (but instead is dependent on Ba
v), A

a
v can not be reduced18

in the same way as in equations (4.1) and (4.2). Adding and subtracting the assumed19

background error covariance matrix to the true background error covariance matrix in20
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equation (4.4) gives,1

Aa
v = (I−Ka

vHv)(Bv +Ba
v −Ba

v)(I−Ka
vHv)

T +Ka
vRKaT

v , (4.5)

and expanding gives,2

Aa
v = (I−Ka

vHv)B
a
v(I−Ka

vHv)
T+Ka

vRKaT
v +(I−Ka

vHv)(Bv−Ba
v)(I−Ka

vHv)
T. (4.6)

The first two terms are equal to equation (4.1) for Bv = Ba
v, which we showed in equation3

(4.2) can be simplified to Av,opt. Therefore, equation (4.6) can be simplified to4

Aa
v = Aa

v,opt + (I−Ka
vHv)(Bv −Ba

v)(I−Ka
vHv)

T, (4.7)

where Aa
v,opt is equation (4.2) when Bv = Ba

v. Equation (4.7) is an extension of equation5

(10) in Eyre and Hilton (2013) to include the observation bias coefficient in the control6

vector in the analysis error variance when both the state and background error covariance7

matrices are mis-specified. It is the sum of the optimal analysis error covariance matrix8

if the assumed background error covariance matrix is equal to the true background error9

covariance matrix, and a product of matrices which is linearly dependent on the difference10

between the true background error covariance matrix and the assumed background error11

covariance matrix.12

In order to determine how the state analysis error covariance matrix and the obser-13

vation bias coefficient analysis error covariance matrix are dependent on the errors in the14

assumed state and bias coefficient background error covariance matrices, we can separate15

Aa
v from equation (4.7) into its x and β parts, as16

Av =

Ax Axβ

Aβx Aβ

 (4.8)
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as in equation (2.70) in section 2.3. To write equation (4.7) in terms of its state and1

observation bias coefficient parts, we first expand Aa
v,opt by writing: Ka

v in terms of Ka
x2

and Ka
β; Hv in terms of H and Cβ; and Ba

v in terms of Ba
x and Ba

β:3

Aa
v,opt =

(
In+r −

Ka
x

Ka
β

(H, Cβ

))Ba
x 0

0 Ba
β

 , (4.9)

where In+r ∈ R(n+r)×(n+r) is the identity matrix of dimension n+ r (ie. the dimension of4

the state and bias coefficient combined); H ∈ Rm×n is the linearised observation operator5

as defined in section 2.1; Cβ ∈ Rm×r is the linearised bias correction with respect to β as6

defined in section 2.3; Ba
x ∈ Rn×n andBa

β ∈ Rr×r are the assumed state and bias coefficient7

background error covariance matrices respectively; Ka
x ∈ Rn×m is the sensitivity of the8

state to the observations and is given by,9

Ka
x = Ba

xH
T
(
HBa

xH
T +CβB

a
βC

T
β +R

)−1
(4.10)

which is equivalent to the Kx as defined in equation (2.52), but for Bx = Ba
x and Bβ = Ba

β;10

and Ka
β ∈ Rr×m is the sensitivity of the bias coefficient to the observations and is given11

by,12

Ka
β = Ba

βC
T
β

(
HBa

xH
T +CβB

a
βC

T
β +R

)−1
(4.11)

which is equivalent to the Kβ as defined in equation (2.53) but for Bx = Ba
x and Bβ = Ba

β.13

Simplifying equation (4.9) gives the form of the optimal analysis error covariance matrix14

for the state and observation bias coefficient when Bv = Ba
v as,15

Aa
v,opt =

(In −Ka
xH)Ba

x −Ka
xCβB

a
β

−Ka
βHBa

x (Ir −Ka
βCβ)B

a
β

 , (4.12)

where Aa
v,opt is symmetric, and can be shown by expanding Ka

xCβB
a
β and Ka

βHBa
x respec-16
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tively to show they are equal.1

Next, to continue expanding Aa
v into its state and observation bias coefficient parts,2

we expand the second term of equation (4.7) into its x and β parts,3

(I−Ka
vHv)(Bv −Ba

v)(I−Ka
vHv)

T

=
(
In+r −

Ka
x

Ka
β

(H, Cβ

))Bx −Ba
x 0

0 Bβ −Ba
β

(In+r −
Ka

x

Ka
β

(H, Cβ

))T
,

(4.13)

which gives,4

=

(In −Ka
xH)(Bx −Ba

x) −Ka
xCβ(Bβ −Ba

β)

−Ka
βH(Bx −Ba

x) (Ir −Ka
βCβ)(Bβ −Ba

β)

×

(In −Ka
xH)T −(Ka

βH)T

−(Ka
xCβ)

T (Ir −Ka
βCβ)

T

 .

(4.14)

Therefore expanding the final matrix multiplication from equation (4.14) and adding to5

equation (4.12) gives us the analysis error covariance matrix in terms of its x and β6

elements. We can separate the four elements of the matrix into Ax, Axβ, Aβx and Aβ as7

in equation (4.8) to give,8

Ax = (In −Ka
xH)Ba

x + (In −Ka
xH)(Bx −Ba

x)(I
n −Ka

xH)T +Ka
xCβ(Bβ −Ba

β)(K
a
xCβ)

T, (4.15)

9

Axβ = −Ka
xCβB

a
β + (In −Ka

xH)(Bx −Ba
x)(−Ka

βH)T −Ka
xCβ(Bβ −Ba

β)(I
r −Ka

βCβ)
T, (4.16)

10

Aβx = −Ka
βHBa

x −Ka
βH(Bx −Ba

x)(I
n −Ka

xH)T + (Ir −Ka
βCβ)(Bβ −Ba

β)(−Ka
xCβ)

T, (4.17)

11

Aβ = (Ir −Ka
βCβ)B

a
β +Ka

βH(Bx −Ba
x)(K

a
βH)T + (Ir −Ka

βCβ)(Bβ −Ba
β)(I

r −Ka
βCβ)

T.

(4.18)

It is simple to check that Axβ and Aβx are transposes of each other and can be calculated12

by expanding Ka
x and Ka

β respectively as in equations (4.10) and (4.11). Axβ and Aβx13

represent the analysis error covariances between the state and the bias coefficient. In14
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this chapter we are only concerned with how the mis-specification of Ba
x and Ba

β impact1

Ax and Aβ, not Axβ and Aβx, as the cross-covariance matrices are less important when2

estimating the state and the observation bias coefficient. Therefore, we will not study Axβ3

and Aβx any further.4

Equations (4.15) and (4.18) show that the analysis error covariance matrices for both5

the state and observation bias coefficient are sensitive to the mis-specification of both6

the state and the observation bias coefficient background error covariance matrices, as7

both are dependent on Bx −Ba
x and Bβ −Ba

β. The sensitivity of the state analysis error8

covariance matrix to the mis-specification of Ba
x and Ba

β in equation (4.15) is controlled9

by Ka
x and the sensitivity of the bias coefficient analysis error covariance matrix to the10

mis-specification of Ba
x and Ba

β in equation (4.18) is controlled by Ka
β.11

In equation (4.15), if Ka
xCβ tends to the zero matrix, which would occur when: the12

bias correction is independent of the observation bias coefficient (Cβ = 0), which would be13

more similar to a static correction scheme as described in section 2.3; or when the assumed14

state background error variance is very small (Ba
x → 0, therefore Ka

x → 0), then Ax will15

be independent of the mis-specification of Bβ. However, these are uninteresting cases as16

they would mean the data assimilation is entirely reliant on the state background, rather17

than observations, to make an update to the system. Equivalently, in equation (4.18),18

if Ka
βH tends to the zero vector, which would occur when: there are no observations19

(H = 0); or when the assumed bias coefficient background error variance is very small20

(Ba
β → 0, therefore Ka

β → 0), then Aβ would be independent of the mis-specification of21

Ba
x. However, these are also both uninteresting cases as the observations would not be22

used in the VarBC system. Therefore it is clear that, in general, both Ax and Aβ are23

sensitive to the mis-specification of both Ba
x and Ba

β.24

In order to understand equations (4.15) and (4.18) further, we will study the theoretical25

scalar case when there is one state that is observed by one biased observation, which is26

corrected using VarBC.27
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4.3 Scalar example1

The danger zone of the analysis error variance in the scalar case was defined in Eyre2

and Hilton (2013) to be when the analysis error variance is larger than the corresponding3

background error variance. We can extend this to VarBC, such that the danger zone of4

the state analysis is when σ2ax > σ2bx, where σ
2
ax is the scalar state analysis error variance5

and σ2bx is the scalar state background error variance. Furthermore, we can define the6

danger zone of the bias coefficient analysis to be when σ2aβ > σ2bβ, where σ
2
aβ is the scalar7

bias coefficient analysis error variance and σ2bβ is the scalar bias coefficient background8

error variance.9

In order to investigate when the state and bias coefficient analysis error variances fall10

into the danger zones based on the choice of state and bias-coefficient background error11

variances, we look at the scalar cases of equations (4.15) and (4.18), which are given by,12

σ2ax = (1− kaxh)σ
a2
bx + (1− kaxh)

2(σ2bx − σa2bx) + (kaxcβ)
2(σ2bβ − σa2bβ), (4.19)

σ2aβ = (1− kaβcβ)σ
a2
bβ + (kaβh)

2(σ2bx − σa2bx) + (1− kaβcβ)
2(σ2bβ − σa2bβ), (4.20)

where kax, k
a
β, h and cβ are given in italic lower case to show that they are scalar and kax13

and kaβ are given by,14

kax =
σa2bxh

σa2bxh
2 + σa2bβc

2
β + σ2o

, (4.21)

kaβ =
σa2bβcβ

σa2bxh
2 + σa2bβc

2
β + σ2o

. (4.22)

Equations (4.19) and (4.20) are symmetric to each other. The first term for both the state15

and bias coefficient analysis error variance are the optimal analysis error variances if the16

assumed background error variances are correct. The self-sensitivity background terms are17

the difference terms for their own background error variances, multiplied by (1− kaxh)
2 or18
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(1− kaβcβ)
2 respectively. The cross-sensitivity background terms are the difference terms1

for the other background error variances (ie. the bias coefficient background error variance2

for the state analysis error variance and the state background error variance for the bias3

coefficient analysis error variance), multiplied by (kaxcβ)
2 or (kaβh)

2 respectively.4

In order to test when equations (4.19) and (4.20) fall into their respective danger5

zones, we study σ2ax and σ2aβ when the parameters have given values. The observations are6

assumed to be direct and the biases linear with respect to β, such that h = cβ = 1. For7

each experiment we vary either kax or kaβ and either σa2bx or σa2bβ and keep the other values8

constant. Note that kax and kaβ would be dependent on σa2bx and σa2bβ, but for simplicity, we9

have varied them mutually exclusively so that our results are less reliant on the specific10

parameters chosen. In practice, varying kax would be equivalent to varying the observation11

error variance.12

In figure 4.1 we have plotted σ2ax from equation (4.19) whilst varying the sensitivity of13

the state to the observations (kax) and the assumed state background error variance (σa2bx).14

The true state background error variance (σ2bx) is 0.75, which is denoted by the dotted line:15

when σa2bx is to the left of the line it has been underestimated; and when it is to the right of16

the line it has been overestimated. The assumed bias coefficient background error variance17

is set to σa2bβ = 1. The state analysis error variance has been plotted for two cases of the18

true bias coefficient background error variance: when σ2bβ = 1.5 (ie. the bias coefficient19

background error variance has been underestimated) in figure 4.1a; and when σ2bβ = 0.520

(ie. the bias coefficient background error variance has been overestimated) in figure 4.1b.21

The boundary of the danger zone is marked by the white dashed contour line at the value22

of the true state background error variance. State analysis error variance values larger23

than the contour fall into the danger zone, as σ2ax > σ2bx in these areas. The white spaces24

are where σ2ax are negative, so have been removed. These negative error variance values25

come from impossible values of kax as it would require the observation error variance to26

also be negative, so are unrealistic.27
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(a) Underestimating σ2
bβ

(b) Overestimating σ2
bβ

Figure 4.1: σ2
ax varying both kax and σa2

bx. h = cβ = 1. σa2
bβ = 1, σ2

bx = 0.75. (a) σ2
bβ = 1.5

(underestimating σ2
bβ) and (b) σ2

bβ = 0.5 (overestimating σ2
bβ). White dashed line shows when

σ2
ax = σ2

bx. Black dotted line shows when σa2bx = σ2
bx.

73



In figure 4.1a, the state analysis error variance only falls into the danger zone when1

σa2bx is greater than twice the true value, as the true state background error variance was2

defined as 0.75. This suggests that underestimating the state background error variance3

keeps the analysis error variance away from the danger zone.4

In figure 4.1b, the danger zone has been reduced compared to figure 4.1a, which implies5

that overestimating σa2bβ reduces the likelihood that σ2ax will fall into the danger zone. As6

in figure 4.1a, underestimating the background error variance, or also putting more trust7

into the observations (such that kax > 0.3) keeps the state analysis error variance away8

from the danger zone.9

In figure 4.2 we have again plotted σ2ax from equation (4.19), but have now varied kax and10

σa2bβ. The true observation bias coefficient background error variance is σ2bβ = 0.75, which11

is shown by the dotted black line. When σa2bβ is to the left of the dotted line it has been12

underestimated and when it is to the right of the dotted line it has been overestimated.13

The assumed state background error variance is set to σa2bx = 1. The state analysis error14

variance has been plotted for two cases of the true state background error variance: when15

σ2bx = 1.5 (ie. the state background error variance is underestimated) in figure 4.2a; and16

when σ2bx = 0.5 (ie. the state background error variance is overestimated) in figure 4.2b.17

In figure 4.2a, we have underestimated the state background error variance, which has18

meant that σ2ax is always less than the true state background error variance, 1.5, and thus19

the danger zone has disappeared, which is consistent with figure 4.1. However, the values20

of the state analysis error variance are more dependent on kax than σa2bβ, with larger state21

analysis error variance when kax is smaller.22

In figure 4.2b, we have overestimated the state background error variance. The danger23

zone occurs when the bias coefficient background error variance has been underestimated,24

but in this case, the sensitivity of the observations (ie. the value of kax) does not impact25

whether the state analysis error variance is in the danger zone.26

Overall, figures 4.1 and 4.2 show that, for the scalar case, the danger zone of σ2ax is27
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(a) Underestimating σ2
bx

(b) Overestimating σ2
bx

Figure 4.2: As in figure 4.1 but varying kax and σa2
bβ. σ2

bβ = 0.75, σa2
bx = 1. (a) σ2

bx = 1.5

(underestimating σ2
bx) and (b) σ2

bx = 0.5 (overestimating σ2
bx). White dashed line shows when

σ2
ax = σ2

bx. Black dotted line shows when σa2bβ = σ2
bβ.
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avoided when the state background error variance is underestimated, as was the case in1

a data assimilation system without bias correction (Eyre & Hilton, 2013). Furthermore,2

the likelihood of falling into the danger zone is further reduced when the bias coefficient3

background error variance is overestimated. In general, the likelihood of falling into the4

danger zone is also reduced when kax is larger, which can happen when more weight is5

given to the observations, as can be seen by decreasing σ2o in equation (4.21). This makes6

sense as the higher the weighting of the observations, the less the weighting of the back-7

ground error variances, so mis-specifying the background error variances will have less8

of an impact. Therefore, mis-specifying the background error covariance matrices will9

be more detrimental in regions with sparser observations, for example, over the southern10

hemisphere in the lower troposphere, as we discussed in chapter 2.2.11

The scalar equations for σ2ax and σ2aβ mirror each other, so the results for σ2ax and σ2aβ12

are symmetric between the self-sensitivity and the cross sensitivity parts. We found that13

in order to avoid the state analysis danger zone, it is better to underestimate the state14

background error variance and overestimate the bias coefficient background error variance.15

Therefore, in order to avoid the bias coefficient analysis danger zone the opposite is true: it16

is better to underestimate the bias coefficient background error variance and overestimate17

the state background error variance. Therefore, in order to safely avoid one danger zone,18

we risk falling into the other.19

4.4 Conclusions and summary20

To understand why VarBC may not produce the optimal estimate when correcting for21

observation bias, we have studied the consequences of mis-specifying the state and obser-22

vation bias coefficient background error covariance matrices in VarBC, in order to answer23

research question 1.24

Eyre and Hilton (2013) found that mis-specifying the background error covariance25

76



matrix in a system without bias correction could lead to the occurrence of a danger zone,1

in which analysis error variances are larger than the background error variances. In this2

chapter we have extended their work to a VarBC system, to account for mis-specifying both3

the state and bias coefficient background error covariance matrices. In VarBC, both the4

state and bias coefficient analysis error covariance matrices can be calculated, therefore we5

found that both a state and bias coefficient danger zone can exist. In equations (4.15) and6

(4.18) we have shown that both of these analysis error covariance matrices will be different7

from the optimal analysis error covariance matrices if the state and/or bias coefficient8

background error covariance matrices have been mis-specified.9

In order to more clearly understand the impact of mis-specifying the background error10

covariance matrices, we have studied the analysis error variance in a scalar example (equa-11

tions (4.19) and (4.20)), where we were easily able to vary some of the parameters. As in12

Eyre and Hilton (2013), we defined the state danger zone to be when the state analysis13

error variance was larger than the true state background error variance. We also extended14

Eyre and Hilton (2013) to include a bias coefficient danger zone, which we defined as15

when the bias coefficient analysis error variance was larger than the true bias coefficient16

background error variance. In these danger zones, the data assimilation system was detri-17

mental in estimating the analysis statistics, as the analysis had larger error variances than18

the background.19

Across four different experiments (figures 4.1 - 4.2) we varied the values given for the20

state sensitivities to the observations and the assumed state/bias coefficient background21

error variances to test when the danger zone was avoided. Our results showed that un-22

derestimating the state background error variance and overestimating the bias coefficient23

background error variance avoided the state analysis danger zone, but that the opposite24

was true to avoid the bias coefficient analysis danger zone: we needed to overestimate the25

state background error variance and underestimate the bias coefficient background error26

variance. As avoiding one danger zone made the other danger zone more likely, it poses27
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the question: which danger zone is more detrimental to the overall analysis estimate? If1

the state analysis error variance is larger than the state background error variance, then2

the data assimilation system has not improved the state analysis estimate from the back-3

ground estimate and hence there has been no improvement in using data assimilation to4

estimate the state. However, if the bias coefficient analysis error variance is larger than5

the bias coefficient background error variance, then the observation bias correction will6

not adapt to changing observations and would perhaps be more similar to a static bias cor-7

rection scheme, which can be more sensitive to model biases, as was discussed in chapter8

2.3.9

In this chapter we have mostly studied the impact of mis-specifying the background10

error variances in a scalar system, to begin to answer research question 1. However,11

this work should be extended to study the impact of mis-specifying the background error12

covariance matrices in a vector system, particularly understanding the impact of mis-13

specifying the background error covariances compared to mis-specifying the background14

error variances.15

Chapter 4 has demonstrated the impact of mis-specifying the state and bias coefficient16

background error variances in VarBC, in order to understand why VarBC may give sub-17

optimal results when correcting for observation bias. In the next chapter we will discuss18

the design of the numerical experiments that will later be used to support our theoret-19

ical findings in chapters that study the role of unbiased observations in the presence of20

observation and model biases.21
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Chapter 51

Experimental design2

In this chapter we will discuss the design of a simple numerical DA system that uses the3

Lorenz 96 model (Lorenz, 1996). This system will be used in chapters 6 - 8 to demonstrate4

our theoretical results in a multi-variable system. The Lorenz 96 model has been used5

in many DA test systems to study predictability, particularly in weather and climate6

prediction (e.g Brajard et al., 2020; Fertig et al., 2007; Ott et al., 2004). We have chosen7

the Lorenz 96 model as on average the errors from a perturbation grow, and because the8

model parameters can be chosen to control how quickly it displays chaotic behaviour, so we9

can control how quickly a perturbed model deviates from the true model and therefore can10

perform controlled experiments with model error. It is also useful to use a low-dimensional11

model compared to an operational model, as it allows us to visualise our results, without12

having to control or assign too many parameters. However, the Lorenz 96 model is a13

simplified model compared to operational models, which means that the experiments will14

miss out some complexities, for example, all variables have the same length scale and15

therefore will have similar dynamics to each other.16
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5.1 Lorenz 961

The Lorenz 96 model (Lorenz, 1996) (which we will refer to just as Lorenz 96) is a system2

of coupled ordinary differential equations which describe the transfer of a quantity via3

advection, dissipation and external forcing. The system contains n variables: X1, ..., Xn4

on a periodic circular domain, and is governed by n equations:5

dXk

dt
= −Xk−2Xk−1 +Xk−1Xk+1 −Xk + F, (5.1)

where k = 0, ..., n − 1 is the spatial index and F is independent of k. Note that as the6

spatial domain is circular, X0 = Xn and X1 = Xn+1. The first two terms, −Xk−2Xk−1 +7

Xk−1Xk+1, are the advection terms: they simulate the flow out of and into the kth variable.8

The third term, −Xk, is the internal dissipation, where a fraction of the quantity present9

is destroyed or dissipated. The fourth term, F , is the simulated forcing which is added to10

each variable Xk.11

For very small values of F , the solutions of equation (5.1) decays to the steady solution,12

such that X0 = ... = Xn−1 = F . If F is larger, then the solutions have periodic behaviour13

and if F is larger still, the solutions have chaotic behaviour. Karimi and Paul (2010)14

tested how Lorenz 96 changes behaviour with different sized spatial domains (ie. varying15

n) and with different forcing parameters (ie. varying F ). They found that the solutions to16

equation (5.1) switched between chaotic and periodic behaviour when the spatial domain17

was varied. For example, when n = 38 and F = 5, the solution had periodic behaviour,18

but when n = 22 or n = 47 (and F = 5) the solution had chaotic behaviour. Increasing19

the forcing term to 10, regardless of the size of n, also caused the solution to have chaotic20

behaviour. Several data assimilation experiments that have used Lorenz 96 have chosen21

n = 40 and F = 8, which gives a solution with chaotic behaviour (e.g. Brajard et al.,22

2020; Fertig et al., 2007; Ott et al., 2004).23
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Lorenz (1996) argues that equation (5.1) can be reasonably compared to an atmo-1

spheric variable such as atmospheric temperature on a latitudinal circle. Each state so-2

lution tends to lie between about -5 and 10 with no true periodicity. Also, due to the3

symmetry in the model, all the variables have statistically similar behaviour. When the4

number of variables is around 36 (or higher) the error doubling time for the model can5

be comparable to the error doubling time of global circulation models, which is about 1.56

days, assuming 1 time unit of the model is 5 days (Lorenz, 2005). However, it should be7

noted that this is a simplification, partly because the global circulation models have errors8

that grow differently in different scales. For example, planetary and synoptic scales may9

grow more slowly, whereas smaller scales are more likely to have errors that would grow10

(and dissipate) much more quickly. Equation (5.1) does not account for these different11

scales, but is useful for a basic comparison to some atmospheric variables.12

In our experiments, we have numerically solved equation (5.1) using the fourth order13

Runge-Kutta scheme, with time step dt = 0.0125, which is approximately equal to 1.514

hours (given that the time unit of equation (5.1) is 5 days). As in other previous data15

assimilation studies that used Lorenz 96 (e.g Brajard et al., 2020; Fertig et al., 2007; Ott16

et al., 2004), we chose n = 40 and F = 8 to give a solution with chaotic behaviour. We17

initially ran the model for 105 time steps from a sine curve to allow the model to settle into18

its climatology and took the final time step as the initial conditions for our experiments.19

In figure 5.1 we have plotted Lorenz 96 for 100 time steps for four evenly distributed20

state variables (x0, x10, x20 and x30) from our initial conditions (black lines) and from21

perturbed initial conditions (blue lines), where the perturbation has come from adding22

a random number from a Gaussian distribution with mean zero and variance one to the23

initial conditions. The values of the perturbed and true trajectories roughly stay within the24

same maxima and minima, but the perturbed trajectory deviates from the true trajectory25

across the time steps, especially when the initial condition is very different to the true26

initial conditions, as for state x10. Increasing the time step would exacerbate the difference27
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Figure 5.1: Two model runs with the Lorenz 96 model from true initial conditions (black) and
perturbed initial conditions (blue) for 100 time steps, where the time step is given by 0.0125.

between a perturbation and the true run. In our numerical experiments in chapters 6 -1

8 we have chosen the time step of 0.0125 so that the system does not exhibit chaotic2

behaviour quickly and random perturbations do not immediately deviate substantially3

from the true trajectory. This allows us to have more control over the system.4

In our numerical experiments in chapters 6 - 8 we are interested in how model bias5

contaminates the data assimilation system. We can add model bias to the system by6

changing the forcing term in equation (5.1). In figure 5.2 we have run an experiment,7

whereby we have changed the forcing parameter for each run. The black line has the8

'true' forcing of 8, and the other trajectories have forcings of 8.8 and 12 respectively.9

When the forcing has only been changed by 10% to 8.8, the trajectory is very similar10

to the true model, but when the forcing has been increased by 50%, the trajectory has11

changed more drastically. As we saw in chapter 2, operationally, the model biases tend12

to be smaller than the observation biases. Therefore, in chapter 6 we have set the biased13
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Figure 5.2: Two model runs with the Lorenz 96 model with different forcing values, initialised from
the same initial conditions, time step = 0.0125.

model to have a forcing of 8.8, so that the model trajectory has not significantly changed,1

and the bias only has a small effect on the analysis. In chapters 7 and 8 we want to directly2

compare the observation and model bias corrections, so want the observation and model3

biases to have similar impacts on the analysis. Therefore, we have chosen the larger forcing4

of 12 in those chapters so that the model causes a similar overall bias in the analysis as5

the biased observations cause in the analysis. Obviously, in an operational system model6

biases will often be more complicated and could vary across the domain, for example land7

surfaces can be difficult to model and sharp vertical gradients can be difficult to capture8

in the equations, as we discussed in section 2.4. However, this simple introduction of9

model biases is useful as an initial step in understanding how well the data assimilation10

can estimate a model bias with known structure.11
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5.2 Data assimilation set up1

In this section we will discuss the setup of the DA system we will use in our numerical2

experiments.3

Although usually in data assimilation the truth is unknown, in our numerical experi-4

ments we are able to use the numerical solution of equation (5.1) as our true state (denoted5

by xt), which forms the basis of our identical twin experiments. It is useful to know the6

truth to demonstrate our theoretical findings as we can explicitly know the errors in the7

system, so can easily compare different scenarios. We have set the data assimilation cycles8

to occur every 10 time steps to allow perturbations in the model to slightly deviate away9

from the truth between analyses. The cost function was minimised using the conjugate-10

gradient method.11

5.2.1 Simulating observations12

We set the observations to directly observe the state, such that13

y = Hxt + eo ∈ Rm, (5.2)

where y ∈ Rm is a vector that holds all observations, with m the number of observations;14

xt ∈ R40 is a vector that holds the true state; H ∈ Rm is the linearised observation operator15

that maps the state from state space to observation space; and eo is the observation16

error which could be random and/or systematic. We have defined the observation error17

covariance matrix R to be σ2o multiplied by the identity matrix. This means that we have18

assumed that the random part of the observation errors are uncorrelated, an assumption19

that has been used in the past in operational numerical weather prediction in order to20

simplify the inverse matrix, although modern numerical weather prediction systems tend21

to now use satellite inter-channel correlations (Waller et al., 2016). eo is a vector of22
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random numbers from a Gaussian distribution with mean bo and variance σ2o. We will1

set some observations to have a known bias and some to be unbiased (which will be the2

anchor observations). For the biased observations, bo is nonzero so that the observation3

error is both random and biased. For the unbiased observations, bo is zero such that the4

observation error is random and unbiased.5

Operationally, the majority of observations come from indirect observations such as6

radiance observations (Lorenc & Marriott, 2014). In our numerical experiments we have7

chosen to include only direct observations, as this simplification allows us to understand8

where the errors in the observations come from, as well as the structure of the errors.9

Therefore the linearised observation operator,H, has values of 1 where the state is observed10

and 0 if the state is not observed.11

5.2.2 Generating the background error covariance matrix12

At the initial time the background states are defined as the truth plus an error, given by,13

xb = xt + ebx ∈ R40, (5.3)

where xb is a vector containing the background states and ebx is the background error14

which could be random and/or systematic. ebx is a vector of random numbers from a15

Gaussian distribution with mean bb and error covariance matrix Bx. If elements from bb
16

are zero, then the background states associated with those elements will have unbiased17

random error and if elements of bb are nonzero then the background states associated18

with those elements will have random and biased error. Two forms of Bx are used within19

this thesis. One is created using the climatological background error covariance matrix of20

the system, which is explained below in section 5.2.2.1. This is used so that there are no21

additional errors from mis-specifying the background error covariance matrix, as explored22

in chapter 4. The other background error covariance matrix used has error variances23
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given by a prescribed σ2bx and error correlations given by the SOAR (second order auto1

regressive) correlation function, which has previously been used to model the background2

error correlations of the atmosphere (e.g. Ingleby, 2001; Simonin et al., 2014). The SOAR3

correlation function is given by,4

sk = (1 +
k

Lb
)e

− k
Lb (5.4)

where k is the index from 1 to n
2 ; Lb is the length scale; and e is the exponential function.5

For values greater than n
2 , sk is repeated in opposite order such that the vector s (which6

contains all sk) is palindromic. To calculate Bx, s is transformed into a circular matrix7

and multiplied by σ2bx. We have used the SOAR correlation function to calculate Bx, to8

control the length scales of the error correlations.9

At subsequent cycles, the background states are taken to be the analysis states of the10

previous cycle after they have been evolved forward via the numerical solution of equation11

(5.1) to the correct time step. However, the background error covariance matrix is taken12

to be static, such that it is constant for different assimilation cycles.13

5.2.2.1 Generating a climatological B14

Note that this explanation of calculating the climatological background error covariance15

matrix has been adapted from our description in Francis et al. (2023).16

A sample estimate of the climatological Bx matrix is derived from an ensemble of DA17

experiments cycled in time. The estimate ofBx is sensitive to the assumed value ofBx used18

within the data assimilation system for the experiments. We therefore repeat the method19

a second time with the new estimate of Bx, to get a second estimate of Bx. We found20

that two iterations were sufficient for the estimate of Bx to converge to an appropriate21

climatological estimate for Lorenz 96, assimilating observations at every spatial variable.22

On the first iteration, the background error covariance matrix for the state is calculated23
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using the SOAR error correlation function as in equation (5.4), with error variance σ2bx = 11

and length scale Lb = 1. At the initial time, an ensemble of 15 background states are2

calculated using equation (5.3), each with a different random error and bb = 0. From the3

observations and background states, an ensemble of analyses was generated. The analysis4

ensemble was then evolved forward via the model by 10 time steps to give the background5

ensemble at the start of the next assimilation window. The background ensemble at any6

given time step greater than 0 is given by,7

xb
t+1,i = mt(x

a
t,i), βbt+1,i = βat,i, (5.5)

where t is the time index; i is the ensemble member index; and mt(xt,i) is the assimilation8

model that takes the state from time step t to t + 1. Note that if the forcing has been9

changed to add a model bias, then mt could be different to the true model. The errors10

between the background of each ensemble member and the true state at the same time11

are given by,12

ϵbxt,i = xb
t,i − xt

t,i. (5.6)

The analysis ensemble was cycled for 700 assimilation windows to provide in total 1050013

samples (700 cycles × 15 realisations) of the background error, equation (5.6). 700 cycles14

were chosen to ensure that Bx was not dependent on a particular time step, so that it15

could be used statically across multiple windows. We chose to only use 15 realisations as16

we needed some realisations to account for the background error at the initial cycle, but17

as there was already a lot of data from the 700 cycles, to save on computing power, a18

small number of realisations was adequate. From these 10500 samples of ϵbx we were then19

able to update the climatological estimate of the Bx matrix, by calculating the sample20
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covariances of all state background errors ϵbxt,i ,1

Cov(ϵbxjt,i , ϵ
b
xkt,i

) =

∑700
t=1

∑15
i=1(ϵ

b
xjt,i

− ϵ̄bxj)(ϵ
b
xkt,i

− ϵ̄bxk)

10500− 1
, (5.7)

where ϵbxjt,i and ϵ
b
xkt,i

are the background errors for the jth and kth variables of the state2

at time t, ensemble member i; and ϵ̄bxj and ϵ̄bxk are the mean background errors from the3

10500 samples at state variables j and k respectively. If the model has a bias, then the4

background errors will also be biased. However, as we are comparing the background5

errors to each other (and they would all have the same bias), the bias would not affect the6

error covariances, as the values are just how much they vary around the mean.7

To remove noise caused by the limited sample estimate of Bx, we set the covariances8

between state variables further than 5 grid points apart to 0. An example of the back-9

ground error covariance matrix from the initial iteration is shown in figure 5.3, when the10

observation and background error variances are initially equal and set to 1 and the true11

forcing is used. Figure 5.3a shows the random noise on the error covariances and figure12

5.3b shows Bx when the noise has been removed. As the state variables are on a circular13

domain, x0 and x39 have a correlation to each other as they would be next to each other14

in the domain.15

Using the new Bx, a new background error covariance matrix was calculated from16

equations (5.5) to (5.7), again using 700 cycles and 15 realisations. After removing the17

random noise, this background error covariance matrix was taken to be the climatological18

background error covariance matrix in the numerical experiments, as further iterations19

were not found to make significant changes. Again, an example of the state background20

error covariance matrix is shown in figure 5.4, when the observation and background error21

variances are initialised to equal 1 and the true F is used. Figure 5.4a shows the back-22

ground error covariance matrix after the cycling, and figure 5.4b shows the background23

error covariance matrix after the random noise has been removed. When the observa-24
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(a) Bx before noise has been removed (b) Bx after noise has been removed

Figure 5.3: The climatological Bx calculated from an ensemble, after the initial iteration.

tion error variances are larger, then the state analysis error variances are larger, so the1

background error variances in the next cycle are also larger and when the observation2

error variances are smaller, the opposite is true, ie. the background error variances of the3

next cycles are smaller. However, the general structure of Bx remains the same for all4

experiments that use the climatological Bx.

(a) Bx before noise has been removed (b) Bx after noise has been removed

Figure 5.4: The climatological Bx calculated from an ensemble, after the second iteration.

89



5.2.3 Correcting for observation bias (VarBC)1

We will now describe the observation bias correction setup that uses VarBC, as described2

in section 2.3. The observation bias is added to the observations linearly, as shown in3

equation (5.2), with a constant bias across all observations. This means that, in this4

case, the observation bias correction is not a function of xb, only a function of the scalar5

observation bias coefficient such that it is given by,6

c(xb,β) = β, (5.8)

where the β that is to be predicted is a direct estimate of the true bias (βt = bo). This7

can be compared to equation (2.41), where we have chosen one predictor, with p(x) = 1.8

The linearised bias correction about the state (Cx) and observation bias coefficient (Cβ)9

respectively as in equation (2.48) are therefore,10

Cx = 0, Cβ = 1. (5.9)

As the bias is constant across all observations, β is a scalar. Therefore the control vector11

is given by,12

v =

x

β

 . (5.10)

At the initial cycle, the background observation bias coefficient is defined as the true13

observation bias coefficient plus an error,14

βb = βt + ebβ, (5.11)
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where βt is the true observation bias coefficient; and ebβ is the error in the observation bias1

coefficient background, generated by a random number from a Gaussian distribution with2

mean zero and variance σ2bβ. As for the state background error covariance matrix, σ2bβ3

is defined in two different ways, depending on the experiment. Either the climatological4

σ2bβ is calculated simultaneously with the state background error covariance matrix, in the5

same method as described in section 5.2.2.1, or it is predefined by a given value, which6

will be defined in each experiment. When the climatological σ2bβ is calculated, it is an7

order of magnitude smaller than the state background error variances. This is because the8

observation bias is set to be constant across cycles, so there is less room for error growth.9

The background error covariances between the state and the observation bias coefficient10

are manually set to zero, to align with the separation of the state and observation bias11

coefficient in the cost function, equation (2.45).12

In subsequent cycles, βb is defined as the βa from the previous cycle. Note that the13

observation bias coefficient is considered to be roughly constant between cycles, so the14

model evolving the observation bias coefficient analysis between cycles is just the identity.15

5.2.4 Correcting for model bias (WC4DVar)16

In this section we will describe the model bias correction set up, that uses WC4DVar, as17

described in chapter 2.5. A model or background bias can be added to the system in two18

ways: by adding a biased error to the background (ie. bb is nonzero) to give a background19

bias; or by changing the forcing term in equation (5.1) to give a model bias, such that the20

model that evolves the state forward in time is different to the model that generates the21

observations. Note that artificially adding a background bias is only useful if the system is22

not cycled, as a biased analysis will lead to a biased background in the next cycle anyway.23

If the forcing term in equation (5.1) is changed from F to Fbiased, then a model bias24

will occur in the form of25

xt
i+1 = mi(x

t
i) + ηt, (5.12)
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where xi is the state at time i; mi is the assimilation model which now uses Fbiased instead1

of F ; and ηt is the true model bias, calculated by2

ηt = (Fbiased − F )× dt. (5.13)

As Fbiased is constant across all states, the model bias can be estimated as a scalar η3

multiplied by a vector of ones, such that the control vector for WC4DVar becomes,4

p =

x0

η

 . (5.14)

The background model bias estimate is defined as the true model bias plus a random error,5

ηb = ηt + ebη , (5.15)

where ebη is the error in the model bias estimate background, given by a random number6

from a Gaussian distribution with mean zero and variance σ2bη. The background model7

bias estimate error variance is defined as ten percent of the average state background8

error variances, as the model errors will be much smaller than the background errors,9

because the model errors are the errors in the estimate of η at one time step, whereas the10

background errors are the accumulation of errors across the whole window. The model11

bias is taken to be approximately constant between cycles so that ηb in future cycles is12

given by the ηa of the previous cycle (so the model between cycles for the model bias13

estimate is the identity).14

5.3 Summary15

In chapter 5 we have discussed the set up for the numerical experiments that will be used16

in chapters 6-8. The Lorenz 96 model was described in more detail, with some basic exper-17
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iments to demonstrate the dynamical behaviour. An explanation of the data assimilation1

set up was given, as well as an explanation of the two bias correction techniques used. In2

the next chapter, we study the characteristics of anchor observations needed to be able to3

reduce the contamination of model bias in observation bias correction in 3DVar to begin to4

answer research question 2. We will use numerical experiments with the set up described5

in chapter 5 to demonstrate our theoretical results.6
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Chapter 61

The role of anchor observations in2

VarBC in the presence of model3

bias. Part I: The importance of4

the location of anchor observations5

6.1 Introduction6

In section 3.2 we discussed the results of Eyre (2016) who demonstrated, in a scalar system,7

the need for anchor observations when correcting for observation bias in the presence of8

model bias. Eyre (2016) showed that, if model bias is present in a VarBC system, then, as9

the number of anchor observations reduces, the observation bias correction is more affected10

by model bias, so the analysis will be pulled towards the model bias. In this study, we11

extend the work of Eyre (2016) by looking at a multivariate system with explicit random12

error to understand the importance of the locations of anchor observations and the anchor13

observation uncertainty characteristics in reducing the effect of the model bias on the14
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observation bias correction in order to answer research questions 2.1 and 2.3. Note that1

this chapter has been adapted for this thesis from our paper: Francis et al. (2023).2

In section 6.2 we will extend current VarBC theory to include both bias-corrected3

and anchor observations to demonstrate the role of anchor observations in reducing the4

contamination of model bias in 3DVarBC: in section 6.2.1 we study the importance of the5

location of the anchor observations relative to the bias-corrected observations; in section6

6.2.2 we study the importance of the location of the anchor observations relative to the7

locations of model bias; and in section 6.2.3 we demonstrate how bias in the analysed bias8

correction coefficients filters into the state analysis in subsequent cycles. In section 6.39

we test the theory using the idealised 40 variable model of the atmosphere as described10

in chapter 5 to show: how the observation bias coefficients are affected by model bias,11

depending on the precision of the anchor observations (section 6.3.1.1); the effect of anchor12

and bias-corrected observations observing different parts of the state (section 6.3.1.2);13

and how the model bias contaminates both the observation bias correction and the state14

estimation when VarBC is cycled (section 6.3.2.1). Finally we present our conclusions and15

further discussion in section 6.4.16

6.2 The importance of anchor observations in 3DVarBC:17

theoretical results18

We can extend current VarBC theory, as described in section 2.3, to include two obser-19

vation types: one that is bias-corrected, which will be labelled y(1), and one that is not20

bias-corrected, which will act as our anchor observations, labelled y(2). Note that we21

assume that the anchor observations are unbiased.22

In order to separate the roles of the bias-corrected and anchor observations, we write23
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equations (2.54) and (2.55) in terms of y(1) ∈ Rm1 and y(2) ∈ Rm2 , as1

xa = xb +Kxy(1)d(1) +Kxy(2)d(2), (6.1)

βa = βb +Kβy(1)d(1) +Kβy(2)d(2), (6.2)

where we have assumed that there are no correlations between the errors in the bias-2

corrected and anchor observations and where the innovation vectors for the bias-corrected3

and anchor observations are given by,4

d(1) = y(1) − h(1)(x
b)− c(xb,βb); d(2) = y(2) − h(2)(x

b). (6.3)

We have denoted Kxy(1) and Kxy(2) to be the sensitivities of the state analysis to the5

bias-corrected and anchor observations respectively; and Kβy(1) and Kβy(2) to be the sen-6

sitivities of the bias coefficient analysis to the bias-corrected and anchor observations7

respectively. These four Kalman gain matrices are stored in the matrix Kv:8

Kv = BvH
T
v (HvBvH

T
v +R)−1 =

Kxy(1) Kxy(2)

Kβy(1) Kβy(2)

 ∈ R(n+r)×(m1+m2), (6.4)

where Hv now includes the linearised observation operators from both types of observa-9

tions and is given by,10

Hv(v) =

H(1) Cβ

H(2) 0

 ∈ R(m1+m2)×(n+r). (6.5)

H(1) is the Jacobian of the bias-corrected observation operator h(1)(x); H(2) is the Jacobian11

of the anchor observation operator h(2)(x); and Cβ is the Jacobian of c(xb,β) with respect12

to β. Bv is the background error covariance matrix for the state (Bx) and the bias13
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coefficient (Bβ), assuming that there are no error correlations between the state and1

observation bias coefficient, as given by equation (2.43) in section 2.3. The observation2

error covariance matrix (R) for the bias-corrected and anchor observations, is given by,3

R =

R(1) 0

0 R(2)

 ∈ R(m1+m2)×(m1+m2). (6.6)

From equation (6.2) the sensitivities of the bias coefficient analysis to the bias-corrected4

observations, anchor observations, state background and bias coefficient background re-5

spectively are given by:6

∂βa

∂y(1)

= Kβy(1) , (6.7)

∂βa

∂y(2)

= Kβy(2) , (6.8)

∂βa

∂xb
= −Kβy(1)H(1) −Kβy(2)H(2), (6.9)

∂βa

∂βb
= I−Kβy(1)Cβ, (6.10)

where we have used the convention that a partial derivative is a row vector. We will use7

equation (6.9) to study the dependency of βa on the state background in 3DVarBC, which8

is the mechanism for model bias to be passed into the bias coefficient analysis.9

In order to understand the sensitivity of βa to xb via equation (6.9), we need to10

know what Kβy(1) and Kβy(2) are dependent on. Expanding equation (6.4) into its x, β,11

bias-corrected and anchor observation parts gives,12

Kv =

BxH
T
(1) BxH

T
(2)

BβC
T
β 0

×

H(1)BxH
T
(1) +CβBβC

T
β +R(1) H(1)BxH

T
(2)

H(2)BxH
T
(1) H(2)BxH

T
(2) +R(2)


−1

.

(6.11)
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As (HvBvH
T
v + R) is symmetric, from equation (4.2) in Lu and Shiou (2002), we can1

calculate its inverse by denoting,2

(HvBvH
T
v +R)−1 =

W X

XT Z


−1

,

such that the inverse of a block symmetric matrix is given by,3

=

 (W−XZ−1XT)−1 −(W−XZ−1XT)−1XZ−1

−Z−1XT(W−XZ−1XT)−1 Z−1 + Z−1XT(W−XZ−1XT)−1XZ−1

 , (6.12)

where4

W = H(1)BxH
T
(1) +CβBβC

T
β +R(1), (6.13)

X = H(1)BxH
T
(2), (6.14)

Z = H(2)BxH
T
(2) +R(2). (6.15)

Hence combining equations (6.11) and (6.12), the expressions for Kxy(1) , Kxy(2) , Kβy(1)5

and Kβy(2) are given by,6

Kxy(1) = BxH
T
(1)(W−XZ−1XT)−1

−BxH
T
(2)Z

−1XT(W−XZ−1XT)−1,

(6.16)

Kxy(2) = −BxH
T
(1)(W−XZ−1XT)−1XZ−1

+BxH
T
(2)(Z

−1 + Z−1XT(W−XZ−1XT)−1XZ−1),

(6.17)

Kβy(1) = BβC
T
β (W−XZ−1XT)−1, (6.18)

Kβy(2) = −BβC
T
β (W−XZ−1XT)−1XZ−1. (6.19)

98



Therefore we can rewrite Kβy(2) in terms of Kβy(1) :1

Kβy(2) = −Kβy(1)H(1)BxH
T
(2)(H(2)BxH

T
(2) +R(2))

−1. (6.20)

This shows that the sensitivity of the bias coefficient analysis to the anchor observations2

is dependent on the sensitivity of the bias coefficient analysis to the bias-corrected obser-3

vations and vice versa (Kβy(1) is also dependent on Kβy(2)).4

As Kβy(2) can be written in terms of Kβy(1) , we can rewrite the sensitivity of the bias5

coefficient analysis to the state background, equation (6.9), so that it is written in terms6

of Kβy(1) :7

∂βa

∂xb
= −Kβy(1)H(1)(I−D), (6.21)

where we have defined D as,8

D = BxH
T
(2)(H(2)BxH

T
(2) +R(2))

−1H(2). (6.22)

In order to understand how biases in the model are passed into the bias coefficient9

analysis, we define the errors in the analysis, background and observations for both the10

state and the bias coefficients as follows:11

ϵax = xa − xt, ϵaβ = βa − βt, (6.23)

ϵbx = xb − xt, ϵbβ = βb − βt, ϵbv = vb − vt, (6.24)

ϵo1 = y(1) − h(1)(x
t)− c(xt,βt), ϵo2 = y(2) − h(2)(x

t), (6.25)

where the t superscript denotes the true value of the state, bias coefficient or control12

vector. The true bias coefficient is the theoretical vector that would perfectly correct the13

observations in the bias correction if the biased observations had no random error.14

The expected value of the analysis errors in the state and bias coefficient can be15
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calculated as in equations (2.65) and (2.66), but including both observation types and is1

given by,2

⟨ϵax⟩ = ⟨ϵbx⟩+Kxy(1)⟨ϵ
o
1⟩ −Kxy(1)Hv(1)⟨ϵ

b
v⟩+Kxy(2)⟨ϵ

o
2⟩ −Kxy(2)Hv(2)⟨ϵ

b
v⟩, (6.26)

⟨ϵaβ⟩ = ⟨ϵbβ⟩+Kβy(1)⟨ϵ
o
1⟩ −Kβy(1)Hv(1)⟨ϵ

b
v⟩+Kβy(2)⟨ϵ

o
2⟩ −Kβy(2)Hv(2)⟨ϵ

b
v⟩, (6.27)

where Hv(1) =

(
H(1), Cβ

)
and Hv(2) =

(
H(2), 0

)
, see equation (6.5). If the right3

hand side of equation (6.26) is nonzero then the state analysis is biased. If the right hand4

side of equation (6.27) is nonzero then the bias coefficient analysis has a bias. Biases in βa
5

will filter into xa when βa becomes βb in the next cycle, as will be shown in more depth6

in section 6.2.3.7

In this chapter we are interested in the effect of model bias in the form of background8

bias, as any model bias will accumulate across the window and be seen as background9

bias in the next cycle. We therefore assume ⟨ϵbx⟩ is nonzero. Assuming that c(xt,βt) is10

the true bias correction, then ⟨ϵo1⟩ = 0 as ϵo(1) is not dependent on the state background.11

We assume the anchor observations are unbiased (⟨ϵo2⟩ = 0). To isolate the effect of12

background bias on the bias coefficient analysis, we make the theoretical assumption that13

the initial bias coefficient background has no bias (⟨ϵbβ⟩ = 0). In subsequent cycles, ⟨ϵbβ⟩14

will be propagated from the previous cycle, so this assumption can only be possible for the15

first cycle. We will demonstrate the impact that a biased background bias coefficient has16

on the state and bias coefficient analyses in sections 6.2.3 and 6.3.2.1. Therefore, when17

there is only background bias in the system, equation (6.27) becomes:18

⟨ϵaβ⟩
∣∣∣∣
⟨ϵo1⟩=0,⟨ϵo2⟩=0,⟨ϵbβ⟩=0

= −Kβy(1)

(
H(1), Cβ

)⟨ϵbx⟩

0

−Kβy(2)

(
H(2) 0

)⟨ϵbx⟩

0

 ,

= −Kβy(1)H(1)⟨ϵbx⟩ −Kβy(2)H(2)⟨ϵbx⟩. (6.28)
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As we can rewrite Kβy(2) in terms of Kβy(1) as in equation (6.20), this simplifies to,1

⟨ϵaβ⟩
∣∣∣∣
⟨ϵo1⟩=0,⟨ϵo2⟩=0,⟨ϵbβ⟩=0

= −Kβy(1)H(1)(I−D)⟨ϵbx⟩ := ⟨ϵaβ⟩t=0, (6.29)

where D is as defined in equation (6.22) and we denote ⟨ϵaβ⟩ with the above assumptions to2

be ⟨ϵaβ⟩t=0 to highlight that this is only valid for the initial cycle. In the next few sections3

we will study equation (6.29) to see how ⟨ϵaβ⟩t=0 is affected by background bias when we4

vary the anchor observation parameters.5

The effect of the background bias on βa will be small if at least one term in the6

product Kβy(1)H(1)(I−D) is also small. If Kβy(1) is small, then the sensitivity of the bias7

coefficient analysis to the bias-corrected observations, equation (6.7), would be small. If8

H(1) is small, then the bias-corrected observations would not be used to determine the9

state analysis. Therefore, as these are both uninteresting cases for determining the bias10

coefficient analysis, in this study we will focus instead on when the magnitude of I−D is11

small depending on the parameters given in the system.12

Note ⟨ϵaβ⟩t=0 can also be rewritten in terms of the sensitivity of the bias coefficient13

analysis to the state background, equation (6.21), such that equation (6.29) becomes14

⟨ϵaβ⟩t=0 =
∂βa

∂xb
⟨ϵbx⟩. (6.30)

Therefore if the sensitivity of the bias coefficient analysis to the state background reduces,15

less model bias will be able to contaminate the analysed bias coefficient.16

In the subsequent sections we look at the importance of the location of the anchor ob-17

servations relative to the bias-corrected observations for reducing I−D and thus reducing18

the contamination of model bias in the observation bias correction.19
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6.2.1 Position of anchor observations relative to bias-corrected observa-1

tions2

In this section we want to understand how anchor observations can reduce the contamina-3

tion of model bias on the bias coefficient analysis depending on whether the bias-corrected4

and anchor observations observe the same state variables.5

6.2.1.1 Anchor observations fully observe the domain6

In order to understand the role of anchor observations in reducing the contamination7

of model bias in VarBC, we first consider an almost perfect case where we have anchor8

observations everywhere in the domain. If H(1) and H(2) are both equal to the identity,9

that is, the state is fully observed directly by both bias-corrected and anchor observations,10

then D, equation (6.22) is given by,11

D
∣∣
H(2)=I

= Bx(Bx +R(2))
−1 := DI. (6.31)

Equation (6.29) is then given by,12

⟨ϵaβ⟩t=0

∣∣
D=DI

= −Kβy(1)

∣∣
H(1)=H(2)=I

(I−DI)⟨ϵbx⟩ := ⟨ϵaβ⟩t=0,DI
. (6.32)

Equation (6.32) shows that, even with complete observation coverage, ⟨ϵaβ⟩t=0,DI
is still13

nonzero, as it is still a function of the state background bias. However, if DI tends to14

the identity, then the right hand side of equation (6.32) would tend to zero, such that15

the observation bias correction would no longer be contaminated by the background bias.16

The term DI would tend to the identity when the elements of R(2) are much smaller than17

the equivalent elements of Bx. This would occur when the anchor observations are much18

more precise than the state backgrounds that they observe.19

Overall, equation (6.31) shows that, even with anchor observations at every model20
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grid point, we still have model bias contaminating the bias coefficient analysis. This can1

only be reduced by having anchor observations that are much more precise than the state2

backgrounds that they observe.3

6.2.1.2 Anchor observations partially observe the domain4

Anchor observations and observations to be bias-corrected could observe different parts5

of the state. Therefore in this section we derive equations for the expected value of the6

bias coefficient analysis error and the sensitivity of the bias coefficient analysis to the state7

background when the anchor observations do not observe the whole domain.8

Let the state x be separated into two parts: xϕ and xψ such that x =

(
xT
ϕ , xT

ψ

)T

.9

Let the anchor observations only observe a subset of the state, such that they only observe10

variables in xψ. Bias-corrected observations could observe variables in xϕ and xψ. Then11

the linearised bias-corrected and anchor observation operators will be given by,12

H(1) =

(
H(1)ϕ , H(1)ψ

)
, (6.33)

H(2)

∣∣
H(2)ϕ

=0
=

(
0, H(2)ψ

)
:= H(2)p, (6.34)

whereH(1)ϕ is related to observations of xϕ andH(1)ψ andH(2)ψ are related to observations13

of xψ. We have denoted H(2)p to be the Jacobian of the anchor observation operator when14

the state is only partially observed by anchor observations, ie. anchor observations only15

observe variables in xψ.16

The background error covariance matrix which describes the relationships between xb
ϕ17

and xb
ψ is,18

Bx =

Bxϕ Bxϕψ

BT
xϕψ

Bxψ

 . (6.35)

The magnitude of Bxϕψ determines how much information about the observations will be19

shared between the state variables (Bannister, 2008a). For example, if the elements in20
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Bxϕψ are small then there are weak correlations between the errors in xb
ϕ and xb

ψ.1

We are interested in how the value of D, equation (6.22), affects the sensitivity of

the bias coefficient analysis to the state background. When the anchor observations only

observe a subset of the state, we denote D by,

D
∣∣
H(2)=H(2)p

:= Dp =

 Dpϕ Dpϕψ

Dpψϕ Dpψ

 ,

and the block elements can be calculated by expanding equation (6.22) for xϕ and xψ,

D
∣∣
H(2)=H(2)p

=

Bxϕ Bxϕψ

Bxϕψ Bxψ


 0

HT
(2)ψ

((0, H(2)ψ

)Bxϕ Bxϕψ

Bxϕψ Bxψ


 0

HT
(2)ψ

+R(2)

)−1

×
(
0, H(2)ψ

)
,

:= Dp =

 Dpϕ Dpϕψ

Dpψϕ Dpψ

 .

Such that the block elements of Dp are given by,2

Dpϕ = 0, (6.36)

Dpϕψ = BxϕψH
T
(2)ψ

(H(2)ψBxψH
T
(2)ψ

+R(2))
−1H(2)ψ , (6.37)

Dpψϕ = 0, (6.38)

Dpψ = BxψH
T
(2)ψ

(H(2)ψBxψH
T
(2)ψ

+R(2))
−1H(2)ψ . (6.39)

Then the sensitivity of βa to xb, equation (6.21), when H(2) = H(2)p is given by,3

∂βa

∂xb

∣∣∣∣
H(2)=H(2)p

= −Kβy(1)

∣∣
H(2)=H(2)p

(
H(1)ϕ , −H(1)ϕDpϕψ +H(1)ψ(I−Dpψ)

)
. (6.40)

The first block element of the matrix in equation (6.40) (ie. −Kβy(1)

∣∣
H(2)=H(2)p

H(1)ϕ) gives4
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the sensitivity of βa to xb
ϕ and the second block element of the matrix in equation (6.40)1

(ie. −Kβy(1)

∣∣
H(2)=H(2)p

[−H(1)ϕDpϕψ +H(1)ψ(I−Dpψ)]) gives the sensitivity of βa to xb
ψ.2

The terms Dpϕ and Dpψϕ are zero (from equations (6.36) and (6.38)) so do not appear3

in this equation, but their role would be to vary the sensitivity of βa on xb
ϕ. Therefore as4

Dpϕ and Dpψϕ are zero, the sensitivity of βa to xb
ϕ is not explicitly dependent on anchor5

observations, when anchor observations do not observe state variables in xϕ. However,6

there is some implicit dependence of anchor observations in Kβy(1) . If Dpϕψ and Dpψ7

change magnitude, then this will vary the sensitivity of βa to xb
ψ. Therefore, as Dpϕψ and8

Dpψ are explicitly dependent on the anchor observations, the sensitivity of βa to xψ is also9

explicitly dependent on the anchor observations, as, in this case, the anchor observations10

observe state variables in xψ.11

Substituting Dp into equation (6.29) gives ⟨ϵaβ⟩t=0 when the anchor observations ob-12

serve part of the state:13

⟨ϵaβ⟩ = −Kβy(1)

(
H(1)ϕ⟨ϵ

b
xϕ
⟩ −

[
H(1)ϕDpϕψ −H(1)ψ(I−Dpψ)

]
⟨ϵbxψ⟩

)
(6.41)

: = ⟨ϵaβ⟩t=0,Dp

where ⟨ϵbxϕ⟩ and ⟨ϵbxψ⟩ are the biases in the background state variables xb
ϕ and xb

ψ respec-14

tively. We will use this equation further in sections 6.2.1.3 and 6.2.2 to show how the15

sensitivity of the bias in βa varies depending on the location of the model bias in relation16

to the anchor observations.17

6.2.1.3 Special case: anchor observations and bias-corrected observations ob-18

serve different parts of the state19

Next we look at the case where anchor and bias-corrected observations observe different20

parts of the state to understand the importance of the background error covariance matrix.21

Let the bias-corrected observations only observe xϕ and anchor observations only observe22

105



xψ. Then the observation operators of both observation types will be given by:1

(
H(1)ϕ , 0

)
:= H(1)p,

(
0, H(2)ψ

)
:= H(2)p, (6.42)

where we have denoted H(1)p and H(2)p to be the Jacobians of the observation operators2

when both bias-corrected and anchor observations only partially observe the state.3

Substituting equation (6.42) into equation (6.41) gives the expected value of the bias4

coefficient analysis when anchor and bias-corrected observations observe different parts of5

the state,6

⟨ϵaβ⟩t=0,Dp

∣∣∣∣
H(1)pH(2)p

= −Kβy(1)H(1)ϕ

(
⟨ϵbxϕ⟩ −Dpϕψ⟨ϵbxψ⟩

)
, (6.43)

which is equivalent to equation (6.41) but with H(1)ψ = 0.7

The right hand side of equation (6.43) will reduce if ⟨ϵbxϕ⟩ −Dpϕψ⟨ϵbxψ⟩ tends towards8

zero. The term Dpϕψ, from equation (6.37), is linearly dependent on Bxϕψ . Therefore, the9

strength of the background error covariances between xb
ϕ and xb

ψ will influence how small10

the difference term in equation (6.43) is. In the case when the model biases ⟨ϵbxϕ⟩ and11

⟨ϵbxψ⟩ have similar sign and magnitude, if Dpϕψ tends to the identity, then the difference12

term will reduce and the expected value of the bias coefficient analysis error will tend to13

zero. In practice, the model biases may be similar for different parts of the state and14

the background error correlations between these two states could be large when restricted15

to specific atmospheric layers higher in the atmosphere. However, this will not be the16

case when the bias-corrected and anchor observations observe states vertically far apart,17

for example, biases in stratospheric temperatures tend to be much bigger than biases in18

tropospheric temperatures.19

To understand the importance of Bxϕψ when the anchor and bias-corrected observa-20

tions observe different parts of the state, let us look at the case when Bxϕψ = 0. In this21

case we can simplify Kv from equation (6.4), as the off-diagonal blocks in (HvBvH
T
v +R)22
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are zero:1

H(1)pBxH
T
(2)p = H(1)ϕBxϕψH

T
(2)ψ

= 0 and (6.44)

H(2)pBxH
T
(1)p = H(2)ψB

T
xϕψ

HT
(1)ϕ

= 0. (6.45)

Substituting equations (6.44) and (6.45) into HvBvH
T
v +R gives a block diagonal matrix.2

Then Kv from equation (6.4), can be simplified to:3

Kv

∣∣
Bxϕψ

=0
=

Kxy(1)

∣∣
Bxϕψ

=0
Kxy(2)

∣∣
Bxϕψ

=0

Kβy(1)

∣∣
Bxϕψ

=0
Kβy(2)

∣∣
Bxϕψ

=0

 , (6.46)

where Kβy(1) and Kβy(2) can be simplified from equations (6.18) and (6.19) to give4

Kβy(1)

∣∣
Bxϕψ

=0
= BβC

T
β (H(1)ϕBxϕH

T
(1)ϕ

+CβBβC
T
β +R(1))

−1, (6.47)

Kβy(2)

∣∣
Bxϕψ

=0
= 0. (6.48)

As Kβy(2)

∣∣
Bxϕψ

=0
= 0, then, from equation (6.8), the sensitivity of the bias coefficient5

analysis to the anchor observations is zero when there are no background error cross cor-6

relations between the states observed by the anchor observations and the states observed7

by the bias-corrected observations. This means anchor observations do not play a role8

in determining the bias coefficient if anchor observations do not observe the same state9

variables as the bias-corrected observations and no information is passed between xϕ and10

xψ via Bxϕψ . Therefore, if bias-corrected and anchor observations observe different state11

variables, nonzero background error covariances allow the anchor observations to be used12

to determine the bias coefficient and therefore reduce the effect of the background bias in13

βa. We will use this result in section 6.2.2.14

So far we have not considered that the background bias may change magnitude de-15

pending on location. In the next section we will investigate scenarios where the location16
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of the model bias differs relative to the location of the anchor observations.1

6.2.2 Position of anchor observations relative to model bias2

In reality, biases in the model will not be uniformly distributed throughout the domain.3

For example a version of the ECMWF IFS model has a cold bias between 100-10hPa and a4

warm bias above 10hPa (Laloyaux et al., 2020b). In this section we explore the case when5

the model bias, and therefore background bias, varies across the domain. For simplicity,6

we assume that some parts of the domain are biased and others not. We continue to7

assume that the anchor observations only observe a subset of the state, but assume that8

the bias-corrected observations could observe the whole state.9

Figure 6.1 is a schematic diagram which depicts the different possibilities of the loca-10

tions of the background bias in relation to the observations. The presence of background11

bias is shown by the patterned red background; the red circles show the parts of the state12

observed by the bias-corrected observations; and the blue circles show the parts of the state13

observed by anchor observations. In (a) the background bias is in xψ, which is observed14

by anchor observations and some bias-corrected observations, in (b) the background bias15

is in xϕ which is only observed by bias-corrected observations and in (c) the background16

bias is in both xϕ and xψ such that the whole state that is observed has background bias.17

In the next sections we assume that the background biases in xϕ and xψ (when present)18

have the same sign and magnitude. These scenarios are discussed below.19

6.2.2.1 Background bias in state variables that are observed by anchor ob-20

servations, but not in all state variables observed by bias-corrected21

observations (figure 6.1a):22

If ⟨ϵbxϕ⟩ = 0 (ie. there is no background bias in xb
ϕ, the state variables observed only by the23

bias-corrected observations) but ⟨ϵbxψ⟩ ̸= 0 (ie. there is background bias in xb
ψ, the state24

variables observed by both the bias-corrected and anchor observations) then the expected25
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Figure 6.1: A schematic diagram depicting the location of the background bias in relation to the
bias-corrected and anchor observations, where H(1)ϕ is the observation operator relating the bias-
corrected observations to xϕ; H(1)ψ is the observation operator relating the bias-corrected obser-
vations to xψ; and H(2)ψ is the observation operator relating the anchor observations to xψ. The
background bias is shown by the patterned background. In (a) there is only background bias in
xψ, which is observed by the anchor observations and some bias-corrected observations, (b) there
is only background bias in xϕ, which is only observed by the bias-corrected observations and (c)
there is background bias in both xϕ and xψ, which is observed by both bias-corrected and anchor
observations.

value of the bias coefficient analysis, equation (6.41), becomes,1

⟨ϵaβ⟩t=0,Dp

∣∣∣∣
⟨ϵbxϕ ⟩=0

= Kβy(1)

[
H(1)ϕDpϕψ −H(1)ψ(I−Dpψ)

]
⟨ϵbxψ⟩. (6.49)

The effect of background bias from xb
ψ in equation (6.49) would be reduced if the matrix in2

the square brackets tends to zero. This could occur if both H(1)ϕDpϕψ and H(1)ψ(I−Dpψ)3

tend to zero, or if their difference tends to zero. If the bias-corrected observations observe4

state variables in xψ (so they observe the same part of the state as the anchor observations)5

such that H(1)ψ is nonzero, then the second term in the square brackets would tend to zero6

if Dpψ tends to the identity. From equation (6.39), this would occur if R(2)ψ is smaller7

than Bxψ , or in other words, the anchor observations were more precise than the state8

backgrounds that they observe, as we saw for a simplified case in section 6.2.1.1. If the9

bias-corrected observations observe state variables in xϕ (so they observe different parts10

of the state to the anchor observations) such that H(1)ϕ is nonzero, then H(1)ϕDpϕψ would11

tend to zero if Dpϕψ tends to zero. Using equation (6.37), Dpϕψ would tend to zero if12

the background error covariances Bxϕψ are small, which would mean less information is13
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passed between xb
ϕ and xb

ψ, than when the background error covariances are larger.1

Therefore, if anchor and bias-corrected observations observe the same state, the anchor2

observations can reduce the effect of the background bias in the state when the anchor3

observations are more precise than the state backgrounds they observe. If there are bias-4

corrected observations that observe a different part of the state to the anchor observations,5

which does not have background bias, then smaller background error covariances between6

the two parts of the state will limit the amount of background bias able to contaminate7

the estimate of the bias coefficient, as the anchor observations cannot share information8

about the background bias to the bias-corrected observations. This is in contrast to section9

6.2.1.3, in which we showed that if anchor and bias-corrected observations observe different10

states, but the background bias observed was the same, then they would need nonzero11

background error cross correlations for the anchor observations to pass information about12

the background bias to the bias-corrected observations.13

6.2.2.2 Background bias not in state variables observed by anchor observa-14

tions (figure 6.1b):15

If there is no background bias in xb
ψ (ie. there is no background bias in state variables16

observed by anchor observations), such that ⟨ϵbxψ⟩ = 0, but there is background bias17

in xb
ϕ (ie. there is background bias in state variables only observed by bias-corrected18

observations), then the expected value of the bias coefficient analysis, equation (6.41),19

reduces to,20

⟨ϵaβ⟩t=0,Dp

∣∣∣∣
⟨ϵbx2 ⟩=0

= −Kβy(1)H(1)ϕ⟨ϵ
b
xϕ
⟩. (6.50)

In this case, the anchor observations cannot reduce the effect of the background bias in xb
ϕ21

viaDp as ⟨ϵaβ⟩t=0,Dp is no longer dependent onDp and no other variables in equation (6.50)22

are explicitly dependent on the anchor observations. Therefore, if anchor observations23

do not observe the parts of the state that have background bias, they cannot explicitly24
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reduce the effect of background bias on βa. Anchor observations will only have an effect1

on background bias implicitly through Kβy(1) , as Kβy(1) is implicitly dependent on H(2)2

and R(2) (see equation (6.19)). However, a small Kβy(1) would mean the bias coefficient3

analysis is almost independent of the bias-corrected observations, so we are not interested4

in this case.5

6.2.2.3 Background bias in state variables observed by both anchor and bias-6

corrected observations (figure 6.1c):7

If we have background bias in both xb
ϕ and xb

ψ then we come back to equation (6.41) which8

gives the same results as in section 6.2.1. This is that giving a higher weighting to the9

anchor observations will reduce the contamination of background bias on the observation10

bias coefficient. If there are similar background biases in state variables observed by11

either bias-corrected or anchor observations, then background error covariances between12

state variables become more important in sharing information about the background bias.13

In sections 6.2.1 and 6.2.2 we have shown that in order for the anchor observations to14

have the biggest impact on reducing the effect of background bias on βa, both anchor and15

bias-corrected observations need to observe states with similar background biases. If both16

anchor and bias-corrected observations observe the same parts of the state, the effect of17

the background bias is smallest when Dpψ tends towards the identity, as was shown in18

section 6.2.1.1, which occurs when anchor observations are precise. If both anchor and19

bias-corrected observations observe background bias, but do not observe the same state20

variables, background error correlations with large magnitudes are important in reducing21

the effect of background bias on βa, as was shown in section 6.2.1.3, as Dpϕψ is linearly22

dependent on Bxϕψ , equation (6.37).23
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6.2.3 The effect of a biased bias coefficient analysis on the state analysis1

in further cycles2

So far we have only looked at the contamination of background bias in βa, not in xa.3

However, any bias in the bias coefficient analysis will filter into the bias correction and4

therefore the state analysis in the next cycle. Within this section we extend the theory5

developed so far to understand the impact of background bias on the state analysis via6

the implementation of VarBC.7

Cycle 1 (Theory so far): At the initial time, we assume that βb is unbiased.8

We assume the mean anchor observation errors are zero by definition. When the bias9

correction function is dependent on the true state and bias coefficient, c(xt,βt), we assume10

it is perfect, such that the expected value of the bias-corrected observation errors are zero.11

Then the mean values of the errors in the observations and bias coefficient background at12

the first cycle are denoted by,13

⟨ϵo1⟩t=0 = ⟨y(1)t=0 − h(1)(x
t
t=0)− c(xt

t=0,β
t
t=0)⟩ = 0, (6.51)

⟨ϵo2⟩t=0 = ⟨y(2)t=0 − h(2)(x
t
t=0)⟩ = 0, (6.52)

⟨ϵbβ⟩t=0 = 0. (6.53)

If we assume that there is a bias in the state background, which arises from a model14

bias, then from equations (6.26) and (6.27) we have that the expected value of the analysis15

errors at the first cycle for the state and bias coefficients respectively are,16

⟨ϵax⟩t=0 = (I−Kxy(1)H(1) −Kxy(2)H(2))⟨ϵbx⟩t=0, (6.54)

⟨ϵaβ⟩t=0 = (−Kβy(1)H(1) −Kβy(2)H(2))⟨ϵbx⟩t=0. (6.55)

Note that equation (6.55) is equivalent to equation (6.29).17

Cycle 2: We assume the bias coefficient is approximately constant between cycles such18
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that ⟨ϵbβ⟩t=1 = ⟨ϵaβ⟩t=0. We assume that the expected value of the errors in both bias-1

corrected and anchor observations are still zero as the observation errors in equations (6.51)2

and (6.52) are not dependent on the background state and background bias coefficient.3

The state background is the previous state analysis evolved forward via the linearised4

model M, plus a bias increment, η∆t. So the expected value of the background and5

observation errors at the second cycle are given by,6

⟨ϵbβ⟩t=1 = ⟨ϵaβ⟩t=0 = (−Kβy(1)H(1) −Kβy(2)H(2))⟨ϵbx⟩t=0, (6.56)

⟨ϵbx⟩t=1 = M0→1(⟨ϵax⟩t=0) + η∆t, (6.57)

⟨ϵo1⟩t=1 = ⟨y(1)t=1 − h(1)(x
t
t=1)− c(xt

t=1,β
t
t=1)⟩ = 0, (6.58)

⟨ϵo2⟩t=1 = ⟨y(2)t=1 − h(2)(x
t
t=1)⟩ = 0. (6.59)

Then substituting equations (6.56)-(6.59) into equations (6.26) and (6.27) we have that7

the expected value of the analysis errors for the state and bias coefficient at the second8

cycle are,9

⟨ϵax⟩t=1 = (I−Kxy(1)H(1) −Kxy(2)H(2))⟨ϵbx⟩t=1 −Kxy(1)Cβ⟨ϵaβ⟩t=0, (6.60)

⟨ϵaβ⟩t=1 = −(Kβy(1)H(1) +Kβy(2)H(2))⟨ϵbx⟩t=1 + (I−Kβy(1)Cβ)⟨ϵaβ⟩t=0. (6.61)

The expected value of the state analysis is now dependent on both ⟨ϵbx⟩t=1 and ⟨ϵaβ⟩t=0.10

This shows that if the bias coefficient analysis is biased at time t, then this will contaminate11

the estimate of both the state and the bias coefficient analysis at time t+1. As ⟨ϵbβ⟩t=1 =12

⟨ϵaβ⟩t=0, we see that in future cycles we cannot assume ⟨ϵbβ⟩ = 0, as any bias in the bias13

coefficient analysis will become the bias in the bias coefficient background. Therefore,14

this shows that it is important to reduce the contamination of background bias in the15

observation bias coefficient, as ⟨ϵaβ⟩ feeds into future cycles and contaminates the state16

analysis.17
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6.3 Numerical results1

In this section we demonstrate the theoretical results from section 6.2 using the Lorenz2

96 model and data assimilation set up as described in chapter 5.3

We want to demonstrate the ability of anchor observations to reduce the contamination4

of background bias on the analysed observation bias coefficient. In each experiment we5

compute the bias coefficient analysis over a given number of realisations with random6

error in the observations and initial background values. The number of realisations varies7

in each experiment due to the computational cost and the error variances chosen. From8

these realisations we obtain the mean and the standard deviation of the bias coefficient9

analysis. We can illustrate the bias in the analysed bias coefficient with the ratio10

|β̄a − βt|
σaβ

, (6.62)

where | · | is the absolute value; β̄a is the mean βa over all realisations; βt is the true bias11

and σaβ is the standard deviation of βa from all realisations. This shows the bias associated12

to the mean value of βa in relation to the error standard deviation. We will refer to this13

ratio as the bias ratio. If the bias ratio is large, then the bias can be considered significant14

in comparison to the random noise, but if the bias ratio is small, then the bias in the bias15

coefficient analysis will be lost within the random error and so will be insignificant. The16

bias ratio at 0.1 is plotted for reference as a dotted line in figures 6.2, 6.3 and 6.4 and is17

referred to as the “reference ratio”.18

6.3.1 One Cycle Experiments (No model evolution)19

In the first two experiments (sections 6.3.1.1 and 6.3.1.2) we use 1DVar to calculate the20

analysis of the state and bias coefficients at the initial time step. To simulate a model bias,21

we set the state background to have a bias, to represent any bias that has accumulated22
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from running a previous cycle forward using the model. The background state is given by1

the truth plus an error,2

xb = xt + ebx + bb ∈ R40, (6.63)

βb = βt + ebβ ∈ R, (6.64)

where ebx is the random error in the state background calculated from a Gaussian distribu-3

tion with zero mean and from the error covariance matrix Bx; b
b is the bias in the initial4

state background; and ebβ is the random error in the bias coefficient background calculated5

from a Gaussian distribution with zero mean and error variance σ2bβ.6

6.3.1.1 The effect of varying the anchor observation error variance7

First we present an experiment to illustrate the results found in section 6.2.1.1. The the-8

oretical results show that in a system fully observed by anchor observations, small anchor9

observation error variances reduce the contamination of model bias on βa. Therefore in10

this experiment, we observe all spatial variables with both bias-corrected and anchor ob-11

servations, such that every spatial variable is observed twice: once by the bias-corrected12

observations and once by the anchor observations.13

In figure 6.2 we plot the bias ratio as in equation (6.62) from 3000 realisations after14

one cycle and vary the anchor observation error standard deviation, to test the importance15

of the weighting given to anchor observations in reducing the effect of model bias in the16

analysed bias coefficient. The bias-corrected observation error standard deviations (σo(1))17

are set to 1, so that they are approximately 10% of the variability of the state. Bv is18

calculated via an ensemble, as described in sections 5.2.2.1 and 5.2.3, and is calculated with19

σo(2) = 1. We have used the sameBv for the different values of σo(2), as, although this gives20

a sub-optimal Bv for the system, it isolates the effect of varying the anchor observation21

error variance. A background bias of 0.15 has been added to the initial conditions, as in22
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equation (6.63). The bias is approximately 1.5% of the variability of the state and was1

chosen so that the system could still control the background bias. σo(2) has been varied2

from one tenth of σo(1) to ten times σo(1) (ie. between 0.1 and 10). The blue crosses are3

the results from the 3000 realisations and the orange line is the analytic result given by4

equation (6.29), to give the 'true' bias ratio for the system.5

In figure 6.2 the bias in the observation bias coefficient becomes more significant as6

the anchor observation error standard deviation increases. There is some variation in the7

bias ratio when calculated from the realisations, which is due to the random error in the8

observations and background, but they follow the shape of the analytic solution. The9

result that the bias ratio increases with larger anchor observation error variance is in line10

with the results found from equation (6.32), as we showed that if the anchor observation11

error variance is small, then the effect of the background bias on βa would be small. This12

is because the ratio D in equation (6.22) will tend to the identity as σo(2) reduces. The13

ratio increases as σo(2) increases, which shows that as less weight is given to the anchor14

observations, the bias in the analysed bias coefficient increases. This occurs as background15

bias dilutes the analysis of the bias coefficient and pulls the VarBC system away from16

the truth. In the limit where the anchor observation error variance is large, the anchor17

observations receive insignificant weight in the analysis and so the biased observations are18

bias corrected towards the background bias, instead of to the truth.19

6.3.1.2 The location of the anchor observations relative to the background20

bias21

Next we present experiments to demonstrate the results found in sections 6.2.1.3 and22

6.2.2, such that we have anchor and biased observations observing different state variables23

that do and do not have background biases. In section 6.2.2 we showed how the role of24

the anchor observations in reducing the effect of background bias changes depending on25

whether or not anchor observations observe state variables that have background bias.26
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Figure 6.2: The bias ratio, equation (6.62), from running the system with different values of
anchor observation error standard deviation (σo(2)). Both biased and anchor observations are at
every location in the domain. The bias-corrected observation error standard deviations are set to
1. The background error covariance matrix is calculated from an ensemble, see section 5.2.2.1.
A bias of 0.15 was added to all background state variables. The orange line is the analytic ratio,
calculated from the linearised observation operators and error covariance matrices in the system
and the blue crosses are the numerical ratios, calculated by averaging over 3000 realisations.

When anchor and biased observations observe different parts of the state, as in section1

6.2.1.3, then the influence of the anchor observations is dependent on the background error2
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covariances between state variables.1

In figure 6.3 we have plotted the ratio, equation (6.62), from 1000 realisations after2

one cycle. The observations are spaced evenly at every other spatial variable such that the3

biased observations observe all even state variables (x0, x2, x4 etc) and anchor observations4

observe all odd state variables (x1, x3, x5 etc). The observation error standard deviations5

are equal to 1. Bx is given by the SOAR correlation function, with σ2bx = 1, as defined6

in equation (5.4) in section 5.2. The bias coefficient background error variance σ2bβ, is7

also equal to 1. To demonstrate the effect of different background error covariances, we8

have varied Bx by varying the length scale, Lb, along the x-axis in figure 6.3. When Lb is9

small, the background error covariances between state variables are small, and when Lb10

is increased, the background error covariances between state variables are larger. Larger11

length scales will mean more background information is shared between parts of the state12

that are spatially further away from each other. We have considered three cases where a13

bias of 0.3 has been added to the background state in three different locations: in state14

variables that are observed by biased observations; in state variables that are observed by15

anchor observations; and in state variables that are observed by both types of observations.16

17

Background bias only in state variables observed by anchor observations18

(orange line): In figure 6.3, when background bias is only in state variables observed by19

anchor observations (orange line), the bias ratio is insignificant when the error covariances20

of Bx are short. As the length scale of Bx is increased, the bias ratio also increases, which21

means βa has a more significant bias in comparison to the random error. This reflects the22

results found from equation (6.49), as we found that in order to reduce the contamination23

of background bias in state variables observed by the anchor observations in ⟨ϵaβ⟩t=0, less24

information had to be passed between the state variables observed by the anchor and25

bias-corrected observations, ie. with smaller background error correlations. However, in26

section 6.2.1.3, we showed that if the anchor and bias-corrected observations observed27
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Figure 6.3: The bias ratio in equation (6.62) at one cycle when the length scale of Bx has been
varied. Biased observations observe all even state variables (x0, x2 etc), anchor observations
observe all odd state variables. The dotted line is the reference ratio. A bias of 0.3 was added to
the background: in state variables only observed by biased observations (blue); in state variables only
observed by anchor observations (orange); in state variables observed by both types of observations
(green).

different parts of the state and the error correlations in Bxϕψ tended to zero, then the1

anchor observations would not be seen in the VarBC system. Hence this scenario would2

not be ideal as it would either mean that βa is affected by background bias, or that the3

anchor observations are not used within the VarBC system.4

Background bias only in state variables not observed by anchor observations5

(blue line): In figure 6.3, when background bias is only in state variables that are observed6

by the biased observations (blue line), the bias in ratio remains significant regardless of7

the magnitude of the covariances in Bx. This reflects the theoretical results, as equation8

(6.50) is independent of D, which means that the anchor observations cannot directly9

reduce the effect of background bias in state variables if they do not observe the parts of10

the state that have background bias.11

Background bias in state variables observed by both anchor and bias-12

corrected observations (green line): In figure 6.3, if background bias is in state13
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variables observed by biased observations and in state variables observed by anchor ob-1

servations (green line), then the bias ratio is initially significant compared to the random2

error when the length scales of Bx are small and becomes less significant as more informa-3

tion between background state variables is shared. As was shown in equation (6.43), figure4

6.3 shows that Bxϕψ is important in reducing the effect of the background bias from parts5

of the state that both are and are not observed by the anchor observations. If background6

bias is in the system, then having strong background error correlations between the posi-7

tions of bias-corrected and anchor observations that observe state variables with similar8

background biases is the best possibility, as the anchor observations have the biggest effect9

in reducing the contamination of background bias on the estimate of the observation bias10

coefficient, whilst still being used within VarBC.11

6.3.2 Cycled Experiment12

In the experiment in section 6.3.2.1 the system is run over 50 cycles to demonstrate how the13

bias in the bias coefficient will accumulate and be passed into the state analysis. On the14

first cycle, the background state and bias coefficient are set up as in equations (6.63) and15

(6.64), but with zero added background bias so that bb = 0. This means the first few cycles16

will act as a spin up period to allow the background bias to settle into an equilibrium.17

In future cycles, the background values at cycle T are given by the analysis values at18

cycle T − 1 after they are evolved forwards in time. The bias coefficient background is19

evolved by the identity, ie. the previous bias coefficient analysis is taken to be the bias20

coefficient background. The state background is evolved forward by numerically solving21

the Lorenz 96 model from equation (5.1), as described in section 5.1, but replacing F with22

Fbiased = 8.8 to add a bias to the model by changing the forcing term.23

We set the assimilation window length to be 10 time steps, which represents approx-24

imately 7.5 hours in the real atmosphere, as discussed in section 5.1, to allow the back-25

ground errors to sufficiently grow within each window.26
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6.3.2.1 How bias in the state analysis and bias coefficient analysis accumulates1

when the system is cycled2

Finally, we have an experiment to demonstrate the results from section 6.2.3, which show3

the effect of having a bias in βa on the state analysis in the next cycle. These show4

how the contamination of the background bias in βa leads to a biased βb, which in turn5

contributes to the bias in the state analysis.6

We run an experiment that has 100 realisations over 200 cycles. In figure 6.4 we plot7

the bias ratio from equation (6.62) for the bias coefficient analysis (bottom panel), but8

have included a similar ratio for the norm of the state analysis bias given by,9

√
1
40

∑40
i=1(x̄

a
i − xti)

2

σ̄ax
, (6.65)

where x̄ai is the average state analysis across all realisations for the spatial variable xi; x
t
i10

is the true value of the spatial variable xi; 40 is the number of state variables; and σ̄ax11

is the mean value of the standard deviations of the state analysis from 100 realisations,12

where the mean is calculated over all state variables. We have both anchor and biased13

observations at every location; the observation error standard deviations are 1; and Bv14

is the climatological background error covariance matrix, as described in sections 5.2.2.115

and 5.2.3. We have added a model bias by multiplying the forcing term in the model used16

to evolve the analysis by 1.1, such that Fbiased is 8.8, but have not added a model bias via17

the initial conditions, as explained in section 6.3.2. Multiplying the forcing term by 1.118

only changes the state values by 0.01 over one cycle, allowing the model bias to still be19

constrained. We plot the ratios over 200 cycles to show the evolution of the bias in the20

state and the bias coefficient.21

In figure 6.4 the ratios for the state and the bias coefficient start at approximately22

zero and then the state ratio increases towards 0.1 and the bias coefficient ratio increases23
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Figure 6.4: The ratios in equations (6.62) and (6.65) over 200 cycles for 100 realisations. Fbiased =
8.8, error variances are 1, Bv is calculated by an ensemble (section 5.2.2.1). Anchor and biased
observations observe every state variable.

towards 0.12. When the ratios are above 0.1 then we consider the biases to be significant1

in comparison to the random error. Note that the magnitude of the ratios would be larger2

if a larger background bias were chosen, fewer state variables were observed, or there was3

less weighting given to the observations, which we do not show here. Therefore the 0.14

line has been included in the bias ratio to show general trends, not the exact value of5

parameters which causes the bias to be significant. The bias in the first cycle is near zero6

for both the state and the bias coefficient because no background bias has been added to7

the initial conditions. There is only a background bias from the second cycle as model8

bias is added via the forcing term Fbiased which evolves the state analysis forward, so that9

the state analysis of the first cycle becomes the state background of the second cycle and10
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so on. We would expect the bias in both the state and the bias coefficient to grow with1

each cycle, as we showed in equations (6.60) and (6.61); the bias in xa and βa are the2

accumulation of the previous state and bias coefficient biases. In figure 6.4, the bias ratio3

in the state appears to reach saturation after approximately 20 cycles and the bias ratio4

in the bias coefficient reaches saturation after approximately 90 cycles. As the model bias,5

ηi, is constant in time, the state and bias coefficient analyses reach an equilibrium between6

the background bias and the truth from the anchor observations. We would expect an7

equilibrium to exist, as VarBC relies on the background and the anchor observations as8

sources of the truth, so if they are different, then the analysis will be pulled between the9

two until it reaches an equilibrium. However, it is not straightforward to analytically10

evaluate what the equilibrium should be.11

6.4 Conclusions and Discussion12

In order to study how background bias can contaminate the observation bias correction,13

we have looked at the role of anchor observations in VarBC. The conclusions are based14

on general optimal estimation theory and we have demonstrated the results with idealised15

experiments.16

In this study we have focused on the importance of the anchor observations in reducing17

the contamination of the background bias in the bias coefficient analysis, as opposed to18

reducing the effect on the state analysis. This is because if the bias coefficient analysis19

has systematic error, then observations will be wrongly bias corrected and the systematic20

error will filter into the state analysis, as was shown when the system was cycled in section21

6.2.3 and figure 6.4.22

In a theoretical world where we could have a full coverage of anchor observations, we23

showed in equation (6.32) that the background bias can still contaminate the bias coef-24

ficient analysis. The only way that background bias could not affect the bias coefficient25
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analysis at all, would be to have zero random error in the anchor observations. However,1

as this is only possible theoretically, we can only look at reducing the contamination of2

background bias on the bias coefficient analysis, not completely removing it. We showed3

in equation (6.31) and figure 6.2 that the effect of the background bias is reduced when4

the anchor observation error variance is smaller than the state backgrounds that they ob-5

serve. Operationally, the anchor observation error variance needs to reflect the uncertainty6

associated to the observations. However, it is possible to change the weighting given to7

the anchor observations by using more anchor observations within the system, if they are8

available. Therefore, although we have showed that more precise anchor observations will9

reduce the contamination of background bias on the observation bias correction, this result10

also extends to the importance of a higher spatial frequency of anchor observations, to11

increase the weighting given to the anchor observations within the system and thus have12

the biggest impact in reducing the contamination of background bias.13

In equations (6.41), (6.49), (6.50) and figure 6.3 we showed that the contamination14

of background bias on the bias coefficient analysis can only be reduced by the anchor15

observations if the anchor observations also observe state variables that have similar back-16

ground bias. Anchor observations have typically been from radiosondes which mostly have17

coverage over land, but with the increased use of radio occultation (RO), the spatial and18

temporal distribution of anchor observations in the upper troposphere and stratosphere19

has increased. Radiosondes and RO give a good coverage of anchor observations for tem-20

perature in the troposphere and stratosphere, but variables such as humidity and wind21

speed are less well observed by anchor observations. This means that although the spatial22

coverage of anchor observations is increasing, there are still significant parts of the model23

domain where background bias could still contaminate the bias coefficient analysis.24

We showed in equation (6.49) and figure 6.3 that if background bias only exists in state25

variables observed by the anchor observations, such that bias-corrected observations do26

not observe state variables with background bias, then the anchor observations will pass27
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the background bias into the bias coefficient analysis if there are strong error correlations1

between the background state variables. This could occur for example in the lower tropo-2

sphere, as radiosonde measurements are mostly taken over land, with little coverage over3

sea. If there exists a temperature bias over the land but not the sea and there are strong4

horizontal error correlations between the land and the sea, then the background bias could5

be passed into the bias coefficients via the radiosondes.6

In equation (6.50) and figure 6.3 we showed that, if there is no background bias in the7

state variables that are observed by the anchor observations but there is background bias8

in state variables observed by the bias-corrected observations, then the anchor observations9

cannot explicitly reduce the effect of background bias in other state variables. Therefore,10

areas that are most at risk of contamination of background bias within the observation11

bias correction will be locations with fewer anchor observations such as humidity in the12

upper troposphere, which is only sparsely observed by radiosondes, but is known to have13

background biases.14

We showed in equation (6.41) and at the end of section 6.2.2 that, if both biased15

and anchor observations observe state variables that have background biases, then an-16

chor observations can reduce the contamination of background bias on the bias coefficient17

analysis. We saw in figure 6.3 that if the anchor and bias-corrected observations observe18

different parts of the state that have similar background bias characteristics, then the19

background error covariances become more important: larger background error correla-20

tions will transfer more information about the background bias between state variables21

and so will reduce the contamination of the background bias on the bias coefficient anal-22

ysis. In an operational system, the length scales of Bx will be locationally dependent, for23

example, the length scales of Bx will be larger at higher altitudes (Ingleby, 2001). There24

will also be an element of flow dependency, such that the background error covariance25

matrix will deform with the flow (Bannister, 2008a). This chapter shows that anchor26

observations that observe different variables/locations to the bias-corrected observations27
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when both variables/locations have similar background biases, will have the largest impact1

in reducing the contamination of background bias when they are in systems with larger2

background error covariances, such as in the upper atmosphere. When similar background3

biases are present in systems where background error covariances are small between vari-4

ables observed by bias-corrected and anchor observations, such as between locations of5

observations across a front, then anchor observations will only have a small impact in6

reducing the contamination of background bias on the observation bias correction.7

This chapter has aimed to derive new insight on the role of anchor observations for8

mitigating the impact of model bias in VarBC. Our theoretical findings have been tested in9

a toy system. The next steps for this work should be to understand how the assumptions10

made hold in an operational system, for example how the bias predictors used operationally11

allow the state and bias coefficient domains to be more clearly separated, such that the12

bias coefficient is less affected by state background bias. In the next chapter we will extend13

this work by studying the role of anchor observations in a 4-dimensional system, to study14

when, in an assimilation window, anchor observations have the biggest impact in reducing15

the contamination of model bias.16
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Chapter 71

The role of anchor observations in2

VarBC in the presence of model3

bias. Part II: The importance of4

the timing of the anchor5

observations6

7.1 Introduction7

In chapter 6 we demonstrated the role of anchor observations in 3DVar, in reducing the8

contamination of background bias when observation bias was being corrected for using9

VarBC. We focused on the importance of the spatial distribution of anchor observations,10

relative to the biased observations and the importance of precise anchor observations in11

order to answer research questions 2.1 and 2.3.12

In this chapter, we extend chapter 6 to demonstrate the role of anchor observations in13
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a 4DVar system when observation, background and model biases are present. Studying a1

4DVar system allows us to show the importance of the timing of the anchor observations2

within an assimilation window, relative to the biased observations and therefore be able3

to answer research question 2.2. We demonstrate the theory of how anchor observations4

are used in 4DVarBC to reduce the contamination of background and model biases. We5

study the importance of precise anchor observations, as well as their timing in the window,6

relative to the biased observations.7

In section 7.2 we extend current 4DVarBC theory to include both bias-corrected and8

anchor observations. We then look at the impacts of background and model biases in9

section 7.3, by deriving the analysis error equations when both bias-corrected and anchor10

observations are used and when background and model bias are present. To further our11

understanding of the equations, we study simple cases in sections 7.3.1, 7.3.2 and 7.3.312

that only have bias-corrected and anchor observations at one time step each in the window.13

Finally we test our results using a simple numerical system in section 7.4.14

7.2 4DVarBC with two observation types15

We want to look at the role of anchor observations in VarBC when the observations are16

spread throughout the window. We therefore extend the 4DVarBC analysis equations,17

equations (2.75) and (2.76), in section 2.3 to include both bias-corrected observations18

(y(1)) and anchor observations (y(2)). Splitting y into two observation types gives the19

analysis equations in terms of x0 and β as20

xa
0 = xb

0 + K̂xy(1)d̂
b

v(1) + K̂xy(2)d̂
b

v(2), (7.1)

βa = βb + K̂βy(1)d̂
b

v(1) + K̂βy(2)d̂
b

v(2), (7.2)
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where d̂
b

v(1) and d̂
b

v(2) are as defined in equation (2.79), but for observations that either1

are or are not corrected for:2

d̂
b

v(1) =



y(1)0 − h(1)0(x
b
0)− c0(x

b
0 ,β

b)

y(1)1 − h(1)1(m0(x
b
0))− c1(m0(x

b
0),β

b)

...

y(1)N − h(1)N (m0→N (x
b
0))− cN (m0→N (x

b
0),β

b)


, (7.3)

d̂
b

v(2) =



y(2)0 − h(2)0(x
b
0)

y(2)1 − h(2)1(m0(x
b
0))

...

y(2)N − h(2)N (m0→N (x
b
0))


. (7.4)

Note that the numbers outside the brackets represent the time step and the numbers3

inside the brackets represent the bias-corrected and anchor observations respectively. The4

terms K̂xy(1) and K̂xy(2) are the sensitivities of the state analysis to the bias-corrected and5

anchor observations respectively and K̂βy(1) and K̂βy(2) are the sensitivities of the bias6

coefficient analysis to the bias-corrected and anchor observations respectively. The terms7

K̂xy(1) , K̂xy(2) , K̂βy(1) and K̂βy(2) can be calculated by separating K̂v into its 4 separate8

parts:9

K̂v = BvĤ
T
v (ĤvBvĤ

T
v + R̂)−1 =

K̂xy(1) K̂xy(2)

K̂βy(1) K̂βy(2)

 ∈ R(n+r)×(m(1)+m(2)). (7.5)

Note that this takes the same form as equation (6.4) in chapter 6, but the elements10

may vary in time (as the observation operator is state dependent). The terms K̂xy(1) ,11

K̂xy(2) , K̂βy(1) and K̂βy(2) are all time dependent, as they are dependent on the linearised12

observation operators for the bias-corrected and anchor observations, Ĥ(1), Ĥ(2) and Ĉβ,13
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which are given by,1

Ĥ(1) =


H(1)0M0→0

...

H(1)N(1)
M0→N(1)

 ∈ R
∑N(1)
i=0 m(1)i

×n, Ĥ(2) =


H(2)0M0→0

...

H(2)N(2)
M0→N(2)

 ∈ R
∑N(2)
i=0 m(2)i

×n,

(7.6)

Ĉβ =


Cβ0

...

CβN(1)

 ∈ R
∑N(1)
i=0 m(1)i

×r, (7.7)

which are equivalent to the linearised observation operators for 4DVarBC in equation2

(2.73), but for Ĥ(1) and Ĥ(2) defined for the bias-corrected and anchor observations re-3

spectively. The dimensions N(1) and N(2) are the number of timesteps observed by bias-4

corrected and anchor observations; m(1)i and m(2)i are the number of bias-corrected and5

anchor observations in space at the ith time step; n is the number of state variables; and6

r is the size of the observation bias coefficient vector.7

7.3 4DVarBC with model bias that is not accounted for8

In this section, we assume that there is a model bias at each time step which is not9

explicitly corrected for, as well as the observation bias that is explicitly corrected for10

using VarBC. We want to calculate the bias in the state and observation bias coefficient11

analyses to understand how the model bias contaminates the estimate of the state and12

observation bias coefficient and to discern how the anchor observations can mitigate this13

contamination. We will use a similar method for calculating the analysis error equations14

as we did for the 3DVar case in chapter 6, but extend it to the 4DVar scenario to include15

both state background and model biases. We assume that the model that evolves the state16
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from the initial time to time i is given by,1

m0→i(x0) = mt
i−1(...(m

t
0(x0) + ηt

1)...+ ηt
i−1) + ηt

i := m̃t
0→i(x0,η

t), (7.8)

where the true model, mt, is acting on the state at the initial time, x0, with an added error,2

ηt
i. We assume that ηt

i is constant throughout the time window (we will therefore denote3

ηt
i as ηt) and can therefore consider ηt as a model bias. We have denoted m̃t

0→i(x0,η
t)4

to be the model that evolves both the state and the model bias forward from the initial5

time step to the ith time step, as defined in equation (2.82).6

Let the errors in the backgrounds, analyses and observations be defined by,7

ϵbx = xb
0 − xt

0, ϵbβ = βb − βt, ϵax = xa
0 − xt

0, ϵaβ = βa − βt, (7.9)

ϵ̂o(1) =


y(1)0 − h(1)0(x

t
0)− c0(x

t
0,β

t)

...

y(1)N(1)
− h(1)N(1)

(mt
0→N(1)

(xt
0))− cN(1)

(mt
0→N(1)

(xt
0),β

t)

 , (7.10)

ϵ̂o(2) =


y(2)0 − h(2)0(x

t
0)

...

y(2)N(2)
− h(2)N(2)

(mt
0→N(2)

(xt
0))

 , (7.11)

where the true model trajectory does not contain a model bias and is given by,8

mt
0→i(x0) = mt

i−1(...(m
t
0(x0))...). (7.12)

Note that we have only included the instrument error in the observation error in equations9

(7.10) and (7.11), but the error that comes from evolving the state forward to the time10

step of the observations using the incorrect model will be considered later in equation11

(7.15).12

To calculate the state and observation bias coefficient analysis errors, we first subtract13
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the true state and bias coefficient from equations (7.1) and (7.2) respectively to rewrite the1

differences between the state and bias coefficient analysis and the state and bias coefficient2

background in terms of their error equations, equation (7.9), to give,3

ϵax = ϵbx + K̂xy(1)d̂
b

(1) + K̂xy(2)d̂
b

(2), (7.13)

ϵaβ = ϵbβ + K̂βy(1)d̂
b

(1) + K̂βy(2)d̂
b

(2). (7.14)

We then manipulate the innovation vector so that it can be written in terms of the obser-4

vation, background and model errors. Note that we will only show the innovation vector5

at the ith time for the bias-corrected observations for simplicity, but this can be repeated6

for either bias-corrected or anchor observations across the whole window. We can start to7

write the bias-corrected innovation vector at the ith time step in terms of its errors in the8

following way,9

y(1)i − hvi(m0→i(x
b
0),β

b) = y(1)i − hvi(m
t
0→i(x

t
0),β

t)

+ hvi(m
t
0→i(x

t
0),β

t)− hvi(m0→i(x
t
0),β

t)

+ hvi(m0→i(x
t
0),β

t)− hvi(m0→i(x
b
0),β

b)

(7.15)

where hvi(m0→i(x0),β) = h(1)i(m0→i(x0))+ci(m0→i(x0),β), as defined in equation (2.72).10

The term yi − hvi(m
t
0→i(x

t
0),β

t) is given by ϵo(1)i from the ith term in equation (7.10)11

and can be considered the instrument error; hvi(m
t
0→i(x

t
0),β

t)− hvi(m0→i(x
t
0),β

t) is the12

difference between the true model and the used model, so can be defined as the model13

error; and hvi(m0→i(x
t
0),β

t)− hvi(m0→i(x
b
0),β

b) is the difference between the true state14

and observation bias coefficient with the background state and observation bias coefficient,15

which can be defined as the background error. We can therefore study each term separately.16

The model error can be rearranged by writing m0→i(x
t
0) in terms of the true model17
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and the model bias as in equation (7.8) to give,1

hvi(m
t
0→i(x

t
0),β

t)− hvi(m0→i(x
t
0),β

t) = hvi(m
t
0→i(x

t
0),β

t)− hvi(m̃
t
0→i(x

t
0,η

t),βt),

(7.16)

Equation (7.16) can be expanded to

hvi(m
t
0→i(x

t
0),β

t)− hvi(m0→i(x
t
0),β

t) =

hvi(m
t
0→i(x

t
0),β

t)− hvi(m
t
i−1(...(m0(x

t
0) + ηt)...) + ηt,βt). (7.17)

Then approximating m̃0→i(x
t
0,η

t) about m0→i(x
t
0) using the Taylor expansion gives,

hvi(m
t
0→i(x

t
0),β

t)− hvi(m0→i(x
t
0),β

t) ≈

hvi(m
t
0→i(x

t
0),β

t)− hvi(m
t
0→i(x

t
0) +

i−1∑
j=1

Mi−1...Mjη
t + ηt,βt). (7.18)

Finally approximating hvi(·) using the Taylor expansion about xt
0 and βt, and cancelling2

the hvi(m
t
0→i(x

t
0),β

t) terms gives the model error as,3

hvi(m
t
0→i(x

t
0),β

t)− hvi(m0→i(x
t
0),β

t) ≈ −(H(1)i +Cxi)(
i−1∑
j=1

Mi−1...Mj + I)ηt. (7.19)

This is the accumulation of the model biases at different time steps, due to evolving the4

state forward to the time step of the bias-corrected observations using a biased model.5

The background error in equation (7.15) can also be rearranged, by initially writing6

xt
0 as xb

0 − ϵbx, as in equation (7.9), to give,7

hvi(m0→i(x
t
0),β

t)−hvi(m0→i(x
b
0),β

b) = hvi(m0→i(x
b
0−ϵbx),β

b−ϵbβ)−hvi(m0→i(x
b
0),β

b).

(7.20)
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Approximating m0→i(x
b
0 − ϵbx) using the Taylor expansion about xb

0 gives,

hvi(m0→i(x
t
0),β

t)− hvi(m0→i(x
b
0),β

b)

≈ hvi(m0→i(x
b
0)−Mi−1...M0ϵ

b
x,β

b − ϵbβ)− hvi(m0→i(x
b
0),β

b). (7.21)

Finally approximating hvi(·) using the Taylor expansion about xb
0 and βb and cancelling1

the hvi(m0→i(x
b
0),β

b) terms gives the background error as,2

hvi(m0→i(x
t
0),β

t)− hvi(m0→i(x
b
0),β

b) ≈ −(H(1)i +Cxi)Mi−1...M0ϵ
b
x −Cβiϵ

b
β (7.22)

This is the background error (or bias if taking the expected value) after it has been evolved3

forward to the time step of the bias-corrected observations. It is the error that comes from4

initially using an imperfect xb in the observation operator and bias correction function.5

The errors in the bias-corrected innovation vector at the ith time step are given in6

equation (7.15) as the sum of the instrument error, the model error from evolving the7

state to the time step of the bias-corrected observation and the background errors from8

using an incorrect background state and incorrect background observation bias coefficient.9

Therefore, the errors in the bias-corrected innovation vector are given by,10

db
(1)i

= ϵo(1)i − (H(1)i +Cxi)(
i−1∑
j=1

Mi−1...Mj + I)ηt − (H(1)i +Cxi)Mi−1...M0ϵ
b
x −Cβiϵ

b
β.

(7.23)

As in section 2.3, we will assume that Cxi = 0, as, operationally, the bias correction is11

dependent on the broad regions of the state, so inaccuracies in the background state will12

have a negligible effect on the bias correction.13

By applying the same method to the anchor observation innovation vector, the anchor14
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observation innovation vector at time i can be rewritten as,1

db
(2)i

= ϵo(2)i −H(2)i(

i−1∑
j=1

Mi−1...Mj + I)ηt −H(2)iMi−1...M0ϵ
b
x. (7.24)

The errors in the anchor observation innovation vector are also the sum of the instrument2

error, the model bias from evolving the state to the time-step of the anchor observations3

using a biased model, and the background error from using the wrong state background.4

By combining equations (7.13), (7.14), (7.23) and (7.24), the analysis error equations5

are given by,6

ϵax = ϵbx + K̂xy(1)(ϵ̂
o
(1) − Ĥ(1)ϵ

b
x − Ĉβϵ

b
β − η̂H(1)

) + K̂xy(2)(ϵ̂
o
(2) − Ĥ(2)ϵ

b
x − η̂H(2)

), (7.25)

ϵaβ = ϵbβ + K̂βy(1)(ϵ̂
o
(1) − Ĥ(1)ϵ

b
x − Ĉβϵ

b
β − η̂H(1)

) + K̂βy(2)(ϵ̂
o
(2) − Ĥ(2)ϵ

b
x − η̂H(2)

), (7.26)

where η̂H(1)
and η̂H(2)

have been denoted by7

η̂H(1)
=



0

H(1)1η

H(1)2(M1η + η)

...

H(1)N(1)
(
∑N(1)−1

j=1 MN(1)
...Mj+1η + η)


, (7.27)

η̂H(2)
=



0

H(2)1η

H(2)2(M1η + η)

...

H(2)N(2)
(
∑N(2)−1

j=1 MN(2)
...Mj+1η + η)


, (7.28)

where η̂H(1)
and η̂H(2)

are the model biases that accumulate from evolving the state to8

the time step of the bias-corrected and anchor observations respectively.9
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If we take the expected value of equations (7.25) and (7.26) it will give us the bias in1

both the state analysis and the observation bias coefficient analysis. We can assume that2

the anchor observations have no bias and that the bias-corrected observations have no bias3

when they are corrected by the true bias correction, such that ⟨ϵo(1)⟩ = ⟨ϵo(2)⟩ = 0. For4

simplicity, we assume that the bias coefficient background has no bias such that ⟨ϵbβ⟩ = 0,5

which could be true for the first cycle. Then the expected value of the analysis errors is6

reduced to,7

⟨ϵax⟩t=0 = −(−I+ K̂xy(1)Ĥ(1) + K̂xy(2)Ĥ(2))⟨ϵbx⟩ − K̂xy(1)⟨η̂H(1)
⟩ − K̂xy(2)⟨η̂H(2)

⟩, (7.29)

⟨ϵaβ⟩t=0 = −(K̂βy(1)Ĥ(1) + K̂βy(2)Ĥ(2))⟨ϵbx⟩ − K̂βy(1)⟨η̂H(1)
⟩ − K̂βy(2)⟨η̂H(2)

⟩, (7.30)

which we have denoted as ⟨ϵax⟩t=0 and ⟨ϵaβ⟩t=0 to mean the expected value of the analysis8

errors at the first cycle. Equation (7.30) is equivalent to the bias coefficient analysis9

equation in 3DVar, equation (6.28), in chapter 6, but in the 4DVar case there are now also10

additional model biases that come from evolving the state forward in the window using a11

biased model.12

As K̂v takes the same form as Kv in equation (6.4) of chapter 6, we can also rewrite13

K̂βy(2) in terms of K̂βy(1) as in equation (6.20) to give,14

K̂βy(2) = −K̂βy(1)Ĥ(1)BxĤ
T
(2)(Ĥ(2)BxĤ

T
(2) + R̂(2))

−1. (7.31)

We can therefore rewrite ⟨ϵaβ⟩t=0, so that it is no longer explicitly a function of K̂βy(2) to15

give,16

⟨ϵaβ⟩t=0 = −K̂βy(1) [Ĥ(1)(I− D̂Ĥ(2))⟨ϵbx⟩+ ⟨η̂H(1)
⟩ − Ĥ(1)D̂⟨η̂H(2)

⟩] (7.32)
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where we have written1

D̂ = BxĤ
T
(2)(Ĥ(2)BxĤ

T
(2) + R̂(2))

−1 (7.33)

for simplicity. The term D̂ is the ratio between the background error covariance matrix2

and the sum of the background and anchor observation error covariance matrices. Other3

than K̂βy(1) and ⟨η̂H(2)
⟩, D̂ is the only term in equation (7.32) that is dependent on the4

linearised anchor observation operator and the anchor observation error covariance matrix.5

Just as in chapter 6, although we want to know when the bias in the bias coefficient6

analysis is reduced, we are not interested in reducing K̂βy(1) , as it would mean reducing7

the sensitivity of the bias coefficient analysis to the bias-corrected observations.8

Equation (7.32) shows how the state background and state model biases contaminate9

the estimate of the observation bias coefficient analysis. It is similar to the bias coef-10

ficient analysis error equation for 3DVarBC, equation (6.29), derived in chapter 6, but11

also includes the model biases that accumulate to reach the timing of the bias-corrected12

observations (⟨η̂H(1)
⟩) and anchor observations (⟨η̂H(2)

⟩).13

We want to understand how the timing of anchor observations impacts their ability14

to reduce the contamination of background and model biases in 4DVarBC. In order to15

simplify equations (7.29) and (7.30), we study three simple cases where the anchor and16

bias-corrected observations vary in time relative to each other. This reduces the time-17

dependent matrices as each observation type will only be valid at one time step.18

7.3.1 Bias-corrected observations at t = 1, anchor observations at t = 219

In our first example, the anchor observations are set to be later than the bias-corrected20

observations to test the anchor observations’ ability to reduce the contamination of back-21

ground and model biases when they are later than the bias-corrected observations. If22

the analysis is calculated at t = 0, then assuming that the bias-corrected observations23
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observe states at t = 1 and anchor observations observe states at t = 2, then the linearised1

observation operators from equation (7.6) are given by,2

Ĥ(1) =


0

H(1)1M0

0

 , Ĥ(2) =


0

0

H(2)2M1M0

 , (7.34)

where again the number in brackets denotes the bias-corrected or anchor observations and3

the numbers without brackets denote the time step. The model biases to evolve the state4

to the biased and anchor observations from equations (7.27) and (7.28) respectively will5

be,6

η̂H(1)
=


0

H(1)1η

0

 , η̂H(2)
=


0

0

H(2)2(M1η + η)

 . (7.35)

As we have anchor observations at the second time step, we can denote7

D2 = BxM
T
0 M

T
1 H

T
(2)2

(H(2)2M1M0BxM
T
0 M

T
1 H

T
(2)2

+R(2)2)
−1H(2)2 . (7.36)

Note that we have included H(2)2 at the end of D2, but not in the original D̂ in equation8

(7.33). The term H(2)2 does not appear in equation (7.33) because the linearised anchor9

observation operator appears in the model bias term in equations (7.25) and (7.26) instead10

and cannot be easily separated. We have chosen to includeH(2)2 in equation (7.36) (instead11

of writing D2H(2)2) so that all of the terms that are explicitly dependent on the anchor12

observations are within one term (D2).13

Therefore substituting equations (7.34), (7.35) and (7.36) into equation (7.32) gives14

the bias in the estimate of the observation bias coefficient analysis when bias-corrected15
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observations are at t = 1 and anchor observations are at t = 2 as,1

⟨ϵaβ⟩t=0 = −[K̂βy(1) ]t=1(H(1)1M0(I−D2M1M0)⟨ϵbx⟩+H(1)1⟨η⟩−H(1)1M0D2(M1⟨η⟩+⟨η⟩)),

(7.37)

where [K̂βy(1) ]t=1 is the value of K̂βy(1) at the first time step (as at the other time steps it2

will have values of 0). ⟨ϵbx⟩ is the background bias that comes from the state. The term3

H(1)1⟨η⟩ comes from the model bias when the system has evolved from the initial to the4

first time step to reach the bias-corrected observations. The term H(1)1M0D2(M1⟨η⟩ +5

⟨η⟩) is the weighting of the model biases from the first and second time steps that occur6

when the system is evolved forward to the time step of the anchor observations. The7

linearised anchor observation operator and the anchor observation error covariance matrix8

are both only defined within D2. Therefore, the characteristics of the anchor observations9

and their role in reducing the contamination of model bias is described through D2.10

Equation (7.37) can be rearranged such that the model biases from the first and second11

time steps are factorised separately to give,12

⟨ϵaβ⟩t=0 = −[K̂βy(1) ]t=1H(1)1 [M0(I−D2M1M0)⟨ϵbx⟩+ (I−M0D2M1)⟨η⟩ −M0D2⟨η⟩].

(7.38)

If the left hand side of equation (7.38) is zero, then the bias coefficient analysis has zero13

bias, which would mean the state background and model biases would not have contami-14

nated the observation bias coefficient analysis. In order for the matrix multiplied by ⟨ϵbx⟩15

in equation (7.38) to tend to zero, D2M1M0 would have to tend to the identity. In a16

theoretical case, this would occur when D2 = M−1
0 M−1

1 , which would happen when R(2)217

tends to 0 and H(2)2 , M0 and M1 are full-rank and are invertible, although this is not18

a generalisable result as we would not necessarily expect H(2)2 to be invertible. In the19

scalar (theoretical) limit, this case would be when the anchor observations have zero ran-20

dom error. If D2 = M−1
0 M−1

1 , then the term I−M0D2M1 would also be zero and hence21
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there would be no contribution from the model bias from the first time step. However, if1

the anchor observation error variance was zero such that D2 = M−1
0 M−1

1 , then M0D2⟨η⟩2

in (7.38) would tend to −M−1
1 ⟨η⟩. As M−1

1 is nonzero, ⟨ϵaβ⟩ would also be nonzero. This3

shows that the bias in ⟨ϵaβ⟩ can never fully be removed unless K̂βy(1) = 0 or H(1)1 = 0,4

which are both trivial cases. However, as η is multiplied by the inverse of the linearised5

model at the first time step in the limit when the anchor observation error variance tends6

to zero, then any part of η that is projected onto growing modes will decay, and any part of7

η that is projected onto decaying modes will grow. If the model has growing modes, then8

the inverse of the linearised model multiplied by the model bias would decay the model9

bias. In general, atmospheric models have errors that grow (Lorenz, 2005; Simmons et10

al., 1995), therefore although the term −M−1
1 ⟨η⟩ would not be zero in the limit with zero11

anchor observation error variance, the model bias would be reduced.12

In the more realistic case where the anchor observation error variance is small (instead13

of 0), the term D2M1M0 would only tend towards the identity. This is because D2M1M014

is approximately the ratio between the background error variances and the sum of the15

background and anchor observation error variances. Therefore, if the anchor observations16

observe states at a time step later than the bias-corrected observations, then the anchor17

observations can reduce the contamination of state background bias and model bias from18

the first time step, but the anchor observations will detrimentally introduce a model bias19

into the bias coefficient analysis. This additional model bias occurs when the system is20

evolved from the time step of the bias-corrected observations to the time step of the anchor21

observations, but would be small if the anchor observations are precise for model bias that22

is projected onto growing modes.23

7.3.1.1 Anchor and bias-corrected observations observe different spatial states24

Next we will split the spatial domain into sections: xϕ and xψ, as we did for the 3DVar25

case in section 6.2.1.2. This will test how well the anchor observations can reduce the26
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contamination of background and model biases in the observation bias coefficient, where1

the biases come from states the anchor observations do not observe. We will assume bias-2

corrected observations can observe anywhere in the domain, but anchor observations only3

observe states in xψ. Then the observation operators become,4

H(1)1 =

(
H(1)1ϕ

, H(1)1ψ

)
, (7.39)

H(2)2 =

(
0, H(2)2ψ

)
, (7.40)

where H(1)1ϕ
is related to bias-corrected observations of xϕ at time t = 1 and H(1)1ψ

5

and H(2)2ψ
are related to observations of xψ at times t = 1 and t = 2 respectively. The6

background error covariance matrix which describes the relationships between xb
ϕ and xb

ψ7

is,8

Bx =

Bxϕ Bxϕψ

BT
xϕψ

Bxψ

 . (7.41)

The tangent linear models for the first two time steps are given by,9

M0 =

M0ϕ M0ϕψ

M0ψϕ M0ψ

 , M1 =

M1ϕ M1ϕψ

M1ψϕ M1ψ

 . (7.42)

As the matrix D2 (equation 7.36)) determines how much control the anchor observations10

have over the observation bias coefficient, we calculate it for this case. It will be given by,11

D2 =

Bxϕ Bxϕψ

BT
xϕψ

Bxψ


MT

0ϕ
MT

0ψϕ

MT
0ϕψ

MT
0ψ


MT

1ϕ
MT

1ψϕ

MT
1ϕψ

MT
1ψ


 0

HT
(2)2ψ

 [...]−1

(
0, H(2)2ψ

)
,

(7.43)
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where we have denoted [...]−1 to be the inverse matrix in equation (7.36). We can write1

equation (7.43) in block element form as,2

D2ϕ = 0 (7.44)

D2ϕψ = [(BxϕM
T
0ϕ

+BxϕψM
T
0ϕψ

)MT
1ψϕ

HT
(2)2ψ

+ (BxϕM
T
0ψϕ

+BxϕψM0ψ)M
T
1ψ
HT

(2)2ψ
][...]−1H(2)2ψ

(7.45)

D2ψϕ = 0 (7.46)

D2ψ = [(BT
xϕψ

MT
0ϕ

+BxψM
T
0ϕψ

)MT
1ψϕ

HT
(2)2ψ

+ (BT
xϕψ

MT
0ψϕ

+BxψM
T
0ψ
)MT

1ψ
HT

(2)2ψ
][...]−1H(2)2ψ

(7.47)

where for simplicity, we have denoted the ϕ and ψ blocks of elements in D2 to be,3

D2 =

D2ϕ D2ϕψ

D2ψϕ D2ψ

 . (7.48)

Now that we have calculated D2 for the case when anchor observations are at t = 2 and4

bias-corrected observations are at t = 1 when we have split the spatial state into ϕ and ψ,5

we can use this to determine where the anchor observations can reduce the contamination6

of state background and state model biases, relative to the spatial domain. In equation7

(7.38) the state background bias is pre-multiplied by I−D2M1M0. As D2ϕ and D2ψϕ are8

both zero, then calculating I−D2M1M0 gives,9

I−D2M1M0 =

I−D2ϕψM1ψϕM0ϕ −D2ϕψM1ψM0ψϕ −D2ϕψM1ψϕM0ϕψ −D2ϕψM1ψM0ψ

−D2ψM1ψϕM0ϕ −D2ψM1ψM0ψϕ I−D2ψM1ψϕM0ϕψ −D2ψM1ψM0ψ

 .

(7.49)
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If the state background bias is split into its two spatial parts such that it is given by,1

⟨ϵbx⟩ =

⟨ϵbxϕ⟩

⟨ϵbxψ⟩

 , (7.50)

then2

(I−D2M1M0)⟨ϵbx⟩ =(I−D2ϕψM1ψϕM0ϕ −D2ϕψM1ψM0ψϕ)⟨ϵbxϕ⟩ − (D2ϕψM1ψϕM0ϕψ +D2ϕψM1ψM0ψ)⟨ϵbxψ⟩

−(D2ψM1ψϕM0ϕ +D2ψM1ψM0ψϕ)⟨ϵbxϕ⟩+ (I−D2ψM1ψϕM0ϕψ −D2ψM1ψM0ψ)⟨ϵbxψ⟩


(7.51)

Equation (7.51) shows that both the state background bias that is only observed by the3

bias-corrected observations (⟨ϵbxϕ⟩) and the state background bias that is observed by both4

kinds of observations (⟨ϵbxψ⟩) are somewhat controlled by the anchor observations through5

the operator D2. We calculated an equivalent equation for when the anchor observations6

do not observe the whole state in 3DVarBC in equation (6.41), chapter 6. In the 3DVar7

case, ⟨ϵbxϕ⟩ was not multiplied by any elements of D and as a result, ⟨ϵbxϕ⟩ could only be8

reduced implicitly by the anchor observations through the background error correlations9

between the states xϕ and xψ. In the 4DVar case, more information is spread across the10

domain by the model, which means that anchor observations will have more control over11

state background biases in states that are only observed by the bias-corrected observations,12

not the anchor observations. It should be noted however, that this spreading is limited13

to the advection velocity of the model and that anchor observations may still not be able14

to control background biases from states observed by bias-corrected observations that are15

far away from the anchor observations.16

Unlike in 3DVar, model biases from different spatial states in the domain will also17

contaminate the observation bias coefficient analysis. In equation (7.38) the model bias18

η has been left-multiplied by I − M0D2M1 and M0D2 respectively. In the case where19
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anchor observations do not observe the state ϕ, the term I−M0D2M1 is given by,1

I−M0D2M1 =

I−M0ϕD2ϕψM1ψϕ −M0ϕψD2ψM1ψϕ −M0ϕD2ϕψM1ψ −M0ϕψD2ψM1ψ

−M0ψϕD2ϕψM1ψϕ −M0ψD2ψϕM1ψϕ I−M0ψϕD2ϕψM1ψ −M0ψD2ψϕM1ψ

 .

(7.52)

Therefore, if the model bias is split into its spatial parts such that it is given by,2

⟨η⟩ =

⟨ηϕ⟩

⟨ηψ⟩

 , (7.53)

then3

(I−M0D2M1)⟨η⟩ = (I−M0ϕD2ϕψM1ψϕ −M0ϕψD2ψM1ψϕ)⟨ηϕ⟩ − (M0ϕD2ϕψM1ψ +M0ϕψD2ψM1ψ)⟨ηψ⟩

−(M0ψϕD2ϕψM1ψϕ +M0ψD2ψϕM1ψϕ)⟨ηϕ⟩+ (I−M0ψϕD2ϕψM1ψ −M0ψD2ψϕM1ψ)⟨ηψ⟩

 .

(7.54)

As for the background bias in equation (7.51), equation (7.54) shows that the model bias in4

the first time step from both the states observed only by bias-corrected observations (⟨ηϕ⟩)5

and states observed by both bias-corrected and anchor observations (⟨ηψ⟩) are controlled6

by anchor observations through the variable D2. Just as for the state background bias,7

the model spreads information between states that are and are not observed by the anchor8

observations, which allows the anchor observations to be able to control model biases in9

some of the states that they do not observe, as long as the dynamics of the model expand10

far enough.11

In equation (7.38), the term that comes from the model bias at the second time step12

is given by,13

M0D2⟨η⟩ =

 (M0ϕD2ϕψ +M0ϕψD2ψ)⟨ηψ⟩

(M0ψψD2ϕψ +M0ψD2ψϕ)⟨ηψ⟩

 (7.55)

In equation (7.55) there is no ⟨ηϕ⟩ term. This is because equation (7.55) is the model bias14
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that comes from reaching the time step of the anchor observations (t = 2). Therefore,1

as the anchor observations do not observe xϕ and the bias-corrected observations do not2

observe states later than at t = 1, there is no model bias associated with the state xϕ at3

time t = 2. This means that any bias associated with a state that is not observed by the4

anchor observations will not be propagated further than the time step they are observed5

(ie. the time step of the bias-corrected observations).6

7.3.2 Anchor observations at t = 1, bias-corrected observations at t = 27

In this next section, we set the anchor observations to observe states earlier in the window8

than the bias-corrected observations, such that we have anchor observations at t = 1 and9

bias-corrected observations at t = 2 (the analysis time will still be at t = 0). Then the10

linearised observation operators are given by,11

Ĥ(1) =


0

0

H(1)2M1M0

 , Ĥ(2) =


0

H(2)1M0

0

 , (7.56)

and the model biases that come from evolving the state to the time step of the biased and12

anchor observations respectively are given by,13

η̂H(1)
=


0

0

H(1)2(M1η + η)

 , η̂H(2)
=


0

H(2)1η

0

 . (7.57)

As the anchor observations are at t = 1, we denote,14

D1 = BxM
T
0 H

T
(2)1

(H(2)1M0BxM
T
0 H

T
(2)1

+R(2)1)
−1H(2)1 . (7.58)
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Substituting equations (7.56), (7.57) and (7.58) into equation (7.32), we find the expected1

value of the bias coefficient analysis error when the anchor observations are at t = 1 and2

the bias-corrected observations are at t = 2 is given by,3

⟨ϵaβ⟩t=0 = −[K̂βy(1) ]t=2H(1)2 [M1M0(I−D1M0)⟨ϵbx⟩+M1⟨η⟩+⟨η⟩−M1M0D1⟨η⟩], (7.59)

where [K̂βy(1) ]t=2 is the value of K̂βy(1) at the second time step (as at the other time4

steps it will have values of 0). The term ⟨ϵbx⟩ is the state background bias that comes5

into play when comparing the biased background with both the bias-corrected and anchor6

observations. The terms M1⟨η⟩ and ⟨η⟩ are the model biases associated with evolving the7

initial state to the time step of the bias-corrected observations and the term M1M0D1⟨η⟩8

is the model bias associated with evolving the state from the initial time step to the9

time step of the anchor observations. Note that, as we are calculating the bias in the10

observation bias coefficient, the model bias associated with the anchor observations has11

been multiplied by M1M0 as it has been evolved to the time step of the bias-corrected12

observations, in order to compare with the other biases at the same time. The linearised13

anchor observation operator and the anchor observation error variance only appear in D1,14

hence the anchor observation statistics will only directly impact D1.15

Equation (7.59) can be rearranged to give,16

⟨ϵaβ⟩t=0 = −[K̂βy(1) ]t=2H(1)2 [M1M0(I−D1M0)⟨ϵbx⟩+M1(I−M0D1)⟨η⟩+ ⟨η⟩] (7.60)

where we have factorised the model biases from the same time step together, such that17

the term M1(I−M0D1)⟨η⟩ is the model bias associated with the first time step and the18

term ⟨η⟩ is the model bias associated with the second time step. If D1M0 tends to the19

identity, then the dependency of ⟨ϵaβ⟩ on ⟨ϵbx⟩ will tend to zero. If D1M0 tends to the20

identity and M0 and D2 are full rank, then M0D1 will also tend to the identity, reducing21

the second term (M1(I − M0D1)⟨η⟩) to zero. Hence if the anchor observations reduce22
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the contamination of state background bias, they will also reduce the contamination of1

model bias that comes from evolving the system to the first time step. The terms D1M02

and M0D1 will tend to the identity when H(2)1 and M1 are full rank and the anchor3

observation error variance is very small, i.e. when we have very precise anchor observations.4

Therefore, the more precise the anchor observations, the smaller the contamination of state5

background bias and model bias from the first time step. However, there is a ⟨η⟩ term,6

caused by evolving the state to the time step of the bias-corrected observations, that is left7

behind in this reduction, which is only multiplied by K̂βy(1) and H(1)2 . The contamination8

of this final ⟨η⟩ on ⟨ϵaβ⟩ could only be reduced if either K̂βy(1) or H(1)2 are small, which9

would be trivial cases. Therefore, if the bias-corrected observations observe states that are10

later in the time window than the states observed by the anchor observations, then there11

will be a model bias caused by evolving the state to the bias-corrected observations, that12

the anchor observations cannot explicitly reduce the effect of. This additional model bias13

is worse than the additional model bias in equation (7.37) when the anchor observations14

were later in the window, as, in equation (7.60), η is not multiplied by D1, so the anchor15

observations have no control over it, whereas in equation (7.37) the additional model bias16

is multiplied by −M0D2, which, as we showed in section 7.3.1, will decay with more precise17

anchor observations.18

7.3.2.1 Anchor and bias-corrected observations observe different spatial states19

We will again split the spatial domain into two sections: xϕ and xψ, where xϕ and xψ20

do not overlap, to test how well anchor observations can reduce the contamination of bias21

in states they do not observe. We will assume bias-corrected observations can observe22

states in both xϕ and xψ, but anchor observations can only observe states in xψ, to test23

the ability of anchor observations to reduce the contamination of bias when they do not24
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observe every state. Then the observation operators become,1

H(1)2 =

(
H(1)2ϕ

, H(1)2ψ

)
, (7.61)

H(2)1 =

(
0, H(2)1ψ

)
, (7.62)

where H(1)2ϕ
is related to bias-corrected observations of xϕ at time t = 2 and H(1)2ψ

and2

H(2)1ψ
are related to observations of xψ at times t = 2 and t = 1 respectively. If we use3

Bx and M0 from equations (7.41) and (7.42), then D1 becomes,4

D1 =

Bxϕ Bxϕψ

BT
xϕψ

Bxψ


MT

0ϕ
MT

0ψϕ

MT
0ϕψ

MT
0ψ


 0

HT
(2)1ψ

 [...]−1

(
0, H(2)1ψ

)
, (7.63)

where we have denoted [...]−1 to be the inverse matrix in equation (7.58). Multiplying the5

matrices in equation (7.63) together gives,6

D1 =


0 (BxϕM

T
0ψϕ

HT
(2)1ψ

+BxϕψM
T
0ψ
HT

(2)1ψ
)[...]−1H(2)1ψ

0 (BT
xϕψ

MT
0ψϕ

HT
(2)1ψ

+BxψM
T
0ψ
HT

(2)1ψ
)[...]−1H(2)1ψ

 . (7.64)

We can denote each block element of D1 as,7

D1 =:

D1ϕ D1ϕψ

D1ψϕ D1ψ

 (7.65)

for simplicity.8

From equation (7.60), the state background bias is pre-multiplied by I−D1M0, which9

is given by,10

I−D1M0 =

I−D1ϕψM0ψϕ −D1ϕψM0ψ

−D1ψM0ψϕ I−D1ψM0ψ

 . (7.66)
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If the state background bias is split into xϕ and xψ parts as in equation (7.50), then the1

contamination of state background bias on the observation bias coefficient analysis is given2

by,3

(I−D1M0)⟨ϵbx⟩ =

(I−D1ϕψM0ψϕ)⟨ϵbxϕ⟩ −D1ϕψM0ψ⟨ϵbxψ⟩

−D1ψM0ψϕ⟨ϵbxϕ⟩+ (I−D1ψM0ψ)⟨ϵbxψ⟩

 . (7.67)

Equation (7.67) shows that both the state background bias that comes from the states4

only observed by bias-corrected observations (⟨ϵbxϕ⟩) and the state background bias that5

comes from the states observed by both observations (⟨ϵbxψ⟩) are somewhat controlled by6

the anchor observations, as they are both multiplied by an element of D1. This is a similar7

result to the result we found in section 7.3.1.1: anchor observations that are later than8

the initial time step have some control over the state background bias in states they do9

not observe, as some information can be spread across the domain by the model, despite10

the anchor observations only observing a subsection of the domain. It should again be11

noted that the model can only spread information at the rate of the advection velocities,12

so anchor observations could only control the contamination of the state background bias13

in regions near to where they are observing.14

Model biases from different spatial states in the domain will also contaminate the15

observation bias coefficient analysis. In equation (7.60), the model bias that comes from16

evolving the state to the first time step (the time step of the anchor observations) is pre-17

multiplied by I −M0D1, which, when the anchor observations only observe xψ, is given18

by,19

I−M0D1 =


I −M0ϕD1ϕψ −M0ϕψD1ψ

0 I−M0ψϕD1ϕψ −M0ψD1ψ

 . (7.68)

When the model bias is split into the xϕ and xψ parts, as in equation (7.53), the contam-20

ination of model bias from the first time step on the observation bias coefficient analysis21
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is given by,1

(I−M0D1)⟨η⟩ =

⟨ηϕ⟩ − (M0ϕD1ϕψ +M0ϕψD1ψ)⟨ηψ⟩

(I−M0ψϕD1ϕψ −M0ψD1ψ)⟨ηψ⟩

 . (7.69)

In equation (7.69), the model biases from both the states observed by only the bias-2

corrected observations (⟨ηϕ⟩) and from states observed by both bias-corrected and an-3

chor observations (⟨ηψ⟩) appear. However, the model bias that is only observed by the4

bias-corrected observations is not multiplied by D1, which means that, when anchor ob-5

servations are earlier than the bias-corrected observations, the anchor observations will6

not explicitly be able to control the contamination of the model bias, which comes from7

evolving the model to the time step of the anchor observations, from states they do not8

observe. This is more similar to the 3DVar case in equation (6.41), chapter 6, as the9

model bias that is not observed by the anchor observations will only be able to implicitly10

be reduced by the anchor observations through the background error correlations between11

xϕ and xψ, that appear in D1ϕψ and D1ψ .12

7.3.3 Anchor and bias-corrected observations at the same time13

If the analysis is calculated at t = 0 and both anchor and bias-corrected observations14

observe states at t = 1 such that the linearised observation operators are given by,15

Ĥ(1) =

 0

H(1)1M0

 , Ĥ(2) =

 0

H(2)1M0

 , (7.70)
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then the model biases that come from evolving the state to the bias-corrected and anchor1

observations respectively are,2

η̂H(1)
=

 0

H(1)1η

 , η̂H(2)
=

 0

H(2)1η

 . (7.71)

The expected value of the bias coefficient analysis error, equation (7.32), is therefore given3

by4

⟨ϵaβ⟩t=0 = −[K̂βy(1) ]t=1H(1)1 [M0(I−D1M0)⟨ϵbx⟩+ (I−M0D1)⟨η⟩], (7.72)

where D1 is as defined in equation (7.58). If D1M0 tends to the identity, then M0D1 will5

also tend to the identity, so ⟨ϵaβ⟩ will tend to zero. The terms D1M0 or M0D1 tend to the6

identity when the anchor observation error variance tends to zero. Therefore, if anchor7

observations and bias-corrected observations observe states at the same time step, then,8

although a bias is added when the system is evolved to the time step of the observations,9

the contamination of both state background bias and model bias will be reduced with10

more precise anchor observations. Reducing the contamination of model bias in VarBC11

when anchor and bias-corrected observations are at the same time step gives an equivalent12

result to reducing the contamination of model bias in VarBC in a 3DVar system, as was13

shown in chapter 6.14

7.3.3.1 Anchor and bias-corrected observations observe different spatial states15

We will again split the spatial domain into two sections: xϕ and xψ, where xϕ and xψ16

do not overlap, to test how well the anchor observations can reduce biases in states they17

do not observe. We will assume bias-corrected observations can observe states in both18

xϕ and xψ, but anchor observations can only observe states in xψ. Then the linearised19
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observation operators become,1

H(1)1 =

(
H(1)1ϕ

, H(1)1ψ

)
, (7.73)

H(2)1 =

(
0, H(2)1ψ

)
, (7.74)

where H(1)1ϕ
is related to bias-corrected observations of xϕ at time t = 1 and H(1)1ψ

and2

H(2)1ψ
are related to observations of xψ at time t = 1.3

In equation (7.72), I − D1M0 is multiplied by ⟨ϵbx⟩ and I − M0D1 is multiplied by4

⟨η⟩. D1 can be calculated explicitly as in equation (7.64), as the anchor observations are5

again at the first time step. Therefore, the term (I − D1M0)⟨ϵbx⟩ has also already been6

calculated in equation (7.67), where we found that the anchor observations could control7

background biases in states they do not observe, as long as the states are close enough to8

the anchor observations so that information can be transferred by the model.9

We have also already calculated (I − M0D1)⟨η⟩ in equation (7.69). We found that10

the model bias that came from states the anchor observations did not observe (⟨ηϕ⟩)11

was not explicitly controlled by the anchor observations, so the only way to reduce the12

contamination of model bias in those areas would be if the background error correlations13

between states xϕ and xψ are strong enough to pass information about the model biases14

between them, as was the case for 3DVar in chapter 6.15

7.3.4 Summary of theoretical results16

By studying the three simple theoretical cases for anchor observations at different times17

to the bias-corrected observations, we found:18

• When the anchor observations were later than the bias-corrected observations, more19

precise anchor observations were able to reduce the contamination of background20

bias and model bias associated with reaching the time step of the bias-corrected21

observations, but an additional model bias was introduced that came from evolving22
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the state to the time step of the anchor observations. This additional model bias1

was weighted by the inverse of the model when the anchor observations were more2

precise, so growing errors in the model would be reduced, but would never completely3

disappear.4

• When the anchor observations were earlier than the bias-corrected observations,5

more precise anchor observations were able to reduce the contamination of back-6

ground bias and model bias associated with reaching the time step of the anchor7

observations, but an additional model bias was introduced in evolving the state to8

the time step of the bias-corrected observations, which could not be reduced with9

more precise anchor observations.10

• When the anchor and bias-corrected observations were at the same time, more precise11

anchor observations could reduce both the background bias and the model bias.12

This therefore suggests that to reduce the most contamination of bias on the observation13

bias coefficient analysis, it is best to have the bias-corrected and anchor observations at14

the same time step.15

7.4 Numerical Experiments16

In order to demonstrate our theoretical results of how anchor observations could reduce the17

contamination of model bias in observation bias correction in 4DVarBC, we demonstrate18

the theory by using a simple numerical system that has a multi-variate spatial domain19

and can be run over many time steps.20

We use the Lorenz 96 model (Lorenz, 1996), as described in chapter 5, to create the21

data assimilation system. The observations are generated from the true model with a22

random error of error variance 1 (unless stated otherwise) and the biased observations23

have a bias of 0.5. Note that as all the observations have the same bias, only one bias24
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coefficient is used, so β is scalar, as described in section 5.2.3. There are bias-corrected1

and anchor observations directly observing the state at every spatial location, but three2

different temporal sampling of the observations are considered: when the bias-corrected3

observations are at t = 5 and the anchor observations are at t = 10; when the anchor4

observations are at t = 5 and the bias-corrected observations are at t = 10; and when the5

anchor and bias-corrected observations are both at the end of the window (t = 10). This6

is analogous to the theoretical cases described above in sections 7.3.1, 7.3.2 and 7.3.3. A7

bias is added to the model which is used to evolve the system forward in time, by changing8

the forcing parameter F to 12 (= Fbiased). The observation and model biases are chosen9

so that they cause a similar bias in the state analysis when only one bias is present. The10

initial cycle has no added background bias, but background bias will naturally accumulate11

in the later cycles if the analysis of the previous cycle is biased. The assimilation length12

is 10 time steps, which gives the biased model enough time to sufficiently evolve away13

from the true model; we present the results over 20 windows. We have repeated the14

experiments for 1000 realisations, which are all initialised with different random errors in15

the background and observations and then averaged over all realisations.16

In figures 7.1a and 7.2a we have plotted the mean state analysis across all realisations17

and all states: the circles are the mean state analyses at the beginning of each window,18

and the tails are the analysis trajectories across the windows. The dashed black line is19

the mean true trajectory across all states which uses the true model (F = 8). In figures20

7.1b and 7.2b we have plotted the mean observation bias coefficient analysis across all21

realisations. The observation bias coefficient analysis has been plotted at the time of the22

biased observations, but is considered to be constant across the window.23

In figure 7.1 we have plotted the mean state analysis and the mean observation bias co-24

efficient analysis when the anchor observation error variance is equal to the bias-corrected25

observation error variance (= 1). We have shown three timings of the bias-corrected and26

anchor observations relative to each other, which are shown by the different transparencies27
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of the circles. It is obvious in figure 7.1a that the state analysis has been contaminated

(a) Mean state analysis

(b) Mean observation bias coefficient analysis

Figure 7.1: VarBC to correct for observation bias in a 4DVar system, with anchor and bias-
corrected observations at different times in the window. σ2

o(2) = 1.

1
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by model bias as, not only is there a bias of between approximately 0.4 and 0.7 over all1

cycles, but the analysis trajectories also do not follow the true trajectories. This bias2

in the state analysis has occurred despite having anchor observations at every spatial lo-3

cation. The state analysis bias trajectories increase over the window as the model bias4

is pulling the state analysis away from the truth. This gives an additional bias in the5

background in the following cycle, so that VarBC is now being contaminated with both6

background bias and model bias. The analysis bias is initially close to zero as there is no7

background bias in the initial cycle. The observation bias coefficient in figure 7.1b has8

been underestimated by between approximately 0.5 and 0.8 due to the contamination of9

model bias. The observation bias coefficient is also predicted to be negative, whereas the10

true observation bias is positive (=0.5), which means that VarBC is correcting observation11

bias in the opposite direction. However, it should be noted that this change of sign is due12

to the small magnitude of the true observation bias, so when the system underestimates13

the observation bias coefficient, the estimate is pulled below zero. If the true observation14

bias were bigger, then underestimating it would not necessarily lead to a change in sign15

in the estimate of the observation bias. The observation bias was chosen to be 0.5 here as16

we wanted the model and observation biases to have the same effect on the analysis.17

In the theory, we showed that when the anchor observations were earlier in the window18

than the bias-corrected observations, there was an additional model bias term that could19

not be controlled by the anchor observations, so the analysis would have a larger bias20

than if the bias-corrected observations were earlier in the window. We can see that the21

observation bias coefficient has a larger bias when the anchor observations are at t = 522

(the lightest dots) in figure 7.1b as the observation bias coefficient is further away from23

the true observation bias than the other cases. The state analysis also has a larger bias24

when the anchor observations are earlier in the window as the lighter mean state analysis25

in figure 7.1a is further away from the truth. There is not much difference between when26

the bias-corrected observations are at t = 5 (earlier than the anchor observations) and27
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when the bias-corrected observations are at t = 10 (the same time as the anchor observa-1

tions), as both the mean state analysis and mean observation bias coefficient analysis give2

similar results for both cases. However, in general there is a small increase in bias when3

anchor observations are later in the window than the bias-corrected observations, which4

reflects the additional bias added when reaching the anchor observation time step that5

we saw in equation (7.38). This difference is however negligible in figure 7.1a. Overall,6

these numerical results agree with our theoretical results, as they show that when anchor7

observations are earlier in the window than the bias-corrected observations, model bias8

will more strongly contaminate the observation bias correction, leading to a larger state9

analysis bias. Ideally, we would want the anchor observations to be at the same time (or10

slightly later if necessary) as the bias-corrected observations, in order to reduce the most11

contamination of background and model bias in the analysis.12

Figure 7.2 is similar to figure 7.1, but we have now plotted the mean state analysis13

and mean observation bias coefficient analysis when the anchor observation error variance14

is σ2o(2) = 0.1 and the bias-corrected observation error variance is σ2o(1) = 1, to test the15

impact of more precise anchor observations. Again, the three timings of the anchor and16

bias-corrected observations are shown by the transparency of the circles.17

In figure 7.2a the mean state analysis bias has substantially reduced for all timings of18

the observations, which shows that more precise anchor observations has reduced the bias19

in the mean state analysis, regardless of the timing of the anchor observations. This is20

especially true when the anchor observations are later in the window, as the state analysis21

now lies almost exactly on the truth. In the first two cycles there is now a negative bias,22

but this disappears by the third cycle. This suggests that VarBC has over-compensated23

for the model bias in the first two cycles and takes a few cycles to find the balance between24

the anchor observations and the model. Interestingly, the bias in the forecast at the end25

of the window is a similar magnitude to the bias at the beginning of the window when the26

anchor observations were less precise (figure 7.1). This suggests that, as the model bias27
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(a) Mean state analysis

(b) Mean observation bias coefficient analysis

Figure 7.2: As in figure 7.1 but with more precise anchor observations (σ2
o(2) = 0.1).

has not been corrected for, the model is trying to reach its (biased) climatology, but is1

always pulled back by the anchor observations in the analysis at the next cycle. This is2
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important as, although the analysis at the beginning of the window is much closer to the1

truth when we use more precise anchor observations, the forecast throughout the window2

is still biased.3

In figure 7.2b the mean observation bias coefficient analysis is still biased, but has a4

much smaller bias than when the anchor observations were less precise (figure 7.1b). The5

bias in the observation bias coefficient analysis is now approximately 0.2, compared to6

approximately 0.6 when σ2o(2) = 1. This shows that more precise anchor observations has7

improved the estimate of the observation bias coefficient, as it has reduced the contami-8

nation of model bias in the observation bias coefficient analysis.9

Overall figure 7.2 agrees with our theoretical results as more precise anchor observations10

has reduced the contamination of state background and model biases on the state and11

observation bias coefficient analyses. More precise anchor observations have removed the12

most bias in the state and bias-coefficient analyses when anchor observations are later in13

the window. There is a larger bias when anchor observations are earlier than the bias-14

corrected observations, as was predicted from the additional model bias from the bias-15

corrected observations in equation (7.32), which the anchor observations had no control16

over.17

7.5 Conclusions and Discussion18

We have demonstrated the role of anchor observations in reducing the contamination of19

model bias in a 4DVarBC system. We initially examined the theory about how the timing20

of the anchor observations can reduce the contamination of model bias on the estimate21

of observation bias in VarBC and then demonstrated these results in a simple numerical22

system.23

We calculated the bias coefficient analysis error equation for a 4DVarBC system when24

both anchor and bias-corrected observations were used. Equation (7.32) showed that25
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some amount of model bias will always contaminate the estimate of the observation bias1

in VarBC, as having anchor observations with zero random error would not be possible2

operationally.3

In order to better understand the role of anchor observations in time, we have looked4

at three simplified cases: when the bias-corrected observations observe states before the5

anchor observations; when the bias-corrected observations observe states after the anchor6

observations; and when the bias-corrected and anchor observations observe states at the7

same time step.8

In section 7.3.1 we showed that when anchor observations observe states after the bias-9

corrected observations, more precise anchor observations will reduce the contamination of10

the background bias and the model bias associated with evolving the state to the time step11

of the bias-corrected observations. We found that there was an additional model bias that12

was associated with evolving the state to the time step of the anchor observations, that13

could not completely be removed even with very precise anchor observations. However,14

when the anchor observations were more precise, we showed that this term would be15

reduced as it became a product of the model bias and the inverse of the linearised model.16

As atmospheric dynamics are described by models with growing errors (Lorenz, 2005;17

Simmons et al., 1995), this shows that the additional model bias would be reduced. We18

illustrated this result in the medium transparency line in figures 7.1 and 7.2, as increasing19

the precision of the anchor observations reduced the bias in both the state analysis and20

the observation bias coefficient analysis.21

In section 7.3.2 we showed that when anchor observations were earlier than the bias-22

corrected observations, more precise anchor observations could reduce the background bias23

and model bias associated with evolving the state to the time step of the anchor observa-24

tions, but that there was an additional model bias associated with evolving the state to the25

time step of the bias-corrected observations that the anchor observations could not con-26

trol. This meant that, unlike for the additional model bias when the anchor observations27
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were later than the bias-corrected observations, more precise anchor observations would1

not reduce the additional model bias term when bias-corrected observations were later in2

the window than the anchor observations. We demonstrated these results in the lightest3

transparency line in figures 7.1 and 7.2, as using more precise anchor observations reduced4

the bias in the state and observation bias coefficient analyses. However, the lightest line5

had the most bias compared to the other timings of the anchor observations. This reflected6

our theoretical results when the anchor observations were earlier than the bias-corrected7

observations, as the bias in the lightest line showed the additional model bias that could8

not be controlled by the anchor observations.9

Finally, in section 7.3.3 we showed that if the anchor and bias-corrected observations10

observe states at the same time step, then the contamination of state background bias from11

all observable states can be reduced by more precise anchor observations. More precise12

anchor observations will also reduce the contamination of model bias that comes from13

evolving the state to the observed time step, but only in spatial states that are observed14

by the anchor observations. We demonstrated these results in figure 7.2 as we found that15

reducing the error variance of the anchor observations reduced the bias in both the state16

and observation bias coefficient analyses when the anchor and bias-corrected observations17

were at the same time.18

We have shown that if bias-corrected observations are later in the window than the19

anchor observations, an extra model bias will contaminate the estimate of the observation20

bias correction, regardless of the precision of the anchor observations. It is therefore safer21

for anchor observations to be later in the assimilation window, so that there are fewer22

bias-corrected observations after the anchor observations. In practice, the network of23

satellite radiance observations from polar orbiting satellites provide data at a particular24

point at least once every 6 hours, but this could be early or late in the window, depending25

on where the satellite is giving data for (Met Office NRT Quality Monitoring , 2023). In26

contrast, anchor observations such as radiosondes only provide data every 6 or 12 hours27
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(ECMWF Geographical Coverage, 2023), so usually give information in the middle of1

a 6 hour window. Therefore, future developments of anchor observations should look2

to develop observations that are available at more frequent times, for example in the3

continued expansion of radio occultation instruments. If changing the timing of the anchor4

observations is not possible, data assimilation centres could look into changing the timing5

of the assimilation window (Milan et al., 2020), so that the available anchor observations6

fall at the end of the window.7

At ECMWF, a quasi-continuous data assimilation system is used, whereby new ob-8

servations are used in regular updates to the analysis within an inner loop, so that more9

observations can be used within the window, as the final analysis update uses less com-10

puting power and therefore the cut off time for observations is shorter (Lean et al., 2021).11

This would likely not change the amount of radiosonde data available for each window,12

as they are so infrequent, but could change the amount of satellite data available. This13

could be beneficial if later radio occultation data is available as we have shown that later14

anchor observations are better at reducing the contamination of model bias, but could15

have a detrimental impact if more bias-corrected observations are used at the end of the16

window and if there is also a model bias present in the system, as we have shown that17

bias-corrected observations later in the window can be associated with model biases that18

anchor observations cannot reduce.19

This chapter has aimed to derive insight into the role of anchor observations in a 4DVar20

data assimilation system, when both observation and model biases are present and when21

observation bias is corrected for, in order to answer research question 2. This extended22

the work of chapter 6 to test the importance of the timing of the anchor observations, as23

well as their spatial distribution and precision, as was discussed for 3DVarBC. The next24

steps for this work would be to test the results on a system that more closely relates to an25

operational set up where the anchor observations only observe small parts of the domain26

and where the observation or model biases are spatially variant so that the bias spatial27
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structures between the observation and model biases are different. VarBC could also be1

tested on systems that only have model bias present and do not have observation bias2

present, to test whether VarBC would try to correct for the wrong type of bias.3

7.6 Summary4

In chapter 7 we have derived analysis error equations for the state and observation bias co-5

efficient when both anchor and bias-corrected observations are used and when background6

and model biases are present. Using these equations we have discussed the importance7

of the timing of the anchor observations in 4DVarBC as well as how the precision of the8

anchor observations impacts their ability to reduce both state background and state model9

biases. In the next chapter we will consider the role of anchor observations when correcting10

for model bias in the presence of observation bias. We will then compare the importance11

of anchor observations when using VarBC, WC4DVar or both simultaneously.12
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Chapter 81

The interaction between VarBC2

and WC4DVar and the role of3

anchor observations4

8.1 Introduction5

In chapters 6 and 7 we studied the characteristics of anchor observations needed to ef-6

fectively reduce the contamination of model bias on the observation bias correction. In7

chapter 3.2 we discussed how model bias can be also corrected for, using a technique known8

as weak-constraint 4DVar (WC4DVar). Laloyaux et al. (2020a) demonstrated that biased9

observations would contaminate the estimate of the model bias in WC4DVar, unless an-10

chor observations were also present. This work did not, however, study the characteristics11

needed in anchor observations to effectively reduce the contamination of observation bias12

in the presence of model bias. As we showed in section 2.2, anchor observations can be13

sparse in both space and time, especially in comparison to satellite radiance observations.14

Therefore, in this chapter we will study the interaction between correcting for observation15
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and model biases simultaneously, and the role anchor observations play in mitigating the1

contamination of bias from one source (model/observation) on the correction of the other2

to answer research question 3.3

In section 8.2 we will initially study the theory of how observation bias contaminates the4

estimate of the model bias, and how anchor observations can mitigate this contamination,5

when only model bias is corrected for. Although in practice WC4DVar would not be used6

without also correcting for observation bias, we isolate the contamination of observation7

bias on the correction of model bias to mirror chapters 6 and 7, and to obtain theoretical8

results for a simpler problem. Together with the previous chapters, this can be used to9

provide insight into how WC4DVar and VarBC interact, which is more difficult to study10

theoretically. We will study three simple cases in sections 8.2.1.1, 8.2.1.2 and 8.2.1.3,11

where the biased and anchor observations are only at one time step each in the window.12

We will then demonstrate our theoretical findings in a simple numerical system in section13

8.2.2. Finally in section 8.3, we will compare the numerical experiments for the VarBC14

results from chapter 7 with the WC4DVar case, as well as with numerical experiments that15

correct for both observation and model biases respectively, to compare the role of anchor16

observations in each bias correction technique. Overall conclusions will be discussed in17

section 8.4.18

8.2 WC4DVar with uncorrected observation bias19

We want to study the role of anchor observations in WC4DVar when both observation and20

model biases are present, but only model biases are being accounted for. To accomplish21

this, we split up the observations in the analysis error equations for WC4DVar, equation22

(2.95), such that we have biased observations y(1) and anchor observations y(2), as we did23

for the VarBC cases in chapters 6 and 7. We therefore have two observation operators for24

both observation types: h(1)p(p) and h(2)p(p), where p is the vector containing the state,25
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x, and model bias parameter, η, defined in equation (2.83), and the numbers in brackets1

represent the biased or anchor observations. The biased observations will not be corrected2

for. The linearised observation operator, equation (2.90), is split into two observation3

types (denoted by Ĥ(1)p and Ĥ(2)p) such that Ĥp from equation (2.90) is given by,4

Ĥp =

Ĥ(1)x Ĥ(1)η

Ĥ(2)x Ĥ(2)η

 (8.1)

where5

Ĥ(k)x =



H(k)x,0

...

H(k)x,iMi−1...M0

...

H(k)x,NMN−1...M0


, Ĥ(k)η =



0

...

H(k)x,i(
∑i−1

j=1Mi−1...Mj + I)

...

H(k)x,N (
∑N−1

j=1 MN−1...Mj + I)


. (8.2)

Note that equation (8.2) is equivalent to equations (2.91) and (2.92), but the (k) denotes6

the biased or anchor observation type. The observation error covariance matrix for the7

two observation types becomes8

R̂ =

R̂(1) 0

0 R̂(2)

 (8.3)

where we have assumed that the error covariances between the biased and anchor obser-9

vations are zero. Then the state and model bias analyses can be extended from equation10

(2.95) to give,11

xa
0 = xb

0 + K̂xy(1)d̂
b

(1)p + K̂xy(2)d̂
b

(2)p , (8.4)

ηa = ηb + K̂ηy(1)d̂
b

(1)p + K̂ηy(2)d̂
b

(2)p , (8.5)
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where K̂xy(1) , K̂xy(2) , K̂ηy(1) and K̂ηy(2) are calculated by expanding,1

K̂xy(1) K̂xy(2)

K̂ηy(1) K̂ηy(2)

 =

Bx 0

0 Q


Ĥ

T
(1)x Ĥ

T
(2)x

Ĥ
T
(1)η Ĥ

T
(2)η

×

[Ĥ(1)x Ĥ(1)η

Ĥ(2)x Ĥ(2)η


Bx 0

0 Q


Ĥ

T
(1)x Ĥ

T
(2)x

Ĥ
T
(1)η Ĥ

T
(2)η

+

R̂(1) 0

0 R̂(2)

]−1

,

(8.6)

where Bx is the state background error covariance matrix and Q is the model error co-2

variance matrix, as defined in equation (2.84). As the inverse matrix in equation (8.6)3

is symmetric, we can calculate the inverse as in equation (4.2) in Lu and Shiou (2002)4

to explicitly calculate K̂xy(1) , K̂xy(2) , K̂ηy(1) and K̂ηy(2) . Therefore, following the same5

method to calculate Kxy(1) , Kxy(2) , Kηy(1) and Kηy(2) in equations (6.16) - (6.19), K̂ can6

be separated as follows7

K̂xy(1) = BxĤ
T
(1)x(W−XZ−1XT)−1 −BxĤ

T
(2)xZ

−1XT(W−XZ−1XT)−1, (8.7)

K̂xy(2) = −BxĤ
T
(1)x(W−XZ−1XT)XZ−1 +BxĤ

T
(2)x(Z

−1 + Z−1XT(W−XZ−1XT)XZ−1),

(8.8)

K̂ηy(1) = QĤ
T
(1)η(W−XZ−1XT)−1 −QĤ

T
(2)ηZ

−1XT(W−XZ−1XT)−1, (8.9)

K̂ηy(2) = −QĤ
T
(1)η(W−XZ−1XT)−1XZ−1 +QĤ(2)η(Z

−1 + Z−1XT(W−XZ−1XT)−1XZ−1),

(8.10)

where we have denoted W, X and Z to be the element blocks from the matrix to be8

inverted in equation (8.6),9

W = Ĥ(1)xBxĤ
T
(1)x + Ĥ(1)ηQĤ

T
(1)η + R̂(1), (8.11)

X = Ĥ(1)xBxĤ
T
(2)x + Ĥ(1)ηQĤ

T
(2)η , (8.12)

Z = Ĥ(2)xBxĤ
T
(2)x + Ĥ(2)ηQĤ

T
(2)η + R̂(2). (8.13)
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W, X and Z come from the HBpH
T+R term, where, W and Z correspond to the biased1

and anchor observations respectively, and X corresponds to the cross term. If X is 0, then2

K̂xy(1) and K̂ηy(1) would only depend on the biased observations and K̂xy(2) and K̂ηy(2)3

would only depend on the anchor observations.4

The error equations for xa and ηa can be extended from equations (2.104) and (2.105)5

to include two observation types and are given by,6

ϵax = ϵbx + K̂xy(1)(ϵ̂
o
(1) − Ĥ(1)xϵ

b
x − Ĥ(1)ηϵ

b
η) + K̂xy(2)(ϵ̂

o
(2) − Ĥ(2)xϵ

b
x − Ĥ(2)ηϵ

b
η) (8.14)

ϵaη = ϵbη + K̂ηy(1)(ϵ̂
o
(1) − Ĥ(1)xϵ

b
x − Ĥ(1)ηϵ

b
η) + K̂ηy(2)(ϵ̂

o
(2) − Ĥ(2)xϵ

b
x − Ĥ(2)ηϵ

b
η) (8.15)

where the biased and anchor observation error vectors in time are given by,7

ϵ̂o(1) =



y(1)0 − h(1)p(x
t
0,η

t)

...

y(1)i − h(1)p(m̃0→i(x
t
0,η

t))

...

y(1)N(1)
− h(1)p(m̃0→N(1)

(xt
0,η

t))


, ϵ̂o(2) =



y(2)0 − h(2)p(x
t
0,η

t)

...

y(2)i − h(2)p(m̃0→i(x
t
0,η

t))

...

y(2)N(2)
− h(2)p(m̃0→i(x

t
0,η

t))


,

(8.16)

where m̃0→i(x
t
0,η

t) is the model that evolves both the state and the model bias to the ith8

time step, as defined in equation (2.82).9

To calculate the bias in the model bias parameter, we take the expected value of the10

errors in equation (8.15). Assuming that the state background bias and the model bias11

parameter background bias are zero (⟨ϵbx⟩ = 0, ⟨ϵbη⟩ = 0), which could be true for the initial12

cycle; and the anchor observations are unbiased (⟨ϵ̂o(2)⟩ = 0), so that the only expected13

value of error term, that is nonzero, is from the biased observations, then the expected14

value of the state and model bias analysis error equations, equations (8.14) and (8.15)15
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respectively, become,1

⟨ϵax⟩t=0 = K̂xy(1)⟨ϵ̂
o
(1)⟩ (8.17)

⟨ϵaη⟩t=0 = K̂ηy(1)⟨ϵ̂
o
(1)⟩. (8.18)

Therefore, the amount of observation bias that contaminates either the estimate of the2

state or the model bias parameter is dependent on the sensitivity of the state or model bias3

parameter to the biased observations. Note that equations (8.17) and (8.18) would look4

the same if we only had biased observations, but when we have both observation types, the5

terms K̂xy(1) and K̂ηy(1) are dependent on both the anchor and the biased observations.6

Therefore, the following section will focus on how the anchor observations vary K̂xy(1) and7

K̂ηy(1) in order to demonstrate how the anchor observations can reduce the contamination8

of observation bias in WC4DVar.9

In the following section, we investigate the role of anchor observations when the biased10

and anchor observations observe one time step each, which could be the same or different11

time steps to each other. In order to simplify the system further, we observe a scalar12

system, so that only one state is observed between the biased and anchor observations.13

8.2.1 Scalar system with anchor and biased observations at one time14

step15

To simplify the equations for K̂xy(1) and K̂ηy(1) we study a scalar system with observations16

only observing one time step. If the system is scalar such that there is only one state that is17

observed by both the anchor and bias-corrected observations, and both of the observations18

are only at one time step (this could be the same or different time steps with respect to19

each other) then the observation error covariance matrices from equation (8.3) will now20

be given by the variances (σ2o(k)) at the time steps they are observed and 0 everywhere21
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else. The background and model error variances for the scalar system will be denoted by,1

Bx = σ2bx, Q = σ2q. (8.19)

We assume that the observation operators for both observations are equal and given2

by the identity as if we have direct observations, such that they are given by3

h(k)i(xi) = xi, (8.20)

where the (k) denotes the biased or anchor observations respectively and i is the time step.4

Operationally, this assumption is unlikely as biased observations would often be satellite5

radiance observations, which require a more complicated observation operator. However,6

we make this assumption to simplify equations (8.7) and (8.9), in order to understand the7

importance of the anchor observation error variance.8

We define the model to be a simple linear model given by,9

xi+1 = m(xi) + η = αxi + η, (8.21)

and choose α to be a constant between 0 and 2. When α is less than 1, the errors in the10

model decay and so the errors can be considered stable, and when α is greater than 1, the11

errors in the model grow and so the errors can be considered unstable.12

If the observations can either be at time t = 1 or t = 2, then the observation operator13

for observations at time 1 and the observation operator for observations at time 2 are14

given by,15

h(k)1(x1) = x1 = m0(x0) + η = αx0 + η, (8.22)

h(k)2(x2) = x2 = m1(x1) + η = m1(m0(x0) + η) + η = α2x0 + (α+ 1)η. (8.23)
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In our experiments we will set σ2bx = 1, σ2q = 0.1 and σ2o(1) = 1, so that the biased1

observations and background have the same error variances and the model error variance2

is ten times smaller than the background error variance. We want the model error variance3

to be smaller than the background error variance as the model error variance only reflects4

the error at one time step, whereas the background error is the accumulation of error5

across the window.6

In sections 8.2.1.1, 8.2.1.2, 8.2.1.3 we will plot Kxy(1) and Kηy(1) for five values of α:7

ranging from 0.5 to 1.5, varying the anchor observation error variance, unless specified8

otherwise. Changing α alters the stability of the errors in the model and changing the9

anchor observation error variance alters the precision of the anchor observations. Note10

that in a non-scalar system, changing the precision of the anchor observations could also11

refer to changing the overall weighting given to the anchor observations, which accounts12

not only for the error in a single observation, but also the combined effect of several anchor13

observations which are spatially close to each other. We vary α to ensure we have a wider14

variety of model conditions when making our conclusions. We vary the anchor observation15

error variance to test the role of the anchor observations in reducing the contamination of16

observation bias on the estimate of the state and the model bias. As we are only varying17

the anchor observation error variance (not the biased observation error variance or the18

background error variance), the analysis error variance for the system will change with19

different σ2o(2), and so the background error variance should also change in subsequent20

cycles. However, in this simple system, we want to demonstrate the extent that the21

anchor observations can reduce the contamination of observation bias in both the model22

bias parameter and the state analysis. Therefore, we only reduce the anchor observation23

error variance to demonstrate the role of the anchor observations. In reality, the anchor24

observations often make up a small portion of the observation data and so varying the25

anchor observation error variance would not have a large impact on the analysis error26

variance. It is therefore reasonable not to change the background error variance when the27
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anchor observation error variance is altered.1

In the following sections we present explicit cases of the anchor and biased observations2

observing the state at either the first or second time step.3

8.2.1.1 Biased and anchor observations at t = 14

If both biased and anchor observations are at t = 1, then the linearised observation5

operators for the biased and anchor observations would be,6

Ĥ(1)x =


0

H(1)x,1M0

0

 =


0

α

0

 , Ĥ(1)η =


0

H(1)x,1

0

 =


0

1

0

 , (8.24)

Ĥ(2)x =


0

H(2)x,1M0

0

 =


0

α

0

 , Ĥ(2)η =


0

H(2)x,1

0

 =


0

1

0

 . (8.25)

The linearised observation operators with respect to η are independent of α as both of the7

observations are only at the first time step, so they are not dependent on the linearised8

model.9

Therefore by substituting equations (8.24) and (8.25) into equations (8.7) and (8.9),10

the sensitivities of the state and model bias parameter analyses for the scalar case when11

anchor and biased observations are at the same time, are given by,12

[Kxy(1) ]t=1 =
ασ2bxσ

2
o(2)

α2σ2bxσ
2
o(1) + α2σ2bxσ

2
o(2) + σ2qσ

2
o(1) + σ2qσ

2
o(2) + σ2o(1)σ

2
o(2)

, (8.26)

[Kηy(1) ]t=1 =
σ2qσ

2
o(2)

α2σ2bxσ
2
o(1) + α2σ2bxσ

2
o(2) + σ2qσ

2
o(1) + σ2qσ

2
o(2) + σ2o(1)σ

2
o(2)

, (8.27)

where [Kxy(1) ]t=1 and [Kηy(1) ]t=1 are the sensitivities at t = 1 (at the other times the13

sensitivities will be 0). The numerator in equation (8.26) shows that the sensitivity of the14
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state to the biased observations is proportional to the stability of the errors in the model1

(α), the state background error variance (σ2bx), and the anchor observation error variance2

(σ2o(2)). If either the state background error variance or the anchor observation error3

variance is large (ie. less weight is given to the state background or anchor observation),4

then the state estimate will be more dependent on the biased observations. The same5

is true for the numerator in equation (8.27), which is proportional to the model error6

variance (σ2q) and the anchor observation error variance (σ2o(2)): if either the model error7

variance or the anchor observation error variance is large, then the model bias parameter8

estimate will be more sensitive to the biased observations. These two equations show9

that giving more weight to the anchor observations or bias-corrected model would likely10

mean less weight is given to the biased observations and hence less observation bias would11

contaminate the estimate of the state and the model bias parameter. As the denominator12

of equations (8.26) and (8.27) is more complicated than the numerators, to understand how13

the denominators of equations (8.26) and (8.27) impact the sensitivities of the state and14

model bias parameter to the biased observations, we will run simple numerical experiments15

with given parameters, as described in the introduction of section 8.2.1.16

In figure 8.1 we have plotted Kxy(1) (red) and Kηy(1) (blue) whilst varying the anchor17

observation error variance, which ranges from 10 times smaller to 10 times bigger the18

biased observation error variance (σ2o(1) = 1). They have been plotted for 10 values of19

α, from 0.5 to 1.5, shown by the increasing transparency of the lines (where the darkest20

lines are the smallest values of α and the lightest lines are the largest values of α). Kηy(1)21

is always smaller than Kxy(1) for the corresponding values of α, which suggests that the22

observation bias would have a larger impact on the state analysis, than on the model bias23

coefficient analysis. This makes sense as Kxy(1) and Kηy(1) are proportional to σ2bx and σ2q24

respectively in equations (8.26) and (8.27) and we have set σ2q to be much smaller than25

σ2bx, as the model error variance is only valid at one time step, whereas the background26

error variance would be the error accumulation across a whole window. Increasing the27
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Figure 8.1: Kηy(1)
(blue) and Kxy(1)

(red) when biased observations at t = 1, anchor observations
at t = 1 for different values of α.

anchor observation error variance has increased the sensitivity of both the state and the1

model bias parameter to the biased observations, as was predicted in equations (8.26)2

and (8.27), because Kηy(1) and Kxy(1) are both proportional to σ2o(2). We would expect3

that the sensitivities of the state and model bias parameter to the biased observations4

increases with increased anchor observation error variance, as putting less trust into the5

anchor observations would suggest more trust needs to be put into the biased observations.6

Importantly, this shows that more precise anchor observations will reduce both Kxy(1) and7

Kηy(1) when biased and anchor observations are at the same time step. As the biases in the8

state and model bias parameter are directly proportional to Kxy(1) and Kηy(1) , as shown in9

equations (8.17) and (8.18), the state and model bias parameter will be less contaminated10
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by the observation bias.1

8.2.1.2 Biased observations at t = 1, anchor observations at t = 22

In the next case, we set the biased observations to be at time t = 1 and the anchor3

observations to be at time t = 2, again in a scalar system. The linearised observation4

operators would be given by,5

Ĥ(1)x =


0

H(1)x,1M0

0

 =


0

α

0

 , Ĥ(1)η =


0

H(1)x,1

0

 =


0

1

0

 , (8.28)

Ĥ(2)x =


0

0

H(2)x,2M1M0

 =


0

0

α2

 , Ĥ(2)η =


0

0

H(2)x,2(M1 + 1)

 =


0

0

α+ 1

 . (8.29)

Substituting equations (8.28), (8.29) into equations (8.7) and (8.9) gives the sensitiv-6

ities of the state and model bias parameter analyses to the biased observations when the7

biased observations are earlier than the anchor observations as,8

[Kxy(1) ]t=1 =
ασ2bx((α+ 1)σ2q + σ2o(2))

α2σ2bx(σ
2
q + σ2o(2) + α2σ2o(1)) + σ2q(σ

2
o(2) + (α+ 1)2σ2o(1)) + σ2o(1)σ

2
o(2)

, (8.30)

9

[Kηy(1) ]t=1 =
σ2q(σ

2
o(2) − α3σ2bx)

α2σ2bx(σ
2
q + σ2o(2) + α2σ2o(1)) + σ2q(σ

2
o(2) + (α+ 1)2σ2o(1)) + σ2o(1)σ

2
o(2)

. (8.31)

Equations (8.30) and (8.31) are immediately more complicated than equations (8.26) and10

(8.27), when the anchor and biased observations were at the same time step. However,11

Kxy(1) is still directly proportional to σ2bx and Kηy(1) is directly proportional to σ2q. This12

shows that, as more weight is given to the background and model respectively, the sen-13

sitivity of the state and model bias parameter to the biased observations will be smaller,14

and hence there will be less contamination of observation bias on the state and model15
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bias parameter estimates. As it is less clear how the precision of the anchor observations1

impacts Kxy(1) and Kηy(1) , we will test how Kxy(1) and Kηy(1) vary with given parameters.2

Figure 8.2: Kηy(1)
(blue) and Kxy(1)

(red) with biased observations at t = 1 and anchor observations
at t = 2 for varied α.

In figure 8.2 we have plotted Kxy(1) (red) and Kηy(1) (blue), when we have varied the3

anchor observation error variance between 10 times smaller and 10 times larger the biased4

observation error variance (σ2o(1) = 1), as in figure 8.1. This has been plotted for 105

values of α between 0.5 and 1.5 (with increasing transparency as α gets larger). Kηy(1) is6

negative when the anchor observation error variance is small, which means that the model7

bias parameter analysis would be updated by the observations in the opposite sign to the8

innovation vector.9

Kxy(1) is larger than Kηy(1) for the corresponding value of α for all values of the anchor10
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observation error variance, which is what we expect from equations (8.30) and (8.31) as1

Kxy(1) is directly proportional to σ2bx and Kηy(1) is directly proportional to σ2q, and we have2

defined the model error variance to be much smaller than the background error variance.3

This suggests that the observation bias will more greatly contaminate the state analysis,4

than it will contaminate the model bias parameter analysis. When the anchor observation5

error variance is increased, so does the sensitivity of both the state and the model bias6

parameter to the biased observation. This is as we would expect as putting less weight7

into the anchor observations would mean more weight is put into the biased observations,8

but this was not so obvious from equations (8.30) and (8.31) alone. This suggests that9

more precise anchor observations will have a larger impact on reducing the contamination10

of observation bias in both the state analysis and the model bias parameter analysis. As11

α increases, the gradient of Kxy(1) becomes steeper for increasing anchor observation error12

variance. This means that as the errors in the model become more unstable, the value of13

Kxy(1) becomes more sensitive to the anchor observations.14

8.2.1.3 Biased observations at t = 2, anchor observations at t = 115

In our final experiment we set the biased observations to be at t = 2 and the anchor16

observations to be at t = 1. Therefore, in our scalar system the linearised observation17

operators are given by,18

Ĥ(1)x =


0

0

H(1)x,2M1M0

 =


0

0

α2

 , Ĥ(1)η =


0

0

H(1)x,2M1

 =


0

0

α+ 1

 , (8.32)

Ĥ(2)x =


0

H(2)x,1M0

0

 =


0

α

0

 , Ĥ(2)η =


0

H(2)x,1

0

 =


0

1

0

 . (8.33)
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Substituting equations (8.32), (8.33) into equations (8.7) and (8.9) gives the sensitivi-1

ties of the state and model bias parameter analyses when the biased observations are later2

than the anchor observations as,3

[Kxy(1) ]t=2 =
α2σ2bx(α(2α− 1)σ2q + σ2o(2))

σ2q(2α
3σ2q − α2σ2q + σ2o(1) − (α+ 1)4σ2q) + σ2o(1)(α

2σ2bx + σ2o(2))
, (8.34)

4

[Kηy(1) ]t=2 =
σ2q(α

2σ2bx + ασ2q + (α+ 1)σ2o(2))

σ2q(2α
3σ2q − α2σ2q + σ2o(1) − (α+ 1)4σ2q) + σ2o(1)(α

2σ2bx + σ2o(2))
(8.35)

where [Kxy(1) ]t=2 and [Kηy(1) ]t=2 are the sensitivities at t=2 (at the other times the sen-5

sitivities will be 0). The terms Kxy(1) and Kηy(1) are again proportional to σ2bx and σ2q6

respectively, which suggests that the sensitivities of the state and model bias parameter7

estimates are strongly dependent on the state background and model error variances re-8

spectively. As the relationship between the sensitivities and the precision of the anchor9

observation is still unclear from equations (8.34) and (8.35), we will plot Kxy(1) and Kηy(1)10

for different values of α and σ2o(2).11

In figure 8.3 we have plotted Kxy(1) (red) and Kηy(1) (blue) whilst varying the an-12

chor observation error variance for different values of α (lines are more transparent as13

α increases). There are now negative values of Kxy(1) when the anchor observation error14

variance is very small and when the model is stable, which would mean that the state anal-15

ysis would be updated by the observations with the opposite sign to the biased innovation16

vector.17

Unlike in the previous two cases, Kηy(1) is not always smaller than Kxy(1) for the18

corresponding value of α. This is unexpected from equations (8.34) and (8.35), but is due19

to the difference term on the numerator of Kxy(1) , which did not exist for the previous two20

cases. This suggests that the contamination of observation bias on the state analysis may21

be smaller in some cases than the contamination of observation bias on the model bias22

parameter analysis. This is detrimental to the system, as the more that the observation23
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Figure 8.3: Kηy(1)
(blue) and Kxy(1)

(red) when biased observations at t = 2, anchor observations
at t = 1, for varied α.

bias contaminates the model bias parameter analysis, the worse the model bias correction1

will be. Bias in the model bias parameter analysis will then filter into the state analysis2

in subsequent cycles, increasing the state analysis bias further.3

When the anchor observation error variance is increased, the sensitivity of the state to4

the biased observations increases as we would expect, however the sensitivity of the model5

bias parameter to the biased observations either increases or decreases depending on the6

stability of the model. As α increases, the gradient of Kηy(1) changes between positive,7

to negative, then back to positive again (positive when α > 1.6, not shown here). In8

general, Kηy(1) is not very sensitive to the anchor observation error variance, regardless of9

α, which suggests that the anchor observations only have a small impact in reducing the10
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contamination of observation bias in the model bias correction when they are earlier in1

the window than the biased observations.2

Figure 8.4: Kηy(1)
(blue) and Kxy(1)

(red) when biased observations at t = 2, anchor observations
at t = 1 for different values of α and 3 values of σo(2).

To test how the sensitivities of the state and the model bias parameter to the biased3

observations are dependent on the stability of the model, for the case when anchor ob-4

servations are earlier than the biased observations, we have varied α over a larger range.5

In figure 8.4 we have plotted Kηy(1) (blue) and Kxy(1) (red) when we vary α for 3 val-6

ues of σ2o(2): 0.1, 1 and 10, shown with increasing levels of transparency for larger σ2o(2).7

Each curve of Kxy(1) increases with increasing anchor observation error variance, as we8

saw in figure 8.3. However, for Kηy(1) , the lines for the different anchor observation error9

variances cross each other. When α is less than 1, Kηy(1) increases with increasing anchor10
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observation error variance as expected, but when α is greater than 1, Kηy(1) decreases with1

increasing anchor observation error variance. This shows that when the anchor observa-2

tions are earlier in the window than the biased observations, the anchor observations do3

not necessarily perform as we would expect and increasing their precision does not always4

reduce the contamination of observation bias on the model bias parameter. The ability5

of the anchor observations to reduce the contamination of observation bias on the model6

bias parameter is dependent on the stability of the model. It should be noted however,7

that these numbers are dependent on the other parameters chosen (e.g. non-varied er-8

ror variances), which means that the impact of having anchor observations earlier in the9

window and their ability to reduce observation biases needs to be researched further in a10

non-scalar system in order to come to a more robust conclusion.11

8.2.2 Numerical experiments in a multi-variable system12

Our theoretical results have mostly focused on a scalar system, in order to somewhat13

simplify the analysis error equations for the state and model bias parameter, equations14

(8.17) and (8.18). In order to understand the role of anchor observations when correcting15

for model bias in the presence of observation bias in a non-scalar system, we test the16

importance of the timing and the precision of the anchor observations in a simple numerical17

system, with the same parameters as described in section 7.4 for the 4DVarBC case, but18

details will be repeated here for the convenience of the reader.19

We use the Lorenz 96 model (Lorenz, 1996), as described in chapter 5 to create the20

data assimilation system. The climatological background error covariance matrix is used,21

as described in section 5.2.2.1, and, as the model bias parameter is scalar, Q is scalar22

and is defined as 10% of the mean state background error variances. A bias is added23

to the forecast model by changing the forcing parameter, such that Fbiased = 12. The24

anchor and biased observations are generated from the true model with a random error of25

error variance 1 (unless stated otherwise). The biased observations also have a constant26
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bias of 0.5 added to the random error. There are biased and anchor observations directly1

observing the state at every spatial location, but the observations vary in time: when2

the anchor and biased observations are both at the end of the window (t = 10); when3

the biased observations are at t = 5 and the anchor observations are at t = 10; when4

the anchor observations are at t = 5 and the biased observations are at t = 10. This is5

analogous to the theoretical cases described above in sections 8.2.1.1, 8.2.1.2 and 8.2.1.3.6

The observation and model biases are chosen so that they cause a similar bias in the7

state analysis when only one bias is present. The initial cycle has no added background8

bias, but background bias will naturally accumulate in the later cycles if the analysis of9

the previous cycle is biased. The window length is 10 time steps, which gives the biased10

model enough time to sufficiently evolve away from the true model; we present the results11

over 20 windows. We have repeated the experiments for 1000 realisations, which are all12

initialised with different random errors in both the background and observations, and then13

average the results over all realisations. The model bias parameter η is scalar as the model14

bias is spatially and temporally invariant.15

In figures 8.5a and 8.6a we have plotted the mean state analysis across all realisations16

and all states for two different anchor observation error variances: the circles are the mean17

state analyses at the beginning of each window, and the tails are the trajectories across18

the windows. The dashed black line is the mean true trajectory across all states which19

uses the true model (F = 8). In figures 8.5b and 8.6b we have plotted the mean model20

bias parameter analysis across all realisations. As the model bias parameter analysis is21

constant throughout each window, it is plotted as one dot at the beginning of the window.22

In figure 8.5 we have plotted the mean state analysis and the mean model bias param-23

eter analysis when the anchor and biased observations have the same error variance (as24

described above). The biased and anchor observation times vary for the three experiments25

as explained above, which are shown by the varying transparency of the lines.26

In figure 8.5a, the state analysis has been shifted vertically away from the truth for27
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(a) Mean state analysis

(b) Mean model bias parameter analysis

Figure 8.5: WC4DVar to correct for model bias only, with anchor and biased observations at
different locations in time. σ2

o(2) = 1.
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all three cases, but the analysis trajectory closely follows the true trajectory (albeit also1

shifted away from the truth), which suggests that most of the model bias has been suc-2

cessfully removed and the bias in the state analysis is caused by the observation bias. The3

mean state analysis initially starts at the truth as there is no background bias in the first4

window.5

In figure 8.5a it is clear that the state analysis has the most bias when the anchor6

observations are earlier in the window than the biased observations. This shows that7

anchor observations should be later in the window to have the biggest impact on reducing8

the contamination of observation bias. The case that causes the smallest bias in the9

state analysis is when the biased observations are earlier in the window than the anchor10

observations. This makes sense as equation (8.17) showed that the contamination of11

observation bias in the state analysis was controlled by the sensitivity of the state to the12

biased observations. Observations later in the window will have a larger weighting in the13

data assimilation system, so the analysis will have a larger sensitivity to later observations.14

Therefore to reduce the contamination of observation bias, it is better to have a smaller15

weighting given to the biased observations (by having them earlier in the window) and a16

larger weighting given to the anchor observations (by having them later in the window).17

In figure 8.5b, there is only a small contamination of observation bias in the mean18

model bias parameter analysis. This was as we predicted in the theory in sections 8.2.1.1,19

8.2.1.2 and 8.2.1.3 as we showed Kηy(1) was generally much smaller than Kxy(1) for the20

scalar case, which implied that less observation bias would contaminate the model bias21

parameter than the state analysis. In general, the mean model bias parameter analysis has22

the largest bias when the anchor observations are earlier in the window than the biased23

observations (lightest circle) and it has the smallest bias when the biased observations are24

earlier in the window than the anchor observations (middle circle).25

In figure 8.6 we have again plotted the mean state analysis and the mean model bias26

parameter analysis for different observation times in the window. However, the anchor27
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(a) Mean state analysis

(b) Mean model bias parameter analysis

Figure 8.6: As in figure 8.5, but with more precise anchor observations. σ2
o(2) = 0.1.

observation error variance is now ten times smaller than the biased observations and is1

given by σ2o(2) = 0.1, to test the impact of using more precise anchor observations.2
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Figure 8.6a shows that with more precise anchor observations, the bias in the state1

analysis has been reduced for all three cases, but a small bias still remains. This is in line2

with our theory in sections 8.2.1.1, 8.2.1.2 and 8.2.1.3, as we showed that more precise3

anchor observations would reduce Kxy(1) , which would in turn reduce the contamination4

of observation bias on the state analysis error.5

In figure 8.6b the bias in the model bias parameter analysis has been reduced when6

more precise anchor observations are used in comparison to figure 8.5b, especially when7

the anchor observations are later in the window. In our theoretical results we showed that,8

when the anchor observations were before the biased observations, increasing the precision9

of the anchor observations did not necessarily reduce the sensitivity of the model bias10

parameter to the biased observations and hence reduce the contamination of observation11

bias on the model bias parameter. In figure 8.6b the bias in the mean model bias parameter,12

when the anchor observations are earlier than the biased observations, has in general13

been reduced (but not as much as when anchor observations are later), although it takes14

the system several cycles for the model bias parameter to reach an equilibrium with a15

small bias. As our results in sections 8.2.1.1 - 8.2.1.3 were dependent on the stability of16

the errors in the model, our multivariate numerical experiments should be tested on a17

different system, perhaps on an operational model with simulated observations, to test18

whether theoretically increasing the precision of the anchor observations ever increases19

the bias in the model bias parameter, when the anchor observations are earlier in the20

window. Alternatively, to avoid this odd case, it would be better to avoid having anchor21

observations earlier in the window than the biased observations.22

8.2.3 Summary of WC4DVar when not correcting for observation bias23

In this section we have looked at how observation bias contaminates the estimate of model24

bias in WC4DVar. In equation (8.18) we showed that the contamination of observation25

bias on the model bias parameter can be constrained by K̂ηy(1) , the sensitivity of the26
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model bias parameter to the biased observations, which is implicitly dependent on the1

anchor observations through the linearised anchor observation operator and the anchor2

observation error variance. In sections 8.2.1.1, 8.2.1.2 and 8.2.1.3 and figures 8.5 and3

8.6 we demonstrated the role of anchor observations in reducing the contamination of4

observation bias by studying three simple cases: when the anchor and biased observations5

observe the same time step; when the biased observations observe a state earlier than6

the anchor observations; and when the biased observations observe a state later than the7

anchor observations.8

For all three cases, the sensitivity of the state to the biased observations increased9

as the anchor observation error variance was increased. This is what we would expect,10

as giving less weighting to the anchor observations would suggest that more sensitivity11

needs to go to the other sources of information. In figure 8.6a, we demonstrated that12

increasing the precision of the anchor observations reduced the bias in the state analysis13

compared to figure 8.5a. Therefore, combining our theoretical and numerical results show14

that more precise anchor observations will reduce the sensitivity of the state analysis to15

the biased observations and therefore reduce the contamination of observation bias on the16

state analysis.17

When the anchor observations were later in the window (either at the same time step18

or later than the biased observations), we showed in sections 8.2.1.1 and 8.2.1.2 that19

reducing the anchor observation error variance also reduced the sensitivity of the model20

bias parameter to the biased observations, which would mean less of the observation bias21

could contaminate the model bias parameter analysis. However, when anchor observations22

were earlier in the window in section 8.2.1.3, reducing the anchor observation error variance23

did not always correlate to a reduction in the sensitivity of the model bias parameter24

to the biased observations. In our numerical results we found in figures 8.5b and 8.6b25

that reducing the anchor observation error variance reduced the bias in the model bias26

parameter for all three cases, even when the anchor observations were earlier in the window27
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than the biased observations. However, when the anchor observations were earlier, it took1

more cycles for the model bias parameter to reach an equilibrium between the observation2

bias and the anchor observations.3

In our numerical results in figure 8.5a, we found that having biased observations earlier4

than the anchor observations reduced the most contamination of observation bias. This5

was also true for the model bias parameter in figure 8.5b, where the contamination of ob-6

servation bias on the model bias estimate was most reduced when the anchor observations7

were later in the window than the biased observations, although the differences between8

the three cases were less significant than for the state analysis. This result makes sense9

as equation (8.18) showed that observation bias contaminates the model bias estimate via10

the sensitivity of the model bias parameter to the biased observations. In a data assimi-11

lation system, observations later in the window have a larger impact on the analysis than12

observations earlier in the window. Therefore, the earlier the biased observations in the13

window, the less impact they will have on the state and model bias parameter analyses14

and so there will be less contamination of observation bias.15

8.3 Comparison of the role of anchor observations when cor-16

recting for observation bias, model bias, or both17

In chapter 7 we studied the role of anchor observations in 4DVarBC in the presence of18

model bias. We found that having anchor observations at the same time step or later than19

the bias-corrected observations reduced the most contamination of model bias, as, if the20

bias-corrected observations were later in the window, more model bias could accumulate21

which the anchor observations could not control. In our WC4DVar experiments in the22

presence of observation bias, we similarly found that having the anchor observations later23

in the window than the biased observations meant that there was less of a contamination of24

observation bias on the model bias correction. In both techniques we found that using more25
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precise anchor observations reduced the contamination of bias in the system. In this section1

we will demonstrate the ability of the anchor observations to reduce the contamination of2

model and observation bias when both are being corrected for simultaneously. As we found3

similar results for the ability of the anchor observations to reduce the contamination of bias4

in both 4DVarBC and WC4DVar, we would expect that anchor observations would reduce5

the most contamination of both observation and model biases on the other correction,6

when they are precise and later than the biased observations.7

As we described in section 3.2, Lorente-Plazas and Hacker (2017) compared correcting8

for observation and/or model bias in a simple numerical system to test which method9

reduced the most root mean square error in the analysis. However, they did not include10

experiments that used anchor observations, which we have shown to play an important11

role when both observation and model biases are present. In this section we will extend12

the results of Lorente-Plazas and Hacker (2017) by comparing our numerical results for13

VarBC and WC4DVar in the presence of both observation and model biases when anchor14

observations are available. We will also compare the separate use of the correction methods15

with their simultaneous use, in order to correct for both observation and model biases16

simultaneously. We will not study the theoretical equations for combining VarBC and17

WC4DVar, as they are too complicated to be insightful. All of the numerical results come18

from the same system as described in sections 7.4 and 8.2.2, with observation and model19

biases that cause similar state analysis biases.20

In table 8.1, the table of values shows the mean difference between the state analysis21

and the truth, where the mean is taken over all 40 state variables, all 1000 realisations22

and over all time and is calculated by the following,23

1

20

20∑
t=1

(
1

40

40∑
i=1

( 1

1000

1000∑
j=1

(xat,i,j)− xtt,i

))
, (8.36)

where j is each realisation; i is each spatial state; and t is each cycle. We have only24
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calculated the differences at the beginning of each window (to give the difference in the1

analysis bias, not its trajectory in the window), which is why t is between 1 and 20, where2

20 is the number of cycles. We will refer to these mean differences in equation (8.36) as3

the mean state analysis bias.4

Table 8.1: Table of mean state analysis biases when observation and model biases are present and
no/one/both bias correction techniques are used. 9 cases are presented: when biased and anchor
observations are at different times in the window and when the anchor observation error variance
is varied. All values rounded to 3 decimal places.

In table 8.1 we have presented the mean state analysis bias when there is both ob-5

servation and model bias present, but when: neither bias has been corrected for; obser-6

vation bias has been corrected for using VarBC; model bias has been corrected for using7

WC4DVar; and both biases have been corrected for using VarBC and WC4DVar simulta-8

neously. Within each of these correction techniques we have varied where the observations9

are in the window: both the anchor and biased observations at t = 10; biased observa-10

tions at t = 5, anchor observations at t = 10; and biased observations at t = 10, anchor11

observations at t = 5. For each of these we have also varied the anchor observation error12

variance between 0.1 and 10. The results for VarBC and WC4DVar are equivalent to13

those shown in sections 7.4 and 8.2.2. Where we have left results blank, we have not done14

the experiments, as we felt they would not give any extra information to our results for15

the computing power needed to complete them. For example, the bias would either be16

significantly larger or smaller than the other values, so were considered unimportant.17

The first thing to note from table 8.1 is that in all cases, there is still a bias within18

the state analysis, albeit very small when both bias correction techniques are used. This19

is important, as in this system we have complete spatial coverage of anchor observations20
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that directly observe the state. Operationally, we would expect a less extensive coverage1

of anchor observations (Eyre et al., 2020) and yet full coverage of anchor observations still2

leads to an analysis state that is biased.3

Comparing the experiments that correct for one or two biases with the experiment4

that did not correct for any biases (rows 2,3,4 compared with row 1), when the anchor5

observation error variance is 1 and the observations are at the same time, we see that6

either correcting for model bias or both model and observation biases reduces the state7

analysis bias from 0.324 to 0.169 and -0.008 respectively. However, only correcting for8

observation bias using VarBC increases the state analysis bias from 0.324 to 0.477. The9

result for using VarBC in the presence of model bias reflects the results in Dee (2005), who10

suggested that correcting for only one type of bias could be worse than performing “bias-11

blind” assimilation and also reflects the results in Eyre (2016) who showed that correcting12

for observation bias can exacerbate the effect of model bias. Operational centres have13

found that correcting for observation bias using VarBC is vital in order to use radiance14

observations, so it is important to note here that in this experiment we have specifically15

chosen the observation and model biases to cause similar magnitudes of bias in the state16

analysis, whereas usually one bias would dominate the other. Also, predictors are used17

in operational VarBC, which have been designed to mitigate the contamination of model18

bias in the observation bias correction (Cameron & Bell, 2018; Harris & Kelly, 2001), so19

we would expect operational VarBC to perform better than not correcting for observation20

bias at all.21

Next we compare the experiments that have small anchor observation error variance22

(the green columns) with the experiments with anchor observation error variance equal to23

1 (the yellow columns). In table 8.1, more precise anchor observations have reduced the24

bias in the state analysis when using either VarBC or WC4DVar compared to using anchor25

observations with the same error variance as the biased observations. This is particularly26

true for VarBC where more precise anchor observations have reduced the bias in the state27
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from 0.477 to -0.014 (rounded from -0.0141), 0.492 to -0.014 (rounded from -0.0137) and1

0.609 to 0.117 respectively for the three cases of observations in time, which shows the2

importance of precise anchor observations, particularly when correcting for model bias3

in VarBC. This is an extension of Eyre (2016), who demonstrated the need for anchor4

observations in VarBC in the presence of model bias in a scalar system, whereas here we5

have shown the importance of precise anchor observations in a 40-variable 4DVar system.6

Now we look to the three groups of columns outlined with the bold lines; when the7

biased and anchor observations are at different times in the window. The mean state8

analysis bias in table 8.1 has the largest magnitude between equivalent experiments when9

the anchor observations are earlier in the window, as we could clearly see from figures10

7.1a and 8.5a. This suggests that, for anchor observations to have the largest impact in11

reducing the contamination of bias when correcting for only one type of bias, they need12

to be towards the end of the window (or at least at the same/later time step to the biased13

observations). This reflects our results in the theory for VarBC and WC4DVar in sections14

7.3 and 8.2 respectively.15

Lorente-Plazas and Hacker (2017) suggested that correcting for both biases simulta-16

neously was better than only correcting for one. However, in our table 8.1, we see that17

there is an exception to this, which is when the observation bias has been corrected using18

VarBC with very precise anchor observations. In this case the mean state analysis biases19

are -0.014 (rounded from -0.0141), -0.014 (rounded from -0.0137) and 0.117 for the three20

observation times respectively, which is lower when compared to correcting for both with21

very imprecise anchor observations, which have mean state analysis biases: -0.019, -0.01422

and -0.012 for the three respective observation times. Therefore, this suggests that cor-23

recting for VarBC with precise anchor observations could reduce the state analysis bias24

more than correcting for both with less precise (or fewer) anchor observations. This is im-25

portant as implementing both correction techniques operationally requires a lot of time to26

set up, as well as a lot of prior knowledge about the system in order to create both model27
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bias parameter and observation bias coefficient background error covariance matrices.1

In table 8.2 the table of values for both the mean observation bias coefficient bias and2

the mean model bias parameter bias are given for the same experiments as in table 8.1.3

The mean observation bias coefficient bias is defined as,4

1

20

20∑
t=1

( 1

1000

1000∑
j=1

(βat,j − βtt )
)
, (8.37)

and the mean model bias parameter bias is defined as,5

1

20

20∑
t=1

( 1

1000

1000∑
j=1

(ηat,j − ηtt)
)
, (8.38)

which are the means of the biases in the observation bias coefficient and model bias pa-6

rameter over all realisations and all cycles. Studying the mean observation bias coefficient7

and model bias parameter analyses demonstrates how having both model and observation8

biases can contaminate the estimate of the other. In table 8.2a, all of the values of the

(a) Table of mean observation bias coefficient bias. True observation bias coefficient = 0.5.

(b) Table of mean model bias parameter bias. True model bias parameter = 0.05.

Table 8.2: As in figure 8.1 but for the mean observation bias coefficient bias (when using VarBC)
and the mean model bias parameter bias (when using WC4DVar).

9

observation bias coefficient bias are larger in magnitude than the equivalent values of the10

model bias parameter bias in table 8.2b. This is as expected as the true observation bias11

coefficient is ten times larger than the true model bias parameter. However, the bias in12

the observation bias coefficient is more than ten times larger the bias in the model bias13
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parameter. This demonstrates that observation bias correction is more largely impacted1

by model bias than model bias correction is impacted by observation bias. It should be2

noted that the value by which the observations/model are contaminated, is dependent on3

the model/observation bias present in the particular system, and the biases in our ex-4

periments, have been chosen so that both the observation and model biases cause similar5

biases in the state analysis.6

The conclusions for the precision and timing of the anchor observations are mostly7

the same as in table 8.1, except for the model bias parameter when correcting for both8

observation and model biases. The bias in the model bias parameter is most reduced when9

the anchor observations are earlier in the window than the biased observations. As this10

is the opposite result for both the state and the observation bias coefficient analyses, this11

suggests that the model bias parameter has taken in some of the bias from the system12

in order to reduce the bias in the state and/or observation bias coefficient. As correcting13

for both biases simultaneously has reduced the bias in the model bias parameter to a14

value close to zero for all three cases of observations in time, we will regard this case as15

unimportant, but this may present a problem if the biases in the model bias parameter16

were significantly larger.17

Correcting for both observation and model bias gives the most accurate estimates of18

the biases compared to using only one or neither bias correction technique in both tables19

8.1 and 8.2. The biases in the observation bias coefficient and model bias parameter are20

very small, which suggests that biases have been correctly attributed to their sources.21

However, we wanted to confirm that this is not because we have full spatial coverage of22

anchor observations and therefore the system has a good knowledge of the truth. The23

orange columns in tables 8.1, 8.2a and 8.2b represent when the anchor observations have a24

very large error variance (σ2o(2) = 10) in comparison to the biased observations (σ2o(1) = 1),25

so can be regarded as practically unused in the system. We can see that the biases have26

increased for all times of the observations, but the biases remain negligible (from -0.008 to27
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-0.019, -0.007 to -0.014 and -0.012 to -0.020 for the mean state analysis bias). This shows1

that, in our experiments, correcting for both observation and model biases simultaneously2

reduces the bias in the state analysis, regardless of the use of anchor observations, which3

is consistent with the Lorente-Plazas and Hacker (2017) results, which did not consider4

anchor observations at all. This could be because, although the model and observation5

biases have similar spatial structures (i.e. they are both constant over the spatial domain),6

they have different temporal structures, so this may be how the system is able to separate7

them. We tested this hypothesis by reducing the window to two time steps, so that the8

model and observation biases would contaminate the system at two and one time steps9

respectively (ie. their temporal structures are more similar). The system was still mostly10

able to correct for both biases simultaneously, leading to a negligible bias in the state11

analysis of approximately 0.015 when the observations were at the same time step. This12

is just under a doubling of the magnitude of the bias when the window length was ten13

time steps (-0.008), so does not disprove this hypothesis, but as the bias is still small, it14

suggests that the different structures between the observation and model biases is not the15

only cause.16

Dee (2005) suggested that biases can only be correctly attributed to their source if the17

structure of the biases is known. In our experiments, the system knows that the bias in18

both the model and the observation is just a constant added to the data. Operationally,19

the form of the bias may not be known and is only an assumption. Therefore, it is likely20

that correcting for both biases simultaneously performed well in our experiments because21

the structure of the biases was known. Correcting for both biases simultaneously should22

thus be tested on a system where the form of the bias is unknown, or mis-specified, in23

order to understand the effect of assuming the bias correction function. This additional24

work is beyond the scope of this project.25
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8.3.1 Model and observation biases acting in different directions1

So far we have only demonstrated the results of experiments where both the observation2

and model biases pull the state analysis in the same (positive) direction. In this next3

section we use a negative observation bias of βt = −0.5 so that the observation and model4

biases pull the state analysis in opposite directions. We have set the observation error5

variances to be equal (=1) and the anchor and biased observations are both at the end of6

the window (t = 10).

Table 8.3: The mean state, observation bias coefficient and model bias parameter analysis biases
when the observation and model biases act in different directions. tbiased = tunbiased = 10. σ2

o(2) =
1.

7

In table 8.3, we have presented the mean state analysis bias, the mean observation bias8

coefficient analysis and the mean model bias parameter analysis when the observation and9

model biases act in opposite directions. When no bias correction technique is used, the10

mean state analysis bias is -0.018 (compared to 0.324 when βt is positive). This is close11

to zero and so shows that the two biases naturally cancel each other out, without having12

to use either bias correction technique. When only one bias correction technique is used13

(i.e. either VarBC or WC4DVar), the state analysis bias is significantly larger than when14

no bias correction technique is used, giving a mean state analysis bias of 0.476 (using15

VarBC only) and -0.185 (using WC4DVar only). These values are similar in magnitude to16

when the observation bias was positive (table 8.1), which shows that the observation bias17

and model bias interact in a similar way when correcting for only one bias, regardless of18

whether the observation and model biases act in the same or opposite directions. This is19

also supported by the fact that the observation bias coefficient bias and the model bias20
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parameter biases have similar magnitudes to when βt was positive. Finally, if both model1

and observation biases are corrected for, then the mean state analysis bias is the smallest2

at -0.001, which is smaller than correcting for one type of bias or correcting for neither.3

Therefore, this gives the same results as in Lorente-Plazas and Hacker (2017), that if the4

observation and model biases act in opposite directions, then our numerical experiments5

give smaller biases when either both or neither of the biases are corrected for, compared6

to when only one is corrected for. As previously discussed, more research is needed in a7

numerical system that mis-specifies the form of the biases, to check whether correcting for8

both would still perform so well in a more realistic system.9

8.4 Conclusions10

The aim of this chapter has been to understand the role of anchor observations in the in-11

teraction of 4DVarBC and WC4DVar. This was approached by first studying theoretically12

how uncorrected observation bias contaminates WC4DVar, to mirror the studies in chapter13

7, where theoretical results were discussed for how uncorrected model bias contaminates14

4DVarBC. We then compared numerical experiments that corrected for observation bias,15

model bias, or both simultaneously to compare how well the anchor observations were16

able to disentangle the observation and model biases when either one or both biases were17

corrected for.18

In equation (8.17) and figures 8.5a and 8.6a we demonstrated that using more precise19

anchor observations reduced more of the contamination of uncorrected observation bias20

on the state analysis in WC4DVar. This mirrors the conclusion of chapter 7, that more21

precise anchor observations reduced more of the contamination of uncorrected model bias22

in 4DVarBC. However, in table 8.1, we showed that anchor observations had a larger im-23

pact in reducing the contamination of uncorrected model bias in VarBC, than in reducing24

the contamination of uncorrected observation bias in WC4DVar. When we have referred25
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to more precise anchor observations, we have used it to mean a smaller anchor observation1

error variance such that they are given more weight in the analysis. The precision of2

observations can also be reduced by having a larger number of anchor observations in one3

area (which is easier to achieve in practice than having more precise individual observa-4

tions). As we showed in chapter 2.2, anchor observations, particularly radiosondes, are5

quite sparse. Therefore areas with less coverage of anchor observations, for example in the6

southern hemisphere in the troposphere will be more susceptible to biases contaminating7

the model or observation bias corrections. Therefore, this work shows that future anchor8

observing networks should aim to either reduce the anchor observation error variance, or9

as this can be difficult in practice, aim to increase the frequency of observations, in order to10

increase their weighting within the data assimilation system. Further studies in this area11

should also test correcting for observation/model biases in systems with inhomogeneously12

spaced anchor observations, to study how well the anchor observations can reduce the13

contamination of bias when they are not evenly spaced throughout the domain, as would14

occur in operational observations. Presumably, the ability of the anchor observations to15

reduce the contamination of biases in locations that are unobserved would reduce, as we16

found for VarBC when anchor observations did not observe the whole domain in chap-17

ters 6 and 7, where the background error correlations between states and the model were18

given greater importance. However, this should be tested thoroughly on a more realistic19

numerical system and so is beyond the scope of this thesis.20

In figure 8.5 we demonstrated that having anchor observations later in the window21

and biased observations earlier in the window significantly reduced the contamination of22

uncorrected observation bias when correcting for model bias, compared to having the ob-23

servations at other times. This mirrors the conclusion of chapter 7 which also found that24

anchor observations later in the window reduced more of the contamination of uncorrected25

model bias in 4DVarBC. In fact we showed in table 8.1 that, when correcting for either26

or both observation and/or model bias, having anchor observations later in the window27
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reduced the most bias in the state analysis. Therefore, regardless of the correction tech-1

nique used, in order to ensure the least contamination of bias on the analysis, it is safest2

to have anchor observations later in the window so that biased observations are less likely3

to be later than the anchor observations. Therefore, as previously discussed in chapter 7,4

as radiosondes tend to only provide data every 6 or 12 hours (ECMWF Geographical Cov-5

erage, 2023), continued work should be put into developing anchor observations that can6

provide more regular data updates, such as in the expansion of radio occultation satellite7

observations (e.g. Harnisch et al., 2013; Cucurull et al., 2018), or alternatively, operational8

centres could look to change the timing of the assimilation windows so that the anchor9

observations occur at the end of the window.10

In table 8.1 we found that correcting for both observation and model biases simulta-11

neously significantly reduced the bias in the state analysis, compared to only correcting12

for one, regardless of the weighting given to the anchor observations. This reflected the13

results found in Lorente-Plazas and Hacker (2017), who did not consider anchor observa-14

tions in their experiments. This tentatively suggests that, if both observation and model15

biases are corrected for, then fewer anchor observations would be required to achieve an16

equally accurate analysis (to only correcting for observation bias). However, in order to17

more robustly demonstrate that correcting for both biases simultaneously is better than18

only correcting for one and to test when anchor observations become important in disen-19

tangling the biases, the numerical results should be repeated in a numerical system where20

the structure of the biases is mis-specified as Dee (2005) predicted that biases could only21

be attributed to their correct sources if the forms of the biases were known.22

8.5 Summary23

In chapter 8 we have demonstrated the impact that anchor observations can make in a24

system correcting for model bias in the presence of observation bias and then compared25
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the numerical results to systems that only correct for observation bias, or that correct1

for both biases simultaneously. We have found that, in answer to research question 2.3,2

precise anchor observations are important in reducing the contamination of bias, but they3

are particularly important when correcting for observation bias in the presence of model4

bias, answering research question 3. In answer to research question 2.1, the timing of the5

anchor observations significantly impacted their ability to reduce the contamination of6

bias: we concluded that, when correcting for model bias, it is more important for anchor7

observations to be later than the biased observations, and when correcting for observation8

bias, it is important for the observations to be at the same time. In the next chapter we9

will discuss the overall conclusions for the whole thesis, discussing the implications of the10

results and where the results fall short.11
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Chapter 91

Conclusions2

In this thesis we have discussed how the presence of observation and model biases in a data3

assimilation system can be detrimental to our estimate of the state, despite an attempt4

to correct for one or both of the biases using VarBC (for observation bias) or WC4DVar5

(for model bias).6

7

In section 3.3 we defined research question 1 as:8

• RQ1: What are the consequences of mis-specifying the background error statistics9

in VarBC?10

In chapter 3 (section 3.1) we discussed the work of Eyre and Hilton (2013), who demon-11

strated that the analysis error variances in variational data assimilation could be larger12

than the corresponding background error variances if the background error covariance ma-13

trix was mis-specified. They defined this scenario as the “danger zone”, as it meant that14

performing data assimilation would degrade the estimate of the state from the background.15

In chapter 4 we extended this work to a VarBC system, where both the state and bias16

coefficient background error covariance matrices could be mis-specified, in order to answer17

RQ1. We found that the consequences of mis-specifying the background error statistics18
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was the presence of danger zones for both the state and the bias-coefficient analyses. If1

the state analysis fell into the danger zone, then the assimilation of observations would2

degrade the state analysis from the state background. Similarly, if the bias coefficient anal-3

ysis fell into the danger zone, the assimilation of observations would degrade the estimate4

of the observation bias correction from the observation bias coefficient background. In a5

scalar example, we showed that the state analysis was more likely to fall into the danger6

zone when the state background error variance was overestimated and the bias coefficient7

background error variance was underestimated. The opposite was true for the bias coef-8

ficient: the bias coefficient analysis was more likely to fall into the danger zone when the9

state background error variance was underestimated and the bias coefficient background10

error variance was overestimated. This means that if one danger zone is avoided, then the11

other danger zone is more likely. Operationally, the state and bias coefficient background12

error covariance matrices are usually estimated, based on prior knowledge of the system,13

without knowing what the 'true' background error covariance matrices are. Therefore it14

would be difficult to know whether the background error covariance matrices are being15

under or overestimated. However, this work has aimed to derive insight into why systems16

may be performing unexpectedly when using VarBC, rather than suggesting to purposely17

under or overestimate the background error covariance matrices in the future.18

Although we derived vector equations for the analysis error covariance matrices when19

the background error covariance matrices were mis-specified, the majority of the results20

from chapter 4 were based on a scalar system. In a non-scalar system, both the variances21

for each state variable and the covariances between state variables could potentially be22

mis-specified. Therefore, future work should study the implications of mis-specifying the23

background error statistics within VarBC in a vector system, to understand the impact24

of mis-specifying both the variances and the covariances. Eyre and Hilton (2013) studied25

both a scalar and vector system when observation bias correction was not used. They26

found that an example of the danger zone also existed for a realistic non-scalar case, but27
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the primary cause of the danger zone was due to mis-specifying the variances, rather than1

the correlations. Therefore, as the analysis error covariance matrix equations for VarBC2

have a similar structure to the analysis error covariance matrix equation when VarBC3

is not used, we would hypothesise that, in VarBC, mis-specifying the background error4

variances would be the primary cause of the danger zone, rather than mis-specifying the5

background error correlations between the state variables or between the bias coefficient6

variables.7

8

In section 3.3 we defined research question 2 as:9

• RQ2: What criteria are needed in the anchor observations to successfully reduce10

bias in the analysis when both model and observation biases are present but only11

observation bias is accounted for?12

In order to tackle this problem, we broke RQ2 down into three sub questions:13

• RQ 2.1: Where are anchor observations most effective in reducing the contamination14

of bias?15

• RQ 2.2: When are anchor observations most effective in reducing the contamination16

of bias?17

• RQ 2.3: Does the quality of the anchor observations matter in reducing the contam-18

ination of bias?19

In chapter 3 (section 3.2) we discussed how uncorrected biases can contaminate the data20

assimilation system, as well as contaminating the estimate of the bias correction. If both21

model and observation biases are present, then Eyre (2016) showed in a 3-dimensional,22

scalar system that anchor (unbiased) observations are vital in preventing the observation23

bias correction from drifting towards the model bias.24
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In chapter 6 we extended Eyre (2016)’s work to understand the role of anchor obser-1

vations in a 3-dimensional, non-scalar VarBC system in the presence of model bias (in the2

form of background bias), in order to answer RQ2. In answer to RQ 2.1, we found that3

anchor observations were most effective at reducing the contamination of background bias4

in the observation bias correction when they observed the same states as the bias-corrected5

observations. Therefore, this work showed that the regions most at risk of contamination6

from model bias are regions where anchor observations are sparse, such as temperature7

observations in the upper atmosphere (above the stratosphere) or the lower troposphere in8

the Southern Hemisphere. However, we found that if the anchor and bias-corrected obser-9

vations observed different regions or variables, the background error correlations between10

these states became more important:11

• If the anchor and bias-corrected observations observed states with similar back-12

ground biases, then large background error correlations successfully allowed the an-13

chor observations to reduce the contamination of bias in states they did not observe.14

• If the anchor observations observed states with background biases, but the bias-15

corrected observations did not observe states with background biases, then large16

background error correlations would detrimentally transfer biased information from17

the anchor observations to the bias-corrected observations.18

• If the anchor observations did not observe states with background biases, but the19

bias-corrected observations observed states with background biases, then, regardless20

of the background error correlations, the anchor observations could not reduce the21

contamination of bias on the states they did not observe.22

Operationally, we cannot control whether the background error correlations are large or23

small, as the correlations will be dependent on the system and the model. Therefore,24

regions with large background error correlations, such as along a front, will transfer more25
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information about model biases from the anchor observations to the bias-corrected obser-1

vations, than regions with small background error correlations, for example across vertical2

layers separated by a temperature inversion that prevents mixing. As we have shown,3

this can have either a favourable or detrimental impact on the amount of model bias that4

can contaminate a system, so can be used to derive insight into why VarBC systems may5

give less accurate results than expected. In answer to RQ 2.3, we found that more precise6

anchor observations were more able to reduce the contamination of model bias on the ob-7

servation bias correction, due to the anchor observations being given a greater weighting8

in the analysis. A greater weighting of anchor observations could be achieved either with9

individual instruments that are more precise (although this is difficult to achieve in prac-10

tice), or by increasing the number of anchor observations in a particular area. Increasing11

the number of anchor observations is more achievable with the continued expansion of12

radio occultation instruments, as they can give a global coverage of data (although this13

is limited to temperature measurements in the stratosphere and upper troposphere, or14

humidity measurements in the lower troposphere).15

In chapter 7 we extended chapter 6 and Eyre (2016) to understand the role of anchor16

observations in a 4-dimensional, non-scalar VarBC system in the presence of model bias.17

In answer to RQ 2.2, we found that anchor observations were most effective at reducing18

the contamination of model bias in the observation bias correction when they were at the19

same time step as the bias-corrected observations in the assimilation window. In answer to20

RQ 2.3, when the anchor and bias-corrected observations were at the same time step, we21

found that more precise anchor observations were able to reduce the contamination of both22

background and model biases on the estimate of the state and observation bias coefficient23

analyses, as we found for background biases in the 3DVar case in chapter 6. If anchor24

observations were later than the bias-corrected observations, then an additional model bias25

term would occur in the analysis that came from evolving the state to the time step of the26

anchor observations. This was somewhat reduced with more precise anchor observations,27
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and in our theoretical analysis we found that the reduction of this bias, when precise1

anchor observations were available, depended on using a model that had growing errors.2

If anchor observations were earlier in the assimilation window than the bias-corrected3

observations, then an additional model bias term would occur in the analysis that came4

from evolving the state to the time step of the bias-corrected observations. The anchor5

observations had no control over the additional model bias and the model bias would6

not reduce, regardless of the precision of the anchor observations. As satellite radiance7

observations tend to give data across a time window (Lean et al., 2021), it would be safer8

for anchor observations to be at the end of the window, so that they are either at the same9

time or later than the bias-corrected observations. Changing the timing of the anchor10

observations is not always possible operationally, as observations such as radiosondes tend11

to have set times. However, increasing the number of radio occultation instruments would12

allow more anchor observations of the stratosphere and upper troposphere to be available13

across the time window, which would therefore provide more anchor observations at the14

end of the window. Alternatively, the timing of the assimilation windows could be shifted15

so that anchor observations such as radiosondes would be forced to the end of the window.16

We presented the theoretical results of chapter 6 and 7 for a general vector system, but17

we only demonstrated the numerical results using our simple Lorenz 96 system, which only18

had one bias coefficient and had observations at every location. Operationally, predictors19

are used in the bias correction function, which have been chosen to reduce the contamina-20

tion of model bias (Harris & Kelly, 2001; Cameron & Bell, 2018). Therefore, our numerical21

experiments should be extended into a more realistic system, where the bias correction22

function is defined by a number of predictors, as well as having inhomogeneously spaced23

anchor observations. This would test how the spatial distribution affects the role of anchor24

observations in reducing the contamination of model bias in a realistic system, especially25

when there are large regions that are not observed by anchor observations.26

27
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In section 3.3 we defined research question 3 as:1

• RQ3: How important are anchor observations when correcting for model and/or2

observation bias?3

In chapter 3 (section 3.2) we discussed a comparison study of the analysis RMSE (root4

mean square error) when correcting for observation and/or model bias when both biases5

were present (Lorente-Plazas & Hacker, 2017). Lorente-Plazas and Hacker found that, in6

the presence of both biases, only correcting for model bias reduced the state RMSE more7

than only correcting for observation bias, but correcting for both observation and model8

biases simultaneously had the biggest improvement on the state RMSE. However, these9

experiments were undertaken without the use of anchor observations, which have been10

shown to be vital when correcting for observation or model bias in the presence of both11

biases (Eyre, 2016; Laloyaux et al., 2020a).12

In chapter 8 we extended Lorente-Plazas and Hacker (2017) by comparing the role of13

anchor observations when correcting for observation and/or model bias when both biases14

were present in order to answer RQ3. We found that anchor observations were important15

when correcting for observation or model bias, but particularly made an impact when16

correcting for observation bias using VarBC. Our results when using anchor observations17

conflicted with the results in Lorente-Plazas and Hacker (2017), who did not use anchor18

observations, as we found that using precise anchor observations in VarBC reduced the19

state analysis bias more than using precise anchor observations in WC4DVar. Furthermore,20

we found that using precise anchor observations in VarBC reduced the state analysis21

bias more than using very imprecise anchor observations when correcting for both biases22

simultaneously. This is important operationally, as most operational centres use VarBC to23

correct for observation bias, but few use WC4DVar to correct for model bias (Gustafsson24

et al., 2018). Therefore, these results show that it is more important to focus on improving25

the precision of anchor observations (by increasing the precision of individual instruments26
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or increasing the number of instruments), rather than necessarily moving to a WC4DVar1

system.2

However, in line with the results in Lorente-Plazas and Hacker (2017), we found in3

chapter 8 that correcting for both biases simultaneously reduced the state analysis bias4

more than only correcting for one, for each equivalent case (precision of anchor observa-5

tions and/or timing of anchor observations). This result was true even when the anchor6

observations had very low precision, which suggested that correcting for both observation7

and model biases simultaneously performed very well, without the need for anchor obser-8

vations, as was the case in Lorente-Plazas and Hacker (2017). This is counter-intuitive9

as we would expect the system to perform badly if there is no 'truthful' reference infor-10

mation to anchor the system. However, we believe this may be due to two factors, which11

would need to be tested further. The first is that, although the observation and model12

biases had similar spatial structures, their temporal structures were different, as the model13

bias accumulates across the assimilation window, whereas the observation bias only occurs14

where there are biased observations. This means that the system is able to disentangle15

the two biases and therefore correct them separately. The second factor is that the spatial16

structures of the observation and model biases was known, which means that the system17

could more easily identify each bias individually.18

In chapters 7 and 8 we studied the theory behind model bias contaminating VarBC,19

and observation bias contaminating WC4DVar. However, we did not study the theory20

of combining VarBC and WC4DVar, due to the complexity of the equations. Therefore,21

to have more robust conclusions about the effectiveness of correcting for both biases si-22

multaneously, the numerical experiments should be repeated in a more realistic system,23

where the anchor observations are more inhomogeneously spaced, and the structure of the24

biases have been mis-specified. This would test whether using both VarBC and WC4DVar25

simultaneously really would significantly reduce the state analysis bias, with the anchor26

observations that we have available.27
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