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Abstract
Comparative extinction risk analysis—which predicts species extinction risk from 
correlation with traits or geographical characteristics—has gained research attention 
as a promising tool to support extinction risk assessment in the IUCN Red List of 
Threatened Species. However, its uptake has been very limited so far, possibly because 
existing models only predict a species' Red List category, without indicating which 
Red List criteria may be triggered. This prevents such approaches to be integrated 
into Red List assessments. We overcome this implementation gap by developing mod-
els that predict the probability of species meeting individual Red List criteria. Using 
data on the world's birds, we evaluated the predictive performance of our criterion-
specific models and compared it with the typical criterion-blind modelling approach. 
We compiled data on biological traits (e.g. range size, clutch size) and external drivers 
(e.g. change in canopy cover) often associated with extinction risk. For each specific 
criterion, we modelled the relationship between extinction risk predictors and spe-
cies' Red List category under that criterion using ordinal regression models. We found 
criterion-specific models were better at identifying threatened species compared to 
a criterion-blind model (higher sensitivity), but less good at identifying not threat-
ened species (lower specificity). As expected, different covariates were important for 
predicting extinction risk under different criteria. Change in annual temperature was 
important for criteria related to population trends, while high forest dependency was 
important for criteria related to restricted area of occupancy or small population size. 
Our criteria-specific method can support Red List assessors by producing outputs 
that identify species likely to meet specific criteria, and which are the most important 
predictors. These species can then be prioritised for re-evaluation. We expect this 
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1  |  INTRODUC TION

Over recent decades, the IUCN Red List of Threatened species 
(henceforth ‘Red List’) has become the global standard for species' 
extinction risk assessments (Betts et  al.,  2020; Mace et  al., 2008; 
Rodrigues et al., 2006). A Red List assessment is based on at least 
one of five complementary criteria with quantitative thresholds re-
lating to population and distribution size, structure and trends to 
assign species to categories of extinction risk (IUCN, 2012; Mace 
et  al.,  2008). The Red List now includes assessments for over 
150,000 species of animals, fungi and plants (IUCN, 2022), but, de-
spite its great importance for conservation action and policy (Betts 
et al., 2020; Hoffmann et al., 2010; Williams et al., 2021), it is insuf-
ficiently funded (Juffe-Bignoli et al., 2016). As a consequence, the 
Red List faces important challenges in keeping assessments up to 
date (i.e. <10 years old) and reducing the proportion of data deficient 
species (Cazalis et al., 2022; Rondinini et al., 2014).

Different methods have been developed to support Red List 
assessments and address the above challenges (e.g. Bachman 
et  al.,  2019; Buchanan et  al.,  2008; Cazalis et  al.,  2023; Santini 
et al., 2019; see Cazalis et al., 2022 for an overview). Among them, 
comparative extinction risk models link extinction risk (i.e. Red List 
categories) with species' biological traits (e.g. body mass, habitat 
specialisation, range size) and external drivers of risk (e.g. human 
density, land-use change, climate change; Chichorro et  al.,  2019, 
2022; Purvis et al., 2000). The models are then used to predict the 
Red List categories of species that have not yet been assessed for 
the Red List (Darrah et al., 2017; Zizka et al., 2021), that are Data 
Deficient (Bland & Böhm, 2016; Luiz et al., 2016) or that need updat-
ing (Di Marco et al., 2014; Lucas et al., 2023), with the objective of 
accelerating and helping to prioritise the work of Red List assessors 
by providing additional information on species' extinction risk.

These comparative extinction risk models predict that Red List 
categories met under any of the five possible criteria (based on e.g. 
distribution, abundance, population trends), thus ignoring potential 
differences in their driving forces. This ‘criterion-blind’ approach as-
sumes all criteria can be predicted from the same covariates, while in 
reality, the criteria address different sources of risk that are spatially 
structured (Figure  S1), and some are likely easier to predict than 
others. For instance, predicting species threatened under criterion 
B1 (restricted extent of occurrence combined with some subcrite-
ria) is relatively easy using range size, while it may be harder to find 
relevant covariates to predict species threatened under criterion 
A3 (future population decline). This suggests that species classified 

under different criteria might have different risk correlates and face 
different prediction uncertainties, which might have contributed to 
the low performance of some criterion-blind models when tested on 
independent samples of species (Di Marco, 2022). In some cases, a 
covariate could even have opposite effects on different criteria. For 
instance, species with large body mass tend to have low population 
density (Santini et al., 2022; Silva & Downing, 1995) and might be 
more likely to trigger criterion C1 (small population size and decline), 
but such species tend to have large ranges (Newsome et al., 2020) 
hence are less likely to trigger criterion B. Importantly, ignoring the 
diversity of criteria limits the uptake of comparative extinction risk 
models by assessors, who need criteria-specific information (Cardillo 
& Meijaard, 2012; Cazalis et al., 2022).

Here, we aim to overcome this research-implementation gap by 
developing criterion-specific extinction risk models and comparing 
their performance and applicability to a classic criterion-blind model. 
While the latter estimates the probability of a species to be threat-
ened under any criterion, our criterion-specific model estimates such 
a probability independently for each individual criterion (A1, A2, A3, 
etc). While benefiting from the power of the multi-species compari-
sons, this approach better encompasses the diversity of reasons that 
may qualify a species as threatened on the Red List and provides 
assessors with an output that is directly related to the information 
needed for assessments. We use birds as a study group to test our 
approach as they are the most consistently assessed group across 
Red List criteria (Cazalis et al., 2022), with very few data deficient 
species (0.4%), they have been used in many previous comparative 
extinction risk analyses (e.g. Olah et al., 2018; Richards et al., 2021; 
White & Bennett,  2015), and they present great variation in their 
response to human pressure (Cazalis, 2022; Lees et al., 2022).

2  |  METHODS

We compiled data on avian biological traits associated with extinc-
tion risk (e.g. range size, clutch size) as well as external risk drivers 
operating within species ranges (e.g. change in forest canopy cover, 
distance to cities). We modelled the relationship between extinction 
risk predictors and each species' Red List category met under each 
specific criterion, using ordinal regression models that best match 
the ordinal structure of the Red List categories (Lucas et al., 2019, 
2023; Luiz et  al.,  2016), and combined these models into a single 
final prediction. We then compared the performance of these 
criterion-specific models with a criterion-blind approach, as well as 

new approach to increase the uptake of extinction risk models in Red List assess-
ments, bridging a long-standing research-implementation gap.

K E Y W O R D S
assessment, Aves, biodiversity conservation, birds, comparative analysis, extinction risk, 
functional traits
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the importance of different predictors in each approach. Finally, we 
evaluated the potential conservation applications of the criterion-
specific approach. All analyses were conducted in R version 4.0.2 (R 
Core Team, 2020).

2.1  |  Extinction risk predictors

For each of the 11,162 bird species included in the Red List version 
2021-3 (BirdLife International, 2022), we gathered information on 
species biological traits that are associated with extinction risk (e.g. 
Olah et al., 2018; Ripple et al., 2017; Tobias & Pigot, 2019), consider-
ing five types (see details and rationale in Table S1): morphological 
(body mass, beak length, hand-wing index), behavioural (nocturnality, 
migratory status), life history traits (clutch size, generation length), 
ecological (trophic niche, forest dependency, habitat breadth) and 
geographical (insularity, range size). However, species' intrinsic 
traits alone cannot predict extinction risk (Chichorro et  al.,  2022; 
González-Suárez et al., 2013), and it is key to include measurements 
of the impact of human activities within the species' range (Di Marco 
et al., 2014; Murray et al., 2014). We thus also included proxies for 
habitat alteration and degradation (extent and change of cropland 
and forest cover), human encroachment (human density and trends, 
proportion of rural population, travel time to the nearest city) and 
past and contemporary climate change (difference in precipitation 
and temperature) within each species range (see details in Table S1).

2.1.1  |  Species traits and characteristics

We used the distribution maps published in BirdLife International 
and Handbook of the Birds of the World (2021), filtering polygons 
with a high probability of presence (‘extant’) and of ‘native’ origin 
during the breeding season (‘resident’ and ‘breeding season’), while 
removing polygons coded with other presence (e.g. extinct), origin 
(e.g. introduced, vagrant) and season (e.g. non-breeding, passage) 
attributes. As most of the available data on predictors of extinc-
tion risk are terrestrial, we removed marine species from our study 
(N = 365, as defined by BirdLife International).

We calculated range size as the area of the filtered distribution 
map transformed into a Mollweide equal-area projection. In addition, 
four predictors were extracted from BirdLife International  (2022): 
generation length, migratory status, forest dependency and habitat 
breadth (calculated as the number of major habitat types that are 
coded as suitable for each species).

Morphological traits relating to beak length (from tip to nares), 
body mass and hand-wing index were extracted from AVONET 
(Tobias et  al.,  2022), alongside ecological information on trophic 
niches (aggregated into four classes: herbivore, omnivore, inver-
tivore and carnivore; Table S1). Insularity and clutch size were ob-
tained from Tobias and Pigot (2019), and information on the diurnal/
nocturnal activity of birds was obtained from Wilman et al. (2014). 
To address taxonomic mismatches, we matched all taxa to the 

taxonomy used by BirdLife International, using the synonym table 
from Tobias et al. (2022). The remaining 200 taxonomic mismatches 
were then corrected manually using the synonyms documented in 
BirdLife International (2022). A table of these matches is included in 
the Extended Data S1 provided with this article.

2.1.2  |  Extrinsic factors

Similarly to the range size calculation, we only considered breeding 
range when measuring extrinsic variables for consistency among 
migratory and resident species. We used a raster layer of percent-
age tree canopy cover in 2018 and changes in cover during 2000–
2018 at 300-m resolution from Remelgado and Meyer (2023; using 
Landsat data to correct some biases in global forest cover maps). 
We extracted the median value of these predictors within the range 
of each species. Similarly, we calculated the median value of range-
wide cropland coverage (in 2019) and cropland changes from 2003 
to 2019 obtained from Potapov et al. (2022).

We also calculated the median human population density within 
each species' range, and the difference between median density 
in 2015 versus 2000 (Global Human Settlement [GHS]; Schiavina 
et  al.,  2019), used as a proxy for human direct pressure, although 
some species are well adapted to it (Cazalis et al., 2021). To account 
for the direct pressures that species can face in the rural environment 
(as defined by the GHS product), we also calculated the proportion 
of the human population living in rural areas within each species' 
range (Schiavina et  al.,  2019). As human accessibility can also de-
termine the level of disturbance to which species are exposed, we 
extracted data from the global map of travel time to cities (Weiss 
et  al.,  2018) and calculated the median value of pixels contained 
within each species' distribution. Finally, we extracted the countries 
of occurrence of each species from BirdLife International  (2022) 
and calculated the resulting median gross domestic product (GDP) 
per capita from WorldBank data (Worldbank, 2021) as an index of 
human population development.

In order to account for climatic correlates of risk, we extracted 
the current value and difference between past and current val-
ues for two variables from the CHELSAcruts database version 1.0 
(Karger et al., 2017; Karger & Zimmermann, 2018), choosing mean 
annual temperature and annual precipitation for their relevance in 
influencing species' distributions and their ease of interpretation 
(Supplementary Methods S1). Using data from another study pre-
dicting Red List categories (Lucas et  al.,  2023), we calculated the 
average value of both bioclimatic variables over two periods based 
on CHELSA data (Karger et al., 2017): 1965–1995, to represent the 
past climate, and 2005–2014, to represent the current climate. We 
then extracted the median value of each variable within the species' 
range at both periods. We finally calculated the difference between 
both time periods as a proxy of recent climate change experienced 
by the species within their geographic range.

We extracted raster values within species' distribution polygons 
using the R package ‘exactextractr’ (Baston & ISciences, LLC, 2022). 

 13652486, 2024, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/gcb.17119 by T

est, W
iley O

nline L
ibrary on [20/03/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



4 of 13  |     HENRY et al.

Polygons were reprojected according to each raster's original co-
ordinate system before extraction in order to minimise raster re-
projection. Variables that followed a skewed distribution were 
log-transformed, and all numeric variables were scaled (Table S1).

We removed 1864 species for which we could not extract and 
calculate all predictors (mainly due to gaps for clutch size, insular-
ity [1400 species missing data] and diurnality [1183 species missing 
data]), leaving a final dataset composed of 8695 species. We ensured 
that the absence of 20% of the data did not introduce any bias into 
the distribution of species within the Red List categories (Figure S3).

2.2  |  IUCN Red List framework

We extracted from BirdLife International (2022) the Red List category 
assigned to each species under each criterion (see below), as well as 
the final listed category (Figure 1; see Figure S1 for spatial distribution 
of these criteria). For birds, generally all Red List criteria have been 
evaluated for all species (with the exception of criterion E, which is 
excluded from our study). For threatened bird species (i.e. those quali-
fying as Critically Endangered, Endangered and Vulnerable), all criteria 
that qualify a species as threatened should be reported in BirdLife 
International (2022), not just the one resulting in the highest risk cat-
egory, although this may be omitted in some specific cases. However, 
this is not the case for species qualifying as Near Threatened (e.g. data 
are not available on whether a species classified as Endangered under 
B1 qualifies as Near Threatened under B2). To account for this, we fol-
lowed two approaches. In the first, we classified a criterion as ‘miss-
ing data’ if not explicitly listed; the results presented in the main text, 
Figure 1 and Table S2 correspond to that assumption. In the second, 
we assumed that the species was Least Concern under a criterion un-
less it was explicitly listed. As a consequence, all models were run on 
the same set of species. These results were qualitatively equivalent 
with those obtained from our original model (the performances of in-
dividual criterion-specific models were even slightly poorer; Table S4). 
This sensitivity analysis demonstrates the limited impact of sample 
size differences on our model outcomes.

Only three species qualified as threatened under A1, hence the 
criterion has been excluded from the analysis.

2.3  |  Extinction risk modelling

We developed a ‘criterion-specific’ modelling approach in which we 
fitted a separate model for each Red List criterion. Each criterion is 
thus considered independently, and the Red List category met under 
that criterion is contrasted with the same set of extinction predic-
tors. For comparison, we also fitted a ‘criterion-blind’ model, as typi-
cally done in comparative extinction risk analyses, using the single 
listed species' Red List category as the response variable.

To investigate the relationship between species traits, extrinsic 
factors and extinction risk, we used cumulative link models (CLM, 
also known as ordinal regression models) from the R package ‘or-
dinal’ (Christensen, 2019), which allow preservation of the ordinal 
structure of the Red List categories (Lucas et al., 2019, 2023; Luiz 
et al., 2016). Moreover, CLMs have been demonstrated to be the 
best algorithms to deal with the ordinal structure of Red List cat-
egories when compared to other algorithms traditionally used in 
comparative models of extinction risk, such as Random Forest, 
Neural networks or Phylogenetic Generalised Linear Models 
(PGLS) (Lucas et al., 2023). CLM does not allow to include phylo-
genetic information in a way as PGLS does to account for poten-
tial non-independence in species extinction risk, but overall CLM 
has demonstrated to predict significantly better than PGLS, pos-
sibly due to the necessity of PGLS to transform Red List catego-
ries into a binary or discrete variable, losing important information 
from the original ordinal variable (Lucas et al., 2023). We therefore 
considered the Red List category as an ordered categorical factor 
(LC < NT < VU < EN < CR; excluding all species with categories EX, 
EW and DD), used it as the response variable and contrasted this 
with the predictors.

Models varied from n = 7060 for criterion B2 to n = 7702 for 
criterion C2, with a total of 8695 species included in the analysis. 
We checked that predictors were not highly correlated (Pearson 

F I G U R E  1 Proportion of the 8695 bird 
species included in our analysis currently 
qualifying in each Red List category for 
each criterion. CR, Critically Endangered; 
EN, Endangered; VU, Vulnerable; NT, Near 
Threatened; LC, Least Concern. ‘Missing’ 
applies to species qualifying as threatened 
for which the given criterion is not 
explicitly listed. The number of species 
per criterion is given in Table S2.
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correlation or Kruskal-gamma coefficients > |0.70|; Figure S2). To 
adjust for unbalanced data (Figure  1), we calculated the propor-
tion of threatened and not threatened species under each cri-
terion and weighted our models by the proportion of species in 
the opposite category (i.e. species with categories VU, EN or CR 
were weighted by the proportion of not threatened species, and 
species with categories LC or NT were weighted by the propor-
tion of threatened species). A backward stepwise model selection 
was performed using the step function from the R package ‘stats’ 
(R Core Team, 2020) in order to find the subset of variables that 
minimise the Akaike Information Criterion for each criterion. The 
proportional odds assumption of a linear relationship was not al-
ways met, but this should not impact our results substantially (see 
Supplementary Methods S2).

As the number of species listed in EN and CR categories was very 
small for some criteria (Figure 1), we anticipated predicting specific 
categories could be challenging (Table S5); thus, for validation, we fo-
cused on a simplified prediction: whether a species was classified as 
threatened or not. We used a method of taxonomic block validation 
in which we iteratively excluded one taxonomic family from the data 
used to train the model and then used the model to predict the Red 
List binary threat level of the species in the left-out family. A species 
was predicted as threatened under a given criterion if the sum of the 
probabilities to be CR, EN and VU was >0.5 and predicted as not 
threatened otherwise. We then compared the predictions with the 
actual Red List categorisation under that specific criterion (assuming 
that the current Red List category of each species is correct for each 
criterion). Specificity and sensitivity were defined, respectively, as 
the percentage of not threatened species (LC, NT) correctly clas-
sified as such and the percentage of threatened species (VU, EN, 
CR) correctly classified as such. Following Red List guidelines (IUCN 
Standards and Petitions Committee, 2022), we assigned a ‘combined’ 
category to each species based on the nine criterion-specific models 
as the highest category predicted among models; consequently, a 
species was classified as not threatened only because it was not pre-
dicted as threatened in any of the criterion-specific models. We also 
report the models' performance in predicting the specific Red List 
category for each species (assigning to each species the category 
with the highest probability; Table S5).

To measure and compare the overall performance of both mod-
elling approaches, we used the True Skill Statistic (TSS), defined as: 
sensitivity + specificity − 1. TSS takes into account both omission and 
commission errors and ranges from −1 to +1, where +1 indicates 
perfect agreement, values greater than 0.5 indicate a good perfor-
mance and values of 0 (or less) indicate a performance no better (or 
worse) than random (Allouche et al., 2006).

Finally, our models were employed to predict the most probable 
Red List category for all species, which was then transformed into a 
binary prediction (threatened/not threatened) and compared with 
the actual Red List category. The mismatches thus identified serve 
as flags for prioritising reassessments of a specific list of species, as 
classically done in comparative extinction risk analyses (Di Marco 
et al., 2014; Lucas et al., 2023).

3  |  RESULTS

3.1  |  Model performance

Models' performance in predicting extinction risk greatly varies 
among criteria (Figure 2). The model predicting criterion D2, related 
to population structure, had the highest TSS score (0.91), followed 
by criteria B1, D1, B2, C2 and C1 (0.88–0.69). All these models had 
TSS scores higher than the criterion-blind approach (0.61), meaning 
that models are better at predicting extinction risk for single crite-
ria than for the overall categories. For most criteria, these high TSS 
scores were the result of both higher specificity and higher sensitiv-
ity (Figure 2). Conversely, models predicting criteria A2–A4, related 
to population declines, showed the lowest TSS scores among all 
criteria (0.52–0.59), and they were slightly lower than the criterion-
blind model.

Following Red List guidelines, we assigned a ‘combined’ category 
to each species as the highest extinction risk category from any of 
the nine individual criterion-specific models and found that this sub-
stantially reduced the TSS (0.52) compared with applying the models 
individually for each criterion (average model TSS = 0.72; Figure 2a). 
This is largely due to lower specificity compared to the criterion-
blind approach (0.68 vs. 0.83 probability of correctly classifying a 
not threatened species. Figure 2c; Table S2), this is partly explained 
because a species had to be classified as not threatened under each 
of the nine applied criterion-explicit models in order to fall in this 
group overall. In contrast, using a criterion-specific approach re-
sulted in a 0.84 probability of correctly classifying threatened spe-
cies, compared with 0.79 for the criterion-blind approach (Figure 2b; 
Table S2).

Considering ‘missing’ criterion-specific categories as LC 
(Table  S4) or predicting at the category level rather than binarily 
contrasting threatened versus not threatened (Table S5) resulted in 
respectively equivalent or lower performances.

3.2  |  Drivers of extinction risk

The criterion-blind approach showed positive relationships between 
extinction risk and body mass, carnivore trophic niche, high forest de-
pendency and cropland cover, while showing negative relationships 
with insularity, range size or percentage canopy cover (Figure  3). 
Some of these relationships were also detected by criteria-specific 
models. For instance, carnivorous species were generally associated 
with higher levels of extinction risk, while species with a larger range 
size or with distributions that had a high tree canopy coverage were 
less at risk on average.

In contrast, the importance and significance of other predictors 
were idiosyncratic between criteria. For instance, body mass gener-
ally correlated positively with extinction risk for criteria related to 
rapid population declines or small population size (A2, A3, A4, C1, 
C2, D1), while it had no influence on criteria related to restricted 
geographic range (criteria B1, B2, D2). Conversely, high forest 
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dependency was associated with increased extinction risk for cri-
teria B1, B2 and C2, all relating to small population size, restricted 
area of occupancy and subpopulation structure, but did not, or 
slightly negatively, influence criteria based on rates of decline alone. 
Extrinsic factors were mainly important to predict criteria related 
to population reductions (A2, A3 and A4); for instance, change in 
annual temperature correlating positively with extinction risk for cri-
teria A2–A4 and C2, and GDP per capita correlating positively with 
criteria A2–A4, B2 and C1.

3.3  |  Criterion-specific approach to prioritise 
reassessments

The criterion-blind model predicts that 15% of species currently 
classified as not threatened (N = 1337) may be threatened (Table 1), 
but this percentage almost doubled (to 28%, N = 2467) under the 
criterion-specific model. Conversely, we predicted 104 threatened 
species as not threatened (199 with the criterion-blind model). 

Predictions for all models and all species are provided in Extended 
Data S2.

4  |  DISCUSSION

In this study, we developed a modelling approach that partitions ex-
tinction risk according to individual Red List criteria and compared 
it with a criterion-blind approach. On average, modelling individual 
criteria performed better than the criterion-blind approach, with 
higher performance for six criteria (especially criteria B1 and D2), 
while three provided similar or marginally lower performance (cri-
teria A2–A4). This result highlights that predicting extinction risk 
under some criteria may be intrinsically difficult, at least using the 
predictors considered here. In particular, criteria related to popula-
tion trends (especially A3 related to future trends) are more difficult 
to predict. With these models, we can enhance our understanding 
of the mechanisms underlying observed correlations and, ultimately, 
point to distinct drivers of risk.

F I G U R E  2 Comparison of model performances. The left-hand side of each plot compares the performance of the combined criterion-
specific models (referred to as ‘CS’) with that of the criterion-blind approach to comparative extinction risk modelling (referred to as 
‘CB’), while the right-hand side presents the performance of each criterion-specific model. (a) True Skill Statistic [−1,1]; (b) sensitivity [0,1], 
proportion of threatened species correctly classified; (c) specificity [0,1], proportion of not threatened species correctly classified. Dotted 
lines represent the mean value obtained from the nine independent criteria-specific models.

F I G U R E  3 Heatmap of predictor importance associated with extinction risk under each criterion. Rows indicate predictors of extinction 
risk, and columns relate to criterion-specific models. The ‘CB’ model describes the criterion-blind approach to extinction risk modelling. 
Colour indicates the sign (blue for negative and orange for positive), with darker tones indicating stronger relationships. Both positive and 
negative values were divided into five equal groups according to the intervals: −3.71, −0.97, −0.46, −0.27, −0.15 and 0 for negative estimates 
and 0, 0.16, 0.24, 0.42, 0.89 and 1.76 for positive estimates (blanks indicate that the predictor has not been retained in the optimal model 
after predictor selection; see Section 2.3; estimates are detailed in Table S3). CLM, cumulative link models; GDP, gross domestic product.
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    |  7 of 13HENRY et al.

Combining the nine criteria-specific models to obtain a sin-
gle prediction per species led to substantially greater sensitivity 
(i.e. more likely identification of threatened species as threatened, 

Figure 2b) but lower specificity than the classical criterion-blind ap-
proach (see, for example, Orange-fronted Parakeet Eupsittula canicu-
laris in Figure 4a). Because one of the primary goals of automated 
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extinction risk methods is to identify species likely to be at risk of 
extinction (but not currently recognised as such) to prioritise their 
reassessment (Cardillo & Meijaard, 2012), a model with high sensi-
tivity will be more valuable than a model with similar TSS and higher 
specificity (Cazalis et  al.,  2022). Previous extinction risk models 
have typically predicted threatened species less accurately than not 
threatened species (Di Marco, 2022; Murray et al., 2014). Our results 
show that a reason behind this observation may be the omission of 
the diversity of reasons why a species is considered threatened on 
the Red List, which is represented by the multiple Red List criteria. 
However, combining nine criterion-specific models decreased the 
overall specificity of the prediction (see, for example, Gray's Lark 
Ammomanopsis grayi in Figure  4b), resulting in an overestimation 
of the proportion of threatened species and a slightly lower TSS in 
comparison with the criterion-blind approach (Figure 2a). This result 
is explained by the fact that, following Red List guidelines, a spe-
cies was classified as not threatened only if predicted as such by all 
nine criterion-specific models. This is well aligned with the Red List 
process and a precautionary approach, but it makes our approach 
sensitive to misclassification. Hence, increasing the specificity of 
criterion-specific models is a priority for the future. Possible ways of 
achieving this include improving the performance of the individual 
models with additional covariates (for example, relating to hunting/
trapping pressure for criteria A2–A4), accounting for shared evolu-
tionary history using phylogenetic models (Purvis, 2008) or devel-
oping an approach to combine individual models that accumulates 
fewer errors from individual models that misclassify a species as 
threatened under a given criterion.

In accordance with previous studies, our criterion-blind model 
identified extinction risk as correlating positively with for exam-
ple, body mass, carnivorous niche, high forest dependency and 
lower tree canopy cover, and negatively with for example, clutch 
size, range size and distance to cities (Gaston & Blackburn, 1995; 
Olah et al., 2018; Richards et al., 2021; Ripple et al., 2017; Tobias 
& Pigot, 2019; White & Bennett, 2015). Our findings highlight the 
importance of considering separately the multiple processes un-
derlying patterns of extinction (Figure  3; Figure  S1). They reveal 
that increases in annual temperature across species' ranges are 
of particular importance for criteria related to population decline 
(A2–A4, and to some extent C2), consistently with the predicted 
role of climate change in driving declines in abundance and in-
creases in species' extinction risk (Şekercioğlu et al., 2012; Mancini 
et  al., 2023). Additionally, body mass is of particular importance 
for criteria related to population trends and population sizes 

(A1–A4, C1–C2, D1), suggesting that species with high body mass 
are more likely to be declining and to have small population sizes 
(Carvajal-Quintero et al., 2023). The diversity of relationships be-
tween predictors and criteria, along with their ecological meaning, 
emphasises the importance of accounting for heterogeneity in the 
predictability of Red List criteria, rather than considering them as 
equally predictable as assumed in criterion-blind comparative ex-
tinction risk analyses. They also highlight that our criterion-specific 
approach can help better understand the diverse mechanisms as-
sociated with extinction risk. Further, a better approximation of the 
causal relationships underlying species classification under differ-
ent Red List categories can improve our ability to forecast status 
change based on changes in the drivers.

By modelling criteria separately, we increase the applicabil-
ity of comparative extinction risk models (Cazalis et  al.,  2022; 
Owens & Bennett, 2000; Ripple et al., 2017). Red List assessors 
are required to assess each species against all criteria for which 
there is sufficient information (IUCN Standards and Petitions 
Committee, 2022). Therefore, while our models' outputs do not 
fundamentally change the red-listing process, they allow for var-
ious sources of information to be considered by assessors. As 
these models are contingent on the availability of life history and 
distributional data, their use for helping reassess data deficient 
species—for which these are often unavailable—is likely to be lim-
ited. We contend them to be most suited to help prioritise efforts 
to reassess threatened and non-threatened species for which 
underlying data are available and to identify knowledge gaps 
and opportunities for future research. For instance, the Least 
Concern Rufous-bellied Chachalaca Ortalis wagleri (Figure  4c) is 
predicted to be threatened (VU) by both the criterion-blind and 
the criterion-specific approaches. However, while the criterion-
blind model offers no additional insight, our criterion-specific 
approach provides assessors with relevant information about 
why this species might be VU—namely, that it might meet criteria 
A2, A3, A4, C1 and C2. Assessors could use this information to 
focus efforts on investigating past and future population trends 
to assess criteria A2–A4 and population size and structure to 
assess criteria C1 and C2, which could be complemented with 
the specific contributions of different covariates that led to this 
prediction. If these data are not available, determining values for 
these parameters may be considered a priority for fieldwork and 
research.

Comparative extinction risk models have often been promoted 
as useful tools to provide a first prediction of extinction risk for 

IUCN Red List

Prediction criterion-blind Prediction criterion-specific

Not 
threatened Threatened

Not 
threatened Threatened

Not threatened 6380 (73%) 1337 (15%) 5250 (60%) 2467 (28%)

Threatened 199 (2%) 779 (9%) 104 (1%) 874 (10%)

Note: The prediction for the criterion-specific method corresponds to the prediction after 
combining results from the nine individual criterion models.

TA B L E  1 Red List category prediction 
of criterion-blind and criterion-specific 
models compared with the current 
binarised category (Threatened for 
Vulnerable, Endangered and Critically 
Endangered; Not threatened for Least 
Concern; and Near Threatened).
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species not yet included in the Red List (Darrah et al., 2017; Zizka, 
Andermann, et  al., 2022; Zizka, Barratt, et  al., 2022), for data de-
ficient species (Bland & Böhm, 2016; Borgelt et  al.,  2022; Cazalis 
et al., 2023; He et al., 2021; Luiz et al., 2016) or to prioritise reas-
sessments (Di Marco et al., 2014; Lucas et al., 2023). But so far, these 
have remained largely unmet promises, with hardly any uptake of 

these modelling approaches in the Red List (Cazalis et al., 2022). By 
focusing on reassessments and informing the assessors about the 
specific criteria under which a species is likely to qualify, criterion-
specific models could help accelerate the rate of Red List assess-
ments, guide data collection efforts and facilitate the growth and 
update of the Red List so that it can best inform conservation 

F I G U R E  4 Comparison of outputs 
for selected species from a criterion-
blind approach and a criterion-specific 
approach to comparative extinction risk 
analysis. The three panels show different 
species, with their current categories in 
the Red List, the categories predicted by 
the models and the criteria triggered for 
the criterion-specific approach. Panel (a) 
shows a threatened species predicted as 
such by the criterion-specific approach 
only; panel (b) shows a non-threatened 
species predicted as such by the criterion-
blind approach only; and panel (c) shows 
a non-threatened species predicted 
as threatened by both approaches. 
Illustration by À. Jutglar, T. Worfolk. 
Source: © 2022 Cornell University.
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policies. Although it may need further developments and be cur-
rently too data-demanding for some taxa, we believe this is a prom-
ising avenue to reduce the historical research-implementation gap 
between the comparative extinction risk model and the Red List 
assessment process.
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