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ABSTRACT: We investigate the run-to-run consistency (jumpiness) of ensemble forecasts of tropical cyclone tracks from
three global centers: ECMWF, the Met Office, and NCEP. We use a divergence function to quantify the change in cross-
track position between consecutive ensemble forecasts initialized at 12-h intervals. Results for the 2019–21 North Atlantic
hurricane season show that the jumpiness varied substantially between cases and centers, with no common cause across the
different ensemble systems. Recent upgrades to the Met Office and NCEP ensembles reduced their overall jumpiness to
match that of the ECMWF ensemble. The average divergence over the set of cases provides an objective measure of the
expected change in cross-track position from one forecast to the next. For example, a user should expect on average that
the ensemble mean position will change by around 80–90 km in the cross-track direction between a forecast for 120 h ahead
and the updated forecast made 12 h later for the same valid time. This quantitative information can support users’
decision-making, for example, in deciding whether to act now or wait for the next forecast. We did not find any link
between jumpiness and skill, indicating that users should not rely on the consistency between successive forecasts as a
measure of confidence. Instead, we suggest that users should use ensemble spread and probabilistic information to assess
forecast uncertainty, and consider multimodel combinations to reduce the effects of jumpiness.

SIGNIFICANCE STATEMENT: Forecasting the tracks of tropical cyclones is essential to mitigate their impacts on
society. Numerical weather prediction models provide valuable guidance, but occasionally there is a large jump in the
predicted track from one run to the next. This jumpiness complicates the creation and communication of consistent
forecast advisories and early warnings. In this work we aim to better understand forecast jumpiness and we provide
practical information to forecasters to help them better use the model guidance. We show that the jumpiest cases are
different for different modeling centers, that recent model upgrades have reduced forecast jumpiness, and that there is
not a strong link between jumpiness and forecast skill.

KEYWORDS: Tropical cyclones; Ensembles; Forecast verification/skill

1. Introduction

Official forecasts of tropical cyclone (TC) tracks are typically
based on guidance from numerical weather prediction (NWP)
models (Conroy et al. 2023). NWP ensemble forecasts are in-
creasingly being used. Although their use in official forecasts is
often limited to the ensemble mean (EM) track, there is increas-
ing evidence of the benefits of using more of the ensemble proba-
bilistic information (Titley et al. 2019, 2020; Kawabata and
Yamaguchi 2020; Leonardo and Colle 2017). One benefit of using
ensembles is the increased consistency between consecutive fore-
casts (Buizza 2008; Zsoter et al. 2009). There are nevertheless

occasions where an ensemble is unexpectedly jumpy with the
predicted TC locations flip-flopping over several consecutive
forecasts (Magnusson et al. 2021). Such cases can be difficult to
interpret, complicating the creation of consistent forecast advi-
sories and early warning communications. Understanding the
frequency and reasons for these cases as well as information
about the overall levels of consistency in operational ensemble
forecasts can help forecasters to better use the available ensem-
ble track data.

As new forecast information arrives (usually every 6–12 h for
global NWP models), forecasters need to decide how to revise
their forecasts to take account of the new forecast information.
National Hurricane Center (NHC) Tropical Cyclone Advisories
often discuss the change in forecast track due to updated guid-
ance, making adjustments to the path depending on the new
information. There is a balance to be struck between closely fol-
lowing the changed model guidance and taking a more conserva-
tive approach of making a smaller change to minimize the
potential need to make a change in the opposite direction later,
that is to avoid a so-called windshield-wiper effect (Broad et al.
2007). Contradictory messages from such jumpiness can cause dif-
ficulties for decision-makers and reduce users’ confidence in the
forecasts (Hewson 2020; Pappenberger et al. 2011b; McLay 2011;
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Elsberry and Dobos 1990). Information quantifying the consis-
tency between successive probabilistic forecasts can be important
to inform optimal decision-making, such as whether to act now or
wait for the next forecast (Regnier and Harr 2006; Jewson et al.
2021, 2022). Both noted that such information is not readily avail-
able to users.

Evaluation of operational ensemble TC track forecasts in-
cludes EM track errors, ensemble spread, and strike probabil-
ity (e.g., Cangialosi 2022; Haiden et al. 2022; Titley et al. 2020;
Heming et al. 2019; Leonardo and Colle 2017). However, few
authors have addressed the jumpiness of TC track forecasts.
Elsberry and Dobos (1990) investigate consistency of TC
guidance for the western North Pacific by using the difference
in cross-track errors between successive forecasts. Fowler et al.
(2015) assess consistency of Atlantic TC track forecasts by
counting forecast crossovers}how often in a sequence of
forecasts the predicted position changes from one side to the
other of a fixed reference track, for example the observed
track. However, they caution that biased forecasts may ap-
pear to be consistent since successive forecasts may jump con-
siderably without crossing the observed track. Both Elsberry
and Dobos (1990) and Fowler et al. (2015) recommend the
regular evaluation of forecast consistency in addition to the
standard assessments of forecast accuracy.

More generally, there has been limited investigation of forecast
jumpiness, especially for ensemble forecasts. Zsoter et al. (2009)
considered flip-flops in sequences of forecasts all valid for a given
time and showed that EM forecasts are more consistent than the
corresponding ensemble control forecasts. Griffiths et al. (2019)
introduced a flip-flop index to compare the consistency of auto-
mated and manual forecasts, while Ruth et al. (2009) assessed
how model output statistics improved forecast consistency. Fore-
cast consistency has been considered for rainfall (Ehret 2010) and
river flow (Pappenberger et al. 2011a).

These previous studies were mainly focused on determinis-
tic forecasts (either single runs or EM) and the methods are
not directly applicable to assess the jumpiness in sequence of
ensemble forecasts taking account of the full ensemble distri-
bution. Recently, Richardson et al. (2020) introduced a mea-
sure of forecast jumpiness based on forecast divergence that
accounts for all aspects of the ensemble empirical distribution.
They used this to investigate jumpiness of ensemble forecasts
for the large-scale flow over the Euro-Atlantic region.

In the present study we apply the forecast jumpiness measure
introduced by Richardson et al. (2020) to ensemble forecasts of
Atlantic TCs, focusing on the run-to-run consistency in the cross-
track direction which is most important in determining the loca-
tion of TC landfall. The aim is to provide forecasters and model
developers with information about the jumpiness of ensemble
TC forecasts. This will help forecasters and decision-makers bet-
ter understand the expected changes between successive fore-
casts. We address the following questions:

• How does run-to-run jumpiness vary from case to case and
between the ensemble systems of different NWP centers?

• Is there a common cause of “jumpy” cases}are the ensem-
bles from different centers particularly jumpy for the same
TC cases and if so what is the reason?

• Have recent ensemble model upgrades had a noticeable ef-
fect on the forecast consistency?

• What guidance should be provided to forecasters and
decision-makers on the ensemble jumpiness – what infor-
mation is practically useful? Is there any useful link be-
tween jumpiness and skill?

We investigate these questions using ensemble forecast
data from three global NWP centers. The data used in this
study and the methods to assess forecast jumpiness are intro-
duced in sections 2 and 3. Results are presented in section 4.
We start with a case study to illustrate the issues of ensemble
TC track jumpiness. Then we look at the overall jumpiness
over the 2019, 2020 and 2021 Atlantic hurricane seasons. Fi-
nally, we consider the relationship between jumpiness, error
and spread. We conclude with a summary, recommendations
for forecasters and avenues for future work in section 5.

2. Data

In this study we investigate the run-to-run consistency of
ensemble tropical cyclone track forecasts from three global
centers: the European Centre for Medium-Range Weather
Forecasts (ECMWF), the U.S. National Centers for Environ-
mental Prediction (NCEP) and the Met Office. Each center
runs its own tropical cyclone tracker (Conroy et al. 2023) and
the resulting track forecasts are archived on the TIGGE data-
base (Bougeault et al. 2010; Swinbank et al. 2016). We re-
trieve the TIGGE forecast tracks for all available dates from
the Atlantic basin for 2019, 2020 and 2021 for forecasts initial-
ized at 0000 and 1200 UTC from the ECMWF ensemble
(ENS, 51 members integrated on ;18-km grid), NCEP en-
semble (GEFS, 21 members, ;34-km grid until 22 September
2020; 31 members, ;25-km grid from 23 September 2020 on-
ward), and Met Office ensemble (MOGREPS-G, 36 members,
;20-km grid). A given TC is not always tracked in every ensem-
ble member (e.g., because the system dissipates in that member
or the forecast intensity is below the threshold used in the track-
ing algorithm) and we exclude cases where a center has fewer
than 10 members that track the TC at each forecast step.

We use the observed TC positions from International Best
Track Archive for Climate Stewardship (IBTrACS; Knapp et al.
2010, 2018). We concentrate our analysis on named Atlantic trop-
ical cyclones and for each cyclone include all 0000 and 1200 UTC
verification times when the observed system is at least tropical
storm strength (winds at least 34 kt; 1 kt ’ 0.51 m s21) and the
system is reported as tropical in IBTrACS (Titley et al. 2020;
Goerss 2000). For each of these verification times we consider all
available TIGGE forecasts. These include forecasts initialized
when the TC is still a tropical depression. However, TIGGE fore-
cast tracks are only generated for existing TCs, so longer lead-
time forecasts are not always available for verification times close
to when the TC is first analyzed as a tropical storm. This means
that overall there are fewer forecasts for longer lead times than
for shorter lead times in our sample.

We make a homogeneous sample by only including a case
if the ensemble data are available from each of the three cen-
ters. This ensures that we are comparing the different centers

WEATHER AND FORECAS T ING VOLUME 39204

Brought to you by UNIVERSITY OF READING | Unauthenticated | Downloaded 01/25/24 02:38 PM UTC



over the same set of cases. The total number of cases de-
creases with forecast lead time from 356 for 12-h forecasts to
91 for 120-h forecasts. To maintain a reasonable sample we
restrict the study to forecasts of 120 h or less.

Our focus is on the changes between successive forecasts for
a given verification time. We therefore need to set a minimum
number of consecutive initial times over which we can assess
these changes. For a given verification time ty, we require a
minimum of six consecutive forecasts, initialized at (ty 2 12 h),
(ty 2 24 h), up to (ty 2 72 h), all valid for ty. To ensure homo-
geneity, the same cases must be available from all three cen-
ters. With these conditions, the total number of available cases
to assess the run-to-run jumpiness is 139 over the 3-yr period.

Each NWP center has made upgrades to their operational en-
semble system during the 2019–21 period used in this study. A
major upgrade to the GEFS was implemented on 23 September
2020, including the introduction of a new forecast model and an
increase in the number of ensemble members from 20 to 30
(Zhou et al. 2022). This upgrade brought significant improve-
ments to the ensemble performance, including for tropical cy-
clone forecasts. The MOGREPS-G ensemble was upgraded on
4 December 2019, including a major change to the generation of
the ensemble perturbations (Inverarity et al. 2023) and revised
model physics (Walters et al. 2019). This upgrade improved TC
track errors (Met Office 2019).

Upgrades to the ECMWF ENS in June 2019 (Haiden et al.
2019), June 2020 (Haiden et al. 2021), and May 2021 (Rodwell
et al. 2021) were neutral in terms of TC track performance, al-
though the latter two brought improvements to intensity fore-
casts (Bidlot et al. 2020; Rodwell et al. 2021). A later upgrade
in October 2021 did also improve TC track forecasts (Haiden
et al. 2022); however, there was only one Atlantic TC in 2021
after this date. Overall, the ECMWF ensemble track forecast
performance can be considered relatively stable over the pe-
riod of this study. We therefore use the ENS as a reference
against which to evaluate the impact of the upgrades of the
other centers on ensemble jumpiness.

3. Methods

For each tropical cyclone, the observed track provides a con-
venient frame of reference. We consider jumpiness in a sequence
of forecasts in terms of changes in the predicted cross-track loca-
tion (Elsberry and Domos 1990). A positive cross-track position
indicates that the forecast is to the right of observed track (facing
the observed direction of travel). We also consider the links be-
tween jumpiness, ensemble error and spread. All scores}error,
spread, and jumpiness}are computed in terms of the cross-track
distance and are defined below.

We measure the cross-track error of the ensemble forecasts
using the continuous ranked probability score (CRPS). The
CRPS is widely used for evaluation of ensemble forecasts. It is a
so-called proper score: if the “true” forecast probability distribu-
tion is F, a proper score ensures that the best expected score
will be achieved using the forecast F rather than any other fore-
cast distribution G Þ F. Hence forecasters are rewarded for
honest forecasts reflecting their true beliefs. As a proper score,

CRPS discourages hedging (Gneiting and Raftery 2007) and re-
wards both reliability and resolution (Hersbach 2000).

For an ensemble ofM members fi, i 5 1, … M the CRPS is
given in its kernel representation by

CRPS( f ) 5 1
M
∑
M

i51
| fi 2 y| 2 1

2M2 ∑
M

i51
∑
M

j51
| fi 2 fj|, (1)

where y is the verifying observation (Gneiting and Raftery
2007). The first term is the mean of the absolute error of the
individual ensemble members and the second term is the
mean of the distances between the different ensemble mem-
bers, which accounts for the ensemble spread.

The ensemble mean forecast is given by

f 5
1
M
∑
M

i51
fi: (2)

For a single deterministic forecast, the CRPS is equal to the
mean absolute error, so the error of the ensemble mean is

CRPS( f ) 5 | f 2 y|: (3)

To allow us to compare the mean spread and error over the
sample of cases, we use a measure of ensemble spread that is
also based on the mean absolute difference. The spread mea-
sure which corresponds to the mean absolute error of the en-
semble mean is the mean absolute deviation of ensemble
members from the ensemble mean:

s 5
1
M
∑
M

i51
| fi 2 f |: (4)

On average over a large sample of cases the ensemble mean
error [Eq. (3)] and spread [Eq. (4)] should be equal for a well-
tuned ensemble system.

To measure the “jump” from one forecast to the next we
follow Richardson et al. (2020) and use the divergence func-
tion d associated with the CRPS. For two ensembles f and g
withM and Nmembers, respectively, d is given by

d( f , g) 5 1
MN

∑
M

i51
∑
N

j51
| fi 2 gj| 2

1
2M2 ∑

M

i51
∑
M

j51
| fi 2 fj|

2
1

2N2 ∑
N

i51
∑
N

j51
|gi 2 gj|: (5)

The first term measures the distance between the two ensembles
f and g, while the second and third terms reflect the variability
(spread) in each ensemble, f and g, respectively. Comparing
Eq. (5) to Eq. (1) shows that the divergence reduces to the
CRPS if eitherM orN is equal to one. If bothM andN are one,
then d is the absolute distance |f 2 g|. The divergence d takes
account of both location and spread differences between f and g
and, like the CRPS, d is a proper score (Gneiting and Raftery
2007; Thorarinsdottir et al. 2013) which discourages hedging.

Consider a given verification time ty: an ensemble forecast
f valid for this time and initialized h hours before is written
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f(ty, h) and individual ensemble members are fi(ty, h). In this
study fi(ty, h) represents the distance (in km) in the cross-
track direction from the observed TC location at verification
time ty. The difference between two consecutive ensemble
forecasts initialized at time (ty 2 h) and [ty 2 (h 2 12)] and
valid for the same time ty is

D(ty , h) 5 d[ f (ty , h), f (ty , h 2 12)], (6)

where d is the divergence function [Eq. (5)].
To measure the overall divergence between the sequence

of L forecasts valid for a given time we use the mean diver-
gence between successive pairs of forecasts:

D(ty ) 5
1

L 2 1
∑
L

l52
D(ty , 12l)

[ ]
: (7)

Larger values of D indicate greater change (in position,
spread or both) between successive forecasts in the se-
quence. However, it does not necessarily indicate jumpiness
in the sense of flip-flopping back and forth between differ-
ent solutions. For example, if in the initial ensemble fore-
cast all members are far to the right of the observed
position and subsequent forecasts become progressively
closer to the observed location, this will result in large D.
To distinguish between “trend” cases and “flip-flop” cases,
we use the difference between the first and last forecasts of
the sequence to represent this overall change (trend). Sub-
tracting this difference from D gives the divergence index
(DI) introduced by Richardson et al. (2020), which high-
lights jumpiness (flip-flops) in the sequence:

DI(ty ) 5 D(ty ) 2
1

L 2 1
d[ f (ty , 12L), f (ty , 12)]: (8)

In this way, DI will be less sensitive than D to trends caused
by bias or to cases with single large jumps (resulting for exam-
ple from a sudden increase in predictability). This means that
the larger values of DI will be more closely related to flip-
flops in the sequence of forecasts.

Our focus is on the performance of the ensemble forecast
distribution and both D and DI are computed using all available
ensemble members. However, because the ensemble mean (EM)
track is also often used in operational forecasting we also com-
pute the same measures for the ensemble mean. Note that for
tropical cyclone tracks, the ensemble mean refers to the Euclid-
ean mean position of the tracks from the individual ensemble
members and not to a track calculated from the ensemble mean
spatial fields.

The statistical significance of differences between the differ-
ent centers’ distributions of D and DI are assessed using the
Kolmogorov–Smirnov (KS) and Mann–Whitney U (MWU)
tests (Wilks 2019). Both tests are nonparametric statistical
methods to compare the empirical cumulative distributions of
two samples. The MWU test is mainly sensitive to differences
in location (e.g., differences in the median), while the KS test
is sensitive to differences in both location and shape of the
distributions.

4. Results

We start with an example to illustrate the issues of jumpiness
and sampling. Then we look at the overall jumpiness over 2019,
2020 and 2021 seasons. Finally, we consider the relationship be-
tween jumpiness, error and spread.

a. Example: Hurricane Laura, August 2020

Hurricane Laura formed initially as a tropical storm in the
western tropical Atlantic on 20 August 2020 and affected sev-
eral Caribbean countries. After traveling across the Caribbean,
it reached hurricane strength on 25 August as it entered the
Gulf of Mexico. It made landfall in Louisiana at 0600 UTC
27 August. Here we focus on the ECMWF ensemble (ENS)
forecasts for 0000 UTC 27 August, just before the Louisiana
landfall. Figure 1 shows the ENS tracks for Laura from fore-
casts initialized every 12 h between 21 and 25 August. The
earliest forecasts, from 1200 UTC 20 August (not shown) to
0000 UTC 21 August were almost all to the northeast (right-
hand side) of the observed track throughout the forecast, and
predicted landfall most likely along the central and eastern
Gulf coast. From 1200 UTC 21 August, the forecasts showed a
higher probability for landfall further west, although with a
large uncertainty as shown by the distribution of the tracks
from the individual ensemble members. Between 0000 UTC
22 August and 0000 UTC 24 August, successive forecasts ex-
hibited a “flip-flop” behavior, alternating between the western
or more central Gulf coast as the most likely landfall location.
Finally, from 1200 UTC 24 August onward, the forecasts more
consistently indicated the western solution as most likely and it
turned out that the observed track was at the eastern (right-
hand) end of the range of predicted locations.

We can summarize the variations in successive forecasts for
a fixed valid time in a box-and-whisker meteogram (Fig. 2).
This shows the distribution of the position in the cross-track
direction for all ensemble members valid for 0000 UTC
27 August, from forecasts initialized every 12 h between
1200 UTC 20 August (the first available forecast) and 1200 UTC
26 August. Each ENS forecast has one control forecast and
50 perturbed members. However, the number of members
that successfully track Laura until 27 August is substantially
below this, especially for the earlier forecasts. Figure 2 clearly
shows the jumpiness of the ENS forecasts. The earlier fore-
casts are mainly to the right of the observed track (too far
east), while the shorter-range forecasts are too far west (left of
observed track). Intermediate forecasts flip-flop between left
and right of the observed position. For each lead time (except
the 48-h forecast from 0000 UTC 25 August), the observed
track does lie within the ensemble distribution. However, the
jumpiness (lack of consistency) between successive forecasts
poses a challenge for forecasters trying to assess the most
likely location of landfall.

This was a particularly jumpy case for the ENS (Magnusson
et al. 2021) which merits further investigation. Comparing with
other ensemble forecasts may help to identify possible causes.
For example, if all centers display the same flip-flop behavior it
might suggest a common cause, such as changes in available ob-
servational data between the different analysis times.
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Figures 2b and 2c show the corresponding cross-track posi-
tion forecasts for the MOGREPS-G and GEFS ensembles.
Note that the MOGREPS-G ensemble data are missing from
the TIGGE archive for forecast start times 1200 UTC 21 August
and 0000 UTC 22 August. There are some similarities between
all three centers: a general right bias for earlier forecasts (initial-
ized at 0000 UTC 21 August and earlier), with a substantial pro-
portion of members not able to track Laura as far as the
verification time of 0000 UTC 27 August. Short-range forecasts
for all centers are slightly left of the observed position. However,
neither MOGREPS-G nor GEFS shows the same degree of
flip-flop behavior as ENS.

The MOGREPS-G forecasts are the most consistent from
1200 UTC 22 August onward, with relatively small changes
between successive forecasts. The GEFS forecasts maintain

the initial right-hand bias for several successive forecasts, with
a notable jump between 0000 and 1200 UTC 21 August.
There is a second noticeable jump between 1200 UTC
23 August and 0000 UTC 24 August, after which the GEFS
forecasts are generally close to the observed position, al-
though with a small left bias. It is also worth noting that both
MOGREPS-G and GEFS track Laura in all members for
forecasts initialized from 1200 UTC 23 August onward, while
the ECMWF ensemble does not, even for the shorter ranges.
The three centers use different tracking algorithms, and this
suggests differences in the sensitivity and robustness of the
different trackers (Conroy et al. 2023).

This example was chosen to illustrate jumpiness in the
ECMWF ENS, and in particular the flip-flops between succes-
sive forecasts. Comparison with the other centers shows that

FIG. 1. Hurricane Laura: ECMWF ensemble forecast tracks (blue: control; gray: perturbed members) and observed track (black). Fore-
cast start dates (DT) from 0000 UTC 21 Aug to 0000 UTC 25 Aug 2020. Colored symbols show forecast and observed (hourglass) position
at 0000 UTC 27 Aug.
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this was not a feature common to all centers. The ENS jumpi-
ness may be related to possible issues with the data assimilation
or initial perturbations, but further work is needed to investigate
this (Magnusson et al. 2021). Alternatively, this could be just a
chance occurrence due to the limited number of ensemble
members. For each of the initial times before 25 August, 20%–

30% of the ENS members did not track Laura as far as the veri-
fication time of 0000 UTC 27 August. In some cases, especially
for initial times on 24 and 25 August, the ECMWF tracker mis-
assigned some of the later forecast steps to hurricane Marco.
However, this does not account for the majority of the missing
tracks. These may be related to difficulties in initializing the cy-
clone due to the land interactions as Laura passed Puerto Rico,
Hispaniola, and Cuba, while at earlier initial times, Laura was a
relatively weak tropical storm and there was relatively large un-
certainty in the initial analyzed position (Magnusson et al.
2021). We have recomputed the results including the corrected
misassigned tracks and confirmed that this does not affect any
of our conclusions.

How typical is this Laura case? To investigate how often
such jumpy cases occur and whether jumpiness tends to occur
for the same or different cases in different ensemble systems,
the following sections consider the run-to-run consistency
over all Atlantic tropical cyclones from 2019 to 2021.

b. Ensemble jumpiness 2019–21

To summarize the run-to-run inconsistency for a single case,
we use the mean divergence D and DI, both computed over all
forecasts verifying at a given time for a given tropical cyclone.
The mean divergenceD measures the overall change in each se-
quence of forecasts, while DI accounts for the trend over the se-
quence and highlights any flip-flop behavior.

Figure 3 shows the distribution of D and DI over all avail-
able cases for Atlantic tropical cyclones from 2019 to 2021 for
the ENS, MOGREPS-G and GEFS ensembles. For D, ENS
has the lowest median value and smallest interquartile range,
while the distribution for GEFS is noticeably broader than for
the other centers. The difference between the distributions of
GEFS and the other centers are statistically significant at the
1% level for both the KS and MWU tests. Although much
closer to each other, the difference between ENS and
MOGREPS-G distributions is significant at the 5% level for
MWU test (but not significant for KS). For DI, GEFS also has
the broadest distribution and ENS has the narrowest distribu-
tion. The difference between MOGREPS-G and GEFS is not
statistically significant. ENS is significantly different from both
MOGREPS-G and GEFS at the 5% level.

In general, a larger ensemble should give a more robust
representation of the predicted distribution while a smaller

FIG. 2. Jumpiness of ensemble forecasts for hurricane Laura, valid at 0000 UTC 27 Aug 2020. Each boxplot summa-
rizes the distribution of the cross-track (CT) errors (error at right angles to the observed direction of travel; negative
values indicate left-of-track error) for one ensemble forecast (distance measured in km). Forecasts started every 12 h
from 1200 UTC 20 Aug; the y axis shows the forecast initial time. The box-and-whisker plot shows the min, max and
25th, 50th, and 75th percentiles of the ensemble distribution (number of members shown to right of plot). The ensem-
ble mean is shown as X. (a) ECMWF ENS, (b) Met Office MOGREPS-G, and (c) NCEP GEFS.
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ensemble will be more susceptible to sampling uncertainties
and therefore may be expected to jump more from run to run.
The above results are therefore consistent with the GEFS en-
semble having fewer members than the other centers, especially
before the upgrade to 31 members in September 2020. How-
ever, other factors can also influence the run-to-run consistency
of the ensemble. For example, a lack of spread due to underrep-
resentation of either initial condition or model uncertainties
would also tend to make the ensemble more jumpy. The impact
of the upgrade is considered in the next subsection.

High positive values indicate the most inconsistent cases
for both D and DI. For each center, points that are more
than 1.5 times the interquartile range above the upper quartile
are classed as outliers (marked with open circles in Fig. 3). The
example case for Hurricane Laura discussed in the previ-
ous section is highlighted}this is an extreme outlier for
ENS for both measures, highlighting the unusually large
jumpiness for this case.

For MOGREPS-G and GEFS, this case was not an outlier
for DI, consistent with the absence of flip-flops that character-
ized the ENS forecasts. Although not the most extreme case,
this case was an outlier for GEFS using the D measure. This
was due to the large right bias in the earlier GEFS forecasts.
This example illustrates the difference between D and DI:
ENS had several flip-flops between successive forecasts, while
changes between GEFS forecasts were more associated with a
trend away from the initial right bias. Both centers had large
mean divergence D, but the underlying cause was different.
MOGREPS-G was more consistent than the other centers.

We have seen that while Laura was an example of extreme
jumpiness for ENS, this was not such an extreme case for the
other centers, especially for DI. Scatterplots of D and DI for
pairs of centers (Fig. 4) show that this is a typical example.

For each pair of centers, the number of cases that are outliers
(high positive values, the most inconsistent cases) for either
one center or both centers are indicated in the figure. The
dashed lines in the figures indicate the threshold used for the
outliers (1.5 times the interquartile range above the upper
quartile). The jumpiest cases (high positive DI) for one center
are in general not extremes for the other centers. For DI,
none of the other ENS outliers are also outliers for either of
the other centers. The results are similar for the outliers from
MOGREPS-G and GEFS. There is only one case which is an
outlier for more than one center, MOGREPS-G and GEFS,
but that case is not an outlier for ENS. For D, the highlighted
Laura case is unusual in that it has high D for both ENS and
GEFS, although the cause is different for each center as dis-
cussed above. However, more typically the cases of high D
for one center are not exceptional for the other centers. In the
scatterplots, the outliers with high D tend to lie away from
the diagonal so that there are substantially more cases in the
upper-left and lower-right quadrants than in the upper right.

These results suggest that the ensemble jumpiness is not
strongly linked to the atmospheric situation or to the availability
of observations. Rather, they suggest that individual model defi-
ciencies or sampling uncertainties are more likely causes for the
jumpiness. Sampling uncertainties will lead to run-to-run jumpi-
ness if the ensemble is not large enough to fully represent the dis-
tribution of possible outcomes; a larger ensemble would better
sample this underlying distribution and improve consistency from
run to run. Alternatively, an ensemble may fail to properly repre-
sent the range of possible outcomes because the perturbations to
initial conditions are not adequate or because the uncertainties in
the model formulation are not sufficiently represented. Either of
these will result in the ensemble spread being too small and may
lead to jumpy behavior.

FIG. 3. Run-to-run inconsistency (jumpiness) of ensemble forecasts for Atlantic tropical cyclone tracks (2019–21).
Boxplots show the distribution over all cases for the two divergence-based measures: (a) mean divergence (D) and
(b) divergence index (DI). Boxplots show the interquartile range and the median; the whiskers indicate the minimum
and maximum values that are within 1.5 times the interquartile range; any more extreme points are shown with open
circles as outliers. For both D and DI, larger positive values indicate the most inconsistent cases. The points for the
example case of Hurricane Laura shown in Figs. 1 and 2 (verification time at 0000 UTC 27 Aug 2020) are marked as
red filled circles.
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c. The effect of recent NWP system upgrades on
ensemble jumpiness

The results of the previous section showed that overall
GEFS was more jumpy than the other centers. The GEFS up-
grade in September 2020 was the most substantial upgrade of any
of the centers during the study period, including a new forecast
model, changes to the ensemble perturbations and an increase in
the number of ensemble members. It brought a substantial im-
provement in the spread of tropical cyclone track forecasts
(Zhou et al. 2022). Here we consider the impact of the upgrade
on the jumpiness of ensemble track forecasts.

We separate our sample into two subsets initialized before
(64 cases) and after (75 cases) the GEFS upgrade. In Fig. 5 we
compare the empirical cumulative distribution of the mean di-
vergence D for the three centers before (Fig. 5a) and after
(Fig. 5b) the upgrade. Overall, D is significantly lower after
the upgrade (comparing Figs. 5a,b). However, this applies
also to the results from the other centers, suggesting that the
difference is at least partly due to the differences between the
observed samples. To mitigate this sampling effect, we focus
on the difference between the GEFS ensemble and the other
centers for the two subsets of cases.

Before the upgrade, the GEFS had substantially more cases
with high values of D compared to ENS and MOGREPS
(Fig. 5a). The difference in distribution compared to the other
centers is highly significant at well below the 1% level for
both KS and MWU tests. Differences in the distributions for
ENS and MOGREPS-G are not statistically significant. After
the upgrade, the GEFS distribution was much closer to those
of the other centers (Fig. 5b) and there were no statistically
significant differences between the distributions of any of the
centers. These results show that the upgrade to the GEFS did
make a significant difference to the consistency in terms of
mean divergence D. As for the full sample, differences in the
distributions of DI are smaller (not shown); the only statisti-
cally significant difference between GEFS and either of the
other centers is with ENS before the GEFS upgrade.

The GEFS upgrade brought a substantial improvement in
the spread of tropical cyclone track forecasts. This was consid-
erably underdispersive in the previous version and the up-
grade resulted in a much better spread–error relationship,
due to the upgrade to the stochastic model perturbations
(Zhou et al. 2022). The change in D is consistent with this in-
crease in spread for the GEFS system. In general, a larger

FIG. 4. Comparison of jumpiness between different centers’ ensemble forecasts for Atlantic tropical cyclone tracks (2019–21). Scatter-
plots show the distribution of the two divergence-based measures: (top) mean divergence (D) and (bottom) divergence index (DI) over
all cases for pairs of centers. For both D and DI, larger positive values indicate the most inconsistent cases. Dashed lines mark the thresh-
old for the most inconsistent outliers (1.5 times the interquartile range above the upper quartile). In each panel, the number of cases that
are outliers for both centers or just one of the centers is indicated in the corresponding quadrant. The points for the example case of Hurri-
cane Laura shown in Figs. 1 and 2 (verification time at 0000 UTC 27 Aug 2020) are marked as red filled circles.
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spread will give a broader distribution of tropical cyclone po-
sitions and the change between the set of positions for succes-
sive forecasts would tend to be less than for a less dispersive
ensemble. For the same reason, the improved spread might
also be expected to affect DI. Although there was some indi-
cation of this in our results (the ENS and GEFS distributions
were closer and not significantly different after the upgrade),
it was not such a clear change as forD.

It is possible that additional factors as well as the increased
spread also helped to improve D. For example, a reduction in
cross-track bias in the longer-lead forecasts would help to reduce
D, but would not tend to affect DI. Leonardo and Colle (2021)
showed that the GEFS had larger cross-track errors than ENS in
a large sample of Atlantic tropical cyclones for 2008–16. We were
not able to identify any significant changes in the GEFS bias after
the upgrade in our sample of cases. While the change in ensemble
spread was large enough to identify in our sample, it may be that
other differences require larger samples. Leonardo and Colle
(2021) also noted that large year-to-year variability made it diffi-
cult to identify any changes due to model upgrades.

The MOGREPS-G upgrade in December 2019 also im-
proved TC track errors and spread (Met Office 2019; Titley et al.
2020). Taking the same approach as above we found that for
the subset of cases before the MOGREPS-G upgrade there was
a significant difference between the ENS and MOGREPS-G
distributions for bothD and DI (with the MOGREPS-G having
overall higher jumpiness). After the upgrade there was no sig-
nificant difference between the two centers. See Fig. S1 in the
online supplemental material.

We conclude that the recent upgrades to the MOGREPS-G
and GEFS systems both improved the run-to-run consistency of
the ensemble track forecasts, and that since these upgrades the
overall jumpiness is similar for the three ensemble systems.

d. Comparison of error, spread, and divergence

We now compare the mean scores over all cases for the three
different aspects of ensemble performance: error, spread and di-
vergence. The upper panel of Fig. 6 shows the ensemble error

(CRPS, left), divergence (D, center) and spread (s, right) at lead
times out to 5 days ahead for the three centers. The vertical bars
indicate the bootstrapped 95% confidence intervals for each cen-
ter’s scores. Overall, the three centers have similar performance
and most differences between scores are not statistically significant.

The larger divergences in the short range for ENS and
GEFS (Fig. 6b) are consistent with the lower spread (Fig. 6c)
at these time steps for these centers. MOGREPS-G has larger
initial spread (maybe partly due to the time-lagging of the ini-
tial conditions of the MOGREPS-G system), and this will
tend to reduce the difference (divergence) between consecu-
tive forecasts as seen in Fig. 6b.

For each center, the mean ensemble divergence (Fig. 6b) is
approximately equal to the mean difference in CRPS between
consecutive forecasts (difference between successive points
on the curves in Fig. 6a). The agreement is particularly strong
at short range for all centers, and for ENS at all forecast
ranges. In other words, on average the divergence gives an in-
dication of the expected change in error for the next forecast.
However, this does not apply in individual cases.

Table 1 shows the Pearson correlation between divergence and
CRPS across all available cases for each forecast lead time. For
comparison, the correlation between ensemble spread and CRPS
is also shown. Corresponding scatterplots are shown in Figs. S2–S5
in the online supplemental material. The association between di-
vergence and error is in general substantially weaker than the link
between spread and error. These results are consistent with previ-
ous studies that show the benefit of using spread as a measure of
forecast uncertainty (Majumdar and Finocchio 2010; Yamaguchi
et al. 2009; Kawabata and Yamaguchi 2020; Titley et al. 2019).
However, the low correlation for divergence suggests that it does
not provide useful case-to-case guidance: there is no indication
that users should expect less jumpy cases to be more skillful.

Table 2 shows the Pearson correlation over all cases between
the two overall measures, D and DI, and the corresponding
mean error over all forecast lead times CRPS. Although for D
the correlation is somewhat higher than for the individual fore-
cast steps (Table 1), the corresponding scatterplots show large

FIG. 5. Effect of GEFS v12 cycle upgrade, 23 Sep 2020. Empirical cumulative distribution function ofD for subsam-
ples of cases (a) before and (b) after the upgrade.
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variations in error for cases of both low and high D. This again
suggests that users should be cautious in individual cases}a
consistent case with relatively low jumpiness may still have large
overall error.

We can do the same analysis for the ensemble-mean forecasts,
which are often used in operational TC forecasting (Figs. 6d,e;
lower panel). Again, the divergence gives useful additional in-
formation for forecast users. For example, for ENS the ensem-
ble mean cross-track error is around 175 km for 120-h forecasts
(Fig. 6d), and the ensemble spread is similar (showing that the
ensemble system is overall well-tuned; Fig. 6c). The mean ex-
pected change in cross-track EM position between T 1 120 and
T1 108 is;80 km (Fig. 6e). This is similar for all three centers.

The forecast systematic error (bias) is shown in Fig. 6f.
Overall, each center has a negative bias, that is the forecast
positions tend to be to the left of the observed position. How-
ever, there is large uncertainty as indicated by the large confi-
dence intervals shown on the plot. Magnusson et al. (2021)

show that the ENS tends to have a left-of-track bias for
northward-moving TCs, but a right-of track bias for westward
moving systems and this situation-dependent variation in bias
may partly explain the large confidence intervals at longer
lead times. As for the other scores, the confidence intervals
indicate that there is no significant difference between the
biases of the different centers. Comparing Figs. 6d and 6f
shows that for all centers the bias is relatively small compared
to the total error.

5. Conclusions

We have carried out an investigation of the jumpiness or
run-to-run consistency of ensemble forecasts of tropical cyclone
tracks. We used ensemble forecasts from the TIGGE tropical
cyclone track archive for three global centers: ECMWF (ENS),
Met Office (MOGREPS-G), and NCEP (GEFS). The forecasts
were compared to the observed tracks for all named tropical cy-
clones from the IBTrACS archive for the Atlantic basin for
2019, 2020, and 2021.

We looked at the change in the distribution of cross-track
position (relative to the observed track) for tropical cyclones
in consecutive ensemble forecasts initialized at 12-h intervals.

TABLE 1. Correlation between divergence and error. Each
row shows the correlation between the CRPS error at a given
forecast lead time h and the divergence D between h- and
(h 1 12)-h forecasts. For comparison the correlation between
the CRPS and the ensemble spread for the h-h forecasts is
shown in parentheses.

Step (h) ENS MOGREPS-G GEFS

72 0.18 (0.45) 0.22 (0.38) 0.07 (0.29)
84 0.25 (0.56) 0.32 (0.47) 0.05 (0.27)
96 0.19 (0.58) 0.36 (0.47) 20.01 (0.32)
108 0.29 (0.67) 0.42 (0.41) 0.19 (0.44)

TABLE 2. Correlation between overall jumpiness and error
(CRPS).

Center D vs CRPS DI vs CRPS

ENS 0.54 20.30
MOGREPS-G 0.56 20.01
GEFS 0.67 20.30

FIG. 6. Error, spread, and divergence for forecast lead time from 12 to 120 h. Scores for the (top) full ensemble and (bottom) corre-
sponding error and divergence for the ensemble means. (a),(d) CRPS error; (b),(e) divergence; (c) ensemble spread; and (f) bias. Vertical
bars indicate 95% confidence intervals. Mean scores over all available cases for each forecast lead time: number of cases indicated above
the x axis.
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This was quantified using the divergence function D associ-
ated with the CRPS error score following Richardson et al.
(2020). The overall jumpiness of a sequence of forecasts all
verifying at the same time was summarized using the mean di-
vergence D and the divergence index (DI).

We present our conclusions in the framework of the ques-
tions posed in the introduction.

a. How does run-to-run jumpiness vary from case to case
and between the ensemble systems of different
NWP centers?

The distribution of DI was similar for each center, showing
substantial variation between centers with a few significant out-
liers. There was no strong agreement between the centers on
which cases were most jumpy. The case shown for Hurricane
Laura was a typical example: this was the most extreme case of
jumpiness (largest DI) for the ECMWF ENS, showing a clear
flip-flopping of the ensemble between being left and right of the
observed track in successive forecasts. This behavior was not ap-
parent in either the MOGREPS or GEFS ensembles. This case
also illustrated the difference between the two summary meas-
uresD and DI. Earlier GEFS forecasts were substantially to the
right of the observed track and this right-of-track bias decreased
in later forecasts. The large trend over successive forecasts is in-
dicated in the relatively high mean divergence. However, the
absence of the flip-flop behavior seen in the ECMWF ENS re-
sults in the DI being close to the overall median value. Using
the combination of both D and DI can help to distinguish these
different behaviors in a sequence of forecasts.

b. Is there a common cause of “jumpy” cases}Are the
ensembles from different centers particularly jumpy for
the same cases and if so, what is the reason?

The jumpiest cases were different for each center for both D
and DI, indicating that there is not a common cause of jumpi-
ness across the different ensemble systems. This suggests that
the ensemble jumpiness is not strongly related to the prevailing
atmospheric conditions or to the available observations.

Outliers for the different centers may be due more to
specific issues in the data assimilation, models or ensemble
configurations. Recent studies highlight both continuing pro-
gress and ongoing challenges in each of these areas (e.g.,
Magnusson et al. 2019, 2021). However, a deeper analysis of
outliers would require a substantially larger sample than we
have used and is beyond the scope of the present work.
Leonardo and Colle (2021) used 9 years (2008–16) of Atlantic
TC data to investigate the causes of large cross-track errors in
the GEFS and ENS. However, we have also seen that recent
upgrades to ensemble systems have led to a significant reduc-
tion in the ensemble jumpiness and therefore including a lon-
ger sample of earlier years may not be representative of the
current ensemble capabilities.

Another possible reason for the occasional cases of large
jumpiness is sampling uncertainty due to finite ensemble size.
This would be consistent with outliers occurring at different
times for the different centers. Richardson (2001) showed how
even a well-tuned ensemble will appear unreliable if it has

insufficient members and that the required number of ensemble
members depends on both the underlying distribution and the
needs of the users. Leutbecher (2019) and Craig et al. (2022)
have demonstrated substantial sensitivity to ensemble size in
studies using large ensembles of 200 members and 1000 mem-
bers, respectively. Kondo and Miyoshi (2019) suggest that up to
1000 ensemble members are necessary to represent important
aspects of some forecast distributions. The impact of ensemble
size on forecast jumpiness has not been investigated and is a
topic for future work.

c. Have recent ensemble model upgrades had a noticeable
effect on the forecast jumpiness?

In this study we used a 3-yr period to provide a sufficient
number of cases to assess. During this period upgrades to
both the MOGREPS-G and GEFS ensembles resulted in sub-
stantial improvements to their predictions of TC tracks. Using
the ECMWF ENS as a reference, we found that both these up-
grades significantly reduced the jumpiness of the ensembles. Be-
fore the upgrades the ENS was significantly less jumpy than the
other centers. However, after the upgrades there was no signifi-
cant different between the centers. Both upgrades increased the
spread of the ensembles, and the improved jumpiness is consis-
tent with this change. These results suggest that it is the overall
level of ensemble spread that is important and that differences
in initialization and perturbation methodology between the cur-
rent systems are not a major factor in determining the overall
level of ensemble jumpiness.

The more recent upgrade to the ENS at the end of 2021 im-
proved TC track errors by 10% but had little impact on the
overall spread (Haiden et al. 2022). This improved the statisti-
cal reliability of the TC track. The impact on jumpiness of this
upgrade has not been assessed but can be done once a suffi-
cient sample of cases is available.

d. What guidance should be provided to forecasters and
decision-makers on the ensemble jumpiness}What
information is practically useful? Is there any useful
link between jumpiness and skill?

The divergence D gives an indication of the expected change
in cross-track position from one forecast to the next. For exam-
ple, a user should expect on average that the ensemble mean
position will change by around 80–90 km in the cross-track di-
rection between a forecast for 120 h ahead and the 108-h fore-
cast for the same time made 12 h later. The expected change
between a 72- and 60-h forecast is around 50 km. These ex-
pected changes were similar for all three centers. Corresponding
values for the expected divergence for the full ensemble distri-
butions are 20–25 and 10–15 km, respectively. These results ad-
dress the user requirements identified for example by Regnier
and Harr (2006) and Jewson et al. (2022) to provide objective
measures of the expected change from run to run so that users
can take account of this in their decision-making.

We did not find any strong link between eitherD or DI and
error (CRPS). This indicates that users should not rely on the
jumpiness or consistency between successive forecasts as mea-
sure of confidence in the forecasts. This is consistent with the
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work of Zsoter et al. (2009) who found only a weak link be-
tween jumpiness and error in ensemble forecasts for Europe.
In contrast, ensemble spread and the ensemble probabilistic
information (e.g., strike probabilities) have been shown to
provide useful situation-dependent guidance on forecast un-
certainty (Majumdar and Finocchio 2010; Leonardo and Colle
2017; Titley et al. 2020; Kawabata and Yamaguchi 2020).

Although we note that the effect of more recent system up-
grades has not yet been evaluated, users should expect gener-
ally similar levels of jumpiness in the three ensemble systems
considered in this study. The jumpiest cases will tend to be
different for the different centers, likely to be a result of sam-
pling uncertainties or specific deficiencies in the individual en-
semble configurations.

One practical approach for users to adopt to address both
these potential sources of jumpiness would be to combine the
ensemble forecasts from the different centers into multimodel
ensembles. Such multimodel combinations have already been
shown to improve probabilistic TC track prediction (Yamaguchi
et al. 2012; Leonardo and Colle 2017; Titley et al. 2020;
Kawabata and Yamaguchi 2020). Another option would be to
use lagged ensembles, combining consecutive forecasts from one
center. By construction this will reduce jumpiness and this is al-
ready used in the MOGREPS-G system to increase ensemble
size. Although our aim in this study was to evaluate and com-
pare the jumpiness in the individual systems, the effect of multi-
model combinations on ensemble jumpiness is an area for future
work.
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