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Abstract
Studying solar-wind conditions is central to forecasting the impact of space weather on
Earth. Under the assumption that the structure of this wind is constant in time and co-rotates
with the Sun, solar-wind and thereby space-weather forecasts have been made quite ef-
fectively. Such co-rotation forecasts are well studied with decades of observations from
STEREO and near-Earth spacecraft. Forecast accuracy is primarily determined by three
factors: i) the longitudinal separation of spacecraft from Earth determines the corotation
time (and hence forecast lead time) [δt] over which the solar wind must be assumed to be
constant, ii) the latitudinal separation (or offset) between Earth and spacecraft [δθ ]] deter-
mines the degree to which the same solar wind is being encountered at both locations, and
iii) the solar cycle, via the sunspot number (SSN), acts as a proxy for both how fast the
solar-wind structure is evolving and how much it varies in latitude. However, the precise
dependencies factoring in uncertainties are a mixture of influences from each of these fac-
tors. Furthermore, for high-precision forecasts, it is important to understand what drives the
forecast accuracy and its uncertainty. Here we present a causal inference approach based on
information-theoretic measures to do this. Our framework can compute not only the direct
(linear and nonlinear) dependencies of the forecast mean absolute error (MAE) on SSN, �θ ,
and �t , but also how these individual variables combine to enhance or diminish the MAE.
We provide an initial assessment of this with the potential of aiding data assimilation in the
future.
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1. Introduction

Forecasting terrestrial space-weather impacts (e.g. Cannon et al., 2013) necessitates knowl-
edge of the up-stream solar-wind conditions that will encounter the Earth’s magnetosphere
in the future. Advanced knowledge of the near-Earth solar wind is directly important for
space-weather impacts, but also for understanding the medium through which transient
events occurrences such as coronal mass ejections (CMEs) and solar energetic particles
(SEPs) must propagate. Currently, direct (in-situ) solar-wind observations are only routinely
available near the Sun–Earth line at the first Lagrange point L1, giving less than 40 minutes’
forecast lead time. Physics-based simulations of the whole Sun–Earth system can potentially
provide forecast lead times of two to five days, but there remain many technical and scientific
challenges to this approach (Luhmann et al., 2004; Toth et al., 2005; Merkin et al., 2007).
A simple, yet robust, alternative forecast of near-Earth solar-wind conditions can be made
using observations anywhere in the ecliptic plane by assuming that the structure of the solar
wind is fixed in time and co-rotates with the Sun. For example, observations in near-Earth
space can be used to predict conditions at the same location a whole solar (synodic) rotation
ahead, approximately 27.27 days (Bartels, 1934; Owens et al., 2013; Kohutova et al., 2016).
Of course, the structure of the corona and solar-wind does evolve over such time scales,
particularly around solar maximum. From the L5 Lagrange point, approximately 60◦ behind
Earth in its orbit, the co-rotation time is approximately five days. This is sufficiently long
that the forecast lead time is useful, but sufficiently short that the co-rotation approximation
is generally appropriate (Simunac et al., 2009; Thomas et al., 2018). Partly for these reasons,
Vigil, the upcoming operational space-weather monitor, will make routine observations at L5

(Kraft, Puschmann, and Luntama, 2017).
Assessing and quantifying the factors influencing the accuracy of co-rotation forecasts

is important directly for improving co-rotation forecasting, but also for effective data as-
similation of the solar-wind observations into solar-wind models (Lang and Owens, 2019;
Lang et al., 2021), as it informs the expected observational errors. Longitudinal separation
between the observing spacecraft and the forecast point – and hence the forecast lead time
– is obviously expected to increase forecast error, as the steady-state assumption becomes
increasingly invalid. We may also expect that this effect would be more pronounced (and
co-rotation forecasts generally less accurate) around sunspot maximum, when the corona is
known to be more dynamic and the occurrence of time-dependent coronal mass ejections
(CMEs) increases (Yashiro et al., 2004). However, for evidence that this effect is reduced
near the ecliptic plane, the reader is referred to Owens et al. (2022). Similarly, it has been
argued using simulation data that the co-rotation forecast error should increase with lati-
tudinal separation of observing spacecraft from forecast position (Owens et al., 2019) and
that this effect is maximised at sunspot minimum (Owens et al., 2020). This is the result of
greater latitudinal ordering of the solar-wind – with slow wind at the Equator and fast wind
at the Poles – at times when the solar dipole dominates and is rotationally aligned, which is
primarily at solar minimum (McComas et al., 2003).

The OMNI dataset of near-Earth solar-wind observations (King and Papitashvili, 2005)
allows us to assess co-rotation forecasts over nearly five complete solar cycles. As near-Earth
observations are used to make near-Earth forecasts one solar rotation ahead, the forecast lead
time is fixed at 27.27 days, and the latitudinal separation, caused by Earth’s motion over a
solar rotation, reaches a maximum value of around 3.5◦. The twin spacecraft of the Solar-
Terrestrial Relations Observatory (STEREO: Kaiser, 2005) provide a means to assess the
performance of co-rotation forecasts over a larger parameter range. The spacecraft were
launched into Earth-like orbits in late 2006, with STEREO-A moving ahead of Earth in
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its orbit, and STEREO-B behind, separating from Earth at a rate of 22.5◦ per year. This
allows the co-rotation forecast to be assessed for a full range of longitudinal separations –
and hence forecast lead times between 0 and 27.27 days – and, due to the inclination of the
ecliptic plane to the solar equator, latitudinal separations covering the range ±15◦. More
than a solar cycle of data is available (although the STEREO-B spacecraft was lost in 2014),
allowing the effect of increasing solar activity to be estimated.

However, while uniquely valuable, assessing co-rotation forecasts with the STEREO
dataset does present a number of challenges. Longitudinal and latitudinal separation from
Earth are interdependent, as both are due to the same orbital geometry. Due to timing of
launch and the orbital period, solar activity also varies approximately in step with the orbit;
the spacecraft were launched just before sunspot minimum and reached maximum separa-
tion just after sunspot maximum. Thus it is difficult to isolate and quantify the individual
sources of error in co-rotation forecasting (Turner et al., 2021). This kind of problem is
perfectly suited for causal analysis.

Study of cause and effect is central to all branches of sciences, and there are questions
in solar physics – such as factors affecting co-rotation forecasts – that can be cast in those
terms. In non-interventional (or observational) systems like the Sun, causal discovery is the
process of inferring mechanisms or models relating cause and effects from data. But even
when the principal mechanisms are known from physics, causal frameworks can also be
used as a diagnostic tool to determine how uncertainty in one or more variables influences
another. This is very useful in making forecasts. Typically, establishing a causal relationship
between variables entails determining their conditional dependency (Granger, 1969; Pearl,
2000). For random variables, both continuous and discrete, this is done via probabilistic
measures. Conditional dependency has traditionally been established with Granger causal-
ity, and these measures are mostly derived from information theory, i.e. they are “Shannon
based” (Schreiber, 2000; Kraskov, Stögbauer, and Grassberger, 2004; Williams and Beer,
2010). In addition, for time-series data, the temporal order of events is also critical to es-
tablishing causality. Time lags between different variables need to be carefully evaluated.
Therefore the temporal resolution of time series must be sufficient for establishing the di-
rection of information flow; missing data can lead to spurious correlations (Runge, 2018).
Nonlinear correlations between multiple drivers can be very difficult to disentangle. We at-
tempt here to address and demonstrate this with a framework (van Leeuwen et al., 2021)
that uses a transformed information-theoretic measure that applies to both discrete and con-
tinuous variables. Typically, the current state-of-the-art causal estimates are point estimates:
data are used to produce a single number to quantify the causal relationships. There is no ro-
bust uncertainty quantification. Addressing this in general is a work in progress (e.g. Runge,
2018; Heckerman, 2020). However, we will provide an elementary estimate of the distribu-
tion of the strength of causal relationships – the causal strength, cs from hereinafter.

Our goal in this work is to provide an initial assessment of the causal dependencies be-
tween the accuracy of a forecast, the target or “effect” variable, with the driver or “cause”
variables. For reasons explained above, the driver variables are assumed to be solar activity
(quantified by sunspot number), forecast lead time (which is primarily determined by lon-
gitudinal spacecraft separation for the OMNI data and STEREO observations), and latitudi-
nal spacecraft separation. The typical approach would be to cross-correlate these variables,
or rather the time series associated with them, pairwise. However, as these relationships
can often be nonlinear and multivariate, we need more advanced estimators such as those
based on information-theoretic measures such as mutual information and higher-order terms
(Chakraborty and van Leeuwen, 2022). So the approach that we follow here is to start with
the analog of pairwise correlation, but with the nonlinear estimator: mutual information.
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Figure 1 The forecast and the verification speeds for a small subset of the total dataset (between 16 January
2006 and 15 May 2006). The blue curve shows the forecast speed, and the red one the verification speed.
Both properties are calculated at one-day resolution.

We then introduce a third variable, via conditional mutual information, to disentangle inter-
dependencies amongst three driver/cause variables, in order that mediated or induced effects
can be isolated. In principle, a full causal network (Runge, 2018; van Leeuwen et al., 2021)
can be constructed using time-series observations. But this comes with computational and,
in certain situations, interpretation challenges. Hence we leave this for future work.

We describe the solar-wind observations from OMNI and STEREO-A and -B spacecraft
in Section 2. Next, we introduce the causal inference methods, demonstrating their appli-
cation to the OMNI data in Section 3. We compute the distribution of causal relationships,
first pairwise, quantified in terms of the mutual information using a nonlinear information-
theoretic measure (Section 3.1), examine the time averaging effect on sunspot number (Sec-
tion 3.2), followed by the conditional mutual information to separate influence of the third
variable (Section 3.3). We use 27-day co-rotation forecasts (also called “recurrence” or “27-
day persistence” forecasts) using only OMNI data first, as it eliminates the lead-time as a
variable by design; this leaves us with testing two (instead of three) drivers: the solar activity
encoded in the (smoothed) Sunspot Number (or SSN27), and the latitudinal offset. By first
learning dependencies in this simpler dataset, we then compare effects of this same subset
of drivers in the STEREO datasets ignoring at first the lead time (Section 3.4). Following
this, in Section 5, we study induced or mediated dependencies with lead time included by
using the STEREO datasets. Finally, we interpret the results and conclude whilst looking at
future opportunities to improve forecasts in Section 6.

2. Observations

Two primary data sets are used in this study. Firstly, the OMNI dataset of near-Earth
solar-wind conditions (King and Papitashvili, 2005). Data are available from omni-
web.gsfc.nasa.gov/. Prior to 1995, data coverage varies significantly, so the period of study
is limited to 1995 to present. Secondly, the STEREO dataset, which is available from
stereo-ssc.nascom.nasa.gov/data.shtml. STEREO-A data are used from the whole mission,

http://omniweb.gsfc.nasa.gov/
http://omniweb.gsfc.nasa.gov/
http://stereo-ssc.nascom.nasa.gov/data.shtml
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Figure 2 Subset of data (2006) showing speed(s) with MAE. A summary of the co-rotation forecast of solar-
wind speed obtained by using OMNI near-Earth data to forecast near-Earth conditions 27.27 days ahead. Top:
Sunspot number. Middle: The absolute value of the latitudinal separation between observation and forecast
location [�θ ]. Bottom: The mean absolute error or MAE in the solar-wind speed co-rotation forecast. All
properties are calculated at one-day resolution (dotted lighter curves ), then averaged over 27 days (solid
darker curves).

2007 – present, whereas STEREO-B data are only available until 2014. All data are aver-
aged to one-day resolution to remove the effect of small-scale stochastic structures, such as
waves and turbulence (Verscharen, Klein, and Maruca, 2019).

Solar-wind speed co-rotation forecasts are produced by ballistically mapping data at the
observed solar-wind speed from the observation radial distance to 1 AU, then applying a
co-rotation delay consistent with the longitude separation. By far the dominant factor is
the longitudinal separation. Further details can be found in Turner et al. (2021). For each
forecast, we compute the mean absolute error (MAE) between the forecast and observed
solar-wind speed. For reference, we have plotted the wind forecast speed and the verification
speed for a small subset of the data in Figure 1. The curves show the daily values (red for
verification and blue for forecast), which are noisy as expected. We can see even from this
small (four-month-long) sample that the difference between the two – daily verification and
the forecast – is compatible with the mean absolute error plotted in Figures 2 and 3.

For solar-cycle context, we use the daily sunspot number (SN) provided by Sunspot
Index and Long-term Solar Observations (SILSO: Clette and Lefèvre, 2016) and available
from www.sidc.be/silso/. While we use version 2.0 of the SILSO record, the time period
considered in this study is not subject to any of the calibration issues or corrections that are
necessary for the early data (Clette et al., 2023).

Figure 2 shows a summary of OMNI data used to make a 27.27-day lead time forecast
of near-Earth conditions. By eye, some correlation can be seen between the MAE and SN,
e.g. there are few intervals of MAE above 250 km s−1 during the solar minima of 1996 – 97,
2009 – 10, or 2019 – 20. Conversely, there is no immediately obvious relation between MAE
and the absolute latitudinal separation between observation and forecast location: �θ . How-
ever, the �θ -variation here is very small, arising from Earth’s latitudinal orbital motion over
a 27.27-day interval and reaching a maximum magnitude of around 3.5◦.

http://www.sidc.be/silso/
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Figure 3 A summary of the co-rotation forecast of solar-wind speed obtained by using STEREO-B obser-
vations to forecast conditions at the STEREO-A spacecraft. Top: Sunspot number. Second row: The abso-
lute value of the latitudinal separation between observation and forecast location [�θ ]. Third row: Forecast
lead time (directly proportional to longitudinal separation, and to a much lesser extent, radial separation of
spacecraft). Bottom: The mean absolute error in the solar-wind speed co-rotation forecast. All properties are
calculated at one-day resolution (dotted lighter curves ), then averaged over 27 days (solid darker curves).

Figure 3 shows the summary of STEREO-B observations used to forecast solar-wind
speed at STEREO-A. As the spacecraft separate in longitude, the forecast lead time [�t ]
increases almost linearly. The maximum value of �θ grows as the spacecraft increase their
absolute longitudinal separation until mid-2010, then declines as the spacecraft move closer
together (behind the Sun, from Earth’s point of view). There is a somewhat linear growth in
MAE from 2007 to 2012, although without further analysis it is not possible to say whether
this is the result of sunspot number (post smoothing as we will see) �t , or the amplitude of
�θ , increasing through this time, or some combination of those variables.

3. Methods: Causal Dependencies of Co-Rotation Forecasts

We wish to study the principle drivers of the error in the co-rotation forecasts. To do that,
we perform a causal analysis on the mean absolute error (MAE) as the target/effect vari-
able and the sunspot number SN , latitudinal offset [|�θ |: ◦], and the forecast lead time
[�t : days] as the principal driver/cause variables. With this setup, we can use a nonlinear
measure of dependency to compute the causal relationships between these variables. There
are a number of choices for such measures: those based on information theory as (condi-
tional) mutual information (Kraskov, Stögbauer, and Grassberger, 2004), transfer entropy
(Schreiber, 2000), directed information transfer (Amblard and Michel, 2009), etc. We chose
the mutual information (and its conditional variants) as it is well studied (e.g. Runge, 2015;
van Leeuwen et al., 2021), and there are robust estimators available, along with an analytical
result for Gaussian variables. The mutual information I (x;y1:N) between a target process x

and a possible driver process y, or a whole range of driver processes denoted in our general
formalism (van Leeuwen et al., 2021) by y1:N (or sometimes y, z, w, etc.) is defined via the
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Shannon entropy H(·) as

I (x;y1:N) = H(x) − H(x|y1:N) (1)

=
∫

p(x, y1:N) log

[
p(x, y1:N)

p(x) p(y1:N)

]
dx dy1:N . (2)

Mathematically, the mutual information I (x;y1:N) is a positive-definite quantity. It can be
thought of as the reduction in entropy (or uncertainty) in the target (here x) in the presence
of information content from the driver variables (here y1:N ).

3.1. Mutual Information: Pairwise Dependency Between Latitudinal Offset,
Sunspot Number, and MAE

With the goal of disentangling causal influences of drivers in co-rotation forecasts, we be-
gin with OMNI data used to make a forecast at Earth. In this case, co-rotation forecasts
have a fixed lead time of 27.27 days, and forecast error [MAE] inherently has two primary
drivers, the activity modulation of the Sun – approximated by the sunspot number (SN) –
and latitudinal offset �θ between the observation and forecast position (i.e. between Earth’s
location 27.27 days apart). This provides a relatively simple causal network to explore with
our framework.

We compute the mutual information (MI) between pairs of the target and one of the
drivers, e.g. I (MAE; |�θ |). Given the length of the observation time series, we can empir-
ically estimate the distribution of these quantities as histograms. The mutual information
serves as the measure of causal dependency between pairs of one of the drivers and the
target variable. Once again, we refer to Figure 6 for a visualisation graphically via a Venn
diagram described in Section 4.1. In this figure, the example is given for variables x and
y representing target MAE, and driver either �θ or SN. In other words, we determine the
reduction in entropy (or random uncertainty) in MAE due to �θ or SN. Note that we break
the symmetry between the two variables (target vs. driver), with the driver (cause) as lag-
ging in time with respect to the target (effect). The quantities (or rather their distributions)
represented by these information diagrams are estimated in Figure 4.

As a positive-definite quantity with no upper limit, MI can take very large values. Thus it
is useful to normalise this measure, which is possible in a number of ways. One option is to
normalise it with the total entropy or uncertainty in the variable x, giving the causal strength
cs(x;y1:N) = I (x;y1:N )

H(x)
or simply cs(x; z) = I (x;z)

H(x)
for two variables: target x and driver z.

There is a challenge here; the entropy we use is for continuous variables, also known as the
differential entropy, which can acquire negative values. In practice, we do not encounter this
here in our applications. However, to mitigate this effect – and for general interpretation –
we will ultimately use relative causal strengths to the total over all the drivers combined; in
these relative causal strengths, we ignore the contribution of noise or unmodeled drivers to
merely focus on interpreting selected drivers.

3.2. Influence of Sunspot Number: Timescale Matters

The measured or observed quantity for solar activity is the daily sunspot number. These
observations display large variability as seen in Figures 2 and 3. As we will demonstrate
here, the stochasticity has an impact on the causal association with the forecast-accuracy
term, MAE. Figure 4 shows the corresponding distribution of causal strengths of the pairs
of MAE with 27-day smoothed (right) and daily unsmoothed (left) SN and the latitudinal
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Figure 4 Histograms of causal strengths [cs] of drivers – sunspot number (SN) and latitudinal offset �θ –
on the target, co-rotation MAE obtained from 27.27-day forecasts using OMNI data. Dashed lines represent
mean cs-values used in causal diagrams. We take the 27-day smoothed MAE as the target in both cases.
Left: SN and �θ are used at daily resolution; cs computed from daily SN. Right: cs computed from 27-day
smoothed SN. cs for SN shows a greater dependence on |�θ | than on SN, whereas the 27-day smoothed SN
clearly shows the greater association of solar cycle with MAE by suppressing the stochasticity and empha-
sising the solar activity.

offset �θ . The unsmoothed daily sunspot number (SN) has lower cs [= MI/H] than the
latitudinal offset �θ . However, upon performing a rolling mean on the daily SN to yield
27-day smoothed averaged SN or the SSN27, the hierarchy reverses. As shown in Figure 4,
we see that the total causal strength of SN, cs(SSN27 → MAE27), goes from 0.03 to 0.14
upon averaging, compared to cs(�θ → MAE27) with a mean value of 0.05. As expected,
the stage of solar cycle and overall time variability of the Sun is better represented by the
smoothed SN, which has a significant influence on MAE. That the daily SN has a significant
stochastic component is also confirmed by / evident from the entropy estimates. The entropy
is reduced upon smoothing or averaging SN and is lower than that of �θ by a factor of a few
(for example ≈ 2 for STB–STA); however, this is not a significant effect.

3.3. Conditional and Interaction Information: Higher-Order Terms

In the presence of multiple causes or drivers (say y and z), the aforementioned causal-
strength term cs(x; z) will come to represent the fractional reduction in uncertainty in the
target due to the driver: z. There is a similar term for y. To further disentangle and isolate
the influence of each driver, we also compute the conditional mutual information (CMI), e.g.
I (x; z|y). For two drivers y and z (and a single target x), conditional mutual information
I (x; z|y) given in Equation 3, “conditions out” the effect of one driver (y), leaving the direct
influence of the other one (z). This can be visualised in terms of Venn diagrams in Figure 7.
It is the difference between the intersection of x- and z-circles (black stripes) and that of x-,
z-, and y-circles (orange spots). In our application to co-rotation forecasts, the example used
for illustration has x as MAE27 and the y and z as the drivers �θ and SSN27, respectively.
We will keep the same normalisation with entropy for all information terms so that they can
be combined or compared.

The conditional mutual information can be defined in terms of the conditional entropies
as

I (x;y|z) = H(x|z) − H(x|y, z). (3)



Causal Analysis of Influence of the Solar Cycle. . . Page 9 of 20   142 

Figure 5 The distribution of conditional causal strengths with OMNI data. cs here is associated with con-
ditional mutual information normalised by the entropy H for the combinations of MAE27 with Sunspot
Number SSN27 (27-day rolling averages for both) and Latitudinal Offset for the full dataset, namely
cs(MAE27;SSN27|��) and cs(MAE27;��|SSN27).

This equation for the conditional mutual information of x with respect to y and z represents
the difference in entropy of x “conditioning out” z alone (H(x|z)) and entropy of x “condi-
tioning out” y and z together [H(x|y, z)]. This leaves us with the direct influence of driver y

on target x, excluding any indirect influence mediated by or shared with z. The distributions
of such conditional information terms for the triplet (MAE27,�θ ,SSN27) are estimated in
Figure 5; these provide the so-called direct causal influence contribution of SSN27 and �θ

on MAE27. These are symbolised by the black arrows in the causal-summary diagram in
Figure 8. The causal-summary diagram, as the name suggests, provides a summary of the
information flow from (and therefore the causal influence of) the driver variables; in this
case the latitudinal offset �θ and the smoothed sunspot number SSN27. Now the interaction
information can be written in terms of the mutual and conditional mutual information as

I (x;y; z) = I (x;y) − I (x;y|z)
= I (x; z) − I (x; z|y). (4)

This equation for the interaction information of x with y and z gives the difference between
the mutual information shared between x and y [I (x;y)] and information shared between
them, upon conditioning out z [I (x;y|z)]. This is the interaction information shared be-
tween the three variables x, y, and z and is symmetric in all three variables. If we fix one as
the target with the other two as drivers, as we do for our application, then the expression for
interaction information is symmetric in the two drivers as demonstrated by the two equiva-
lent expressions for I (x;y; z) in Equation 4. So it does not matter which driver we condition
on. We will exploit this later on as estimates from actual measurements may not converge to
the same value as Equation 4. So we can take the average of the two symmetric expressions
to represent the interaction information between one target and two drivers. This is seen later
in the observational estimates.
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This quantity can be interpreted as the information shared between x and y, less the
information shared between them when z is known. If the interaction information is non-
negative, or I (x;y) ≥ I (x;y|z), it implies that the dependency of x on z partially or entirely
(equality) constitutes the dependency on y (Ghassami and Kiyavash, 2017). If the interaction
information is negative, or I (x;y) < I (x;y|z), then each one of the variables induces and
increases correlation between the other two. The case of zero interaction information implies
that the mutual and conditional mutual informations are equal. This means that the entire
information shared between the first two variables (here x and y) is the direct component of
causal influence having conditioned out the third (here z).

In the previous subsection, we ascertained that the smoothed sunspot number or SSN27

is more appropriate as a proxy for the solar activity in evaluating its causal influence on the
average co-rotation forecast accuracy MAE27. Now we wish to disentangle the direct and
indirect effects of both SSN27 and the latitudinal offset �θ on MAE27. Their joint effect,
or one mediating through the other, is naturally a higher-order effect, and hence we need the
higher-order information terms. We compute the higher-order information-theoretic quan-
tities, namely conditional mutual information and interaction information between drivers
SSN27 and �θ and the target MAE27 still using only the OMNI dataset. For MAE27(x),
�θ (y), and SSN27(z), the interaction information corresponds to the common part with or-
ange circles in the Venn diagram in Figure 7. This is therefore the information shared across
all three variables in general.

Formally, causality necessitates there be a time lag between the cause and effect such
that the former precedes the latter. Indeed, there is a time lag between the forecast accuracy
of a future step MAEn+1

27 and the drivers �θn and SSNn
27. This is innate/intrinsic to the

way the time-series observations are done. However, in this particular application, we are
considering daily variations, and the drivers – latitudinal separation, longitudinal separation,
and 27-day smoothed sunspot number – vary over much longer timescales. Thus a single
time-step between n and n + 1 makes negligible difference to the computed information
components. However, the notation involving target at n + 1 and drivers at n is maintained
to demonstrate the general principle.

3.4. Consistency Across Datasets

We next test this relative influence of SSN27 and �θ on MAE27 across the available
datasets, namely STB–STA, STB–OMNI, and OMNI-STA pairings. This is shown in Fig-
ure 9. In each case, we find the interaction information I (MAEn+1

27 ;�θn;SSNn
27) to be

positive. This is an indication that SSN27 partially constitutes the dependency of MAE27

on �θ and vice versa, but it is not very significant. Across these three datasets (as well
as OMNI–OMNI recurrence forecasts), we found that the direct causal strengths of lati-
tudinal offset I (MAEn+1

27 ;�θn|SSNn
27) are around 60 – 70% of the direct causal strength

I (MAEn+1
27 ;SSNn

27|�θn) of SSN27. Furthermore, estimates of the interaction information,
given by I (MAEn+1

27 ;SSNn
27) − I (MAEn+1

27 ;SSNn
27|�θn), are merely ≈ 7% of the direct

causal influence, as was also shown in the OMNI dataset in Figure 8. This suggests that to a
good approximation, the causal influence of the solar activity is decoupled from that of the
latitudinal offset. This will aid us in considering the causal influence of lead time in turns
with these two variables, simplifying the causal network.
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Figure 6 Illustration of the mutual information via Venn diagrams of the conditional entropies H(x|y) or
H(x|z). One circle represents the entropy content in the target – forecast accuracy (at time n + 1), and the
second represents that of one driver – either SSN or �θ . The intersection represents the reduction of entropy
in the target by knowledge of the driver.

4. Symbolic Representation and Visualisation

4.1. Symbolic Representation: Venn Diagram Visualisation

The information “shared” between the driver variable(s) and the target variable is shown
graphically as an Information Venn Diagram in Figure 6 (and 7 for higher-order terms that
we will discuss later). The circles represent the conditional entropy H(x|y) of the individual
variables, and the intersection (shaded region with lines) represents the reduction in entropy
of variable due to the presence of the other, which is the mutual information I (x;y) defined
in Equation 1. For our application, one of these variables is the target, and the other a driver;
hence the superscripts n + 1 and n showing different time indices. The labels also show the
specific case at hand with the solar-wind variables MAE, SSN, �θ , but we will elaborate on
these in upcoming subsections. The drivers that causally influence the target would reduce
the entropy, and the extent of this reduction is viewed as the extent of causal influence.
On the other hand, if a driver does not have a causal influence, then it does not reduce the
entropy, and the mutual information of the target with that driver is zero. Graphically this
would mean a separation of the two circles with zero overlap. There are limitations to a
formal interpretation of all situations in terms of Venn diagrams – this will become clear
for higher-order terms such as interaction information described in Section 3.3 (Ghassami
and Kiyavash, 2017). Hence these Venn diagrams serve as a visualisation to build up our
intuition rather than be a formal representation.

4.2. Symbolic Representation: Causal Summary Diagrams

The causal information flow between the variables is summarised in Figure 8. The nodes (or
ovals) represent the variables, and the arrows represent the flow of information to the target
variable, MAE27 one time step in the future (n+ 1). Black arrows represent the influence of
single driver conditioning out influence of the other drivers. The red segments ending in an
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Figure 7 The different information components for three variables. The intersections represent information
shared between variables. The black striped region is the mutual information shared between target MAE and
driver �θ . The orange dots denote interaction information: information shared between MAE27 and both
�θ and SSN27. The red circles show the entropy or uncertainty in MAE27 that is not explained or shared
by either SSN27 or �θ or their interaction.

arrowhead on the target represents the joint causal influence of the drivers. The confluence
of the segments out of the drivers into a point symbolises this joint or combined effect; the
arrowhead as usual points to the information flow into the target. This represents the com-
ponent of influence that is driven by the combination of drivers together, distinct from their
individual, direct influences on the target, shown by black arrows. This combined or joint
effect could be a positive one showing a redundancy in the driver or that one driver partially
or entirely captures the influence due to another. It could be negative, suggesting that one
driver induces an influence from the other driver. These can be mathematically quantified in
terms of the interaction information. Here for 27-day co-rotation forecasts using only OMNI
data, the only drivers are �θ and SSN27, now considered simultaneously. (As we will see
in an upcoming section, the lead time �t – related to the longitudinal separation – will have
a role to play for STEREO data.) We find that the direct influences of SSN27 and �θ (black
arrows) are more important than the joint influence (red arrow) on MAE27. In general, we
can compute the joint influence due to multiple drivers starting from pairs (the red arrows)
to the joint influence of all n drivers simultaneously. However, to use the full general mathe-
matical framework in van Leeuwen et al. (2021) is computationally expensive and complex.
It is also not essential in our work here to get the higher-order dependencies. We compute
the causal strengths (defined earlier) from the mutual and conditional mutual information
terms in accordance with van Leeuwen et al. (2021). The black arrows are given by

(�θn → MAEn+1
27 )1link = I (MAEn+1

27 ;�θn|SSNn
27), (5)

(SSNn
27 → MAEn+1

27 )1link = I (MAEn+1
27 ;SSNn

27|�θn). (6)

The red arrow symbolising the joint influence of �θ and SSN27 represents and is related to
the interaction information shown in Figure 7. Graphically this represents the intersection
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Figure 8 Summary of mean MAE27 dependence on latitudinal offset �θ and SSN27 individually
(black) and in combination (red) for OMNI–OMNI. This is done in terms of the causal strength
(cs = Information Term

Entropy ) values defined earlier – the numbers attached to the arrows. The superscripts merely

indicate the formal need for the causes SSNn
27,�θn to precede the effect MAEn+1

27 – in practice for this
application, a single time-step makes negligible difference.

of the information component common to each of the three variables in our triplet, i.e. two
drivers (latitudinal offset and smoothed sunspot number) and target MAE27. This is there-
fore symmetric and is, theoretically, independent of the variable that it is conditioned on.
However, when estimating from measured quantities, this symmetry, indicated both graphi-
cally in Figure 7 and in Equation 4, is not strictly adhered to. Hence we can express the joint
influence indicated by the red arrow as the average of the two equivalent ways of estimating
it as

(�θn → MAEn+1
27 )2link + (SSNn

27 → MAEn+1
27 )2link

= 1/2 [ I (MAEn+1
27 ;�θn) − I (MAEn+1

27 ;�θn|SSNn
27)

+ I (MAEn+1
27 ;SSNn

27) − I (MAEn+1
27 ;SSNn

27|�θn)]. (7)

5. STEREO: Effect of Lead Time

As explained in the previous section, the OMNI (27-day) co-rotation forecast dataset al-
lows us to focus on the causal influence of �θ and SSN27 as proxy of the solar activity on
MAE27. Having learnt that the interaction information between these three driver variables
is small, we can assume their influence to be largely independent. We will now proceed
to pair �θ and SSN27 by turns, with the lead time �t . This will give us the direct and
interaction terms for each case, analogously to the causal network in Figure 8.

5.1. Conditional Causal Influence: Lead Time

Analogously to the causal analysis of the OMNI time series, we estimate causal linkages
using the STA–OMNI co-rotation time series. We begin with the time series of �t and
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Figure 9 MAE27 dependence
on principle drivers for
co-rotation forecasts; latitudinal
offset �θ conditioned on
smoothed sunspot number or
SSN27 and vice versa in pairs of
Top: STB–STA, Middle:
STB–OMNI, and Bottom:
OMNI–STA.

�θ as drivers along with the MAE27 as the target. We compute causal-strength terms cor-
responding to mutual information terms I (MAEn+1

27 ;�θn) and I (MAEn+1
27 ;�tn) and the

conditional information terms I (MAEn+1
27 ;�θn|�tn) and I (MAEn+1

27 ;�tn|�θn).
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Figure 10 Histogram of causal strengths [cs] of drivers – the lead time, �t27, and �θ – with the target,
MAE27 using STA–OMNI data. Left: the distributions of pairwise strengths [MI/H]. Right: the conditional
causal strengths [CMI/H].

I (MAEn+1
27 ;�θn;�tn) is in fact the influence of �θ on MAE27 that is shared by (or me-

diated through / induced by) �t , in general. From Figure 10, it is evident from the histograms
of cs(MAEn+1

27 ;�θn) and cs(MAEn+1
27 ;�θn|�tn) (or, equivalently, the corresponding in-

formation terms) that the interaction-information I (MAEn+1
27 ;�θn;�tn) is positive. Using

the mean values of each term in the information triplet, direct (i.e. conditional mutual) and
mutual information for (MAE27,�θ ,�t ), we get an interaction information term ≈ 20%.
The direct influence of �t on MAE27 is ≈ 50%, and the direct influence of �θ is the re-
maining ≈ 30%. These numbers are the relative proportions of influence of the two drivers:
considered �θ and �t , without considering SSN27. The “missing” 20% is likely to have a
significant contribution from the other driver, SSN27. However, we also have noise, which
includes the statistical fluctuations. Also, the averaged sunspot number is used as a proxy
for the temporally evolving nature of the solar wind; it is not an exact proxy.

Histograms with 15 bins, as before, are used to estimate the distribution of these causal-
strength terms and shown in Figure 10. It is clear that the lead time �t has an influence on
the MAE27. Upon conditioning on �θ , we find a sizable direct influence of �t on MAE27,
around 1.5 times greater than the direct influence of �θ ; this is shown by the black arrows
in the summary diagram in Figure 11.

Next, we look at the driver pair of lead time and (smoothed or rolling 27-day average)
sunspot number [�t,SSN27]. We again estimate the pairwise (mutual information) and di-
rect dependencies (conditional mutual information) of �t and SSN27 on MAE27. Once
again, the two drivers SSN27 and �t have shared dependencies. This is summarised in Fig-
ure 11.

The black arrows are given by

(�tn → MAEn+1
27 )1link = I (MAEn+1

27 ;�tn|SSNn
27) (8)

and

(SSNn
27 → MAEn+1)1link = I (MAEn+1;SSNn

27|�tn). (9)

The red arrows symbolising the joint influence can be written symmetrically as the sum of

(�tn → MAEn+1
27 )2link + (SSNn

27 → MAEn+1
27 )2link

= 1/2 [A I (MAEn+1
27 ;�tn) − I (MAEn+1

27 ;�tn|SSNn
27)
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Figure 11 Summary of the mean
causal dependence of forecast
accuracy MAE27 on latitudinal
offset �θ , lead time �t , and
average/smoothed sunspot
number SSN27 individually
(black) and in pairwise
combinations (red) for
STA–OMNI.

+ I (MAEn+1
27 ;SSNn

27) − I (MAEn+1
27 ;SSNn

27|�tn)]. (10)

The quantitative analysis is summarised in the causal-summary diagram in Figure 11.
The direct causal influence of �t and SSN27 are ≈ 41% and ≈ 28%, respectively, in relative
terms. The joint influence is ≈ 31%.

5.2. Dependencies of the Driver Triplet

Here we put aside the target variable MAE27 and apply the causal measures to explore the
dependencies between the drivers themselves. The goal is to directly probe the statistical
(in)dependence of the drivers without any lag, i.e. we do not seek causal-information flow
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Figure 12 Summary of the mean
(in)dependence of the smoothed
sunspot number SSN27 on the
latitudinal offset �θ and
co-rotation time �t individually
(black) and in combination (red)
for STB–OMNI. Here we test the
interdependence of the drivers
and not a relation between causes
preceding the effect symbolically
shown by the absence of the
arrow heads; hence each is at n.

in time, from one variable to another. Instead, we look simply for information overlap that
tells us the how the drivers relate to each other. Hence the three variables are SSNn

27, �θn,
and �tn. These dependencies between drivers are symbolised by line segments instead of
arrows. So with no natural target variable, we treat SSN27 effectively as the target. The
reason for this is that a priori we might expect a stronger dependence between �θn and
�tn, and hence we wish to see how these two affect SSN27. Our approach is reflected in
the causal diagram shown in Figure 12. We find that the direct effect (black line segment)
of �t on SSN27 is greater than that of �θ by over an order of magnitude. This is because
solar activity does depend upon the phase and hence the lead time across cycles. Although
the joint effect (red segment) of �t and �θ on SSN27 is lower than the direct effect of �t , it
is still non-trivial. As the corresponding interaction information term is positive, it suggests
that �t mediates the dependency on �θ .

6. Conclusions

In this article, we probe what drives the accuracy of co-rotation forecasts of the solar-wind
observations. As we do not have means to make interventional experiments, we apply causal
inference methods to the available observations. The causal drivers of relevance are the
latitudinal separation or offset �θ between the observing and forecast locations, the forecast
lead time �t , and the solar activity, as measured by the 27-day rolling average of the sunspot
number SSN27. The target variable is the forecast accuracy measured in terms of the mean
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absolute error between observation and forecast. We use information-theoretic measures
to estimate the strength of the causal influence of the drivers on the target. These do not
merely estimate correlations between pairs of variables, but can disentangle the influence of
a third variable via conditioning the information content shared between the three of them.
Depending on the different information terms or components, we can estimate the influence
of the individual drivers as well as their joint effect, induced effects, and redundancy due to
correlation amongst drivers.

We draw the following conclusions:

i) The decomposition of information flow between the different drivers (or causes) and
the target is effective in identifying cause and effect relationships driving dynamical
systems in the presence of complex, nonlinear relationships between multiple variables.
This approach is perfectly suited to trace what drives the co-rotation forecast accuracy
or rather the uncertainty.

ii) The pairwise causal relationship between drivers – latitudinal offset �θ , forecast lead
time �t , and the average sunspot number SSN27 – and target MAE27 given by mutual
information normalised to the target entropy confirms our understanding from previous
results (e.g. Turner et al., 2021) that solar-activity levels measured via SSN27 and the
lead time �t have a big influence on the average forecast error MAE27 followed by the
latitudinal offset �θ . Statistical noise levels impact the absolute values of the dependen-
cies. The relative values of the causal strengths, however, teach us about the hierarchy
of influence of the different driver combinations.

iii) Exploiting higher-order measures such as interaction information, we can probe deeper
into causal influence of multiple drivers in conjunction with one another. A non-zero
interaction information has two possible cases with corresponding interpretations. Neg-
ative values show an induced effect (i.e. one driver showing a coupling to the target
induced only due to the presence and influence of another driver), whereas positive
values show a redundant / shared influence. We can be quantitative about the relative
importance of joint causal (positive or negative) influence and therefore potentially im-
pact forecasting. Also qualitatively, knowledge of whether drivers act independently of
one another can help design future data experiments. For instance, from Figure 9, it is
clear from the consistency of MAE27 dependence on SSN27 and Latitudinal Offset –
from OMNI alone and OMNI with STEREO – that solar activity has a stronger, direct
influence on MAE27 than latitudinal offset, independent of lead time. Hence the ap-
propriate weight can be given to each of these drivers in an assimilation forecast. On
the other hand, from Figure 12, while solar activity and latitudinal offset have a weaker
direct association (black line between them) relative to its stronger, direct coupling with
lead time, they do have an indirect coupling. The association of sunspot number with
latitudinal offset is owed predominantly to the lead time. This implies that the phase of
the solar cycle is important.

iv) The interaction-information terms, such as I (MAEn+1
27 ;�θn;�tn) and I (MAEn+1

27 ;
SSNn

27;�θn), or, equivalently, the corresponding causal-strength terms I/H quantify
the information content shared between the three variables. From these terms, we can
learn that the SSN27 and �θ share very little information. That is, their influence
on MAE27 is predominantly independent of one another. On the other hand, for the
STEREO dataset, �θ and �t share a non-trivial fraction (≈ 20%) of the their total
information content (or influence on MAE27). In this case, the positive sign of the in-
teraction information indicates that �θ partially contributes to the influence of �t on
MAE27, and vice versa. These effects could not be revealed by standard correlation
analysis.
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A causal inference approach disentangles the drivers of the forecast accuracy in ways
that standard statistical analysis or data assimilation cannot. Rather, the latter two can be
improved through causal diagnostics. It allows us to not only disentangle individual sources
of uncertainty in the forecast, but also calculate partial and complete redundancies in drivers
of this uncertainty. This learning can potentially be applied to improve the solar-wind data-
assimilation forecasts.
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