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Abstract

Subseasonal-to-seasonal (S2S) forecasts span the prediction range of weeks to

2–3 months ahead, bridging the gap between medium-range and seasonal

weather forecasts. There has been growing interest in S2S forecasts in recent

years, largely because of the many potential uses of forecasts spanning these

timescales. However, the skill of S2S forecasts beyond the first 2 weeks or so is

poor, potentially limiting the usability of these forecasts. We show in this study

that when considering accumulated temperatures, there is in fact good fore-

casting skill over Europe for accumulation periods up to 30 days ahead. Using

a set of S2S hindcasts, we show using both a deterministic and a probabilistic

measure of skill that the accumulated 2-metre temperature forecasts out to

30 days are skilful over most of Europe. In summer, South West Europe has

highest skill, while in winter North East Europe has highest skill. As an exam-

ple application of such forecasts, we also evaluate the skill for summer cooling

degree-days (CDD) and winter heating degree-days (HDD). For 30-day winter

HDD, there is good skill in all four European regions; for 30-day summer

CDD, the skill is limited in North West Europe, but still good in other regions.
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1 | INTRODUCTION

Sub-seasonal-to-seasonal (S2S) forecasts span the predic-
tion range of weeks to 2–3 months ahead, bridging the
gap between medium-range and seasonal weather fore-
casts. There has been growing interest in S2S forecasts in
recent years, largely because of the many potential uses
of forecasts spanning these timescales, for example, in
the energy sector, insurance industry, public health, agri-
culture and water management (e.g., Büeler et al., 2021;
Weigel et al., 2008; White et al., 2017, 2022). However,

forecasting on these timescales is challenging since it is a
mixture between the more typical weather and seasonal
forecasting problems. Sub-seasonal forecasts are influ-
enced by both atmospheric initial conditions and more
slowly varying boundary conditions. In the extratropics,
the skill of S2S forecasts beyond the first 2 weeks or so is
generally reported to be fairly limited (e.g., Büeler
et al., 2021; Cortesi et al., 2021; Cui et al., 2021; Son
et al., 2020; Vitart, 2014; Weigel et al., 2008). These stud-
ies often focus on forecasts of weekly means. Predictabil-
ity on these timescales and at these lead-times is
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inherently limited by the chaotic nature of the atmo-
sphere, and therefore, the skill for forecasting weekly or
sub-weekly timescales is very limited beyond the first
2 weeks. However, there is potentially more skill when
considering longer averaging periods, such as means or
accumulations over 1 month. Buizza and Leutbecher
(2015) and Büeler et al. (2020) showed that good skill
can be obtained over Europe for the monthly mean
temperature (i.e., the mean temperature over the first
month of the forecast). In the present study, we focus
on the accumulated temperature (i.e., daily tempera-
tures summed over a period of several days); it is worth
noting that the skill obtained for these quantities is the
same as that for the mean temperature averaged over
the corresponding periods. The aim of reframing the
results in terms of accumulated temperatures is to
highlight potential applications of S2S forecasts that
could utilise accumulated temperatures over lead-times
of up to a month.

There are various applications that use aggregated
temperature information over the sub-seasonal period,
for example the accumulated temperature over 1 month.
An example in the field of agriculture is forecasting crop
growth rates and harvest times. Pearson et al. (1994)
developed a model of curd growth of cauliflower crops
based on the thermal time, or accumulated degree-days
(as defined by the accumulated daily mean temperature),
and the curd initiation date. Using this model, it was pos-
sible to produce forecasts of the dates that the crop would
be ready to harvest. The ability to accurately forecast crop
harvest dates and yields has the potential to optimise the
usage of the crops and reduce wastage in the production
and supply chain. A second example, in the field of
energy production, is to estimate the heating and cooling
degree-days (HDD and CDD, respectively) aggregated
over the following weeks. HDD and CDD can have a
strong impact on energy demand from buildings (Atalla
et al., 2018). Accurate forecasts of heating and cooling
degree-days could be used to make forecasts of energy
demand, which would enable energy companies to pre-
empt increased or decreased demand in advance (White
et al., 2017). Another application in terms of energy pro-
duction capability would be to forecast persistent heat-
waves which will increase river temperatures and
potentially impact availability of water for cooling in
thermoelectric power generation (Chandramowli &
Felder, 2014; van Vliet et al., 2012). HDD and CDD are
also important considerations in the field of public
health: being able to forecast periods of high HDD or
CDD is beneficial in terms of planning for and mitigating
the negative impacts that prolonged hot or cold periods
can have on health (Charlton-Perez et al., 2019;
Gasparrini et al., 2015).

While the focus of the present study is on
accumulated temperature, it is worth noting that a simi-
lar methodology could be applied to other quantities such
as precipitation. Forecasts of precipitation accumulated
over a 1-month period would be of use for prediction of
hydroelectric power generation, or for water manage-
ment including drought planning or flood management
and mitigation.

The aim of this paper is to demonstrate that useful
skill can be obtained from S2S forecasts when aggregated,
or accumulated, temperatures are considered. We focus
on the 15- and 30-day accumulated daily-mean 2-metre
temperatures over Europe. We also evaluate the skill of
the forecasts of HDD and CDD over Europe, as an exam-
ple of a more complex metric derived from 2-metre
temperatures.

In Section 2 the S2S data, observation data and the
skill metrics used are described, and the calculation of
HDD and CDD are defined. In Section 3, the evaluation
of skill for both the aggregated 2-metre temperature and
the HDD and CDD are presented and discussed. Finally,
conclusions are given in Section 4.

2 | DATA AND METHODOLOGY

2.1 | Data

We use sub-seasonal hindcast (or re-forecast) data from
the ECMWF forecasting system, obtained from the S2S
database which is described in detail by Vitart et al.
(2017). The version of the forecast system used is
CY46R1, which was the operation system between
11 June 2019 and 30 June 2020. This system was chosen
simply because it had a full year of forecast dates avail-
able, rather than due to any special features of the system
or a suggestion that the sub-seasonal skill available was
atypical. Forecasts were initialised twice a week, giving a
total of 110 start-dates during this period. The hindcast
data consists of 20 years of hindcasts initialised on the
corresponding dates for each of the preceding 20 years;
for example, corresponding to the 11 June 2019 forecast
start-date, there are hindcasts initialised on 11 June in
each year between 1999 and 2018. The hindcasts consist
of 11 ensemble members and are run for 46 days from
each initialisation date. We note that the operational
forecasts have a much larger ensemble size of 51 ensem-
ble members, and so it is expected that the results pre-
sented here, which are based on the hindcasts, represent
a lower bound on the skill that would be obtained from
the actual operational forecasts. The forecast model grid-
point resolution is roughly 18 km for the first 15 days
and then reduces to 36 km from day 15 onwards, with
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91 vertical levels. The data in the S2S database are
regridded to a 1.5�x1.5� grid, which is what is used in the
present study. Full details of the forecast model are
given by Vitart et al. (2017) and can also be found at
https://www.ecmwf.int/en/forecasts/documentation-and-
support.

The observation dataset used is E-Obs version 23.1e
(Cornes et al., 2018). E-Obs is a gridded dataset obtained
from interpolating daily station-based observations onto
a regular grid. For each grid-point, an ensemble of esti-
mates is produced using a stochastic technique. Full
details are given in Cornes et al. (2018). In the present
study, only the ensemble mean on the 0.25� grid is
used. For the purposes of comparison with the hind-
casts, the data were regridded to the 1.5� grid of the
hindcasts.

For both the hindcasts and observations, the daily-
mean 2-metre temperature field is used. For the calcula-
tion of HDD and CDD, the daily maximum and daily
minimum 2-metre temperatures are also used.

2.2 | Skill evaluation metrics

In Section 3, an example deterministic and probabilistic
skill metric are used, namely, the anomaly correlation
coefficient (ACC) and the continuous ranked probability
skill score (CRPSS), respectively. Different metrics are
likely to give different results and highlight different
aspects of the forecast skill. These metrics are chosen
simply as broad illustrative examples.

For each hindcast start date, there are 20 years of
hindcasts, and the ACC and CRPSS were calculated over
these 20 years. Seasonal averages of these values were
then computed as needed.

The ACC is a measure of ensemble mean correlation
skill and is defined as

ACC¼
Pm

i¼1 xi� xð Þ yi� yð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
i¼1 xi� xð Þ2Pm

i¼1 yi� yð Þ2
q ð1Þ

where yi is the observed value in year i, xi is the ensemble
mean hindcast in year i, x is the mean over time of the
hindcast ensemble mean value and m is the number of
years. Since the ACC is based on anomalies of the obser-
vations and ensemble mean hindcast relative the time-
means of the respective quantities, the data is effectively
bias-corrected within this calculation. ACC can range
from �1 to 1, with 1 indicating a perfect skill score, and
negative values indicating no skill. A threshold of 0.6 is
often used to consider as skilful, although this depends
somewhat on the application.

The ACC is useful for evaluating how well the hind-
cast ensemble mean represents variations in the observed
quantity, but it is not a skill score in a classical sense
because it does not compare the hindcasts against a refer-
ence hindcast; the CRPSS is a skill score, and in this con-
text, we evaluate the hindcasts against the observed
climatology.

Before calculating the CRPSS, the hindcast data is
first bias-corrected. For each of the 110 hindcast start-
dates, the ensemble climatology and observed climatol-
ogy of the accumulated temperature were computed,
using the leave-one-out method to exclude the year in
question. The bias correction was done by subtracting the
difference between the ensemble climatology and
observed climatology for the corresponding date. The cli-
matologies were calculated for the accumulated tempera-
ture values rather than individual daily temperatures.

The continuous ranked probability score (CRPS) is
a measure of the difference between the hindcast
and observed cumulative density functions (CDFs)
(Hersbach, 2000). For a quantity x, we define ρ xð Þ to be
the probability density function (PDF) of forecasts of x,
and xobs to be the observed value of x. Then CRPS over m
hindcast years is given by

CRPS¼ 1
m

Xm
i¼1

Z ∞

�∞
P xð Þ�Pobs xð Þð Þ2dx ð2Þ

where P and Pobs are cumulative distributions given by

P xð Þ¼
Z x

�∞
ρ yð Þdy ð3Þ

and

Pobs xð Þ¼H x� xobsð Þ ð4Þ

where

H xð Þ¼ 0 for x <0

1 for x ≥ 0:

�
ð5Þ

The CRPSS is then calculated as

CRPSS¼ 1� CRPS
CRPSclim

ð6Þ

where CRPSclim is the CRPS for the observed climatology.
Values of CRPSS greater than 0 indicate that the forecast
skill is an improvement over climatology, and a perfect
forecast would have CRPSS¼ 1. As the CRPSS is sensitive
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to ensemble size (Ferro et al., 2008), we use the fair
CRPSS, which adjusts the CRPSS to correct for small
ensemble sizes. The calculation of CRPSS was done using
the Python package CRPS (https://pypi.org/project/
CRPS/).

To provide an estimate of the uncertainty in the
results, the 20 years of hindcasts were resampled 1000
times using bootstrap sampling with replacement, and
the skill metrics were computed for each resampled set.
The 5%–95% confidence interval over the 1000 samples
was then computed.

2.3 | Heating and cooling degree-days

Heating and cooling degree-days (HDD and CDD, respec-
tively) are useful metrics for estimating changes in
weather-related energy demand and also for predicting
temperature-related public health issues. HDD and CDD
are essentially a measure of how much the temperature
has deviated from a reference temperature (Spinoni

et al., 2015). HDD, which is typically calculated in the
winter half-year or in cooler climates, gives an indication
of the amount of energy required to heat the interior of a
building to a specified base temperature, over a given
period of one or more days; CDD, which is typically cal-
culated in the summer half-year or in warmer climates,
gives an indication of the amount of energy required to
cool the interior of a building down to a specified base
temperature, over a given period of one or more days.
Here we use the definitions of HDD and CDD given in
Spinoni et al. (2018), which are based on the UK Met
Office equations (other studies may use different defini-
tions). Following Spinoni et al. (2018), the base tempera-
ture Tbase for HDD is 15:5 ∘C, and for CDD is 22 ∘C. The
quantities HDD and CDD are given by

HDD¼

Tbase�Tmean if Tmax ≤Tbase

Tbase�Tminð Þ=2� Tmax �Tbaseð Þ=4 if Tmean ≤Tbase <Tmax

Tbase�Tminð Þ=4 if Tmin <Tbase <Tmean

0 if Tmin ≥Tbase

8>>><
>>>:

ð7Þ

FIGURE 1 Anomaly correlation coefficient (ACC) for the 30-day accumulated 2-metre temperature in each season at each hindcast

model land grid-point, for the hindcast ensemble mean evaluated against E-Obs observed temperatures. Grey lines show the division of the

domain into four European sub-regions.
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and

CDD¼

0 if Tmax ≤Tbase

Tmax �Tbaseð Þ=4 if Tmean ≤Tbase <Tmax

Tmax �Tbaseð Þ=2� Tbase�Tminð Þ=4 if Tmin <Tbase <Tmean

Tmean�Tbase if Tmin ≥Tbase:

8>>><
>>>:

ð8Þ

where Tmin , Tmax and Tmean are the daily minimum,
maximum and mean temperatures, respectively. HDD
and CDD for a period of, for example, 30 days, is com-
puted by summing the daily HDD/CDD over the period.

3 | RESULTS

3.1 | Deterministic skill evaluation of
the hindcast ensemble mean

The ACC for the 30-day accumulated 2-metre tempera-
ture for each season is shown in Figure 1. The 30-day
accumulation is calculated by summing daily mean

temperatures over days 1 to 30, in both the hindcasts and
observations. The seasons correspond to the start of each
accumulation period; for example, the winter season DJF
corresponds to dates with the accumulation period start-
ing within the months December, January and February.
In all seasons, there is significant skill over much of
Europe. The skill in DJF is particularly high, with ACC
exceeding 0.7 over much of Eastern Europe. SON is the
season with the poorest skill overall, although for the Ibe-
rian Peninsula, this season has the highest ACC skill.
Equivalent ACC for the 15-day accumulated 2-metre tem-
perature is shown in Figure A.1. The skill is higher than
for the 30-day accumulation (as expected), with ACC
values exceeding 0.8 over most of Europe in all four sea-
sons. Figure 2 summarises the ACC skill for each of the
four sub-regions of Europe (as marked in Figure 1), for
accumulation periods of 8, 15, 22 and 30 days
(i.e., roughly week 1, weeks 1–2, weeks 1–3 and weeks 1–
4). For the 8-day accumulation, the ACC is close to 1 for
all regions and all seasons. As each additional week is
added into the accumulation period, the skill decreases at
a roughly constant rate for each region. In DJF and

FIGURE 2 Anomaly

correlation coefficient (ACC) for

each European region, for each

season: (a) DJF, (b) MAM,

(c) JJA and (d) SON. The x-axis

indicates the different

accumulation periods (day 0–8,
day 0–15, day 0–22 and day 0–
30). The ACC values are for the

hindcast ensemble mean

evaluated against E-Obs

observed temperatures. Colours

indicate the four European sub-

regions (see legend). Error bars

show the 5%–95% confidence

interval over 1000 bootstrap

samples (see Section 2.2 for

details).
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MAM, all regions have fairly similar skill, and the mean
skill remains above 0.6 even for accumulation periods of
30 days. In JJA and SON, SE Europe has the lowest skill.
In these seasons, SW Europe has the highest skill, with
notably high skill exceeding 0.8 in JJA even out to 30-day
accumulations.

In order to confirm that the skill is not all simply
coming from the first 2 weeks of the hindcasts,
Figure A.3a shows the ACC for the day 1–30, day 1–15
and day 15–30 temperature accumulations in each
region. The ACC for the day 15–30 accumulations is
above 0 for all regions and all seasons, indicating that
there is some skill for this 15-day accumulation period
even 2 weeks after the hindcasts are initialised.

Overall, these results indicate that the ensemble
mean hindcasts of 15- and 30-day accumulated
2-metre temperature perform well in all seasons, with
significant skill at the regional scale in all four sub-
regions of Europe, and at the grid-point scale almost
everywhere.

3.2 | Probabilistic skill evaluation of the
hindcast ensemble

To provide a probabilistic skill measure, the CRPSS was
calculated for the hindcast ensemble evaluated against
E-Obs. As a baseline, the observed climatology was used.
The hindcasts were bias-corrected as described in
Section 2.

Maps of CRPSS for the 30-day accumulated 2-metre
temperature in each season are shown in Figure 3.
CRPSS values above 0 indicate that there is more skill in
the hindcast than simply using the observed climatology.
CRPSS values exceed 0.3 almost everywhere in all sea-
sons, with the exception of some points towards the
south of the domain. The spatial and temporal patterns
are similar to those seen for ACC (Figure 1), with the
highest CRPSS in DJF, particularly in Eastern Europe
(values exceeding 0.5). Equivalent maps of CRPSS for the
15-day temperature accumulation are shown in
Figure A.2. These show a similar spatial and temporal

FIGURE 3 Continuous ranked probability skill score (CRPSS) for the 30-day accumulated 2-metre temperature in each season at each

hindcast model land grid-point, for the hindcast ensemble evaluated against E-Obs observed temperatures. Grey lines show the division of

the domain into four European sub-regions.

6 of 11 BAKER ET AL.Meteorological Applications
Science and Technology for Weather and Climate

 14698080, 2023, 6, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/m
et.2169 by T

est, W
iley O

nline L
ibrary on [21/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



pattern of skill, but with higher values (exceeding 0.4
almost everywhere). The regional pattern of skill in DJF
may be related to the North Atlantic Oscillation, which is
the leading mode of variability in the North Atlantic
region and impacts temperature in Northern and Eastern
Europe. The higher skill found over Northern and East-
ern Europe in DJF is in agreement with the results of
Monhart et al. (2018) (their Figure 3, which shows
skill for weekly-mean temperatures at 12–18 day lead-
times). In other seasons, the spatial skill patterns
are somewhat different however, and in particular Mon-
hart et al. (2018) did not find the higher skill in South
West Europe seen in Figure 3. These differences are
likely due to the different forecast lead-times being evalu-
ated. The CRPSS for the four European sub-regions in
each season are summarised in Figure 4, for each weekly
accumulation period. As seen for ACC (Figure 2), there is
a steady decline in skill as each week is added to the
accumulation period. SW Europe has the highest CRPSS
in JJA, for all accumulation periods, while the hindcasts
for SE Europe have the lowest skill. In DJF and MAM, all
regions show similar values of CRPSS, with the best skill
found in NE Europe. For the 30-day accumulation
period, all regional-mean CRPSS values are above 0.3.

Figure A.3 shows that even for day 15–30 temperature
accumulations, the CRPSS is positive, indicating that
there is skill for 2-week accumulations even 15 days after
the forecasts were initialised.

Overall, these results indicate that the ensemble hind-
casts of 15-day and 30-day accumulated temperature are
skilful at both the grid-point and regional scales, for all
four seasons.

3.3 | Heating and cooling degree-days

The HDD and CDD were computed for the four sub-
regions of Europe marked in Figure 1, for the winter
half-year (October–March) and summer half-year (April–
September), respectively. Figure 5 shows scatter plots of
the hindcast against observed 30-day summer half-year
CDD and winter half-year HDD. The hindcast data used
to produce Figure 5 have not been bias-corrected. For the
winter HDD (right column in Figure 5), there is very
good correspondence between the observed and hindcast
values in each of the four regions, with only a small posi-
tive bias seen in the hindcasts for SW Europe. These
results suggest that even using the raw model output,

FIGURE 4 Continuous

ranked probability skill score

(CRPSS) for each European

region, for each season: (a) DJF,

(b) MAM, (c) JJA and (d) SON.

The x-axis indicates the different

accumulation periods (day 0–8,
day 0–15, day 0–22 and day 0–
30). The CRPSS values are for

the hindcasts evaluated against

E-Obs observed temperatures.

Colours indicate the four

European sub-regions (see

legend). Error bars show the

5%–95% confidence interval

over 1000 bootstrap samples

(see Section 2.2 for details).
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without any post-processing, would give a reasonable
estimate of 30-day accumulated HDD in the winter half-
year. The summer CDD (left column in Figure 5) shows
good correspondence between observed and hindcast
values in SW and SE Europe, with a slight negative bias
in the hindcasts for SE Europe. However, for NE Europe
and NW Europe, there is a clear negative bias in the
hindcasts. Similar results are also seen for the 15-day

accumulated CDD and HDD (not shown), and in particu-
lar, the negative bias in NE and NW Europe summer
CDD is still present. We attribute this bias in summer
CDD for the Northern European regions partly to the low
proportion of days in which the CDD is non-zero: in NW
Europe, only 15% of days, and in NE Europe, only 35% of
days, have an observed CDD >0, compared with 77% in
each of the Southern Europe regions. This means that

FIGURE 5 Scatter plots of

hindcast ensemble mean versus

observed summer half-year

30-day CDD (left column) and

winter half-year 30-day HDD

(right column), for four

European regions.
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the hot days included are extreme events, which are gen-
erally less predictable and in particular are less likely to
be captured by the ensemble mean. The small number of
days contributing to the CDD in the Northern European
regions means that any small biases in temperature will
lead to relatively large biases in the CDD. Reducing the
CDD base threshold for these Northern Europe regions
may reduce these biases.

The results from the ACC and CRPSS skill metrics
are summarised in Figure 6, for the four European sub-
regions and for both the 15- and 30-day accumulations.
Here the CRPSS is calculated using bias-corrected hind-
cast values. As expected from the scatter plots discussed
above, the skill for the winter HDD hindcasts is good,
with ACC values exceeding 0.85 for the 15-day accumula-
tions, and exceeding 0.65 for the 30-day accumulations.
The CRPSS shows that the hindcasts also have good
probabilistic skill, with values exceeding 0.55 for the
15-day accumulations and exceeding 0.35 for the 30-day
accumulations. For the summer CDD, the ACC is lower
for NW Europe than for other regions, but is still around
0.65 for the 15-day accumulations, and still reasonable at
above 0.4 for the 30-day accumulations. The CRPSS for

summer CDD is lower in NW and NE Europe than in SW
and SE Europe, but still shows considerable skill above
climatology in these regions, even for the 30-day
accumulations.

It is interesting to consider these results from an
energy forecasting perspective. For this application, in
the absence of S2S forecast data, typically the short-range
(day 1–5) forecasts would be used, followed by climatol-
ogy for the remainder of the required forecast period. In
order to assess how much added value is obtained by
using the sub-seasonal forecasts out to 30 days, instead of
just the short-range forecasts, the top panels in Figure 6
include the ACC for a reference forecast of 30-day accu-
mulated summer CDD and winter HDD, which uses the
hindcasts for day 1–5, and the hindcast climatology for
the remaining 25 days. For winter HDD, using the full
30-days of hindcasts clearly adds skill compared with ref-
erence forecast, in all regions. For summer CDD, this is
true in both Southern Europe regions and NE
Eu. However, in NW Eu the full 30-day hindcast gives
very similar results to the reference forecast. This is likely
due to the low bias in the CDD in this region seen in
Figure 5. A bias correction before the calculation of CDD

FIGURE 6 Skill scores for

summer half-year cooling

degree-days (left column) and

winter half-year heating degree-

days (right column) for four

European regions. Top row:

ACC; bottom row: CRPSS. Red

circles show 15-day

accumulations; blue triangles

show 30-day accumulations.

Cyan plus symbols in the top

panels show ACC for 30-day

accumulation reference

forecasts, using the first 5 days

of the hindcasts and the

remaining 25 days from model

climatology. Error bars show

the 5%–95% confidence interval

based on 1000 bootstrap

samples (see Section 2.2).
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may correct this and improve the skill obtained by the
hindcasts, but this is not tested in the present study.
Figure A.4 shows the equivalent results for additional ref-
erence forecasts, with hindcasts for the first 10 days and
the first 15 days, followed by climatology for the remain-
der of the forecasts. These show that, for the winter HDD
and summer CDD, there is only a small amount of skill
gained by using the hindcast data instead of climatology
after the first 10 days, and no skill gained by using the
forecast data after 15 days instead of climatology; and in
the case of NW Eu, the reference forecasts actually do
better than the full 30-day hindcasts.

The results presented here are for HDD and CDD
with specific values of the base temperatures for each
quantity. Improved results might be obtained by optimis-
ing these base temperature thresholds for different
regions. In addition, a similar method could be used for
other applications, such as forecasting the cumulative
number of days the temperature is above or below zero,
which would be useful for forecasting crop growth or
optimising crop planting times.

4 | CONCLUSIONS

In this paper, we have shown that for a typical sub-
seasonal forecasting system (ECMWF), there is signifi-
cant skill for forecasting 15- and 30-day accumulated
2-metre temperature over Europe. Both a deterministic
skill measure (ACC) of the ensemble mean forecasts, and
a probabilistic skill measure (CRPSS) were evaluated. For
both measures, good skill was found over most of Europe
even out to 30-day accumulations. As an example of a
specific application of these results, the skill for forecast-
ing winter HDD and summer CDD over the same accu-
mulation periods was also assessed. High levels of skill
were found for these quantities in each sub-region of
Europe, especially for winter HDD. In summer, the hind-
casts showed a low bias in the CDD in Northern Europe,
due to the low frequency of events with temperatures
exceeding the CDD base temperature in these regions,
meaning that these events were more extreme and less
likely to be captured by the ensemble mean hindcasts.
Skill for summer CDD in SW Europe was, however,
much higher.

While other publications showing sub-seasonal fore-
cast skill generally focus on weekly means and show a
decrease in skill over time, in particular generally finding
very little skill beyond about the first 2 weeks, an impor-
tant message from the present study is that skill for fore-
casting the accumulated quantities is still relatively high
even out to accumulation periods of 30 days. Even at lead-
times of 15 days, there was still reasonable skill found for

15-day temperature accumulations (i.e., accumulation over
days 15–30).

It is worth considering the reason for the relatively
higher skill for 30-day accumulated temperatures, com-
pared with the weekly or sub-weekly forecast skill for
these longer lead-times. A sub-seasonal forecast might
correctly predict, for example, that a series of cyclones or
cold air outbreaks will pass over Europe over the forecast
period, but not when exactly the individual systems will
cross Europe. Thus, the accuracy on shorter periods of
the forecasts would be low, but the overall temperature
impact of these events over the whole period would be
more accurate.

Given the potential applications of these accumulated
temperature forecasts detailed in the Introduction,
including crop growth forecasts and energy demand fore-
casts, it is hoped that these results will encourage confi-
dence in the skill of such sub-seasonal forecasts, and
prompt greater use of these forecasts.
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