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Abstract

Climate change is altering rainfall patterns resulting in increasing variability

and intensity of rainfall events worldwide. Increases to short duration, intense

rainfall (i.e., convective rainfall), will lead to increases in sewage overflow and

run-off from agricultural land. Such events generate spikes in micro-organisms

from feces and manure, especially Escherichia coli and intestinal enterococci,

that temporarily end up in bathing waters posing serious health risks to

bathers. Forecasting of bathing water quality associated with convective rain-

fall presents a distinctive forecasting challenge due to high uncertainties associ-

ated with predicting the timing, location, and impact of such events. In this

article, we review examples of bathing water quality forecasting practices, with

a focus on the United Kingdom where convective rainfall in the summer bath-

ing water season is a particular concern, and question whether the current

approach is robust in a changing climate. We discuss potential upgrades in

bathing water forecasting and identify the main challenges that must be

addressed before an improved framework for bathing water forecasting can be

achieved. Although developments in meteorological and hydrological short-

range forecasting capabilities are promising, convective rainfall forecasting has

significant predictability limits. We suggest taking full advantage of short-range

forecasts to provide sub-daily bathing water forecasts, focusing on targeted

bathing water monitoring regimes to improve model accuracy with the ulti-

mate goal of providing improved information and guidance for beach users.
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1 | INTRODUCTION

Bathing water quality (BWQ) and protection is a matter of concern for public health, because contact with fecal
bacterium-contaminated coastal waters, especially with Escherichia coli (EC) and intestinal enterococci (IE) may result
in illness (Byappanahalli et al., 2012; Haile et al., 1999; Korajkic et al., 2018; Kristich et al., 2014; O'Mullan et al., 2017;
Swinscoe et al., 2018; Viau et al., 2011). An 8-year-old girl died, and another child was admitted to hospital following
an outbreak of EC at the holiday resort of Dawlish Warren, south Devon, in August 1999 (The Guardian, 1999). In
2004, holidaymakers were diagnosed with EC poisoning after bathing at Watergate Bay, Cornwall (BBC, 2004). In both
cases contact with contaminated sea and stream waters were the main suspects. Between October 1, 2021 and
September 30, 2022, 720 water users reported getting ill after entering bathing waters across England, double the num-
ber reported in 2020/2021 (SAS, 2022).

Coastal and freshwater habitats generally do not support fecal bacteria growth such as EC and IE. Their presence is
evidence of point and/or diffuse source pollution, or resuspension from environmental reservoirs (Pandey et al., 2014).
In the United Kingdom and other developed countries, most of the time such pollution stays at source, only reaching
bathing water following mobilization after heavy rainfall, especially short-duration rainfall, which causes drainage sys-
tems to be more susceptible due to increased peak flow volumes and shorter times to peak flow (Agudelo Higuita &
Huycke, 2014; Al Aukidy & Verlicchi, 2017; Allan et al., 2020; Bedri et al., 2016; Campos et al., 2013; Cho et al., 2010;
Heasley et al., 2021; Herrig et al., 2019; Kay & Fawell, 2007; Tornevi et al., 2014; Wyer et al., 2018).

Real-time monitoring and analysis of the microbiological status of bathing water quality is impractical due to the
time that elapses between sample collection and laboratory analysis (Motamarri & Boccelli, 2012; Oliver, Porter,
et al., 2016; Tornevi et al., 2014; USEPA, 2010). During this time, the public may be exposed to elevated levels of patho-
genic bacteria (bacteria that can cause disease) increasing the risk of FIO-driven gastrointestinal, respiratory, and skin
infections (Fleisher et al., 2010; Korajkic et al., 2018). Remote sensing methods including imaging spectrometry have
been used as an alternative to help obtain up-to-date and cost-effective information for bathing waters protection
(Cherif et al., 2019; Giardino et al., 2019; Grimes et al., 2014); however, these techniques must evolve further to be con-
sidered for operational use (Tyler et al., 2016). Forecasting of bathing water quality is therefore vital to inform the pub-
lic of the potential health risks and allow them to make informed choices (Commission and Bruyninckx, 2021).

Bathing water quality forecasts are based on the modeled relationship between FIO and multiple environmental
variables. For example, the presence of FIO is known to increase with an increase in rainfall intensity and duration and
decrease with an increase in received and extra-terrestrial UV irradiance. Although variables are site specific the rela-
tionships are mainly driven by rainfall (Fulke et al., 2019; Grant et al., 2001; Kay et al., 2005, 2018; Rochelle-Newall
et al., 2015; Thoe et al., 2014). Forecasting of bathing waters involves two steps. First, statistical modeling using past/
historic data, commonly multiple linear regression (MLR), is used to identify sets of environmental predictor variables
that best explain the distribution of IE at a specific bathing water, together with the relative contribution of each vari-
able to the total explained variance (Searcy et al., 2018). Next, live forecasting combines the established statistical model
with available real time hydrometeorological data (e.g., rainfall radar data, wind speed, tide height) (Chan et al., 2012;
Stidson et al., 2012; Thoe et al., 2014; Tyrrell, 2017) to provide a warning when a set IE threshold is forecast to be
exceeded (Kay et al., 2012; Wyer et al., 2018). Less sophisticated models are based on rainfall and flow thresholds only,
which are site, gauge, and time specific (Stidson et al., 2012).

Anthropogenic climate change is causing global temperature to rise (Guzman, 2014). As described by the Clausius–
Clapeyron (CC) equation, warmer air can generally hold 7% more water for every 1�C temperature increase
(Ambaum, 2010). Relatively continuous and uniformly intense stratiform precipitation increases with temperature at
the CC rate. Convective precipitation associated with high-intensity downpours exceeds the CC rate (Cotterill
et al., 2021; Fowler et al., 2021). This suggests that convective precipitation is more sensitive to temperature increases
than stratiform precipitation, but the relative contributions of these two types of precipitation have been challenging to
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establish (Berg et al., 2013). This also implies that extreme intense rainfall events may intensify more quickly and
sooner than projected, resulting in increased severity of bathing waters pollution impacts, especially in the summer
months, which form the core of the bathing season (Bocheva et al., 2009; Hawkins et al., 2020; Kahraman et al., 2021;
Kendon et al., 2014, 2018, 2023; Kharin et al., 2013; Met Office, 2019; Osborn et al., 2000; Xu et al., 2018). Convective
storms are not only expected to have higher peak intensity, but also longer duration and become more frequent across
the whole of Europe (Kahraman et al., 2021).

Worldwide, water infrastructure has already been struggling to keep pace with changes to rainfall and a growing
population (Rouse, 2014; Suchowska-Kisielewicz & Nowogo�nski, 2021). The global water monitoring program reported
one-third of all rivers in Africa, Asia, and Latin America severely affected by pathogen pollution (UNEP, 2016). In the
United Kingdom, the post-Brexit agenda, which now focuses on a nation resilient to climate change, has created an
opportunity for funding to mitigate the worsening impacts of the climate emergency (Gill et al., 2021). Improvements
in forecasting of bathing water quality would help minimize some of those impacts.

In this review, we discuss shortcomings in current UK operational practice in understanding, monitoring, and fore-
casting of bathing water quality (focusing on England) and address the challenges ahead. First, we discuss the need to
improve forecasting of bathing waters in a changing climate and current scientific understanding of factors influencing
bathing water quality and its complexity. Next, we explain why and how bathing water quality is measured and fore-
casted. We review the current methods for bathing water forecasting and highlight some weaknesses. We question: does
operational practice reflect current understanding of the science and take advantage of the best available weather fore-
casts? Finally, we discuss challenges that need to be addressed before an improved framework for bathing water
forecasting in England can be realized.

2 | THE NEED TO IMPROVE FORECASTING OF BATHING WATER
QUALITY IN A CHANGING CLIMATE

Rainfall has a strong influence on bathing water quality as it triggers sewage overflow and agricultural runoff that con-
tains bacteria potentially harmful to people (Crowther et al., 2001; Economy et al., 2019; Fleisher et al., 2010). So how
does climate change affect rainfall? Warmer air can hold more water and therefore has the potential to increase rainfall
intensity and the associated risk of poor bathing water quality. Scientists agree that climate change is altering
rainfall patterns resulting in increasing variability and intensity of rainfall events globally (Blenkinsop et al., 2017;
Kitoh & Endo, 2016; Kyselý & Beranov�a, 2009; O'Gorman, 2015).

However, regional weather patterns are also likely to change (Darwish et al., 2021; Shepherd, 2014). Climate change
projections over the United Kingdom show an increased chance of wetter winters (Davies, 2021; Kendon et al., 2023).
UK's summers are likely to be drier overall, but an increase in the frequency and intensity of short duration rainfall
convective rainfall (such as that from thunderstorms) is projected (Jones et al., 2014; Kendon et al., 2014, 2018, 2023;
Kent et al., 2022).

Data show that short-duration intense precipitation is more sensitive to temperature increases than stratiform pre-
cipitation, that is, generally characterized by continuous and uniform downpours (Barbero et al., 2017; Berg et al., 2013;
Fowler et al., 2021; Xiao et al., 2016). It is projected that the number of convective sub-daily summer rainfall events will
increase in the United Kingdom due to climate change (Bürger et al., 2019; Kendon et al., 2023). Pollution of bathing
waters can be caused by stratiform or convective rainfall, however, it is the latter that poses a particular challenge to
forecast accurately, therefore, an increase in the number of convective rainfall events during the summer bathing water
season increases the likelihood of incorrectly forecasted bathing water failures.

3 | BIOLOGICAL, CHEMICAL, AND PHYSICAL FACTORS INFLUENCING
BATHING WATER QUALITY

Forecasting of bathing waters is challenging due to the complexity of biological, chemical, and physical factors affecting
bacteria concentrations in bathing waters as illustrated in Figure 1. Although, all the processes included in Figure 1 are
well understood in controlled laboratory environments, there is a lack of research in the real environment, which limits
understanding of interactions at catchment scale. Microbiological pollution sources to bathing waters can be divided
into two categories: natural and artificial.
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High bacteria levels have been recorded in natural sources including marine, intertidal, and freshwater sediments,
vegetation, groundwaters, tidal saltwater marshes, and beach aquifers (Anderson et al., 2005; Boehm et al., 2004;
Ferguson et al., 2005; Obiri-Danso & Jones, 2000). Furthermore, high Enterococci densities have been observed in sea-
weed (Swinscoe et al., 2018), detritus, planktonic communities (Mote et al., 2012), and other aquatic vegetation
(Badgley et al., 2010; Whitman et al., 2003). Enterococci concentrations may also be driven by their presence in ground-
water inputs (saline and fresh) from the beach aquifer (Boehm et al., 2004). Wild bird and dog feces near the high-water
line might also considerably increase total count of bacteria in bathing waters (Kutkowska et al., 2019; Layton
et al., 2009). Additional pollution sources during the summer season such as bather shedding (shedding microorgan-
isms from their own bodies) due to increased numbers of bathers may also play a part, especially at overcrowded
beaches (Li et al., 2021).

Artificial sources of bacteria including commercial and domestic sewage are major contributors to pollution of
coastal waters worldwide (Brandão et al., 2020). Combined sewer overflows (CSOs) provide an outlet for flows that
exceed the hydraulic capacity of combined sewerage systems, on which much of the UK's sewer infrastructure relies
(Al Aukidy & Verlicchi, 2017; Botturi et al., 2021). During heavy rainfall events a mixture of stormwater and raw sew-
age is directly discharged into receiving watercourses causing deterioration of water quality (Poopipattana et al., 2021).
Additionally, water companies dump untreated or partially treated sewage in rivers on a regular basis, often breaching
the terms of permits that allow such practices only in exceptional circumstances, including storm overflows at wastewa-
ter treatment works due to heavy rainfall, emergency overflows due to equipment failure, and CSOs elsewhere on the
network (Gardiner et al., 2022). Stormwater, which includes rainwater collected from roofs and roads, has been also
recognized as a source of fecal indicators and pathogens to the bathing waters (Ahmed et al., 2020). Poorly located and
maintained septic tanks, can also pollute surface and groundwater systems (Smith et al., 2020). Agricultural and rural
land management practices also have a significant impact on the levels of FIOs in bathing waters. Farms are a point

FIGURE 1 Factors influencing bathing water quality.
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source of contamination generating large volumes of manures, contaminated water, and associated run-off during rain-
fall events (Dufour, 2013). Livestock crossing watercourses and excretion while drinking can be a significant source of
FIO to the river systems as well as fecal pollution from non-point sources such as pastoral agricultural land
(Aitken, 2003; Kay et al., 2005, 2018). Inappropriate agricultural practice such as slurry release during dry weather con-
ditions and knowingly polluting watercourses with farm animal waste are also common in the United Kingdom (House
of Commons Enviromental Audit Committee, 2022).

The sources need a trigger to be transported to bathing waters. Bathing water failures are associated with both
short-duration intense (1–3 h) and long-duration (>1 day) rainfall (Tyrrell, 2017). However, short-duration intense rain-
fall events in the summer are of particular interest here because it is these events which occur during the bathing water
season, the high sudden volumes of rainfall can easily overwhelm drainage systems leading to a high risk of sewage
overflows, while the high rates of overland flow generated from these rainstorms can pick up agricultural pollutants
and transport them to the river (Gill et al., 2021). Thus, once the sources are triggered, fecal contamination presents a
risk of disease transmission via exposure pathways, with the most common being rivers, streams, drains, and direct
rainfall runoff (Aitken, 2003; Hatvani et al., 2018). The impact of a freshwater stream on a coastal bathing water will be
dependent on its discharge and bacteria levels as well as its proximity to the bathing water. The overall input or “load-
ing” of bacteria (recorded concentration of bacteria multiplied by streamflow) is important, high flows with low bacteria
levels can have as much impact as low flows with high bacteria levels. As the stream enters the bathing water many fac-
tors such as stream base flow conditions, currents, turbidity, suspended solids, conductivity, dissolved oxygen, pH, and
solar irradiation all influence bacterial persistence and die-off rates, and the final bacteria levels in the water column
(Bouchalov�a et al., 2013; Cho et al., 2010; Francy et al., 2013; Vermeulen & Hofstra, 2014).

Transport of FIO in coastal waters is driven via tides and currents, allowing their movement from a source, such as
rivers and streams, to a distant bathing water or away from it (Kim et al., 2004) and currents also influence bacterial
population decay by cell separation (de Brauwere et al., 2014). Flooding tides tend to dilute nearshore FIO sources
which results in a reduction in bacterial concentration (Boehm & Weisberg, 2005; Coelho et al., 1999; Mohandass
et al., 2010). Falling ebb tides may allow drainage of IE generated in tidal saltwater marshes and beach aquifers
(Boehm et al., 2004) causing an increase in concentrations of FIO in bathing waters (Boehm et al., 2004; Grant
et al., 2001). Spring tides may influence the hydrologic cycling of FIOs sources at the water line and upper reaches of
the tidal zone, especially if the spring tides are higher than average (Grant et al., 2001). For example, samples collected
from 60 marine beaches in Southern California, were twice as likely not to meet compliance standards during spring
tides as compared with neap tides, while spring-ebb tides were found to yield the highest IE concentrations and the
greatest chance of exceeding the compliance standard (Boehm & Weisberg, 2005). The movement of bacteria through
the receiving water, and the resulting bathing water quality, is also controlled by the direction and magnitude of wind
and waves (EPA, 2016). FIO concentrations tend to increase with rising wind speed and direction (Dueker et al., 2017;
Hatvani et al., 2018; Lewis et al., 2013; Smith et al., 1999). With respect to wind direction, studies show that the num-
bers of bacteria present in a sample were considerably higher when the sample site lay downwind of the outfall
(Dueker et al., 2017; Smith et al., 1999). Increasing wind speed increases shoreline turbulence resulting in resuspension
of bacteria from the sediments and soils (Hatvani et al., 2018), however, wind speed only has a significant role in bath-
ing waters located downstream of a sewage outfall or freshwater input (Smith et al., 1999).

Sunlight and salinity are the two major factors governing the environmental persistence of IE in bathing waters
(Chudoba et al., 2013; Gordon et al., 2002). Biological decay of bacteria can be modulated and minimized by solar radia-
tion (Kay et al., 2005; Sinton et al., 1999, 2002) via processes such as hindrance of bacterial production (Aas
et al., 1996), bacterial biomass (Helbling et al., 1995), and inhibition of metabolically important enzymes (Müller-Niklas
et al., 1995). Sunlight may cause damage to the cells via direct solar radiation damage to nucleic acids and other cellular
components (Schuch & Menck, 2010), and/or the enhanced photodegradation driven by reactive oxygen species from
organic matter (Appiani & McNeill, 2015). Sunlight wavelengths reaching bathing waters depend on latitude, the diur-
nal cycle of solar elevation, and cloud cover, while transmission of solar radiation in the water column is further deter-
mined by turbidity produced by suspended material (Kay et al., 2005; Sinton et al., 1994, 1999). The Genus Enterococcus
has a unique ability to grow in the presence of salt (as high as 6.5% NaCl). The greater salt tolerance of IE than of EC
and other fecal coliforms contributes to their better performance as indicators of human health risk in marine recrea-
tional waters (Boehm & Sassoubre, 2014). However, higher salinities increase rates of inactivation of IE and other bacte-
ria (Carr et al., 2010; Davies et al., 1995; Dorsey et al., 2010; Kay et al., 2005; Menon et al., 2003; Sinton et al., 2002;
Viau et al., 2011).
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4 | WHY AND HOW DO WE MEASURE BATHING WATER QUALITY?

Worldwide bathing water quality is measured for legal reasons and to provide guidance allowing beach users to make
informed decisions about associated risks with waters contaminated by fecal matter (WHO, 2003). Pathogenic and non-
pathogenic IE and EC strains exist, however, only pathogenic strains cause intestinal disease in humans. Direct moni-
toring of waterborne pathogenic strains only would be costly, technically challenging, and in some cases not feasible.
Therefore, bathing waters are monitored for the presence of FIO that includes both pathogenic and non-pathogenic
forms bacteria strains (Korajkic et al., 2018). The type of FIO measured and values used in bathing water guidelines
vary by country, with the most commonly used FIO including IE, EC, total fecal coliforms, Clostridium perfringens, and
Bacteriophages (WHO, 2003), as these bacteria are commonly found and distributed in the feces of humans and ani-
mals (Anderson et al., 2005; Boehm et al., 2002; Cabral, 2010; Kay et al., 2005). The greater salt tolerance of IE than
other fecal coliforms makes it the most frequently used monitoring proxy for pathogens in coastal bathing waters
worldwide (Davies et al., 1995; Dorsey et al., 2010; Kay et al., 2005; Sinclair et al., 2012). Additionally, a strong dose–
response relationship between IE in marine environments and health outcomes makes it the most used indicator for
forecasting applications (Byappanahalli et al., 2012; Davies et al., 1995; Dorsey et al., 2010; Kay et al., 2005).

In Europe and the UK water quality classification can be divided into long and short-term classification. The long-
term classification is required by the EU Bathing Water Directive (BWD), first introduced in 1976 and further revised in
2006 (rBWD) (2006/7/EC) (Commission and Bruyninckx, 2021; Tyrrell, 2017). After Brexit (January 31, 2020) the
United Kingdom uses rBWD to represent all of this legislation going forward and laws have been transposed in
the Bathing Water Regulation legislation (full). Short-term classification remains advisory only by the rBWD. The
United Kingdom is preparing to update environmental regulations by setting higher standards, greater punishments,
more powers for regulators, and a greater burden on industries to shoulder the costs of regulation (Ofwat, 2023).

4.1 | Long-term bathing water quality

Long-term bathing water quality monitoring, based on rBWD (2006/7/EC, 2006), is carried out to confirm which desig-
nated bathing waters pose risk to bathers, and allow appropriate remediation measures to take place. Monitoring of
water quality runs during the bathing season (e.g., in England from May 1 to September 25) and requires up to 20 sam-
ples to be taken from each designated bathing water throughout this time (2006/7/EC, 2006). The United Kingdom has
over 600 designated bathing water locations, pred. These are sites that are popular for swimming and paddling and have
been designated under the Bathing Water Regulations. Most of these are coastal, at the start of 2023 there were only
three inland bathing waters registered in England, but the number is slowly increasing (https://environment.data.gov.
uk/bwq/profiles/). Operationally this approach may be practical, however, it does not reflect the dynamics of IE fate in
a particular bathing water and its related catchment (Figure 1). This strategy will also become problematic as popularity
of cold-water swimming is growing (Gay et al., 2022) as well as climate change and associated temperature rises encour-
age people to swim outside the current bathing water season.

At the end of each bathing water season, each designated bathing water location is classified. There are four levels
of classification under the rBWD, derived from the IE and EC concentrations recorded over a 4-year period. The class is
determined by the worst parameter and based on the 95th percentile, informing that pollution occurs for <5% of the
time (Table 1). Revised BWD advises the use of EC as well as IE to classify bathing water quality based on a No

TABLE 1 Long term coastal Bathing waters classification rBWD (2006/7/EC).

Classification Coastal and transitional waters

Excellent—The highest, cleanest class
(95% of samples must meet the limits to gain this classification)

Intestinal enterococci—100 cfu/100 mL
E. coli—250 cfu/100 mL

Good—Generally good quality
(95% of samples must meet the limits to gain this classification)

Intestinal enterococci—200 cfu/100 mL
E. coli—500 cfu/100 mL

Sufficient—The minimum acceptable standard for bathing
(90% of samples must meet the limits to gain this classification)

Intestinal enterococci—185 cfu/100 mL
E. coli—500 cfu/100 mL

Poor—Swimming and paddling is not advised as the water quality has not met the
minimum standard

Waters that do not meet the higher
classifications

6 of 26 KRUPSKA ET AL.
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Observed Adverse Effect Level (NOAEL) (Wiedenmann et al., 2006) still IE has been favored as an indicator of pollu-
tion for forecasting purposes. This is because the Genus Enterococcus has a unique ability to grow in the presence of
salt. The greater salt tolerance of IE than of EC and other fecal coliforms contributes to their better performance as indi-
cators of human health risk in marine recreational waters (Boehm & Sassoubre, 2014). Considering the management of
bathing waters, the long-term classification will not reflect the true state of the environment nor the daily microbiologi-
cal status of the bathing water quality. Water quality exceedances are very dynamic and short-lived events, the chance
of capturing the elevated levels of IE using just planned compliance sampling is exceptionally low (5%) (Leecaster &
Weisberg, 2001).

In Europe, long-term classification for designated bathing waters can be found on regulator websites and beach
signs. The classification is illustrated as standardized pictorial symbols to reflect “Excellent,” “Good,” “Sufficient,” and
“Poor” bathing water quality classification, which was fully implemented in 2015 rBWD (Figure 2). If water is classified
as Poor, then the symbol for “Poor” together with a sign showing advice against bathing must be displayed in the fol-
lowing year. A sign displaying a “Poor” classification and advice against bathing does not mean bathing is banned or
that a beach is closed. There are interpretation issues with rBWD bathing water quality signage (Papadopoulou
et al., 2018), for example, the symbols of classifications provide little information in terms of what the classification
means for health risk. This means that few beach users would understand how this relates to them becoming ill from
exposure to bathing water at a particular beach (Oliver, Hanley, et al., 2016). Regulators provide little information on
how classification reflects associated likelihood of illness (Pratap et al., 2013).

4.2 | Short-term bathing water quality

Microbiological analyses for indicators of pathogen are not fit for assessing the true state of the microbiological environ-
ment due to a significant time lag between sample collection and analysis (Rodrigues & Cunha, 2017). Such limited rep-
resentation in time and space is a significant problem in enumeration of IE and other FIOs used to assess bathing water
quality. For this reason, short-term water quality is forecasted to provide information to the public and achieve compli-
ance with the bathing water regulations. The implementation of early warning systems for bathing waters, which are
subject to short-term pollution events, was advised by the rBWD. Existing coastal water quality prediction tools provide
short-term forecasts of bathing water quality based on the modeled relationship between IE and multiple environmen-
tal variables and real-time hydrometeorological data from observations and forecasts (Gutiérrez et al., 2010; Stidson
et al., 2012; Thoe et al., 2014, 2015; Tyrrell, 2017). Short-term pollution forecasts are translated into a simple advisory
message displayed for a particular day and beach (Oliver, Hanley, et al., 2016). The messages communicating advice
against bathing are displayed up to 9.00 a.m. GMT in Europe, at the designated beach signs, and stay-unchanged for
the day (Chan et al., 2012; Stidson et al., 2012; Thoe et al., 2014). Short-term bathing water quality (BWQ) provides sim-
plified information to the public about how safe it is to bathe in particular bathing water in the next 24 h, however,
does not reflect the real-time variations of bathing water quality and is not sufficient for an increasingly variable chang-
ing climate and growing risk of illness from use of bathing waters, which will require the prediction of changes that
can be expected on a timescale of a few hours.

5 | HOW DO WE FORECAST BATHING WATER QUALITY?

Bathing water quality forecasts combine hydrometeorological forecasting, water quality, and ecological components.
BWQ forecasts are based on the modeled relationship, for example, multiple linear regression analysis (MLR), between
FIO (mainly IE) and multiple environmental variables including; meteorological conditions (precipitation, solar

FIGURE 2 “Excellent,” “Good,” “Sufficient,” and “Poor” bathing water quality classification signage (Bathing water information and

signage rules for local councils. Available at: https://www.gov.uk/guidance/bathing-water-information-and-signage-rules-for-local-councils).

KRUPSKA ET AL. 7 of 26

 20491948, 0, D
ow

nloaded from
 https://w

ires.onlinelibrary.w
iley.com

/doi/10.1002/w
at2.1718 by T

est, W
iley O

nline L
ibrary on [29/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://www.gov.uk/guidance/bathing-water-information-and-signage-rules-for-local-councils


radiation, air temperature, wind speed, and direction, dew point); water quality (turbidity, pH, conductivity/salinity,
UV/visible spectra); hydrodynamic conditions (flow, magnitude, and direction of water currents, wave height, tidal
stage); and other factors such as number of birds or bathers present (Table 2) (Kay et al., 2012; Stidson et al., 2012; Thoe
et al., 2014, 2015; Tyrrell, 2017; USEPA, 2010). Methods to develop site-specific models incorporate statistical systems
including standard and machine learning methods, deterministic systems, or combination of both (Grbči�c et al., 2021;
Gutiérrez et al., 2010; Searcy et al., 2018; Stidson et al., 2012; Tyrrell, 2017; USEPA, 2010). The most common model
outputs are estimated levels of FIO or probability of exceedance of the set water quality standard (Stidson et al., 2012;
Tyrrell, 2017; USEPA, 2010). Forecast models mostly use the rainfall forecast products available in a particular country
to produce bathing water forecasts. The warning is issued when forecasted FIO (mainly IE and EC) thresholds are
exceeded.

5.1 | Examples of operational systems

In England, forecasting of bathing water quality is managed by the Environment Agency (EA) via the National Pollu-
tion Risk Forecasting (PRF) system (Figure 3). Each bathing water has a unique set of environmental variables
(e.g., rainfall, wind, UV light, time, tide, etc.), which are related to the IE concentrations. A Multiple Linear Regression
(MLR) is used to find best-fitted variables, by successively adding explanatory variables while simultaneously removing
the weakest correlated variables from the pool (Tyrrell, 2017). The result of MLR is a unique equation consisting of the
best fitted variables for each bathing water, which is then exported to the Flood Early Warning System (FEWS) compo-
nent of the EA's PRF system. FEWS is an operational forecasting platform developed by Deltares and used in over
40 operational centers worldwide. In England, it is currently used for several forecasting applications (Werner
et al., 2013). The Incident Management Flood System (IMFS), embedded in FEWS, provides live forecast and observa-
tion data (rainfall data, UV index, wind speed, tide, time of the day, and month) for daily bathing water forecasts. Once
all components required for bathing waters forecasting are transported to FEWS, they are exported and displayed on
the government website https://environment.data.gov.uk/bwq/profiles/. If the water quality threshold is forecasted to
be exceeded at any of the bathing waters, the forecasts are flagged by the Pollution Risk Messaging System (PRMS) and
sent via SMS to registered beach operators informing them to display appropriate signage. PRMS also sends information
to 33 nationwide electronic signs at beaches and generates a summary email sent to the Environment Agency for distri-
bution (Tyrrell, 2017). The warning water quality threshold of 63 cfu/100 mL IE is calculated using the dose–response
relationship and probability density function (Kay et al., 2005) for gastrointestinal illness using the microbiological data
from Environment Agency England and Wales from 2000 to 2016 (Tyrrell, 2017).

Natural Resources Wales use a similar MLR approach to EA England. Key predictors used include rainfall, UV
index, tide height, and wind speed/direction. The modeler and local bathing water specialist decide which model is cho-
sen for each bathing water (Internal Report NRW). In Northern Ireland, statistical and machine-learning predictive
models are combined, and their outputs are binary in that bathing waters are only classified as excellent or poor
(Hawtree et al., 2020). In Scotland, rainfall and river flow were found to be strong predictors of high fecal contamina-
tion in bathing waters. For that reason, the forecasts work solely off rainfall and flow threshold triggers, which are site,
gauge, and time-specific (Crowther et al., 2001; Crowther et al., 2003; Stidson et al., 2012). The models are calibrated to
predict poor water quality at thresholds of 500 EC and/or 200 IE, in agreement with the percentile values specified in
the rBWD. Table 2 provides examples of operational, pre-operational, and research only bathing water forecasting sys-
tems routinely using weather predictions as inputs.

5.2 | Limitations linked to statistical modeling and data collection

Due to the nonlinearity and complexity of the water environment (Figure 1) the exact microbial state of bathing waters
is challenging to predict. No model has the capacity to predict all the factors, everywhere, all of the time, thus predic-
tions of water quality status have limitations in skill and applications (Dickey-Collas et al., 2014). Forecasting tools
designed based on past water quality and hydrometeorological data are limited by model parameterization, model-
forcing data (e.g., precipitation forecasts), model input data (e.g., past water quality and bacteria levels), model valida-
tion data (e.g., use of incorrect thresholds, and scoring system), and model structures (e.g., use of different
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TABLE 2 Examples of operational, pre-operational, and research-only bathing water forecasting systems.

Modeling
approaches Provider

No of
forecasted
BW

Factors used for
forecasting Warning trigger

Further
information

Statistical based on
MLR

Environment
Agency
England
governmental
agency,
operational
system
(England)

415 Rainfall (radar), wind
speed, wind offshore,
wind alongshore, UV
index, time day, time
month, and tide height
(maximum and
minimum), past water
quality results

IE threshold of 63
(cfu/100 mL)

Tyrrell (2017)

Environment
Agency Wales
(Wales)

Rainfall radar, UV index,
tide height, and wind
speed/direction

IE threshold of 63
(cfu/100 mL)

(Internal report)

Smart Coast
Aberystwyth
University
and
University
College
Dublin
(Wales)

2 Rainfall, UV, and tide
followed by wind speed,
extra-terrestrial radiation
(ETR), and river flows

Site dependent Wyer et al.
(2013)

Simple regression SEPA-
governmental
agency,
operational
system
(Scotland)

86 Rainfall triggers, river flow
triggers, past water
quality results

A single sample limit of
500 colony forming units
(cfu) per 100 mL for
Escherichia coli and
200 cfu/100 mL for IE

Stidson et al.
(2012)

Decision trees SEPA-
governmental
agency, tested
method not
operational
(Scotland)

n/a Flow, rainfall data, and
past quality results

A single sample limit of
500 colony forming units
(cfu) per 100 mL for
Escherichia coli and
200 cfu/100 mL for IE

Stidson et al.
(2012)

Combining
statistical and
deterministic
systems: 3D real-
time regional
hydrodynamic
and water quality
model

The University
of Hong
Kong-Project
WATERMAN
purpose
research only
(China)

16 Rainfall, solar radiation,
onshore wind, tide level

Beach closure criteria E.
coli 610 counts/100 mL

http://www.
waterman.
hku.hk/

Statistical based on
MLR and neural
networks

Heal the Bay
non-profit est,
operational
system US
California
(US)

25 Rainfall, wind speed/
direction, pressure, cloud
cover, air temperature,
water temperature, dew
point, tide range/min/
max, wave height/
period, flow, past FIOs
concentrations

FIOs concentrations
exceed their single
sample standard (SSS):
10,000, 400, and 104
most probable number
(MPN)/100 mL for TC,
FC, and IE, respectively

Searcy et al.
(2018); Thoe
et al. (2014,
2015)

Combining
statistical and
machine-learning
predictive models

EU SWIM
Project
(Northern
Ireland)

9 Wind direction, wind
speed, atmospheric
pressure, air temperature
direct normal irradiance,
tides, streamflow, rain
radar

Binary output, bathing
waters classified as
excellent or poor

Hawtree et al.
(2020)

(Continues)
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mathematical representations). Consideration of these uncertainties is vital for the model application and for the inter-
pretation of obtained results (Schellart et al., 2010).

The most limiting factor is the fact that operational models use low-frequency data collected for legal compliance,
meaning that sampled data is close to where the model predicted it would be and data representing extreme conditions
are not collected. This approach does not reflect the science behind the environmental fate of FIO (Herrig et al., 2019;
Shutler et al., 2015; WHO, 2003). Since most water quality exceedances are single-day or hourly events, the chance of
capturing the elevated levels of IE is exceptionally low (5%) (Leecaster & Weisberg, 2001). This may create the false idea
that failures happen rarely in the bathing season (Crowther et al., 2001; Hatvani et al., 2018; Luši�c et al., 2017; Wyer

TABLE 2 (Continued)

Modeling
approaches Provider

No of
forecasted
BW

Factors used for
forecasting Warning trigger

Further
information

Combining
statistical and
deterministic

COWAMA by
CLABSA and
the
Barcelona's
City Council
(Spain)

1 Fed with real-time rainfall
data from controlled
sensors and
meteorological model
predictions

The procedure is
characterized by the
definition of risk levels
from 0 to 5, depending
on the severity of the
pollution event and the
available information as
the event develops

Gutiérrez et al.
(2010)

Note: FIO: TC (total coliform), FC (fecal coliform), or EI (enterococcus).

FIGURE 3 National pollution risk forecasting system (PRF) for England.

10 of 26 KRUPSKA ET AL.

 20491948, 0, D
ow

nloaded from
 https://w

ires.onlinelibrary.w
iley.com

/doi/10.1002/w
at2.1718 by T

est, W
iley O

nline L
ibrary on [29/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



et al., 2018). If bathing water rarely has high bacteria levels and events are not captured, the statistical significance
would be too low to develop a model (Hampson et al., 2010; Tyrrell, 2017; USEPA, 2010). For that reason, there are
415 designated bathing waters in England, however, daily forecasts are only issued for around 170 because models for
the other locations perform too poorly (Tyrrell, 2017).

What is more, the classification samples do not consider temporal and spatial variability in FIO density, which may
change over minutes and hours within the bathing day (Bedri et al., 2016; Boehm et al., 2002; Layton et al., 2009; Wyer
et al., 2018). Indicator bacteria are sensitive to sunlight; therefore, the time of day when samples are collected may sig-
nificantly influence the final enumeration results (Hijnen et al., 2006; Pullerits et al., 2020). The spatial distribution of
microbial pollution depends also on their susceptibility to salinity, DO, turbidity, CSOs discharge patterns, location
of sources of pollutants, advection, and the distribution of mixing on the site (Alkhalidi et al., 2021; Cherif et al., 2019;
Poopipattana et al., 2021). In general, the highest values of bacteria and the poorest water quality according to in situ
measurements are recorded next to the river mouth, while lower values and better water quality status are observed
moving away from the confluence of the river mouth with the sea (Cherif et al., 2019). FIO concentrations tend to vary
less in deeper waters than in shallower zones (e.g., >45 cm) due to resuspension of FIO growing or sheltered in sedi-
ments (Whitman & Nevers, 2008). Additionally, correlations between indicator FIO concentrations measured at that
depth tend to have better correlations with gastrointestinal infection incidence rates (USEPA, 2012). This situation also
further lowers variance (based on r 2 alone), which could lead to misclassification of “sufficient” water quality when it
was in fact “poor” (Wyer et al., 2018). In practice, it can also lead to clean beaches being closed and beaches at which
contamination occurred being open for public use (WHO, 2003).

5.3 | Rainfall forecasts used in BWQ forecasts in England

Bathing water quality forecasts in England are driven by rainfall forecasts (Figure 3) provided by the UK Met Office,
including rainfall radar products, nowcast, and UKV (United Kingdom Variable-resolution weather forecasting system)
short-range forecasts (Tang et al., 2013) (Figure 4). A nowcast is a weather forecast on a very short-range period 0–6 h,
which uses surface weather station data (e.g., rain gauge, radar) blended with Numerical Weather Predictions (NWP)
models, with updates available every 15 min (Liguori & Rico-Ramirez, 2014). NWP uses initial conditions of the state of
the atmosphere, land surface, and oceans, and then forecasts future weather using numerical equations and parameteri-
zations of physical processes over a specified domain (geographic area) (Pu & Kalnay, 2018). The UK Met Office short-

FIGURE 4 Timing and sequence of observations and forecasts that are input into the Environment Agency bathing water quality

forecast.
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range UKV model, provides forecasts on a 1.5-km grid across the United Kingdom for up to 120 h lead time (5 days
ahead) with frequent updates for up to 54 h ahead. The nowcast blends radar products with the UKV which dominates
from 3 h ahead. In the short term (up to 6 h) nowcasting is preferred for bathing water forecasting as it has better skill
in representing rainfall at short lead times (Prudden et al., 2020).

All observed and forecasted data are input into the bathing water forecasting system and then merged into one
product before the MLR variables are calculated (Tyrrell, 2017). Rainfall radar observations and data from nowcast and
UKV are inputted at 06:00 GMT. The wind and UV data is imported at 07:15 GMT. The forecasted values for IE in 2 h
step time from 09:00 to 16:00 GMT are then averaged. The warning is issued when the calculated average is
63 cfu/100 L or above. The daily bathing water quality forecast is given to beach operators between 8:00 and 8:30 GMT.
The bathing water forecast is not updated throughout the day.

6 | HOW CAN WE IMPROVE STATISTICAL MODELING PERFORMANCE
BY IMPROVING SAMPLING REGIMES?

The low statistical probability of extreme events forces the need for a substantial set of data to analyze predictions with
more statistical rigor. Additionally, the assumption of characterizing the bathing day based on few spot samples taken
at random times might not fully characterize important conditions and the exact reasons for non-compliance, which is
so important to allow appropriate remediation measures to be put in place (Cyterski et al., 2013; Stidson et al., 2012;
Thoe et al., 2014; USEPA, 2012). Site specific sampling regimes, especially in instances where the model performance is
poor, would allow a much better characterization of the standard deviation and variances, leading ultimately to better
model outcomes (Bedri et al., 2016; Kay et al., 2012, 2018; Wyer et al., 2018). For example, the Smart Coast project
designed for Swansea Bay to sample FIOs at half hourly intervals for 12:00 h of the bathing day (i.e., 25 samples/day),
over 60 days of the bathing season, led to more accurate forecasting of IE levels in Swansea Bay. A cost-effective way of
checking whether the number of exceeded compliance samples is sufficient for model development would be applica-
tion of internal validation of models by bootstrapping or cross-validation (Motamarri & Boccelli, 2012; Searcy
et al., 2018). To represent temporal and spatial variability, the USEPA (2010; 2012) suggested compliance monitoring of
bathing waters should focus on early morning sampling to produce a preventive approach to health risk management.
However, regulatory monitoring in the United Kingdom is carried out throughout the day, because the sampler has sev-
eral beaches to visit each day, therefore such a suggestion is not practical and would substantially increase the cost of
monitoring. In this instance health risk predictions might be improved by investing time and resources in more ade-
quate modeling of within-day patterns obtained from targeted monitoring and observed data (Wyer et al., 2018).

Water sample results are the primary source of information about levels of bacteria during different environmental
conditions. The available historical raw bacteria levels data, although known to be incomplete, underpin our under-
standing of key processes, particularly the impact of rainfall on bacteria levels in coastal waters. Without historical
water sample data, it would be impossible to draw any firm conclusion on relationships between bacteria levels and
environmental conditions. BWQ forecasts are based on the modeled relationship between bacteria and environmental
conditions, therefore it is vital to improve our scientific understanding of the impacts of environmental conditions on
bacteria levels in coastal environments and well as monitor changes over time that may be rated to climate change.
Targeted sampling regimes for the collection of IE/EC data reflecting extreme events would also provide foundations
for a better forecasting approach to be used for bathing waters forecasting. Many major bathing water pollution events
are not adequately measured, and pre-scheduled compliance sampling regimes are a stumbling block in addressing this
problem. Thus, currently, some bathing waters do not have enough independent extreme events for meaningful and
robust analysis of impacts of intense rainfall on bacteria levels in coastal waters.

Our incomplete understanding of the physical processes driving the levels of bacteria in coastal waters, and the
inadequate record water samples make it a challenge to forecast bathing water quality accurately.

Collecting one robust set of data for one bathing water does not mean we would be able to apply it to other bathing
waters because of spatial and temporal non-stationarity, that is, each catchment and receiving bathing water is unique,
as are the driving storm characteristics, and the characteristics of the mobilized pollutants, means that bathing water
pollution events cannot be easily compared with one another, even at the same location. Changing precipitation pat-
terns because of climate change, together with human alteration of catchments exacerbates this problem. This under-
lines the need for targeted sampling regimes tailored specifically for a particular bathing water to build up the dataset
so that relationships between bacteria levels and intense rainfall can be better understood.
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7 | HOW CAN WE IMPROVE BATHING WATER FORECASTING USING
ADVANCES IN FORECASTING SCIENCE?

Convective rainfall develops quickly and is therefore difficult to forecast accurately. It is challenging to forecast convec-
tive events because it involves multiple physical processes, many of which occur at scales smaller than a model grid cell.
Additionally, lack of data at high spatial and temporal scales means that some processes remain poorly understood
(Kendon et al., 2018; Kent et al., 2022; Ravuri et al., 2021).

7.1 | Advances in rainfall observations and how they can improve bathing water
forecasts?

Rainfall observations can serve two purposes: directly contributing to the bathing water forecasting system or providing
initial conditions to enhance precipitation forecasts. When it comes to bathing water forecasting, a significant challenge
in using rain gauge data is ensuring a sufficiently dense spatial coverage of gauges to capture intense rainfall in local-
ized areas. It is recommended to have a gauge density of one per 1 km2 for accurate hydrological modeling and forecast-
ing (Liguori & Rico-Ramirez, 2014; Ochoa-Rodriguez et al., 2019). The current rain gauge network in the
United Kingdom is inadequate for this purpose (Speight et al., 2021).

Rainfall radar offers distinct advantages compared with rainfall gauges. Radar has the capability to survey large
areas, capturing the spatial variability of rainfall. Additionally, radar provides real-time data and can determine the
motion, intensity, and type of precipitation (Battaglia et al., 2020; Garcia-Benadí et al., 2021). The use of modern dual-
polarization radars (Adams et al., 2016), allows for the capture and processing of additional information regarding the
size and composition of precipitation (Dance et al., 2019; Flack et al., 2019). Improvements in radar-observed rainfall
rates, which are fundamental for accurate forecasting and nowcasting, also enabled better forecasting of intense
rainfall events and enhanced flood warning systems (Deng et al., 2014; Wang et al., 2021). Despite these advancements,
rainfall radar technology cannot guarantee accurate capture of high intensities and local conditions, fundamental for
accurate bathing water quality forecasting. This is because dynamical microphysical attributes between convective and
stratiform precipitation differ significantly (Deng et al., 2014). In the future poor radar coverage and lack of ground
gauging stations may be able to be enhanced with satellite products. However, at present these are mostly only useful
for larger-scale weather patterns and climatic investigations, and are unable to pick up the localized and intense nature
of rainfall-based processes (Agyekum et al., 2023; Houngnibo et al., 2023).

With a denser rain gauge network and more sophisticated radar and satellite technology, rainfall forecasters would
be able to obtain more precise and timely information about convective rainfall intensity and location, feeding this
information to bathing water forecasters and improving the bathing water forecast output. This would enable events to
be tracked that may lead to increased runoff and potential contamination of bathing water on a local scale in space and
time, allowing timely warnings or advisories to beach managers and the public, helping to mitigate potential health
risks. Advances in rainfall observations would also be able to provide valuable data for hydrological models, which form
the basis of many operational systems simulating the movement of water and pollutants in the environment. Thus, by
enhancing observational rainfall data accuracy, we would be able to generate more reliable models that form the back-
bone of operational bathing water quality systems and improve predictions of pollutant transport and its impact on
bathing water quality. This ultimately would increase the safety and quality of bathing water for the public.

7.2 | Advances in nowcasting and numerical weather prediction and how they may
improve the existing approach

Bathing water quality forecasts in England are driven by nowcast and NWP rainfall forecasts (Figure 4). Nowcasts are
unable to provide precise predictions for longer lead times, and often have low skill in predicting medium-to-heavy
rainfall events accurately (Ravuri et al., 2021). For this reason, NWP models are blended with nowcasts to provide lon-
ger lead times 6–72 h (Chen et al., 2023, Kendon et al., 2023).

Traditional nowcasting methods primarily rely on extrapolating radar echo maps or satellite images. These methods
involve identifying storms, tracking, and extrapolating their movement, or estimating the flow field. While these
methods are effective in predicting the short-term linear advection characteristics of storms, they face limitations in
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forecasting the initiation and evolution of convective storms, particularly when the lead time exceeds 30 min (Ravuri
et al., 2021). Research has shown that these extrapolation-based methods struggle to accurately predict the development
of convective storms for longer lead times (Dixon & Wiener, 1993; Gultepe & Feltz, 2019; Wilson et al., 1998). Machine
learning has potential to overcome some of the shortcomings with regards to convective rainfall forecast accuracy (see
Section 7.4); however, more research is needed to apply the findings to existing operational systems in the
United Kingdom. Although nowcasting still has limitations, especially when it comes to the accuracy of convective
rainfall forecasting, it may enhance bathing water forecasting by providing real-time data analysis of local conditions,
enabling authorities to provide more precise and localized predictions and recommendations for beach users, ensuring
their safety (Clark et al., 2016; Dance et al., 2019; Weusthoff et al., 2010). The challenge of representing convection in
NWP forecasting models is important because it influences the skill of bathing water forecasts. Recent advances
in convection-permitting NWP models (CPMs) have improved the representation of convective rainfall structures and
processes (Kendon et al., 2023, Kent et al., 2022). These have been shown to outperform large-scale models that rely on
some form of convection parameterization process which relates the convection process to the rainfall using a statistical
approach (Park et al, 2022; Yang ben et al., 2022). For example, the UK Met Office UKV model can represent convective
structures directly producing realistic-looking shower cells (Milan et al., 2020). Since skillful forecasts of
convective rainfall from UKV are updated hourly, they should be used in current operational bathing water forecasting
systems and sub-daily updates could be provided to the public.

Although the 1.5 km grid enables realistic showers to be generated the chaotic nature of atmosphere imposes a sig-
nificant limitation on the skill of rainfall precipitation forecasting meaning it remains difficult to forecast convective
rainfall for specific locations beyond a few hours ahead creating challenges for decision makers (Speight et al., 2021).
To mitigate these limitations meteorologists are incorporating more precise and complex observational data, improving
computational capabilities, and refining the physical parametrization of NWP models. A flexible system that can incor-
porate improvements to rainfall forecasts as and when they become operational is key to keep pace with recent develop-
ments in forecasting science. Additionally, ensemble forecasting techniques are used to account for uncertainties and to
indicate the likelihood of different weather scenarios.

7.3 | Ensemble prediction systems and how they can improve bathing water forecasts

Although convective rainfall develops over small areas quickly, it depends on atmospheric conditions controlled by
large-scale or local factors (Flack et al., 2019). Therefore, a probabilistic (ensemble) approach is required to take account
of the uncertainties, mostly associated with the initial conditions, boundary conditions, as well as physical processes
(Hagelin et al., 2017). An ensemble forecast is a set of forecasts that present the range of possible future weather out-
comes. Multiple simulations are run, each with a slight variation of the initial atmospheric state to represent different
rainfall scenarios (Cloke & Pappenberger, 2009). Using ensemble would generate a range of possible outcomes of bath-
ing water quality, showing how likely different scenarios are in the days ahead, and how long into the future the
bathing waters forecasts are useful (ECMWF, 2020). For example, the Short-Term Ensemble Prediction System (STEPS)
is a probabilistic precipitation nowcasting scheme developed at the Australian Bureau of Meteorology in collaboration
with the UK Met Office. STEPS downscales the NWP forecast model allowing small scales to be represented. Conse-
quently, the scheme has better skill in representing the distribution of precipitation rate at spatial scales finer than
those adequately resolved by operational NWP (Bowler et al., 2006).

Currently, the Met Office convective-scale ensemble for numerical weather prediction, for the Met Office Global
and Regional Ensemble Prediction System over the United Kingdom, called MOGREPS-UK, uses an hourly time-lagged
configuration to take advantage of the hourly 4D-Var data assimilation run in the deterministic UK model with variable
horizontal resolution, the UKV (Porson et al., 2020). This operational ensemble prediction system has been successful
in capturing organized convection but may be insufficient to capture the convection process that results in convective
precipitation (Clark et al., 2016). The strength of MOGREPS-UK is that it can provide an indication of the possibility of
convection-driven events and total rainfall prediction, however, exact intensity or localization remains a challenge
(Porson et al., 2020). Understanding these limitations will help assess realistic forecast skills and improve operational
decision-making processes in different weather circumstances, especially when it comes to impact assessment of con-
vective rainfall on bathing water quality. To realize the full potential of probabilistic forecasts (advance the ensemble
size, resolution, domain size, and forecast length) more computational power would be needed (Cloke &
Pappenberger, 2009; Speight et al., 2021). As computational power increases it will be possible to further increase the
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ensemble size, resolution, domain size, and forecast length of ensemble forecasts. Recently alternatives such as time-
lagging (Porson et al., 2020) have been successfully shown to increase ensemble size without increasing computational
burden. Machine learning approaches could have an advantage as they may remove the computational burden of run-
ning forecasts or post-processing ensembles (Gibson et al., 2021; Zhang et al., 2023).

Currently bathing water forecasts in the United Kingdom are only updated daily and ensembles are not used, there-
fore bathing water forecasts are not making best use of available weather forecasting science. Similar challenges have
been experienced in the field of flood forecasting, particularly for surface water flood events (Speight et al., 2021), and
bathing water forecasting would benefit from learning from parallel developments in the use of convective permitting
forecasts by hydrometeorologists.

7.4 | Advances in machine learning

Advances in machine learning combined with physically based meteorological and hydrological models offer exciting
potential for improving the predictive skill of a range of hydroclimatic events including bathing water failures (Slater
et al., 2023). Machine learning algorithms in forecasting refer to the use of statistical models and algorithms that allow
computers to learn and improve from data without explicit programming. These algorithms analyze historical data and
patterns to identify relationships and make predictions about future outcomes (Krenn et al., 2022). Machine learning
can effectively blend data from multiple sources, such as NWP, radar observations, satellite imagery, and ground-based
measurements to produce more accurate convective rainfall forecasts (Hess & Boers 2022; Prudden et al., 2020; Schultz
et al., 2021), which would enable more accurate bathing water forecasts. By handling vast amounts of historical weather
data, machine learning algorithms can identify complex relationships and can effectively capture the nonlinear dynam-
ics of weather patterns that contribute to convective rainfall events. This enables more accurate predictions and
improved understanding of the complex dynamic physical processes involved in convective rainfall (Caseri et al., 2022;
Gibson et al., 2021; Huntingford et al., 2019).

Machine learning models can also adapt and learn from new data, allowing them to continuously improve their
forecasting capabilities and enhance the accuracy and reliability of convective rainfall forecasts over time (Ghada
et al., 2022; Ravuri et al., 2021).

Nowcasting powered by machine learning and data assimilation techniques, can incorporate real-time data from
various sources to provide more accurate rainfall forecasts (Prudden et al., 2020). By detecting anomalies or patterns
indicating a higher risk of convective rainfall occurrence, nowcasting models enable authorities to proactively issue
warnings and implement mitigation strategies to protect the public (Ravuri et al., 2021). Machine learning models can
adapt and update their predictions as new data becomes available, ensuring that both rainfall forecasts and bathing
water forecasts remain accurate and reliable even in the face of changing conditions such as sudden weather changes
or pollution incidents. This highlights why improvements in observational data are so important.

Machine learning algorithms can quantify and handle uncertainties by providing probabilistic forecasts, allowing
decision-makers to assess the confidence level associated with a forecast and make informed decisions based on the
level of uncertainty (Abdar et al., 2021; Jose Dinu et al., 2022).

Similar to improvements in convective rainfall forecasts, machine learning algorithms could incorporate historical
water quality data, weather conditions, tidal patterns, and pollution sources identifying correlations and patterns that
may affect bathing water quality. Machine learning algorithms could help build predictive models based on historical
data and environmental factors to forecast bathing water quality, particularly if better in situ water quality data were
available. Machine learning could potentially be used to develop early warning systems for bathing water quality inde-
pendently from existing modeling systems. By analyzing historical data and identifying patterns associated with water
contamination events, machine learning models could provide alerts and recommendations to beach managers and
authorities, enabling them to take proactive measures to maintain water safety.

Machine learning could also provide insights and recommendations on actions to improve water quality, such as
identifying pollution sources or suggesting upgraded beach management strategies. Machine learning models, however,
are only as good as the data they are trained on. Ensuring the quality and representativeness of the training data, as
well as addressing potential biases, are crucial steps in developing accurate and reliable bathing water forecasting
models.

While machine learning has shown promising results in convective rainfall forecasting, it is not without its chal-
lenges and is unlikely to be able to resolve all of the complexities and chaotic functions of the atmosphere. Ensuring
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the quality and representativeness of the training data, addressing biases, and interpreting the outputs of complex
models are ongoing areas of research and development.

8 | CONCLUSIONS

Forecasting bathing water quality is essential to keep beach users safe, yet the current system in (England) can be much
improved. Sampling strategies can be improved by targeting intense rainfall conditions, that would allow better under-
standing of extreme rainfall impact on bathing water pollution. This in turn would improve the skill of statistical
modeling leading to more accurate bathing water forecasts. Since bathing water forecasts rely mostly on efficient and
accurate rainfall forecasts, a significant improvement would be using the currently available sub-daily short-range rain-
fall forecasts to provide sub-daily bathing water forecasts that more closely reflect the dynamic development of convec-
tive rainfall events. Sub-daily forecasts would help with gaining experience of predicting the impact of convective
rainfall on bathing waters which would contribute to the longer-term development of a system that better predicts
localized pollution events. Ongoing development of machine learning in weather forecasting, nowcasting, and bathing
water quality modeling offers potential to provide better early warnings of bathing water failures to aid real-time,
dynamic, site-specific forecasts, and warnings that will improve operational logistic planning and decrease the risk to
public, but such developments remain contingent on the availability of appropriate training data.

While metrological models and computational power have significantly improved over the years, there are still
inherent limitations in predicting the non-linear (chaotic) dynamics of the atmosphere. Complex interactions and feed-
back loops within the atmosphere lead to uncertainties in forecasts making precise forecasting challenging.

To further upgrade bathing water forecasting, the BW forecast should move toward ensemble prediction systems
which represents the latest advances in weather forecasting science and allows decision-makers to take account of this
forecast uncertainty. To make effective use of ensemble forecasts bathing water forecasters would need to consider
probabilistic decision making which has not been considered to date in bathing water forecasting. Probabilistic forecasts
can give an earlier indication of potential upcoming bathing water failures and associated impacts by showing the prob-
ability of exceeding given thresholds, extending the amount of time available to prepare. However, this is only effective
when an existing framework for using probabilistic forecasts within the decision-making process exists (Arnal
et al., 2020). Once established, the probabilistic approach can be cascaded to be used by BWQ forecasters and water
quality specialists. However, this requires a clear channel of communication between weather forecasters and bathing
water forecasters to be established. There is a need for specific guidelines for establishing appropriate thresholds,
explaining how the probabilistic forecasts should be used in practice in combination with other systems operating in
the EA. Also, clear communication with all internal and external stakeholders should take place explaining advantages
of probabilistic forecasting over deterministic forecasting.

The demand for rapid and accurate bathing water quality forecast information in support of critical decision-making
will grow fast in the coming years due to climate change and resulting changes in precipitation patterns and user
demand. The current operational bathing water services worldwide and in the United Kingdom have limited capability.
To fully embrace recent advances in digital and forecasting technologies and to deliver a new bathing water forecasting
structure that provides seamless services, five main challenges need to be addressed.

8.1 | Key challenge 1: Improve monitoring of bathing waters

The most suitable predictors for bathing water quality are location-dependent and compliance data might not be com-
prehensive enough to develop a model for a BW. This can be improved by targeted monitoring of bathing waters focus-
ing on sampling spatial and temporal characteristics as well as frequency. Targeted data sets would provide better data
to develop predictive models, thus improving the accuracy of bathing water forecasts.

8.2 | Key challenge 2: Better use of existing very short and short-range forecasts

Climate change models suggest that the most severe bathing water failures could result from rapidly developing convec-
tive systems with storm cells producing intense rain and runoff. Bathing water forecasts do not take full advantages of
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available nowcasting science. Taking full advantage of nowcasts and short-range forecasts would allow an update of the
BWQ forecast during the day to take account of rapidly developing storms, that may not have been shown in the morn-
ing nowcasts, allowing the development of sub-daily BWQ forecasts. As nowcasting accuracy increases it will be possi-
ble to further increase the accuracy of BWQ forecasts.

8.3 | Key challenge 3: Moving toward an ensemble prediction system for bathing water
forecasts

Currently, forecasting of bathing water quality beyond 24 h is not possible without significantly compromising accu-
racy, especially when considering convective rainfall events. Convection-permitting NWP models can represent convec-
tive structures and can now forecast showers (Clark et al., 2016). Still due to the localized nature of convective events,
NWP models need further improvement to be able to forecast the location of the heaviest rainfall on a small catchments
scale, which is vital for accurate bathing waters forecasting. Ensembles provide information on forecast uncertainty.
Using ensembles would enable the creation of different possible outcomes of bathing water quality in the days ahead
and it would also inform decision makers how long into the future the bathing waters forecasts are useful. However,
probabilistic forecasts have not been yet used in bathing water quality forecasting and this creates a lack of understand-
ing of what actions people might take several days ahead. Additionally, a new threshold system of pollution and its
probable impact on health would need to be established, merging the hazard and impact probabilities into one risk-
based message.

8.4 | Key challenge 4: Developing interdisciplinary solutions

To effectively manage bathing waters forecasts, it is crucial for hydrologists and meteorologists to collaborate and com-
municate a consistent message, especially when faced with short lead times. This collaboration should prioritize under-
standing the needs of decision-makers while maintaining the expertise of hydrometeorology at the core of the solution.
Key issues, such as determining the useful lead time, identifying forecast probabilities that trigger action, and assessing
the value of focusing on impact rather than hazard, require input from all stakeholders involved in the forecasting pro-
cess (scientists, operational end-users, hydrologists, meteorologists, social scientists) during the initial stages of system
development. A strong collaboration between forecast developers and beach users would need to be established. This
would enable the creation of a forecast product that effectively meets operational requirements and is smoothly trans-
itioned from research to an operational system. Likewise, it is important for academic scientists to actively engage with
stakeholders to ensure that their scientific work addresses practical needs in the real world.

8.5 | Key challenge 5: Secure appropriate funding

High-quality bathing water forecasting is essential for providing timely and accurate information to the public, to warn
them, to help them make informed choices, and to avoid health implications associated with poor bathing water qual-
ity. Despite this, it is not valued and recognized by organizations and beach users due to poor and sparse environmental
data, outdated technological and science approaches, and opinions driven by political agendas. Adapting to the chang-
ing climate calls for immediate improvements in our current forecasting approach. The establishment of new funding
streams will require time, effective engagement with stakeholders, and consideration of the challenges ahead.

If we are to reduce the risk from poor bathing water quality and avoid the increasing number of beachgoers
reporting being ill after being diagnosed with EC poisoning, then we should endeavor to meet these challenges quickly
and take advantage of recent scientific advances in forecasting. Considering the possibility of worsening bathing water
quality due to our changing climate, addressing shortcomings in current bathing water forecasting operational practice
should be a priority for government to keep our bathing water clean and people safe.
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Rodrigues, C., & Cunha, M. Â. (2017). Assessment of the microbiological quality of recreational waters: Indicators and methods. Euro-
Mediterranean Journal for Environmental Integration, 2(1), 1–18. https://doi.org/10.1007/s41207-017-0035-8

24 of 26 KRUPSKA ET AL.

 20491948, 0, D
ow

nloaded from
 https://w

ires.onlinelibrary.w
iley.com

/doi/10.1002/w
at2.1718 by T

est, W
iley O

nline L
ibrary on [29/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1007/s10661-009-1203-3
https://doi.org/10.1007/s10661-009-1203-3
https://doi.org/10.1016/j.watres.2012.05.023
https://doi.org/10.1128/AEM.06902-11
https://doi.org/10.1007/s40641-015-0009-3
https://doi.org/10.1007/s40641-015-0009-3
https://doi.org/10.1007/s40726-016-0047-z
https://doi.org/10.1007/s40726-016-0047-z
https://doi.org/10.1016/S0043-1354(99)00146-3
https://doi.org/10.1016/S0043-1354(99)00146-3
https://doi.org/10.1029/2018WR023332
https://www.ofwat.gov.uk/wp-content/uploads/2023/01/Draft-forward-programme-2023.pdf
https://www.ofwat.gov.uk/wp-content/uploads/2023/01/Draft-forward-programme-2023.pdf
https://doi.org/10.1007/s13280-015-0698-9
https://doi.org/10.1016/j.scitotenv.2015.11.086
https://doi.org/10.1002/(SICI)1097-0088(20000330)20:4%3C347::AID-JOC475%3E3.0.CO;2-C
https://doi.org/10.1186/s13568-014-0051-x
https://doi.org/10.1029/2021MS002696
https://doi.org/10.1007/s11356-020-11046-x
https://doi.org/10.1002/qj.3844
https://doi.org/10.2166/wh.2013.077
https://doi.org/10.1038/s41545-020-0057-7
https://doi.org/10.1038/s41545-020-0057-7
https://doi.org/10.1038/s41586-021-03854-z
https://doi.org/10.3389/fmicb.2015.00308
https://doi.org/10.3389/fmicb.2015.00308
https://doi.org/10.1007/s41207-017-0035-8


Rouse, M. (2014). The worldwide urban water and wastewater infrastructure challenge. International Journal of Water Resources Develop-
ment, 30(1), 20–27. https://doi.org/10.1080/07900627.2014.882203

SAS (2022) ‘Human Health From vomiting and sickness to a case of Leptospirosis, our sickness reports expose a worrying trend of illness
after swimming.’ Available at: https://www.sas.org.uk/waterquality2022/human-health/sickness-reports/

Schellart, A. N. A., Tait, S. J., & Ashley, R. M. (2010). Towards quantification of uncertainty in predicting water quality failures in integrated
catchment model studies. Water Research, 44(13), 3893–3904. https://doi.org/10.1016/j.watres.2010.05.001

Schuch, A. P., & Menck, C. F. M. (2010). The genotoxic effects of DNA lesions induced by artificial UV-radiation and sunlight. Journal of
Photochemistry and Photobiology B: Biology, 99(3), 111–116. https://doi.org/10.1016/j.jphotobiol.2010.03.004

Schultz, M. G., Betancourt, C., Gong, B., Kleinert, F., Langguth, M., Leufen, L. H., Mozaffari, A., & Stadtler, S. (2021). Can deep learning beat
numerical weather prediction? Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 379
(2194). https://doi.org/10.1098/rsta.2020.0097

Searcy, R. T., Taggart, M., Gold, M., & Boehm, A. B. (2018). Implementation of an automated beach water quality nowcast system at ten Cali-
fornia oceanic beaches. Journal of Environmental Management, 223, 633–643. https://doi.org/10.1016/j.jenvman.2018.06.058

Shepherd, T. G. (2014). Atmospheric circulation as a source of uncertainty in climate change projections. Nature Geoscience, 7(10), 703–708.
https://doi.org/10.1038/NGEO2253

Shutler, J. D., Warren, M. A., Miller, P. I., Barciela, R., Mahdon, R., Land, P. E., Edwards, K., Wither, A., Jonas, P., Murdoch, N., Roast, S. D.,
Clements, O., & Kurekin, A. (2015). Operational monitoring and forecasting of bathing water quality through exploiting satellite earth
observation and models: The AlgaRisk demonstration service. Computers and Geosciences, 77, 87–96. https://doi.org/10.1016/j.cageo.
2015.01.010

Sinclair, R. G., Rose, J. B., Hashsham, S. A., Gerba, C. P., & Haas, C. N. (2012). Criteria for selection of surrogates used to study the sate and
control of pathogens in the environment. Applied and Environmental Microbiology, 78(6), 1969–1977. https://doi.org/10.1128/AEM.
06582-11

Sinton, L. W., Davies-Colley, R. J., & Bell, R. G. (1994). Inactivation of enterococci and fecal coliforms from sewage and meatworks effluents
in seawater chambers. Applied and Environmental Microbiology, 60(6), 2040–2048. https://doi.org/10.1128/aem.60.6.2040-2048.1994

Sinton, L. W., Finlay, R. K., & Lynch, P. A. (1999). Sunlight inactivation of fecal bacteriophages and bacteria in sewage- polluted seawater.
Applied and Environmental Microbiology, 65(8), 3605–3613. https://doi.org/10.1128/aem.65.8.3605-3613.1999

Sinton, L. W., Hall, C. H., Lynch, P. A., & Davies-Colley, R. J. (2002). Sunlight inactivation of fecal indicator bacteria and bacteriophages
from waste stabilization pond effluent in fresh and saline waters. Applied and Environmental Microbiology, 68(3), 1122–1131. https://doi.
org/10.1128/AEM.68.3.1122-1131.2002

Slater, L. J., Arnal, L., Boucher, M. A., Chang, A. Y. Y., Moulds, S., Murphy, C., Nearing, G., Shalev, G., Shen, C., Speight, L., Villarini, G.,
Wilby, R. L., Wood, A., & Zappa, M. (2023). Hybrid forecasting: Blending climate predictions with AI models. Hydrology and Earth Sys-
tem Sciences, 27(9), 1865–1889. https://doi.org/10.5194/hess-27-1865-2023

Smith, O. M., Snyder, W. E., & Owen, J. P. (2020). Are we overestimating risk of enteric pathogen spillover from wild birds to humans? Bio-
logical Reviews, 95(3), 652–679. https://doi.org/10.1111/brv.12581

Smith, P., Carroll, C., Wilkins, B., Johnson, P., Gabhainn, S. N., & Smith, L. P. (1999). The effect of wind speed and direction on the distribu-
tion of sewage-associated bacteria. Letters in Applied Microbiology, 28(3), 184–188. https://doi.org/10.1046/j.1365-2672.1999.00507.x

Speight, L. J., Cranston, M. D., White, C. J., & Kelly, L. (2021). Operational and emerging capabilities for surface water flood forecasting.
WIREs Water, 8, e1517. https://doi.org/10.1002/wat2.1517

Stidson, R. T., Gray, C. A., & Mcphail, C. D. (2012). Development and use of modelling techniques for real-time bathing water quality predic-
tions. Water and Environment Journal, 26(1), 7–18. https://doi.org/10.1111/j.1747-6593.2011.00258.x

Suchowska-Kisielewicz, M., & Nowogo�nski, I. (2021). Influence of storms on the emission of pollutants from sewage into waters. Scientific
Reports, 11(1), 1–14. https://doi.org/10.1038/s41598-021-97536-5

Swinscoe, I., Oliver, D. M., Gilburn, A. S., & Quilliam, R. S. (2018). The seaweed fly (Coelopidae) can facilitate environmental survival and
transmission of E. coli O157 at sandy beaches. Journal of Environmental Management, 223, 275–285. https://doi.org/10.1016/j.jenvman.
2018.06.045

Tang, Y., Lean, H. W., & Bornemann, J. (2013). The benefits of the Met Office variable resolution NWP model for forecasting convection.
Meteorological Applications, 20(4), 417–426. https://doi.org/10.1002/met.1300

The Guardian. (1999). E coli town's beach gets all clear.
Thoe, W., Gold, M., Griesbach, A., Grimmer, M., Taggart, M. L., & Boehm, A. B. (2014). Predicting water quality at Santa Monica Beach:

Evaluation of five different models for public notification of unsafe swimming conditions. Water Research, 67, 105–117. https://doi.org/
10.1016/j.watres.2014.09.001

Thoe, W., Gold, M., Griesbach, A., Grimmer, M., Taggart, M. L., & Boehm, A. B. (2015). Sunny with a chance of gastroenteritis: Predicting
swimmer risk at California beaches. Environmental Science and Technology, 49(1), 423–431. https://doi.org/10.1021/es504701j

Tornevi, A., Bergstedt, O., & Forsberg, B. (2014). Precipitation effects on microbial pollution in a river: Lag structures and seasonal effect
modification. PLoS One, 9(5), 1–10. https://doi.org/10.1371/journal.pone.0098546

Tyler, A. N., Hunter, P. D., Spyrakos, E., Groom, S., Constantinescu, A. M., & Kitchen, J. (2016). Developments in earth observation for the
assessment and monitoring of inland, transitional, coastal and shelf-sea waters. Science of the Total Environment, 572, 1307–1321.
https://doi.org/10.1016/j.scitotenv.2016.01.020

Tyrrell, D. (2017). Bathing water pollution risk forecasting and shellfish water pilot work programme 2016 to 2017.
UNEP. (2016). A snapshot of the world's water quality: towards a global assessment, United Nations Environment Programme. https://

uneplive.unep.org/media/docs/assessments/unep_wwqa_report_web.pdf

KRUPSKA ET AL. 25 of 26

 20491948, 0, D
ow

nloaded from
 https://w

ires.onlinelibrary.w
iley.com

/doi/10.1002/w
at2.1718 by T

est, W
iley O

nline L
ibrary on [29/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1080/07900627.2014.882203
https://www.sas.org.uk/waterquality2022/human-health/sickness-reports/
https://doi.org/10.1016/j.watres.2010.05.001
https://doi.org/10.1016/j.jphotobiol.2010.03.004
https://doi.org/10.1098/rsta.2020.0097
https://doi.org/10.1016/j.jenvman.2018.06.058
https://doi.org/10.1038/NGEO2253
https://doi.org/10.1016/j.cageo.2015.01.010
https://doi.org/10.1016/j.cageo.2015.01.010
https://doi.org/10.1128/AEM.06582-11
https://doi.org/10.1128/AEM.06582-11
https://doi.org/10.1128/aem.60.6.2040-2048.1994
https://doi.org/10.1128/aem.65.8.3605-3613.1999
https://doi.org/10.1128/AEM.68.3.1122-1131.2002
https://doi.org/10.1128/AEM.68.3.1122-1131.2002
https://doi.org/10.5194/hess-27-1865-2023
https://doi.org/10.1111/brv.12581
https://doi.org/10.1046/j.1365-2672.1999.00507.x
https://doi.org/10.1002/wat2.1517
https://doi.org/10.1111/j.1747-6593.2011.00258.x
https://doi.org/10.1038/s41598-021-97536-5
https://doi.org/10.1016/j.jenvman.2018.06.045
https://doi.org/10.1016/j.jenvman.2018.06.045
https://doi.org/10.1002/met.1300
https://doi.org/10.1016/j.watres.2014.09.001
https://doi.org/10.1016/j.watres.2014.09.001
https://doi.org/10.1021/es504701j
https://doi.org/10.1371/journal.pone.0098546
https://doi.org/10.1016/j.scitotenv.2016.01.020
https://uneplive.unep.org/media/docs/assessments/unep_wwqa_report_web.pdf
https://uneplive.unep.org/media/docs/assessments/unep_wwqa_report_web.pdf


USEPA. (2010). Predictive tools for beach notification. U.S. Environmental Protection Agency. http://water.epa.gov/scitech/swguidance/
standards/criteria/health/recreation/upload/P26-Report-Volume-I-Final_508.pdf

USEPA. (2012). Recreational water quality criteria (pp. 1–69). U.S. Environmental Protection Agency.
Vermeulen, L. C., & Hofstra, N. (2014). Influence of climate variables on the concentration of Escherichia coli in the Rhine, Meuse, and

Drentse Aa during 1985-2010. Regional Environmental Change, 14(1), 307–319. https://doi.org/10.1007/s10113-013-0492-9
Viau, E. J., Goodwin, K. D., Yamahara, K. M., Layton, B. A., Sassoubre, L. M., Burns, S. L., Tong, H. I., Wong, S. H. C., Lu, Y., &

Boehm, A. B. (2011). Bacterial pathogens in Hawaiian coastal streams-associations with fecal indicators, land cover, and water quality.
Water Research, 45(11), 3279–3290. https://doi.org/10.1016/j.watres.2011.03.033

Wang, L., Li, Y., & Xu, X. (2021). Characteristic analysis of dual-polarization weather radar echoes of convective precipitation and snowfall
in the mount everest region. Atmosphere, 12(12), 1–20. https://doi.org/10.3390/atmos12121671

Werner, M., Schellekens, J., Gijsbers, P., Van Dijk, M., Van den Akker, O., & Heynert, K. (2013). The Delft-FEWS flow forecasting system.
Environmental Modelling and Software, 40, 65–77. https://doi.org/10.1016/j.envsoft.2012.07.010

Weusthoff, T., Ament, F., Arpagaus, M., & Rotach, M. W. (2010). Assessing the benefits of convection-permitting models by neighborhood
verification: Examples from MAP D-PHASE. Monthly Weather Review, 138(9), 3418–3433. https://doi.org/10.1175/2010MWR3380.1

Whitman, R. L., Shively, D. A., Pawlik, H., Nevers, M. B., & Byappanahalli, M. N. (2003). Occurrence of Escherichia coli and enterococci in
Cladophora (Chlorophyta) in nearshore water and beach sand of Lake Michigan. Applied and Environmental Microbiology, 69(8), 4714–
4719. https://doi.org/10.1128/AEM.69.8.4714-4719.2003

Whitman, R. L., & Nevers, M. B. (2008). Responses along 23 Chicago beaches. Environmental Science & Technology, 219, 9217–9224.
WHO. (2003). Guidelines for safe recreational water environments. http://www.who.int/water_sanitation_health/bathing/srwe1/en/
Wiedenmann, A., Krüger, P., Dietz, K., L�opez-Pila, J. M., Szewzyk, R., & Botzenhart, K. (2006). A randomized controlled trial assessing infec-

tious disease risks from bathing in fresh recreational waters in relation to the concentration of Escherichia coli, intestinal enterococci;
Clostridium perfringens, and somatic coliphages. Environmental Health Perspectives, 114(2), 228–236. https://doi.org/10.1289/ehp.8115

Wilson, J. W., Cook., N. A., Mueller, C. K., Sun, J., & Dixon, M. (1998). Now casting Thunderstorms: A status report. Bulletin of the American
Meteorological Society, 79(10), 2079–2099. https://doi.org/10.1175/1520-0477(1998)079h2079:NTASRi2.0.CO;2

Wyer, M. D., Kay, D., Morgan, H., Naylor, S., Clark, S., Watkins, J., Davies, C. M., Francis, C., Osborn, H., & Bennett, S. (2018). Within-day
variability in microbial concentrations at a UK designated bathing water: Implications for regulatory monitoring and the application of
predictive modelling based on historical compliance data. Water Research X, 1, 100006. https://doi.org/10.1016/j.wroa.2018.10.003

Wyer, M. D., Kay, D., Morgan, H., Naylor, S., Govier, P., Clark, S., Watkins, J., Davies, C. M., Francis, C., Osborn, H., & Bennett, S. (2013).
Statistical modelling of faecal indicator organisms at a marine bathing water site: results of an intensive study at Swansea Bay, UK. In A
report from the Interreg 4a smart coasts–sustainable communities project. Aberystwyth University. https://democracy.swansea.gov.uk/
documents/s14932/APPENDIX%20G%20-%20LIR.pdf

Xiao, C., Wu, P., Zhang, L., & Song, L. (2016). Robust increase in extreme summer rainfall intensity during the past four decades observed in
China. Scientific Reports, 6, 1–9. https://doi.org/10.1038/srep38506

Xu, Z., Rhoades, A. M., Johansen, H., Ullrich, P. A., & Collins, W. D. (2018). An intercomparison of GCM and RCM dynamical downscaling
for characterizing the hydroclimatology of California and Nevada. Journal of Hydrometeorology, 19(9), 1485–1506. https://doi.org/10.
1175/JHM-D-17-0181.1

Yang, B., Wang, M., Zhang, G. J., Guo, Z., Wang, Y., Xu, X., Dai, G., Huang, A., Zhang, Y., & Qian, Y. (2022). Parameterizing Convective
Organization Effects With a Moisture-PDF Approach in Climate Models: Concept and a Regional Case Simulation. Journal of Advances
in Modeling Earth Systems, 14(5), 1–21. https://doi.org/10.1029/2021MS002942

Zhang, T., Liang, Z., Li, W., Wang, J., Hu, Y., & Li, B. (2023). Statistical post-processing of precipitation forecasts using circulation classifica-
tions and spatiotemporal deep neural networks. Hydrology and Earth System Sciences, 27(10), 1945–1960. https://doi.org/10.5194/hess-
27-1945-2023

How to cite this article: Krupska, K. U., Speight, L., Robinson, J. S., Gilbert, A. J., & Cloke, H. (2024).
Forecasting bathing water quality in the UK: A critical review. WIREs Water, e1718. https://doi.org/10.1002/
wat2.1718

26 of 26 KRUPSKA ET AL.

 20491948, 0, D
ow

nloaded from
 https://w

ires.onlinelibrary.w
iley.com

/doi/10.1002/w
at2.1718 by T

est, W
iley O

nline L
ibrary on [29/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://water.epa.gov/scitech/swguidance/standards/criteria/health/recreation/upload/P26-Report-Volume-I-Final_508.pdf
http://water.epa.gov/scitech/swguidance/standards/criteria/health/recreation/upload/P26-Report-Volume-I-Final_508.pdf
https://doi.org/10.1007/s10113-013-0492-9
https://doi.org/10.1016/j.watres.2011.03.033
https://doi.org/10.3390/atmos12121671
https://doi.org/10.1016/j.envsoft.2012.07.010
https://doi.org/10.1175/2010MWR3380.1
https://doi.org/10.1128/AEM.69.8.4714-4719.2003
http://www.who.int/water_sanitation_health/bathing/srwe1/en/
https://doi.org/10.1289/ehp.8115
https://doi.org/10.1175/1520-0477(1998)079%E2%8C%A92079:NTASR%E2%8C%AA2.0.CO;2
https://doi.org/10.1175/1520-0477(1998)079%E2%8C%A92079:NTASR%E2%8C%AA2.0.CO;2
https://doi.org/10.1175/1520-0477(1998)079%E2%8C%A92079:NTASR%E2%8C%AA2.0.CO;2
https://doi.org/10.1016/j.wroa.2018.10.003
https://democracy.swansea.gov.uk/documents/s14932/APPENDIX%20G%20-%20LIR.pdf
https://democracy.swansea.gov.uk/documents/s14932/APPENDIX%20G%20-%20LIR.pdf
https://doi.org/10.1038/srep38506
https://doi.org/10.1175/JHM-D-17-0181.1
https://doi.org/10.1175/JHM-D-17-0181.1
https://doi.org/10.1029/2021MS002942
https://doi.org/10.5194/hess-27-1945-2023
https://doi.org/10.5194/hess-27-1945-2023
https://doi.org/10.1002/wat2.1718
https://doi.org/10.1002/wat2.1718

	Forecasting bathing water quality in the UK: A critical review
	1  INTRODUCTION
	2  THE NEED TO IMPROVE FORECASTING OF BATHING WATER QUALITY IN A CHANGING CLIMATE
	3  BIOLOGICAL, CHEMICAL, AND PHYSICAL FACTORS INFLUENCING BATHING WATER QUALITY
	4  WHY AND HOW DO WE MEASURE BATHING WATER QUALITY?
	4.1  Long-term bathing water quality
	4.2  Short-term bathing water quality

	5  HOW DO WE FORECAST BATHING WATER QUALITY?
	5.1  Examples of operational systems
	5.2  Limitations linked to statistical modeling and data collection
	5.3  Rainfall forecasts used in BWQ forecasts in England

	6  HOW CAN WE IMPROVE STATISTICAL MODELING PERFORMANCE BY IMPROVING SAMPLING REGIMES?
	7  HOW CAN WE IMPROVE BATHING WATER FORECASTING USING ADVANCES IN FORECASTING SCIENCE?
	7.1  Advances in rainfall observations and how they can improve bathing water forecasts?
	7.2  Advances in nowcasting and numerical weather prediction and how they may improve the existing approach
	7.3  Ensemble prediction systems and how they can improve bathing water forecasts
	7.4  Advances in machine learning

	8  CONCLUSIONS
	8.1  Key challenge 1: Improve monitoring of bathing waters
	8.2  Key challenge 2: Better use of existing very short and short-range forecasts
	8.3  Key challenge 3: Moving toward an ensemble prediction system for bathing water forecasts
	8.4  Key challenge 4: Developing interdisciplinary solutions
	8.5  Key challenge 5: Secure appropriate funding

	AUTHOR CONTRIBUTIONS
	ACKNOWLEDGMENTS
	FUNDING INFORMATION
	CONFLICT OF INTEREST STATEMENT
	DATA AVAILABILITY STATEMENT

	RELATEDWIREs ARTICLES
	REFERENCES


