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Abstract 

Climate and land use change are the two main drivers of biodiversity loss worldwide. Forests, 

particularly tropical forests, host a disproportionate amount of terrestrial biodiversity. However, there 

remains a substantial research bias towards temperate regions and Amazonia when assessing the joint 

impacts of climate and land use change. Climate and land use change have been shown to interact, 

leading to complex and unexpected ecological responses, as such this bias could be leading to a 

misrepresentation of the threats to tropical forests across Asia and Africa. India, a country not 

previously considered, presents a unique opportunity to explore the potential for interactions between 

the two drivers. India is predicted to experience increases in temperature, variable rainfall and 

prevalence of extreme events, at the same time as rapid population expansion. Analysis of forest trends 

in the country ǿŜǊŜ ǇǊŜǾŀƭŜƴǘ ƛƴ ǘƘŜ мффлΩǎ ŀƴŘ ǘƘŜ ǇǊƛƳŀǊȅ ŘǊƛǾŜǊ ƻŦ ƭƻǎǎ ǿŀǎ ŀƎǊƛŎǳƭǘǳǊŀƭ ŜȄǇŀƴǎƛƻƴΦ 

However, there are substantial knowledge gaps including the recent trends in forest change and the 

current primary driver of forest loss. Additionally, the effects of climate change on forests in the country 

have been largely overlooked. This thesis uses global datasets and mixed modelling approaches to 

explore the effects of climate change, land use change and their interactions across India during 1995-

2019. Results show, for the first time, that climate change has played a role in forest loss in India, 

however, the predominant driver of forest loss remains agricultural-driven land use changes. This 

research provides the first evidence of a synergistic interaction between drought and land use change 

in the country, where the two drivers are leading to a greater area of forest loss. This research aslo 

significantly contributes to the increased knowledge of the drivers of forest loss in India and highlights 

a concerning interaction that is predicted to worsen with time. These results have key implications for 

future management of the forests, which do not currently take climate change into account, and 

highlight that interactions between climate and land use change are occurring in Asian tropical forests. 
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Chapter 1: Introduction 

 

Black-footed grey langurs on the forest roads within Nagarhole Wildlife Sanctuary, India. The reserve 

is a key part of the largest protected area in Southern India and contains predominantly moist 

deciduous forests. 

 

Source: Alice Haughan (AǳǘƘƻǊΩǎ ƻǿƴ) 
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1. Introduction 

1.1 The impact of climate and land use change on biodiversity  

Humans interact with the biotic and abiotic environment around them in many ways and have 

dramatically altered biodiversity levels on Earth over time (IPBES, 2019). This has manifested as changes 

in ecosystem distribution, composition and functioning, as well as changes in climatic conditions that 

have ultimately led to negative consequences for biodiversity and life on Earth (Hoskins et al., 2016; 

Lambin et al., 2001; Newbold et al., 2016; Roy et al., 2013). Biodiversity is declining at a significant rate 

on a global scale due to anthropogenic causes, and while there are several pathways by which these 

declines may occur, climate and land use change are known to be two of the major drivers of loss 

(Brodie, 2016; Heller & Zavaleta, 2009; IPBES, 2019; Pautasso, 2012). Changes in land use and increasing 

land degradation can directly impact species richness and abundance (Camacho et al., 2021; Hill et al., 

2018; Newbold et al., 2015), alter effectiveness of key ecosystem functions (Bhattacharyya et al., 2015; 

Cardinale et al., 2012; Mina et al., 2017), and even alter local climates, changing the relationship 

between humans and the natural system (Lambin et al., 2001;Foley et al., 2005; Roy et al., 2013; Niyogi 

et al., 2018). Land use changes often affect speciesΩ capability to adapt and react to other threats, and 

can facilitate or prohibit movement to more suitable habitats (Guo et al., 2018; Newbold et al., 2016, 

2015; Oliver & Morecroft, 2014). 

Alongside land use changes, climate changes are the second major driver of biodiversity declines 

worldwide (IPBES, 2019; Ostberg et al., 2015). Climate change is accelerating beyond natural 

fluctuations resulting in new, unpredictable and sometimes extreme climatic conditions that many 

species have not encountered before (IPCC, 2021; Watson, 2014). Globally warming temperatures, 

intensification of rainfall regimes, melting of glaciers and sea-level rise have all been recorded and these 

changes are expected to intensify in the near future (IPCC, 2021; Kirilenko & Sedjo, 2007; Sivakumar et 

al., 2005). Species adaptation and ability to relocate to suitable environments will determine survival 

(Pautasso, 2012; Pecl et al., 2017). This in turn will have impacts on local ecosystem composition and 

functioning (Grimm et al., 2013; Weiskopf et al., 2020). Changes in climate can alter biodiversity by 

modifying conditions from the optimal required by species to survive and function (Aubry-Kientz et al., 

2019; Garcia et al., 2014). As species begin to move from unfavourable to more favourable areas, 

ecosystem composition in both locations will likely change, adapting to functioning with an altered 

composition of species (Descombes et al., 2020; Pecl et al., 2017). This could result in changes in the 

ecosystem functions including key processes such as the carbon and water cycles (Foley et al., 2005; 

Pecl et al., 2017; Weiskopf et al., 2020). There is consensus that climate change will cause a global 

redistribution of species, the extent of which has consequences for all ecosystems, as well as human 
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populations, and remains poorly understood (Guo et al., 2018; Hansen et al., 2001; IPBES, 2019; Pecl et 

al., 2017). 

The speed at which climate changes are occurring is also a concern (Brito-Morales et al., 2018; Corlett 

& Westcott, 2013; Kosanic et al., 2019; Loarie et al., 2009). If climate changes occur too quickly species 

migration and adaptation may not be fast enough, whereas species acclimation or extinction in 

response to climate change could be more likely (Devictor et al., 2012; Hoffmann & Sgrò, 2011; Radchuk 

et al., 2019). Studies employing a metric called climate velocity, which estimates a speed at which 

species will need to travel to reach a similar climate, have shown that many species may need to quickly 

traverse large distances to keep pace with their current climate niche (Hiddink et al., 2012; Loarie et al., 

2009). Small-ranged, endemic and less mobile species are likely to be most at risk, including many 

species in the tropics (Carroll et al., 2015; Sandel et al., 2011; Schloss et al., 2012; Tewksbury et al., 

2008). A study by Schloss et al. (2012) focusing on the Western Hemisphere estimated that 39% of 

mammals may not be able to keep pace with projected climate changes. The study found that in the 

Amazon many mammal species are only capable of migrating at a speed around 1km per year but that 

the pace of climate change that they will experience will be eight times this. 

Increasingly shown in the literature is evidence that habitat loss and land use change often impact 

species well before the impacts of climate change are felt (Boit et al., 2016; Ostberg et al., 2015). 

However, research also suggests that climate change effects are putting mounting pressure on 

biodiversity, and the impact of climate change is predicted to equal or exceed that of land use change 

by 2070 (Mantyka-pringle et al., 2012; Newbold, 2018). A study by Ostberg et al. (2015), found that 

over the course of the last three hundred years the impact of land use change on our ecosystems has 

reached thirteen times what it used to be; however, within the past 100 years alone climate change 

has reached the same level of impact on our ecosystems, and is now the most prominent effect on 60% 

of terrestrial land. This has prompted considerable concern that climate changes are accelerating too 

fast for species to react (Lenoir et al., 2020; Radchuk et al., 2019; Ye et al., 2018). Further to this, there 

ƛǎ ŜǾƛŘŜƴŎŜ ƻŦ ŀ ΨŎƭƛƳŀǘƛŎ ŘŜōǘΩ ǿƘŜǊŜ ǎǇŜŎƛŜǎ ƘŀǾŜ ŀ ƭŀƎƎŜŘ ǊŜǎǇƻƴǎŜ ǘƻ ŎƭƛƳŀǘŜ ŎƘŀƴƎŜ ǘƘŀǘ Ƙŀǎ ƴƻǘ 

materialised yet and as such we may be underestimating the long-term effects of climate change on 

species extinctions (Bertrand et al., 2016; Devictor et al., 2012).  

1.2 The prevalence of climate-land use interactions and their impact on biodiversity 

Investigations into the impacts of climate change and land use change on species have been frequently 

studied in isolation, but the scientific community is becoming aware of the potential for interactions 

between the two that could result in a different impact than predicted by studies quantifying their 

individual impacts (Brodie, 2016; Côté et al., 2016; Oliver et al., 2016; Sirami et al., 2017).  It is generally 
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thought that the risk of species and population extinctions may be greatly increased in areas where 

threats, such as climate and land use change, interact (Northrup et al., 2019; Oliver et al., 2016). For 

example, it is estimated that 24% of global terrestrial land has experienced major biogeochemical and 

structural changes due to the combined impacts of land use change and climate change (Ostberg et al., 

2015) and that interactions between the two stressors could result in a 20% reduction in the richness 

of species assemblages across much of terrestrial land by 2070 (Newbold, 2018). Combined effects or 

interactions are also thought to affect ecosystem structure and functioning through homogenisation of 

ecological communities (Grimm et al., 2013; Ye et al., 2018; Newbold et al., 2019). Since the majority 

of ecological studies focus on single-stressor effects, there is concern that adaptation and mitigation 

strategies will not be effective if they do not take into account the combinations of stressor effects 

(Côté et al., 2016; Darling & Côté, 2008).  

Interactions between ecosystem stressors can be complex and multidimensional (Côté et al., 2016; Gissi 

et al., 2021; Orr et al., 2020). Land use and climate change have been shown to both ameliorate and 

exacerbate the ƻǘƘŜǊΩǎ ŜŦŦŜŎǘs on species and ecosystems. For example, changes in land use and 

fragmentation of habitats can act as barriers to species migration in response to climate change 

(Hansen et al., 2001; Oliver et al., 2017; Oliver & Morecroft, 2014; Robillard et al., 2015) and, 

conversely, stress caused by climate change can reduce the resilience of species to land use changes 

(Brodie et al., 2012; He et al., 2019). Mantyka-Pringle et al., (2015) found that rising temperatures led 

to a 43% increase in the global vulnerability of bird species to habitat loss. In this instance, climate 

change exacerbated the effect of land use change on birds. While Schloss et al., (2012) found that the 

presence of human-modified areas required species to migrate 0.8 km faster per year in order to track 

their climate niche, and so land use changes exacerbated the effect of climate changes. Synergies 

between climate and land use change have been shown to increase abundance of invasive species 

(Manzoor et al., 2021), pests (Grünig et al., 2020; Zhang et al., 2018) and disease (Ebi et al., 2007; Patz 

et al., 2008; Young et al., 2017), all of which could have negative consequences for native species and 

human populations. Climate changes are also likely to result in an expansion of sƻƳŜ ǎǇŜŎƛŜǎΩ ǊŀƴƎŜǎ as 

more areas become suitable habitat while other species ranges will contract, which could have 

implications for forests (Pautasso, 2012; Ye et al., 2018). Brodie (2016) showed that projected climate 

changes in Southeast Asia will increase the climatically suitable areas of oil palm plantations, in some 

cases to higher elevations where forest species have been protected from cropland expansions in the 

past. The interactions between climate and land use change in this scenario are predicted to reduce 

the environmentally suitable mammal habitat by 47% on average, with some species experiencing a 

90% reduction in range size. These are examples of synergies between the two drivers, however, there 

is also evidence that one driver could lessen the effects of another on species. For example, Warren et 
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al., (2001) found that the positive effects of warming, through range expansions, for butterfly species 

in the UK were dampened by the negative effect of habitat loss on the species, resulting in overall 

declines of distribution with a particularly strong effect on specialist species. Whereas a study by  

Mantyka-Pringle et al., (2019), found that increasing temperatures in prairie wetland ecosystems in 

Canada reduced the negative effects of agricultural intensification on insectivorous birds, possibly by 

increasing food abundances. Overall, the evidence suggests that climate and land use changes can have 

multiple varying effects on biodiversity depending on the type of interaction, the location on the globe 

and the species or ecosystem in question (França et al., 2020; Frishkoff et al., 2016; Mantyka-Pringle et 

al., 2019; Mantyka-Pringle et al., 2012; Newbold et al., 2020). 

The evidence strongly suggests that not taking interactions into account could result in under- or over-

estimating the impacts of stressors on biodiversity leading to false future trajectories of biodiversity 

loss and less effective management or policy strategies (Brodie, 2016; Newbold et al., 2019; Sirami et 

al., 2017). It is therefore important that there is a drive towards understanding how these stressors 

may interact with each other and the impacts that the joint associations might have on species and 

ecosystems (Darling & Côté, 2008; Didham et al., 2007). The number of studies investigating the 

interactions between land use and climate change, and their effects on biodiversity, are still scarce 

(Ahmed et al., 2016; Sirami et al., 2017) and it is likely that interactions are more prevalent than 

originally thought (Mantyka-Pringle et al., 2015). 

Despite developing an understanding of interactions like these essential to evaluating the risk a species 

may be under, it remains quite difficult to analyse the interacting effects of climate and land use 

changes. The reasons for this are well researched in a review by Oliver & Morecroft (2014), which 

highlights both the difficulties in understanding climate and land use change interactions, as well as the 

current geographic bias. Oliver % Morecroft (2014) pose that the main reasons for this difficulty are 

that firstly, the actual mechanisms behind interactions are often not well understood due to the high-

level of complexity in the interaction. Secondly, many habitat and climate variables can be confounding 

especially with socio-economic variables, leading to correlations that might not be the main cause of 

species loss. Thirdly, interactions between land use change and climate change are likely to be highly 

diverse across even small areas and so generalisations about how a species might respond to an 

interaction are not likely to be accurate. Studies need to be developed with a mechanistic 

understanding of the interaction to ensure effects are reasonably attributed to climate and/or land use 

change (Oliver & Morecroft, 2014; Schafer & Piggot, 2018), an appreciation that the interaction can 

have varied effects from the expected additive effect (Cote et al., 2016), as well as ensuring spatial 
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autocorrelation is accounted for, and that sufficient, concurrent trend data is available for all variables 

(Oliver & Morecroft, 2014). 

1.3 The importance of tropical forests for humans and biodiversity 

Forests are globally important ecosystems for supporting high levels of biodiversity as well as providing 

ecosystem services such as regulation of the water cycle and carbon capture benefits (FAO, 2020; 

McDowell, 2018; Turubanova et al., 2018; Wani et al., 2012). Land use change and climate change 

remain the largest drivers of forest loss worldwide (Asner et al., 2010; FAO, 2020; McDowell et al., 

2018). However, research on climate change, and in particular its interactions with land use change, 

tend to have a geographical bias towards temperate regions (Armstrong et al., 2016; Asner et al., 2010; 

França et al., 2020b; Riordan et al., 2015). Subsequently, relatively little is known about how 

interactions manifest in forests at low latitudes, particularly tropical and sub-tropical regions (Asner et 

al., 2010; Jetz et al., 2007) despite predictions that interaction effects on biodiversity will be more 

severe in tropical regions (Newbold et al., 2020). 

Tropical forests are the most diverse terrestrial ecosystems on the planet (Barlow et al., 2018; França 

et al., 2020). It is thought that they harbour two thirds of global terrestrial biodiversity, a large 

proportion (>80%) of globally threatened species (Luther et al., 2020), and a significant number of 

endemic species (Barlow et al., 2018; França et al., 2020). There is a wealth of studies on the importance 

of tropical forests to biodiversity across the biome which have shown that when forests are lost or 

degraded, species often face reductions in abundance and diversity (Alroy, 2017; Camacho et al., 2021; 

Hansen et al., 2020), range shifts (França et al., 2020; Larsen, 2012), and even local extinctions 

(Boekhout Van Solinge, 2010; Schleuning et al., 2016). For example, Sodhi & Brook (2006) predicted 

that deforestation in Southeast Asia will lead to an 80% reduction in vertebrate species by 2100 and, as 

a result of the high levels of endemism in this region, this would mean global extinctions of several 

species. As such, tropical forests are integral ecosystems for the protection of biodiversity on the globe. 

They also have key functions in maintaining soil structure and increasing resilience of the ecological 

communities within them to extreme events (Anderegg et al., 2018; Betts et al., 2018). Tropical forests 

also provide vital support for local people and their livelihoods (FAO, 2020; IPBES, 2019). Around 820 

million people live in tropical forests, many of which live below the poverty line with a strong reliance 

on forest resources for income (FAO, 2020). Tropical forests provide direct resources such as food, fuel, 

building materials, medicinal plants and fodder for rural communities as well as indirect benefits 

through increased protection from extreme events, and ecosystem services such as pollination 

(Brookhuis & Hein, 2016; FAO, 2020; IPBES, 2019). Despite their known importance, tropical forests 

continue to be lost at a rapid rate globally (Laurance, 2013; Lewis et al., 2015; Song et al., 2018; 
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Turubanova et al., 2018), between 2010-2015, 32 million hectares of tropical forest were lost 

worldwide (IPBES, 2019).  

1.4 The impact of climate, land use change, and their interactions on tropical forests 

Land use changes, primarily associated with agricultural expansion and commodity production, are 

known to be the primary driver of tropical forest loss (Boekhout Van Solinge, 2010; Curtis et al., 2018; 

Manchego et al., 2017; Staal et al., 2020). IPBES (2019) reported that half of the global agricultural 

expansion that occurred between 1980 and 2000 resulted in a direct loss of tropical forests. In addition, 

FAO (2020) reported that during 2000-2010, 40% of tropical deforestation was attributable to large-

scale agriculture, with a further 33% to subsistence agriculture. In the Amazon during 2000-2013, more 

than 72% of deforestation was a direct result of cropland and pasture expansion (Libonati et al., 2021). 

Cropland expansion can result in large areas of forest being removed, and in the tropics, this is often 

for slash-and-burn agriculture. These methods not only remove large amounts of biomass, and cause 

loss of habitat for species, but if ill-managed can result in accidental removal of more forest than 

intended due to difficulty controlling the spread of the fire (Brando et al., 2014; Carmenta et al., 2013; 

Field et al., 2009; Laurance, 2003). Cropland expansions can also affect forests on a much smaller scale, 

acting on forest edges and removing small areas of trees at a time (Gascon et al., 2000; Ordway & Asner, 

2020). Other drivers of forest loss are often related to human activities that do not result in a complete 

removal of forest but increase degradation, and fragmentation over time. On a large scale, these tend 

to be timber extraction from logging companies, mining, and road development (Hosonuma et al., 

2012; Kleinschroth & Healey, 2017; Wright, 2010). On a smaller scale, collection of forest resources 

such as fodder and fuelwood, as well as use of the forest understory for livestock grazing, contribute to 

forest degradation as well as increasing forest susceptibility to further exploitation (Chitale et al., 2020; 

FAO, 2020; Hosonuma et al., 2012). The level of degradation and fragmentation of forests can affect 

the services and biodiversity they provide (Betts et al., 2022; Liu et al., 2018; Wilson et al., 2015). Where 

intact forests have been shown to harbour much higher levels of species diversity and abundances, and 

a greater provision of ecosystem services, compared to fragmented forests (Betts et al., 2019; Gibson 

et al., 2011; Sharp et al., 2019). However, fragmented forests, which are often thought of as less 

valuable and given lower protection status, remain an integral refuge for many species and if left to 

regenerate have been shown to reach similar levels of biodiversity (Edwards et al., 2011; González del 

Pliego et al., 2016). Changes in forest coverage can also impact local and global climate. For example, 

Betts (2007) reported that a reduction in forest extent in the Amazon, predominantly caused by 

drought, led to an additional 25% reduction in precipitation over the Amazon Basin. Reductions in forest 

cover have been shown to result in increasing temperatures (Gogoi et al., 2019; Kayet et al., 2016; 
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Nayak et al., 2021), reductions in precipitation (Betts et al., 2004; Leite-Filho et al, 2021) and increased 

incidence of fire (Libonati et al., 2021).  

Though deforestation remains the primary cause of tropical forest loss (FAO, 2020; Manchego et al., 

2017), studies have also shown climate change to be an important driver (França et al., 2020; McDowell 

et al., 2018; Siyum, 2020). Studies investigating the impact of climate change on tropical forests are 

scarce in comparison to their temperate counterparts, despite several studies indicating that generally 

tropical species may be at greater risk from climate changes than temperate species due to their 

narrower climatic tolerances (Deutsch et al., 2008; Newbold et al., 2020; Tewksbury et al., 2008). 

However, so far temperature increases, reductions or increasingly variable rainfall, and extreme events 

such as drought, fire and lightning have all been linked to changes in the distribution of tropical forests, 

reductions in forest area, tree mortality and reductions in growth (Aubry-Kientz et al., 2019; Field et al., 

2009; McDowell, 2018). Loss of forest area and tree mortality as a result of climate change effects have 

also been shown to result in reductions of forest fauna, with possible repercussions for ecosystem 

functioning (Dundas et al., 2021; França et al., 2020; Larsen, 2012). For example, increased mortality of 

trees in the Amazon forest as a result of El-Nino related drought and fire in 2015-16 resulted in a 

reduction in the abundance of dung beetles and rates of dung removal and seed dispersal (França et 

al., 2020). 

Evidence suggests that the responses of different regions, forest types and individual tree species to 

climate changes can be highly diverse (Allen, 2017; Jimenez et al., 2018; McDowell et al., 2018; Rifai et 

al., 2019). Currently most studies have focused on the effects of increasing temperatures and drought 

events on forests, due to the importance of water availability to the functioning of the ecosystem, 

alongside relative ease of delineating the effects of one extreme event on forests compared to long-

term changes in climate. This covers the sensitivity of tree species to drought, i.e., the effect that a 

hazard has on the tree or forest. However, the vulnerability of a forest system to a stressor such as 

climate change is thought to be impacted by three key components; sensitivity, adaptive capacity and 

exposure (though some argue that exposure should be discussed separately as it is an external factor 

and not intrinsic to the system) (Sharma & Ravindranath, 2019). Sensitivity being the direct or indirect 

effect of the hazard of an organism, adaptive capacity being the capability of the organism to adjust to 

the stressors (either by adapting or moving), and exposure relating to an organism being in a location 

that is affected by an external stressor (Sharma & Ravindranath, 2019).  It is also worth considering that 

each of these components can manifest at different points in the hazard timeline e.g., risk-related 

factors such as exposure can be clear before the event, whilst sensitivity is often determined during or 

immediately after the event, and adaptive capacity can become clear after the event (Lecina-Diaz et al., 
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2020). To understand how vulnerable tropical forests are to climate change, we need to understand 

how each one of these components is impacted by a stressor. In the literature, studies assessing the 

effect of climate change on tropical forests often focus on one of these components (Lecina-Diaz et al., 

2020) but they are not always related back to the vulnerability framework and as such it is difficult to 

ensure that each system has enough information on each component to understand overall 

ǾǳƭƴŜǊŀōƛƭƛǘȅΦ ¢ƘŜǊŜ ƛǎ ŀƭǎƻ ŀ ƴŜŜŘ ǘƻ ōŜ ƳƻǊŜ ŎƻƴǎƛǎǘŜƴǘ ƛƴ ǘƘŜ ǳǎŀƎŜ ƻŦ ΨǾǳƭƴŜǊŀōƛƭƛǘȅΩ ƛƴ ǘƘŜ ƭƛǘŜǊŀǘǳǊŜ 

as it is sometimes used to refer to just one component of vulnerability, typically exposure (Sharma & 

Ravindranath, 2019; Lecina-Diaz et al., 2020) 

Tree species response to drought is largely determined by the position on the moisture gradient 

(Aguirre-Gutiérrez et al., 2020; Engelbrecht et al., 2007; Meir et al., 2018), where species found in drier 

regions tend to be more resilient to the effects of drought than wetter-affiliated species (Browne et al., 

2021; Meir et al., 2018; Pulla et al., 2015). A study by Browne et al., (2021) found a 25-57% increase in 

mortality of seedlings in wet tropical forests compared to mortality in dry forests. There also seems to 

be higher resilience of deciduous species to drought and increasing temperatures compared to 

evergreen species, and distributions of deciduous forest types are expected to expand under drying 

conditions. This has been found across the biome in the Amazon (Allen et al., 2017; Esquivel-Muelbert 

et al., 2019), West African (Aguirre-Gutiérrez et al., 2020) and Asian tropical forests (Fan et al., 2012; 

Suresh et al., 2010). Aguirre-Gutierrez et al. (2020) reported that the effects of climate change have led 

to a reduction in the diversity of tree types in tropical forests due to the varied capabilities of forest 

types to deal with changes. This homogenisation of tropical diversity in response to climate changes 

has been shown in other studies and prompts concerns for the functioning of the forests and the 

ecosystem services they provide (Newbold et al., 2019; Nobre et al., 2016). Drought has also been found 

to disproportionately affect larger trees (Bennett et al., 2015; Meir et al., 2018; Phillips et al., 2010), 

resulting in an opening up of the canopy, reduction in litterfall and soil biota changes with negative 

repercussions for biodiversity (Bennett et al., 2015; Nepstad et al., 2007). Though decreases in 

precipitation and drought events are generally associated with negative effects on forests, increases in 

temperature have been shown to have both positive and negative effects on tropical tree species. For 

example, studies have shown that increasing temperatures can lead to an extension of the growth 

season (Grimm et al., 2013; Yang et al., 2018). However, rising temperatures have also been shown to 

increase mortality, reduce growth rates and decrease productivity of tropical tree species (Allen et al., 

2010; Siyum, 2020; Sullivan et al., 2020). Recently, climate changes including increasing temperatures, 

variable precipitation and changes in the photoperiod have been shown to modify the phenology of 

vegetation in tropical forests (Butt et al., 2015; Lima et al., 2021; Yadav & Yadav, 2008), resulting in a 

delay in flowering and leaf fall, which in turn can disrupt ecosystem services forests provide such as 
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pollination, seed dispersal and soil-related services (Butt et al., 2015; Gunarathne & Perera, 2014; 

Weiskopf et al., 2020).  

Due to the long generation times of many tree species will migrate and adapt at much slower rates than 

mobile species. This factor, coupled with the narrow temperature gradients characteristic in the tropics, 

makes the speed of climate change a concern for tropical forests (Bertrand et al., 2011; Corlett & 

Westcott, 2013; Feeley et al., 2012). Plant species will not be able to migrate to more favourable 

climates by individual movement like many animal species, but instead will rely on seed dispersal and 

the survival of new seedlings at the leading edge of the climatic niche (Bell et al., 2014; Bullock, 2013; 

Corlett & Westcott, 2013; Nathan et al., 2011). The latter creates a slow shift in the direction of the 

moving climate niche but if generation times are long, this process could take many decades. Studies 

employing the climate velocity metric have shown that the speeds at which climate is changing are not 

possible for tree species to catch up with and would require rapid adaptation or acclimation in-situ 

(Corlett & Westcott, 2013; Dobrowski & Parks, 2016; Nathan et al., 2011; Zhu et al., 2012). 

Tropical regions are expected to get warmer with increasingly variable precipitation and an increased 

incidence of extreme events (IPCC, 2021). Future scenarios of climate change predict severe impacts 

on mortality and distribution of tropical forests (McDowell et al., 2018; Newbold, 2018; Sullivan et al., 

2020; Wright, 2010) and it is expected that changes to climatic patterns will begin to have a bigger 

effect in the tropics than land use change (Newbold, 2018; Ostberg et al., 2015). Therefore, improving 

our understanding of how forests across the tropical biome respond to climate change is key to 

understanding the threat the forest, and the species that rely on it as habitat, are under. Though 

research into the climate effects on tropical forests is increasing, there is still substantial uncertainty 

that needs to be addressed and there have been calls for an increased focus on this in the literature 

(Bonebrake, 2013; Brodie et al., 2012; Siyum, 2020; Zhou et al., 2013). 

Like many ecosystems, tropical forests are expected to be particularly susceptible to interactions 

between climate change and land use change (Bonebrake, 2013; Newbold et al., 2019). Some findings 

suggest that interactions between the two drivers could lead to a 60% reduction in forest coverage in 

the Amazon by 2050 (Nobre et al., 2016). Studies so far have predominantly shown that climate 

changes, particularly warming and drying conditions along with drought episodes, can increase the 

vulnerability (using the IPCC definition detailing an increase in sensitivity and a reduction in adaptive 

capacity) of forests to human disturbances such as habitat degradation (IPCC, 2019; Mantyka-Pringle 

et al., 2015). Degraded forests are generally more vulnerable to stressors and many of the interactive 

effects outlined in the literature involve climate effects worsened by forest degradation (Ewers & 

Banks-Leite, 2013; Grimm et al., 2013; Hansen et al., 2001). For example, Qie et al., (2019) reported 
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greater mortality and halted succession of trees caused by droughts in degraded forests compared to 

primary forests in Malaysia. Similar findings in the Amazon showed that degraded forests experienced 

greater water stress and reductions in productivity as a result of temperature increases compared to 

primary forests (Longo et al., 2020) and were more vulnerable to invasive species (Nobre et al., 2016). 

Studies have found that a reduction in forest cover and an increase in fragmentation also reduce forest 

species capabilities to migrate in response to climate change (Senior et al., 2019). The interaction 

appears to have a cyclical nature, where drought-derived thinning of the forest has increased 

accessibility to hunters, loggers, as well as invasive species, leading for further degradation (Brook et 

al., 2008). Fire damage, often as a result of escaped agricultural fires from slash and burn farming, has 

also been shown to be exacerbated by dry conditions in drought years, leading to a greater spread and 

intensity of fire and increased forest loss (Libonati et al., 2021; Nobre et al., 2016). Additionally, large-

scale deforestation in the Amazon has reduced precipitation, a change that could increase the chance 

of drought stress on forests in the future (Leite-Filho et al., 2021; Nobre et al., 2016; Spracklen & Garcia-

Carreras, 2015). Forest reductions leading to increasing local temperatures and reduced precipitation, 

often as a result of a reduction in evapotranspiration and a loss of canopy cover, have been shown in 

other studies (Kweka et al., 2016; Lawrence & Vandecar, 2014; Li et al., 2016; Paul et al., 2018), 

highlighting a detrimental feedback loop between deforestation, climate change and drought 

prevalence in forests. Interactions between the two drivers in tropical forests also affect the species 

that live in the forests.  

It is thought that land use change coupled with a warming and drying climate will act synergistically in 

the redistribution of tropical forests. This is a result of the narrow temperature gradient found in 

tropical systems coupled with the slow adaptation and range shifts of tree species (Feeley et al., 2012), 

which reduces the capability of species to migrate latitudinally with climate. Instead, studies have 

predicted that range shifts to higher elevations where conditions may be more tolerable is one possible 

way that tropical tree species will track climate (Brodie et al., 2017; Feeley et al., 2012; Morueta-Holme 

et al., 2015; Rehm, 2014). However, because land use pressures on forests tend to be greater at lower 

elevations, and the same climate changes that are shifting tree distributions to higher elevations may 

also allow croplands to expand to higher elevations (Brodie, 2016), as a result there is predicted to be 

a synergistic effect of climate change and land use change pushing tropical tree species to higher 

elevations and increasing tree loss at lower elevations (Colwell et al., 2008; Guo et al., 2018). Though 

uncommon in the literature, there is some evidence to suggest that climate and land use change can 

ameliorate each otherΩs impact in tropical forests. For example, forest degradation can result in a 

thinning of the forest which has been shown to reduce the impact of drought on forests, reducing 

competition for resources and benefitting early successional trees (Ovenden et al., 2021). 
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Given the evidence, sǇŜŎƛŜǎ ŀƴŘ ŜŎƻǎȅǎǘŜƳΩǎ ŀōƛƭƛǘȅ ǘƻ ǊŜǎǇƻƴŘ ŀƴŘ ŀŘŀǇǘ ǘƻ ŎƭƛƳŀǘŜ ŎƘŀƴƎŜ Ƴŀȅ ōŜ 

directly linked to how humans respond to climate change. As climate changes occur, human 

populations or individuals often modify land management decisions to adapt and ensure survival in 

uncertain climatic and economic futures (Harvey et al., 2018; Lei et al., 2016; Zaveri et al., 2020), as 

some land uses are better suited and more profitable under various climate scenarios (Shi et al., 2018). 

In lower income areas, particularly in the tropics, land use changes often occur out of necessity to 

ensure protection of human livelihoods particularly in times of climate or economic stress. Climate 

changes such as variable rainfall and incidences of drought have been shown to reduce crop production 

putting farmers under stress and reducing income (Desbureaux & Damania, 2018; IPCC, 2019; Lei et al., 

2016). Forests can often offer cheap and readily accessible resources to diversify income, more fertile 

soils for agriculture following slash and burn (Benhin, 2006), as well as fuelwood and fodder resources. 

For example, collecting fuelwood has been shown to reduce ǎƳŀƭƭƘƻƭŘŜǊ ŦŀƳŜǊΩǎ household 

expenditure by $450 compared to buying from the market (Davidar et al., 2008). Therefore, during 

times of declining crop yields there can be greater degradation of nearby forests (Desbureaux & 

Damania, 2018; Zaveri et al., 2020).  

Whether the interactions have negative or positive effects on species appears to depend largely on the 

type of climate change, the region, forest type and the level of human disturbance (Brodie et al., 2012; 

Brook et al., 2008). However, currently the majority of climate and interaction studies in tropical forests 

focus on the Amazon (FAO & ITTO, 2011; Jimenez et al., 2018; Rifai et al., 2019). Whilst the research 

focusing on the Amazon has provided a good base of knowledge of the kind of effects climate changes 

can have on tropical forests our knowledge is limited in other regions, such as Africa and Asia, and in 

particular South Asia (Kumar & Scheiter, 2019; Thang et al., 2020). Due to the high variation in 

responses between climate changes, forest types and disturbance levels (Asner et al., 2010; FAO & 

ITTO, 2011; Liu et al., 2017) there is likely to be a large diversity in responses of tropical forests to 

climate across the tropical biome, and subsequently a varied set of interactions between the two 

drivers (Brodie et al., 2012; Turubanova et al., 2018). The current geographical bias hinders our 

understanding of how climate affects the tropical forest biome as a whole.  

1.5 Indian forests as a model study system 

Asian tropical forests account for 19% of the global tropical forest area (Benhin, 2006). The forests here 

have some of the highest rates of deforestation (Deb et al., 2018; Kumar & Scheiter, 2019) whilst 

harbouring a lower amount of remaining forest cover and higher population densities than other 

regions (Kumar & Scheiter, 2019; Laurance, 2007). Some studies have predicted that Asia could see a 

loss of 75% of its original forest cover and a 50% reduction in its biodiversity by 2100 (Sodhi et al., 2004). 
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South Asia, and India in particular, are a relatively overlooked tropical system in terms of the impacts 

of climate and land use change on forests and their associated biodiversity, but India is predicted to 

experience relatively high pressures from both climate and land use changes in the near future (Jimenez 

et al., 2018; Newbold et al., 2019; Sunderland et al., 2015; Venter et al., 2016). Forests in India are 

known to harbour high levels of biodiversity and four of 36 global biodiversity hotspots - areas with high 

endemic plant diversity but < 30% of their native habitat remaining - ŀǊŜ ǿƛǘƘƛƴ LƴŘƛŀΩǎ ŦƻǊŜǎǘŜŘ 

ecosystems (Brooks et al., 2002). Indo-Burma, which has the second highest deforestation rate of the 

global hotspots, and the Western Ghats are two of the most threatened hotspots on the planet, and all 

ƻŦ LƴŘƛŀΩǎ ƘƻǘǎǇƻǘǎ ƘŀǾŜ ŀǘ ƭŜŀǎǘ ǇŀǊǘ ƻŦ ǘƘŜƛǊ ŀǊŜŀ ǳƴŘŜǊ ƘƛƎƘ ƻǊ ǾŜǊȅ ƘƛƎƘ ƘǳƳŀƴ ǇǊŜǎǎǳǊŜǎ (Venter et 

al., 2016). The country is an important reservoir of global species diversity, harbouring ~8% of all known 

species on 2.4% of the land area, and nearly 50% of global aquatic species are found here (CBD, 2018; 

Choudhary et al., 2022). It is also important for medicinal products, and ƛǘΩǎ thought that around 60-

80% of the population of India use forest species as a primary source of healthcare (UNDP, 2012). 

Globally, it ranks fifth in rates of reptile endemism, and tenth in rank for bird endemism, highlighting 

the importance of the country to global biodiversity (CBD, 2018). As well as being one of the important 

historical origins of many of our current crop varieties, making it an important reservoir for new 

varieties (CBD, 2018).  Lƴ ǇŀǊǘƛŎǳƭŀǊΣ ŘƛǾŜǊǎƛǘȅ ƛƴ LƴŘƛŀΩǎ ŦƻǊŜǎǘǎ ƛǎ ƻŦ ƎǊŜŀǘ ƛƳǇƻǊǘŀƴŎŜ ǘƻ ƴƻǘ ƻƴƭȅ Ǝƭƻōŀƭ 

biodiversity, but the ecosystem services it provides for human survival and economy (Ninan & 

Kontoleon, 2016)Φ aƛƭƭƛƻƴǎ ƻŦ ǇŜƻǇƭŜ ǊŜƭȅ ƻƴ LƴŘƛŀΩǎ ŦƻǊŜǎǘǎ ŦƻǊ ŦƻƻŘΣ ŦǳŜƭ ŀƴŘ ǘƛƳōŜǊΣ ŀǎ ǿŜƭƭ ŀǎ ǘƘŜǎŜ 

ŦƻǊŜǎǘǎ ōŜƛƴƎ ŀǘǘǊƛōǳǘŜŘ ǘƻ ŀōǎƻǊōƛƴƎ Ϥмм҈ ƻŦ LƴŘƛŀΩǎ DID ŜƳƛǎǎƛƻƴǎ ό/.5, 2018ύΦ LƴŘƛŀΩǎ ŦƻǊŜǎǘǎ ŀǊŜ 

home to several charismatic species that are important for international tourism and global 

conservation funding, such as the Bengal Tiger and Asiatic Elephant (Johnsingh & Joshua, 1994; Barua 

et al., 2010; Barua et al., 2011). 

The unusually high numbers of endemics have been attributed to the diversity and extent of its tropical 

forest cover (Sunderland et al., 2015). Over 74҈ ƻŦ LƴŘƛŀΩǎ ŦƻǊŜǎǘǎ ŀǊŜ ǘǊƻǇƛŎŀƭ ŦƻǊŜǎǘǎΣ ǇǊŜŘƻƳƛƴŀƴǘƭȅ 

dry and moist deciduous species, a further 6% are sub-tropical forests, and the remainder are a mix of 

plantation species (8%), temperate (6%) and alpine species (2%) (FSI 2019) (Table 1). 

Table 1|  The extent and diversity of forest types in India according to the Forest Survey of India Report 

(2019)  

Forest Type Percent of total forest area 

Tropical Wet Evergreen 2.66 

Tropical Semi-Evergreen 9.44 
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Tropical Moist Deciduous 17.96 

Tropical Dry Deciduous 41.58 

Tropical Thorn 2.77 

Tropical Dry Evergreen 0.12 

Littoral and Swamp 0.74 

Subtropical Broadleaved Hill 4.34 

Subtropical Pine 2.40 

Subtropical Dry Evergreen 0.02 

Montane Wet Temperate 2.71 

Himalayan Moist Temperate 3.41 

Himalayan Dry Temperate 0.75 

Sub-Alpine and Alpine 2.50 

Plantation 8.60 

 

Due to inaccessibility of spatial data on forest types from the Forest Survey of India, this study utilises 

land cover maps from the European Space Agency using the FAO classification system (ESA CCI Land 

Cover project (v2.0.7 1995-2015) and EC C3S Land Cover project (v2.1.1 2016-2019)). Figure 1 shows 

the distribution of forest types across the country using this classification at the start of the study period 

used in this thesis (1995). Figure 2 shows the distribution of land cover classes across the country, also 

in 1995, to show the distribution of forests in relation to other extensive land classes, particularly 

cropland. 
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Figure 1| The distribution of different forest types across India in 1995. Land cover classification of ESA 

CCI Land Cover project (v2.0.7 1995-2015) and EC C3S Land Cover project (v2.1.1 2016-2019) utilising 

the FAO classification system. 
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Figure 2| Land cover map of India in 1995. Land cover classification of ESA CCI Land Cover project 

(v2.0.7 1995-2015) and EC C3S Land Cover project (v2.1.1 2016-2019) utilising the FAO classification 

system. 

Historically, forests in this country have very high rates of loss, with 0.77% of forest lost every year 

between 1930 and 1975 and 28% of forest lost between 1930-2013 (Sudhakar Reddy et al., 2016). The 

highest rates of ƭƻǎǎ ǘŜƴŘ ǘƻ ōŜ ǊŜǇƻǊǘŜŘ ƛƴ ǘƘŜ bƻǊǘƘŜŀǎǘ ǊŜƎƛƻƴ ǿƘŜǊŜ ƳǳŎƘ ƻŦ ǘƘŜ ŎƻǳƴǘǊȅΩǎ ǊŜƳŀƛƴƛƴƎ 

forest cover is located (FSI, 2019; Lele & Joshi, 2009), with 65% of total forest loss between 2005-2008 

reported in this region (Chaturvedi et al., 2011). Past forest loss has largely been attributed to 

expansions in cropland, with contributions from other drivers such as logging, mining, plantations 

(Giriraj et al., 2008; Kundu et al., 2015; Padalia et al., 2019; Reddy et al., 2013; Roy & Giriraj, 2008) and 

fuelwood and fodder collection (Arjunan et al., 2005; Davidar, 2007; FSI, 2019). The threat of land use 

change to forests in the country is expected to increase in the future due to the continued rapid growth 

of the population, the increased demand for food resources and the reliance of the country on 

agricultural development (Bhattacharyya et al., 2015; Delzeit et al., 2016; Hinz et al., 2020). Crop 

production is predicted to grow by 55% between 2010 and 2030 (Hinz et al., 2020). However, a 

reduction in studies in recent decades has resulted in an uncertainty around the extent of forest loss 

and its relationship with land use change. 

To date, the effects of climate change on past forest loss have been largely overlooked within India 

(Kumar & Scheiter, 2019). However, a number of recent studies have begun to consider the effects of 
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future climate changes on the distribution of forests and have predicted that climate is likely to have a 

significant effect on forests in the future (Deb et al., 2018; Gopalakrishnan et al., 2011; Ravindranath et 

al., 2011; Sharma et al., 2017). Chaturvedi et al., (2011) reported that there is likely to be a 

redistribution of forests in the country in response to changing distributions of rainfall, where Western 

Central India is expected to see an expansion of forests, but Northwest forests and those in the 

Northern Western Ghats will become increasingly exposed to detrimental climate changes (with an 

increased vulnerability to forest loss). Several studies also predict a change in the distribution of forest 

types with future climate changes, for example, Ravindranath et al., (2005) predicted an expansion of 

drier forest types in the Northwest alongside a change towards wetter forest types in the Northeast of 

the country in response to changing rainfall patterns. Like other tropical regions, India is predicted to 

experience increases of temperature, highly variable precipitation, especially during the monsoon and 

increasing incidences and strength of extreme events, such as flooding and drought, resulting in severe 

conditions that many species have not experienced before (Chaturvedi et al., 2011; IPCC, 2019; Kumar 

& Scheiter, 2019; Sharma & Mujumdar, 2017). The monsoon climate (responsible for 80% of annual 

precipitation) also makes the country more vulnerable to climate changes than other areas of the 

tropics due to the heavy reliance by both natural and human systems on the seasonal rainfall (Arjun, 

2013; Deb Burman et al., 2020; Goswami, 2005; Mishra, 2019).  

Despite a dearth of studies focusing on interactions between climate and land use change in IndiaΩs 

forests, research on future scenarios highlight that fragmentation and land use change is likely to 

increase vulnerability of forests to climate changes (Chaturvedi et al., 2011; Deb et al., 2018; 

Gopalakrishnan et al., 2011; Kumar & Scheiter, 2019).  This premise is also supported by several global 

studies highlighting that forest biodiversity in South Asia will be highly affected by the combined 

stressors (Newbold, 2018; Newbold et al., 2019). Given the role climate is suspected to play in future 

loss, the current trajectory of climate change in the country, and findings from other tropical regions, 

it is likely that climate change has contributed to forest losses in the past in India and that interactions 

with land use changes will be occurring. This presents a key gap in our understanding of the drivers of 

forest loss and may result in inaccurate projections of future loss if its past role is not properly 

understood. 

India presents a unique opportunity to explore the potential for interactions between the two 

significant drivers, in a country not previously considered. Focusing on Indian forests has the potential 

to increase knowledge of the drivers of forest loss in the country, as well as a greater understanding of 

the drivers of tropical forest loss, and their interactions, in an underrepresented region of the tropics. 

This study therefore has the potential to better understand implications for forest protection, and 
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consideration of multiple drivers may enable more informed management strategies in the future that 

better protect the forests. Since Indian biodiversity and agriculture are intrinsically linked with the 

forest this thesis also has implications beyond the extent of forest loss, to biodiversity conservation and 

human livelihoods.  

 

1.6 Thesis aims and structure 

In light of these research gaps, this thesis aims to increase understanding of the effects of climate 

change, land use change and their interactions on forests in India.  

Overall objectives: 

1. To evaluate the degree to which climate changes have played a roƭŜ ƛƴ LƴŘƛŀΩǎ forest loss in the 

past 20 years 

2. To assess the extent of land use change contributions to forest loss in India in the past 20 years 

3. To ascertain whether there is evidence of a climate-land use change interaction impacting 

forest loss in the country 

The following provides a brief outline of the thesis chapters created to address these objectives, and 

this is further illustrated in Figure 3: 

Chapter 2:  

Chapter 2 linked to objective one, investigates whether climate change has contributed to the extensive 

forest losses in India in the past. It uses temporal trends of precipitation and temperature to assess 

whether these trends have contributed to forest loss between 2001 and 2018. It also employs an 

emerging metric, climate velocity, that encompasses climate change over space and time and is yet to 

be widely used. This chapter is crucial to broadening the scope of literature around this topic, which 

has to date not considered climate change as a driver of forest loss in the past within India. The chapter 

acts as a key foundation to the thesis aiming to form an understanding of how one of the two main 

stressors of interest materialises in the country. 

The key questions addressed in this chapter are: 

1. Has climate change contributed to past forest loss in India? 

2. Are there seasonal and regional variations in the climate-forest loss relationship in the country? 

3. Are Indian forests exposed to high and/or overlapping climate velocities and is forest loss 

greater in these areas? 
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4. Can climate velocitȅ ǇǊƻǾƛŘŜ ŀŘŘƛǘƛƻƴŀƭ ǳƴŘŜǊǎǘŀƴŘƛƴƎ ƻŦ ŦƻǊŜǎǘΩǎ Ǌƛǎƪ ǘƻ ŎƭƛƳŀǘŜ ŎƘŀƴƎŜΚ 

 

Chapter 3:  

Chapter 3 focuses on the second objective of the thesis and assesses how land use and land cover 

change have affected forests in the country. It aims to understand the trends in forest losses and gains, 

addresses questions around whether agriculture remains the primary cause of forest loss and provides 

understanding of the vulnerability of different regions and forest types to deforestation. It looks at a 

1995-2019 time period where there has been reduced focus on the trends in forest loss or the role of 

land use change in the literature and contributes knowledge that supports understanding of forest 

change in the country. It also provides key information to address the thesis objectives around land use 

change. 

The key questions addressed in this chapter are: 

1. How has the area of forest changed over time? 

2. What specific land uses or land cover types are associated with the greatest forest losses? 

3. Are the drivers of loss different for different forest types and regions? 

 

Chapter 4: 

Chapter 4 aims to understand the effect of drought on forests and whether there is evidence to suggest 

that interactions are occurring with land use change. Focusing on the Northeast region during the 

period 1995-2019, this chapter assesses forest changes over five precipitation deficit years. It aims to 

increase understanding of the combined threat of drought and land use change to forests in the region 

by exploring the spatial extent of forest loss during drought years, quantifying the major types of forest 

lost, and assessing the key land use and land cover changes associated with forest loss. The chapter 

importantly addresses the third objective of the thesis to consider the combined effects of climate and 

ƭŀƴŘ ǳǎŜ ŎƘŀƴƎŜ ƛƴ LƴŘƛŀΩǎ ǘǊƻǇƛŎŀƭ ŦƻǊŜǎǘǎΦ 

The key questions addressed in this chapter are: 

1. Do precipitation deficits result in a higher probability of forest loss? 

2. Is forest loss attributed to anthropogenic land use changes more prevalent in the wetter areas 

of a drought? 
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Chapter 5: 

This chapter summarises the overall findings of the thesis along with outlining how the research 

contributes to the wider body of evidence and what the findings mean practically for the protection of 

forests and biodiversity in India now and in the future. The chapter then explores the limitations 

associated with the research and highlights remaining knowledge gaps and key areas for future 

research focus. 
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Figure 3| Flow diagram illustrating the structure of the thesis. Chapters where primary data is analysed 

are shown in a green outline whereas introductory and discussion chapters are shown with an orange 

outline. 
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1.7 Methodological considerations ς Data use and spatial resolution 

When spatially analysing trends over large areas and longer periods of time, there can be difficulties 

with acquiring appropriate datasets. Typically, there is a trade-off between temporal and spatial 

resolution of satellite datasets, where the datasets with the smallest temporal resolution have a lower 

spatial resolution and vice versa. For analysing changes in forest distribution, it would be preferable to 

have the highest spatial resolution (so we can the smallest changes in forest edge loss) and a fairly small 

temporal resolution (so that at least seasonal changes important in forest growth are captured). The 

difficulty acquiring appropriate resolution data for both climate change and land use change is well 

documented and can be a key barrier to effective research in India (Kumar et al., 2018; Gia et al., 2019). 

Though satellite data is improving all the time, and we now have access to temporal resolutions of sub-

hourly and spatial resolutions of > 1 metre, it is still hard to find free, accessible data that covers large 

time periods with high spatial resolutions, particularly when looking for a regional focus. Regional 

datasets are often better due to their more specific calibrations from the region of interest that can 

make them more accurate than global datasets. However, obtaining high quality, long-term satellite 

data for India for this thesis proved difficult, mainly due to paywalls on climate data and lack of long 

term data collection on land use change. For these reasons, this thesis uses globally available free 

datasets that span the required temporal period and have a reasonable spatial resolution to capture 

the changes in forest coverage. There are two main considerations about the data used in this thesis 

that I would like to highlight and discuss here: 

Firstly, in Chapter 2, I use the Global Forest Change Dataset by Hansen et al., (2013). This is a highly 

cited dataset with publications in high ranking journals (e.g., Curtis, et al., 2018; Hansen, et al., 2020; 

Harris, et al., 2021; Moffette, et al., 2021) and is used as the primary data for the global platform, Global 

Forest Watch (https://www.globalforestwatch.org/map/). Despite known limitations around this 

dataset in terms of its capability to distinguish between natural and plantation forests (critiqued well in 

Tropek et al., 2014), this dataset is the only dataset available that specifically focuses on forest loss with 

the temporal and spatial coverage required to do this analysis. This dataset worked well when used 

alongside climate data in Chapter 2. However in Chapter 3, where I introduce land cover data to assess 

changes in land cover over time, the Hansen GFC dataset could no longer be used as it was found to 

match up poorly with the land cover data. There were instances where what was recorded as tree cover 

by the Hansen dataset was recorded as shrubland by the land cover dataset. Therefore, these two 

datasets could not be used in conjunction, and so in Chapter 3, I had to rely on the land cover data to 

assess both land cover changes and forest changes. Finding errors and incompatibility between 

satellite-derived data sources is common as the field continues to develop and aims to provide better 

coverage across the globe temporally and spatially. This incompatibility in data sources resulted in 

https://www.globalforestwatch.org/map/


29 | P a g e 

 

different findings of forest cover change between Chapters 2 and 3 which is discussed in detail in 

Chapter 5.  

Secondly, throughout this thesis I use the freely available global dataset on temperature and 

precipitation developed by the Climate Research Unit (CRU) (https://crudata.uea.ac.uk/cru/data/hrg/). 

This dataset has a spatial resolution of 0.5 degrees (~50km x 50km grid squares) and there are instances 

where the climate for a district in India is derived from an average of two grid squares due to the small 

size of some of the districts in the country. Most freely available large scale climate datasets at this time 

are not able to provide better resolution that this or would compromise on temporal resolution. For 

example, the NOAA CMAP data (https://psl.noaa.gov/data/gridded/data.cmap.html) has good 

temporal resolution (1979-2022) but is only available at 2.5 degrees coverage, or at 0.25 degrees spatial 

resolution but only until the year 2006. WorldClim (https://www.worldclim.org/data/index.html) has 

excellent spatial resolution (~1km) but does not have annual or monthly data at the time of analysis 

(though it now does at 20km resolution), and IMD Pune 

(https://www.imdpune.gov.in/Clim_Pred_LRF_New/Grided_Data_Download.html) have a 0.25 degree 

long-term precipitation dataset (1901-2018) but only have temperature data at 1 degree spatial 

resolution. Accessing high resolution temperature data was particularly challenging and the CRU 

dataset used in this thesis provided both a good temporal and spatial resolution for temperature and 

precipitation. The CRU climate dataset is a widely used dataset with both high temporal and spatial 

resolution precipitation and temperature data and is, importantly, freely available. As far as I am aware, 

it is the only accessible dataset with the temporal and spatial resolution capable for conducting this 

analysis and this is the reason it was chosen for the thesis. 
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Chapter 2: Determining the role of climate 

ŎƘŀƴƎŜ ƛƴ LƴŘƛŀΩǎ Ǉŀǎǘ ŦƻǊŜǎǘ ƭƻǎǎ 

 

 

 

Nohsngithiang Falls in the East Khasi Hills district, Meghalaya. The most populous district in 

Meghalaya, with a large area of tropical and subtropical broadleaved forest. It is one of the wettest 

places on Earth. 

 

 

Source: @twobirdsbreakingfree/instagram.com 
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2.1 Abstract 

Tropical forests in India have declined at an alarming rate, with extensive literature focusing on the high 

contributions of agricultural expansions to deforestation, while the effects of climate change have 

largely been overlooked. Climate change effects, such as increasing temperatures, drought and flooding 

have already occurred, and are projected to worsen. Climate velocity, a metric that accounts for spatial 

heterogeneity in climate, can help identify contiguous areas under greater climate stress and potential 

climate refuges in addition to traditional temporal trends. Here, we examined the relative contribution 

of climate changes to forest loss in India during the period 2001-2018, at two spatial (regional and 

national) and two temporal (seasonal and annual) scales. This includes, for the first time, a 

characterisation of climate velocity in the country. Our findings show that annual forest loss increased 

substantially over the 17 years, with the majority of forest loss occurring in the Northeast region. 

Decreases in temporal trends of temperature and precipitation were most associated with forest losses 

but there was large spatial and seasonal variation in the relationship. In every region except the 

Northeast, forest losses were correlated with faster velocities of at least one climate variable but 

overlapping areas of high velocities were rare. Our findings indicate that climate changes have played 

an important ǊƻƭŜ ƛƴ LƴŘƛŀΩǎ Ǉŀǎǘ ŦƻǊŜǎǘ ƭƻǎǎΣ ōǳǘ ƭƛƪŜƭȅ ǊŜmain secondary to other factors at present. We 

stress concern for climates velocities recorded in the country, reaching 97km yr-1, and highlight that 

understanding the different regional and seasonal relationships between climatic conditions and forest 

distributions will be ƪŜȅ ǘƻ ŜŦŦŜŎǘƛǾŜ ǇǊƻǘŜŎǘƛƻƴ ƻŦ ǘƘŜ ŎƻǳƴǘǊȅΩǎ ǊŜƳŀƛƴƛƴƎ ŦƻǊŜǎǘǎ ŀǎ ŎƭƛƳŀǘŜ ŎƘŀƴƎŜ 

accelerates. 

 

2.2 Introduction 

Forests are being destroyed at an alarming rate globally (Hansen et al., 2001; Haddad et al., 2015; Song 

et al., 2018; FAO & UNEP 2020), despite their importance for human wellbeing and the maintenance of 

planetary ecosystems. Tropical forests, home to a disproportionate amount of tƘŜ ǿƻǊƭŘΩǎ ōƛƻŘƛǾŜǊǎƛǘȅΣ 

are experiencing some of the largest declines (Hansen et al., 2013; Song et al., 2018; IPBES, 2019; França 

et al., 2020). Land use change is the leading cause of forest declines worldwide (Ostberg et al., 2015; 

Choe and Thorne, 2017; FAO & UNEP, 2020; WWF, 2020) with recent estimates suggesting that only 

24% of tropical forests are still intact (Lewis, Edwards, & Galbraith, 2015). In addition, there is increasing 

concern regarding the impacts of climate change, with research suggesting that its effects are already 

eclipsing those of land use change on 60% of the global land surface (Ostberg et al., 2015). Though this 

is not yet the case in tropical forests, the contribution of climate change effects in tropical forests is 
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increasing (Ostberg et al., 2015; IPCC, 2019; WWF, 2020). Despite this, research into its effects on forest 

loss are limited, particularly in the tropics. 

Impacts of climate change are often largely dependent on geographic location and interactions 

between climate variables (Allen et al., 2010; Brito-Morales et al., 2018; Maracchi, Sirotenko, & Bindi, 

2005) but have been shown to both positively and negatively affect forest growth, mortality, 

productivity and distribution, alongside impacting the capability to deal with other stressors like 

drought and fire (IPCC, 2019; Ovenden et al., 2021). Temperature increases are by far the most 

commonly studied climate driver of forest mortality (Chen et al., 2011; Seidl et al., 2017; Heikkinen et 

al., 2020; Maringer et al. 2021) and have been shown to directly impact forest distribution and growth 

(Garcia et al., 2014; Lenoir and Svenning, 2015). Changes in precipitation have also been shown to affect 

forest survival, most commonly precipitation decreases (Aiba & Kitayama, 2002; Bennett et al., 2015; 

Chen et al.,, 2017; Phillips et al., 2009; Taccoen et al., 2019; Zhang et al., 2017), but the relationships 

are often complex, and can be highly dependent on regional and seasonal changes (Bateman et al., 

2016; Seidl et al., 2017), forest type, previous conditions, and phenotypical adaptations of species (Das 

et al., 2013; Greenwood et al., 2017; McDowell, 2018). Tree mortality from climate change is often 

linked to drought induced hydraulic failure (McDowell et al., 2018) but indirect effects such as increased 

forest susceptibility to pests and diseases (Lindner et al., 2010; Seidl et al., 2017; Stralberg et al., 2015), 

contributing to human decisions surrounding land use change and resource extraction (IPBES, 2018), 

among other pathways, also occur. There is also some evidence to suggest that even climate changes 

that support tree growth, through increased CO2 fertilisation and light exposure, can lead to mortality, 

as increased growth can result in greater competition for resources (Huete et al., 2006; McDowell et 

al., 2018; Saleska et al., 2007).  

Typically, studies assess the risk of temporal trends in climate variables, but the spatial heterogeneity 

of climate in the area where a species is found can also be important in species survival under climate 

change. Climate velocity (Loarie et al., 2009) is a metric that encompasses the spatial heterogeneity in 

climate in the surrounding area. The creators of the first climate velocity metric, Loarie et al., (2009) 

and others since, theorised that areas where climate is changing quickly, and similar climates are further 

away, will be at greater risk to climate change (García Molinos et al., 2019; Garcia et al., 2014; Hamann 

et al., 2015; Loarie et al., 2009). The metric provides an additional dimension to climate risk, and 

subsequently high velocities have been linked to reductions and redistributions in small-ranged species 

(Sandel et al., 2011), marine taxa (García Molinos et al., 2016), birds (Bateman et al., 2016) and trees 

(Bateman et al., 2016; Liang et al.,, 2018; Nadeau & Fuller, 2015; Sandel et al., 2011), and areas of low 

velocities have been hailed potential climate refuges (Brito-Morales et al., 2018; Heikkinen et al., 2020). 
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Due to the complexities of the metric there have been some criticisms of its usefulness and confusion 

over the conclusions that can be drawn from it (Dobrowski & Parks, 2016; Hamann et al., 2015). 

However, equally when used appropriately, climate velocity estimates may be an important component 

for identifying areas most at risk to the effects of climate change, providing a dimension that temporal 

trends cannot (Loarie et al., 2009; Garcia et al., 2014; Heikkinen et al., 2020).  

Currently there is a strong bias in the literature of climate-forest systems towards northern temperate 

regions, particularly for velocity studies, and less is known about the relationship in the tropics (Lenoir 

and Svenning, 2015; Seidl et al., 2017; Brito-Morales et al., 2018; França, et al., 2020). Drawing 

conclusions about the effect of climate change in tropical regions is often more complex that the 

temperate counterparts, in part due to a large variety of forest types, adaptations and microclimates, 

and a lower availability of high quality data (McDowell, 2018). In the past, many studies have focused 

on Amazonia (Giardina et al., 2018; Huete et al., 2006; Nepstad et al., 2007; Saleska et al., 2007), where 

deforestation rates are the highest, but evidence suggests that responses across tropical regions may 

be highly diverse (Asner et al., 2010; McDowell, 2018; Wagner et al., 2014). 

India is in the top ten countries in the world for forest cover (FAO & UNEP, 2020). Forests, primarily 

tropical and sub-tropical, cover 20% of ǘƘŜ ŎƻǳƴǘǊȅΩǎ land mass (Ravindranath et al., 2005). It is one of 

ǘƘŜ Ƴƻǎǘ ōƛƻŘƛǾŜǊǎŜ ŎƻǳƴǘǊƛŜǎ ƛƴ ǘƘŜ ǿƻǊƭŘΣ ǊŜǇǊŜǎŜƴǘƛƴƎ мм҈ ƻŦ ǘƘŜ ǿƻǊƭŘΩǎ ŦƭƻǊŀ and encompassing 

four biodiversity hotspots (Chitale et al., 2014) (Figure S8). The country has experienced large-scale 

forest loss for decades, which has been extensively studied, with land use changes largely cited as the 

major cause of forest declines (Jha et al., 2000; Lele et al., 2009; Reddy et al., 2013; Roy et al., 2013). 

Increased demand for crop productions, commercial livestock rearing, timber extraction, rapidly 

increasing populations and an emerging economy, are all known to be putting high pressure on forests, 

alongside cultural practices of shifting cultivation (Lele & Joshi, 2009; Wani et al., 2012). Large 

proportions of the population directly rely on forests for their survival and livelihoods, and in particular, 

fuelwood and fodder collection are major sources of domestic energy and income for tens of thousands 

of villages (Roy et al., 2013; Sharma et al., 2015). Whereas the effect of land use changes on forest loss 

have been a key focus in the literature in the past (Davidar et al., 2010; Gupta, 2007; Lele & Joshi, 2009; 

Roy et al., 2013), there has been little focus on the potential role of climate change. Ascertaining 

ŎƭƛƳŀǘŜΩǎ ǊƻƭŜ in ǘƘŜ ŎƻǳƴǘǊȅΩǎ past forest loss could help predict the future stability of forests in the 

face of increasing change, as well as aiding effective management strategies for current forest 

conservation. Due to the unique variation in climate driven by two monsoon systems (Krishnan et al., 

2020), India is likely to experience a range of different climate changes and is therefore an ideal country 

to study the effects of climate change, including velocity, on tropical forest systems.  
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Climate change in India has been evident for many years and numerous studies have described a 

consistent pattern of warming (Dash et al., 2011; Mishra, 2019; Rao et al., 2016; Ravindranath et al., 

2011; Rupa Kumar et al., 2006), more frequent high-intensity rain events, higher maximum 

temperatures (Krishnan et al., 2020), warmer winters and a lower confidence in the timing of the 

Ƴƻƴǎƻƻƴ ǿƘƛŎƘ ƛǎ ŎǊƛǘƛŎŀƭ ŦƻǊ LƴŘƛŀΩǎ ŀƎǊƛŎǳƭǘǳǊŀƭ-driven economy (Dash et al., 2011; Ravindranath et al., 

2011). Research that focuses on the relationship between climate change and forest loss in India, has 

almost always analysed the potential threats of future climate change on forests through global 

vegetation models (Brown & Pearce, 1994; Chaturvedi et al., 2011; Gopalakrishnan et al., 2011; Kumar 

et al., 2018; Ravindranath et al., 2005; Sharma et al., 2017; Upgupta et al., 2015), but none so far have 

considered velocity. Existing studies have predicted climate change to have strong influences on forest 

cover, consistently predicting a shift to wetter forest types and a loss of drier forest types in response 

to a generally warmer and wetter climate in the future, noting precipitation thresholds to be particularly 

important (Chaturvedi et al., 2011; Gopalakrishnan et al., 2011; Ravindranath et al., 2005; Ravindranath 

& Sukumar, 1998). Some regions are predicted to gain forests, whilst others, to lose forest (Chaturvedi 

et al., 2011; Ravindranath et al., 2005). Areas of highest vulnerability are those with projected increases 

in temperature but decreases in precipitation (Chaturvedi et al., 2011). Past research has generally 

predicted the Himalayan forests, northern Western Ghats and North-western regions to be most at risk 

to climate change effects due to a combination of forest intactness, forest type, and climate change 

exposure (Chaturvedi et al., 2011; Gopalakrishnan et al., 2011; Upgupta et al., 2015). Whereas, forests 

in the north-eastern region and southern Western Ghats are expected to be less vulnerable due to 

being predominantly composed of tropical moist forests which are likely to expand in range, alongside 

higher levels of intactness and species richness (Chaturvedi et al., 2011; Gopalakrishnan et al., 2011; 

Ravindranath et al., 2005).  

While these projections provide useful foresight into potential at-risk areas, there is a clear gap in our 

understanding of the distribution of climatic effects in areas of high forest loss in the past which could 

help inform future predictions. Additionally, mapping and analysing the distribution in climate velocity 

in a country could be crucial for conservation strategies to support in-situ adaptation, by limiting other 

stressors, considering potential strategies for relocating or aiding limited dispersal to less affected 

areas. 

This study aims to characterise the relationship between climate change and LƴŘƛŀΩǎ Ǉŀǎǘ ŦƻǊŜǎǘ ƭƻǎǎ and 

explores the relative importance of drivers other than the well-documented effects of land use change. 

It aims to map and analyse climate velocities in India for the first time, and critically assess the 

usefulness of this metric in providing additional understanding of risks to forests in India. Given current 
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evidence, we expect climate changes, such as declining precipitation and temperature increases, to be 

correlated with areas of high forest loss but expect considerable seasonal and regional variation due to 

the diversity in climate and geography across the country, which we account for in our methodology. 

In terms of climate velocity, though previous analyses have been largely confined to higher latitude 

studies, evidence from these and coarser-scale global analyses lead us to expect forest loss will be 

greater in areas of higher climate velocity where forests are more exposed to faster changes in climate 

or where high velocities of multiple variables overlaps. 

The key questions addressed in this manuscript are: 

1. Has climate change contributed to forest loss in India between 2001-2018? 

2. Are there seasonal and regional variations in the climate-forest loss relationship in the country? 

3. Are Indian forests exposed to high and/or overlapping climate velocities and is forest loss 

greater in these areas? 

4. /ŀƴ ŎƭƛƳŀǘŜ ǾŜƭƻŎƛǘȅ ǇǊƻǾƛŘŜ ŀŘŘƛǘƛƻƴŀƭ ǳƴŘŜǊǎǘŀƴŘƛƴƎ ƻŦ ŦƻǊŜǎǘΩǎ Ǌƛǎƪ ǘƻ ŎƭƛƳŀǘŜ ŎƘŀƴƎŜΚ 

 

2.3 Methods 

2.3.1 Forest Loss 

Records of annual forest loss were obtained from the Hansen Global Forest Change v1.6 dataset (GFC) 

(Hansen et al., 2013) for the period 2001-2018 at a spatial resolution of ~30m, within the Google Earth 

Engine interface (Gorelick, et al., 2017). The GFC data takes the form of a binary record of loss (1) or no 

loss (0) for each pixel in the area of interest and records all trees above 5m in height. District level totals 

of forest loss (km²) were generated and subsequently analysed in RStudio (version 3.6.2). Any districts 

with less than a total of 0.1km² forest cover were excluded to avoid any noise in the Hansen GFC data. 

This resulted in a total of 13 districts (of 577) being excluded from the analyses, predominantly from 

the arid and xeric shrubland regions of the Northwest (Supplementary Table S1). In addition to those 

removed for low levels of forest cover, island union territories were excluded due to potential 

differences between island and land mass effects of climate in addition to concern over the accuracy 

of the datasets used on small island states. 

2.3.2 Climate data 

Global raster datasets of total monthly precipitation (mm) and monthly mean temperature (oC) from 

the Climate Research Unit (CRU TS v. 4.03) were obtained at 0.5 x 0.5 degree resolution (~112km2), 
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covering the years 2001-2018. The selected period was chosen to align with the availability of GFC data. 

Climate datasets were averaged to create a data point for each district. Regional datasets were also 

created by compiling districts belonging to each of the six monsoon regions outlined by the Indian 

Institute of Tropical Meteorology (www.tropmet.res.in); Northeast (NE), Northwest (NW), Central 

Northwest (CNE), West Central (WC), Peninsular (PEN), and Hilly region, composed of the East Hilly 

Region (EHR) and the West Hilly Region (WHR) (Figure S1). The monthly data was aggregated to create 

a dataset of total annual precipitation by calculating, for each raster cell in each year, the sum of the 

monthly values. Mean annual temperatures were then created by averaging a cells value across all 

months.  

For the seasonal analysis, data was collated from the monthly climate rasters and averages of mean 

temperature and total precipitation calculated for each season at both national and regional spatial 

scales. The seasons are those used by the Indian Meteorological Department 

(http://www.imdpune.gov.in/Weather/Reports/glossary.pdf) and most commonly found in the 

literature for national scale studies of India. These were monsoon (June-September), post-monsoon 

(October-December), winter (January-February), and pre-monsoon (March-May). It is important to 

note that, despite these being the standard national seasons, the climate of each season varies 

considerably by region (Figure S2, S3). 

2.3.3 Calculating climate velocity 

Gradient-based climate velocity was calculated in R using the gVoCC package and the integrated 

functions; SpatGrad and TempTrend following the methodology for local climate velocity outlined in 

García Molinos et al., (2019) and based off the original calculation by Loarie et al., (2009). The 

TempTrend function calculates the temporal trend by performing linear regressions of the variable 

against time for each individual cell. This was calculated for both the annual and seasonal averages. The 

temporal trends were used in the climate velocity metric but also as a separate variable in the models. 

The SpatGrad function calculates spatial gradients for each cell by determining the magnitude of the 

differences in the climate variable over its neighbouring (3x3) cells. In order to avoid the potential of 

infinite velocities caused by spatial gradients of zero (Hamann et al., 2015; Loarie et al., 2009), a value 

of 0.1 was added to all the data points. Climate velocity was then calculated by dividing the temporal 

trend by the spatial gradient. An average climate velocity for each variable was calculated per district 

ōȅ ǘŀƪƛƴƎ ǘƘŜ ƳŜŀƴ ƳŀƎƴƛǘǳŘŜ ŦǊƻƳ ŀƭƭ ǘƘŜ ŎŜƭƭǎ ǇǊŜǎŜƴǘ ƛƴ ŀ ŘƛǎǘǊƛŎǘΩǎ ōƻǳƴŘŀǊȅ ǳǎƛƴƎ ǘƘŜ Ȋƻƴŀƭ ǎǘŀǘƛǎǘƛŎǎ 

function in QGIS v3.8.2. Each district was an individual data point used in the models.  

http://www.tropmet.res.in/
http://www.imdpune.gov.in/Weather/Reports/glossary.pdf
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It is important to note that climate velocity can be both negative and positive - the direction of the 

effect is taken from the temporal trend, and it is the magnitude that relates to the velocity. So, a large 

negative precipitation velocity indicates a faster reduction in precipitation over time, and a large 

positive precipitation velocity indicates a faster increase in precipitation. Smaller velocities indicate 

slower changes. Therefore, positive relationships between forest loss and climate velocity could equally 

represent greater forest loss at faster positive velocities or slower negative velocities, whereas negative 

relationships represent greater forest loss at faster negative velocities or slower positive velocities. 

2.3.4 Population density as a proxy for human pressures 

Human pressures, particularly land use changes, are regularly cited as a primary cause of forest loss in 

India. To account for the effects of these, a proxy of population density was included as an explanatory 

variable (Cimatti et al., 2021; Kok, 2004; Milanesi et al, 2017). Population density has been shown to 

have a large effect on land use changes in India in the past, particularly relating to forest cover, 

agriculture and urban areas (Kale et al., 2016; Palchoudhuri et al., 2015). Whilst population density does 

not explicitly account for other human pressures such as infrastructure and demand for forest 

resourcesΣ ŀƴŘ ƛƴŘƛŎŜǎ ǎǳŎƘ ŀǎ ǘƘŜ ΨIǳƳŀƴ LƴŦƭǳŜƴŎŜ LƴŘŜȄΩ 

(https://sedac.ciesin.columbia.edu/data/set/wildareas-v2-human-influence-index-geographic) may be 

better able to capture the breadth of human pressures, population density data is available on the 

temporal and spatial scale fitting this chapter whereas other indices are temporally and spatially 

limited. For example, the Human Influence Index has a temporal availability of 1995-2004 which would 

be too short for this analysis. 

Data on population density (people per km²) for the years 2000 and 2020 was obtained ŦǊƻƳ {95!/Ωǎ 

GPWv4.11 dataset at a spatial resolution of 30 arc-seconds (~1km2 at the equator). Population density 

change over the 20-year period was calculated on a cell by cell basis by subtracting the Ŧƛƴŀƭ ȅŜŀǊΩǎ 

values from the first year. Cells with positive values represented an increase in population density over 

time and cells with a negative value, a decrease. Mean values of population density change were 

calculated for each district from this cell level data. The data was only available in 5-year increments 

thus the years 2000 and 2020 were selected to match the forest loss data as closely as possible (Figure 

S4). 

2.3.5 Modelling the impact of climate change on forest loss 

Linear mixed-effects models were developed using the nlme package in R to assess the relationship of 

the climate variables on forest loss at both the national and regional level. Firstly, a null model 

comprising of the response variable (forest loss in km2) and a random effect of the State (political 
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boundary), was created as a basis for model generation. The state that the forest belonged to was 

considered to affect the level of forest loss due to the individual forest policies between states, 

subsequently districts in the same state are likely to be more similar. 

Eight models were created in total: four at the national scale and four at the regional scale. Within 

these, two included temperature and precipitation velocity as the explanatory variable, with one using 

annual and the other using seasonal data. The second two models included the temporal trends of 

temperature and precipitation as the explanatory variables, again one using annual data and the other 

seasonal data. All models included population density change as an explanatory variable and state as a 

random effect. In all models, the explanatory variables were standardized to account for the large 

variation in scale and a gaussian spatial autocorrelation structure was used to account for spatial 

autƻŎƻǊǊŜƭŀǘƛƻƴ ŘŜǘŜŎǘŜŘ ƛƴ ǘƘŜ Řŀǘŀ όaƻǊŀƴΩǎ L ǇғлΦллмύ ǿƘƛŎƘ ǿŀǎ ǎƘƻǿƴ ǘƻ ŀŘŜǉǳŀǘŜƭȅ ŀŎŎƻǳƴǘ ŦƻǊ 

ǘƘŜ ŀǳǘƻŎƻǊǊŜƭŀǘƛƻƴ ǿƛǘƘ ŀ ŦǳǊǘƘŜǊ aƻǊŀƴΩǎ L ǘŜǎǘ ƻƴ ǘƘŜ ƳƻŘŜƭ ǊŜǎƛŘǳŀƭǎ όaƻǊŀƴΩǎ L ǇҔлΦлрύΦ  

 

2.4 Results 

2.4.1 National and regional trends in forest loss 

Forest loss increased substantially during the study period (2001-2018), escalating from annual losses 

of 647km2 to a peak of 2,503km2 lost in 2017, shortly followed by a slight decline to ~1,900km2 in 2018 

(Figure S5). Over the course of the 2001-2018 study period, a total of 20,472km2 of forest was lost, 

ŀŎŎƻǳƴǘƛƴƎ ŦƻǊ тΦоп҈ ƻŦ LƴŘƛŀΩǎ ŦƻǊŜǎǘ ŎƻǾŜǊ ƛƴ нллмΦ The Northeast region contributed a significant 

proportion of the loss, in the last five years of the study losses here were over four times that of the 

other regions (Figure 1 & Figure S6). Three key areas of high forest losses were identified, these were; 

1) the combined regions of the NE and EHR, 2) the nexus of the CNE, WC and PEN regions, and 3) a few 

districts in the northern Western Ghats (PEN region). All experienced losses greater than 20km2 over 

the time period (Figure S8).  
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Figure 1|  (a) Forest cover in km2 of each district in India, Jammu and Kashmir, and Ladakh in the year 

2000. (b) The total forest lost in each district between the years 2001-2018 in km2. Much of the forest 

cover is located in the Northeast and along the east and southwestern coasts. Total forest loss is 

greatest in the Northeast, central west coast and southwestern areas, where forest cover is also high. 

2.4.2 National and regional trends in climatic variables  

Precipitation 

Annual-based temporal trends showed increases in precipitation of ~5-10mm yr-1 for much of the 

country, with some notable exceptions in districts in the northeast and southern areas of the country 

(Figure 2).  Annual trends were largely driven by substantial increases recorded in the monsoon season, 

and the remaining three seasons showed mean decreases in precipitation (Figure S10). The same trend 

was found for velocities, where at times monsoon velocities reached twice the speed of other seasons 

(Figure 3), while the other seasons were, on the whole, getting drier but at a slower rate. Annual 

velocities ranged from -13 ς 34 km yr-1 (Table S2), with the fastest velocities found in districts bordering 

the WC and CNE regions. Seasonal velocities ranged from -97 ς 41 km yr-1. The fastest velocities were 

found in the pre-monsoon (-) and monsoon seasons (+). The NE and EHR experience the largest negative 

precipitation velocities (largely between -5 and -20 km yr-1), showing a rapid drying trend. The most 

extreme velocity recorded in the study of -97.59 km yr-1 was located in the East Khasi Hills district of 

the NE region during the pre-monsoon season. Patterns of seasonal precipitation velocity were 

generally complex with many regions experiencing both positive and negative precipitation velocities 

at different points in the year (Figure 3). 

 

Temperature 

Based on annual temperature temporal trends, the majority of the country warmed at a rate around 

0.025-лΦлрлх/ yr-1, with notable exceptions of some CNE and NE districts where temperature was 

cooling at the same rate (Figure 2). Seasonal analyses showed the fastest warming to be in the winter 
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season where ǎƻƳŜ ŘƛǎǘǊƛŎǘǎ ŜȄŎŜŜŘŜŘ ƛƴŎǊŜŀǎŜǎ ƻŦ лΦлрмх/ yr-1. There were no occurrences of 

temperature reductions in the monsoon season. In all other seasons, there was a significant cooling 

patch in the CNE and NE regions, which was most expansive in the post-monsoon and winter seasons. 

Seasonal variation was greater for precipitation than temperature with many regions experiencing the 

same temperature trends year-round e.g., PEN and EHR regions experienced warming year round, 

ǊŜŀŎƘƛƴƎ ҌлΦлпрх/ yr-1 at its fastest in the post-monsoon. Annual-based temperature velocities ranged 

between -0.321-0.298 km yr-1 (Table S2) and followed a similar patterning to the temporal trends. The 

monsoon season showed widespread warming, but the highest positive velocities rotated around the 

country throughout the year resulting in high but seasonal exposure to fast positive velocities in much 

of the North, West and South (Figure 4). The fastest negative velocities of -0.4 km yr-1 were located in 

the CNE and NE region. Temperature velocities were much slower than those recorded for 

precipitation.  

2.4.3 The influence of spatial gradients on climatic trends 

Spatial gradients differed between temperature and precipitation variables as well as between seasons, 

leading to a variety of differences in temporal trends and velocities between the two variables (Table 

S3). Patterning in velocities often matched those of their temporal trend counterparts, but velocity 

magnitudes were found to be greatly affected by spatial gradients. In some cases, trends were reversed 

due to the influence of spatial gradients. For example, a dampening of the negative pre-monsoon 

precipitation temporal trend in the NE due to a high spatial gradient alongside an exacerbation of a 

positive temporal trend in the southern CNE region led to a different relationship between pre-

monsoon precipitation and forest loss in the temporal trend and velocity models. Effects of spatial 

gradients were more evident for precipitation than temperature which had lower spatial heterogeneity 

ƛƴ ŎƭƛƳŀǘŜΦ {Ǉŀǘƛŀƭ ƎǊŀŘƛŜƴǘǎ ƻŦ ǘŜƳǇŜǊŀǘǳǊŜ ŘƛŘ ƴƻǘ ŜȄŎŜŜŘ лΦпх/κƪƳ ŎƻƴǎƛǎǘŜƴǘƭȅ ǊŜǎǳƭǘƛƴƎ ƛƴ ǾŜƭƻŎƛǘƛŜǎ 

with higher values than temporal trends (spatial gradients >1 would result in smaller velocities). 
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Figure 2| Annual based precipitation (top left image) and temperature temporal trends (top right) and 

precipitation (bottom left image) and temperature velocities (km yr-1) (bottom right) across the districts 

of India, with the outlines of the monsoon regions. Hatched districts are those that have been excluded 

from the study. 
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Figure 3 | Seasonal precipitation velocities in km yr-1 of each district for the time period 2001-2018. In 

a clockwise direction the seasons depicted are as follows: pre-monsoon, monsoon, post-monsoon and 

winter. The black outlines show the borders of the monsoon regions. 
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Figure 4| Seasonal temperature velocities in km yr-1 of each district for the time period 2001-2018. In 

a clockwise direction the seasons depicted are as follows: pre-monsoon, monsoon, post-monsoon and 

winter. The black outlines show the borders of the monsoon regions. 

 

2.4.4 National models 

At the national scale, there was no effect of annual-based climate change on forest loss. However, there 

was a significant effect from eight seasonal variables: velocities of monsoon (-) and winter temperatures 

(+), pre-monsoon (+) and winter precipitation (+), and temporal trends of monsoon (-), pre-monsoon (-

) and winter temperatures (+) and pre-monsoon precipitation (-) (Table 1). Notably, the post-monsoon 

season was not a driver of forest loss at the national scale. For temperature, the negative effect 

direction seen in the models for the monsoon season relates to smaller increases in temperature since 

there were no decreases in temperature during this season.  

In the regional models, climate was found to significantly affect forest loss in every region. Some regions 

were more affected than others, e.g., the Northwest region (Table 2 & 3), and each region had different 

compositions of climate trends that affected forest loss. The correlation between declines or lower 

values of monsoon temperatures and increases in forest losses was consistent across the models but 
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other variables showed trends of both negative and positive effect directions depending on season and 

location. 

Table 1 | National scale seasonal models of the effects of climate velocity and temporal trends on 

national forest loss, accounting for population density. The response variable tested in each model was 

forest loss (km2). The explanatory variables were the eight seasonal climate variables and population 

density change between 2000-2020 (people per km2). 

Model Significant fixed effect 

variables 

Estimate T p 

Seasonal 

velocity 

Pre-monsoon precipitation 

 

Winter precipitation 

 

Monsoon temperature 

 

Winter temperature 

0.088 

 

-0.121 

 

-0.335 

 

0.384 

2.128 

 

-2.225 

 

-4.007 

 

2.363 

0.033 

 

0.026 

 

<0.001 

 

0.018 

Seasonal 

temporal 

trends 

Pre-monsoon precipitation 

 

Pre-monsoon temperature 

 

Monsoon temperature 

 

Winter temperature 

 

Population density change 

-0.251 

 

-0.341 

 

-0.383 

 

0.507 

 

-0.083 

-3.544 

 

-2.395 

 

-3.863 

 

3.027 

 

-2.381 

<0.001 

 

0.016 

 

<0.001 

 

0.002 

 

0.017 
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Table 2| Regional scale seasonal models of the effects of climate velocities on regional forest loss 

accounting for population density. The response variable tested in each model was forest loss (km2). 

The explanatory variables for each model were the precipitation velocity and temperature velocity of 

each of the four seasons (eight climate variables in total) and population density change between 2000-

2020 (people per km2). 

Model Significant fixed effect 

variables 

Estimate T p 

NE No significant variables NA NA NA 

CNE Pre-monsoon precipitation 0.831 5.438 <0.001 

 

NW 

Monsoon precipitation 

 

Monsoon temperature 

 

Post-monsoon temperature 

0.295 

 

-0.634 

 

0.674 

2.414 

 

-3.267 

 

3.258 

0.018 

 

0.001 

 

0.001 

WC Post-monsoon temperature 0.670 2.279 0.024 

PEN Post-monsoon temperature -0.463 -3.799 <0.001 

 

 

Hilly 

Post-monsoon precipitation 

 

Winter precipitation 

 

Monsoon temperature 

-0.589 

 

0.571 

 

-0.594 

-3.087 

 

3.565 

 

-2.553 

0.003 

 

0.001 

 

0.014 
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Table 3| Regional scale seasonal models of the effects of climatic temporal trends on regional forest 

loss. The response variable tested in each model was forest loss (km2). The explanatory variables for 

each model were the precipitation and temperature temporal trends of each of the four seasons (eight 

climate variables in total) and population density change between 2000-2020 (people per km2). 

Model Significant fixed effect 

variables 

Estimate T p 

NE 

 

Monsoon temperature 

 

Population density change 

-0.626 

 

-0.242 

-2.353 

 

-2.076 

0.021 

 

0.041 

CNE No significant variables NA NA NA 

 

 

NW 

 

Pre-monsoon precipitation 

 

Monsoon precipitation 

 

Winter precipitation 

 

Pre-monsoon temperature 

 

Winter temperature 

0.588 

 

0.275 

 

-1.206 

 

0.533 

 

-0.639 

2.706 

 

2.028 

 

-3.153 

 

2.245 

 

-2.517 

0.008 

 

0.046 

 

0.002 

 

0.027 

 

0.014 

WC Post-monsoon precipitation -0.680 -2.96 0.003 

PEN Monsoon temperature 

 

Post-monsoon temperature 

-0.542 

 

-0.459 

-2.222 

 

-2.715 

0.029 

 

0.008 

Hilly No significant variables NA NA NA 

 

2.4.5 Population Density Change 

Generally, population density increased across India during 2000-2020. Density changes ranged from -

45 ς 4,000 people per km2, with an average increase of 200 people per km2. The highest increases were 

found in the North of the country, mainly the Central North-Eastern region. Only eleven districts in the 

country experienced a reduction in population density during the period (Figure S4). 

Population density change did not have a significant effect on forest loss in the annual-based national 

models, but there was a negative correlation between density change and forest loss in the seasonal 
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models. In the regional models, there was also a significant negative correlation between population 

density change and forest loss in the Northeast region. 

2.4.6 The extent of overlapping climate velocities 

In addition to the velocities of temperature and precipitation being highly variable across the country 

and between seasons, they had very different spatial configurations. Overlaps between high (top 10% 

of values) velocities of precipitation and temperature were rare with only two instances occurring 

within high forest loss areas (Figure 5). The first, and largest, instance was in the Northern Western 

Ghats which experienced both high velocities of precipitation declines, and temperature increases 

during the pre-monsoon season. The second instance occurred in the NE region where high velocities 

of declining precipitation overlapped with high velocities of declining temperature during the post-

monsoon season. In both the annual and winter data no overlaps of high velocity areas were recorded. 

Though overlaps were rare, many areas of high forest loss experience singular high velocities over the 

period. 

 

 

 

 

 

 

 

 



67 | P a g e 

 

  

 

Figure 5| Overlaps between districts containing the 10% fastest climate velocities and the highest forest 

losses (>20km2). Positive velocities are depicted in red and negative velocities depicted in blue. Hashed 

districts represent temperature velocities and dots represent precipitation. Districts with the highest 

levels of forest loss over the time period are shown in green. In a clockwise direction the seasons 

depicted are as follows: pre-monsoon, monsoon, post-monsoon and winter. The black outlines show 

the borders of the monsoon regions. 

 

2.5 Discussion 

This study indicates that climate change has played a significant ǊƻƭŜ ƛƴ LƴŘƛŀΩǎ ŦƻǊŜǎǘ ƭƻǎǎΣ ŀ ŎƻƴǘǊƛōǳǘƛƻƴ 

that has previously been overlooked. This study highlights the complexities of climate change effects 

on forests in India, the emerging climatic trends that may cause risks to forests in the future and 
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analyses the relevance of velocity metrics in tropical forest systems. Here, the findings are discussed in 

relation to the research questions. 

Has climate change contributed to past forest loss in India? 

Our analyses show that there are significant correlations between both temporal trends and velocities 

of climate variables with increased forest loss in India. Unexpectedly, and contrary to the literature, 

temperature decreases and slower warming were generally correlated with greater forest loss, despite 

much of the country warming up to лΦлрмх/ yr-1 and given the known detrimental effects that warmer 

temperatures can pose to forests through drought stress (Bonan, 2008; Chaturvedi et al., 2011; 

Gopalakrishnan et al., 2011). Though the mechanism behind this relationship is unknown, as 

deforestation and encroachment have been prevalent in India for many years, much of the forest exists 

at higher elevations where temperatures tend to be cooler. The trend is also likely affected by high 

forest loss in the NE and CNE where there is an anomalous cooling patch, thought to be caused by a 

growing aerosol haze (Ross et al., 2018). Many studies contrastingly predict temperature increases in 

these regions and expect forests to be adept at coping with warming (Chaturvedi et al., 2011; 

Ravindranath et al., 2005), our research suggests a re-evaluation of the climate threats to forests in this 

region given the substantial cooling. Although cooler temperatures in the tropics are not thought to be 

a direct threat to forests, there is the potential for indirect effects caused by additional pressure on 

people in the region e.g., reducing agricultural yields or inducing additional fuelwood collection.  

Relationships between precipitation and forest loss were also common in both the national and regional 

models, though the trends were highly variable both regionally and seasonally. Precipitation decreases 

and faster velocities were most associated with increased losses. This trend was strongest in the NE, 

EHR and Northern Western Ghats, but did not appear as a correlate of forest loss in the respective 

regional models as drying spots occurred on the borders between regions. Precipitation increases were 

also associated with increased loss in some regions. This has been found in other studies (Maringer et 

al., 2020; Neumann et al., 2017) and although appearing counterintuitive it can arise due to increased 

competition after forest growth spurts (Condit et al., 2004; McDowell, 2018) and the decoupling 

between precipitation and soil moisture which, in areas of groundwater depletion like NW India, is 

common (Zaveri et al., 2016; Condon and Maxwell, 2019). 

Mapping of trends in areas of high forest loss (<20km2) in the country revealed that most experienced 

reductions in precipitation, particularly during the post-monsoon and winter seasons, and year round 

in the NE and EHR regions. This is concerning for future forest persistence, with adequate precipitation 

and soil moisture often critical for forest growth (Seidl et al., 2017). The models in this study are unlikely 
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to capture these trends due to the regional separations. These findings also contradict previous studies 

that predict the NE region to get wetter and generally positive effects of climate on forest growth in 

the region (Chaturvedi et al., 2011). Additionally, many areas of the country experienced warming 

winter temperatures coupled with reduced precipitation. Of particular concern are the Western Ghats 

area and the Hilly region, both areas of conservation importance and high endemism. These results 

support previous studies detailing forests in these regions to be a high risk of climate change effects in 

the future (Chaturvedi et al., 2011; Ravindranath et al., 2005; Sharma et al., 2015; Upgupta et al., 2015). 

Importantly, though warming and drying conditions were most common in high loss areas, not all 

experience this type of climate change. The nexus between the CNE, WC and PEN hotspot at times is 

both cooling and getting wetter.  

Are there seasonal and regional variations in the climate-forest loss relationship in the country? 

Regionally the way climate affected forest loss varied greatly, both in the amount of exposure to 

different variables and in the effect directions of relationships. Forests in some regions, such as the NW, 

had a greater variety of climate variables correlated with forest loss. Here, high seasonal variation in 

the climate variables associated with forest loss could require different strategies for conservation 

throughout the year to tackle potential winter droughts and summer flooding. With some of the lowest 

amounts of forest cover in the country due to its aridity, even small losses have large implications for 

overall forest cover. These analyses support predictions of the high vulnerability of remaining NW 

forests to climate changes (Chaturvedi et al., 2011; Das & Behera, 2019; Gopalakrishnan et al., 2011). 

The NE, where loss is highest, was only associated with one climate variable. This region is thought to 

be largely resilient to projected climate changes due to lower exposure, and more resilient forest types 

(Chaturvedi et al., 2011; Gopalakrishnan et al., 2011). Known for its high levels of shifting cultivation 

and agricultural encroachment (Lele et al., 2008; Lele & Joshi, 2009), land use change and other factors 

likely still play a main role in forest loss here.  

Every season appeared as a correlate of forest loss in the models and there was no clear dominant 

season that affected forest loss. The diversity in seasonal contributions to forest loss between regions 

highlights the diversity found in climate and forest type across the country and illustrates the array of 

challenges forests in the country could face if seasons show diverging trends.  

Precipitation trends fluctuated more than temperature throughout the year, varying greatly by season, 

which species may find harder to adapt to than a unidirectional climate change. Interestingly, the 

fastest velocities and largest changes in precipitation occurred in different seasons (pre-monsoon and 

monsoon) to those of temperature (post-monsoon and winter). Though this result could provide 
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seasonal respite from overlapping high velocities it could mean that forests are exposed to potential 

year round climate stress. In addition, the analyses revealed several occurrences where adjacent 

seasons had diverging trends that may upset processes of growth and reproduction, as existing 

evidence shows that seasonal climate patterns can impact plant phenology in subsequent seasons 

(Chen., X et al., 2017; Cook et al., 2012; Harvey et al., 2019; Laube et al., 2013). 

For management strategies to be effective, they will need to be able to evolve with the seasons, be 

regionally specific and account for difficult transition periods. The variation found in this study provides 

evidence for a need for a diverse range of strategies not only throughout the country but also 

throughout the year. 

Are Indian forests exposed to high and overlapping climate velocities and is forest loss greater in these 

areas? 

Forests were exposed to high velocities of both climate variables, and faster velocities were found to 

be correlated with areas of higher forest losses in the models. However, faster velocities did not always 

denote more forest loss. A key example of this is the relationship between negative monsoon 

temperature velocities and increased loss. With no occurrences of declining monsoon temperatures, 

only lower increases, velocities must be indicative of slower increases in temperature. As such, it is 

likely that high velocities are not sole determinants of forest loss. Though the relationship between 

higher velocities and forest loss is not always detrimental, it is promising that no high forest areas had 

year-round exposure to high velocities. Further research is needed to understand when high velocities 

become detrimental to forests. 

Encouragingly, overlaps of fast climate velocities of temperature and precipitation were uncommon 

and generally covered small areas. This supports other studies that have shown spatial heterogeneity 

in temperature and precipitation velocities (Garcia et al., 2014; Heikkinen et al., 2020). The  exception 

in the Northern Western Ghats, could be concerning due to increased drought and fire risk in an area 

that covers seven protected areas within a biodiversity hotspot, and is already threatened by 

encroachment by agriculture and extensive fragmentation (Jha et al., 2000; Sharma et al., 2015). In 

addition, all three of the forest loss hotspots identified by this study received singular high velocities at 

some point during the year, with the Northeast and eastern Hilly regions experiencing some of the 

fastest negative precipitation velocities in every season. This prolonged exposure to rapid changes in 

climate could mean that species here are under additional pressure to move or adapt to climate sooner. 

The Northeast and eastern Hilly regions host some of the most biodiverse forests in the country 

(Chatterjee et al., 2006; Lele & Joshi, 2009) and fast velocities of changing climate here to add stress to 
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species already experiencing high levels of threat from land use change (Lele & Joshi, 2009; 

Ramakrishnan, 2007). 

Precipitation velocities ƛƴ LƴŘƛŀΩǎ ŦƻǊŜǎǘǎ, generally ~5-10km yr-1, were much larger than those recorded 

for temperature, which were 0.6km yr-1 at their fastest. These precipitation velocities are likely 

unattainably fast even for far more mobile species than trees, which under ideal conditions are 

expected to move a kilometre a year at best (Corlett & Westcott, 2013). The velocities recorded for 

precipitation in India (annual mean at 3.98km yr-1) are high compared to other studies including the 

global mean of 0.22 km yr-1 (Kosanic et al., 2019; Loarie et al., 2009; Vanderwal et al., 2013). However, 

velocities of temperature in the country (annual mean at 0.029km yr-1) are much lower than the global 

average of 0.42km yr-1 (Loarie et al., 2009; Vanderwal et al., 2013). Our results, suggest that 

precipitation velocities may be greater in the tropics than those in temperate regions but the same may 

not be true for temperature. For species capable of tracking climate, precipitation velocities could be a 

great concern as the speeds in which species would need to travel to reach their preferred climate may 

be too quick to traverse. 

/ŀƴ ŎƭƛƳŀǘŜ ǾŜƭƻŎƛǘȅ ǇǊƻǾƛŘŜ ŀŘŘƛǘƛƻƴŀƭ ǳƴŘŜǊǎǘŀƴŘƛƴƎ ƻŦ ŀ ŦƻǊŜǎǘΩǎ Ǌƛǎƪ ǘƻ ŎƭƛƳŀǘŜ Ŏhange? 

This study found the metric of climate velocity to provide additional information compared to 

traditional temporal trend analysis as it provides a measure of, and a suggested repercussion of, the 

spatial variability in the climate variable of interest. Different relationships between climate change and 

forest loss were found in India due to the effect of the spatial gradient and, if forests respond in the 

way that the velocity mechanism expects, climate velocity should be an important component of 

managemenǘ Ǉƭŀƴ ŦƻǊ ǇǊƻǘŜŎǘƛƴƎ LƴŘƛŀΩǎ ŦƻǊŜǎǘǎΦ ¢ƘŜ ƳŜǘǊƛŎ Ƙŀǎ ōŜŜƴ ǳǎŜŘ ƛƴ ǘƘŜ Ǉŀǎǘ ǘƻ ŀǎǎŜǎǎ ǘƘŜ 

vulnerability of areas to future climate change and the utility of protected areas in the future (Arafeh-

Dalmau et al., 2020; Fuentes-Castillo et al., 2020). Areas where climate velocity is low are likely to be 

key refuges for many species in the future and management strategies should take this into account 

and ensure these low velocity areas are as protected from multiple threats as possible. Additionally, 

climate velocity can identify areas that are climatically heterogenous and are key refuge areas for 

species. Ensuring that there are corridors between high velocity, spatially homogenous areas, and low 

velocity, heterogenous refuges could help many species transition between climatically unsuitable or 

rapidly changing areas to more suitable, refuge sites as well as ensuring protected areas are large 

enough to provide a variety of climate conditions for species (Brito-Morales et al., 2018). The majority 

of the protected areas in India do not fall within the high velocity areas for either precipitation or 

temperature (Figures 5 & S8). This is promising as they lie in potential refuge areas for species and the 

protected area status may relieve pressures from other stressors such as land use change. Many of the 
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areas with a higher coverage of protected areas, such as the Western Ghats, are also in mountainous, 

and therefore climatically heterogenous landscapes, offering more protection (Brito-Morales et al., 

2018; Loarie et al., 2009). However, it is concerning that there appears to be few protected areas in 

locations of high climate velocities, such as the central areas of the PEN region and the PEN, WC & CNE 

nexus. The lack of protected areas across these more exposed locations could mean that there are not 

the ecological corridors available for species to adjust their distribution safely with climate change. 

LƴŘƛŀΩǎ bŀǘƛƻƴŀƭ .ƛƻŘƛǾŜǊǎƛǘȅ ¢ŀǊƎŜǘ с ŀƛƳŜŘ ǘƻ ƘŀǾŜ нл҈ ƻŦ ǘƘŜ ŎƻǳƴǘǊȅΩǎ ƭŀƴŘ ŀǊŜŀ ŎƻǾŜǊŜŘ ōȅ 

protected areas by 2020 (CBD, 2018). According to the ENVIS reports (ENVIS, 2020), India fell short of 

this target in 2020 reaching just 5% coverage in protected areas (including areas protected under lower 

protection status such as Wildlife Reserves). The results from our study could help to inform placement 

of new protected areas to reach the 20% target with climate change trajectories in mind. 

We find climate velocity to be a valuable metric, especially when used at a large scale where it can 

identify areas where the speed of climate change could be a concern for species persistence. However, 

this metric is known to lack biological realism at present and there are several caveats to its efficacy in 

indicating species vulnerability to climate change (Brito-Morales et al., 2018; Carroll et al., 2015; 

Hamann et al., 2015) . In particular, we note concerns around comparing temperature and precipitation 

velocities. Absolute values of precipitation will usually be much higher than temperature but their 

values are not comparable in terms of effect on species. Additionally, the fastest velocity in this study, 

-97kmyr-1, was located on a mountain plateau, a small area of low spatial gradients but surrounded by 

a myriad of valleys (potential climate refuges). We stress that a key area of future study should be 

assessing the biologically realism of the spatial gradient aspect of climate velocity metrics specifically 

for forests before using this metric to obtain realistic estimates of forest species risk. We also stress 

that this metric should be integrated with more biologically realistic parameters if used in future 

modelling studies. 

Despite these caveats, the metric has provided additional information on the general climate risk of a 

region not possible from conventional temporal trend data. It highlights areas of continuous 

homogenous climate which may have reduced opportunities for species to find climate refuges, 

particularly evident for temperature in India where the spatial gradient was considerably lower. This 

can be useful in planning areas for long-term conservation (Heikkinen et al., 2020; Loarie et al., 2009). 

It is also meaningful when considering the breadth of species reliant and relied on by tropical forests 

that are capable of moving to more climatically suitable, available areas.  

Methodological considerations and future directions 
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This study provides novel insight into the potential climate variables leading to forest loss in a 

tropical-subtropical system with a uniquely national focus. However, there are associated limitations 

that are highlighted below to enable improvements in future studies. 

The use of population density as a land use proxy  

Previous studies have shown human pressures, such as increasing land use changes, as a major causes 

for forest declines in India (Gupta, 2007; Meiyappan et al., 2017; Padalia et al., 2019; Sudhakar Reddy 

et al., 2016) and a link between population density and land use changes associated with forest loss 

(Kale et al., 2016; Palchoudhuri et al., 2015). Higher population densities were expected to increase 

pressure on forest resources leading to more loss. However, our results, using the proxy of population 

density, do not support this. Although higher population densities are likely to put additional pressure 

on forest resources, many densely populated areas have little forest cover left resulting in loss occurring 

further from the source of the demand, geographically uncoupling the relationship between population 

density and demand on forest resources. Forest encroachment has also been linked to other socio-

economic drivers such as out-migration of labourers and infrastructure such as irrigation facilities 

(Meiyappan et al., 2017). As population density does not account for these factors and showed a 

relatively small effect on forest loss in the models, the contribution of other human pressures e.g., land 

use change and infrastructure, to forest loss trends remains an open question. Future studies will aim 

to investigate the relative contributions of both human pressures and climate change in conjunction to 

forest loss in India. aŜǘǊƛŎǎ ǎǳŎƘ ŀǎ ǘƘŜ ΨIǳƳŀƴ LƴŦƭǳŜƴŎŜ LƴŘŜȄΩΣ ŘŜǾŜƭƻǇŜŘ ōȅ {95!/ /L9{9b 

(https://sedac.ciesin.columbia.edu/data/set/wildareas-v2-human-influence-index-geographic) may 

better capture the trends needed by this analysis as they account for a range of anthropogenic factors 

including population pressure, human land use and infrastructure, and human access (e.g., roads and 

rivers). Currently the dataset only spans 1995-2004, a temporal length that is too short to support the 

timescale of this analysis currently, and quite a large spatial resolution (1km) but should be a 

consideration for future studies alongside developing similar metrics with a longer temporal scale and 

smaller spatial scale that can capture the variety of human pressures. 

The importance of spatial and temporal scale 

These analyses find that trends are misleading when focusing solely on annual climate averages. This is 

particularly the case for precipitation, where seasonal variation is masked in annual averages by strong 

opposing monsoonal trends. Focusing solely on annual averages in this study result in concluding no 

effect of climate on forest loss in India. This has repercussions such as underestimating future projected 

https://sedac.ciesin.columbia.edu/data/set/wildareas-v2-human-influence-index-geographic
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losses, dismissing interactions with other stressors and missed opportunities for protection. We stress 

that in countries with high seasonality, using seasonal data is necessary at the very least. 

We also highlight the importance of utilising an appropriate spatial scale in large-scale analyses. The 

results obtained for national and regional models differed greatly in this study. Use of regional models 

highlighted large variation in climate drivers of loss across India but also separated climatic trends and 

contiguous areas of forest. This is of particular concern in the border districts of the CNE, WC and PEN 

regions which contained contiguous areas of high forest loss and homogenous climatic trends, but 

which were segregated in the regional models, potentially lessening the impact of climate trends 

observed. 

Lag times and contribution of plantation forests 

Forests often have lagged responses to changes in climate (Bertrand et al., 2011; Tei & Sugimoto, 2018). 

However, these can be highly variable between species and there is no clear consensus on the length 

of such lags (Bertrand et al., 2011; Corlett & Westcott, 2013; Kosanic et al., 2019; Liang et al., 2018). 

Therefore, it was difficult to account for without detailed context-specific information at the species-

level and as such lags were not considered in this study. The forest data used in this study also does not 

discriminate between natural and plantation forests, a known concern with forest data in India 

(Puyravaud et al., 2010). Some losses recorded in this study are possibly due to harvesting of tree 

plantations and not natural forests. Future studies would benefit greatly from the creation of forest 

cover maps that can distinguish between natural and plantation forests (Puyravaud et al., 2010). 

Conclusions  

We show, for the first time, that climate change has played a role in past forest loss in India and provide 

the first characterisation of climate velocity in the country. We highlight a concern for future forest loss 

due to emerging drying trends and the locations and magnitude of singular high velocities ƛƴ LƴŘƛŀΩǎ 

remaining forest strongholds. This study highlights the issues around spatial and temporal scales 

leading to misrepresentation of climatic contributions to forest losses, particularly in ecologically and 

climatically diverse systems like India. Although this study shows climate to contribute to LƴŘƛŀΩǎ ŦƻǊŜǎǘ 

loss, it also supports that other stressors, particularly land use change, likely still play a major role. As 

climate changes become more extreme, an understanding of how stressors interact will be of 

paramount importance in preserving LƴŘƛŀΩǎ ŦƻǊŜǎǘ ŀƴŘ ōƛƻŘƛǾŜǊǎƛǘȅΦ In light of this, future studies should 

aim to quantify different aspects of the climate-forest relationship in India, particularly the response of 

different tree species to climate, prevalence of extreme events e.g., drought, interactions between 

climate and other stressors, the lag time, and the effects of climate-related forest loss on other aspects 
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of biodiversity within the country. Studies, such as this, where other drivers of forest loss are explored 

can help to inform conservation policy and practice on a national and regional level, leading to more 

successful and cost-effective management programmes, especially as climate changes become more 

prevalent. 
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2.7 Supplementary Material 

Table S1| List of excluded districts due to having less than 0.1km2 of forest cover at the start of the 

study period 

District State  District Area 

(km2) 

Forest 

cover 

(km2) 

Forest 

loss 

(km2) 

Percent of 

total forest 

cover lost (%) 

Churu Rajasthan 17075.11777 0 0 0 

Jaisalmer Rajasthan 38637.6099 0 0.002054 0 

Bikaner Rajasthan 26965.39559 0 0.002723 0 

Jodhpur Rajasthan 22842.40267 4.49E-04 0.015823 1.00E+02 

Patan Gujarat 6026.347964 0.0016362 0.011306 100 

Barmer Rajasthan 28372.88001 0.0028321 0.006959 100 

Hanumangarh Rajasthan 8912.642101 0.006607 0.01745 100 

Nagaur Rajasthan 17676.90422 0.012381 0.015812 100 

Yanam Puducherry 31.65915537 0.0436975 0 0 

Sirsa Haryana 4236.292792 0.0721095 0.022118 30.67348159 

Hyderabad Telangana 178.6037918 0.0725725 0.024237 33.3963124 

Bhilwara Rajasthan 10469.55369 0.0764671 0.039023 51.03189784 

Ganganagar Rajasthan 11679.58236 0.0856024 0.104419 100 
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Figure S1| Left panel: The six monsoon regions used in my study; Northeast (NE), Northwest (NW), 

Central Northeast (CNE), West Central (WC), Peninsular (PEN) & Hilly. The map was created to display 

the Homogenous Monsoon Regions of India outlined by the Indian Institute of Tropical Meteorology. 

Right panel: The ecological biomes of India. Most of India is located in the biomes of Tropical and 

Subtropical Moist Broadleaf forests, Dry Broadleaf forests and Deserts and Xeric Shrublands. The map 

is a clipped version of the global extent created by Dinerstein et al., (2017) 
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Figure S2|¢ǊŜƴŘǎ ƛƴ ǎŜŀǎƻƴŀƭ ƳŜŀƴ ǘŜƳǇŜǊŀǘǳǊŜ όх/ύ ŀŎǊƻǎǎ ŀƭƭ ǎƛȄ Ƴƻƴǎƻƻƴ ǊŜƎƛƻƴǎ ŦƻǊ ǘƘŜ ǘƛƳŜ ǇŜǊƛƻŘ 

2001-2018. Different seasons are depicted as individual lines; monsoon (red), post-monsoon (green), 

pre-monsoon (blue) and winter (purple) 
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Figure S3| Trends in seasonal total precipitation (mm) across all six monsoon regions for the time period 

2001-2018. Different seasons are depicted as individual lines; monsoon (red), post-monsoon (green), 

pre-monsoon (blue) and winter (purple) 
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Figure S4 | Population density change (people per km2) between the years 2000-2020 in the districts 

of India. The thick black lines show the borders of the monsoon regions. 

 

Figure S5| The increase in total annual forest loss on a national level between the years 2001-2018 in 

km2 
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Figure S6| The mean annual forest loss per district per year in the monsoon region of India between 

the years 2001-2018. Note the difference in axis range (y-axis), used to ensure trends could be seen 

clearly. 
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Figure S7| Top panel: The forest cover in km2 of each district in India in the year 2000. Middle panel: 

¢ƘŜ ǇŜǊŎŜƴǘ ƻŦ ŜŀŎƘ ŘƛǎǘǊƛŎǘΩǎ ŦƻǊŜǎǘ ŎƻǾŜǊ ǘƘŀǘ ǿŀǎ ƭƻǎǘ ōŜǘǿŜŜƴ ǘƘŜ ȅŜŀǊǎ нллм-2018. Bottom panel: 

The total forest lost in each district between the years 2001-2018 in km2Φ aǳŎƘ ƻŦ ǘƘŜ ŎƻǳƴǘǊȅΩǎ ŦƻǊŜǎǘ 

cover is located in the Northeast and along the east and southwestern coasts. The highest percentage 

of forest cover lost are spread across the country with hotspots in the Northwest and Northeast. Total 

forest loss is greatest in the Northeast, central west coast and southwestern areas, where forest cover 

is also high. 
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Figure S8| Districts with forest losses >20km2 during the time period 2001-2018. Green dots indicate 

the central point of a district that had a forest loss area greater than 20km2 during the time period 

2001-2018. The three areas of high forest loss are highlighted with blue circles. Protected areas are 

marked in red (UNEP-WCMC & IUCN, 2021). Biodiversity hotspots are marked as blue filled in areas 

(Hoffman, et al., 2016). The map is split up into the homogenous monsoon regions and hashed districts 

display those excluded from the study.  
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Figure S9| {Ŝŀǎƻƴŀƭ ǘŜƳǇŜǊŀǘǳǊŜ ǘŜƳǇƻǊŀƭ ǘǊŜƴŘǎ ƛƴ х/κȅŜŀǊ ƻŦ ŜŀŎƘ ŘƛǎǘǊƛŎǘ ŦƻǊ ǘƘŜ ǘƛƳŜ Ǉeriod 2001-

2018. In a clockwise direction the seasons depicted are as follows; pre-monsoon, monsoon, post-

monsoon and winter. The black outlines show the borders of the monsoon regions. 
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Figure S10| Seasonal precipitation temporal trends in mm/year of each district for the time period 

2001-2018. In a clockwise direction the seasons depicted are as follows: pre-monsoon, monsoon, post-

monsoon and winter. The black outlines show the borders of the monsoon regions 

 

Table S2| The range and average values of precipitation and temperature velocities of annual and 

seasonal variables. 

Season Range of Precipit

ation Velocities 

Mean Range Range of Temperature 

Velocities 

Mean Range 

Annual -13.752 ς 34.32

0 

3.981 48.072 -0.321 ς 0.298 0.029 0.619 

Monsoon -10.152 ς 41.38

8 

4.881 51.54 -0.010 ς 0.272 0.118 0.282 

Post- 

monsoon 

-14.550 ς 11.25

4 

-0.903 25.804 -0.725 ς 0.440 -0.090 1.165 

Pre- 

monsoon 

-97.586 ς 13.08

6 

-0.008 110.672 -0.334 ς 0.403 0.042 0.737 

Winter -16.458 ς 19.03

4 

-0.589 35.492 -0.606 ς 0.489 -0.025 1.095 
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Table S3| The range and mean values of precipitation and temperature spatial gradients between 

seasons 

Season Temperature Range (Mean) Precipitation Range (Mean) 

Pre-Monsoon 0.1-0.38 (0.128) 0.1-4.63 (0.549) 

Monsoon 0.1-0.33 (0.125) 0.1-19.40 (2.271) 

Post-Monsoon 0.1-0.36 (0.126) 0.1-5.13 (0.383) 

Winter 0.1-0.36 (0.127) 0.1-2.30 0.203) 
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Chapter 3: Dynamics of forest change and 

the contribution of agricultural 

development to forest loss in India 

 

 

A tea plantation within the Nilgiris, Western Ghats, India. 

 

 

Source: Alice Haughan (!ǳǘƘƻǊΩǎ ƻǿƴ) 
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3.1 Abstract 

India has experienced high rates of forest loss for decades, largely as a result of commodity-driven 

deforestation related to agriculture. Past ǎǘǳŘƛŜǎ ƳŀǊƪŜŘ ŀ ŘŜŎƭƛƴŜ ƛƴ ŘŜŦƻǊŜǎǘŀǘƛƻƴ ōȅ ǘƘŜ ŜŀǊƭȅ мффлΩǎΣ 

however, few studies have characterised forest change on a large scale following this and little is known 

about whether agriculture is still the main cause of forest loss in the country. This research examines 

the trends in forest change across India during the period 1995-2019, at two spatial scales: national and 

regional. Land cover change detection analysis was used to create spatial datasets of land use change 

and forest loss and gains. Linear mixed effects models were used to investigate the relationship 

between forest loss and types of land cover conversions to ascertain whether loss was predominantly 

associated with agricultural-based land cover changes, or other land cover types. The chapter further 

uses the data to characterise which forest types are most at risk to different land cover changes as well 

as which have gained the most area coverage over the time period. The findings show that despite 

losing 6.2% of its forest cover over the 24 years, India is experiencing net increases in forest cover by 

the 2015-2019 period. Large increases in forest cover, in all regions, during the 2015-2019 period 

overrode net losses that were predominant prior to 2015. Forest loss was not consistent across regions, 

and in contrast to previous studies, these results indicate that forests in the West Central region were 

most at risk. Forests in this region continuously experienced the highest losses, losing >1,583km2 more 

forest than the next worst affected region. Forest loss was not consistent across forest types, where 

broadleaved deciduous forests lost disproportionately more forest cover. Agriculture-based land use 

changes (particularly mosaic cropland) were the primary cause of forest loss across the country, but 

their contribution declined over time. There was a notable shift towards increases of forest being lost 

to natural land covers which provide novel indications that the primary cause of forest loss is changing 

to natural land covers such as mosaic vegetation, shrub and grasslands. Our findings have potentially 

positive implications for forest cover and biodiversity in the country as forest cover increases but we 

stress concern over the level of forest loss still occurring, despite gains. We further highlight the 

importance of regular monitoring of forests at different spatial scales and suggest that forests in 

different regions and of different types will require different management strategies to conserve them. 

¦ƴŘŜǊǎǘŀƴŘƛƴƎ ǘƘŜ ǘǊŜƴŘǎ ŀƴŘ ŎŀǳǎŜǎ ƻŦ ŦƻǊŜǎǘ ŎƘŀƴƎŜ ƛƴ ǊŜŎŜƴǘ ȅŜŀǊǎ ǿƛƭƭ ƘŜƭǇ ǘƻ ōŜǘǘŜǊ ǇǊƻǘŜŎǘ LƴŘƛŀΩǎ 

remaining forest resources, upon which high levels of biodiversity and rural population depend on. 

3.2 Introduction 

India has experienced high rates of forest loss for decades (Lele et al., 2008; Roy et al., 2013). Between 

1930 and 1975, an average of 4,700km2 of forest were lost per year - a gross annual rate of loss of 

0.77% (Sudhakar Reddy et al., 2016). More recent estimates ŦǊƻƳ ǘƘŜ ŜŀǊƭȅ мффлΩǎ reflect a continued 
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but lower loss rate of 0.35% (Meiyappan et al., 2017). After the 1980 Forest Conservation Act and other 

ŀǘǘŜƳǇǘǎ ōȅ ǘƘŜ DƻǾŜǊƴƳŜƴǘ ǘƘǊƻǳƎƘƻǳǘ ǘƘŜ ƭŀǘŜ улΩǎ ŀƴŘ ŜŀǊƭȅ флΩǎ ǘƻ ǇǊƻƳƻǘŜ ƛƴǘŜƴǎƛŦƛŎŀǘƛƻƴ ƻŦ 

agriculture alongside reforestation (Gupta, 2007; Sudhakar Reddy et al., 2016), the rate of forest loss 

was further reduced, dropping to a rate of 0.07% during 1995-2005, and with evidence of reforestation 

occurring in some areas (Adhikari et al., 2015; Kundu et al., 2015; Padalia et al., 2019). Most regions in 

the country showed lower deforestation rates by 2005, with the exception of the northeast where 

forest loss remained high (Sudhakar Reddy et al., 2016). Despite these changes, deforestation is still 

occurring at unsustainable levels, and at a faster rate than reforestation (Adhikari et al., 2015; 

Puyravaud et al., 2010; Sudhakar Reddy et al., 2016), and many forests continue to display increasing 

levels of fragmentation (Wakeel et al., 2005; Pandit et al., 2007; Roy et al., 2013).  

LƴŘƛŀΩǎ ŦƻǊŜǎǘǎ ŀǊŜ ƴƻǘŀōƭŜ ŦƻǊ ǘƘŜƛǊ ƘƛƎƘ ƭŜǾŜƭǎ ƻŦ ōƛƻŘƛǾŜǊǎƛǘȅ and endemism (Chitale et al., 2014; Lele 

et al., 2008)Φ ¢ƘŜ ŎƻǳƴǘǊȅ ƛǎ ƘƻƳŜ ǘƻ ŦƻǳǊ ƻŦ ǘƘŜ ǿƻǊƭŘΩǎ Ǝƭƻōŀƭ ōƛƻŘƛǾŜǊǎƛǘy hotpots as well as important 

refuges for populations of charismatic species such as Bengal tiger and Indian Elephant (Padalia et al., 

2019; Puyravaud et al., 2010). Approximately 247 million people are dependent on LƴŘƛŀΩǎ forests for 

survival (World Bank, 2005; FSI 2019) with two-thirds of the population relying on fuelwood for cooking 

(Davidar et al., 2010; Puyravaud et al., 2010) and forest products such as food, fuelwood, fodder, and 

timber being the sole income for many rural inhabitants. Forest loss in India has been shown to directly 

negatively impact biodiversity (Raman, 2006; Pandit et al., 2007), and reduce the numbers of medicinal 

and economically important species (Pandit et al., 2007; Roy et al., 2013), and fuelwood and fodder 

yield (Wakeel et al., 2005). While reductions in forest coverage can improve accessibility across regions, 

loss has led to increased risk of desertification, flooding and local climate change in the country 

(Bhattacharjee & Behera, 2017; Nayak & Mandal, 2019; Sen et al., 2004).  

Land use change is recognised as the primary cause of forest loss, and the types of land cover that 

replace forests vary across the country (Wakeel et al., 2005; Sudhakar Reddy et al., 2016). While shifting 

cultivation, logging and mining play a large role in the Northeast; expansion of plantations and 

agriculture are significant in the Western Ghats and Himalayas; and agriculture, logging, and 

infrastructure development are the leading causes of forest loss in the Deccan plateau (Kundu et al., 

2015; Lele & Joshi, 2009; Reddy et al., 2013). Nationwide, cropland expansion and shifting cultivation 

are recognised to be the biggest drivers of forest loss (Gupta, 2007; Meiyappan et al., 2017; Padalia et 

al., 2019; Sudhakar Reddy et al., 2016). Meiyappan et al., (2017) showed that, nationally, forest was 

predominantly lost to cropland expansion and was more at risk in areas where agricultural yields were 

low, due to lack of irrigation facilities, soil degradation and a shortage in agricultural workers. Lower 

yields led to communities seeking out more land to cultivate alongside alternative incomes, often at 
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the expense of forests and their resources, this has been shown as a concern on a global scale (FAO, 

2020). Agriculture is likely to remain a significant driver of loss considering that as an industry it 

accounts for 14%-20% of GDP (Bana & Gautam, 2014; Zaveri et al., 2016)Σ ŜƳǇƭƻȅǎ Ҕрл҈ ƻŦ LƴŘƛŀΩǎ 

workforce, and it is the primary income source for 70% of rural households in the country (FAO, 2020). 

It is clear that forest loss in the country is intrinsically linked to the welfare of agriculture in rural 

communities.  

Recent evidence suggests that certain types of forest are disproportionately lost (Wakeel et al., 2005; 

Puyravaud et al., 2010). Roy et al., (2013) focused on forest fragmentation at the national scale and 

found that sub-tropical dry evergreen forests and mixed formations had some of the lowest levels of 

fragmentation, potentially as a result of increased institutional and social protection, and the 

prevalence of this forest type in inaccessible locations. On the other hand, moist deciduous and dry 

deciduous forests had some of the largest percentage of their coverage under medium to high 

fragmentation. Several forest types with high fragmentation, such as tropical broad-leaved and dry 

deciduous forests, harboured high levels of endemism and are important for biodiversity (Roy et al., 

2013; Utkarsh et al., 1998; Wright, 2010). Contrastingly, other studies have also shown 

disproportionate losses in different types of evergreen forests. For example,  in the southern state of 

Tamil Nadu, most loss has occurred in tropical dry evergreen forests along the coasts (Puyravaud et al., 

2010). In central Himalaya, due to the revenue that pine resin provides the local government, pine 

forests (needle-leaved evergreen) were found to be more intact and better protected than oak 

(broadleaved evergreen) forests and evidence suggests that generally broad-leaved forest types are 

more at risk due to their versatility in produce (fuelwood, timber & fodder) and the suitability of these 

forest types for livestock rearing (Singh et al, 2016; Wakeel et al., 2005). Future predictions for forest 

type distributions in the country predict a general shift from tropical dry deciduous species to tropical 

wet evergreen species, as well as an increase in the distribution of wetter forest types in response to a 

predicted warmer and wetter climate across much of the country (Chaturvedi et al., 2011; Ravindranath 

et al., 2005). To date, most studies considering forest type have been small-scale regional studies, and 

the last national study to consider forest type when assessing human-driven forest losses focused on 

loss during only two seasons in 2005-2006 (Roy et al., 2013). Since different types of forest support 

different species, harbour different levels of biodiversity and have different extents in the country, the 

identity of forest being lost is a key knowledge gap that needs to be addressed to determine threats to 

biodiversity. Since climate changes are predicted to impact certain forest types, an understanding of 

the types at risk from land use changes will facilitate understanding of which types are threatened by 

multiple stressors. 



96 | P a g e 

 

Currently, there is substantial regional bias in studies focusing on forest changes within India. A high 

proportion of studies are conducted in areas with high forest cover and biodiversity, such as the 

Western Ghats, Himalayas, ŀƴŘ ǇŀǊǘƛŎǳƭŀǊƭȅ ǘƘŜ bƻǊǘƘŜŀǎǘ ǊŜƎƛƻƴ ǿƘŜǊŜ Ϥнр҈ ƻŦ LƴŘƛŀΩǎ ŦƻǊŜǎǘ ŎƻǾŜǊ ƛǎ 

located alongside some of the highest rates of loss, despite remaining largely inaccessible until the 

1990s (Kant and Katwal, 2003; Lele et al., 2008; Lele and Joshi, 2009; FSI 2019). Analyses of 

deforestation trends in other areas of the country are sporadic. Central regions, the Deccan Plateau, 

and Eastern Ghats have been largely overlooked, despite containing important habitat corridors and 

high levels of forest fragmentation (Padalia et al., 2019). These regions also tend to have lower 

protected coverage and subsequently have increased vulnerability (Puyravaud et al., 2010), as well as 

having been subject to extreme forest loss for a long time due to being in more populous regions, but 

are under-represented in the deforestation literature. Several small-scale (district or watershed) studies 

during the early 1990s and 2000s (Reddy et al. 2013; Meiyappan et al., 2017) investigate rates of 

deforestation displaying high variability across the country; for instance, a review by Reddy et al. (2013) 

showed some Northeast districts to have a net deforestation rate of 0.90-5.29% per year, the Himalayas 

a net deforestation rate between 0.13-0.69%, the Western Ghats between 0.04-1.34% and the Deccan 

peninsula 0.19-3.2%, but highlighted that different methodologies between studies often result in 

widely dissimilar estimates. These small-scale studies provide useful insights into regional gaps in the 

knowledge of forest loss trends but do not scale up to show the dynamics of forest changes in the 

country at larger scales (e.g., national) and limit our understanding of where forests are currently at 

risk. 

Research on the extent of national forest loss has been declining and very little has focused on forest 

change in recent periods. Many studies took place during the peak of the forest loss and just after the 

1980 CƻǊŜǎǘ /ƻƴǎŜǊǾŀǘƛƻƴ !Ŏǘ ǿŀǎ ŜƴŀŎǘŜŘΦ ¢Ƙƛǎ ǇǊƻŘǳŎŜŘ ŀ ǿŜŀƭǘƘ ƻŦ ƭƛǘŜǊŀǘǳǊŜ ƻƴ LƴŘƛŀΩǎ ŦƻǊŜǎǘ ƭƻǎǎ 

between 1990-2005 and many recent studies still focus on this period (Adhikari et al., 2015; et al., 2000; 

Meiyappan et al., 2017; Wakeel et al., 2005). However, the number of studies on forest loss in the 

country have been declining and very few have investigated land use changes underpinning forest loss 

in the last 10 years. The most recent study, which looks at forest change between 1930-2013, showed 

that deforestation rates were still high but declining with time, finding that agriculture remained the 

primary cause of forest loss across the country in the later periods (Sudhakar Reddy et al., 2016). In that 

study, Sudhaker Reddy et al., (2016) recorded a 28% loss in forest coverage between 1930 and 2013, 

but with considerably lower average annual rates of loss at 0.07% by the period 1995-2005, and 0.05% 

during 2005-2013.  
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The only regular source of forest data in India is the biennial State of the Forest report conducted by 

the Forest Survey of India. These reports have shown net increases in forest cover nationally and across 

many areas of the country since 2013, owing to reforestation schemes (FSI 2017, 2019). There has, 

however, been longstanding controversy over the accuracy of these reports, which regularly monitor 

the forest but struggle to distinguish between natural forests and plantations, several of the reports 

attributed many forest gains to increases in plantations (e.g., FSI 2001, 2017) which are known to have 

lower conservation value (Horák et al., 2019; Kanowski et al., 2005; Martello et al., 2018; Phommexay 

et al., 2011). Many are concerned that these reports currently over-inflate the forest cover and 

subsequently, the relevance of the FSI reports are disputed in relation to conservation of natural forests 

(Ravindranath et al., 2005; Puyravaud et al., 2010; Roy and Joshi, 2010; Sudhakar Reddy et al., 2016).  

The lack of recent studies, the existence of regional bias and focus on small scale research has resulted 

in only minimal understanding of forest change on a national scale (in which policies often act on) in 

recent times. Questions remain around whether deforestation rates are still slowing, whether the main 

cause is still agriculture-based, and if certain types are forest are at greater risk. This research aims to 

answer the following questions: 

1. How has the area of forest changed over 24 years between 1995 and 2019? 

2. What land covers are associated with greater forest losses? 

3. Are the drivers of loss different for different forest types and geographical regions? 

Following trends in the literature, we hypothesise that forest losses will be decreasing across the 

country, whilst forest gains will be increasing. Due to the high dependence on agriculture, and the 

historical risk agricultural expansion poses to forests in the country, we predict that conversion to 

agriculture will remain the largest cause of forest losses. As the type of forest present is often highly 

location-dependent and each type can provide different material benefits to people, we predict that 

the proportion of forest lost will not be consistent across forest types. Finally, due to differing social 

and economic stressors alongside differing extents of forest cover, we predict that forest loss will not 

be homogenous across regions. 

 

3.3 Methods 

3.3.1 Quantifying forest change  

Global land cover data was obtained from the ESA CCI Land Cover project (v2.0.7 1995-2015) and EC 

C3S Land Cover project (v2.1.1 2016-2019) at the spatial resolution of 300m. The land cover data was 

clipped to the borders of India using QGIS (version 3.16.0). The EC C3S product was designed to be 
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consistent with the ESA CCI dataset and as such, both iterations of the land cover product utilise the 

FAO Land Cover Classification System (Di Gregorio, 2016)  (see Table S1). Land cover change was then 

defined for a full 24-year study period (1995-2019) and also five-year intervals; 1995-1999, 2000-2004, 

2005-2009, 2010-2014, 2015-2019 & 1995-2019 (full study period) using the Land Cover Change 

function from the Semi-Automatic Classification Plugin (v 6.4.5) (Congedo, 2021) in QGIS. Periods of 

five years were chosen to capture changing general trends while avoiding smaller inter-annual 

fluctuations. Pixels where forest had been lost or gained were extracted from the land cover data using 

ΨwŜŎƭŀǎǎƛŦȅ ōȅ ǘŀōƭŜΩ ŦǳƴŎǘƛƻƴ ŦǊƻƳ ǘƘŜ vDL{ wŀǎǘŜǊ !ƴŀƭȅǎƛǎ ǘƻƻƭōƻȄΦ 

The geographic coordinates (centre of the pixel of interest), administrative divisions of state and 

district, monsoon region, forest type, and the land cover change category associated with the change, 

were extracted for each forest loss and gain pixel using the QGIS Point Sampling Tool. The categories 

of land cover change were later simplified from those outlined in the FAO classification system into 

eight categories: cropland, mosaic cropland (part cropland, part tree/shrub/herbaceous cover), natural 

mosaics (part tree/shrub, part herbaceous cover), urban areas, other tree types, shrub and grasslands 

& water bodies. The full details of this reclassification are available in Table S1. 

Aggregated metrics were then calculated, firstly, the total forest loss and total forest gain areas per 

district. This is the total area lost (or gained) without taking into account forest gains (or losses). As a 

ǊǳƭŜΣ ǿƘŜǊŜ Ψόǘƻǘŀƭύ ŦƻǊŜǎǘ ƭƻǎǎΩ ƻǊ Ψόǘƻǘŀƭύ ŦƻǊŜǎǘ ƎŀƛƴΩ ƛǎ ƳŜƴǘƛƻƴŜŘΣ ǘƘƛǎ ƛǎ ǿƘŀǘ ƛǎ ōŜƛƴƎ ǊŜŦŜǊǊŜŘ ǘƻΦ 

Secondly, the net change in forest cover for each district was calculated and aggregated nationally and 

regionally. The net change is defined as the total forest gains minus the total forest losses, resulting in 

a representative change in forest cover accounting for both losses and gains. Where net change, is 

reported it is labelled as such to distinguish it from the total area lost or gained. 

Finally, rates of forest loss and gain for each of the periods at two spatial scales (national and regional) 

were calculated following the methodology from Puyravaud (2003) and using the formula: 

ὶ
ρ

ὸς ὸρ
ὼ ὰὲ
ὥς

ὥρ
 

where r is the annual rate of loss or gain, t1 is the first year of the period, t2 is the last year of the 

period, and a1 and a2 are the total losses or gains at time t1 and t2 respectively.  

Climate is highly variable across the country, and this has considerable impact on the distribution of 

forest type and land cover (Kumar & Scheiter, 2019). To account for this, regional data was based on 

the breakdown of the country into homogeneous monsoon regions, Regional boundaries were sourced 
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from Indian Institute of Tropical Meteorology for the six regions: Central Northeast (CNE), Northeast 

(NE), Northwest (NW), West Central (WC), Peninsular (PEN) and Hilly regions (Figure S1). 

Analyses focused on mainland states and districts with >0.1 km2 of total forest cover (Table S2). 

Subsequently, thirteen districts, predominantly from the arid and xeric shrubland regions of the 

Northwest, and island union territories were excluded.  These 13 excluded districts covered a land area 

ǘƘŀǘ ŀŎŎƻǳƴǘŜŘ рΦто҈ ƻŦ ǘƘŜ ǘƻǘŀƭ ƭŀƴŘ ŀǊŜŀ ƛƴ ǘƘŜ ǎǘǳŘȅ ŀƴŘ лΦлллм҈ ƻŦ ǘƘŜ ŎƻǳƴǘǊȅΩǎ ŦƻǊŜǎǘ ŎƻǾŜǊΦ Lƴ 

addition to those removed for low levels of forest cover. 

In the previous chapter, forest loss data was obtained from the Global Forest Change dataset (Hansen 

et al., 2013). However, when used in conjunction with the land cover data for this analysis discrepancies 

between forest classification and other land cover categories (particularly shrubland) in the two 

datasets made them incompatible, and hence the land cover data was used for both forest change and 

other land cover change. The differences between these two datasets are discussed in more detail in 

the thesis discussion. 

3.3.2 Determining the land use changes driving forest loss  

Linear mixed effects models were used to understand the relationship between forest loss and land 

cover conversion type. These models included total area of forest lost (km2) to each land cover type per 

district as the response variable alongside a categorical explanatory variable of the type of land cover 

that forest had been lost to. A nested random effect of District within State was included within the 

models to account for the expected similarities in effects occurring within the same districts and states 

of the country (as in Meiyappan et al., 2017). An offset of the area of forest cover (km2) in the start year 

(1995) was included to account for the differences in the original area of forest coverage. The response 

variable was log-transformed due to a high amount of skew in the data and the offset was subsequently 

logged to match the response. Model selection was based on ANOVA, AIC and analysis of diagnostic 

plots. 

Land cover types with less than 10 data points were excluded from the models as parameters estimated 

with less than this number of data points are unlikely to be able to produce reasonable effect sizes and 

statistical power (Harrell , 2015). This resulted in the NW region being excluded from the models as 

ǿŜƭƭ ŀǎ ǘƘŜ Ψ²ŀǘŜǊ ōƻŘƛŜǎΩ ƭŀƴŘ ŎƻǾŜǊ ŎŀǘŜƎƻǊȅ ƛƴ ǘƘŜ b9 ŀƴŘ Iƛƭƭȅ ǊŜƎƛƻƴǎΦ aƻŘŜƭ ǊŜǎƛŘǳŀƭǎ ǿŜǊŜ ǘŜǎǘŜŘ 

ŦƻǊ ǎǇŀǘƛŀƭ ŀǳǘƻŎƻǊǊŜƭŀǘƛƻƴ ǳǎƛƴƎ ǘƘŜ ŦǳƴŎǘƛƻƴ ΨƳƻǊŀƴΦƳŎΩ ŦǊƻƳ ǘƘŜ ǇŀŎƪage spdep (v. 1.5) in R, which 

ŎŀƭŎǳƭŀǘŜŘ ŀ aƻǊŀƴΩǎ L ǎǘŀǘƛǎǘƛŎ ŦƻǊ ǘƘŜ ǊŜǎƛŘǳŀƭǎ ŀƴŘ ǎǳōǎŜǉǳŜƴǘƭȅ ŦƻǳƴŘ ƴƻ ǎǇŀǘƛŀƭ ŀǳǘƻŎƻǊǊŜƭŀǘƛƻƴ ƛƴ 

the residuals of any of the models (Table S3). 

All models were conducted in R studio using R version 4.0.3 and the package lme4. 



100 | P a g e 

 

3.4 Results 

3.4.1 Characterising forest loss and its relationship with forest gain 

While forest loss has occurred from 1995 to 2019 in India, there has been a greater area of forest gains. 

Both losses and gains were high in the first five years of the study and declined until 2014, after which 

rose in area again but gains substantially more so than losses. 

Over the course of the 24-year period (1995-2019), forest loss totalled an area of 28,549km2, equal to 

сΦнф҈ ƻŦ ǘƘŜ ŎƻǳƴǘǊȅΩǎ мффр ŦƻǊŜǎǘ ŎƻǾŜǊŀƎŜΦ A large proportion, 49.8%, occurred in the first five years 

(1995-1999) (Figure 1). The average annual rate of loss across the 24-year period was 0.26% of the 

1995 forest cover (~1,189 km2 per year, Table S4). The fastest annual rate of loss occurred in the 1995-

1999 period (0.62%) and the slowest in the 2005-2009 period (0.09%). Nationally, forest gains totalled 

an area of 34,387 km2, with half of this gained in the last five years of the study (2015-2019) where the 

area of forest gained was more than twice the amount of forest lost in the same five-year period. 

Between 2000 and 2014, forest gains declined and at a faster rate that forest losses (Figure 1). The 

average rate of forest gain across the 24 years was 0.32% per year with the fastest rate occurring in the 

last period, 2015-2019 (0.83%) and the slowest in the 2010-2014 period (0.04%). 

In three of the five periods, the area of forest loss was greater than the area of forest gain. However, 

over the 24-years, the country shows a net gain in forest cover of 5,838km2 (0.05%), mostly in response 

to the large forest gains occurring in the final period. 
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Figure 1|  The total area size (km2) of forest gains (green) and forest losses (red) in each of the five 

periods of the study at the national scale. 

Area size of forest loss varied greatly between the monsoon regions but was most notable in the WC 

and CNE regions. The WC region lost the greatest area of forest over the 24 years, losing 9,146 km2 

(7.6% of its 1995 forest cover), whilst the CNE region lost the highest percentage of its original forest 

cover, losing 12.0% over the 24 years (7.9% of which occurred in the first five years) but had a lower 

areal loss of 7,563 km2. The NW and NE regions experienced the lowest areal losses (NW: 443km2 & 

NE: 1,736km2) and NE and Hilly regions had the lowest percentage losses (NE: 2.9% & Hilly: 3.7%). 

Annual rates of forest loss differed between regions with the fastest annual rate of loss (0.50%) in the 

CNE region and the lowest annual rate of loss (0.12%) in the NE region. Most regions showed a decline 

in the area of forest lost through the first three periods (1995-2009) before either a levelling off or 

slight increase by the last period. The WC region, however, showed a substantial increase in forest loss 

during this later period (Figure 2).  

In addition to having the second smallest area of forest losses, the NE also had the greatest area of 

forest gains among the six regions. Here, 8,116km2 of forest was gained (~338km2 per year) over the 

24-year period, half of which occurred in the first period (1995-1999). The NW region, which also saw 
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low forest losses, had the smallest area of forest gains (1,207.8km2) but this was an annual average gain 

of 0.43% of its 1995 forest cover which was high compared to the national average. The Hilly region 

had the lowest rate of gain, gaining on average 0.19% of its 1995 forest cover per year. The greatest 

increases in net regional forest cover predominantly occurred during the last five years of the study in 

the 2015-2019 period, with the exception NE region where increases were higher in the first period 

(Figure 2).  

 

Figure 2|  The total area size (km2) of forest gains (green) and forest losses (red) in each of the five 

periods of the study for each monsoon region. 

Prior to the 2015-2019 period, all regions were experiencing net losses, with the exception of the NE 

and the NW which experienced net gains in most periods (Figure 3 & Table S5). The substantial increase 

in forest gains in the final period of the study coupled with comparatively reduced losses resulted in all 

regions experiencing net increases in forest cover in the final period. Over the 24-year period of the 

study, four regions experienced net increases in forest cover whereas two regions, WC and CNE, 
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experienced net reductions in forest cover (Figure 3 & Table S5). Net rates of change over the 24-year 

period varied regionally, ranging from -0.22% per year in the CNE to +0.44% per year in the NE (Table 

S4).  
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Figure 3|District-based net forest change across six periods: 1995-1999, 2000-2004, 2005-2009, 2010-

2014, 2015-2019 & 1995-2019. Districts where there was a net loss in forest over the period of time 

are shown in red, net gains are shown in green, and districts with no change in the area of forest 

coverage are shown in white. Black outlines display district boundaries and excluded districts are shown 

in a hashed pattern. Tables within the figure show the net change in forest (km2) for each region in the 

same period as its accompanying map.  

There was considerable variation in the trends of net forest change (forest gains minus losses) within 

districts across the country. For the regions with the largest net losses across the 24-year period, WC 

and CNE, this trend was primarily driven by a homogeneous collection of districts bordering the two 

regions (shown in red in Figure 4). These districts had net losses substantially higher than the 

surrounding districts and contrastingly, most districts within the two regions tended towards low net 

gains. The Hilly region, despite generally showing net increases in forest cover in all periods, contained 

a small number of districts with some of the highest net losses, centred in the Western portion of the 

region. However, these are inconspicuous when averaging over the region due to the relatively high 

forest gains in the southerly portion of the region (Figure 4). 
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Figure 4| District-based net forest change (km2) during the 1995-2019 study period. Black outlines show 

the monsoon regions, hashed areas show districts excluded from the analysis due to low forest cover. 

Districts shown in orange or red depict areas of net forest losses, where the area (km2) of forest lost 

was greater than the area of forest gained over the period. Districts shown in green and blue depict 

areas of net forest increases (gains), where the area (km2) of forest increases was greater than the area 

of forest lost over the period. 

3.4.2 Investigating the contribution of different land use changes to forest loss 

During the 24-year study period, land cover changes associated with agriculture (mosaic cropland and 

cropland) were responsible for 58.9% of all forest losses. Forest to mosaic cropland conversions 

accounted for 11,844km2 (41.4%) of forest loss across the country, followed by conversion to natural 

mosaics (30.1%), and cropland (17.5%). Conversion to shrubland, urban, water and other forest types 

accounted for the remaining 10.8% of loss (Figure 5).  
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Whilst conversion to mosaic cropland, cropland and natural mosaics remained the top three 

contributors to forest loss throughout the first three periods accounting for >84% of all loss, both 

cropland and mosaic cropland reduced in their contributions over time, whilst natural mosaics and 

shrubland increased. By the 2010-2014 period, cropland and mosaic cropland accounted for 36% of the 

loss, whereas natural mosaics and shrubland accounted for 55%. This was a 34% reduction in the 

contribution of cropland-based land cover types to forest losses compared to the previous periods. 

During 2015-2019 there was a slight increase in the contributions of cropland and mosaic cropland 

(driven by increases in mosaic cropland), however, this was still lower, at 42%, than the contributions 

of natural mosaics and shrublands which was 56% (Figure 5). 

 

Figure 5| Percentage of national forest loss to different land covers categorised by period. 

 

The types of land cover associated with forest loss varied regionally (Figure 6). Over the 24-years, 

natural mosaics and mosaic cropland had similar contributions to forest losses in the CNE, HILLY and 

WC regions. Whereas, in the PEN and NE region, contributions of natural mosaics to forest losses were 
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much greater than mosaic cropland. In five of the six regions, conversion of forest to urban areas and 

water bodies was rare but in the NW they had considerably higher contributions to forest loss. 

Conversion of forest to croplands was also common in this region and associated with the majority of 

loss in the first two periods and the last period. 

 

Figure 6| Percentage of forest loss to different land covers categorised by period in each monsoon 

region 

Results from the linear mixed effects models at the national scale revealed that there was significantly 

more forest lost to mosaic cropland and natural mosaics than to other categories over the 24-year 

period (Table 1), but that these two main drivers did not contribute to significantly different amounts 

of loss (contrast estimate: -0.02, SE: 0.122, t: -0.219, p: >0.05) (Table S6). Conversion of forest to 

cropland was the third largest contributor to forest loss in the country (Table 1). The fixed effects in this 

model explained 23.1% of the variance, with 58.1% explained by the random effects (Table 1).  
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Table 1| Linear mixed effects model output of the relationship between area of forest cover lost (km2) 

in a district to seven land cover predictors. The intercept represents the land cover category of 

cropland. Significant p-values are shown in bold. 

 

 

Conversion to mosaic cropland, natural mosaics and full cropland conversions were consistently the 

land cover types with the largest contributions to forest loss across all regions. Mosaic cropland resulted 

in more forest loss than natural mosaics and cropland in Hilly and CNE regions, whereas conversion to 

natural mosaics caused the majority of forest loss in PEN and NE regions (Table 2). Conversion to mosaic 

cropland in the WC region resulted in a higher model estimate for forest loss but this was not 

significantly different from forest loss to natural mosaics (Table S7). Fixed effects in the regional models 

accounted for between 10.8% and 36.4% of the variation in the response variable (Table 2). The NW 

region was the only region where conversion to full cropland resulted in the largest amount of forest 

losses with little contribution from other categories but was excluded from the models for having too 

few data points.  
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Table 2| Regional model output of the relationship between forest loss (log km2) per district and seven 

land cover predictors in each of the six monsoon regions. The intercept represents the land cover 

category of cropland. Significant p-values are shown in bold. Gaps in the table occur where there are 

<10 instances of a predictor in a region. These results remain on the log scale. 

 

 

3.4.3 Understanding the extent of forest loss for different forest types 

By far the largest forest losses across the 24-year period were in broadleaved deciduous (closed to open 

>15%) forests (Table S8). This type of forest lost 19,149km2, which was twice the amount of the next 

category needle-leaved evergreen (closed to open >15%), which lost 5,910km2. For broadleaved 

deciduous (closed to open >15%) forests this equates to a loss of 7.4% and for needle-leaved evergreen 

(closed to open >15%) forests it equated to 5.2% loss of their 1995 forest coverage. These are also the 

highest percentage losses of forest cover across the forest types.  

Broadleaved deciduous (closed to open >15%), also had the highest gains amounting to 19,289km2 

(7.4% of 1995 coverage), resulting in net gains overall. The forest type with the second largest gains of 
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8,591km2 (8.4% of its 1995 coverage) was broadleaved evergreen (closed to open >15%) forest. The 

largest percentage increases were found in needle leaved deciduous (closed >40%) forests which saw 

a 195% increase in coverage, alongside incurring no losses. This increase occurred exclusively in the 

2015-2019 period before which no change occurred in this forest type, and it is worth noting that this 

corresponded to only a 15km2 increase in area. Prior to 2015, the forest type with substantially larger 

percentage increases in forest coverage than any other forest type was flooded saline forests, which 

saw a 15% increase in area between 1995-2014.  

Most forest types increased in area over the 24-years, after accounting for both losses and gains. The 

forest types that experienced the largest net gains were broadleaved evergreen (closed to open >15%) 

and needle leaved deciduous (closed to open >15%) forest types, which experienced net gains of 

4,895km2 and 325km2. Though these values have very different meanings in terms of expansion of 

these forest types, where broadleaved evergreen (closed to open >15%) expanded by 8.4% but needle 

leaved deciduous (closed to open >15%) forests expanded by 45%. Only two forest types experienced 

net losses over the 24-years, these were broadleaved deciduous (closed >40%) and needle leaved 

evergreen (closed >40%), losing 20km2 and 0.18 km2 respectively.  

It is important to note that broadleaved deciduous (closed to open >15%), needle-leaved evergreen 

(closed to open >15%), and broadleaved evergreen (closed to open >15%) forests, which have the 

highest forest loss and gains, also constitute the largest coverage of forest, accounting for 96.3% of 

LƴŘƛŀΩǎ ŦƻǊŜǎǘ ŎƻǾŜǊΦ  

Regionally, the major type of forest lost was broadleaved deciduous (closed to open >15%); in half of 

the regions (CNE, NW, WC) 90-96% of the loss was from this category of forest. The NE and Hilly regions 

predominantly lost forest from different types: the NE lost mostly from broadleaved evergreen (closed 

to open >15%) accounting for ~46% of total loss and Hilly region predominantly lost needle leaved 

evergreen (closed to open >15%) forests accounting for ~71% of total loss. The PEN region 

predominantly lost broadleaved evergreen (closed to open >15%) and broadleaved deciduous (closed 

to open Ҕмр҈ύΣ пп҈ ŀƴŘ пм҈ ƻŦ ǘƘŜ ǊŜƎƛƻƴΩǎ ǘƻǘŀƭ ƭƻǎǎΣ ǊŜǎǇŜŎǘƛǾŜƭȅΦ  

There was also an interesting trend in the types of land cover that different forest types were lost to, 

and land use categories did not contribute evenly to losses across forest types. The two forest types 

with the largest losses, broadleaved deciduous (closed to open >15%) and needle-leaved evergreen 

(closed to open >15%) forests had the highest contributions of agricultural land uses to loss. For both 

types, croplands and mosaic croplands contributed to >64% of their losses. The only other forest type 

which lost predominantly to agricultural land uses was broadleaved deciduous (closed >40%) forest 
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where 73% of loss in this type could be attributed to cropland and mosaic croplands. This type of forest 

was one of the only types to still be experiencing net losses. Other forest types lost <35% to agricultural 

land uses and mainly lost coverage to urban areas and shrublands. 

 

3.5 Discussion  

This study aimed to characterise forest change during the period 1995-2019, to assess the primary 

cause of forest loss, as well as to investigate whether different forest types and geographical regions 

were experiencing disproportionate forest changes. These findings show that although rates of forest 

loss remain concerning in India, areas of forest gain are more numerous, and the country has been 

experiencing overall net gains between 2015-2019. Conversion of forest to mosaic-cropland was the 

primary cause of loss across the period, indicating that agriculture remains the biggest contributor to 

forest loss in the country. The study also found that forest losses were not distributed evenly across 

forest types and regions. The study provides detailed information on forest changes during a period 

currently unaccounted for in the literature and provides novel indications of a shift in drivers of forest 

loss over time in India. 

These analyses provide supportive evidence to past studies showing that forest loss continued to 

decline post-1995 (Roy et al. 2013; Sudhakar Reddy et al., 2016). Despite reductions in forest losses, 

there was a net decline in forest nationally in three of the five periods. This is largely due to forest gains 

reducing faster and on a larger scale than losses, e.g., in 2010-2014 losses reduced by 12.3% but gains 

reduced by 59.7%. ¢Ƙƛǎ ƛǎ ǎǳǊǇǊƛǎƛƴƎ ŎƻƴǎƛŘŜǊƛƴƎ LƴŘƛŀΩǎ ŎƻƳƳƛǘƳŜƴǘǎ to reforestation over this period 

and the average annual net gains of 0.4% reported by the FSI over this time (FSI, 1995; FSI 2015). 

However, rapid increases in forest gains compared to losses during the 2015-2019 period resulted in 

overall net increases of 0.05% in forest cover over the 24 years of the study. These net increases and 

lower rates of forest loss suggest that forest policies may be starting to take effect, but the tendency 

towards small increases in losses in half of the regions by the final period, is concerning. Our analyses 

estimate that India lost ~6.3% of its original forest cover over the 24 years of the study. Though 

comparative studies (of a similar length of time) are limited, a study by Jha et al., (2000) showed a 25.6% 

loss in forest cover in the 20 years preceding this study (1973-1995). We show a considerable reduction 

in the forest loss in more recent times in comparison. The study by Jha et al., (2000) focused on 

quantifying forest loss across the Western Ghats area (part of our Peninsular region), which in this 

chapter we show to be experiencing net forest increases across most of its districts during the last 10 

years. This further shows the importance, and need, for more frequent recent research on changes in 

LƴŘƛŀΩǎ ŦƻǊŜǎǘ ŎƻǾŜǊŀƎŜ ǎƛƴŎŜ ǘƘŜ ǘǊŀƧŜŎǘory and magnitude appear to be changing rapidly.  
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The net change in forest cover reported in this study (+0.05%) is also small compared to the FSI reports 

of the same period. Though FSI do not publish rates of change, using the forest cover estimates for two 

years we can estimate the annual rate of change to be +1.09% between 1995 and 2019 (FSI, 1995; FSI 

2019) but are similar in scale to past research in the country, which showed a net change of 0.05% 

during 2005-2007 (Sudhakar Reddy et al., 2016). For forest research in India, it has been common to 

record large differences in rates of change between studies due to differences in the definition of forest 

and the resolution of data used (Reddy et al., 2013). In addition, several studies have criticised the 

efficacy of the FSI reports in producing a representative rate of forest change and over-inflation of 

forest change is a concern in these reports (Puyravaud et al., 2010; Roy & Joshi, 2010). Overall, 

nationally these analyses show trends of a net increase in forest cover and a greater rate of gain 

compared to losses which is potentially positive for biodiversity protection in the country and could be 

a sign that conservation policies are beginning to work. 

Interestingly, most forest gains over the 24 years were a result of loss of shrubland, which has been 

found in other studies (Sudhakar Reddy et al., 2016; Tian et al., 2014) and is thought to be a response 

to government advocated schemes targeting wastelands and degraded forest areas for afforestation 

(Sudhakar Reddy et al., 2016). Though increases in forest coverage are likely to be beneficial to many 

species, it raises concern for the conservation of species specific to shrubland habitats, shrublands and 

grasslands have been shown to be globally at high risk (Bremer & Farley, 2010; Newbold et al., 2016). 

Furthermore, the interplay between forest losses and gains is important in reaching target amounts of 

forest cover but forest gains may not provide the same benefits, at least in the short term, to 

biodiversity that were provided by the lost forest especially if a different forest type is gained (Coleman 

et al., 2021; Kimberley et al., 2019; Puyravaud et al., 2010; Watts et al., 2020). The best insurance for 

biodiversity remains the maintenance and future survival of old-growth forests where possible (Gibson 

et al., 2011). 

Regionally, the rates of forest losses and gains were highly variable and support the chapter hypothesis 

that regional variation would be found. The two regions where forest is most threatened are the WC 

and CNE regions both of which experienced large net losses over the 24-year period and consistently 

in the first 20-years. The WC and CNE regions also have some of the highest percentage losses and the 

highest rates of loss across the 24-year period at 0.32 % (WC) and 0.50% (CNE). A review paper analysing 

previous estimates from smaller-scale studies in the areas of high loss in these regions found annual 

rates of loss in these regions between 0.19-3.2 (Deccan Peninsular, WC) and 0.74-1.83 (Odisha, CNE) 

(Reddy et al., 2013). Our rates are similar in comparison and on the lower end which is unsurprising 

given the reductions in loss seen over the last 24 years. These two regions are often overlooked in 
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regional studies in favour of the more biodiversity rich Northeast and Western Ghats areas, despite 

them containing large tracts of tiger and elephant habitats (NTCA, 2018). They are also key agricultural 

zones where maintenance of natural forest cover could play a role in ensuring soil stability and water 

retention to prevent agricultural losses in the future. Another region where the rate of forest loss is 

concerning is the Hilly region. Despite this region generally showing increases in forest cover and lower 

rates of loss, when visualising the area of forest change on the district level it was clear that there are 

several districts in the Western part of the region that have experienced some of the largest net 

declines in forest cover. This has been found in other studies of this region where deforestation is 

markedly higher in the Western portion than the East due to higher population densities (Pandit et al. 

2007). Our results contrast with earlier reports of highest levels of forest loss in the NE region (Lele et 

al., 2008; Lele & Joshi, 2009; S. Reddy et al., 2013) and suggest that in recent years it is one of the least 

affected areas of the country. In these analyses, this region experienced the largest net increase in 

forest cover and had the lowest percentage loss of original cover, losing 2.9% between 1995 and 2019.  

This study analysed recent forest change trends across India, showing that agriculture-based land use 

changes are still largely responsible for forest loss across India during the period 1995-2019. This 

supports the chapter hypothesis and earlier studies showing the importance of agriculture in forest 

change (Gupta, 2007; Meiyappan et al., 2017; Padalia et al., 2019). However, despite agriculture-based 

land cover changes accounting for 59% of the forest loss across the 24-years, the majority of loss was 

not as a result of complete conversion of forest to cropland and more forest was lost to mosaic cropland 

conversions and natural mosaic conversions, nationally and in all but one of the regions. The only region 

where conversion to cropland was associated with the largest amounts of losses was in the NW region 

but due to this region containing very low levels of forest cover, this could not be confirmed in the 

models. Distinction between the two types of croplands, mosaic cropland and cropland, is important 

because mosaic cropland, retaining a proportion of natural vegetation, likely supports a higher level of 

biodiversity and forest intactness (depending on the proportion of natural vegetation remaining) than 

full conversion to cropland (Roy et al. 2013; Anand et al., 2010; Haddad et al., 2015; Oliver et al., 2016; 

Raman, 2006). This finding also likely supports previous research which has shown that many areas of 

forest that are lost to agriculture-based land cover conversions in India are due to shifting cultivation, 

encroachment and small-scale agriculture (Lele et al., 2008; Meiyappan et al., 2017).  

The findings also show previously undetected indications that the main cause of loss is changing with 

time, identifying a shift towards forest loss driven by conversion to natural mosaics, shrubland and 

grasslands which by the final period account for a larger proportion of the loss compared to agriculture-

based conversions. This is the first documented shift in the main driver of national forest loss away from 
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agriculture in the country, though increases in the contributions of shrubland conversions to forest loss 

have been found in previous studies (Meiyappan et al., 2017; Sudhakar Reddy et al., 2016). This study 

cannot identify the casual factors behind this shift, but it ƛǎ Ǉƻǎǎƛōƭȅ ŀ ǎǳŎŎŜǎǎ ƻŦ ǘƘŜ ŎƻǳƴǘǊȅΩǎ ƴŀǘƛƻƴŀƭ 

forest policies reducing forest losses from large-scale agricultural expansions (Tian et al., 2014; National 

Forest Policy, 1988). The location of the remaining forests could also be a factor since it is likely that 

much of the cultivatable land has already lost its forest cover and the remaining forests are in harder 

to reach locations or those less suitable for growing crops (J. J. Liu & Slik, 2014). Many areas where the 

practice of shifting cultivation is present often have areas of shrubland in between cropping phases due 

to the start of forest regrowth which could be contributing to this trend (Kant & Katwal, 2003; Lele et 

al., 2008). The unique patterning and shortening rotational cycles of shifting cultivation practices 

(Kundu et al., 2015; Nikhil Lele & Joshi, 2009) could also result in an under-estimation of the effect of 

agriculture if it is classed instead as natural mosaics or shrubland. Without further information from 

ground-based and social surveys, alongside repeated studies from this time period, is it difficult to 

conclude why this shift from agriculture-based forest loss is occurring, and whether it will continue 

given slight increases in agriculture-based contributions in the final period of the study. 

The highest areal and percent coverage losses of forest were consistently found in the most prolific 

forest type nationally, broadleaved deciduous (closed to open >15%), and this was also the case in half 

of the regions. This supports previous studies which find broadleaved deciduous forests to be at high 

risk to human exploitation in India (Coleman et al., 2021; Ramprasad et al., 2020; Wakeel et al., 2005). 

This forest type also had disproportionately higher losses as a result of agricultural conversions. 

However, encouragingly they also experienced the largest increases in forest area and are expected to 

be more resilient to a warming and drying climate (Aguirre-Gutiérrez et al., 2020; Esquivel-Muelbert et 

al., 2019; Suresh et al., 2010). The high increases in broadleaved area may also be due to its selection 

for afforestation programs in some areas. These programmes sometimes use broadleaved genera such 

as Eucalyptus, Quercus and Acacia because of the high yields of timber, fuelwood and fodder they 

provide which could reduce pressure for resources on old-growth forests (Kesari & Rangan, 2010; 

Köhlin & Parks, 2001; Ramprasad et al., 2020). Between 1995-2014, the largest percent coverage 

increases of a forest type were in flooded saline forests, which saw a 12% net increase in coverage 

which was over twice that of any other forest type. Net increases of this forest type were seen in all 

regions and could be an indicator of increased conservation or of sea-level rise. The increase in flooded 

forest area in India has been found in other studies and has been primarily attributed to restoration 

activities in place to tackle ǎŜŀ ƭŜǾŜƭ ǊƛǎŜ ƻƴ LƴŘƛŀΩǎ Ŏƻŀǎǘǎ (Ghorai et al., 2016; Murthy et al., 2015; 

Prasad et al., 2017). 
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Interestingly, there is considerable mismatch between the types of forest being lost and gained across 

the study period. Firstly, though most forest types experienced net gains in coverage on the national 

level, there were differences in the magnitude of these gains between types. For example, needle-

leaved evergreen lost 5.2% of its 1995 coverage and gained 5.3%, leading to a net gain of around 0.1%. 

In contrast, broadleaved evergreen forests lost 3.6% of coverage but gained 8.4%. Secondly, at the 

regional scale there were mismatches between the types of forest lost and gained. For example, the 

Central Northeast region predominantly lost forest from the broadleaved deciduous forest type but 

gained needle-leaved deciduous forests. Whereas the Hilly region predominantly gained broadleaved 

deciduous forests and lost needle-leaved evergreen forests. These regional differences between types 

of forests being lost and gained can be overlooked when looking at national totals depicting mainly 

gains in all forest types. However, differences in climate, habitat types, predation, and food, among 

many factors, mean that both different types of forests and forests in different areas, protect different 

species (Karanth et al., 2010; Utkarsh et al., 1998) and so losing forest in one area and gaining in another 

is likely to impact biodiversity. This is particularly concerning in regions such as the WC and CNE which 

lost a lot of forest and experienced lower forest gains. Additionally, the shift in the different types of 

forest being gained compared to those being lost could be due to natural causes such as climate, due 

certain species being more competitive in the successional stages of new forest growth or to 

reforestation preferences (Alexander et al., 2015; Asher & Bhandari, 2021). Relocation of some types 

of forest is expected across the country in response to climate change (Chitale et al., 2014; Deb et al., 

2017; Ravindranath & Sukumar, 1998). For example, many regions will be more favourable to drought-

tolerant species and previously dry regions may become more hospitable to forest growth where 

precipitation increases are projected (Ravindranath & Sukumar, 1998; Sharma et al., 2017). In these 

instances, potential reforestation schemes could plan for future climate change effects on species by 

reforesting in regions that may have more favourable climate in the future or by using tree species 

better suited to the changing climate. This future-proofing of the forest could, if appropriate habitat 

corridors are ensured, protect species that might otherwise suffer under climate change. Due to 

increasing human pressures on the land, reforestation and afforestation schemes are also likely to be 

limited in where they have access to land and may not have the luxury of choice of forest type and 

location of the afforestation which could be contributing to the observed mismatches (Coleman et al., 

2021; Ramprasad et al., 2020).  

Chapter 2, which also assessed forest loss across the country during a similar time period (though 

covering 2001-2018 rather than 1995-2019), showed different trends in forest loss than those found in 

this chapter, and it is worth highlighting the extent of these differences and the potential reasoning for 

this. In Chapter 2, the analysis used a different dataset for forest change (Global Forest Change by 
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Hansen et al., 2013) than this chapter which used the ESA CCI land cover product. The Chapter 2 analysis 

found forest loss in India to be extensive between 2001-2018, averaging 1,204km2 per year. Whereas, 

using the data from this chapter for as similar time period as possible (2000-2019), loss is estimated at 

766km2 per year. This is still extensive but a much reduced rate. Furthermore, the two datasets showed 

differing locations of concern for forest loss, since Chapter 2 showed the NE to have the greatest rate 

of loss, but this chapter showed drastically lower forest loss in comparison, and for the CNE and WC 

regions to have the greatest areas of loss. The differences seem to lie in the classification of shrubland 

and forest pixels, where the Global Forest Change dataset used in Chapter 2 tends to classify more 

pixels as forest than the CCI land cover dataset. Some of the forest pixels classified as forest in the 

Global Forest Change dataset are classified as shrubland in the CCI land cover dataset likely due to the 

similar composition of vegetation and hence likely a similar spectral signature making it hard to 

distinguish between the two. It is concerning to see such a disparity between two regularly used 

datasets which could result in a misunderstanding of the magnitude of the problem, as well as leading 

to different management strategies between the regions without a true understanding of which needs 

greater protection. This is discussed further in Chapter 5. 

This study has provided novel insights into the scale and main drivers of forest loss in recent times in 

India. However, there are some key limitations and areas of future study that are necessary to further 

this work. Firstly, the study would benefit from a locally derived land cover classification instead of 

relying on a global dataset which is likely to have more errors and misclassifications on a local scale (Liu 

et al., 2018; Pérez-Hoyos et al., 2017). This could also provide greater confidence in the classification 

given the disparity between datasets discussed earlier. Further analysis should be undertaken to 

measure the accuracy of these classifications for India, since the scale of the data may be masking 

smaller scale transitions in land cover possibly resulting in an underestimation of loss. As such, the study 

was constrained by lack of available and accessible data classified for India which is commonly cited as 

a problem (Davidar et al., 2010; Pandit et al., 2007; Tsarouchi, Mijic, Moulds, & Buytaert, 2014) and a 

lack of comparable studies. Secondly, further local knowledge is needed to ascertain the exact causes 

of loss beyond solely what the land has been converted to. Understanding the underlying drivers of 

conversion to these land cover types is essential for mitigating forest loss in the future. The same 

conversion type can be driven by completely different drivers e.g. conversion to natural mosaics could 

be due to shifting cultivation, logging, other local uses of the forest products such as villages with a 

main trade around wood products (Meiyappan et al., 2017).  

Overall, this study presents a much needed analysis of the trends of forest change in India in the two 

most recent decades. The study importantly highlights a shift towards net forest increases in recent 
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years but cautions over increases in forest losses in recent years. The study concludes that conversion 

of forest to agricultural-based land cover remains the primary concern for forests across the 24-years, 

but also highlights a potential novel shift towards increases in contributions of natural-based land cover 

in the future. More research needs to be done to comparatively assess this period, to examine the 

consequential effects on biodiversity and the mechanisms behind the changes in these broad land cover 

types. This study paints an encouraging picture for the conservation of forests in India following 

extensive net increases in forest cover in recent years. However, iƴ ƻǊŘŜǊ ǘƻ Ƴŀƛƴǘŀƛƴ LƴŘƛŀΩǎ ƘƛƎƘ ƭŜǾŜƭǎ 

of biodiversity and forest cover, appropriate land cover planning on both a national and regional level 

will be necessary and as such, recent research such as this on the trajectory and main contributors to 

forest loss is much needed. The findings suggest that additional conservation action is needed to reduce 

forest loss within the West Central and Central Northeast regions of the country, the areas with the 

greatest forest losses, and to account for disproportionate losses to broadleaved deciduous forests. 
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3.7 Supplementary material 

Table S1| Summary of the FAO Land Cover Classification System used by the ESA CCI Land Cover 

Dataset with the simplified categories generated for analysing land cover change across India. 

 

 

FAO Land Cover Classification System Types Simplified categories

Cropland rainfed

Cropland rainfed - Herbaceous cover

Cropland rainfed - Tree or shrub cover

Cropland irrigated or post-flooding

Mosaic cropland (>50%) / natural vegetation (tree/shrub/herbaceous cover) (<50%)

Mosaic natural vegetation (tree/shrub/herbaceous cover) (>50%) / cropland (<50%) 

Tree cover broadleaved evergreen closed to open (>15%)

Tree cover  broadleaved  deciduous  closed to open (>15%)

Tree cover  broadleaved  deciduous  closed (>40%)

Tree cover  broadleaved  deciduous  open (15-40%)

Tree cover  needleleaved  evergreen  closed to open (>15%)

Tree cover  needleleaved  evergreen  closed (>40%)

Tree cover  needleleaved  evergreen  open (15-40%)

Tree cover  needleleaved  deciduous  closed to open (>15%)

Tree cover  needleleaved  deciduous  closed (>40%)

Tree cover  needleleaved  deciduous  open (15-40%)

Tree cover  mixed leaf type (broadleaved and needleleaved)

Tree cover flooded fresh or brakish water

Tree cover flooded saline water

Mosaic tree and shrub (>50%) / herbaceous cover (<50%)

Mosaic herbaceous cover (>50%) / tree and shrub (<50%)

Shrubland

Shrubland evergreen

Shrubland deciduous

Grassland

Urban areas Urban areas

Lichens and mosses

Sparse vegetation (tree/shrub/herbaceous cover) (<15%)

Sparse tree (<15%)

Sparse shrub (<15%)

Sparse herbaceous cover (<15%)

Bare areas

Consolidated bare areas

Unconsolidated bare areas

Water bodies

Permanent snow and ice

Shrub or herbaceous cover flooded fresh/saline/brakish water

Water/snow

Cropland

Mosaic cropland

Tree cover

Natural mosaics

Shrubland & Grassland

Sparse/Bare
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Figure S1| The six homogenous monsoon regions of India as defined by the Indian Institute of Tropical 

Meteorology: Northeast (NE), Northwest (NW), Central Northeast (CNE), West Central (WC), Peninsular 

(PEN) & Hilly  
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Table S2| List of excluded districts due to having less than 0.1km2 of forest cover at the start of the 

study period 

District State  District Area 

(km2) 

Forest 

cover 

(km2) 

Forest 

loss 

(km2) 

Percent of 

total forest 

cover lost (%) 

Churu Rajasthan 17,075 0 0 0 

Jaisalmer Rajasthan 38,637 0 0.002 0 

Bikaner Rajasthan 26,965 0 0.002 0 

Jodhpur Rajasthan 22,842 0.0004 0.015 100 

Patan Gujarat 6,026 0.001 0.011 100 

Barmer Rajasthan 28,372 0.003 0.006 100 

Hanumangarh Rajasthan 8,912 0.006 0.017 100 

Nagaur Rajasthan 17,676 0.012 0.015 100 

Yanam Puducherry 31 0.043 0 0 

Sirsa Haryana 4,236 0.072 0.022 30.67 

Hyderabad Telangana 178 0.072 0.024 33.39 

Bhilwara Rajasthan 10,469 0.076 0.039 51.03 

Ganganagar Rajasthan 11,679 0.085 0.104 100 
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Table S3| aƻǊŀƴΩǎ L ǎǘŀǘƛǎǘƛŎ ŀƴŘ Ǉ-values from the test on model residuals for spatial autocorrelation. 

aƻǊŀƴΩǎ L ǾŀƭǳŜǎ ŀǊŜ ōŜǘǿŜŜƴ -1 (negative spatial autocorrelation) and +1 (positive spatial 

autocorrelation). The closer a value is to -1 or +1 the stronger the ǎǇŀǘƛŀƭ ŀǳǘƻŎƻǊǊŜƭŀǘƛƻƴΦ ! aƻǊŀƴΩǎ L 

above 0.5 is considered an indication of strong spatial autocorrelation. A significant p-value indicates 

that the residuals are more spatially clustered than would be expected if spatial processes were 

random. The NW region is excluded here as no model was run on this data. 

Region Moran's I statistic p-value 

CNE 0.036 0.135 

NE 0.001 0.445 

HILLY -0.057 0.919 

PEN -0.053 0.931 

WC -0.06 0.958 

NW NA NA 

National -0.016 0.816 

 

Table S4| Annual rates of loss and gain and net annual rate of change for each monsoon region and 

nationally. Net rate of change is the average annual percentage change of forest over the 24-year 

period (1995-2019). Rate of loss/gain is the average annual percentage of 1995 forest coverage 

lost/gained over the 24-year period. 

Region Loss Gain Net rate of change 

CNE 0.5 0.28 -0.22 

HILLY 0.15 0.19 0.04 

NE 0.12 0.56 0.44 

NW 0.16 0.43 0.27 

PEN 0.32 0.47 0.15 

WC 0.32 0.27 -0.05 

National 0.26 0.32 0.05 
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Table S5| Regional net forest change (km2) in each period. Net losses are highlighted in red and net 

gains in green.  

 

 

Table S6| Comparison of estimated marginal means of the response for each land cover type in the 

National model using Tukey post-hoc comparison (emmeans package in R). 

 

 

 

 

Period NE PEN WC HILLY CNE NW

1995-2000 3746.7 264.1 -911.1 -1588.5 -4065.3 -306

2000-2005 533.9 -729.8 -282.6 1069.5 -236.1 143.6

2005-2010 -2.8 -491.5 -185.1 265.8 -186.9 99.9

2010-2015 120.2 -320.9 -642.2 -470.8 -166.1 38.3

2015-2019 1982.3 3473.4 629.5 1654.1 1263.6 783

1995-2019 6380.4 2199.2 -1400.5 1229.5 -3334.6 764.5

Contrast Estimate SE df t ratio p value

Cropland - Mosaic Cropland -0.5845 0.123 1199 -4.74 < 0.0001

Cropland - Natural Mosaics -0.6113 0.125 1202 -4.875 < 0.0001

Cropland - Shrubland & Grassland 0.7622 0.13 1199 5.857 < 0.0001

Cropland - Other Tree Type 2.3704 0.15 1211 15.816 < 0.0001

Cropland - Urban areas 2.001 0.154 1315 12.984 < 0.0001

Cropland - Water Bodies 1.4844 0.188 1319 7.896 < 0.0001

Mosaic Cropland - Natural Mosaics -0.0267 0.122 1196 -0.219 1

Mosaic Cropland - Shrubland & Grassland1.3467 0.127 1204 10.568 < 0.0001

Mosaic Cropland - Other Tree Type 2.955 0.148 1212 20.007 < 0.0001

Mosaic Cropland - Urban Areas 2.5856 0.152 1328 16.987 < 0.0001

Mosaic Cropland - Water Bodies 2.069 0.186 1319 11.11 < 0.0001

Natural Mosaics - Shrubland & Grassland1.3735 0.129 1198 10.664 < 0.0001

Natural Mosaics - Other Tree Type 2.9817 0.149 1209 20.043 < 0.0001

Natural Mosaics - Urban Areas 2.6123 0.154 1315 16.992 < 0.0001

Natural Mosaics - Water Bodies 2.0957 0.188 1319 11.146 < 0.0001

Shrubland & Grassland - Other Tree Type1.6082 0.152 1204 10.566 < 0.0001

Shrubland & Grassland - Urban Areas 1.2388 0.158 1319 7.858 < 0.0001

Shrubland & Grassland - Water Bodies 0.7222 0.191 1319 3.788 0.003

Other Tree Type - Urban Areas -0.3694 0.174 1298 -2.128 0.3366

Other Tree Type - Water Bodies -0.886 0.206 1306 -4.303 < 0.001

Urban Areas - Water Bodies -0.5166 0.208 1350 -2.488 0.1645
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Table S7| Resultant p-values from the comparison of estimated marginal means (EMMs) of the 

response for each land cover type in the regional models using Tukey post-hoc comparison (emmeans 

package in R). P-values indicating a non-significant difference in the EMMs of forest lost to land cover 

conversion types are shown in red. 

 

 

 

 

 

 

 

 

 

 

Contrast PEN CNE NE WC HILLY

Cropland - Mosaic_cropland 0.76 < 0.001 0.99 < 0.001 0.009

Cropland - Natural_mosaics < 0.001 0.46 < 0.001 0.76 0.99

Cropland - Shrubland_Grassland 0.11 0.03 0.99 0.001 0.09

Cropland - Tree_cover < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

Cropland - Urban areas < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

Cropland - Water_snow 0.12 < 0.001 NA < 0.001 NA

Mosaic_cropland - Natural_mosaics < 0.001 0.03 0.002 0.06 0.02

Mosaic_cropland - Shrubland_Grassland 0.89 < 0.001 0.9 < 0.001 < 0.001

Mosaic_cropland - Tree_cover < 0.001 0 < 0.001 < 0.001 0

Mosaic_cropland - Urban areas < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

Mosaic_cropland - Water_snow 0.73 < 0.001 NA < 0.001 NA

Natural_mosaics - Shrubland_Grassland< 0.001 < 0.001 < 0.001 < 0.001 0.04

Natural_mosaics - Tree_cover 0 0 < 0.001 < 0.001 < 0.001

Natural_mosaics - Urban areas < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

Natural_mosaics - Water_snow < 0.001 < 0.001 NA < 0.001 NA

Shrubland_Grassland - Tree_cover < 0.001 < 0.001 < 0.001 0.004 < 0.001

Shrubland_Grassland - Urban areas 0.04 0.31 < 0.001 0.03 < 0.001

Shrubland_Grassland - Water_snow 0.99 0.008 NA 0.74 NA

Tree_cover - Urban areas 0.77 0.03 1 0.99 0.23

Tree_cover - Water_snow 0.02 0.62 NA 0.27 NA

Urban areas - Water_snow 0.47 0.88 NA 0.58 NA
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Table S8| Net change (km2) for each forest type in each region between 1995 & 2019. Cells highlighted 

in red represent net declines in the extent of a forest type and highlights in green represent net 

increases in the extent of the forest type. NA represents where there was no loss or gain of forest in 

ǘƘŀǘ ǊŜƎƛƻƴΣ ǿƘŜǊŜŀǎ ΨлΩ ǊŜǇǊŜǎŜƴǘǎ no net change in coverage. 

Forest Type WC PEN CNE NE NW HILLY 

Broadleaved deciduous closed 

(>40%) 
-0.45 -33.48 -63.27 -7.2 69.3 15.03 

Broadleaved deciduous closed 

to open (>15%) 

-

1797.48 
1359.45 

-

3188.97 
978.3 540.9 2247.21 

Mixed leaf type (broadleaved 

& needle leaved) 
0 0 0 0 0 17.73 

Needle leaved deciduous 

closed (>40%) 
0 0 0 0 0 15.66 

Needle leaved deciduous 

closed to open (>15%) 
119.7 0 76.05 0.36 73.98 55.17 

Needle leaved evergreen 

closed (>40%) 
0 0 0 0 -0.18 0 

Needle leaved evergreen 

closed to open (>15%) 
115.56 197.82 -213.12 1399.05 56.79 -1386.54 

Needle leaved evergreen 

open (>15%) 
0 0 0 0 0 0 

Broadleaved evergreen closed 

to open (15-40%) 
98.01 541.26 1.35 3980.88 10.98 262.71 

Flooded saline 64.17 134.19 53.37 28.98 12.78 2.52 
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Table S9| Net change (km2) for each forest type in each region between 1995 & 2015. Cells highlighted 

in red represent net declines in the extent of a forest type and highlights in green represent net 

increases in the extent of the forest type. NA represents where there was no loss or gain of forest in 

ǘƘŀǘ ǊŜƎƛƻƴΣ ǿƘŜǊŜŀǎ ΨлΩ ǊŜǇǊŜǎŜƴǘǎ no net change in coverage. 

Forest Type WC PEN CNE NE NW HILLY 

Broadleaved deciduous 

closed (>40%) 
-1.17 0.54 14.85 2.25 67.68 192.69 

Broadleaved deciduous 

closed to open (>15%) 
-2072.16 -1856.70 -4719.33 -266.76 -236.79 -220.05 

Mixed leaf type 

(broadleaved & needle 

leaved) 

NA NA NA NA NA 0.18 

Needle leaved deciduous 

closed (>40%) 
NA NA NA NA NA 0 

Needle leaved deciduous 

closed to open (>15%) 
1.80 0.99 3.60 7.92 5.58 0.09 

Needle leaved evergreen 

closed (>40%) 
NA NA NA NA -0.18 -0.45 

Needle leaved evergreen 

closed to open (>15%) 
-144.18 -210.15 -36.90 649.71 32.40 -1614.51 

Needle leaved evergreen 

open (>15%) 
NA NA NA NA NA 0 

Broadleaved evergreen 

closed to open (15-40%) 
147.06 601.29 48.06 3972.78 2.52 909.09 

Flooded saline 47.61 183.51 35.28 32.22 104.31 8.91 
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Chapter 4: Do precipitation deficits affect 

forest susceptibility to land use change? 

 

 

 

Rice paddy planting near Chennai, India 

 

 

 

 

 

Source: ADM Institute for the Prevention of Postharvest Loss via Flickr 

(https://www.flickr.com/photos/phlinstitute/)  



134 | P a g e 

 

4.1 Abstract 

Climate changes such as increasing temperatures and variable rainfall are predicted to have major 

effects on future forest distribution in India. However, the effect of climate changes on Indian forests 

has been largely overlooked. The increasing incidence of drought in the country is particularly 

concerning since droughts are known to have direct negative impacts on tropical forests. At present, 

studies assessing the effect of droughts on forests in India are lacking. In other regions, drought events 

have been shown to interact synergistically with land use changes to result in increased tropical forest 

losses. LƴŘƛŀΩǎ ǊǳǊŀƭ ǇƻǇǳƭŀtions rely heavily on agriculture for their livelihoods and droughts could have 

serious implications for agriculture in the country. The primary cause of forest loss is agriculture-driven 

land use change and drought-stress on this agriculture could result in further indirect effects on forests. 

The effect of interactions between land use change and droughts on forest coverage have not been 

investigated in India before. This research aims to address two key knowledge gaps; whether drought 

events have led to increased forest losses and whether there is evidence of an interaction with land use 

change. The study uses spatial auto-logistic models to assess the relationship between forest loss and 

five past drought events in Northeast India. Findings indicate an increased probability of forest loss with 

drought events in the region alongside evidence to suggest an interaction with land use changes. 

Probability of forest loss was found to increase in the less severe areas of a drought, where agriculture 

is more likely to succeed. Our findings indicate that droughts in Northeast India are having both direct 

and indirect effect on forest loss and demonstrates an interactive effect of climate and land use changes 

on forests in the region for the first time. With climate projections predicting increased drought in the 

future, alongside a greater demand for agricultural products from a growing population, research 

considering both the direct and indirect effects of climate change on forests will be critical for 

accurately predicting the effects on forests. The study also provides evidence to suggest that inclusion 

of climate-related effects on forests will help to create more realistic and effective conservation 

strategies for forests in the future.  

 

4.2 Introduction 

The reasons behind forest loss are often multi-faceted and location dependent (Curtis et al., 2018). The 

main cause of forest loss globally is increasing commodity-driven land use change, most prominently 

as a result of agricultural expansion (Curtis et al., 2018; FAO & UNEP, 2020), but there are often other 

factors such as extreme climatic events (e.g., drought and floods), disease, and pests (Allen et al., 2010; 

Clark et al., 2016). Recent studies have found that drivers of forest loss can interact with each other to 

produce combined effects that are different from those projected in models considering only one 
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driver. Interaction effects between drivers of forest loss are often overlooked, particularly in the tropics 

(Barlow et al., 2018; França et al., 2020; Guo et al., 2018; Laurance & Useche, 2009). However, 

considering these interactions could help to better predict effects of global changes on forests and lead 

to more effective management strategies (Côté et al., 2016; Kulakowski et al., 2011; Mantyka-Pringle 

et al., 2015; Oliver & Morecroft, 2014). Tropical forests are facing high levels of degradation and 

conversion to other land uses. These losses of forest cover often result in particularly large reductions 

in specialist and endemic forest species but can also alter the provision of forest ecosystem services 

such as pollination, and the carbon and water cycle (Brookhuis & Hein, 2016; França et al., 2020; Giam, 

2017; Pandit et al., 2007; Rosa et al., 2016). The effects of land use change on tropical forest have been 

studied for decades but there is increased concern about how interactions with escalating climatic 

changes could affect forest survival and functioning (Allen et al., 2015; Barlow et al., 2018; McDowell 

et al., 2018; Nobre et al., 2016; Siyum, 2020).  

Research considering the joint effects of climate and land use changes in tropical forests is still scarce. 

The majority of studies have focused on the interaction between drought and forest degradation in the 

Amazon. Increases in the incidences of drought are a major concern for forest survival (Allen et al., 

2010; Clark et al., 2016) and trees are known to be affected by drought directly through hydraulic 

failure. This is where gas enters the water transport system and disrupts flow of water to the leaves 

(Choat et al., 2012; Hanson & Weltzin, 2000). The evidence so far suggests that all forest biomes are 

likely to be vulnerable to drought stress (Choat et al., 2012) but that the most severe effects may be 

felt in tropical wet forests which tend to lack the structural adaptations to cope with water stress 

(Browne et al., 2021; Fauset et al., 2012; McDowell, 2018; Pulla et al., 2015). Drought often increases 

mortality of individual trees leading to a reduction in canopy cover (Betts, 2007; Choat et al., 2018; Meir 

et al., 2015). This can result in biodiversity reductions and a change in the provisioning of ecosystem 

services (Dundas et al., 2021; França et al., 2020; Larsen, 2012).  Drought affects forest types and 

species differently, with some more capable than others of surviving drought events (Saleska et al., 

2007; Siyum, 2020). Wet evergreen forest types are reported to be at increased risk to drought effects 

due to their high-water needs and year-round foliage, whereas deciduous species and dry-affiliated 

types are suspected to be more resilient to drought (Allen et al., 2017; Asner, Loarie, & Heyder, 2010; 

Pulla et al., 2015).  

Defining drought 
It is important to note that drought is defined, and calculated, in numerous ways. In general terms 

drought is defined as ŀ ΨǇǊƻƭƻƴƎŜŘ ŀōǎŜƴŎŜ ƻǊ ƳŀǊƪŜŘ ŘŜŦƛŎƛŜƴŎȅ ƻŦ ǇǊŜŎƛǇƛǘŀǘƛƻƴΩΣ Ψŀ ŘŜŦƛŎƛŜƴŎȅ ƻŦ 

precipitation that results in water shoǊǘŀƎŜ ŦƻǊ ǎƻƳŜ ŀŎǘƛǾƛǘȅ ƻǊ ŦƻǊ ǎƻƳŜ ƎǊƻǳǇΩΣ ƻǊ ŀ ΨǇŜǊƛƻŘ ƻŦ 
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abnormally dry weather sufficiently prolonged for the lack of precipitation to cause a serious 

ƘȅŘǊƻƭƻƎƛŎŀƭ ƛƳōŀƭŀƴŎŜΩ by the IPCC 4th assessment report (Trenberth et al., 2007; Trenberth et al. 

2014)). This generally centres around a reduction in precipitation from the norm and is commonly 

referred to as meteorological drought, but some definitions imply a wider, and often specific, effect on 

a system e.g., impacting human activities or vegetation. This is where confusion arises over what 

drought is. aƻǎǘ ǎǘǳŘƛŜǎ ǘƘŀǘ ǳǎŜ ǘƘŜ ǘŜǊƳ ΨŘǊƻǳƎƘǘΩ to refer to meteorological drought, agricultural 

drought, or occasionally ecological drought. However, these differ in both their definition and 

measurement considerably, and have different implications for the impacted system (Duan & Mei, 

2014; Trenberth et al., 2014). Agricultural drought differs from meteorological drought generally due 

to the inclusion of a measure of soil moisture to capture whether the drought is sufficient enough to 

impact the water availability to crops (Trenberth et al., 2014). Ecological drought is a more recent 

concept and is still defined in many different ways (Slette et al., 2019). However, generally, it is defined 

ŀǎ Ψŀ ǊŜŘǳŎǘƛƻƴ ƛƴ ǊŀƛƴŦŀƭƭ ƻǊ ŀ ŎƘŀƴƎŜ ƛƴ ǘƘe timing or distribution of rainfall that has the potential to 

directly impact community- or ecosystem-ƭŜǾŜƭ Ǉƭŀƴǘ ƻǊ ƳƛŎǊƻōƛŀƭ ǇǊƻŎŜǎǎŜǎΩ όAllen et al., 2017). It is 

different from meteorological or agricultural drought as it does not see drought through a human-

centric lens. For this, data on soil moisture is typically included as well as a good understanding of the 

system being studied to be aware of what speciesΩ tolerances to drought might be. However, it is an 

emerging concept and there is currently no standardised metric that is readily used, though metrics are 

being developed all the time (e.g., Jiang et al., 2021). There are many constraints with more tailored 

drought metrics like this as they rely on a good understanding of the system and species that are 

present there. For example, a drought could directly impact a short rooted species but have little effect 

on a long rooted species or could impact evergreen species but not deciduous species (Hasselquist et 

al., 2010; Paz et al., 2015). Therefore, classifying an ecological drought can be difficult (Jiang et al., 

2021).  

A recent review paper by Slette et al., (2019) found that most ecology papers define drought as simply 

dry or differs from normal and avoid using standardised metrics. This could be due to temporal 

inconsistencies in metrics available or a lack of knowledge on how to apply the metrics, and a lack of 

understanding and data available on ecological drought (Slette et al., 2019). Many standardised indices 

have been created to help capture the multiple components of drought e.g., PDSI and SPI which are 

typically used to quantify meteorological drought, either measuring precipitation and temperature 

(former) or just precipitation (latter). Another common metric is the SPEI which takes into account 

evapotranspiration as well as is more typically used for measuring agricultural drought. However, 

standardised indices can be harder to implement as they often require access to regular long-term high 

resolution datasets. 
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Interactions 
In addition to the direct effect of drought on tropical forests, drought can interact with land use change 

to increase susceptibility of forests to negative effects as well as impacting their adaptive capacity e.g., 

by increasing stand density. The two drivers have been shown to act synergistically resulting in further 

loss of forest (Laurance & Williamson, 2001; Qie et al., 2019; Staal et al., 2020). For example, Longo et 

al. (2020) found that degraded forests were more likely to be under water stress and experience 

declines in productivity in comparison to primary forests. Brando et al., (2014) conducted an 

experiment in the Amazon showing that drought and human degradation increased fire outbreaks in 

forests. Another study finds that synergies between drought and land use expansion are likely to further 

increase prevalence of forest fires under future scenarios (Le Page et al., 2017).  

Currently, the geographic bias in studies on climate and land use interactive effects in tropical forests 

is limiting our understanding of how these interactive effects may manifest across the biome. Previous 

studies have shown that there is a large variation in climate change, land use change and how these 

changes might interact across different regions (Asner et al., 2010; Brodie et al., 2012; Turubanova et 

al., 2018). As such, more research is needed to characterise these interactions in less studied forests 

such as those in Africa and South Asia (Kumar & Scheiter, 2019; Thang et al., 2020). 

 

Case study: India 
In India, rates of forest loss occur at high, unsustainable levels, despite being lower than their historical 

averages and this has a direct effect on the biodiversity of the country (Davidar et al., 2010; Puyravaud, 

Davidar, & Laurance, 2010). Indian forests are currently lost at a rate around 1.5-2.7% per year (Sheth 

et al., 2020). Like other tropical regions, land use changes, predominantly related to agriculture, are 

known to be the main cause of forest loss in India (Chakraborty et al., 2018; Mahato et al.,, 2021; 

Wakeel et al., 2005). Agriculture is one of the most important industries in in the country and is 

responsible for between 14%-20% of its GDP (Bana & Gautam, 2014; Zaveri et al., 2016) as well as ~70% 

of rural communities depending on it for survival (Kala, 2017). Forest losses are often incurred from 

expanding existing agricultural land and encroaching on forest edges alongside full clearance of forests 

for new croplands (Chakraborty et al., 2018; Mahato et al., 2021; Meiyappan et al., 2017). The 

traditional practice of shifting cultivation, particularly prevalent in the Northeast of the country, have 

led to large areas of forest loss (Tripathi et al., 2016, FSI, 2019). In the past shifting cultivation has been 

a relatively sustainable practice, allowing forests time to regrow, but in recent years due to soil 

degradation, loss of financial security and climate variability there has been a noticeable shortening of 

the regrowth periods which has resulted in more forest loss and a patchwork of shrubland, forest and 
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bare areas (Lele et al., 2008; Teegalapalli & Datta, 2016). The forests in which shifting cultivation take 

place are also often protected from other land use changes due to topographical inaccessibility and less 

fertile soils (Teegalapalli & Datta, 2016). Other land use changes such as expansion of urban areas, 

building of reservoirs, logging and clearing of forest areas for livestock rearing also contribute to 

deforestation in the country (Meiyappan et al., 2017). While harvesting of forest products, e.g., 

collection of fuelwood and fodder, for heating of homes, food, livestock feed and making crafts, 

contribute to forest fragmentation (Bhatt & Sachan, 2004; Davidar et al., 2008; Lele et al., 2008). 

So far, the effects of land use change have been the primary focus of research exploring deforestation 

in the country but there are likely to be other contributing factors. A particular concern is the rate in 

which India is experiencing changes in climate. A study by Gogoi et al., (2019) found that in the Eastern 

state of Odisha, the mean temperature had increased by 0.3°C between 1981 and 2010, with the fastest 

warming occurring in the last decade. The occurrence of droughts has also increased substantially over 

the country in the recent decade (Auffhammer et al., 2011; Kala, 2017; Sharma & Mujumdar, 2017). 

The monsoon rains have become highly variable in the timing of their arrival and the provision of rainfall 

(Dash et al., 2011; Guhathakurta et al., 2015; Paul et al., 2018; Ramesh & Goswami, 2007; Turner & 

Annamalai, 2012). Precipitation deficits are particularly damaging during the monsoon season when 

more than 80% of the annual rainfall normally occurs (Mishra, 2020). This is because it is the main 

growing season for natural vegetation as well as being vital for crop production, e.g., more than half of 

rice production in the country occurs during the monsoon season (Auffhammer et al., 2011). 

Precipitation deficits in this season also have significant effects on the productivity of crops throughout 

the year (Zaveri et al., 2016). A study by Kala (2017) found that over 330 million people across the 

country had been affected by a drought in 2016 caused by two years of deficit monsoons. The study 

further reported that Cherrapunji, renowned as one of the wettest places on Earth, had recently faced 

drought for over six months, and in 2015-2018 India experienced its longest drought in 150 years 

(Mishra, 2020). These chanƎŜǎ ƛƴ ŎƭƛƳŀǘŜ ŀǊŜ ƭƛƪŜƭȅ ǘƻ ōŜ ŀŦŦŜŎǘƛƴƎ ǘƘŜ ŎƻǳƴǘǊȅΩǎ ŦƻǊŜǎǘǎ ōǳǘ ƘŀǾŜ ǊŀǊŜƭȅ 

been considered, and there is yet to be a study looking at the effects of climate change on past forest 

distribution on a national scale. 

Studies that have considered the effecǘǎ ƻŦ ŎƭƛƳŀǘŜ ŎƘŀƴƎŜ ƻƴ LƴŘƛŀΩǎ ŦƻǊŜǎǘǎ ƘŀǾŜ ŜǎǘƛƳŀǘŜŘ ǘƘŜ ŜŦŦŜŎǘǎ 

of future climate change on forest distributions. These studies have found that >30% of forest areas 

may see a shift in distribution in response to climate changes (Gopalakrishnan et al., 2011; Upgupta et 

al., 2015). The Himalayan states, e.g., Arunachal Pradesh, the Western Ghats and central areas are 

projected to experience the largest changes in forest cover with marked reductions in forest cover and 

a shift in forest type from deciduous to evergreen species with increasing precipitation (Chaturvedi et 



139 | P a g e 

 

al., 2011). Across the country increases in temperature coupled with variable precipitation leading to 

an increased prevalence of drought is also a key concern (Chaturvedi et al., 2011; Mishra, 2019; 

Ravindranath et al., 2005). Many of these studies highlight a concern over the future effects of climate 

changes on forests in India and call for more studies to assess the effects on forest survival (Kumar & 

Scheiter, 2019; Sharma et al., 2015). Some also express concern that increased land use changes could 

worsen the effects of climate (Deb et al., 2018; Gopalakrishnan et al., 2011; Upgupta et al., 2015). 

However, to date, there are no studies assessing the impacts of droughts on forests in India. There 

remains a significant lack of understanding of how climate changes are impacting forests and whether 

interactions with land use changes are occurring. 

Despite the lack of research on the impact of drought on forests in the country, there has been a wealth 

of studies assessing the effects on droughts on agriculture and human health (Algur et al., 2021; Bana, 

2014; Bandyopadhyay et al., 2020; Ravindranath et al., 2011). These have found that the effects of 

drought on agriculture in the country can be severe, increasing the probability of crop failure, reducing 

agricultural profits and making crops more vulnerable to pests and diseases (Bana & Gautam, 2014). 

For example, Auffhammer et al., (2011) found that the monsoon drought in 2009 resulted in a decline 

in rice yield of 14% and these effects are projected to worsen in the future (Fishman, 2016; 

Ravindranath et al., 2011). Vulnerability of people to droughts in India is likely to be high due to the 

large proportion of low-income smallholder farmers who have a strong dependence on agriculture 

(Bhatta & Aggarwal, 2015; Harvey et al., 2014; Jamshidi et al., 2019; Xu et al., 2020). As such the effects 

of drought are often felt throughout the community having far reaching societal impacts such as 

reduction in education, a rise in health issues, polluted water supplies, a disproportionate effect on 

women and a rise in farmer suicides (Algur et al., 2021; Bana & Gautam, 2014; Bandyopadhyay et al., 

2020). Adaptation strategies to drought effects on agricultural livelihoods vary greatly depending on 

factors such as household income, education, and infrastructure (Harvey et al., 2018). Some farmers 

expand their fields to increase profit on less profitable land, some migrate to cities or other areas to 

seek more guaranteed employment, and others look to diversify their income sources often using forest 

resources e.g., collecting fodder for livestock and wood for crafting furniture (Bana, 2014; Belay et al., 

2017; Harvey et al., 2018; Lei et al., 2016; Li et al., 2021; Meiyappan et al., 2017; Ramprasad et al., 2020) 

Considering the impact of drought, the evidence of interactions with land use change, the climate 

change projections for India and the strong impact of drought on cropland in the country, it is highly 

likely that Indian forests could not only be directly affected by drought but also indirectly via shifts in 

agricultural and associated land uses. During drought years, the pressure on forests is likely to increase 

as farmers require more land to make the same profits, require land that is experiencing less drought, 
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and potential diversification of income often centring around the use of forest products. There could, 

therefore, be a synergy between precipitation deficits and land use changes in India with implications 

for how and where forest is lost.  

The Northeast (NE) region of India has had some of the highest rates of forest loss in the past (Pandit 

et al., 2007; Sheth et al., 2020). ¢ƘŜ ǊŜƎƛƻƴ ƛǎ ŀ ƪŜȅ ǊŜŦǳƎŜ ŦƻǊ ŀ ƭŀǊƎŜ ǇǊƻǇƻǊǘƛƻƴ ƻŦ LƴŘƛŀΩǎ ǊŜƳŀƛƴƛƴƎ 

forests and as such is an important region in terms of biodiversity and species endemism (Chitale, 

Behera, & Roy, 2014; FSI, 2019; Narwade et al., 2011; Sheth et al., 2020). The practice of shifting 

cultivation in this region has caused large amounts of loss often resulting in mosaic habitats with poor 

species composition (Kundu et al., 2015; Lele & Joshi, 2009). The region now has 30% of its forest cover 

under high pressure from increasing land use changes (Lele & Joshi, 2009).The region has some of the 

lowest population densities in the country with 82% of the population living in rural areas (Ravindranath 

et al., 2011). Agriculture is the main source of income for much of the region, particularly in Assam & 

Meghalaya. The main crop is rice, which accounts for 84% of cultivated area (Parida & Oinam, 2015). 

Due to the high-water demand of rice crops, alongside generally poor infrastructure and lack of 

irrigation facilities in most districts, the regionΩǎ ǇǊƛƳŀǊȅ ƭƛǾŜƭƛƘƻƻŘ is particularly vulnerable to drought 

(Das et al., 2009; Ravindranath et al., 2011) and farmers in the region are often less equipped to deal 

with drought when it occurs (Parida & Oinam, 2015; Ravindranath et al., 2011). The high drought 

vulnerability is also likely to be aggravated by the relative wetness of the region compared to other 

areas of the country which makes both its water-intensive agriculture and forest types much less 

capable of dealing with drought stress (Ravindranath et al., 2011). The heightened vulnerability of 

agriculture in the region increases the probability that farmers will need to diversify their incomes to 

account for losses during drought years. This could increase pressure on the surrounding forests. This 

vulnerability, along with the high contributions of agriculture-based land use changes to forest loss in 

the region (Lele et al., 2008; Padalia et al., 2019; Srivastava et al., 2002), and the increased prevalence 

of drought (IPCC, 2019; Ravindranath et al., 2011) make this region an ideal location to study the 

relationship between precipitation deficits and human land use change on forests in the country.  

Understanding the multiple causes of forest losses is vital for the protection of specific habitats, 

preservation of biodiversity, and ǘƘŜ Ǿƛŀōƛƭƛǘȅ ƻŦ ŜŎƻǎȅǎǘŜƳ ǎŜǊǾƛŎŜǎ ǘƘŀǘ ŀǊŜ ŎǊǳŎƛŀƭ ǘƻ ǘƘŜ ŎƻǳƴǘǊȅΩǎ 

main income from agriculture. Given that extreme events are likely to worsen including increased 

exposure to drought events, understanding the relationships between drought, land use change and 

forest loss will be critical to make informed decisions that can better protect Indian forests. As such, 

this study aims to understand how forests in NE India are affected by drought, explicitly investigating 

the links between this driver and land use change. Considering the above, I predict that more forest 
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loss is expected in areas experiencing precipitation deficits during the monsoon season due to the direct 

impact on trees through water stress, and associated factors, such as increased fire risk, but also that 

there will be an additional effect from land use change. However, because people are likely to respond 

by relocating or expanding agriculture, I predict forest loss to direct, natural causes will be more likely 

in the driest areas during a drought but forest loss from indirect effects through land use change to be 

more likely in the wetter areas that remain suitable for growing crops, looking after livestock and 

supporting human livelihoods.  

This study uses the meteorological definition of drought (as a difference from the average) since the 

focus is on understanding the response of large forest areas rather than specific species (where 

additional information could be collected to look at ecological drought).  

It is important to consider that there are multiple drivers behind the vulnerability and susceptibility of 

trees or forests to stressors like climate change. Vulnerability frameworks highlight that vulnerability to 

drought stems from three key components; sensitivity, adaptive capacity and exposure (Lecina-Diaz et 

al., 2020; Sharma & Ravindranath, 2019). This highlights that the exposure, magnitude and length of 

time that the species is in the vicinity of the stressor drivers vulnerability, as well as the importance of 

ŀ ǎǇŜŎƛŜǎΩ ŎƘŀǊŀŎǘŜǊƛǎǘƛŎǎ ǘƘŀǘ ƳƛƎƘǘ ŀŦŦŜŎǘ Ƙƻǿ ǎǳǎŎŜǇǘƛōƭŜ ƛǘ ƛǎ ǘƻ ǘƘŜ ǎǘǊŜǎǎƻǊ ŜΦƎΦΣ ŘŜŎƛŘǳƻǳǎƴŜǎǎΣ and 

the adaptive capacity of the species e.g., faster reproduction or ability to change root structure 

(Hasselquist et al., 2010; Paz et al., 2015). Here, we talk about the exposure of forests to drought events, 

as well as the possibility of the susceptibility being impacted by proximity to land use change. We 

predict that the prevalence of land use change will lead to an increase in susceptibility of forests to 

drought in areas that may have been less exposed. It is important that there are many other aspects 

that contribute to the susceptibility of forests to drought, including their deciduousness, their size, 

among other factors and here we do not measure the adaptive capacity of species to these drought 

events.  

In this study I aim to answer the following main questions: 

1. Do precipitation deficits result in a higher probability of forest loss? 

2. Is forest loss attributed to anthropogenic land use changes more prevalent in the wetter areas 

of a drought? 

Further to these questions, this chapter aims to increase understanding of the threat of drought and 

land use change to forests in the region by exploring the spatial extent of forest loss during drought 

years, quantifying the major types of forest lost, and assessing the key land use and land cover changes 

associated with forest loss.  
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4.3 Methods 

4.3.1 Data acquisition 

Land cover 

Global land cover data was obtained from the ESA CCI Land Cover project (v2.0.7 1992-2015) and EC 

C3S Land Cover project (v2.1.1 2015-2019) at five-year increments for the period 1995-2019, at the 

spatial resolution of 300m. Five-year increments were chosen to capture the changing trend over time 

while minimising the effect of smaller inter-annual fluctuations. The data was clipped to the borders of 

the Northeast region of India using QGIS (version 3.16.0). The EC C3S product was designed to be 

consistent with the ESA CCI dataset and as such, both iterations of the land cover product utilise the 

FAO Land Cover Classification System (Di Gregorio, 2016) which is outlined in Table S1. 

Mean precipitation 

Total monthly precipitation (mm) was obtained from TerraClimate dataset at a resolution of 4km. The 

data was aggregated using the Climate Engine tool (https://app.climateengine.org/climateEngine) to 

create a total precipitation for each 4km cell for the monsoon season (June-September) for each year 

of the study 1992-2019. The monsoon months used (June-September) are those defined by the Indian 

Meteorological Department (http://www.imdpune.gov.in/Weather/Reports/glossary.pdf). 

Human population density 

Population density data at the resolution of ~5km was obtained from SEDAC CIESIN for the period 2000-

2020. The data availability of 5-year increments meant that not every year of the study had an 

associated population density dataset thus, the closest timepoint was extracted for each forest loss 

point in each year. Population density in this dataset represented the number of people per km2. 

Population density was included because it was considered a key factor in influencing land use change 

(Kale et al., 2016; Palchoudhuri et al., 2015). 

4.3.2 Quantifying forest loss and its associated land use types 

Land use land cover (LULC) change rasters were created from the annual land cover maps using the 

Land Cover Change function from the Semi-Automatic Classification Plugin (v 6.4.5) (Congedo Luca, 

2020) in QGIS. Rasters of forest loss for each year were created by masking out all pixels of land cover 

ŎƘŀƴƎŜ ǘƘŀǘ ŘƛŘ ƴƻǘ ǊŜǎǳƭǘ ƛƴ ŦƻǊŜǎǘ ƭƻǎǎ ǳǎƛƴƎ ǘƘŜ ΨwŜŎƭŀǎǎƛŦȅ ōȅ ǘŀōƭŜΩ ŦǳƴŎǘƛƻƴ ŦǊƻƳ ǘƘŜ vDL{ wŀǎǘŜǊ 

Analysis toolbox. Rasters of forest cover were also created for each year by using the same method on 

the original land cover maps and masking out any pixels that were not classified as forest for each year. 

https://app.climateengine.org/climateEngine
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These rasters of forest loss and forest cover were then converted to point data, where each point 

represents a one pixel of forest loss or cover equal to an area of 0.09km2.  

For each forest loss point, the land use or land cover type that replaced the forest after it was lost and 

the type of forest that was lost was extracted using the Point Sampling tool in QGIS. The category that 

the forest was lost to was simplified to either anthropogenic land uses (grouping cropland, mosaic 

croplands, and urban areas. Table S1) or natural land covers (natural mosaics, shrubland, grasslands 

and different tree types). Note that these natural categories could hide human-caused degradation of 

the forest e.g., from harvesting of products, but detection of these processes is not possible with the 

available data.  

Forest areas converted to water bodies, sparse and bare areas were not considered in the analysis as it 

could not be certain whether these were human driven e.g., reservoir development, or natural e.g., 

flooding. 

4.3.3 Creation of precipitation metrics 

We created two metrics from the precipitation data to quantify for each forest loss point a) the 

difference in monsoon precipitation from the 30-year average for that forest point, hereafter referred 

to as temporal change or Ptime and b) the difference in monsoon precipitation from the average for the 

district that the forest loss point is in, hereafter referred to as spatial change or Parea. 

Ptime provides a measure of how different the precipitation was, when the forest point was lost, to the 

average precipitation that point received in the past. It is a measure of how dry or wet that point is 

compared to its own 30-year average. Whereas Parea, is a measure of how dry or wet a forest loss point 

was compared to those around it. It uses the average precipitation for the same monsoon season for 

the district that the point is located in as a comparison. 

Ptime was created by subtracting the precipitation from each year from a raster containing the 30-year 

averages using the Raster Calculator in QGIS. Parea was created by obtaining the precipitation of the 

forest point when the forest was lost and subtracting this by the average precipitation of the district 

that it the point is located within. This was done using the extract() function in R to get the precipitation 

data for each point and then using simple math code to subtract the precipitation column from a 

column containing district averages.  

4.3.4 Selection of focal precipitation deficit years 

There is no official designation of drought years for the Northeast region of India, so I used available 

research papers to define the following precipitation deficit periods: 2000-2001, 2005-2006, 2009-
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2011, 2013 and 2016-2018 (Das et al., 2009; Parida & Oinam, 2015; Mishra, 2019). I then examined the 

precipitation deficit trends in my own data identifying those years with the highest precipitation deficits 

that matched the drought periods outlined in the literature. This resulted in five years identified as 

focal: 2001, 2005, 2009, 2013, and 2017. The analysis in this chapter focuses on a meteorological 

ŘŜŦƛƴƛǘƛƻƴ ƻŦ ŘǊƻǳƎƘǘΣ ŀǎ ŀ ŘƛŦŦŜǊŜƴŎŜ ŦǊƻƳ ǘƘŜ ƴƻǊƳ ƻǊ ŀ ΨǇǊŜŎƛǇƛǘŀǘƛƻƴ ŘŜŦƛŎƛǘΩΦ ²ƛǘƘƛƴ ǘƘƛǎ ŎƘŀǇǘŜǊ L ǳǎŜ 

ΨŘǊƻǳƎƘǘΩ ŀƴŘ ΨǇǊŜŎƛǇƛǘŀǘƛƻƴ ŘŜŦƛŎƛǘΩ ƛƴǘŜǊŎƘŀƴƎŜŀōƭȅ ōǳǘ L ŀƳ ǊŜŦŜǊǊƛƴƎ ǘƻ ŀ ŘƛŦŦŜǊŜƴŎŜ ŦǊƻƳ ǘƘŜ ōŀseline 

period (the 30 years before the study ς 1960-1990). This method has been used elsewhere, most 

relevantly by the Indian Meteological Department (e.g., Parida & Oinam, 2015). The general definition 

of drought and other drought definitions are discussed in detail in the introduction to the chapter.  

Standard procedures for measuring drought such as using one standard deviation away from the mean 

were not possible with this region due to the extreme variability in rainfall. Using this method with one 

or two standard deviations away from the mean resulted in no years being classed as drought years. 

The mean for total monsoon precipitation in the region was 1,394mm, with a standard deviation of +/-

637mm. Similarly, traditionally used drought metrics such as the Palmer Drought Severity Index were 

not appropriate because they often work well on long timescales (>12 months) but do not capture 

short-term drought well (Dai et al., 2019), they also often require soil moisture data which we did not 

have access to.  Using a ΨŘƛŦŦŜǊŜƴŎŜ ŦǊƻm the meanΩ ŀǇǇǊƻŀŎƘ ŜƴŀōƭŜŘ ŀ simple analysis to capture how 

deficits in precipitation could impact forest cover.  

4.3.5 Modelling the effect of two precipitation metrics on the probability of forest loss 

Two logistic regression models were used to determine the relationship between a binary response 

variable, two climate metrics (tested separately) and population density. 

The first model examined whether across the full 30 years of data that we had access to (1990-2019), 

forest loss was more likely to occur in areas that were experiencing precipitation deficits in the 

monsoon i.e., a negative value in the Ptime metric. The response variable in this model was binary, where 

ΨлΩ ǊŜǇǊŜǎŜƴǘŜŘ ŦƻǊŜǎǘ ǇƛȄŜƭǎ ǘƘŀǘ ǊŜƳŀƛƴŜŘ ǳƴŎƘŀƴƎŜŘ ŀƴŘ ΨмΩ ǊŜǇǊŜǎŜƴǘŜŘ ǇƛȄŜƭǎ ǿƘŜǊŜ ŦƻǊŜǎǘ ǿŀǎ ƭƻǎǘΦ 

The second model focused on the key precipitation deficit years and aimed to understand whether 

forest loss to land use change was more likely to occur in areas that were wetter than those around 

them i.e., a positive value in the Parea metric. For these models, areas that were not in a precipitation 

deficit were excluded from the model. The response variable in this model was a binary metric where 

Ψ0Ω ǊŜǇǊŜǎŜƴǘŜŘ ŦƻǊŜǎǘ lost to natural land uses and Ψ1Ω ǊŜǇǊŜǎŜƴǘŜŘ forest was lost to land use change. 

Both logistic models were run using the lme4 package in R. Before modelling, the correlation between 

the predictor variables were checked and there were no concerning correlations found (Pearson 



145 | P a g e 

 

correlation coefficient < 0.3). After models were run, variance inflation factors were also used to check 

for multicollinearity and all returned values <2.5 reflecting no issues. 

Following logistic regression, the model residuals were checked for spatial autocorrelation using the 

ΨƭƳΦƳƻǊŀƴǘŜǎǘΩ ŦǳƴŎǘƛƻƴ ƛƴ wΦ ²ƘŜǊŜ ǎǇŀǘƛŀƭ ŀǳǘƻŎƻǊǊŜƭŀǘƛƻƴ ǿŀǎ ŦƻǳƴŘΣ ƛŘŜƴǘƛŦƛŜŘ ōȅ ŀ ǎƛƎƴƛŦƛŎŀƴǘ 

aƻǊŀƴΩǎ L ǾŀƭǳŜΣ ŀƴ auto-logistic model was used instead of a logistic regression to account for the 

autocorrelation found. This model used a spatial autocovariate, appearing as an additional predictor 

ǾŀǊƛŀōƭŜΣ ǘŜǊƳŜŘ ΨƭŀƎ ǊŀǘŜΩΣ ƛƴ ǘƘŜ ƳƻŘŜƭΣ ǘƘŀǘ ǘŀƪŜǎ ǘƘŜ ǎǇŀǘƛŀƭ ŀǳǘƻŎƻǊǊŜƭŀǘƛƻƴ ǇǊŜǎŜƴǘ ƛƴ ǘƘŜ Řŀǘŀ ƛƴǘƻ 

account through creation of a spatial weights matrix (see Augustin, et al., 1996; Betts et al., 2017). The 

spatial autocovariate was created using the spdep package in R. These models were checked for spatial 

autocorrelation again and found to adequately account for the spatial relationships. 

 

4.4 Results 

4.4.1 Distribution of precipitation deficits across the five focal years 

Distribution of precipitation deficits ranged widely across the five focal years; 2001, 2005, 2009, 2013, 

and 2017 (Figure 1). The most widespread drought occurred in 2005, where a large proportion of the 

region experienced deficits greater than 250mm, an 18% reduction from the regional average for the 

season. The year 2005 also experienced the largest deficit across the five years of 2,629mm which 

occurred in the East Khasi Hills district of Meghalaya. Notably, in 2005 and 2009, no areas showed 

precipitation surplus (more rain than the 30-year average. Figure 2A). The most severe deficits, in terms 

of intensity, generally occurred in the states of Assam and Meghalaya.  

Areas of forest loss were highly variable across the region between the deficit years and did not seem 

to correlate with areas of high forest cover or high population density (Figure 2B & C). West Bengal is 

the most populous state, with an average of 1,145 people per km2, followed by Assam with an average 

of 425 people per km2. Arunachal Pradesh contained the most forest cover at 69,504km2. Forest cover 

was typically higher where population density was lower (Figure 2). There were also clear instances 

where areas of high forest loss occurred in a precipitation surplus. Examples of these are the States of 

Sikkim and its border with northern West Bengal seen in the top left promontory in 2001 on Figure 1, 

and the States of Mizoram and Tripura in the southeast of the region in 2017. 

Generally, forest loss associated with human land use and natural land cover changes did not have 

spatially distinct distributions. The exception being that loss in the State of West Bengal was wholly 

related to human land use changes in every year (Figure S1). 
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Figure 1|Precipitation difference from a 30-year average (1990-2019) in each focal rainfall deficit year. 

Redder areas signify a more severe deficit of rainfall. Outlines of administrative districts are shown in 

black, and locations of forest loss shown in green.  
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Figure 2| A) Average precipitation over a 30-year period (1990-2019) in millimetres. State boundaries 

are shown in black. Areas with a higher average precipitation over the period are shown in blue. B) 

Population density (people per km2) across the region. State boundaries are shown in black. Areas with 

(B) 

(A) 

(C) 
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higher population densities are shown in a darker red. C) Forest cover (km2) per district. District 

boundaries are shown in black. Districts with a larger coverage of forest cover appear in a darker green. 

4.4.2 Exploring the distribution of forest loss within the climate space 

Qualitatively, there was a clear relationship between the two climate variables of interest and amount 

of forest loss in the precipitation deficit years (Figure 3). In every year there was more loss in areas 

experiencing precipitation deficits, and in the wetter areas of this deficit. In 2005 and 2009, the entire 

region experienced precipitation deficits but the trend remained that those losses were greatest where 

the deficit was lowest.  

In every year, a higher proportion of forest loss was associated with natural land cover changes than 

human land use changes, this contribution was increased in the later three years compared to the 

earlier years of 2001 and 2005 (Table 1).  

 

Table 1| Contributions of anthropogenic land use and natural land cover categories to total loss in each 

focal precipitation deficit year. In all years there was a higher contribution of losses associated with 

natural land uses. 

Year 
Total loss 

(points) 
Human land uses (%) Natural land cover (%) 

2001 6599 49.9% 50.1% 

2005 698 40.7% 59.3%  

2009 2665 18.1% 81.9% 

2013 758 36.1% 63.9% 

2017 16486 33.6% 66.4% 

 

Of the loss attributed to human land use change, a larger proportion of the loss was consistently found 

in areas that were drier than the 30-year average (negative Ptime) ŀƴŘ ǿŜǘǘŜǊ ǘƘŀƴ ǘƘŜƛǊ ŘƛǎǘǊƛŎǘΩǎ ŀǾŜǊŀƎŜ 

(positive Parea), in each year (Table 2). This could indicate that these conditions may be preferred for 

human land use changes, whether this is a result of where people tend to live or where forest areas are 

more desirable for cropland is uncertain. The difference in contributions of human land use changes to 

these two categories of climate space increased with time. Similarly, forest losses associated with 

natural land conversions were also more likely in areas that had negative Ptime and positive Parea, but 

these contributions declined with time.   



149 | P a g e 

 

 

Table 2| The percentage of loss attributed to human and natural land changes in each area of the 

climate space shown in Figure 3. Ψ.[Ω ǊŜǇǊŜǎŜƴǘǎ ǘƘŜ ōƻǘǘƻƳ-left quadrant of Figure 3 where areas are 

drier than the 30-ȅŜŀǊ ŀǾŜǊŀƎŜ ŀƴŘ ŘǊƛŜǊ ǘƘŀƴ ǘƘŜ ŘƛǎǘǊƛŎǘ ŀǾŜǊŀƎŜΣ Ψ.wΩ ǊŜǇǊŜǎŜƴǘǎ ǘƘŜ ōƻǘǘƻƳ-right 

quadrant where areas are drier than the 30-year average and wetter than the district average. The 

remaining percentages show the amount of loss in the top quadrants where areas are not in a 

precipitation deficit (i.e., positive Ptime). Numbers in red show the difference in the percentage of loss 

occurring in drier areas of the districts compared to wetter areas for both land change groups. 

 Human  Natural 

Year BL BR Remaining 

(Top) 

 BL BR Remaining 

(Top) 

2001 26.5% 
38.9% 

(+12.4) 
34.6%  22.4% 

56.9% 

(+34.5) 
20.7% 

2005 50.0% 
50.0% 

(+0) 
0% 

 

 
35.5% 

64.4% 

(+28.9) 
0% 

2009 30.9% 
69.1% 

(+38.2) 
0%  40.9% 

59.1% 

(+18.2) 
0% 

2013 12.7% 
80.3% 

(+67.6) 
7.0%  46.3% 

43.6% 

(-2.7) 
10.1% 

2017 29.3% 
44.5% 

(+15.2) 
26.2%  32.6% 

30.8% 

(-1.8) 
36.6% 
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Figure 3| Representation of the relationship between the two climate variables; Ptime (difference in 

precipitation from the 30-year average) and Parea (difference in precipitation from the district average), 

and the effect on forest loss. Each tree represents 10% of overall forest loss i.e., a quadrant with 4 trees 

shows that 40% of the total forest loss occurred in those conditions. Percentages were rounded to the 

nearest 5% for visual clarity. Percentage bars within each quadrant display the proportion of forest loss 

ƛƴ ǘƘŀǘ ǉǳŀŘǊŀƴǘ ǘƘŀǘ ƛǎ ǊŜƭŀǘŜŘ ǘƻ ŀ ŎƘŀƴƎŜ ƛƴ ƭŀƴŘ ǳǎŜ ǘƘŀǘ ƛǎ ŎƭŀǎǎƛŦƛŜŘ ŀǎ ΨƘǳƳŀƴΩ ƻǊ ΨƴŀǘǳǊŀƭΩ, where 

human is shown in orange. 
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4.4.3 Temporal change in forest loss and analysis of the land use associated with loss 

Forest loss did not consistently increase over time, but it was greatest in the last deficit year (2017) 

(Table 1). Loss in this year was greater than all other deficit years combined and accounted for 36.7% 

of the total loss in the region between 1995-2019.  

Across the five precipitation deficit years, the forest type with consistently the highest percentage 

ƭƻǎǎŜǎ ǿŀǎ ΨōǊƻŀŘƭŜŀǾŜŘ ŜǾŜǊƎǊŜŜƴ ŎƭƻǎŜŘ ǘƻ ƻǇŜƴΩΦ 51% of forest losses were from this category, 

followed by 34% from the forest type ΨōǊƻŀŘƭŜŀǾŜŘ ŘŜŎƛŘǳƻǳǎ ŎƭƻǎŜŘ ǘƻ ƻǇŜƴΩ. Both forest types 

remained those with the largest losses for human and natural land changes, however, broadleaved 

evergreen closed to open forests were favoured by natural land cover changes where they accounted 

for 63% of all losses, and broadleaved deciduous closed to open forests were favoured by human land 

use changes, accounting for 54% of losses (Table S1). 

Conversion to natural mosaics was the primary cause of loss over the five deficit years (51.5% of loss 

over the 5 years), followed by conversion to mosaic croplands (24.4% of loss over the 5 years). Among 

the losses associated with natural land cover changes, conversions to natural mosaics were associated 

with >78% of forest losses in every year, with the second biggest contributor being shrubland. Among 

human-related forest losses, mosaic croplands replaced 37-57% of the forest and was the most 

common land use conversion each year. An exception to this was in the year 2005, where the largest 

contributor was irrigated croplands. Over time, a shift towards increased forest losses associated with 

natural land covers was detected. 

 

4.4.4 Model results 

Do precipitation deficits result in a higher probability of forest loss? 

The Ptime model revealed forest loss to be significantly less likely in areas that were wetter than their 

30-year average (estimate = -2.58e-04, std err= 1.42e-05, z=-18.28, p =<0.0001). In particular, the 

model predicted a 1% lower risk of forest loss for each 10 mm increase in precipitation over the 30-

year average. 

Is forest loss attributed to anthropogenic land use changes more prevalent in the wetter areas of a 

drought? 

In the Parea model, there was a consistently positive effect between Parea and the probability of forest 

being associated with human land use changes, indicating a higher likelihood of forest loss in areas that 
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were wetter than the district average. However, there was also a significant interaction between Parea 

and population density in every year except 2009 (Table 3), such that at higher population densities 

there was a greater probability of forest loss associated with human land use change in areas with a 

greater precipitation deficit. In 2009, there was a significant effect of both population density and Parea 

on the probability of forest being lost to a certain land use type but no interaction.  

Model residuals were tested for spatial autocorrelation, and autocorrelation was found in every model 

except 2009 (aƻǊŀƴΩǎ LΥ observed=0.58, expected=-0.92, variance=1.67, p=0.12). The spatial 

autocorrelation detected was positive in every case indicating that data points closer together in space 

were more likely to be similar than those further away.  

Employing auto-logistic models with a lag variable to account for the spatial autocorrelation resulted in 

the interactions in three of the four (2009 not included) models becoming no longer significant. The 

interaction remained significant in the year 2001 (Table 3). Subsequently, Parea no longer showed a 

significant effect on whether forest loss was more likely to be associated with human or natural land 

use changes in two of the years; 2005 and 2017. The effect of population density remained significant 

in all years, with a positive effect direction. This indicates that increases in population density resulted 

in an increased likelihood of forest loss being associated with human land use changes. There remained 

a significant effect of Parea in 2001 and 2013 in a positive effect direction, indicating that wetter areas 

increased the likelihood of forest loss being associated with human land use changes (Table 3).  
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Table 3 | Logistic and auto-logistic model outputs for each precipitation deficit year. Non-significant 

effects are highlighted in red. AIC values for each model are shown after predictor variables. The 

ǇǊŜŘƛŎǘƻǊ ǾŀǊƛŀōƭŜ Ψ[ŀƎ ǊŀǘŜΩ ƛƴ ǘƘŜ ŀǳǘƻ-logistic models corresponds to the addition of a spatial lag 

variable to account for spatial autocorrelation in the residuals of the model. 

  Logistic model   Auto-logistic model 

Year 
Predictor 
variables 

Estimate Std Err Z P 
  

Estimate Std Err Z P 

2001 Intercept -0.83 0.04 -16.8 <0.001   -8.87 0.23 -37.69 <0.001 

  Lag rate NA NA NA NA   5.73 0.15 36.83 <0.001 

  
Precipitation 
difference 

1.56E-03 1.63E-04 9.58 <0.001 
  6.25E-04 2.23E-04 2.8 0.005 

  
Population 
density 

2.59E-03 2.00E-04 12.97 <0.001 
  1.05E-03 2.57E-04 4.11 <0.001 

  Interaction  -1.22E-05 1.21E-06 -10.12 <0.001   -4.37E-06 1.50E-06 -2.91 0.003 

  AIC 5780         AIC 3170     

                      

2005 Intercept 2.23 0.19 -11.61 <0.001   -8.84 0.58 -15.1 <0.001 

  Lag rate NA NA NA NA   5.41 0.41 13.21 <0.001 

  
Precipitation 
difference 3.88E-03 5.83E-04 6.66 <0.001   1.34E-03 7.59E-04 1.77 0.07 

  
Population 
density 8.56E-03 8.41E-04 10.17 <0.001   2.61E-03 9.53E-04 2.73 0.006 

  Interaction  -1.92E-05 3.27E-06 -5.88 <0.001   -6.44E-06 4.08E-06 -1.58 0.11 

  AIC 698         AIC 393     

                      

2009 Intercept -2.75 0.1 -26.04 <0.001   / / / / 

  Lag rate NA NA NA NA   / / / / 

  
Precipitation 
difference 2.29E-03 2.81E-04 8.13 <0.001   / / / / 

  
Population 
density 7.24E-03 5.61E-04 12.89 <0.001   / / / / 

  Interaction  -3.58E-06 2.50E-06 -1.43 0.15   / / / / 

  AIC 2020               

                      

2013 Intercept -2.23 0.19 -11.38 <0.001   -9.04 0.66 -13.68 <0.001 

  Lag rate NA NA NA NA   5.53 0.46 11.93 <0.001 

  
Precipitation 
difference 4.79E-03 3.62E-04 13.23 <0.001   1.11E-03 4.75E-04 2.33 0.01 

  
Population 
density 4.57E-03 8.51E-04 5.37 <0.001   3.25E-03 1.25E-03 2.59 0.009 

  Interaction  -1.43E-05 3.51E-06 -4.09 <0.001   -2.80E-06 4.45E-06 -0.63 0.53 

  AIC 640         AIC 407     

                      

2017 Intercept -1.09 0.03 -35.49 <0.001   -8.31 0.13 -61.63 <0.001 

  Lag rate NA NA NA NA   5.39 0.09 58.42 <0.001 

  
Precipitation 
difference 3.34E-04 9.70E-05 3.44 <0.001   8.66E-05 1.26E-04 0.68 0.49 

  
Population 
density 2.53E-03 1.09E-04 23.23 <0.001   4.07E-04 1.01E-04 4.01 <0.001 

  Interaction  1.78E-06 4.33E-07 4.12 <0.001   3.55E-07 5.20E-07 0.68 0.49 

  AIC 13774         AIC 7717     
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4.5 Discussion 

This study provides the first assessment of an interactive effect between a climate driver and land use 

change on forest loss in India. The findings provide evidence for a combined effect of drought and land 

use change on the distribution of forest loss in the Northeast region of India. Precipitation deficits 

increased the probability of forest loss in the region, but smaller precipitation deficits resulted in an 

increased probability of forest loss to land use change. Broadleaved evergreen forests saw the largest 

losses during the precipitation deficits years; however, the findings of this study show that broadleaved 

deciduous forests were at a greater risk from land use changes than any other forest type. Overall, this 

chapter contributes to an increased understanding of the relationship between precipitation deficits 

and forest loss in Northeast India, as well as providing evidence of interactive effects between 

precipitation deficits and land use change. The research also increases the broader knowledge of 

interactions between these two drivers in the South Asian area of the tropical forest biome, a severely 

understudied area in terms of climate-land interactions. 

In this study, a greater probability of forest loss was found in areas experiencing a precipitation deficit. 

These findings supported the first prediction of the study as well as studies from other tropical regions 

which have shown increased mortality of tropical trees in response to precipitation deficits (McDowell 

et al., 2018; Meir et al., 2015; Phillips et al., 2010). The majority of forest in the Northeast region is 

tropical wet deciduous and evergreen forests which have been shown to be particularly prone to 

drought stress (Browne et al., 2021; Esquivel-Muelbert et al., 2019), and the prevalence of this forest 

type is likely to have exacerbated the effects of the drought. The effect of drought on the forests in this 

region is concerning as the Northeast forests are of national importance, harbouring a large proportion 

ƻŦ ǘƘŜ ŎƻǳƴǘǊȅΩǎ ǊŜƳŀƛƴƛƴƎ ƛƴǘŀŎǘ ŦƻǊŜǎǘ ǘƘŜȅ ŀǊŜ ŀ ƪŜȅ ǊŜŦǳƎŜ ŦƻǊ ōƛƻŘƛǾŜǊǎƛǘȅ ŀƴŘ Ƴŀƴȅ ŜƴŘŜƳƛŎ ǎǇŜŎƛŜǎ 

(Karanth et al.,2009; Lele & Joshi, 2009). The region is also considered to be at relatively low-risk for 

climate effects due to its high biodiversity, contiguous forest cover and projections of increased rainfall. 

Studies assessing the future climate effects on forests in India have predicted the region to be more 

resilient and potentially see positive effects of climate change on its forests (Chaturvedi et al., 2011; 

Gopalakrishnan et al., 2011; Ravindranath et al., 2005). This is primarily as a result of predicted 

increases in both precipitation and temperature without taking into account potential extreme events 

on the forests in the future, including droughts, which are predicted to increase in incidence and 

severity (Kala, 2017; Sharma & Mujumdar, 2017). Climate change is rarely considered a current threat 

to forests in India in the literature or policy documents and often referred to as a future threat, 

however, the findings in this chapter suggest that this is an oversight and that not accounting for the 
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drought effects on forest distribution in the region could lead to a greater forest loss than expected 

currently. This chapter finds that the Northeast region may be more affected by climate extremes than 

previously considered. Assessing the effects of these events on forests in India is necessary to ensure 

more accurate predictions of forest vulnerability in the future.  

This study also found evidence of an interaction between precipitation deficits and land use change, 

where land-use change driven forest losses were more likely to occur in the wetter areas of a drought. 

This supports the second prediction of the study as well as supporting studies from other regions that 

have shown interactions between drought and land use changes (Longo et al., 2020; Qie et al., 2019). 

In this chapter the majority of land-use change driven forest losses were as a result of conversion of 

forest to mosaic croplands. As water resources are integral to crop production it is possible that 

conversion of forest to cropland mainly occurred in locations with a smaller precipitation deficit 

because these areas had the best chance of crop success during a drought. The findings have key 

ƛƳǇƭƛŎŀǘƛƻƴǎ ŦƻǊ ǘƘŜ ŦǳǘǳǊŜ ƻŦ ǘƘŜ ǊŜƎƛƻƴΩǎ ŦƻǊŜǎǘǎ ǎƛƴŎŜ ōƻǘƘ ŀƴ ƛƴŎǊŜŀǎƛƴƎ ƛƴŎƛŘŜƴŎŜ ƻŦ ŘǊƻǳƎƘǘ ŀƴŘ 

further agriculture expansion are predicted to occur (Hinz et al., 2020; IPCC, 2019; Mishra, 2019; 

Sharma & Mujumdar, 2017). The interaction found in this chapter provides an opportunity to better 

understand the mechanisms behind forest loss in the region and could lead to more accurate 

predictions of forest loss in the future. This not only has implications for improving forest and 

biodiversity conservation strategies but also for climate change mitigation strategies. This is because 

vegetation losses in the country have been shown to lead to localised warming (Gogoi et al., 2019; 

Nayak & Mandal, 2019), increased incidences of drought (Roy & Hirway, 2007), flooding (Bhattacharjee 

& Behera, 2017), and changes in the monsoon (Sen et al., 2004). Considering interactions between 

forest loss drivers could lead to more accurate predictions of vegetation loss and therefore, a better 

understanding of the feedback effects on climate change. 

It is notable that an interaction between precipitation deficits and land use change was not found in 

every deficit year i.e., Parea was not a significant driver in every model. The two years in which the 

interaction was not significant showed unique attributes that could have contributed to a difference in 

trend. For instance, 2005 had the largest precipitation deficits of any year. Much of the major cropland 

growing areas, such as Assam and Meghalaya, experienced a worse drought than the rest of the region. 

The lowest number of forest losses across the five years were also recorded in this year. It is possible 

that the severe deficits meant that conversions to cropland were not viable in 2005. In 2017, the region 

experienced the most extensive forest losses which appeared independent of the precipitation deficit 

trend. Though analysis of forest loss trends during the last decade in India is scarce, reports of increased 

forest loss in India during 2016, 2017 and 2018 have been found global datasets (Global Forest Watch, 
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2021), and the Northeastern states are shown to be experiencing net losses during these years in 

governmental reports (FSI, 2017, 2019). The global assessments attribute the large losses during this 

time to increases in as forestry particularly in the states of Mizoram and Manipur. Whereas the 

governmental reports attribute the losses to shifting cultivation practices and development projects. 

As such, it remains uncertain why there was such a rapid increase in loss compared to previous years, 

but it is not likely to be directly a result of the drought. The precipitation deficit in 2017 was one of the 

least severe, however, a previous study by Mishra (2019) reported repeated drought occurrences 

during this period which could have an accumulating effect (Rajsekhar & Gorelick, 2017; Zhao et al., 

2020). The accumulation of effects from multiple years of drought may have contributed to the 

increased forest loss in this year but would not have been picked up in this study.  

The distribution of the largest precipitation deficits across the region in this study also prompts concern 

for both forest conservation and human livelihoods. The largest deficits occurred in the states of Assam 

and Meghalaya, which have been previously identified as particularly vulnerable to drought 

(Ravindranath et al., 2011). These states are key agricultural areas with a high proportion of the 

population dependent of agriculture (Amoako Johnson & Hutton, 2014) but they also have ecologically 

important forests and several nationally important protected areas, such as Kaziranga National Park 

(Sheth et al., 2020). The East Khasi Hills district in Meghalaya experienced a 188% rainfall deficit in 2005, 

compared to the regional average for the season. This district is one of the wettest places on Earth. If 

extreme deficits like thiǎ ƻŎŎǳǊ ǊŜƎǳƭŀǊƭȅΣ ƛǘ ƛǎ ƭƛƪŜƭȅ ǘƘŀǘ ǘƘƛǎ ǿƛƭƭ Ǉǳǘ ŎƻƴǎƛŘŜǊŀōƭŜ ǎǘǊŜǎǎ ƻƴ ǘƘŜ ŘƛǎǘǊƛŎǘΩǎ 

tropical wet forests that are currently reliant on consistent heavy rainfall. There would also be 

consequences for agriculture as both Meghalaya and Assam are typically reliable areas for crop growth 

and local farmers have limited experience and infrastructure to deal with drought conditions (Parida & 

Oinam, 2015). Precipitation in these states feed into the Brahmaputra River, part of larger river system 

which provides resources for a population of 780 million people (Whitehead et al., 2018) which is vitally 

ƛƳǇƻǊǘŀƴǘ ŦƻǊ ǘƘŜ ŎƻǳƴǘǊȅΩǎ ŎǊƻǇ ǇǊƻŘǳŎǘƛƻƴΣ ǎƻ ŘŜŦƛŎƛǘǎ in this area are likely to have far-reaching 

effects.  

Across all precipitation deficit years, natural mosaics and mosaic croplands were the major drivers of 

forest loss. This is likely to be encouraging for forest biodiversity compared to if forest were being 

predominantly lost to cropland or urban areas. The remaining forest cover in the mosaic habitats could 

provide vital refuge for forest species and allow them to persist despite the loss of the wider contiguous 

habitat (Bhagwat et al., 2008; Udawatta et al., 2019), though this might not be the case for the most 

sensitive species (Keinath et al., 2017; Leal et al., 2012; Magura et al., 2001). The network of forest 

patches in the mosaic may also allow some maintenance of ecosystem services compared to complete 
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conversion to another land cover type. However, fragmented forests are also likely to harbour lower 

levels of diversity and reduced functioning than intact forest cover, with an increased likelihood of 

further degradation (Haddad et al., 2015; Tracewski et al., 2016). The majority (80%) of forest losses 

were from broadleaved forest types, with broadleaved evergreen forests losing a larger area than 

broadleaved deciduous forests. The susceptibility of evergreen forests to drought conditions has been 

found in other tropical regions, where deciduous and dry-affiliated species are expected to expand in 

range in the place of evergreens (Aguirre-Gutiérrez et al., 2020; Chaturvedi et al., 2011; Esquivel-

Muelbert et al., 2019). Despite broadleaved evergreen forests losing a larger area of forest, the loss of 

broadleaved deciduous forests could be more alarming given their lower areal extent at the start of the 

study. In 2000, broadleaved deciduous forests accounted for only 13% of forest cover, whereas 

broadleaved evergreen forests accounted for 57%. The findings in this chapter show that broadleaved 

deciduous forests were disproportionately favoured by human-driven losses, likely due to this type 

providing  good harvests of fuelwood and fodder (Coleman et al., 2021; Wakeel et al., 2005). Previous 

studies have identified deciduous forests in the Northeast as most at risk to human degradation 

(Srivastava et al., 2002; Wakeel et al., 2005). In contrast, broadleaved evergreen forests were more 

likely to be lost to natural land cover changes which could be indicative of their greater susceptibility to 

drought effects (Ratnam et al., 2019; Vico et al., 2017). The finding that these two forest types are 

susceptible to different drivers is concerning in the context of the interaction found because it could 

mean that a larger area and diversity of forest is lost when droughts and land use changes impact the 

same area. 

The results of this study produce compelling evidence that both extreme precipitation deficits and land 

use changes can impact forests in the Northeast region of India. The two drivers are likely to be acting 

synergistically to result in more extensive forest loss that the drivers acting alone. The evidence 

presented here supports a drive towards understanding how these drivers are interacting within the 

country and what this means for forests and biodiversity. There are four immediate research directions 

that would appropriately follow the evidence presented here.  

1) Factors not considered in this study namely soil type, soil moisture levels, agricultural preferences 

i.e., rainfed, irrigation or shifting cultivation, as well as the distribution of protected areas, are likely to 

impact the susceptibility of these forests to drought and land use interactions. The ways in which these 

factors alter the risk of forests to drought and land use change stressors, including whether these 

factors alter how interactions between the two manifest, should be further explored. For example, 

higher baseline soil moisture levels may buffer forests from the negative effects of drought causing the 
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direct effects of the drought to be less severe which could increase the capability of the forest to deal 

with other stressors such as degradation (Aguirre-Gutiérrez et al., 2020; Meir et al., 2015).  

2) Further research is needed to understand whether there is an accumulating effect of droughts in this 

region. Accumulating effects have been found to exacerbate forest loss in other regions (Rajsekhar & 

Gorelick, 2017; Zhao et al., 2020). This is concerning for the Northeast region due to the increase in 

occurrence of droughts and the short time periods between the precipitation deficit years identified in 

this study. This is especially a concern during the later years where multiple dry years were found in 

other research (Mishra, 2019) and could be leading to a larger effect of forests not correlated with one 

extreme year. Understanding whether there is a cumulative effect of drought in Northeast India could 

be crucial in halting such high forest losses in the future, where additional protection may be required. 

hǘƘŜǊ ǊŜǎŜŀǊŎƘŜǊǎ ƘŀǾŜ ƴƻǘŜŘ ǘƘŀǘ LƴŘƛŀΩǎ ǇƻƭƛŎƛŜǎ ǘŜƴŘ ǘƻ ōŜ ǊŜŀŎǘƛǾŜ ǘƻ ŜȄǘǊŜƳŜ ŜǾŜƴǘǎ ƭƛƪŜ ŘǊƻǳƎƘǘΣ 

where action is mobilised when droughts become severe and start having visible effects 

(Bandyopadhyay et al., 2020; Prabhakar & Shaw, 2007; Wilhite et al., 2014). If there is an accumulating 

effect over multiple years of drought, this is likely going unnoticed.  

3) Quantifying the point at which drought causes stress on humans specifically in this region is also 

vitally important to increasing our understanding of the mechanistic drivers behind land use change 

driven forest losses. Exploring whether there is a threshold for drought stress on different populations 

in the region could facilitate better awareness of forest vulnerability in different areas. This threshold 

could also better inform management strategies which could use this threshold to support forest 

conservation in advance using climate projections. This information could also be used in conjunction 

with projected population and land use changes to predict where forests might be lost in the future.  

4) There is recent evidence to suggest that the long-term effects of drought on forests and their 

associated species may be different from the short-term effects (Meir et al. 2018, Ovenden, 2021). For 

example, (Nepstad et al., (2007), found that loss of large trees in a drought had long term effects on 

litter fall, soil conditions and a reduction in biodiversity that was not observed in the short-term. There 

could also be a lagƎŜŘ ǊŜǎǇƻƴǎŜ ƛƴ ǘƘŜ ŜŦŦŜŎǘǎ ƻŦ ŦƻǊŜǎǘ ƭƻǎǎ ƻƴ ǎǇŜŎƛŜǎ ǊŜǎǳƭǘƛƴƎ ƛƴ ŀ ΨŘŜōǘΩ ǘƘŀǘ ōŜŎƻƳŜǎ 

apparent at a later stage (Meir et al. 2018, Bertrand et al. 2016). However, other studies have shown 

an increase in tree growth following a drought in some species up to nine years after the event 

(Ovenden 2021). Thus the long-term effects could be more positive than in apparent by the short-term 

changes in terms of forest survival and biodiversity in the future even if individual trees are lost (Meir 

et al., 2018; Ovenden et al., 2021). Further research assessing the effects of these droughts on forest 

coverage, tree mortality, and the associated biodiversity over a longer period of time is needed to 

ascertain the long-ǘŜǊƳ ŜŦŦŜŎǘǎ ƻŦ ǘƘŜǎŜ ŘǊƻǳƎƘǘǎ ƻƴ ǘƘŜ bƻǊǘƘŜŀǎǘ ǊŜƎƛƻƴΩǎ ŦƻǊŜǎǘǎΦ 
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There are some key considerations that should be taken into account when interpreting the results of 

this chapter. Firstly, there may be a lag in the time taken for the impact of drought on both humans and 

forests (Wu et al., 2015; Zhao et al., 2020; Phillips et al. 2009). This was not accounted for in the study 

as it can be hard to quantify and likely to be different for natural and human drivers of loss as well as 

different locations along the soil moisture gradient (Meir et al. 2018, Ovenden, 2021). The presence of 

repeated droughts in this region and during the period of study also complicated this, as introducing a 

lag effect could make it difficult to differentiate between loss caused by a current vs previous drought 

(Rajsekhar & Gorelick, 2017). A four-year lag was initially considered in this study however, these 

difficulties prevented its inclusion in the chapter. Secondly, the precipitation deficit years informed by 

the literature are predominantly based on agricultural or meteorological drought which are not 

designed to capture the stress that forests may experience. Employing metrics assessing vegetation 

condition indices and soil moisture can help to ascertain whether forests are experiencing drought 

stress and these methods should be employed in future studies specifically assessing the losses 

attributed to natural land use changes following this study. Finally, across the deficit years more loss 

was attributed to natural land cover changes than land use changes. This could be indicative of the 

additional stress that the forests are under due to the precipitation deficits leading to an increase in 

mortality, but further research is needed to evaluate whether this is the causal factor. This is because 

the study design only distinguishes definitive human-related causes from other types of land cover 

change. Thus, climatic causes of forest loss such as drought stress and fire, cannot be distinguished 

from human-driven activities that do not result in conversion to cropland or urban areas like harvesting 

of forest products, plantations, livestock rearing or logging. For example, the practice of shifting 

cultivation, which can be fairly robust to drought (Teegalapalli & Datta, 2016), results in a mosaic of 

ŦƻǊŜǎǘ ŀƴŘ ǎƘǊǳōƭŀƴŘ ǿƘƛŎƘ ŀǇǇŜŀǊ ŀǎ ŀ ΨƴŀǘǳǊŀƭΩ ǘǊŀƴǎƛǘƛƻƴ ƛƴ ǘƘƛǎ ŀƴŀƭȅǎƛǎ ōǳǘ ƛǎ ƘǳƳŀƴ-driven. As such, 

this study is likely to be underestimating the proportion of forest lost to anthropogenic influences. This 

was expected and could not be accounted for without higher resolution data and on-the-ground 

surveys to better classify the land use changes associated with these losses. 

Despite its limitations, this study is the first to consider how an interaction between drought and land 

use change is affecting forests in the country. It bridges two main knowledge gaps, the first being how 

droughts affect forest coverage in the Northeast region of the country and the second of whether 

interactions between these two drivers are leading to increased forest losses. This study provides novel 

findings on both knowledge gaps which will contribute to a better understanding of forest vulnerability 

in the Northeast region. The research challenges previous studies that predict the region to be resilient 
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to climate effects and recommends future studies and conservation policies take into account the effect 

of extreme climatic events, and their interactions with land use change, on the forests of the region. 

The study finds for the first time in the country that drought increases the probability of forest loss and 

that there can be a relationship between precipitation deficits and the spatial distribution of forest loss 

associated with human land use changes in the Northeast region of India. The study provides evidence 

to show that the coupling of these two stressors threaten a larger area of forest, and diversity of forest 

types, than either driver acting alone. The research presented here provides an important starting point 

for assessing potential interactions between drivers of forest loss in India, an interaction that has been 

overlooked in the past. Without accounting for likely relationships between drivers and actively 

considering new ones, we risk inadequately protecting the forest resources and placing sole 

accountability on the agricultural community to reduce losses. With climate projections showing 

increased drought in the future, this research stresses the importance of considering the direct and 

indirect effects of climate change on forests in future studies and provides information that could 

inform the creation of more holistic and effective protection of forest resources, whilst recognising that 

forest protection schemes will need to go hand in hand with ensuring adequate food provisions and 

economic well-being. 
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