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A B S T R A C T

Due to the widespread and quickly escalating effects of large negative returns, as well as due to the increase in
the importance of regulatory framework for financial institutions, the accurate measurement of financial risks
has become a relevant question in the academia and industry. This paper proposes three novel models based
on stateful Recurrent Neural Networks (RNN) and Feed-Forward Neural Networks (FNN) to build forecasts for
Value-at-Risk (VaR) and Expected Shortfall (ES). We apply the models to six asset return time series spanning
over more than 20 years. Our results reveal that the RNN-based stateful models generally outperform the
non-stateful RNN models and econometric benchmark models including rolling window models, Generalized
AutoRegressive Conditional Heteroskedasticity (GARCH)-type models, and Generalized Autoregressive Score
(GAS) models, in terms of VaR and ES forecasting.
1. Introduction

In recent years, risk measurement has increased in importance in
finance due to the overarching damages in the economy that can be
caused by shocks related to market crashes. The Value-at-Risk (VaR)
has been widely used by financial institutions to capture market risk
since its introduction in the RiskMetrics model by J.P. Morgan in
1989 (McNeil et al., 2015). VaR refers to an asset’s worst return over
a predetermined period given a significance level (𝛼). However, VaR
has faced criticism due to not being a coherent measure. In contrast to
VaR, Expected Shortfall (ES), proposed by Artzner (1997) and Artzner
et al. (1999), is coherent which is a desirable property of risk measures,
where the 𝛼-level ES denotes the expectation of returns below the
𝛼-level VaR. After the financial crisis of 2007–2008, the third Basel
Accord (Basel Committee on Banking Supervision, 2010) recommends
the ES to be used as the main measure of risk replacing VaR. These
measures have been widely implemented in the financial industry, as,
among other uses, a risk management tool to help estimate the loss on
an asset for a defined risk level and allocate the risk more efficiently.

It is a well-know fact that financial asset returns follow fat-tailed
distributions (Mandelbrot & Mandelbrot, 1997). Additionally, distribu-
tions in the financial markets have asymmetric features, see Alberg
et al. (2008), Almeida and Hotta (2014) and Aliyev et al. (2020).
Furthermore, regime changes can occur, as highlighted by Ardia et al.
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1 Training each machine learning model takes several minutes in the empirical study, see Table 3.

(2018) and BenSaïda et al. (2018), whilst time-varying volatility, kurto-
sis, and skewness also characterize financial returns and should be con-
sidered when estimating risk — see Chan and Gray (2006) and Guermat
and Harris (2002) and Lucas and Zhang (2016), among others. In recent
years, models based on machine learning have gained considerable
popularity in finance. One contributing factor is the lack of reliance
on simplifying assumptions of the models that use machine learning
technologies. Neural networks is a popular branch of machine learning
techniques that have gained popularity due to their ability to learn
and forecast complex patterns in data. By employing generative neural
networks to capture the statistical characteristics of input data, these
models can subsequently generate more accurate outputs. As such,
generative neural networks are able to depict the dependency structure
inherent in asset returns (Arian et al., 2022).

This paper proposes three noval applications based on stateful
Recurrent Neural Networks (RNN) and Feed-Forward Neural Networks
(FNN) in forecasting VaR and ES. To illustrate the performance of the
models in forecasting VaR and ES, we first implement the proposed
models on simulated daily return series. To provide an empirical appli-
cation, we implement the models on daily returns of six assets, using
ten different econometric models as benchmarks. Additionally, we use
several backtests to test the performance of the proposed models in
predicting VaR and ES.

This paper makes three main contributions. Firstly, we propose
three novel models for predicting VaR and ES using RNN structures.
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The proposed structures predict the VaR and ES via learning the
serial dependence in the historical data. The structures of the three
models are simple and easy to implement and model estimation is
time efficient.1 To avoid overfitting, we use the early-stopping method
which stops the training process when the loss on the validation set
no longer decreases, as well as the dropout technique which randomly
drops out samples from previous layers to reduce overfitting. Compared
to the traditional econometric VaR and ES models such as GARCH-
type models which rely on certain assumptions about the distribution
of the underlying asset returns, the proposed machine learning models
take a non-parametric approach, meaning that they do not make any
assumptions about the underlying distribution of the data. This gives
more flexibility than traditional models to capture complex patterns in
the data.

Secondly, the simulation study illustrates that the proposed models
successfully capture the underlying structure of VaR and ES. We gener-
ate 60 daily returns series via the GARCH(1,1) model with different
parameter values. The results show a high correlation between the
forecasted VaR and ES obtained by the proposed models and the true
VaR and true ES, and the low loss score approximating the true loss
score indicates the learning ability of the proposed models.

Thirdly, we undertake a comprehensive comparison between state-
ful RNN approaches, non-stateful RNN models, and ten benchmark
econometric models including rolling window models, GARCH-type
models, and GAS models, in an out-of-sample analysis of forecasting
VaR and ES over the period from January 2010 to May 2022. The
empirical results provide evidence to support the use of the proposed
models and identify the best-performing stateful RNN model. Moreover,
the results show the beneficial impact of enabling the RNN structure to
be stateful, as it effectively enhances the models’ ability to capture the
underlying structure of tail risk in financial data.

This paper is structured as follows: Section 2 presents the literature
review; Section 3 discusses popular econometric VaR and ES, as well
as the machine learning models for VaR and ES prediction; Section 4
presents the simulation study; Section 5 presents our empirical analysis,
with conclusions in Section 6.

2. Literature review

Quantile regression is a well-known approach for estimating risk
measures. Engle and Manganelli (2004) propose a novel approach
known as the basic quantile regression model to estimate the condi-
tional autoregressive VaR (CAViaR), which is a well established risk
measure. However, this measure is for VaR, so it does not consider
the value of the losses in the tail of the distribution. The asymmetric
CAViaR model is preferable due to its ability to capture the distinct
effects of positive and negative returns on VaR. However, this model
can be affected by potential estimation errors (see, for example Huang
et al. (2009)). There is a vast amount of literature built around Gen-
eralized Autoregressive Conditional Heteroskedasticity (GARCH)-type
models that have been widely implemented to obtain risk measures,
see So and Philip (2006), Hartz et al. (2006), Degiannakis et al. (2013),
and Bucevska (2013) for examples of GARCH-based risk measures.
However, these models require specific assumptions about the distri-
bution of underlying asset returns, which might not fully capture the
stylized facts of the financial returns.

After the financial crisis of 2007–2008, ES have gained considerable
popularity in finance. There is extensive literature on estimating VaR
and ES jointly. Taylor (2008) proposes the conditional autoregressive
expectile (CARE) models that obtain joint VaR and ES estimates. How-
ever, as indicated by Xu et al. (2016), the challenge in parametric CARE
modeling is associated with specifying a particular parametric form.
Based on the asymmetric Laplace distribution, Taylor (2019) proposes
a semiparametric approach with a new scoring function for jointly
modeling VaR and ES. Following this, Gerlach and Wang (2020) further
extend the CAViaR models by incorporating a realized measure in the
2

dynamics models. However, the CAViaR models imply the same dy-
namics for VaR and ES. Similarly, the additive autoregressive structure
in Taylor (2019) appears inefficient, as both VaR and ES are influenced
by changes in volatility. To address this, Taylor (2022) develops a
model with a time-varying multiplicative factor Omega ratio to jointly
forecast VaR and ES. Patton et al. (2019) proposes several dynamic
semiparametric models to jointly forecast VaR and ES, based on the
generalized autoregressive score (GAS) framework, which demonstrates
good performance overall. However, these semiparametric models can
be sensitive to the choice of initial values, potentially resulting in a lack
of robustness. Recently, Zhang et al. (2023) proposes a semiparametric
methodology for forecasting multiperiod tail risk.

The estimation of these models often requires the use of loss func-
tions. One popular score function that can be used to estimate the
parameters of the quantile regression model is the quantile loss function
proposed by Koenker and Bassett, Jr. (1978), which is widely imple-
mented for VaR estimation such as for the CAViaR model. Following
the CAViaR model, which solely estimates the VaR fail risk, Taylor
(2008) proposes the conditional auto-regressive expectile model which
involves the asymmetric least square (ALS) regression to forecast the
VaR and ES jointly, estimated using the expectile loss function. Based
on the FZ loss function proposed by Fissler and Ziegel (2016), Taylor
(2019) proposes the asymmetric Laplace (AL) log score function for
parameter estimation to forecast the VaR and ES jointly.

Machine learning models have shown great potential in time series
prediction. A large part of the literature has focused on the application
of machine learning techniques in financial returns forecasts and has
shown that these methods can increase the accuracy of forecasts. Patel
et al. (2015) forecasts the direction of stocks and stock index move-
ments using machine learning techniques. Gu et al. (2020) compares
different linear and nonlinear machine learning models to forecast
asset returns and shows that machine learning methods can improve
the empirical performance of asset pricing, and concludes that neural
networks are the best-performing methods among the machine learning
models considered. Saha et al. (2021) uses deep neural networks and
event-specific features to predict stock price movements. However,
machine learning has been used for other areas of applications such
as derivatives pricing and volatility modeling, see Hutchinson et al.
(1994), Ye and Zhang (2019), Zhang (2020), Iva¸scu (2021), Vrontos
et al. (2021) and Lu et al. (2022).

Machine learning techniques have also been considered for VaR
and ES forecasting. Khan (2011) combines the Support Vector Machine
model with the heterogeneous autoregressive model to improve VaR
prediction. Shim et al. (2012) proposes the semiparametric Support
Vector Quantile regression model to estimate VaR. It combines long
short-term memory (LSTM) and bidirectional LSTM (BiLSTM) neural
networks with GARCH-type models to build one-day ahead VaR esti-
mates using the Parametric and Filtered Historical Simulation (FHS)
method. Wu and Yan (2019) develop a conditional quantile model
with LSTM neural networks for VaR prediction. Ormaniec et al. (2022)
proposes a novel VaR estimator by using the LSTM neural network
and concludes that the proposed machine learning model has a bet-
ter performance when compared to GARCH models on real market
data. Cont et al. (2022) proposes a novel data-driven approach using
Generative Adversarial Network (GAN) architecture for tail risk estima-
tion. Chronopoulos et al. (2023) uses a deep quantile estimator, based
on neural networks, to forecast VaR. However, a substantial gap exists
in forecasting VaR and ES jointly using neural networks.
3. Methodology

In the following, we present two popular risk measures in Sec-
tion 3.1, the FZ0 score function in Section 3.2 and the frameworks
of FNN and RNN in Section 3.3. Furthermore, we propose three novel
applications of stateful machine learning models in VaR and ES fore-
casting in Section 3.4, and the benchmark models are presented in

Section 3.5.
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3.1. Risk measures

This section provides a concise presentation of two prevalent risk
measures in finance, namely VaR and ES. Although both measures
quantify portfolio risk, they differ in the type of risk they measure. The
concept of VaR dates back to as early as 1922 when the New York Stock
Exchange imposed capital requirements on firms (Holton, 2003). VaR
is defined as the maximum potential loss that will not be exceeded at
a specific significance level over a given time horizon:

𝑉 𝑎𝑅𝛼
𝑡 = 𝑠𝑢𝑝

{

𝑥 ∶ 𝐹𝑟(𝑥) ≤ 𝛼
}

(1)

where 𝐹𝑟(𝑥) is the corresponding cumulative distribution function of
assets return, 𝑟 is the asset return, and 𝛼 ∈ (0, 1) is a given quantile.
Thus, the VaR can be rewritten as the inverse of the cumulative
distribution function: 𝑉 𝑎𝑅𝛼

𝑡 = 𝐹−1
𝑟 (𝛼).

Also, VaR can be considered as the value that gives a weight of 𝛼
in the cumulative density of returns:

𝛼 = ∫

𝑉 𝑎𝑅𝛼
𝑡

−∞
𝑓𝑟(𝑥)𝑑𝑥 (2)

where 𝑓𝑟(𝑥) denotes the probability density function of the returns.
VaR has emerged as the dominant risk measure in both industry

and academia, having been adopted by Basel II in 1996 (Duffie & Pan,
1997). It is the primary metric employed by banks and investment
institutions to estimate the level of losses that may occur in the event
of worst-case scenarios at a given confidence level (Sollis, 2009). Until
recently, VaR served as the benchmark for most banks and investment
institutions for optimizing capital allocation to manage risk (Philippe,
2001).

However, VaR has an inherent limitation as a risk measurement
method in that it fails to account for the shape and structure of the
distribution of returns in the tail of the return distribution, rendering it
incapable of capturing the expected losses (Roccioletti, 2015). Accord-
ing to Artzner et al. (1999), Delbaen (2002) and Acerbi and Tasche
(2002), a risk measure 𝜙(𝑋) is said to be coherent, if it satisfies the
following four conditions:

i. Sub-additivity: 𝜙(𝑋 + 𝑌 ) ≤ 𝜙(𝑋) + 𝜙(𝑌 ), for any 𝑋, 𝑌 ,𝑋 + 𝑌 ∈ 𝑉

ii. Monotonous: 𝜙(𝑋) ≤ 0, for any 𝑋 ≥ 0, 𝑋 ∈ 𝑉

iii. Homogeneity: 𝜙(𝑎𝑋) = 𝑎𝜙(𝑋), for any 𝑋, 𝑎𝑋 ∈ 𝑉 , 𝑎 > 0

iv. Translational invariance: 𝜙(𝑋+𝑎) = 𝜙(𝑋)−𝑎, for any 𝑋 ∈ 𝑉 , 𝑎 ∈ 𝑅

In our notation, 𝑉 is a set of real-valued random variables on some
probability space (𝛺,𝐴, 𝑃 ). The property of coherence ensures that the
risk measure behaves consistently and intuitively, providing meaning-
ful and reliable assessments of risk in financial and other domains.
Moreover, as pointed out by Artzner et al. (1999), VaR lacks the prop-
erty of subadditivity for a portfolio. In response to this deficiency, the
Basel Committee on Banking Supervision proposed the transition from
VaR to ES in the aftermath of the 2008 financial crisis, as ES measures
risk by considering both the amount and frequency of losses at a given
level of significance (Basel Committee on Banking Supervision, 2013).
ES, a coherent risk measure, is based on the expected loss that surpasses
the VaR, which is calculated by taking the expected value of the loss
that goes beyond VaR. Specifically, ES (at a significance level 𝛼) can be
expressed as follows:

𝐸𝑆𝛼
𝑡 = 𝐸[𝑟𝑡|𝑟𝑡 ≤ 𝑉 𝑎𝑅𝛼

𝑡 ] (3)

While both VaR and ES are extensively used in finance for market
risk estimation and management, ES is deemed a more reliable and
prudent risk measure than VaR, for it incorporates the severity of losses
beyond the VaR level. Nevertheless, the calculation of ES necessitates
the estimation of the entire tail of the distribution, rather than a solitary
percentile, thus making the process more intricate.
3

Fig. 1. Simple FNN framework.

3.2. Score function

In this section, we present the FZ0 loss score function that has been
widely adopted for model estimation in the literature. Fissler and Ziegel
(2016) propose a novel FZ loss function for the joint estimation of VaR
and ES, which can be expressed as follows:

𝐿𝐹𝑍 (𝑦, 𝑣, 𝑒; 𝛼,𝐺1, 𝐺2) = (1{𝑦 ≤ 𝑣} − 𝛼)(𝐺1(𝑣) − 𝐺1(𝑦) +
1
𝛼
𝐺2(𝑒)𝑣)

− 𝐺2(𝑒)(
1
𝛼
1{𝑦 ≤ 𝑣}𝑦 − 𝑒) − 𝑔2(𝑒)

(4)

where 𝐺1 is weekly increasing, 𝐺2 is strictly increasing and strictly
positive, and 𝑔′2(𝑒) = 𝐺2, with 𝑒 denoting the ES and 𝑣 denoting VaR.
The VaR and ES estimates are obtained by minimizing the FZ loss
function as follows:

(𝑉 𝑎𝑅𝛼
𝑡 , 𝐸𝑆𝛼

𝑡 ) = argminE𝑡−1[𝐿𝐹𝑍 (𝑦𝑡, 𝑣, 𝑒; 𝛼,𝐺1, 𝐺2)] (5)

Patton et al. (2019) considers a special case of this loss function,
referred to as the FZ0 loss function, which is obtained by restricting
𝐺1(𝑥) to 0 and 𝐺2(𝑥) to −1∕𝑥 :

𝐿𝐹𝑍0(𝑦, 𝑣, 𝑒; 𝛼) = − 1
𝛼𝑒

1{𝑦 ≤ 𝑣}(𝑣 − 𝑦) + 𝑣
𝑒
+ log(−𝑒) − 1 (6)

According to the findings of Patton et al. (2019), the GAS models
estimated by minimizing the FZ0 loss function exhibit superior per-
formance compared to benchmark models when forecasting VaR and
ES.

3.3. The framework of FNN and RNN

Artificial neural networks, or simply neural networks, involve the
technique of discovering significant patterns in data by using a high-
dimensional approach, inclusive of drop-out layers or regularization
methods to tackle the problem of overfitting. In this section, we explore
two well known neural network frameworks, namely, the feed-forward
neural network (FNN) and the recurrent neural network (RNN), both
of which serve as fundamental frameworks within the proposed models
in Section 3.4.

3.3.1. FNN structures
The artificial neural network is a nonlinear method with theo-

retical support as ‘‘universal approximators’’ for smooth predictive
schemes (Hornik et al., 1989). Among the system of neural networks,
‘‘feed-forward’’ networks are composed of three parts: the ‘‘input layer’’
including raw predictors, ‘‘hidden layers’’ which interact and transform
predictors, and the ‘‘output layer’’ which aggregates all hidden layers to
predict outcomes. Hidden layers consist of nodes (neurons) that connect
each layer and transmit signals among nodes of different hidden layers.
Fig. 1 illustrates the structure of the simplest neural network with one
hidden layer.
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Table 1
Parameters (true value) used to calculate true VaR and true ES.
𝛼 DoF = 3, Skewness = −0.8 DoF = 5, Skewness = −0.5 DoF = 10, Skewness = −1

𝑎𝛼 𝑏𝛼 𝑎𝛼 𝑏𝛼 𝑎𝛼 𝑏𝛼
1% −3.518 −5.767 −3.289 −4.506 −3.252 −4.118
2.5% −2.297 −3.980 −2.408 −3.465 −2.496 −3.337
5% −1.566 −2.929 −1.801 −2.767 −1.924 −2.757

Notes: This table presents the true parameters used to calculate the true VaR and true ES for the daily return series simulated
via the GARCH(1,1) model with three different skewed 𝑡-distributions.
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As shown in Fig. 1, there is one hidden layer with three nodes. Each
node captures the information linearly from all the inputs from the
input layer. Afterwards, each node implements a so-called ‘‘activation
function’’ 𝑓 (.) on the aggregated inputs signals. The outputs from the
𝑖th node in the hidden layer can be expressed as:

𝑥(1)𝑖 = 𝑓 (𝜃(0)𝑖,0 +
2
∑

𝑗=1
𝑧𝑗𝜃

(0)
𝑖,𝑗 ) (7)

where 𝑧𝑗 denotes the raw inputs, 𝜃(0)𝑖,𝑗 , 𝑗 = 1, 2 are the two parame-
ters used for transmitting the raw inputs signals to the 𝑖th node in
the hidden layer. Finally, the outputs from each node are linearly
aggregated into the output layer to make a prediction expressed as:
𝜃(1)0 +

∑3
𝑗=1 𝑥

(1)
𝑗 𝜃(1)𝑗 .

3.3.2. RNN structures
Linear regression-type methods, including traditional models such

as AR, MA, and ARMA, are commonly employed in statistical time
series models to model the target variable. However, compared to
these conventional linear regression-type models, RNN models pro-
posed by Elman (1990) exhibit superior efficiency in modeling com-
plicated non-linear dynamics and long-term serial dependence. Eq. (8)
describes the structure of RNN:
ℎ𝑡 = 𝛥(𝜇𝑥𝑡 +𝑤ℎ𝑡−1 + 𝑏), ℎ0 = 0

𝑦𝑡|ℎ𝑡 ∼ 𝑝(𝑦𝑡|ℎ𝑡), 𝑡 = 1, 2,…
(8)

where 𝜇,𝑤, 𝑏 are the model parameters; the recurrently-updated hidden
unit ℎ𝑡 stores previous timestep memories and employs the activation
function 𝛥. Such a structural design facilitates the capture of serial
dependence within the underlying data. The learning objective per-
tains to the estimation of the optimal conditional distribution 𝑝(𝑦𝑡|ℎ𝑡).
urthermore, when the activation function 𝛥 in Eq. (8) is chosen as a
inear function and the input 𝑥𝑡 represents the square of returns, the
NN process is governed by an equation identical to the conditional
olatility process expressed in Eq. (20).

Compared to conventional FNNs, RNNs possess the ability to uti-
ize their internal state, commonly referred to as memory, to process
nput sequences. Consequently, RNNs are well-suited for capturing
ignificant and efficacious past information, thereby enhancing their
ecision-making abilities.

.4. RNN-based models

This section proposes three novel applications of RNN-based state-
ul models and their corresponding non-stateful models designed for
aR and ES prediction. To preserve the hidden state and memory
cross input data batches during training, we enable the models to
e stateful2 by setting 𝑠𝑡𝑎𝑡𝑒𝑓𝑢𝑙 = 1 in Eqs. (10), (13), and (18). This
pproach enables the network to assimilate information from previous
atches and better capture long-term dependencies, without relying
n assumptions about the probability density function (PDF) of the
istribution 𝐹 (𝑟𝑡|𝐼𝑡−1), unlike GARCH-type models. We assume there

2 The details about the ‘stateful’ setting can be found in TensorFlow,
t https://www.tensorflow.org/. The TensorFlow version that we use for
mpirical study is v2.9.2.
4

exists an unknown relationship between the target variables (VaR, ES)
and the covariate, the square of return (𝑌 2

𝑡−1), for a given 𝛼. To learn
and capture the unknown relationship, we use the following three
stateful RNN models,3 which also incorporate an FNN structure, as
previously discussed in Section 3.3, to achieve one-day ahead VaR and
ES forecasts.

3.4.1. SRNN-VE-1 model
To estimate the relationship between the target variables and the

covariate, the SRNN-VE-1 model is:

[𝑣𝑡, 𝑒𝑡] = 𝐹𝑁𝑁(ℎ𝑡) (9)

ℎ𝑡 = 𝑅𝑁𝑁(ℎ𝑡−1, 𝑌 2
𝑡−1, 𝑠𝑡𝑎𝑡𝑒𝑓𝑢𝑙) (10)

here the 𝑌 2
𝑡−1 denotes the square of return at time point 𝑡−1; ℎ𝑡 denotes

he hidden variable in the RNN structure; 𝑠𝑡𝑎𝑡𝑒𝑓𝑢𝑙 is a binary variable
hich is 1 if the model is stateful, and 0 otherwise. The RNN layer is set

o be stateful to prevent the hidden variable from resetting after each
atch.

.4.2. SRNN-VE-2 model
In order to enhance the capacity for capturing non-linear dependen-

ies, an additional layer, referred to as Eq. (12), is introduced between
he FNN and RNN. The SRNN-VE-2 model is defined as:

𝑣𝑡, 𝑒𝑡] = 𝐹𝑁𝑁(𝑘𝑡) (11)

𝑘𝑡 =
√

(𝑎𝑏𝑠(ℎ𝑡)) (12)

ℎ𝑡 = 𝑅𝑁𝑁(ℎ𝑡−1, 𝑌 2
𝑡−1, 𝑠𝑡𝑎𝑡𝑒𝑓𝑢𝑙) (13)

here the 𝑎𝑏𝑠(.) denotes absolute value. When a linear activation
unction 𝛥 is employed in Eq. (8), the RNN architecture exhibits similar
haracteristics to the GARCH(1,1) model, specifically when the input
s represented by the square of returns. Moreover, Eq. (12) can also
nhance the similarity of the SRNN-VE-2 model to the GARCH-FZ
odels, thereby facilitating the interpretation that the stateful models

re able to capture VaR and ES.

.4.3. SRNN-VE-3 model
Finally, we consider a hybrid model by combining the model SRNN-

E-1 with the model SRNN-VE-2, combining the two approaches to
easure VaR and ES.

[𝑣𝑡, 𝑒𝑡] = −𝑎𝑏𝑠([𝑣1𝑡 , 𝑒
1
𝑡 ]⊕ [𝑣2𝑡 , 𝑒

2
𝑡 ]) (14)

𝑣2𝑡 , 𝑒
2
𝑡 ] = 𝐹𝑁𝑁(𝑘𝑡) (15)

𝑣1𝑡 , 𝑒
1
𝑡 ] = 𝐹𝑁𝑁(ℎ𝑡) (16)

𝑘𝑡 =
√

(𝑎𝑏𝑠(ℎ𝑡)) (17)

ℎ𝑡 = 𝑅𝑁𝑁(ℎ𝑡−1, 𝑌 2
𝑡−1, 𝑠𝑡𝑎𝑡𝑒𝑓𝑢𝑙) (18)

here the operation ⊕ represents element-by-element addition.

3 We use the notation SRNN-VE for these stateful RNN models that measure
aR and ES. These models also include the FNN structure. The notation 𝐹𝑁𝑁()

and 𝑅𝑁𝑁() correspond to the FNN structure and RNN structure, respectively
in Sections 3.3.1 and 3.3.2.

https://www.tensorflow.org/
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Table 2
Average correlations and average FZ0 losses over the simulated out-of-sample time period.

DoF = 3, Skewness = −0.8 DoF = 5, Skewness = −0.5 DoF = 10, Skewness = −1

Panel A: 𝛼 = 1%
Average correlations between true and predicted VaR

True Value SRNN-VE-1 SRNN-VE-2 SRNN-VE-3 True Value SRNN-VE-1 SRNN-VE-2 SRNN-VE-3 True Value SRNN-VE-1 SRNN-VE-2 SRNN-VE-3
Pearson 1 0.753 0.806 0.938 1 0.860 0.922 0.944 1 0.964 0.875 0.944
Spearman 1 0.888 0.752 0.969 1 0.884 0.908 0.957 1 0.980 0.873 0.952

Average correlations between true value and predicted ES

True Value SRNN-VE-1 SRNN-VE-2 SRNN-VE-3 True Value SRNN-VE-1 SRNN-VE-2 SRNN-VE-3 True Value SRNN-VE-1 SRNN-VE-2 SRNN-VE-3
Pearson 1 0.753 0.806 0.915 1 0.860 0.922 0.931 1 0.964 0.875 0.937
Spearman 1 0.787 0.752 0.967 1 0.884 0.908 0.957 1 0.980 0.873 0.952

Average FZ0 Loss 1.640 1.695 1.679 1.697 1.473 1.514 1.494 1.516 1.394 1.420 1.415 1.423

Panel B: 𝛼 = 2.5%
Average correlations between true and predicted VaR

True Value SRNN-VE-1 SRNN-VE-2 SRNN-VE-3 True Value SRNN-VE-1 SRNN-VE-2 SRNN-VE-3 True Value SRNN-VE-1 SRNN-VE-2 SRNN-VE-3
Pearson 1 0.909 0.856 0.895 1 0.933 0.893 0.913 1 0.946 0.980 0.918
Spearman 1 0.972 0.842 0.916 1 0.965 0.892 0.918 1 0.964 0.977 0.923

Average correlations between true value and predicted ES

True Value SRNN-VE-1 SRNN-VE-2 SRNN-VE-3 True Value SRNN-VE-1 SRNN-VE-2 SRNN-VE-3 True Value SRNN-VE-1 SRNN-VE-2 SRNN-VE-3
Pearson 1 0.909 0.856 0.850 1 0.933 0.893 0.892 1 0.946 0.980 0.907
Spearman 1 0.972 0.842 0.916 1 0.965 0.892 0.918 1 0.964 0.977 0.923

Average FZ0 Loss 1.270 1.298 1.290 1.309 1.209 1.227 1.223 1.232 1.182 1.197 1.192 1.200

Panel C: 𝛼 = 5%
Average correlations between true and predicted VaR

True Value SRNN-VE-1 SRNN-VE-2 SRNN-VE-3 True Value SRNN-VE-1 SRNN-VE-2 SRNN-VE-3 True Value SRNN-VE-1 SRNN-VE-2 SRNN-VE-3
Pearson 1 0.867 0.885 0.866 1 0.907 0.982 0.888 1 0.922 0.984 0.896
Spearman 1 0.942 0.879 0.862 1 0.942 0.985 0.882 1 0.944 0.982 0.895

Average correlations between true and predicted ES

True Value SRNN-VE-1 SRNN-VE-2 SRNN-VE-3 True Value SRNN-VE-1 SRNN-VE-2 SRNN-VE-3 True Value SRNN-VE-1 SRNN-VE-2 SRNN-VE-3
Pearson 1 0.867 0.885 0.793 1 0.907 0.982 0.858 1 0.922 0.984 0.881
Spearman 1 0.942 0.879 0.862 1 0.942 0.979 0.883 1 0.944 0.982 0.895

Average FZ0 Loss 0.968 0.990 0.982 1.000 0.987 0.999 0.995 1.005 0.995 1.005 1.002 1.007

Notes: This table presents the average correlation coefficients between the true value and predicted values of VaR and ES for each model, and average FZ0 loss scores on the out-of-sample period for three data-generating processes
with different DoF and Skewness ((DoF = 3, Skewness = −0.8), (DoF = 5, Skewness = −0.5), and (DoF = 10, Skewness = −1). The average correlation coefficients and the average FZ0 loss scores are calculated by taking the average
value of the 20 simulated series. The top part of Panel A reports the correlations between the true VaR and the predicted VaR of the three SRNN-VE models when 𝛼 = 1%. The middle part of Panel A reports the correlation coefficients
between the true ES and the predicted ES from three SRNN-VE models. The lower part of Panel A presents the average FZ0 loss scores of the models. The true FZ0 loss scores are calculated by Eq. (28). Panel B and Panel C present
the average correlation coefficients and average FZ0 loss scores obtained for 𝛼 = 2.5% and 𝛼 = 5%, respectively. The lowest average loss for each DoF and Skewness combination is shown in bold.
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Table 3
Time cost of training.

Model name Time cost

RNN-VE-1 4 min, 22 s
RNN-VE-2 6 min, 29 s
RNN-VE-3 4 min, 52 s
SRNN-VE-1 7 min, 23 s
SRNN-VE-2 4 min, 26 s
SRNN-VE-3 8 min, 11 s

Notes: This table presents the time required to train
the stateful RNN models and their corresponding non-
stateful RNN models on S&P 500 in order to obtain
1%-level VaR and ES predictions, based on a desk-
top PC comprising four 3.30 GHz quad-core CPUs
(specifically, i5-4590 CPUs).

In the three RNN-based stateful models mentioned above, the num-
ber of nodes is set to 1, and the activation function is ‘linear’ both
in the FNN layer4 and RNN layer.5 The early stopping6 technique and
ropout7 are applied to mitigate the problem of overfitting. To facilitate
comparison between the stateful and non-stateful models, in addition

o the above three models we also implement three non-stateful models
denoted RNN-VE-1, RNN-VE-2, and RNN-VE-3) in our empirical study.
hese models are defined similarly to Eq. (9)–Eq. (18) except that
𝑡𝑎𝑡𝑒𝑓𝑢𝑙 = 0 in Eq. (10), Eq. (13), and Eq. (18) for the three models,
espectively.

.5. Popular VaR and ES forecasting models

This section introduces three distinct categories of econometric
odels that have been used to forecast VaR and ES. Specifically, we
resent rolling window-based models, GARCH-type models, and the
AS models (detailed in Sections 3.5.1, 3.5.2, and 3.5.3, respectively).

n the following, we select ten benchmark models for model com-
arison in Section 5.2, including three rolling window-based models
ith different window sizes, three GARCH-type models with different
istributional assumptions, and four GAS models introduced by Patton
t al. (2019).

.5.1. Rolling window-based models
A rolling window approach for estimating VaR and ES can be

uccinctly described as follows:

𝑎𝑅𝑡 = 𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒{𝑌𝑠}𝑡−1𝑠=𝑡−𝑚

̂𝐸𝑆𝑡 =
1
𝛼𝑚

𝑡−1
∑

𝑠=𝑡−𝑚
𝑌𝑠1{𝑌𝑠 ≤ ̂𝑉 𝑎𝑅𝑠}

(19)

where the 𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒{𝑌𝑠}𝑡−1𝑠=𝑡−𝑚 represents the sample quantile of 𝑌𝑠 during
he period from time point (𝑡 − 𝑚) to (𝑡 − 1), and 1{.} denotes the
ndicator function. This paper employs window sizes of m = 125, 250
nd 500 with the models referred to as RW-125, RW-250, and RW-500,
espectively.

The historical simulation models, as non-parametric specifications,
re conceptually straightforward and easy to understand. They rely
n observed values from historical data without the need for complex
odel assumptions, and no parameter estimation is required. However,

he produced estimates depend entirely on the selected estimation pe-
iod. The historical simulation model tends to underestimate risk when

4 We use the Application Programming Interface (API) of TensorFlow:
tensorflow.keras.layers.Dense()’ from https://www.tensorflow.org.

5 We use the API of Tensorflow ‘tensorflow.keras.layers.SimpleRNN()’ from
ttps://www.tensorflow.org.

6 We monitor the loss on the validation set, see the API ‘tensor-
low.keras.callbacks.EarlyStopping()’ from https://www.tensorflow.org.

7 To implement the dropout technique, we use the API ‘tensor-
6

low.keras.layers.SimpleRNN(dropout=0.2)’ from https://www.tensorflow.org.
the data exhibit no large negative shocks over the estimation period.
Moreover, some historical simulation models may exhibit tardiness in
incorporating the impact of market crashes, resulting in a delayed
reaction of the risk estimates (Abad et al., 2014).

3.5.2. GARCH-type models
The GARCH models proposed by Engle (1982) and Bollerslev (1986)

have gained significant popularity in the realm of finance. Among the
GARCH models, the basic GARCH(1,1) model stands out as the simplest
and most commonly employed, and is defined as follows:

𝑟𝑡 = 𝜇 + 𝑢𝑡, 𝑡 = 1, 2,… , 𝑇

𝑢𝑡 = 𝜎𝑡𝜖𝑡, 𝜖𝑡 ∼ 𝑖.𝑖.𝑑(0, 1)

𝜎2𝑡 = 𝛽0 + 𝛽1𝑢
2
𝑡−1 + 𝛽2𝜎

2
𝑡−1

(20)

where 𝜎2𝑡 denotes the daily variance of the returns 𝑟𝑡.
For parametric GARCH models, the distribution of 𝜖𝑡 is an input of

the model and is used to estimate the parameters based on the likeli-
hood function. The Standard Normal and Student’s 𝑡-distributions are
the most commonly employed distributions for 𝜖𝑡. In empirical studies
applied to financial returns, the Student’s 𝑡-distribution often outper-
forms the normal distribution in effectively capturing heavy-tailed
returns, as reported by Billio and Pelizzon (2000).

Based on the aforementioned GARCH models, the daily VaR and ES
are estimated via the following equations:

𝑉 𝑎𝑅𝛼
𝑡+1 = 𝜇̂𝑡+1 + 𝜎̂𝑡+1𝑞𝑡+1(𝛼)

𝐸𝑆𝛼
𝑡+1 = 𝜇̂𝑡+1 + 𝜎̂𝑡+1𝑆̂(𝛼)

(21)

Here 𝜇̂𝑡+1 and 𝜎̂𝑡+1 represent the conditional value of the predicted
mean and standard deviation of 𝑟𝑡+1, respectively, based on the avail-
able information up to time 𝑡; 𝑆̂(𝛼) is defined as E[𝜖𝑡+1|𝜖𝑡+1 < 𝑞𝑡+1(𝛼)];
nd the quantile ̂𝑞𝑡+1(𝛼) = 𝑖𝑛𝑓{𝜖𝑡+1 ∶ 𝛼 ≤ 𝐹 (𝜖𝑡+1)}, where 𝐹 denotes the
umulative distribution function of the standardized residuals 𝜖.

The forecast of the conditional volatility (𝜎̂𝑡+1) is derived from the
ARCH model, while the mean of returns (𝜇̂𝑡+1) is computed based on
ast returns. To obtain the 𝛼-level VaR estimate, a linear function of the
orecast of the conditional 𝛼 − 𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒 of the standardized residuals,
̂𝑞𝑡+1(𝛼) is computed. It is evident that both the VaR and ES estima-

ors are contingent on the presumed distribution of the standardized
esiduals.

GARCH-type models are part of the parametric models’ family, and
hey often assume a specific distribution, such as the standard normal
istribution, for the error term. However, such strong assumptions
ften present challenges in fully capturing the stylized facts of the
inancial returns.

This paper employs three GARCH-type models as benchmarks,
amely the GARCH model with normally distributed residuals (GCH-
), the GARCH model with the skewed 𝑡-distribution of Hansen (1994)

GCH-Skt), and the GARCH model with the distribution estimated by
he Empirical Distribution Function as a nonparametric alternative
GCH-EDF).

.5.3. GAS models
This paper also uses the GAS models (namely, the FZ2F model, FZ1F

odel, GCH-FZ model, and the Hybrid model) proposed by Patton et al.
2019) as benchmarks for model comparison. The models are given by:

∙ FZ2F model:
[

𝑣𝑡
𝑒𝑡

]

= 𝐖 + 𝐁
[

𝑣𝑡−1
𝑒𝑡−1

]

+ 𝐀
[

𝜆𝑣,𝑡−1
𝜆𝑒,𝑡−1

]

(22)

Here 𝜆𝑣,𝑡−1 ≡ −𝑣𝑡(1{𝑌𝑡−1 ≤ 𝑣𝑡−1} − 𝛼) and 𝜆𝑒,𝑡−1 ≡ 1
𝛼1{𝑌𝑡−1 ≤

𝑣𝑡−1}𝑌𝑡−1 − 𝑒𝑡−1; 𝐖 is a vector of size (2 × 1); 𝐁 is a diagonal

matrix, and 𝐀 is a (2 × 2) matrix.

https://www.tensorflow.org
https://www.tensorflow.org
https://www.tensorflow.org
https://www.tensorflow.org
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Table 4
Summary statistics.

S&P 500 FTSE DJIA Oil Spot Gold Spot USDJPY

Total count 5614 5645 5610 5595 5595 5803
In-sample 2502 2513 2503 2485 2485 2589
Out-of-sample 3112 3132 3107 3110 3110 3214

Mean 4.688 0.582 4.822 9.464 8.039 1.032
StdDev 19.669 18.449 18.819 42.423 16.94 9.596
Skew −0.391 −0.301 −0.398 0.031 −0.259 −0.041
Kurt 13.327 10.138 15.81 16.222 9.252 7.388

VaR (𝛼 = 0.01) −3.55 −3.438 −3.533 −7.561 −2.995 −1.643
VaR (𝛼 = 0.025) −2.589 −2.48 −2.412 −5.166 −2.202 −1.213
VaR (𝛼 = 0.05) −1.916 −1.814 −1.824 −3.936 −1.669 −0.955
VaR (𝛼 = 0.10) −1.296 −1.238 −1.201 −2.76 −1.162 −0.688

ES (𝛼 = 0.01) −5.218 −4.71 −5.075 −10.394 −4.115 −2.22
ES (𝛼 = 0.025) −3.894 −3.597 −3.722 −7.804 −3.167 −1.724
ES (𝛼 = 0.05) −3.06 −2.862 −2.904 −6.153 −2.537 −1.395
ES (𝛼 = 0.10) −2.317 −2.175 −2.189 −4.722 −1.96 −1.1

Notes: This table presents summary statistics on the 6 daily asset return series, over the full sample period
from 1 January 2000 to 31 May 2022. The first three rows report the total number of observations over the
full sample period, the number of observations over the in-sample period, and the number of observations
over the out-of-sample period. Also, the annualized mean, standard deviation, skewness and kurtosis of
these daily return series are reported. The last eight rows present the sample Value-at-Risk for four different
values of 𝛼 and the corresponding sample Expected Shortfall estimates.
Table 5
Parameter estimates of ARMA and GARCH(1,1) models.

S&P 500 FTSE DJIA Oil Spot Gold Spot USDJPY

ARMA model

Constant −0.011 −0.008 −0.003 0.046 0.052 −0.003
AR(1) −0.087 −0.086
MA(1) −0.040 −0.057
Order(p,q) (2, 0) (0, 4) (2, 0) (0, 0) (0, 0) (0, 1)

GARCH(1,1) with skewed 𝑡-distribution model

𝜔 0.010 0.000 0.010 0.159 0.010 0.008
𝛽 0.073 0.169 0.076 0.069 0.036 0.048
𝛾 0.920 0.831 0.918 0.907 0.957 0.934
DoF 9.042 15.212 8.556 8.764 5.718 7.750
Skewness −0.105 −0.105 −0.095 −0.078 −0.022 −0.057

Notes: This table presents parameter estimates for the six assets’ daily return series, over the in-sample period
from January 2000 to December 2009. The first panel reports the parameters and order of the optimal ARMA
model, with the selection made based on the BIC method. The second panel presents parameter estimates
for GARCH(1,1) with the skewed 𝑡-distribution.
Table 6
Parameter estimates of GAS models for VaR and ES for S&P 500 (𝛼 = 1%).

FZ2F FZ1F GCH-FZ Hybrid

VaR ES

𝜔 −0.060 −0.094 𝛽 0.991 0.923 0.977
(s.e.) (0.177) (0.514) (s.e.) (0.002) (0.189) (0.007)
𝑏 0.979 0.978 𝛾 0.003 0.053 0.003
(s.e.) (0.062) (0.121) (s.e.) (0.000) (0.017) (0.001)
𝑎𝑣 0.000 0.001 𝛿 0.013
(s.e.) (0.582) (0.004) (s.e.) (0.002)
𝑎𝑒 0.000 0.001 𝑎 −2.279 −2.777 −3.906
(s.e.) (1.652) (0.013) (s.e.) (1.213) (0.406) (9.113)

𝑏 −3.283 −3.529 −4.931
(s.e.) (1.796) (1.295) (11.688)

Average loss 0.592 0.603 0.637 0.590

Notes: This table presents the estimated parameters as well as their standard errors (s.e.)
of the GAS models for S&P 500 daily return series for 1%-level VaR and ES forecasting,
over the in-sample period from January 2000 to December 2009. The left panel shows
the results for the two-factor GAS model (FZ2F). The right panel reports the results for
the three models: the one-factor GAS model (FZ1F), the GARCH model estimated by FZ
loss minimization (GCH-FZ), and the hybrid-factor GAS model (Hybrid). The average
(in-sample) FZ0 losses for these models are shown in the bottom row.
7

Table 7
Numbers of rejections at the 1% and 5% significance levels.

Significance level 𝛼 = 1% 𝛼 = 2.5%

VaR ES VaR ES

1% 5% 1% 5% 1% 5% 1% 5%

RW-125 5 6 4 6 6 6 4 6
RW-250 4 5 2 5 2 6 1 4
RW-500 6 6 2 6 5 5 5 6

GCH-N 3 4 4 4 1 3 3 4
GCH-Skt 2 2 2 2 1 2 1 2
GCH-EDF 2 3 2 3 1 1 1 2
FZ2F 1 2 2 3 2 3 3 3
FZ1F 4 4 4 4 1 1 1 2
GCH-FZ 2 4 2 4 2 2 2 2
Hybrid 3 4 3 4 1 2 1 2

RNN-VE-1 5 5 5 5 4 4 4 4
RNN-VE-2 4 4 4 4 2 3 4 4
RNN-VE-3 3 3 2 2 2 2 2 2
SRNN-VE-1 2 4 2 4 0 4 1 5
SRNN-VE-2 2 4 2 4 0 2 1 2
SRNN-VE-3 1 2 2 3 0 1 0 2

Notes: This table presents the number of assets that obtain rejections for DQ and DES
regression backtests over the out-of-sample period, at 1% and 5% significance levels,
across the six daily returns. The lowest number of rejections in each column is shown
in bold.
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Table 8
Out-of-sample performance rankings.
𝛼 =1%

ID Model name S&P 500 FTSE DJIA OilSpot GoldSpot USDJPY Average Rank

1 RW-125 13 12 14 10 10 15 12.33 14
2 RW-250 15 14 15 15 15 14 14.67 15
3 RW-500 16 15 16 16 14 16 15.50 16
4 GCH-N 9 16 10 9 13 3 10.00 10
5 GCH-Skt 4 13 3 5 3 1 4.83 3
6 GCH-EDF 8 8 4 4 5 4 5.50 4
7 FZ2F 10 4 9 11 6 13 8.83 9
8 FZ1F 5 5 7 8 4 12 6.83 7
9 GCH-FZ 7 7 5 1 7 11 6.33 6
10 Hybrid 3 6 6 7 16 7 7.50 8
11 RNN-VE-1 14 10 11 14 9 10 11.33 13
12 RNN-VE-2 12 9 12 12 12 9 11.00 11
13 RNN-VE-3 11 11 13 13 11 8 11.17 12
14 SRNN-VE-1 2 2 2 3 1 6 2.67 2
15 SRNN-VE-2 6 3 8 6 8 2 5.50 5
16 SRNN-VE-3 1 1 1 2 2 5 2.00 1

𝛼 =2.5%

ID Model name S&P 500 FTSE DJIA OilSpot GoldSpot USDJPY Average Rank

1 RW-125 13 9 14 11 11 15 12.17 12
2 RW-250 15 14 15 15 15 11 14.17 15
3 RW-500 16 16 16 16 14 16 15.67 16
4 GCH-N 10 15 10 6 7 1 8.17 9
5 GCH-Skt 6 12 5 5 4 4 6.00 6
6 GCH-EDF 5 7 6 3 5 2 4.67 4
7 FZ2F 8 8 9 10 10 10 9.17 10
8 FZ1F 7 4 7 7 9 9 7.17 8
9 GCH-FZ 4 6 3 1 6 7 4.50 3
10 Hybrid 3 2 4 9 8 8 5.67 5
11 RNN-VE-1 14 11 12 14 12 13 12.67 13
12 RNN-VE-2 11 10 11 12 16 12 12.00 11
13 RNN-VE-3 12 13 13 13 13 14 13.00 14
14 SRNN-VE-1 2 3 2 2 1 6 2.67 2
15 SRNN-VE-2 9 5 8 8 3 3 6.00 7
16 SRNN-VE-3 1 1 1 4 2 5 2.33 1

Notes: This table presents model rankings (with the best-performing model ranked 1 and the worst ranked 16) based on the average losses
obtained with the FZ0 loss function for 6 daily return series over the out-of-sample period for 16 different forecasting models. Columns 10
present the average rank across the six return series, for 1% and 2.5% 𝛼 values, respectively.
∙ FZ1F model:

𝑣𝑡 = 𝑎 exp(𝜅𝑡)

𝑒𝑡 = 𝑏 exp(𝜅𝑡), 𝑏 < 𝑎 < 0

𝜅𝑡 = 𝜔 + 𝛽𝜅𝑡−1 + 𝛾𝐻−1
𝑡−1𝑠𝑡−1

(23)

where the scaling matrix 𝐻𝑡−1 is set to 1, and the score variable
𝑠𝑡−1 is:

𝑠𝑡−1 = − 1
𝑒𝑡−1

( 1
𝛼
1{𝑌𝑡−1 ≤ 𝑣𝑡−1}𝑌𝑡−1 − 𝑒𝑡−1) (24)

∙ GCH-FZ model:

𝑣𝑡 = 𝑎𝜎𝑡
𝑒𝑡 = 𝑏𝜎𝑡, 𝑏 < 𝑎 < 0

𝜎2𝑡 = 𝑤 + 𝛽𝜎2𝑡−1 + 𝛾𝑌 2
𝑡−1

(25)

The conditional variance 𝜎2𝑡 is assumed to follow the GARCH(1,1)
process. Instead of using Quasi Maximum Likelihood Estimation,
the GCH-FZ model estimates the parameters via the FZ0 loss score
(Eq. (6)) minimization.

∙ Hybrid model:

𝑣𝑡 = 𝑎 exp(𝜅𝑡)

𝑒𝑡 = 𝑏 exp(𝜅𝑡), 𝑏 < 𝑎 < 0

𝜅𝑡 = 𝜔 + 𝛽𝜅𝑡−1 + 𝛾 1
𝑒𝑡−1

( 1
𝛼
1{𝑌𝑡−1 ≤ 𝑣𝑡−1}𝑌𝑡−1 − 𝑒𝑡−1) + 𝛿𝐥𝐨𝐠|𝑌𝑡−1|

(26)
8

GAS models are semiparametric; they introduce a parametric struc-
ture to capture the dynamics of VaR and ES without making assump-
tions about the conditional distribution of the error term. The models
rely on an autoregressive term that drives the risk measures. The
estimation of these models is, however, challenging, lacking closed-
form analytic solutions. The use of numerical methods increases the
time and computational costs, and finding a global solution poses a
challenge. Additionally, these models are sensitive to initial values in
the estimation. In the following we will use all of the above models for
model comparison purposes.

4. Simulation study

In this section, we employ simulations to demonstrate the efficacy of
the RNN-based stateful models in capturing the sequential dependence
of VaR and ES. The data generating process is given by the following
GARCH process:

𝑌𝑡 = 𝜎𝑡𝜂𝑡
𝜎2𝑡 = 𝑤 + 𝛽𝜎2𝑡−1 + 𝛾𝑌 2

𝑡−1

𝜂𝑡 ∼ 𝑖𝑖𝑑𝐹𝜂(0, 1)

(27)

The GARCH simulation uses parameter values 𝜔, 𝛽, and 𝛾 as (0.05, 0.9,
0.05). We use Hansen’s (1994) skewed 𝑡-distribution. For the simula-
tion, we implement three sets of parameters for DoF and skewness,
namely (DoF = 3, Skewness = −0.8), (DoF = 5, Skewness = −0.5), and
(DoF = 10, Skewness = −1). The values of parameters (𝑏𝛼 , 𝑎𝛼) used to
compute VaR and ES estimates using the equation below, as in Patton
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Table 9
Out-of-sample average losses and results for the dynamic regression tests for the VaR and ES forecasts.

𝛼 = 1%

ID Model name Average loss DQ Test (VaR) P Values DES Test (ES) P Values

S&P 500 FTSE DJIA OilSpot GoldSpot USDJPY S&P 500 FTSE DJIA OilSpot GoldSpot USDJPY S&P 500 FTSE DJIA OilSpot GoldSpot USDJPY

1 RW-125 1.499 1.311 1.434 2.178 1.277 0.736 0.006 0.002 0.013 0.001 0.000 0.002 0.007 0.002 0.015 0.014 0.000 0.001
2 RW-250 1.558 1.372 1.533 2.322 1.339 0.691 0.002 0.001 0.011 0.000 0.003 0.210 0.040 0.001 0.044 0.038 0.004 0.202
3 RW-500 1.645 1.440 1.644 2.420 1.331 0.788 0.000 0.000 0.000 0.006 0.004 0.008 0.011 0.000 0.012 0.040 0.000 0.011
4 GCH-N 1.406 1.582 1.315 2.118 1.322 0.575 0.000 0.000 0.000 0.234 0.030 0.569 0.000 0.000 0.000 0.066 0.005 0.261
5 GCH-Skt 1.241 1.363 1.153 2.062 1.222 0.570 0.117 0.000 0.254 0.556 0.447 0.000 0.086 0.000 0.206 0.474 0.453 0.000
6 GCH-EDF 1.294 1.239 1.159 2.058 1.227 0.577 0.004 0.020 0.069 0.558 0.593 0.000 0.004 0.013 0.085 0.433 0.469 0.000
7 FZ2F 1.414 1.187 1.213 2.221 1.258 0.665 0.033 0.196 0.229 0.057 0.229 0.000 0.021 0.297 0.157 0.004 0.176 0.000
8 FZ1F 1.251 1.203 1.192 2.085 1.227 0.660 0.107 0.000 0.000 0.873 0.008 0.000 0.211 0.000 0.000 0.623 0.001 0.000
9 GCH-FZ 1.276 1.231 1.183 2.029 1.261 0.659 0.012 0.027 0.096 0.344 0.000 0.000 0.011 0.018 0.103 0.391 0.000 0.000
10 Hybrid 1.235 1.207 1.184 2.074 1.401 0.621 0.162 0.029 0.000 0.382 0.000 0.000 0.166 0.041 0.000 0.649 0.000 0.000
11 RNN-VE-1 1.523 1.286 1.344 2.257 1.273 0.650 0.000 0.000 0.000 0.738 0.000 0.000 0.000 0.000 0.000 0.407 0.000 0.000
12 RNN-VE-2 1.464 1.286 1.362 2.245 1.286 0.648 0.000 0.000 0.000 0.903 0.308 0.000 0.000 0.000 0.000 0.812 0.107 0.000
13 RNN-VE-3 1.437 1.307 1.422 2.248 1.277 0.642 0.007 0.000 0.753 0.685 0.804 0.000 0.767 0.000 0.821 0.549 0.306 0.000
14 SRNN-VE-1 1.229 1.148 1.150 2.049 1.205 0.604 0.014 0.081 0.014 0.000 0.610 0.000 0.015 0.094 0.025 0.000 0.406 0.000
15 SRNN-VE-2 1.271 1.182 1.203 2.074 1.269 0.570 0.020 0.196 0.037 0.094 0.000 0.000 0.018 0.234 0.060 0.038 0.000 0.000
16 SRNN-VE-3 1.205 1.130 1.134 2.039 1.207 0.591 0.074 0.335 0.044 0.091 0.131 0.000 0.059 0.280 0.062 0.008 0.045 0.000

𝛼 = 2.5%

ID Model name Average loss DQ Test (VaR) P Values DES Test (ES) P Values

S&P 500 FTSE DJIA OilSpot GoldSpot USDJPY S&P 500 FTSE DJIA OilSpot GoldSpot USDJPY S&P 500 FTSE DJIA OilSpot GoldSpot USDJPY

1 RW-125 1.209 1.058 1.141 1.907 1.032 0.436 0.001 0.001 0.003 0.002 0.000 0.001 0.005 0.001 0.010 0.011 0.003 0.001
2 RW-250 1.237 1.102 1.193 1.964 1.051 0.408 0.017 0.017 0.007 0.044 0.008 0.032 0.043 0.010 0.071 0.055 0.030 0.035
3 RW-500 1.313 1.207 1.291 2.086 1.043 0.482 0.000 0.000 0.000 0.002 0.084 0.009 0.000 0.000 0.001 0.008 0.047 0.001
4 GCH-N 1.059 1.159 0.996 1.813 0.999 0.332 0.044 0.000 0.012 0.977 0.173 0.163 0.003 0.000 0.001 0.552 0.038 0.415
5 GCH-Skt 1.010 1.080 0.949 1.802 0.974 0.339 0.333 0.000 0.280 0.703 0.336 0.012 0.167 0.000 0.172 0.514 0.443 0.011
6 GCH-EDF 1.008 1.008 0.950 1.799 0.975 0.336 0.528 0.001 0.261 0.981 0.526 0.054 0.218 0.000 0.154 0.802 0.496 0.022
7 FZ2F 1.030 1.040 0.977 1.895 1.026 0.389 0.026 0.000 0.098 0.494 0.155 0.000 0.064 0.000 0.086 0.441 0.003 0.000
8 FZ1F 1.024 0.968 0.950 1.822 1.015 0.375 0.713 0.492 0.508 0.717 0.133 0.001 0.499 0.545 0.346 0.624 0.030 0.006
9 GCH-FZ 1.007 1.001 0.940 1.795 0.987 0.358 0.636 0.002 0.394 0.293 0.181 0.001 0.339 0.001 0.268 0.273 0.063 0.000
10 Hybrid 1.005 0.955 0.947 1.854 1.014 0.370 0.844 0.293 0.702 0.376 0.044 0.000 0.664 0.392 0.609 0.170 0.045 0.001
11 RNN-VE-1 1.218 1.080 1.091 1.950 1.032 0.411 0.000 0.000 0.000 0.493 0.984 0.000 0.000 0.000 0.000 0.800 0.400 0.000
12 RNN-VE-2 1.148 1.078 1.079 1.946 1.056 0.410 0.783 0.033 0.000 0.371 0.066 0.000 0.104 0.004 0.000 0.784 0.000 0.000
13 RNN-VE-3 1.177 1.091 1.117 1.947 1.036 0.411 0.209 0.000 0.360 0.400 0.854 0.000 0.584 0.000 0.226 0.859 0.123 0.000
14 SRNN-VE-1 0.986 0.960 0.930 1.797 0.968 0.354 0.044 0.047 0.016 0.286 0.723 0.048 0.036 0.032 0.012 0.001 0.814 0.044
15 SRNN-VE-2 1.048 0.973 0.955 1.830 0.973 0.337 0.151 0.047 0.143 0.018 0.432 0.139 0.039 0.070 0.131 0.003 0.421 0.205
16 SRNN-VE-3 0.975 0.948 0.918 1.799 0.969 0.351 0.212 0.140 0.150 0.088 0.633 0.041 0.081 0.089 0.147 0.012 0.775 0.027

Notes: Columns 3–8 present the average FZ0 losses for 6 different assets daily return series. The lowest average loss in each column is shown in bold, and the second lowest is shown in italics. Columns 9–14 and columns 15–20
present p-values of the dynamic regression tests DQ and DES, respectively, for the VaR and ES forecasts. Values greater than 0.05 (indicating no evidence against optimality at the 5% level) are in bold.
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Table 10
Average losses and ranks of the models over the period 1 Jan 2010 to 31 Dec 2018.

𝛼 = 1%

ID Model name Average loss Average rank Rank

S&P 500 FTSE DJIA OilSpot GoldSpot USDJPY

1 RW-125 1.392 1.167 1.320 1.912 1.268 0.775 12 14
2 RW-250 1.359 1.221 1.344 2.022 1.329 0.731 14.167 15
3 RW-500 1.426 1.303 1.377 2.200 1.248 0.843 14.5 16

4 GCH-N 1.291 1.288 1.151 1.876 1.317 0.662 9.833 9
5 GCH-Skt 1.157 1.115 1.038 1.864 1.219 0.642 3.667 2
6 GCH-EDF 1.197 1.038 1.040 1.867 1.223 0.647 4.667 4

7 FZ2F 1.273 1.074 1.093 1.962 1.249 0.720 10 10
8 FZ1F 1.166 1.075 1.050 1.872 1.205 0.712 5.667 5
9 GCH-FZ 1.179 1.031 1.059 1.877 1.273 0.713 7.833 8
10 Hybrid 1.154 1.040 1.040 1.890 1.425 0.682 7.167 7

11 RNN-VE-1 1.455 1.178 1.220 1.959 1.239 0.706 11 12
12 RNN-VE-2 1.379 1.171 1.290 1.965 1.255 0.701 11.667 13
13 RNN-VE-3 1.314 1.186 1.237 1.959 1.245 0.687 10.5 11

14 SRNN-VE-1 1.119 0.977 1.036 1.918 1.206 0.673 4 3
15 SRNN-VE-2 1.182 1.013 1.078 1.873 1.281 0.647 6.167 6
16 SRNN-VE-3 1.106 0.965 1.019 1.913 1.212 0.662 3.167 1

𝛼 = 2.5%

ID Model name Average loss Average rank Rank

S&P 500 FTSE DJIA OilSpot GoldSpot USDJPY

1 RW-125 1.087 0.945 1.020 1.692 1.025 0.499 12.5 11
2 RW-250 1.079 0.986 1.020 1.757 1.043 0.462 13.833 15
3 RW-500 1.153 1.072 1.103 1.898 1.012 0.530 14.833 16

4 GCH-N 0.957 1.001 0.868 1.663 0.998 0.413 7.833 9
5 GCH-Skt 0.920 0.933 0.835 1.664 0.975 0.413 4.167 3
6 GCH-EDF 0.920 0.872 0.835 1.661 0.976 0.411 4 1

7 FZ2F 0.917 0.952 0.869 1.661 1.031 0.440 8.167 10
8 FZ1F 0.935 0.853 0.858 1.645 1.011 0.429 6.5 7
9 GCH-FZ 0.918 0.867 0.827 1.673 0.997 0.423 5 5
10 Hybrid 0.921 0.834 0.852 1.674 1.021 0.428 6.833 8

11 RNN-VE-1 1.143 0.975 0.998 1.748 1.024 0.464 12.667 13
12 RNN-VE-2 1.068 0.976 0.999 1.751 1.042 0.463 12.833 14
13 RNN-VE-3 1.078 0.988 0.992 1.748 1.028 0.464 12.5 11

14 SRNN-VE-1 0.896 0.833 0.823 1.680 0.977 0.425 4 1
15 SRNN-VE-2 0.967 0.848 0.840 1.677 0.981 0.420 6.167 6
16 SRNN-VE-3 0.893 0.825 0.818 1.684 0.978 0.429 4.167 3

Notes: This table presents average FZ0 losses and model rankings over the out-of-sample period from 1 Jan 2010 to 31 Dec 2018, for 1% and
2.5% 𝛼 values, respectively. The in-sample period is from 1 January 2000 to 31 December 2009. The lowest values for columns 3–10 is shown
in bold. Column 9 present the average ranks across 6 different assets. Column 10 presents model rankings (with the best-performing model
ranked 1 and the worst ranked 16) based on the column 9.
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t al. (2019), can be found in Table 1.
𝛼
𝑡 = 𝑎𝛼𝜎𝑡
𝑒𝛼𝑡 = 𝑏𝛼𝜎𝑡
𝑏𝛼 < 𝑎𝛼 < 0

(28)

Twenty return series are generated for each pair of parameters (DoF,
kewness), each consisting of 10,000 returns. The simulated data is
ivided into three segments: a training set consisting of the first 3750
ata points, a validation set made up of the subsequent 1250 data
oints, and an out-of-sample set comprising the last 5000 data points.
he validation set is used to implement early stopping to terminate the
raining process when the loss on the validation set reaches a plateau.

After training, we forecast one-day-ahead VaR and ES for each
eries for the out-of-sample dataset. Fig. 2 displays the actual 1%-VaR,
alculated using Eq. (28), as well as the 1%-VaR estimated using the
RNN-VE-1, SRNN-VE-2, and SRNN-VE-3 models, respectively, for the
irst simulated return series. Fig. 3 presents the true 1%-ES, obtained
sing Eq. (28), alongside the predicted 1%-ES. We calculate the average
ut-of-sample FZ0 loss score and average linear correlation coefficient
ver twenty simulated return series for each (DoF, Skewness) parameter
ombination. The results are summarized in Table 2; these show that
he VaR and ES series predicted by all three RNN-based stateful models
xhibit high correlations (mostly above 85%) with the true values,
10

m

nd the average FZ0 loss values are close to the true loss values,
ndicating that the models are able to capture the tail behavior of 𝑌𝑡. As
nticipated, in Table 2, the losses of the RNN-based stateful estimated
odels are higher than, but not far from, the true loss of the GARCH
ith skewed 𝑡-distribution that was used as data generating process

DGP), so the estimated models slightly underperform the DGP. Also,
s anticipated, the SRNN-VE-2 model, owing to its resemblance to the
ARCH models, outperforms the other stateful models across all levels
f 𝛼.

. Empirical study

In this section, we evaluate the performance of the three RNN-
ased stateful models and three non-stateful RNN models discussed in
ection 3.4 on daily financial returns. Additionally, we conduct an
valuation of ten popular risk models which include the rolling window
odels with window length 125, 250 and 500 days, denoted by RW-
25, RW-250, and RW-500, GARCH-type models based on the Normal,
kewed t and EDF distributions, denoted by GCH-N, GCH-Skt, and GCH-
DF, and four GAS models proposed by Patton et al. (2019), specifically
he FZ2F, FZ1F, GCH-FZ, and Hybrid model, which serve as benchmark
odels (so we consider a total of 13 benchmark models).
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Fig. 2. The true and forecasted 1%-VaR of the daily return series simulated via GARCH(1,1) with skewed 𝑡-distribution (DoF = 5, Skewness = −0.5) for the three stateful models
on the out-of-sample set.

Fig. 3. The true and forecasted 1%-ES of the daily return series simulated via GARCH(1,1) with skewed 𝑡-distribution (DoF = 5, Skewness = −0.5) for the three stateful models
on the out-of-sample set.
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Table 11
Average losses and ranks of the models over the period 1 Jan 2021 to 31 May 2022.

𝛼 = 1%

ID Model name Average loss Average rank Rank

S&P 500 FTSE DJIA OilSpot GoldSpot USDJPY

1 RW-125 1.313 1.412 1.136 2.584 1.102 0.370 6.833 6
2 RW-250 1.660 1.460 1.462 2.631 1.151 0.426 10.167 12
3 RW-500 1.825 1.417 1.881 2.530 1.280 0.438 11.5 15

4 GCH-N 1.565 2.108 1.401 2.488 1.308 0.172 11.333 13
5 GCH-Skt 1.288 1.645 1.160 2.334 1.119 0.280 5.833 2
6 GCH-EDF 1.289 1.648 1.141 2.330 1.174 0.314 6.667 5

7 FZ2F 1.160 1.597 1.226 2.974 1.104 0.355 6.833 6
8 FZ1F 1.116 1.493 1.359 3.076 1.078 0.347 6.333 4
9 GCH-FZ 1.211 1.725 1.125 2.413 1.187 0.292 6.167 3
10 Hybrid 1.207 1.766 1.344 3.037 1.080 0.351 8.5 8

11 RNN-VE-1 1.285 1.704 1.322 3.464 1.208 0.495 12.333 16
12 RNN-VE-2 1.184 1.495 1.039 3.137 1.229 0.487 8.5 8
13 RNN-VE-3 1.278 1.769 1.260 3.338 1.164 0.482 11.333 13

14 SRNN-VE-1 1.220 1.913 1.152 2.436 1.294 0.366 9.833 11
15 SRNN-VE-2 1.203 1.656 1.118 2.330 1.191 0.300 5.167 1
16 SRNN-VE-3 1.154 1.845 1.163 2.430 1.243 0.368 8.667 10

𝛼 = 2.5%

ID Model name Average loss Average rank Rank

S&P 500 FTSE DJIA OilSpot GoldSpot USDJPY

1 RW-125 1.141 1.216 0.956 2.208 0.928 −0.017 5.333 2
2 RW-250 1.359 1.191 1.212 2.262 0.934 0.069 8.667 9
3 RW-500 1.484 1.260 1.446 2.263 0.953 0.193 11.5 14

4 GCH-N 1.216 1.408 1.051 2.035 1.046 −0.042 10.167 11
5 GCH-Skt 1.102 1.272 0.970 1.993 0.978 0.002 6.167 4
6 GCH-EDF 1.082 1.258 0.957 1.993 1.002 0.041 5.833 3

7 FZ2F 1.169 1.230 0.936 2.141 1.015 −0.030 6.667 6
8 FZ1F 1.238 1.235 1.074 2.274 0.980 0.088 10.167 11
9 GCH-FZ 1.080 1.266 0.924 2.028 1.003 0.038 6.167 4
10 Hybrid 1.118 1.311 1.065 2.278 1.045 0.075 11.5 14

11 RNN-VE-1 1.172 1.232 0.999 2.736 1.025 0.247 11.5 14
12 RNN-VE-2 1.103 1.183 0.929 2.437 1.115 0.247 9.333 10
13 RNN-VE-3 1.149 1.259 0.977 2.529 1.129 0.250 12.667 16

14 SRNN-VE-1 1.059 1.285 0.918 2.023 1.053 0.100 8 7
15 SRNN-VE-2 1.034 1.254 0.896 1.998 1.001 0.066 4.167 1
16 SRNN-VE-3 1.049 1.379 0.912 2.070 1.025 0.106 8.167 8

Notes: This table presents average FZ0 losses and model rankings over the out-of-sample period from 1 Jan 2021 to 31 May 2022, for 1% and
2.5% 𝛼 values, respectively. The in-sample period is from 1 January 2015 to 31 December 2020. The lowest values for columns 3–10 is shown
in bold. Column 9 present the average ranks across 6 different assets. Column 10 presents model rankings (with the best-performing model
ranked 1 and the worst ranked 16) based on the column 9.
.1. Data description

Our analysis is based on six assets, which consist of three equity
ndices (S&P 500, FTSE, and DJIA), two commodities (oil spot price
nd gold spot price), and one exchange rate USDJPY, spanning from
January 2000 to 31 May 2022.8 We estimate the model parameters

sing the first ten years (1 January 2000 to 31 Dec 2009) and reserve
he remaining 13 years of the data for evaluation and model compar-
son. In our empirical study, we use the square of the demeaned log
eturn as the input of the RNN-based models, which is calculated using
q. (29). As shown in Table 3, training each machine learning model is
ot very time consuming. This demonstrates the time efficiency of the
ix RNN-based models.

𝑡 = 𝑙𝑜𝑔(𝑃𝑡) − 𝑙𝑜𝑔(𝑃𝑡−1) (29)

Table 4 displays the summary statistics of the six daily asset return
series for the full sample period. The first three rows report the total

8 The indices daily close prices are obtained from https://realized.
xfordman.ox.ac.uk/ accessed in 2022; the two commodity prices and the
xchange rate USDJPY are obtained from Bloomberg; the ticker name for
il spot price and gold spot price are XAU Curncy and USCRWTIC index,
espectively.
12
number of observations for the full sample period, the number of
observations for the in-sample period, and the number of observations
for the out-of-sample period. The table also presents the sample Value-
at-Risk estimates for four distinct choices of 𝛼 and the corresponding
sample Expected Shortfall estimates.

5.2. Model comparison

This section compares the performance of the RNN-based stateful
models discussed in Section 3.4 with the thirteen benchmark models,
including a comparison based on backtesting criteria.

Table 5 displays the parameter estimates for the autoregressive mov-
ing average ARMA(p,q) model and the GARCH(1,1) model combined
with the skewed 𝑡-distribution. The ARMA order (p,q) is determined
based on the Bayesian information criterion (BIC). In the second panel,
the estimated parameters of the GARCH(1,1) model, as well as the
degrees of freedom (DoF) and skewness, are presented.

Table 6 presents the parameter estimates as well as their corre-
sponding standard errors for the GAS models proposed by Patton et al.
(2019) used to forecast VaR and ES for the S&P 500 daily return
series at 1% 𝛼 level. The analysis was conducted over the in-sample
period ranging from January 2000 to December 2009. The left panel

of the table outlines the results of the two-factor GAS model (FZ2F)

https://realized.oxfordman.ox.ac.uk/
https://realized.oxfordman.ox.ac.uk/
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Fig. 4. Color map based on the DM test comparing the average losses over the out-of-sample period for 16 different models estimated on the six different assets, S&P 500, FTSE,
DJIA, Oil Spot prices, Gold Spot prices, and USDJPY exchange rate at 1% level of risk. Dark orange blocks mean that the row model has a lower average loss than the column
model at 5% significance level; light orange blocks mean that the row model has a lower average loss than the column model, but the difference is not significant at 5% level.
Blue blocks mean that the row model has a higher average loss than the column model, with the darkest shade denoting a difference that is significant at 5% level. The numbering
of the models is based on the ID numbers given in Table 8.
whereas the right panel contains the outcomes of three models, the one-
factor GAS model (FZ1F), the GARCH model estimated using FZ loss
minimization (GCH-FZ), and the hybrid-factor GAS model (Hybrid).
The bottom row of the table shows the average (in-sample) FZ0 losses
of all the aforementioned models.

Table 7 displays the number of rejections at significance levels of 1%
and 5% for both the dynamic quantile (DQ) test and the dynamic ES
(DES) regression test proposed by Engle and Manganelli (2004) which
evaluate the performances of VaR and ES forecasts for the six assets.
The DQ regression test with one lag is based on the equation presented
in Eq. (30), with the test providing valuable insights into the reliability
of the analyzed models for risk estimation.

𝐻𝑖𝑡𝛼,𝑡 = 𝑤0 +𝑤1𝐻𝑖𝑡𝛼,𝑡−1 +𝑤2𝑣𝑡−1 + 𝑢𝑡 (30)

where the 𝐻𝑖𝑡𝛼,𝑡 is defined as 𝐻𝑖𝑡𝛼,𝑡 = 1{𝑌𝑡 ≤ 𝑣𝑡} − 𝛼, and 𝑢𝑡 is the
regression residual. The DES regression test is based on the following
regression:

𝜆𝑆𝑒,𝑡 = 𝑏0 + 𝑏1𝜆
𝑆
𝑒,𝑡−1 + 𝑏2𝑒𝑡−1 + 𝑢𝑒,𝑡 (31)

where the 𝜆𝑆𝑒,𝑡 is defined as 𝜆𝑆𝑒,𝑡 = 1{𝑌𝑡 ≤ 𝑣𝑡}
𝑌𝑡
𝑒𝑡

− 1, and 𝑢𝑒,𝑡 is
the regression residual. The results show that the SRNN-VE-3 model
exhibits the fewest rejections in the DQ test, at both 1% and 5%
significance levels, for both 1% and 2.5% 𝛼 levels. In the DES test, the
SRNN-VE-3 model demonstrates a performance that is comparable to
that observed in the DQ test. Moreover, the stateful models demonstrate
a higher likelihood of passing both the DQ and DES tests compared to
their corresponding non-stateful counterparts.

Table 8 presents rankings based on average FZ0 loss values ob-
tained for six daily return series over the out-of-sample period for 16
distinct forecasting models, with the best-performing model ranked 1
and the worst is ranked 16. Column 10 indicates the average rank
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across the six return series for both 𝛼 = 1% and 𝛼 = 2.5%. Notably,
the SRNN-VE-3 model is consistently ranked first, and the SRNN-VE-
1 model ranked second for 𝛼 values of 1% and 2.5%. However, the
corresponding non-stateful models (RNN-VE-3, and RNN-VE-1) exhibit
low rankings. Similarly, the SRNN-VE-2 model consistently outperforms
the RNN-VE-2 model.

Table 9 presents a summary of the average FZ0 loss scores, along
with the corresponding p-values of the DQ test and DES test.9 The table
displays the results on six different assets’ daily return series for risk
levels of 𝛼 = 1% and 𝛼 = 2.5%. The column with the lowest average loss
is highlighted in bold, while the second lowest is in italics. The p-values
of the dynamic regression tests of the VaR forecasts are presented in
columns 9 to 14, and columns 15 to 20 display the p-values for ES. Any
values greater than 0.05 are highlighted in bold to indicate absence of
evidence against optimality at 5% level. The table shows that the RNN-
based stateful model exhibits the best performance among all models
for the S&P 500, FTSE, DJIA, Gold Spot price, and USDJPY return series
for 𝛼 = 1%. For risk level 𝛼 = 2.5%, except for the Oil Spot price and
USDJPY assets, at least one out of the three stateful models has the
lowest average loss among all models. Especially, the SRNN-VE-3 model
consistently exhibits the lowest average loss across all three indices, for
both 1% and 2.5% 𝛼 levels.

The Diebold–Mariano (DM) test, initially introduced by Diebold
and Mariano (1995), constitutes a statistical test employed to compare
the forecast accuracy of two competing forecasting models. There is a
large amount of literature demonstrating how the DM test helps iden-
tifying statistically different forecasting performances of two models,

9 More details on the DQ test and DES test can be found in Engle and
Manganelli (2004) and Patton et al. (2019).
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Fig. 5. Color map based on the DM test comparing the average FZ0 losses over the out-of-sample period for 16 different models estimated on the six different assets, S&P 500,
FTSE, DJIA, Oil Spot prices, Gold Spot prices, and USDJPY exchange rate at 2.5% level of risk. Dark orange blocks mean that the row model has a lower average loss than the
column model at 5% significance level; light orange blocks mean that the row model has a lower average loss than the column model, but the difference is not significant at 5%
level. Blue blocks mean that the row model has a higher average loss than the column model, with the darkest shade denoting a difference that is significant at 5% level. The
numbering of the models is based on the ID numbers given in Table 8.
see Diebold (1998), Chen et al. (2014), Mariano and Preve (2012)
and Patton et al. (2019). In the paper, the DM test is used to compare
the average FZ0 losses of two models, with the results displayed in
Figs. 4 and 5. A negative 𝑡-statistic of this test indicates that the row
model exhibits lower average FZ0 loss than the column model. The
critical value of 1.96 is used to identify differences that are significant
at the 95% confidence level. The light orange shading in Figs. 4 and
5 signifies that the row models outperform the column model, but the
loss difference is not statistically significant. The dark orange shading
indicates that the row model exhibits significantly lower average FZ0
loss compared to the column model, at 95% confidence level. The
light blue color indicates that the row model exhibits a marginally
higher average FZ0 loss compared to the column model; however, the
difference is not found to be statistically significant. Conversely, the
dark blue color signifies a statistically significant difference, indicating
that the row model presents a markedly higher average FZ0 loss than
the column model, at a confidence level of 95%. The first ten rows
denote the ten benchmark models, with the model numbering in Figs. 4
and 5 following the numbering in column ‘ID’ in Tables 8 and 9. The
results show evidence that the stateful models generally outperform the
benchmark models.

In conclusion, a comprehensive analysis combining loss ranking
results and DM test results indicates that the SRNN-VE-3 model and
SRNN-VE-1 model exhibit outstanding performance, ranked first and
second, respectively, compared to the benchmark models. Conversely,
the SRNN-VE-2 model displays superior performance for specific series,
such as the USDJPY currency for risk level 𝛼 = 1%, but fails to
outperform the SRNN-VE-1 and SRNN-VE-3 models for the majority of
the analyzed series. Furthermore, it is consistently observed that the
stateful RNN models outperform their corresponding non-stateful RNN
models.
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5.3. Robustness test

We conduct two robustness tests based on shorter sample periods.
The first robustness test uses the same in-sample period with length
10 years, and a shorter out-of-sample period, from 1 January 2010
to 31 December 2018. Taking into consideration that potential regime
shifts can occur during this period which might affect the performance
of the models, our second robustness test employs a shorter in-sample
period, from 1 January 2015 to 31 December 2020, as well as a shorter
out-of-sample period, 1 January 2021 to 31 May 2022.

The main results of these two robustness tests described above are
presented in Tables 10 and 11, for 1% and 2.5% 𝛼 values, respectively.
In these tables, columns 3–8 present the average FZ0 losses. Column 9
presents the average ranks across 6 different assets, which are based
on the average FZ0 losses for 6 daily return series over the out-of-
sample period for 16 different forecasting models. Column 10 presents
model rankings (with the best-performing model ranked 1 and the
worst ranked 16) based on Column 9. From these results it can be
concluded that the stateful models consistently outperform their non-
stateful counterparts, and they also demonstrate superior performance
compared to the other benchmarks models. The GARCH-based models
(GCH-Skt, GCH-EDF, and GCH-FZ) have also performed well. However,
the SRNN-VE-2 model stands out as the top performer in the last
out-of-sample data period (2021–22) considered.

6. Conclusion

This paper proposes three novel models for the joint estimation of
Value-at-Risk and Expected Shortfall, employing the stateful Recurrent
Neural Network and Feedforward Neural Network Machine Learning
frameworks. Competing methods mostly employ econometric models
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such as GARCH-type models and GAS models to build joint forecasts of
VaR and ES. In contrast, the proposed stateful models do not rely on
specific model assumptions, in particular there is no need to make dis-
tribution assumptions for the error term, thereby exhibiting conceptual
advantages over conventional econometric approaches.

The simulation study demonstrates that the stateful models predict
risk levels that are close to the actual values, and the average FZ0
loss values are close to the true loss values. This indicates that these
models are able to successfully capture the distributional tail behavior
of returns.

We put forward an empirical application in which we forecast VaR
and ES jointly on daily return series of six assets (including three
international stock indices, two commodities, and one currency), based
on a dataset ranging 22 years from January 2000 to May 2022. Com-
paring the performance of the RNN-based stateful models with thirteen
alternative models, this paper provides evidence to support that the
RNN-based stateful models outperform the benchmark models in terms
of VaR and ES forecasting. The empirical results indicate that enabling
the RNN structure to be stateful enhances the ability of the models to
learn the tail risk structure of financial data.

The risk models presented in this article hold practical and theoret-
ical significance for financial practitioners, regulatory authorities, and
the academic community, providing improvements in risk management
and prediction. Practitioners and risk managers can benefit from the
proposed methodology, obtaining more accurate and timely risk esti-
mates to enhance their ability to formulate effective risk management
strategies. This is particularly crucial for professionals making rapid
decisions in an ever-changing market environment. Additionally, regu-
latory authorities can derive benefits from this study as more accurate
risk assessments contribute to the formulation of precise regulatory
policies, ensuring stability and transparency in financial markets. Fur-
thermore, the insights of this study can generate research directions
for academics to consider other potential applications of RNN-based
stateful models in finance.

The RNN-based stateful models, consisting of one stateful RNN
layer and one FNN layer, carry low computational costs. As such, it
could be worthwhile evaluating the performance of the models for
stock returns (which are known to be more volatile) or other financial
returns. Also, the potential performance enhancements associated with
deeper networks remain an area for further investigation. Furthermore,
a limitation of our study is the lack of a multivariate approach which
would be worthwhile to consider for future research, with potential
applications for fast portfolio risk estimation.
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