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A B S T R A C T   

To enable an evidence-based management of ecosystems to adapt to the climate crisis, we require fine spatio-
temporal resolution estimates of carbon, water, and energy fluxes at the field scale. To overcome the limitations 
resulting from the coarse spatial resolution of existing flux products, e.g. 500 m (Running et al., 2015), and the 
challenges in matching eddy covariance (EC) footprints with land use field scales, we for the first time investigate 
the influence of satellite resolution on flux estimation, which is to support the fine-scale extrapolation of EC 
fluxes from the tower footprint to the field scale. We validate the extrapolation at 206 FLUXNET2015 tower sites 
to pave the way for estimating field-scale fluxes extrapolated from three towers in a managed European grazing 
pasture on a fine-scale, 30 m spatial resolution. The findings suggest that (a) tower-level flux estimates from 30 m 
satellites were in agreement with fluxes estimated from moderate-resolution satellites, which are extensively 
employed in literature (R2 difference ≪ 0.1); (b) flux estimates were in reasonable agreement with EC mea-
surements (R2: 0.7 and annual bias < 2 Mg ha− 1 yr− 1 for carbon fluxes); (c) Sentinel-2 was advantageous in 
capturing land-use variability over other satellites in European pastures; (d) the machine-learning extrapolation 
algorithm was resistant to livestock grazing.   

1. Introduction 

Effective ecosystem management is key in response to the climate 
crisis (Malhi et al., 2020), and accurate ecosystem-level measurements 
of ecosystem carbon and water balance are pivotal to evaluating man-
agement effectiveness. The rapid development-driven expansion of 
commodity land uses (Zalles et al., 2021) and the continuing global 
population growth (Zarocostas, 2022) contribute to the climate crisis we 
are facing – e.g., the rising concentrations of greenhouse gases [GHGs] 
(Mauna Loa, 2022), frequent climate extremes (Salomón et al., 2022) 
and worsened food security (Kotir, 2011). Since the 1990s, 14.6% (ca. 
18.5 million km2) of the Earth’s land area has been modified (Theobald 
et al., 2020) and the conversion from natural ecosystems to agriculture – 
e.g., livestock grazing and crop cultivation – is one major source of 

greenhouse gas emissions (FAO, 2022). Accurate and continuous 
monitoring of carbon, water, and energy exchanges (i.e., fluxes) be-
tween the atmosphere and agricultural ecosystems are therefore very 
important for understanding these ecosystems (Jung et al., 2017) and for 
improving agricultural effectiveness while minimising emissions (Gris-
com et al., 2017; Smith et al., 2021). 

Eddy covariance (EC) is one of the most effective techniques for 
providing direct flux measurements at the field scale within the mea-
surement footprint of the installed EC tower, ca. 100 to several thou-
sands of metres radii around the towers (Chu et al., 2021). EC has gained 
in popularity since the late 1990s (Baldocchi, 2020) and global EC 
networks (e.g., AmeriFlux, EuroFlux, and AsiaFlux) continue to develop 
and have collectively accumulated more than 900 towers (Chu et al., 
2017). Such global collaboration has successfully led to the release of the 
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FLUXNET2015 database which includes 206 open-access towers and 
covers data from late 1990s to 2015 (Pastorello et al., 2020). However, 
the vast majority of Earth’s land surface is not monitored because: 1) the 
EC footprint is relatively small compared to the area of terrestrial eco-
systems (Lee et al., 2004), and (2) the majority of existing EC towers 
(Fig. 1), ca. 85% (Schimel et al., 2015), are clustered in the Northern 
Temperate ecosystems and the number of EC towers in ecoregions like 
Amazonia and other tropical systems is relatively few (Pastorello et al., 
2020). Furthermore, approximately 38% of the global land surface is 
agricultural, ca. five billion hectares (FAO, 2022), but the fluxes within 
this large area are monitored by only 58 FLUXNET towers – 20 for 
croplands and 38 for grasslands which include pastures (Pastorello et al., 
2020). 

Extrapolating EC measurements by assimilating satellite observa-
tions has been widely recognised as an effective approach to estimating 
global ecosystem fluxes (Xiao et al., 2012; Jung et al., 2020). However, 
the literature mainly considers pristine or natural ecosystems (Jung 
et al., 2019; Joiner and Yoshida, 2020), overlooking management ac-
tivities which can pose additional challenges to estimating fluxes in 
managed systems. Further, the majority of EC extrapolation products are 
derived from moderate-resolution satellites (Schaaf and Wang, 2015) 
and the coarse spatial resolution (ca. 5–50 km) hinders the estimation of 
fluxes over managed ecosystems (e.g., grazing pastures) where the land 
use area can be smaller than one pixel and the internal spatial variability 
can be strong (Orr et al., 2016; Cardenas et al., 2022). As a result, 
extrapolating EC fluxes at a fine spatial resolution remains elusive, 
particularly for managed ecosystems (Fu et al., 2014). Reliable flux 
estimation from freely available high-spatial-resolution satellite images 
– e.g., 30 m Landsat-7/-8 (Chander et al., 2009; Vermote et al., 2016) or 
10 m/20 m Sentinel-2 (Szantoi and Strobl, 2019) satellites – holds great 
potential for cost-effective ecosystem management assessment, terres-
trial carbon sink preservation, and the pursuit of a carbon-neutral future 
(Griscom et al., 2017; Novick et al., 2022). 

The objective of this study is to extrapolate EC carbon, water, and 
energy fluxes at a fine spatial resolution (i.e., 30 m) and in a cost- 
effective manner to better monitor managed ecosystem fluxes with 
livestock grazing disturbances. This study comprises two parts: In part 1, 
we first examine our flux estimates at 206 FLUXNET sites, considering 
relative performance across 11 ecosystem types and using three satel-
lites (open-access for research purposes) with different spatial resolu-
tions varying from 30 m to 5566 m. This knowledge is then used to 
support the second part of this study, where we consider the impact of 
management activities when extrapolating EC fluxes to obtain reliable 
30 m field-scale estimates over three neighbouring grazed pastures in 
southwest England (Orr et al., 2016). To do this we use three EC towers 
located in separate pastures which experience the same climate, and 
similar land use therefore minimising the impacts of these factors on the 
extrapolation. As these three pastures have different grazing periods, 

they provide a good testbed to extrapolate the EC fluxes and analyse the 
impacts of grazing activities across sites. 

2. Methodology 

2.1. Machine learning-based flux extrapolation framework 

Inspired by the Unified FLUXes (UFLUX) initiative (https://sites.goo 
gle.com/view/uflux), extrapolating EC fluxes typically makes use of 
machine-learning algorithms to link EC fluxes and predictors (Jung 
et al., 2019, 2020) such as (Fig. 2): 

Flux = f (Sat., Meteo., aux.)

where, Sat. is satellite-based vegetation data products, e.g., (1) nor-
malised difference vegetation index, NDVI (Verhegghen et al., 2014): 

NDVI =
NIR − R
NIR + R  

where, NIR is the surface reflectance of near-infrared band and R is the 
surface reflectance of read band. (2) Enhanced vegetation index, EVI 
(Jiang et al., 2008): 

EVI = 2.5 ×
NIR − R

NIR + 2.4 × R + 1  

And (3) the near-infrared reflectance of vegetation, NIRv (Badgley et al., 
2017, 2019): 

NIRv = NDVI × NIR 

It is noteworthy that we use the two-band EVI (Jiang et al., 2008) 
here instead of the three-band one which also uses the blue band. This is 
because the signal-to-noise ratio of blue band is commonly poor (Rocha 
and Shaver, 2009). The Meteo. is reanalysed meteorological forcings 
including solar radiation and temperature (Joiner and Yoshida, 2020). 
The aux. are auxiliary parameters that typically include site timestamps 
and plant functional types (PFTs). It is also noteworthy that satellite 
products usually limit the temporal resolution of extrapolated flux es-
timates as the meteorological variables are typically resolved more 
frequently – e.g., the fifth generation atmospheric reanalysis of the Eu-
ropean Centre for Medium-Range Weather Forecasts (ERA5) is available 
on an hourly scale (Hersbach et al., 2020). 

We applied this same framework to the flux extrapolation using 206 

Fig. 1. FLUXNET2015 site numbers (blue bins) and mean gross primary pro-
ductivity [GPP] (orange dots) at every 10◦ latitude bins. 

Fig. 2. Schematic overview of the flux extrapolation model and data flow 
(black arrows). The ML therein refers to machine learning algorithms, EC is 
eddy covariance, VI is vegetation indices, and LOOCV is the leave-one-out 
cross validation. 
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FLUXNET towers and using our three pasture towers (Fig. 2). As the EC 
tower footprint varies tower by tower and time by time, we interpolated 
the gridded data (satellite vegetation indices and meteorological forc-
ings) to the tower locations using the inverse distance weighting (IDW) 
interpolation (Bartier and Keller, 1996) to reduce the uncertainty of only 
using the nearest pixels. The eXtreme Gradient Boosting (Xgboost) was 
chosen as the machine-learning algorithm for extrapolation, because it is 
highly flexible, fast (i.e., supporting parallel processing), and it tolerates 
a small amount of missing data (Chen et al., 2015). To account for the 
differences between PFTs, we validated the extrapolation model sepa-
rately for each PFT represented by the International Geosphere 
Biosphere Programme (IGBP) by employing the leave-one-out cross 
validation, LOOCV (Marchetti, 2021) to generate training and test 
datasets – i.e., we treated data from a single tower i(i ∈ [1, n]) as the test 
dataset and data from all other towers (1,⋯,i − 1, i + 1,⋯,n) within the 
same PFT as the training dataset. Using this approach, each tower was 
used once as a test dataset. For example, among the FLUXNET2015 
tower network comprising 206 sites, 20 of them were located within 
cropland areas. The machine learning model was trained on data from 
19 towers, and then used to predict fluxes for the remaining tower. This 
approach was similar to that used by Joiner and Yoshida (2020) and was 
implemented to avoid issues related to overtraining and incorrect per-
formance assessment that can arise when using conventional k-fold data 
splitting methods. This method was repeated 206 times for the FLUX-
NET2015 towers and three times for the pasture sites, with each tower’s 
data being used once as the test dataset. By splitting the data in this way, 
a comprehensive and reliable performance assessment was achieved. 

We utilised statistical metrics in presenting performance of the 
machine-learning model at the “tower level”. Please note throughout this 
manuscript, the term “tower level” refers to data, such as fluxes and 
satellite observations, that were spatially interpolated into EC tower 
geolocations using the inverse distance weighting (IDW) interpolation 
method described above. The use of IDW interpolation method matters 
because it accounts for the difference in spatial resolution between the 
gridded data used, such as satellite observations (Bartier and Keller, 
1996). Unlike other interpolation methods, such as nearest neighbour or 
bilinear interpolation, which use only a few surrounding pixels, IDW 
theoretically utilises all pixels for interpolation, giving weights to each 
pixel that are inversely related to their distance from the target geo-
location (Bartier and Keller, 1996). Consequently, closer pixels are given 
higher weights in the interpolation process, while farther pixels are 
given lower weights. As the FLUXNET2015 database does not provide 
open-access footprint information and the spatial resolution of satellite 
data can be smaller or larger than footprints (Xiao et al., 2012; Tra-
montana et al., 2015; Ichii et al., 2017; Jung et al., 2019; Joiner and 
Yoshida, 2020), using IDW interpolation is a viable alternative to 
extracting pixels according to daily tower footprints that continuously 
vary (Chu et al., 2017, 2021). Metrics for assessing the model perfor-
mance were the coefficient of determination (R2) and mean bias error 
(MBE), and the uncertainty was measured using the interquartile range 
(IQR) of the MBE. In addition, we presented the root mean squared error 
(RMSE) as a point of reference to facilitate the assessment of the model 
performance for readers. 

2.2. Study sites 

In this study, we used two sets of EC towers – i.e., global 206 towers 
from the FLUXNET2015 database and three pasture towers we operated 
in North Wyke, southwest England. Details regarding the two sets will be 
given separately as follows. 

2.2.1. FLUXNET2015 sites 
The FLUXNET2015 database was released in 2020 (Pastorello et al., 

2020). It includes 206 open-access towers and another six towers under 
a relatively restrictive data policy. The 212 towers in total cover 13 IGBP 
ecosystem types – croplands (CRO, 20 towers), closed shrublands (CSH, 

3 towers), deciduous broadleaf forests (DBF, 26 towers), deciduous 
needleleaf forests (DNF, 1 tower), evergreen broadleaf forests (EBF, 15 
towers), evergreen needleleaf forests (ENF, 50 towers), grassland (GRA, 
38 towers), mixed forests (MF, 10 towers), open shrublands (OSH, 13 
towers), savannahs (SAV, 8 towers), snow and ice (SNO, 1 tower), 
wetlands (WET, 21 towers), and woody savannahs (WSA, 6 towers). The 
total site-years are over 1500 years up to 2014 inclusively. In terms of 
continent, 84 towers are in North America, 71 in Europe, 23 in Australia, 
21 in Asia, 7 in South America, and 6 in Africa. 

The FLUXNET2015 database provides tower-level net ecosystem 
exchange (NEE), gross primary productivity (GPP), ecosystem respira-
tion (Reco), sensible heat (H), and latent energy (LE) fluxes as well as 
meteorological data (incl. solar radiation, temperature, and vapour 
pressure deficit) at a half-hourly frequency (https://fluxnet.org/data/ 
fluxnet2015-dataset/fullset-data-product/). The GPP and Reco data 
therein are partitioned from NEE using the night-time (Reichstein et al., 
2005) and day-time (Lasslop et al., 2010) partitioning methods. Data of 
all towers are inter-comparable as they were processed and quality 
controlled using the same data-processing pipeline (Pastorello et al., 
2020). In this study, we used all 206 open-access towers to evaluate the 
influence of satellite resolutions on the flux extrapolation. 

2.2.2. North Wyke pasture sites 
The three pasture EC towers (Fig. 3) were operated in the North 

Wyke Farm Platform (NWFP, established in 2010) – a national & global 
agriculture research facility in southwest England (120–180 m.a.s.l., 
50◦46’10”N, 3◦54’05”W). Annual precipitation was 1032 mm and the 
average minimum and maximum daily temperatures were 6.8 and 
13.5 ◦C over the past 30 years (Orr et al., 2016; Cardenas et al., 2022). 
The average wind speed was 10 m s− 1 and the main wind direction was 
westerly (Cardenas et al., 2022). We used three EC towers (data from 
2017 to the beginning of 2019) with LI-COR setups [referred to as 
‘LI-COR towers/systems’](LI-COR Inc., 2017). The three pasture farmlets 
are characterised as high sugar grass (HS, 6.65 ha with the Lolium per-
enne grass variety AberMagic), permanent pasture (PP, 6.39 ha pre-
dominantly perennial ryegrass, Lolium perenne), and high sugar/white 
clover mix (HSC, 6.49 ha with a combination of AberMagic and the 
white clover variety AberHerald) (Fig. 3). The farmlet PP is used as a 
control treatment for a grassland management system in the region, as it 
is based on typical pasture and management, and it has not been 
ploughed for the previous 20 years. In contrast, farmlet HS and HSC 
were ploughed and re-seeded in 2013 after a baseline measurement 
period when all the fields were under the same original pasture (Orr 
et al., 2016). All three farmlets are grazed from April to October with 

Fig. 3. Locations three existing LI-COR EC systems. The figure is presented via 
the Google Earth platform (Lisle, 2006). 
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cattle (ca. 4 ha− 1), lamb (ca. 17 ha− 1), and sheep (ca. 10 ha− 1). 
All three LI-COR systems used the same setup but are mounted at 

different heights; tower heights and sensors for all the EC systems and 
environmental variables can be found in Table 1. Gas concentrations and 
wind velocities were recorded at a 20 Hz frequency. 

2.3. Data 

2.3.1. FLUXNET2015 EC data 
We used 10 years (2005–2014) of daily averaged EC fluxes from the 

FLUXNET2015 database (Pastorello et al., 2020). These fluxes include 
(1) net ecosystem exchange using Variable Ustar Threshold (VUT) with 
reference (NEE_VUT_REF), (2) gross primary production using the 
night-time (NT) partitioning method (GPP_NT_VUT_REF), ecosystem 
respiration using the night-time (NT) partitioning method 
(GPP_NT_VUT_REF), sensible heat using the marginal distribution sam-
pling (MDS) gap-filling method (H_F_MDS), and latent energy using the 
marginal distribution sampling (MDS) gap-filling method (LE_F_MDS). 
Further variable explanations can be found at https://fluxnet.org/data/ 
fluxnet2015-dataset/fullset-data-product/. 

We applied quality control criteria to the fluxes following the liter-
ature (Jung et al., 2019; Joiner and Yoshida, 2020). We only allowed 
daily points where 20% or less came from gap-filled data. For NEE, GPP, 
and Reco, the uncertainty of NEE should be smaller than 3 g C m− 2 d− 1 

and the difference between night-time and day-time partitioned GPP & 
Reco should be also smaller than 3 g C m− 2 d− 1. 

2.3.2. North Wyke EC data 
In addition, we used daily averaged EC data from the three LI-COR 

towers in the North Wyke Farm Platform, including net ecosystem ex-
change (NEE), night-time partitioned GPP and ecosystem respiration 
(Reco) (Reichstein et al., 2005), sensible heat (H), and latent energy (LE) 
from the three LI-COR systems. The data processing was carried out 
using the EddyPro (v6.2.2, Li-Cor Inc., Lincoln, NE, USA) software 
(LI-COR Inc., 2017) and it referred to the FLUXNET2015 standard pro-
cessing pipeline (Pastorello et al., 2020). The quality control criteria we 
applied to the North Wyke EC fluxes were the same as the ones for 
FLUXNET2015 fluxes. As the presence of data gaps poses a challenge to 
the comprehensiveness of EC flux time series, here the fluxes were 
gap-filled using the random forest regression (RFR)-based method (Zhu 
et al., 2022) which exhibited global advantages over other gap-filling 
methods even in challenging conditions such as those involving 
extended gaps exceeding one month and managed ecosystems. In 
addition, this RFR gap-filling method has been validated in North Wyke 
(Zhu et al., 2023). 

2.3.3. Satellite data 
We used the atmospherically corrected surface reflectance products 

from five satellites to calculate the vegetation indices and the data was 
retrieved from the Google Earth Engine (https://earthengine.google.co 
m/) platform (Gorelick et al., 2017). The five satellite products 
(Table 2) were from (1) Landsat-7/Enhanced Thematic Mapper Plus 
(ETM+) sensor (Chander et al., 2009), (2) Landsat-8/Operational Land 
Imager (OLI) sensor (Vermote et al., 2016), (3) Sentinel-2A and 2B 
harmonised Multi-Spectral Instrument (MSI) sensor (Drusch et al., 
2012), (4) Aqua and Terra Moderate Resolution Imaging Spectroradi-
ometer (MODIS) sensor (Schaaf and Wang, 2015), and (5) the Advanced 
Very High Resolution Radiometer (AVHRR) sensors onboard seven Na-
tional Oceanic and Atmospheric Administration (NOAA) polar orbiting 
satellites (Claverie et al., 2014). 

As this study includes two parts, in the first part which aims to 
support the second part, we used one high-resolution (Landsat-7) and 
two moderate-resolution (MODIS and AVHRR) products for examining if 
consistent flux estimates can be derived from satellites with different 
spatial resolutions, as these three satellites cover the date range of 
FLUXNET2015 (Table 2). In the second part of studying flux extrapo-
lation in North Wyke pastures, we used the three high-resolution satel-
lite products that are open-access for research purposes – i.e., Landsat- 
7/-8 and Sentinel-2. For Landsat-7/-8, the data were from Collection 2 
and Tier 1 as recommended by the data producer United States 
Geological Survey (USGS) (https://www.usgs.gov/landsat-missions/l 
andsat-collection-2). Collection 2 improved the data processing algo-
rithms and data distribution capabilities. The Tier 1 products have the 
highest data geometric and radiometric quality in comparison to other 
tiers (Dwyer et al., 2018). The Sentinel-2 product was from the 
Sentinel-2 satellite constellation (Drusch et al., 2012) which includes 
two satellites – Sentinel-2A and Sentinel-2B. The Sentinel-2A satellite 
launched in June 2015 and Sentinel-2B launched in March 2017; the 
revisit frequency of the combined constellation is five days (Szantoi and 
Strobl, 2019). The MODIS product was Nadir Bidirectional Reflectance 
Distribution Function (BRDF)-Adjusted reflectance from two satellites – 
Terra (launched in 1999 with an overpass time at 10:30 on descending 
passes) and Aqua (launched in 2002 with an overpass time at 13:30 on 
ascending passes) depending on which satellite had the best represen-
tative pixel from the 16-day period (Schaaf and Wang, 2015). The 
AVHRR surface reflectance product a NOAA Climate Data Record (CDR) 
from seven NOAA satellites, i.e., NOAA-7, -9, -11, -14, -16, -17, -18 and 
-19, and it is noteworthy that the orbital drift of NOAA-19 seriously 
degraded the data quality since 2014 (Bojanowski and Musiał, 2020). 
Satellite images were interpolated into a daily frequency using the 
method described in Joiner and Yoshida (2020). 

2.3.4. Meteorology forcing data 
The meteorological forcing data were from the fifth generation Eu-

ropean Centre for Medium-Range Weather Forecasts (ECMWF) atmo-
spheric reanalysis of the global land climate (ERA5-Land) (Hersbach 
et al., 2020). The ERA5-Land reanalysis provides hourly meteorological 
data from 1950 to present on a 0.1◦ x 0.1◦ spatial resolution. Here, we 
used 2 m temperature (TA), 2 m dewpoint temperature which was used 
to calculate the vapour pressure deficit (VPD), surface solar radiation 
downwards (SW_IN), surface thermal radiation downwards (LW_IN), 10 
m u-component of wind (U), 10 m v-component of wind (V), and total 
precipitation (P). Among these variables, solar radiation, air tempera-
ture, and VPD were used because they are commonly acknowledged as 
primary drivers of fluxes (Reichstein et al., 2005; Moffat et al., 2007) 
while others were considered as auxiliary meteorological variables that 
may affect measured and estimated fluxes (Zhu et al., 2022, 2023). As 
described above, the gridded data were interpolated into EC tower lo-
cations using the inverse distance weighting (IDW) interpolation 
(Bartier and Keller, 1996). Furthermore, due to the high temporal res-
olution, the meteorological forcing data were interpolated into a daily 
frequency. 

Table 1 
Technical details on the tower and sensors for the three EC systems.   

LI-COR (closed-path) 

Tower height (m) 1.59 (HS), 1.57 (PP), 1.59 (HSC) 
Gas analyser LI-72001 

Sonic anemometer Windmaster Pro2 

Data logger LI-75501 

Temperature sensor HMP1553 

Humidity sensor HMP1553 

Photosynthetic active radiation LI-190SL1 

Incoming and reflected radiation CNR44 

Soil heat exchange HFP015 

Soil moisture and temperature Hydra Probe II 
Precipitation data Nearby automated weather station6  

1 Li-COR Inc., Lincoln, NE, USA. 
2 Gill Instruments Ltd., Lymington, UK. 
3 Vaisala, Helsinki, Finland. 
4 Kipp&Zonen, Delft, Netherlands. 
5 Hukseflux Thermal Sensors B.V., Delft, Netherlands. 
6 https://nwfp.rothamsted.ac.uk/. 
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3. Results 

3.1. Multi-resolution flux extrapolation comparisons at FLUXNET2015 
towers 

The scatter plots of machine learning estimates against EC mea-
surements for the same flux were very similar across satellites and/or 
vegetation indices (Fig. 4). In general, the correlation between EC 
measured and machine learning estimated fluxes was lower for NEE 
than the other fluxes, with R2 averages of 0.42, 0.65, 0.5, 0.61, and 0.57 
for NEE, GPP, Reco, H, and LE. 

The differences in R2 when using vegetation indices from same sat-
ellite were small, and less than 0.02 for any of fluxes, with NIRv 
generally performing slightly better than the EVI and NDVI vegetation 
indices. Comparing between satellites, the largest differences were seen 
for GPP and NEE, where MODIS exhibited a higher R2 by 0.04 for GPP 
and a higher R2 by 0.03 for NEE over the Landsat-7 and AVHRR satellites 
(Fig. 4). The R2 differences between satellites for the fluxes were ≤0.02. 

In terms of mean bias error (MBE), the differences between satellites 
and/or vegetation indices were relatively small too. Similar phenomena 
were also seen for root mean squared error (RMSE). In most cases, the 
differences in MBE between vegetation indices from the same satellite 
were smaller than 0.05 Mg ha− 1 yr− 1 for NEE, GPP, and Reco and they 
were smaller than 5 MJ m− 2 yr− 1 for H and LE (Fig. 4). For GPP, Landsat- 
7 exhibited the smallest absolute MBE of 0.07 Mg ha− 1 yr− 1 on average 
(Fig. 4). For the other two carbon fluxes (i.e., NEE and Reco), the dif-
ferences between satellites and/or vegetation indices were smaller than 
0.1 Mg ha− 1 yr− 1 in most cases (Fig. 4). The differences between satel-
lites and/or vegetation indices were smaller than 10 MJ m− 2 yr− 1 for H 
and the differences were smaller than 20 MJ m− 2 yr− 1 for LE (Fig. 4). 
The difference in RMSE between vegetation indices from the same sat-
ellite were smaller than 1 Mg ha− 1 yr− 1 for NEE, GPP, and Reco and they 
were smaller than 10 MJ m− 2 yr− 1 for H and LE (Fig. 4). 

The scatter plots of flux extrapolation estimates varied largely be-
tween ecosystem types (Fig. 5). The correlations between EC measured 
and machine learning estimated fluxes were lower for ecosystem types 
where the number of existing EC towers was relatively few. Specifically, 
the correlation was particularly low (< 0.1 for most cases) in close 
shrublands (CSH) where there were only three EC towers. The correla-
tion was relatively lower in woody savannahs (WSA, 6 towers), savan-
nahs (SAV, 8 towers), and evergreen broadleaf forests (EBF, 15 towers) 
than in ecosystem type like evergreen needleleaf forests (ENF, 50 
towers). In croplands (CRO, 20 towers) and grasslands (GRA, 38 
towers), the correlation was relatively high. In terms of R2, the average 
between croplands and grasslands across fluxes was 0.6. The mean bias 
error (MBE) average was 0.26 Mg ha− 1 yr− 1 for NEE, H, and LE and 
17.50 MJ m− 2 yr− 1 for H and LE (Fig. 5). The mean root mean squared 
error (RMSE) average was 7.00 Mg ha− 1 yr− 1 for NEE, H, and LE and 
93.14 MJ m− 2 yr− 1 for H and LE (Fig. 5). 

3.2. Fine-resolution extrapolation at the three North Wyke pasture sites 

The correlations between EC measurements and machine learning 
estimated fluxes were relatively high at the three pasture sites (Fig. 6). 

The averaged R2 across towers and fluxes was 0.81. The annual esti-
mation error was small, particularly for carbon fluxes (≪ 1.5 Mg ha− 1 

yr− 1) (Fig. 6a–c). Regarding ecosystem flux types, the R2 for ecosystem 
respiration (Fig. 6c) was greater than for other fluxes. The difference in 
R2 between towers was very small except for latent energy (Fig. 6e). 

Furthermore, the fitting correlations between measured and esti-
mated fluxes were close to one (Fig. 6). The first quartile, median, and 
the third quartile of the fitted slopes were 0.77, 0.85, and 0.89, 
respectively. The fitted slopes at tower HS were slightly lower than the 
other towers. The low slope, that infers the existence of underestimation 
by the model, was observed particularly for LE (Fig. 6e). 

In general, the cumulative time series of flux estimates were 
consistent with EC measurements (Fig. 7). The absolute ratio of cumu-
lative error in flux estimation to the overall flux (referred to as Rerr, it is 
an absolute value) varied flux by flux and tower by tower (Fig. 7 and 
Table 3). The Rerr was smaller for GPP, Reco, and H. The tower-average 
Rerr values for these three fluxes were 2.79%, 5.38%, and 7.11%, 
respectively. Whilst the tower-average Rerr values for NEE and LE were 
11.97% and 17.69%, respectively. No obvious tower-related Rerr pat-
terns were observed, e.g., the lowest Rerr for NEE (1.55%) was seen at 
tower HSC while the lowest Rerr for GPP (0.75%) and LE (10.50%) were 
separately seen at tower HS and tower PP. 

The four-year averaged (2017–2020) fluxes across all three fields 
were -0.08 Mg yr− 1 (NEE), 0.38 (GPP), 0.41 (Reco), 103,325.66 (H), 
243,990.57 MJ yr− 1 (LE) (Fig. 8). The differences in annual fluxes be-
tween the three satellite platforms were generally small – e.g., the dif-
ferences in GPP and NEE estimation were smaller than 0.01 Mg yr− 1 and 
the difference in H was smaller than 5000 MJ yr− 1 (ca. 5% of the total 
flux). However, it is noteworthy that the difference in Reco was rela-
tively large, i.e., 0.07 Mg yr− 1, which was almost equal to the whole 
field-scale NEE. 

Overall, the extrapolated flux spatial distribution was homogeneous 
as expected (Cardenas et al., 2022). For example, the GPP spatial vari-
ability in any field and for any satellite was smaller than 10− 3 Mg yr− 1. 
The extrapolated GPP exhibited regional variability which was very 
small (ca. 0.2 g C m− 2 d− 1). Sentinel-2 and Landsat-7 NIRv exhibited 
strong image texture that may affect satellites capturing the flux spatial 
variability (Fig. 8a and b). Whilst Landsat-8 NIRv calculated from the 
surface reflectance product still exhibited cloud-related patterns in 
North Wyke (Fig. 8c). Compared to Landsat-7, the Sentinel-2 NIRv 
showed clearer image details. The contrast between land-use types in 
Sentinel-2 NIRv was more intensive (Fig. 8d). 

4. Discussion 

4.1. Fine-resolution extrapolation feasibility and implications 

4.1.1. Satellite resolution and extrapolation performance 
Fine-scale flux extrapolation can be considered viable according to 

the results from global FLUXNET2015 sites – i.e. the consistent flux 
estimates using satellites with various spatial resolutions (Fig. 4). The 
measured EC fluxes were found to closely match the estimates obtained 
from satellite data, which varied in spatial resolution from 30 m to 5566 
m. This suggested that the fine-scale machine learning-based flux 

Table 2 
Information for used satellite surface reflectance products. The L2 below means Level-2 product and L2A therefore means Level-2 A product. The V5 and V6 separately 
means Version 5 and Version 6. The integers in R and NIR band columns are the satellite band numbers. Note the Sentinel-2 product was from two satellites (S2A and 
S2B) with slightly different band wavelength. Therefore two ranges of wavelength were provided for S2A and S2B, respectively.  

Satellite Product Frequency (days) Spatial resolution (m) R band (nm) NIR band (nm) Start date 

Landsat-7/ETMþ L2 16 30 3 (630–690) 4 (770–900) 28/05/1999 
Landsat-8/OLI L2 16 30 4 (636–673) 5 (851–879) 18/03/2013 
Sentinel-2/MSI L2A 5 10 4 (664.5 / 665) 8 (835.1/ 833) 28/03/2017 
Terra & Aqua/MODIS MCD43A4 (V6) 1 500 1 (620–670) 2 (841–876) 24/02/2000 
NOAA/AVHRR V5 1 5566 1 (640) 2 (860) 24/06/1981  
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Fig. 4. Scatter plots of tower-level (i.e., using data IDW interpolated from multiple pixels) estimated fluxes against EC measurements for all the FLUXNET2015 
towers. The sub-plots in each panel represent the results using different satellites and/or vegetation indices. The R2 and MBE (i.e., Err.) are provided on the figure. 
The MBE unit is Mg ha− 1 yr− 1 for NEE, GPP, and Reco and it is MJ m− 2 yr− 1 for H and LE. The dashed black lines represent the one-to-one relationship. 
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estimation or extrapolation was promising given the agreement in 
estimated fluxes of using satellites with different spatial resolutions. This 
finding set the fundamentals for the second part of this study at North 
Wyke. Results from our three pasture towers also supported this argu-
ment (Fig. 8). Field-scale flux (i.e., the total extrapolated flux of the 
whole field) between satellites were in a high-level consistency. How-
ever, the selection of satellite is important for capturing the flux spatial 
variability even if the candidate satellites have the same spatial reso-
lution. We suggest this is because the spatial resolution is not the only 
factor affecting the effectiveness of satellites in capturing fluxes. The 
relationship between fluxes and environment is complex and not solely 
determined by vegetation greenness as indicated by vegetation indices. 
Instead fluxes depend on multiple factors including the vegetation sta-
tus, climatic conditions, as well as nutrient and water supply (Chapin III 
et al., 2011). 

The meteorological forcing data (i.e., ERA5-Land) utilised in this 

study exhibited a considerably lower spatial resolution (0.1◦, ca. 10 km) 
compared to both the EC tower footprint (with radii of normally hun-
dreds of metres) and the satellites (ranging from 30 to 5566 m). Despite 
the implementation of spatial interpolation methods in both this study 
and the literature (Jung et al., 2020; Joiner and Yoshida, 2020), the 
employment of ERA-Land data, which possessed a higher spatial reso-
lution in comparison to the meteorological forcing data employed in 
prior research (Jung et al., 2020; Joiner and Yoshida, 2020), could 
potentially influence the accuracy of flux estimation. It is therefore 
crucial to acknowledge this limitation. In the forthcoming years, the 
resolution of local meteorological forcing at high spatial scales or the 
deployment of high-density in-situ networks for meteorological mea-
surements could provide a viable solution. 

4.1.2. Ecosystem type and extrapolation performance 
The performance of the flux estimation varied greatly with 

Fig. 5. Scatter plots of estimated fluxes against EC measurements for all the FLUXNET2015 towers across 11 IGBP ecosystem types. The exhibited flux estimates were 
the averages of using different satellites and vegetation indices. The R2 and MBE (i.e., Err.) are provided on the figure. The MBE unit is Mg ha− 1 yr− 1 for NEE, GPP, 
and Reco and it is MJ m− 2 yr− 1 for H and LE. The dashed black lines represent the one-to-one relationship. 
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Fig. 6. Tower-level (i.e., using data IDW interpolated from multiple pixels) estimates against EC measurements for net ecosystem exchange (NEE) (a), gross primary 
productivity (GPP) (b), ecosystem respiration (Reco) (c), sensible heat (H), and latent energy (LE). The R2 and MBE (i.e., Err.) are provided on the figure. The unit is 
Mg ha− 1 yr− 1 of MBE for (a) – (c) and MJ m− 2 yr− 1 for (d) – (e), respectively. The dashed black lines represent the one-to-one relationship. 
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ecosystem type (Fig. 5). The estimation performed better in grass and 
forest ecosystems than in shrubland ecosystems. This performance dif-
ference can be accounted for by many reasons. First, it was suggested to 
be relative to the number of existing EC towers. According to Fig. 5, the 
better performance tended to be seen in ecosystem types with a higher 
EC sampling rate. This infers that it could be difficult to predict the flux 
in an ecosystem where no similar samples were included in the training 
dataset. Second, this performance difference might be related to the 
ecosystem itself as well. For example, closed shrublands (CSH) had 
relatively smaller GPP than very productive ecosystems and such weak 
signals could pose challenges to machine learning in capturing the flux 
variability (Fig. 5). In addition, the flux seasonality or periodicity of an 
ecosystem could be very important too. For example, the evergreen 
broadleaf forests (EBF) had very strong but relatively stationary GPP 
time series (Jung et al., 2020), therefore the temporal variability can be 

difficult to capture and thereby leading to a low explained variance (i.e., 
R2) (Fig. 5). Fortunately, the global estimation performance for grass-
lands which include pastures were good, and this paves the way for our 
study in the North Wyke pastures. 

4.1.3. The values of 30 m flux extrapolation 
The 30-m flux extrapolation performance was good (averaged R2 was 

0.55 across fluxes) on the global scale and was satisfactory (averaged R2 

was 0.88 across fluxes) in the North Wyke pastures. It is noteworthy that 
the averaged R2 for FLUXNET2015 towers in this study was lower than 
the literature – e.g., 0.7 in Joiner and Yoshida (2020). This is because 
Joiner and Yoshida (2020) focused on weekly GPP estimation whilst we 
also estimated NEE and worked at a daily scale. As NEE is the difference 
of two greater fluxes (GPP and Reco), estimating NEE is potentially more 
challenging than GPP (Aubinet et al., 2012). Therefore, the overall 
performance was good and fine-resolution EC flux extrapolation at a 
daily scale is feasible. The cumulative errors (Fig. 7) were generally 
small for GPP (Rerr = 2.79%). The large error ratio for NEE can be 
accounted for by the weak signal and the large error for LE was relative 
to the relatively low energy balance closure here (ca. 60%) due to the 
measurement height (Cardenas et al., 2022) This low energy balance 
ratio could reduce the measurement accuracy. More importantly, the 
estimated flux time series were resistant to the disturbances of livestock 
grazing (Fig. 7). We did not use grazing periods as a machine learning 
predictor, but the estimated time series were not strongly affected by 
grazing. This infers great application potential in other managed 

Fig. 7. Cumulative fluxes of EC measurements and the tower-level estimates. The estimates at each site were predicted from the other two sites. The blocks represent 
the occurrence of grazing events. The results were derived from the Sentinel-2 satellite. 

Table 3 
The ratio (%) of cumulative error (against the EC measurements) in tower-level 
flux estimation to the overall flux over two years.   

HS PP HSC 

NEE 18.30 –16.07 1.55 
GPP 0.75 –4.46 3.16 
Reco 5.60 –6.78 3.76 
H –3.25 13.29 –4.78 
LE -23.51 10.50 19.07  
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ecosystems with agricultural practices. 
Extrapolating EC fluxes at a fine spatial resolution is very informative 

for ecosystem management. For example, the average area of the three 
studied fields is 6.5 ha− 1, but 80% of the footprint was only 3–70 m 
upwind from the tower in these farmlets (Cardenas et al., 2022). Hence, 
the necessity of extrapolating EC towers should be apparent for 

quantifying fluxes over the whole ecoregion. The fine spatial scale 
extrapolation results here were promising, because the current perfor-
mance of fluxes estimated directly from satellites was reported to be 
poor (Wang et al., 2017) and the spatial resolution of mainstream 
extrapolation products was too coarse (> 5 km) for these relative small 
ecoregions (Jung et al., 2020; Joiner and Yoshida, 2021). The good 

Fig. 8. Multi-year averages 
(2017–2020) of extrapolated fluxes in 
the three fields. The flux estimates 
were extrapolated from EC measure-
ments gap-filled using the random for-
est regression (RFR) method at the 
three towers separately located in the 
three fields. The top row (a)–(c) are 
multi-year averaged NIRv from the 
three satellites in order. From top to 
bottom, the second row to the last rows 
are multi-year averaged NEE, GPP, 
Reco, H, and LE fluxes. From left to 
right, the columns are results using 
Sentine-2, Landsat-7, and Landsat-8 
NIRv data.   
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validation performance (i.e., high R2 and small bias, Fig. 6) suggests that 
the proposed fine-scale extrapolation approach may have high potential 
if used in other areas. 

Despite the consistent flux estimates from satellites with different 
spatial resolutions (Fig. 4), it is important to recognise that the spatial 
resolution of satellites is a significant factor in vegetation monitoring 
(Pax-Lenney and Woodcock, 1997; Ozdogan and Woodcock, 2006; 
Nelson et al., 2009; Duveiller and Defourny, 2010), particularly for 
capturing the flux spatial variability across heterogeneous ecosystems 
(Chu et al., 2021). As an illustration, the performance of our machine 
learning model demonstrated a significant disparity in estimating fluxes 
between forests and croplands (which might cover different crop spe-
cies), with a disparity in R2 that may reach up to 38% (Fig. 4). In 
addition, one should be cautious even when selecting satellites with the 
same spatial resolution for flux estimation. For example, we resampled 
Sentinel-2 images into the 30 m spatial resolution of Landsat satellites, 
but Sentinel-2 images exhibited a superior level of spatial detail in 
capturing features when compared to Landsat in Southwest England 
(Fig. 8). We used the surface reflectance products from both Sentinel-2 
and Landsat satellites to extrapolate EC fluxes. However, it was 
observed that flux estimates derived from Landsat-7/-8 were more sus-
ceptible to the impact of cloud cover in Southwest England. It is plau-
sible that this outcome may have arisen due to the performance of 
algorithms employed by Landsat-7/-8 for the removal of cloud cover in 
this region (Masek et al., 2020). As footprint matching between EC and 
satellite data is beneficial for flux estimation (Kong et al., 2022), it is 
advisable to pursue such an approach whenever feasible in future 
studies, despite the fact that using the inverse distance weighted (IDW) 
spatial interpolation can be a potentially effective alternative. 

4.2. Challenges and the future in fine-resolution flux extrapolation 

Some challenges remain in fine-resolution flux extrapolation despite 
the many successful cases in this study. 

The first challenge is the disagreement in NEE estimates between 
extrapolation pathways. We called the NEE estimated directly from EC 
NEE measurements as direct NEE and NEE estimated by calculating the 
difference between GPP and Reco estimates as indirect NEE. According 
to the results in North Wyke (Fig. 8), the difference between direct NEE 
and indirect NEE was very large even for estimates using Sentinel-2. In 
this case, independent evidence is in need given the good cross- 
validation performance for direct NEE, GPP, and Reco (Fig. 6). It re-
mains unknown which pathway in North Wyke was correct and how 
large its uncertainty will be when applied in other regions. 

The second challenge is the justification of field-scale spatial vari-
ability. In North Wyke, field-scale flux estimates showed nearly equiv-
alent total flux amounts but slightly different flux spatial variability 
when using different satellites (Fig. 8). As the fields in North Wyke were 
homogeneous, the difference in flux spatial variability was relatively 
small, but the potential uncertainty might be large in heterogenous 
managed ecosystems. Sentinel-2 captured the texture information better 
than Landsat-7/-8. This might be attributed to the higher resolution of 
Sentinel-2 than Landsat-7/-8 here but more tests in other regions can be 
necessary before extrapolating EC fluxes. 

The third challenge concerns the temporal period of management 
activities. Pastureland management activities can be divided into (1) 
continuous activities (e.g., livestock grazing) that occur during a long 
period of time and (2) discrete ones (e.g., spraying herbicides and cut-
ting the grass) that typically occur within a day (Cardenas et al., 2022). 
The grazing events seemed not to effect the estimates (Fig. 7) as the flux 
time series estimated from the other two towers were in accordance with 
the EC measurements during the grazing periods (Fig. 7). This inferred 
that the machine learning algorithm can overcome the impacts of 
gradual but slow loss of aboveground biomass due to livestock grazing. 
However, large differences between measured EC and estimated flux can 
be expected around certain discrete management activities (e.g. 

harvesting). We currently cannot use management information in the 
machine learning due to the complexity in quantifying discrete man-
agement applications – i.e., many application types, different manage-
ment magnitude and time of application (Cardenas et al., 2022). In the 
future, field experiments will help us to better understand the impacts of 
management on ecosystem fluxes and improve extrapolation perfor-
mance. In addition, we interpolated satellite imagery (e.g., from 
Landsat-7) into a daily frequency using the method in Joiner and 
Yoshida (2021). This is also likely to affect the performance of flux 
estimation, however, in the future, products with a higher temporal 
resolution will likely improve flux estimation, and our capacity to cap-
ture the impacts of discrete management activities. 

5. Conclusion 

Considering the requirement to accurately monitor ecosystem fluxes 
in managed ecosystems, this study (1) examined flux estimation at a 
global network of sites by extrapolating EC measurements with satellites 
of various spatial resolutions to support (2) assessments of the successful 
field-scale flux estimation in three pastures in the southwest of England 
at a 30 m spatial resolution. The key findings are:  

1) Satellites with different (spatial) resolutions exhibited agreement in 
flux estimation.  

2) Extrapolating EC fluxes on daily 30 m scales is a promising approach.  
3) Sentinel-2 is recommended as it can capture the image texture better 

than Landsat-7/-8.  
4) Strategies to quantify management activities in machine learning 

algorithms might be a way to better monitor the impact of man-
agement on ecosystem fluxes in the future. 
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