

i

Online Semi-Supervised Learning in

Non-Stationary Environments

By:

Mobin M Idrees

Supervisor:

Dr Frederic Stahl

THESIS

Submitted in partial fulfilment of the requirement for the degree of Doctor of Philosophy

in the Department of Computer Science at the School of Mathematical, Physical and

Computational Sciences

(SMPCS)

September 2023

Reading, UK

ii

ABSTRACT

Existing Data Stream Mining (DSM) algorithms assume the availability of labelled and

balanced data, immediately or after some delay, to extract worthwhile knowledge from the

continuous and rapid data streams. However, in many real-world applications such as

Robotics, Weather Monitoring, Fraud Detection Systems, Cyber Security, and Computer

Network Traffic Flow, an enormous amount of high-speed data is generated by Internet of

Things sensors and real-time data on the Internet. Manual labelling of these data streams

is not practical due to time consumption and the need for domain expertise. Another

challenge is learning under Non-Stationary Environments (NSEs), which occurs due to

changes in the data distributions in a set of input variables and/or class labels. The problem

of Extreme Verification Latency (EVL) under NSEs is referred to as Initially Labelled Non-

Stationary Environment (ILNSE). This is a challenging task because the learning algorithms

have no access to the true class labels directly when the concept evolves. Several approaches

exist that deal with NSE and EVL in isolation. However, few algorithms address both issues

simultaneously. This research directly responds to ILNSE’s challenge in proposing two

novel algorithms “Predictor for Streaming Data with Scarce Labels” (PSDSL) and

Heterogeneous Dynamic Weighted Majority (HDWM) classifier. PSDSL is an Online Semi-

Supervised Learning (OSSL) method for real-time DSM and is closely related to label

scarcity issues in online machine learning.

The key capabilities of PSDSL include learning from a small amount of labelled data in an

incremental or online manner and being available to predict at any time. To achieve this,

PSDSL utilises both labelled and unlabelled data to train the prediction models, meaning it

continuously learns from incoming data and updates the model as new labelled or

unlabelled data becomes available over time. Furthermore, it can predict under NSE

conditions under the scarcity of class labels. PSDSL is built on top of the HDWM classifier,

which preserves the diversity of the classifiers. PSDSL and HDWM can intelligently switch

and adapt to the conditions. The PSDSL adapts to learning states between self-learning,

micro-clustering and CGC, whichever approach is beneficial, based on the characteristics of

the data stream. HDWM makes use of “seed” learners of different types in an ensemble to

maintain its diversity. The ensembles are simply the combination of predictive models

grouped to improve the predictive performance of a single classifier.

PSDSL is empirically evaluated against COMPOSE, LEVELIW, SCARGC and MClassification

on benchmarks, NSE datasets as well as Massive Online Analysis (MOA) data streams and

iii

real-world datasets. The results showed that PSDSL performed significantly better than

existing approaches on most real-time data streams including randomised data instances.

PSDSL performed significantly better than ‘Static’ i.e. the classifier is not updated after it is

trained with the first examples in the data streams. When applied to MOA-generated data

streams, PSDSL ranked highest (1.5) and thus performed significantly better than SCARGC,

while SCARGC performed the same as the Static. PSDSL achieved better average prediction

accuracies in a short time than SCARGC.

The HDWM algorithm is evaluated on artificial and real-world data streams against existing

well-known approaches such as the heterogeneous WMA and the homogeneous Dynamic

DWM algorithm. The results showed that HDWM performed significantly better than WMA

and DWM. Also, when recurring concept drifts were present, the predictive performance of

HDWM showed an improvement over DWM. In both drift and real-world streams,

significance tests and post hoc comparisons found significant differences between

algorithms, HDWM performed significantly better than DWM and WMA when applied to

MOA data streams and 4 real-world datasets Electric, Spam, Sensor and Forest cover. The

seeding mechanism and dynamic inclusion of new base learners in the HDWM algorithms

benefit from the use of both forgetting and retaining the models. The algorithm also

provides the independence of selecting the optimal base classifier in its ensemble depending

on the problem.

A new approach, Envelope-Clustering is introduced to resolve the cluster overlap conflicts

during the cluster labelling process. In this process, PSDSL transforms the centroids’

information of micro-clusters into micro-instances and generates new clusters called

Envelopes. The nearest envelope clusters assist the conflicted micro-clusters and

successfully guide the cluster labelling process after the concept drifts in the absence of true

class labels. PSDSL has been evaluated on real-world problem ‘keystroke dynamics’, and

the results show that PSDSL achieved higher prediction accuracy (85.3%) and SCARGC

(81.6%), while the Static (49.0%) significantly degrades the performance due to changes in

the users typing pattern. Furthermore, the predictive accuracies of SCARGC are found

highly fluctuated between (41.1% to 81.6%) based on different values of parameter ‘k’

(number of clusters), while PSDSL automatically determine the best values for this

parameter.

iv

ACKNOWLEDGEMENTS

I dedicate this work to my friend Dr Hisham Al-Namar who suddenly passed away last year,

whose enthusiasm for my research and encouragement was invaluable. Although he did not

see the work to completion, his spirit of generosity continues to inspire me.

Firstly, I would like to express my humble gratitude to my supervisors, Dr Frederic Stahl,

PhD and Professor Atta Badii, whose guidance and advice have been outstanding. I would

also like to thank Frederic for his generosity, motivation and professionalism. He has shown

to be a great person not only for his knowledge but also for his personality.

I wish to thank my wife, Sabeen, who has stood by me through all my travails and supported

the family during much of my research. Along with her, I want to acknowledge my two sons,

Orhan and Eyhab who have never known their dad as anything but a student.

I would like to thank not only my assessors Dr. Huizhi Liang and Dr. Lily Sun for their

guidance and useful feedback during my confirmation of registration, but also Kristine

Aldridge who has always been kind and made me feel welcomed. Also, I appreciate the co-

authors of my publications especially Dr. Leandro Minku and Prof. Atta Badii during my

research for their reviews and for using extracts from the papers. Special thanks to Prof.

Albert Bifet, Prof. Geoff Holmes and Prof. Bernhard Pfahringer for making their Massive

Online Analysis framework open source.

I also thank the Student Financial Support for giving me an award towards my costs during

the COVID-19 lockdown, especially Matt Daley and Sam Young for their effort in this

regard. I appreciate the highly professional team, all the technical and administrative staff

of the School of Computer Science Mr. Alessandro Leidi, and Dr. Karin Whiteside for

Reading’s Researcher Development Programme that addressed my needs in knowledge and

intellectual abilities as well as personal effectiveness.

Finally, I would like to extend my heartfelt gratitude to all my friends, especially Mr. Gulraiz

Khan who always helped me whenever I was needed. Thank my parents for their countless

blessings, spiritual support and sacrifice and my entire family for the good times in my life.

v

ORIGINAL AUTHORSHIP

Declaration: I, Mobin M. Idrees, declare that this thesis titled, “Online Semi-Supervised Learning in Non-

Stationary Environments” and the work presented in it is done wholly and mainly while in candidature for a

research degree at the University of Reading, UK. I confirm that this is my own work and the use of all

material from other sources has been properly and fully acknowledged.’

 Mobin M. Idrees

vi

TABLE OF CONTENTS

1.1 Research Context and Motivation .. 20

1.2 Research Motivation .. 22

1.3 Problem Formulation .. 23

1.4 Research Questions .. 25

1.5 Research Aim and Objectives .. 27

1.6 Research Methodology .. 27

1.7 Contributions of the Presented Research .. 28

1.8 The Organisation of the Thesis ... 30

1.9 Summary ... 32

2.1 Definitions and Terminology .. 33

2.2 Learning Strategies in Data Streams .. 35

2.2.1 Online and Incremental Learning .. 35

2.2.2 Block-Based Learning ... 35

2.2.3 Hybrid Learning ... 36

2.2.4 Windowing Approaches .. 36

2.2.5 Discussion ... 37

2.3 SSL Approaches for NSEs .. 37

2.3.1 EVL Approaches for NSEs .. 38

2.3.2 Other SSL Approaches for NSEs .. 43

2.3.3 Comparative Analysis of Existing EVL approaches .. 44

2.3.4 Discussion ... 44

2.4 Data Stream Classification using Ensembles ... 45

vii

2.4.1 Heterogeneous Passive Ensemble .. 46

2.4.2 Active and Passive Homogeneous approaches ... 47

2.4.3 Concept drift detection approaches .. 49

2.4.4 Discussion ... 50

2.5 Data Stream Clustering ... 50

2.5.1 Partitioning Approaches ... 51

2.5.2 Hierarchical Clustering ... 51

2.5.3 Density Based Clustering .. 51

2.5.4 Micro-clustering ... 52

2.5.5 Discussion ... 52

2.6 Data Stream Evaluation Methods .. 52

2.6.1 Prequential.. 52

2.6.2 Holdout ... 53

2.6.3 Kappa Statistics .. 53

2.6.4 Discussion ... 53

2.7 Hyperparameter Tuning ... 53

2.8 Randomisation in Data Streams .. 54

2.9 Visualising Data Stream.. 54

2.10 Limitations of the Approaches described in the Literature ... 55

2.11 Summary ... 56

3.1 Analysis of Verification Latency ... 60

3.1.1 Experimental Design .. 60

3.1.2 Data Streams and datasets. .. 61

3.1.3 Significant Findings .. 61

3.2 Heterogeneous VS Homogeneous Classifiers ... 62

3.2.1 Experimental Design .. 63

3.2.2 Data Streams... 63

3.2.3 Significant Findings in Heterogeneity .. 64

3.2.4 Significant Findings in Concept Drifts ... 65

3.3 Implementation of SCARGC in MOA ... 67

3.4 Discussion ... 68

3.5 Summary ... 68

viii

4.1 The HDWM Algorithm .. 70

4.1.1 Active Drift Handling ... 74

4.1.2 Passive Drift Handler ... 74

4.2 Integration with DDM ... 75

4.3 Analysis of HDWM ... 77

4.4 Data Streams .. 78

4.4.1 MOA Data Streams ... 78

4.4.2 Real-World Datasets ... 79

4.5 Test Configuration .. 79

4.6 Analysis on MOA Streams .. 81

4.6.1 Predictive Performance .. 81

4.6.2 Analysis of Results .. 82

4.6.3 Significant Findings .. 83

4.7 Analysis on Real-World Datasets ... 83

4.8 Analysis of Heterogeneity ... 86

4.9 Sensitivity Analysis of Hyperparameters ... 87

4.10 Analysis of the Effects of different Ensemble Sizes .. 89

4.11 Comparison of Resource Consumption ... 91

4.12 Complexity Analysis .. 91

4.13 Effect of Prediction Method .. 91

4.13.1 Evaluation Results .. 92

4.13.2 Significant Findings .. 94

4.14 Discussion ... 94

4.15 Summary ... 95

5.1 Introduction ... 97

5.2 Overview of PSDSL ... 98

5.3 Pseudo-labelling process of PSDSL algorithm ... 100

5.4 Switching of Pseudo-Labelling States ... 100

5.5 Cluster Guided Classification in PSDSL ... 103

5.6 Envelope-Clustering New Approach ... 103

ix

5.6.1 Proposed Conflict Detection Method ... 104

5.6.2 Conflict Resolution ... 105

5.7 Hyperparameter Tuning ... 106

5.8 PSDSL Pseudo code ... 106

5.8.1 Algorithm: Hyperparameter Tuning .. 108

5.8.2 Algorithm: Switching Learning States .. 108

5.8.3 Algorithm: Detect Cluster Drift .. 109

5.9 Complexity of PSDSL ... 110

5.10 GUI for online Semi-Supervise Learner .. 111

5.11 SSL Prequential and Periodic Holdout Tasks .. 112

5.12 Evaluation of PSDSL ... 113

5.12.1 Experimental Setup .. 114

5.12.2 PSDSL Learning Parameters .. 115

5.12.3 Non-Stationary datasets ... 116

5.12.4 MOA Data Streams ... 116

5.12.5 Real-World Dataset .. 116

5.13 Comparative Analysis of PSDSL on Benchmark Datasets ... 117

5.14 Analysis of MOA Data Streams .. 119

5.14.1 Prequential Accuracies ... 119

5.14.2 Kappa Statistics .. 121

5.14.3 Evaluation Time.. 121

5.15 Analysis on Real-world Problem ... 122

5.15.1 Features Exploratory Analysis .. 122

5.15.2 Clustering Analysis ... 123

5.15.3 Experimental Setup .. 124

5.16 Significant Findings ... 124

5.16.1 Analysis of Randomisation ... 129

5.16.2 Analysis of Switching Mechanism in PSDSL .. 130

5.16.3 Analysis of Pseudo-labelling without Switching .. 133

5.17 Hyperparameter Tuning .. 134

5.18 Parameter Sensitivity Analysis ... 135

5.19 Development of online SSL framework for data streams ... 136

5.20 Critical Evaluation of Research and Scientific Contributions ... 138

5.20.1 Evaluation of Research Questions .. 138

x

5.20.2 Evaluation of Scientific Contributions ... 138

5.21 Discussion ... 138

5.22 Summary ... 139

6.1 Summary of Findings .. 141

6.1.1 Reasons for the Failure of Existing EVL Approaches ... 142

6.1.2 Key Findings from Comparative Analysis .. 143

6.1.3 How PSDSL and HDWM resolve the identified issues? 144

6.2 Recommendations for Future Work ... 145

6.3 References ... 148

xi

LIST OF TABLES

Table 2.1 Algorithms dealing with ILNSE. .. 38

Table 2.2 SSL approaches dealing with NSEs. .. 43

Table 2.3 Average classification accuracy of COMPOSE, SCARGC, MClassification
and LEVELIW presented in [81]. ... 44

Table 3.1 Comparison of Prediction accuracies (%) of EVL and No EVL on drift
streams, no drift and real-world dataset. ... 61

Table 3.2 Prediction accuracies (%) of DWM-NB and DWM-HT. 65

Table 3.3 Prediction accuracies (%) of WMA Heterogeneous ensemble classifiers. 65

Table 3.4 Prediction accuracies (%) Homogeneous DWM and Heterogeneous
WMA ensemble classifiers. ... 65

Table 4.1 Description of the data streams and parameters. ... 78

Table 4.2 Parameters used in the experiments... 80

Table 4.3 Variants used in the experiments. ... 80

Table 4.4 Predictive Accuracies (%) of DWM-NB, DWM-HT, WMA and HDWM. 81

Table 4.5 Kappa Temporal DWM-NB, DWM-HT WMA and HDWM. 81

Table 4.6 Heterogeneity Test, Predictive Accuracies (%) .. 86

Table 4.7 Effect of ‘Period’ on Predictive Accuracies % & Drift Detection, β = 0.5
and theta = 0.01 (Fixed). .. 87

Table 4.8 Effect of ‘β’ on Accuracies % & Ensemble Size, Period = 50 and θ =
0.01(Fixed). ... 88

Table 4.9 Effect of ‘theta’ on Accuracies % & Ensemble Size, Period = 50, β = 0.5
(Fixed). .. 88

Table 4.10 Average ensemble size in Artificial MOA streams. .. 89

Table 4.11 Average ensemble size (%) real-world datasets. .. 89

Table 5.1 Algorithms and parameters used in the experiments......................................114

Table 5.2 Learning parameters used in Evaluate EVL Prequential.115

Table 5.3 Learning parameters used in PSDSL. ..115

Table 5.4 Description of Benchmark datasets. ..116

Table 5.5 Description of MOA streams. ..117

Table 5.6 Average accuracies on benchmark datasets...117

Table 5.7 Evaluation time in seconds (Non-Stationary Datasets).118

Table 5.8 Predictive Accuracies (%) PSDSL applied using Naïve Bayes Classifier.119

Table 5.9 Predictive Accuracies (%) PSDSL (MOA Streams). ...120

Table 5.10 Average kappa statistics on MOA streams ..121

Table 5.11 Evaluation time in seconds (MOA streams). ..121

xii

Table 5.12 Algorithms and parameters used in the experiments.124

Table 5.13 Predictive accuracy (in %) on original and randomised benchmark
datasets. ..130

Table 5.14 Prediction accuracies (%) by applying self-learning......................................131

Table 5.15 Prediction accuracies (%) self by applying active switching of
classifiers and clusters as prediction method. ..131

Table 5.16 PSDSL purity and switching mode. ...131

Table 5.17 PSDSL Analysis of Pseudo-labelling without Switching.134

Table 5.18 PSDSL auto-tuned ‘k’ and learning mode..134

13

LIST OF FIGURES

Figure 1.1 Standing of the presented work in the literature. .. 21

Figure 1.2 Graphical representation of the problem, labelled data trains the
prediction models in known environment and failed due to concept
drifts in unknown environment. ... 23

Figure 1.3 Diversity compromised in Non-Stationary Environment due to
exclusion of base learner from the ensemble. .. 24

Figure 1.4 Development of algorithms and corresponding key features. 29

Figure 1.5 Overview of how research questions are mapped with the aim of
research. .. 31

Figure 2.1 Online block-based learning in data streams, formation of clusters in
blocks to retrieve class labels for unlabelled data and updating the
classifier. ... 36

 Figure 2.2 SSL Approaches dealing with NSEs, showing graph based, ensemble
and active learning approaches and the algorithms dealing with EVL. 38

Figure 2.3 Diversity and drift handling approaches of ensemble classifiers, based
on drift handling capabilities and selection of base classifiers. 45

Figure 2.4 Visualisation of online Clustering in MOA showing ground truth and
micro-clustering along with performance measures. 54

Figure 2.5 Visualizing Airline Routes Network using Gephi showing airports and
routes using mixed overlay between network graph and geographic
data.. 55

Figure 3.1 New Task ‘EvaluateEVLPrequential’ created in MOA. 60

Figure 3.2 Comparison of EVL and No EVL on Prediction accuracy (%) on SEA
Drift and HyperPlane incremental drift streams, the vertical dotted
lines representing sudden concept drifts. ... 62

Figure 3.3 Comparison of EVL and No EVL and its effect on Prediction accuracy
(%) on Real-world dataset and RandomTree having no drifts. 62

Figure 3.4 Changing concepts and learning strategies in SEA data streams. 64

Figure 3.5 Comparison of Prediction accuracy (%) of NB and HT classifiers on HP
and RandomTree data streams. .. 64

Figure 3.6 shows results on SEA datasets, the WMA is not able to recover from
the sudden drift at 25k and 75k, however DWM recovered from the
sudden drifts. .. 66

Figure 3.7 Comparison of Prediction accuracy (%) of WMA and DWM on SEA
dataset, the vertical dotted lines representing sudden concept drifts. 66

Figure 3.8 The implementation of SCARGC in MOA applied on 2CDT dataset. 67

Figure 3.9 Editing option for configuring the SCARGC algorithm in MOA. 68

Figure 4.2 Overview of HDWM. .. 71

Figure 4.3 Integration of DWM and DDM using online ensemble and an explicit
drift detection method for detecting changes in environment. 75

14

Figure 4.4 Bar chart for pairwise comparisons of ranks on predictive accuracies
(%) between HDWM, DWM-HT, DWM-NB and WMA showing
HDWM performed significantly better than other approaches. 82

Figure 4.5 Predictive Accuracies RandomTree (left) and RRBF (right) on Artificial
Data Streams. Solid and dashed vertical black lines indicate the centre
point of the drifts, and start/end of the drifts, respectively. The time
steps between the start and end of the start and end of the drift
(inclusive) compose the drift window. .. 84

Figure 4.6 Predictive Accuracies SEA Abrupt (left) and SEA Mixed (right) on
Artificial Data Streams. ... 84

Figure 4.7 Average Predictive Accuracies Real-world datasets. .. 85

Figure 4.8 Boxplot for Heterogeneity Test. ... 86

Figure 4.9 Average Ensemble Size RandomTree (left) and RRBF (right) in
Artificial Data Streams. ... 90

Figure 4.10 Average Ensemble Size SEA Abrupt (left) and SEA Mixed (right) in
Artificial Data Streams. ... 90

Figure 4.11 CPU time (Seconds) and Predictive Accuracies of HDWM, DWM and
WMA. .. 91

Figure 4.12 RandomRBFGeneratorEvent Stream in MOA. .. 92

Figure 4.13 RandomRBFGeneratorEvent Stream Prediction taken from Clusters. 93

Figure 4.14 RandomRBFGeneratorEvent Stream Prediction taken from
Classifier.. 93

Figure 4.15 SEADriftStream Prediction taken from Clusters. .. 93

Figure 4.16 SEADriftStream Prediction taken from Classifiers. 94

Figure 5.1 The Data Stream Online Semi-Supervised Learning Cycle. 98

Figure 5.2 Visual abstract for the predictor for streaming data with scarce labels
(PSDSL), HDWM is trained on small amount of labelled data,
performs hyperparameter tuning and pseudo labels are then
predicted to re-train HDWM for final predictions. .. 99

Figure 5.3 Illustrative Pseudo-labelling process of PSDSL algorithm, key steps
include training of heterogeneous classifiers and generating clusters
by using limited amount of labelled data..100

Figure 5.4 Switching of Pseudo-Labelling States between self-learning and CGC
based on the prediction accuracies from ground truth and pseudo-
labelling ensemble classifiers and comparing it with the average
precision and recall of the clusters. ..101

Figure 5.5 (left) Prediction methods (right) pseudo-labelling methods.102

Figure 5.6 Switching of pseudo-labelling strategy, 0=No pseudo-labelling, 1=self-
learning, 2 = CGC. ...102

Figure 5.7 Cluster Guided Classification in PSDSL showing representation of
different concepts at time ‘t’ due to gradual drifts and the process of
label propagation from nearest clusters. ..103

15

Figure 5.8 Cluster overlapping in 1Csurr dataset [26] showing one class
surrounding the other and resulting in two outcomes. 1) C1 transfers
its label to ‘C2’ or 2) C1’ gets re-labelled upon intersection with C2.104

Figure 5.9 Conflict detection in micro-cluster using class votes from 3-nearest
neighbours using threshold α = 0.5. The diamond shape representing
conflicts in cluster labelling due to low confidence value.105

Figure 5.10 Envelope-Clustering for conflict resolution. The filled circle and
triangle represent recent micro-instances, and the opaque circle and
triangles are previous micro-instances. ..106

Figure 5.11 GUI for online SSL for data streams in MOA. ...112

Figure 5.12 Critical Difference diagram for Non-Stationary Dataset’s accuracies.118

Figure 5.13 Critical Difference diagram for MOA Streams Accuracies, comparison
of all classifiers against each other with the Nemenyi test. Groups of
classifiers that are not significantly different (at p = 0.05) are
connected. ...120

Figure 5.14 Correlation heat map of keystroke dataset. ...123

Figure 5.15 Movement of clusters in keystroke dataset, time step 300 (left) and
time step 600 (right). ..123

Figure 5.16 Prediction accuracies keystroke dataset, comparing PSDSL, SCARGC,
Static and Benchmark. ..125

Figure 5.17 Comparison of prediction time PSDSL, SCARGC, Static and
Benchmark. ...125

Figure 5.18 Predictive performance of SCARGC by applying different values of ‘k’.126

Figure 5.19 Visualisation of envelope, macro and micro-clusters in Keystroke
dataset [137]. ..126

Figure 5.20 Predictive accuracy plots for MOA Streams (No drift).127

Figure 5.21 Predictive Accuracy Plots for MOA Streams (Artificial drift induced),
red vertical lines representing the actual location of abrupt drifts.128

Figure 5.22 Plot for initial 1000 instances of 4CR dataset versus randomised 4CR
dataset. ..129

Figure 5.23 GUI for switching learning states. ..132

Figure 5.24 Switching states of Non-Stationary Datasets, 1=No pre-labelling, 2=
pre-labelling using clusters and 3= pre-labelling using classifiers as
self-learning. ...133

Figure 5.25 Prediction accuracy for 4CRE-V2 dataset changing values of pool size
θ and size of initial labelled data ‘T’. ...135

Figure 5.26 GUI for SSL Periodic Holdout Evaluation Task developed in MOA.136

Figure 5.27 A developed Semi-Supervised Diversity Ensemble (SSLearner).137

16

LIST OF ALGORITHMS

Algorithm 2.1 SCARGC Algorithm (T, K, θ) [31] ... 41

Algorithm 2.2 MClassification Algorithm [34] .. 41

Algorithm 2.3 COMPOSE Algorithm [22] ... 42

Algorithm 2.4 LEVELIW Algorithm [74] .. 42

Algorithm 2.5 APT Algorithm [76] ... 42

Algorithm 4.1 HDWM ({x,y}
1
n , β, θ, ρ) ... 73

Algorithm 4.2 HDWM Active drift Handling (λ, ɛ, δ, w, xj) .. 74

Algorithm 4.3 PassiveHandleDrift (Ɛ, w) .. 75

Algorithm 4.4 HDWM-DDM ({x,y}
1
n , β, δ, ρ) .. 76

Algorithm 5.1 PSDSL (τ, S, Ɛ, Ф, µ, θ, ρ, Kmax) .. 107

Algorithm 5.2 PSDSL Auto tuning Parameter ‘k’ (τ, Ф, µ, Kmax) 109

Algorithm 5.3 SwitchingLearningStates (ФPurity, µPurity, ρ) ... 109

Algorithm 5.4 DetectClusterDrift (knn, C, Cmicro) .. 110

Algorithm 5.5 SSLHoldout Evaluation ({x , y }
1

n , ntest , mbound , α,) 113

17

LIST OF ABBREVIATIONS

Abbreviation Meaning

ACE Adaptive Classifiers-Ensemble

AddExp Addictive Base learner Ensembles

AWE Accuracy Weighted Ensemble

BkM Bisecting K-Means

BLAST Short for best last

CD Critical Difference

CGC Cluster Guided Classification

COMPOSE COMPacted Object Sample Extraction

CP Compact Percentage

CSE Core Support Extraction

CUSUM Cumulative sum

DDD Diversity for Dealing with Drifts

DDM Drift Detection Method

df Degree of Freedom

DSM Data Stream Mining

DWM Dynamic Weighted Majority

EDDM Early Drift Detection Method

EVL Extreme Verification Latency

FEAC Fast Evolutionary Algorithm for Clustering

FN False Negative

FP False positive

GMM Gaussian Mixture Models

GT Ground Truth

HEFT Heterogeneous Ensemble with Feature drifT

ILNSE Initially Labelled Non-Stationary Environment

IoT Internet of Things

IWLSPC Importance weighted least squares probabilistic classifier

LEVELIW Learning extreme verification latency with importance

weighting

18

LIST OF ABBREVIATIONS (Cont.)

Abbreviation Meaning

MOA Massive Online Analysis

M3 Modal Mixture Model

MC Micro-Clusters

MC-NN Micro-Cluster Nearest Neighbour

NSE Non-Stationary Environments

OAUE Online Accuracy Updated Ensemble

ODAC Online Divisive-Agglomerative Clustering

OMRk Ordered Multiple Runs of K-Means

pc’ Expected accuracy of classifier

PL Pre-Labelling

SCARGC Stream Classification Algorithm Guided by Clustering

SEA Streaming Ensemble Algorithm

SS Squared Sum

SSL Semi-Supervised Learning

STEPD Statistical Test of Equal Proportion to Detect concept drift

TN True Negative

Todi
Two Online Classifiers for Learning and Detecting Concept
Drift

TP True positive

VL Verification Latency

WMA Weighted Majority Algorithm

1CDT One Class Diagonal Translation

1CHT One Class Horizontal Translation

1CSurr One Class Surrounding another Class

4CE1CF Four class expanding and one class fixed

4CR Four class rotating

4CRE Four Classes Rotating with Expansion

FG_2C_2D Two Bidimensional Classes as Four Gaussians

UG_2C_2D Two Bidimensional Unimodal Gaussian Classes

RRBF Random Radial Basis Function

RTree Random Tree

19

GLOSSARY OF VARIABLES

Symbol Description

τ = {xi ; yi} Initial set of labelled instances x ∈ X; y ∈Y = {1, ..., c}

τ' Predicted instances

β Factor to decrease weights, 0 ≤ β < 1

ρ Period between base learner removal, creation and weight update

σ ∈ ℝc Sum of weighted prediction for each class

λ Local predictions from base learners

δ Active Drift detection Method

µ Micro-clustering algorithm such as CluStream

Ф Clustering algorithm such as K-Means

C t Clusters at time ‘t’

{1, ..., c} Set of Class Labels

Ɛ Set of heterogeneous base classifiers

ƐGT Set of classifiers trained on true class labels

ƐPL Classifiers train on pseudo-labels

Α Confidence drift threshold

Λ Class votes

K Number of centroids

Kmax Max limit of centroids

Ρ Purity threshold

θ Pool or batch size

KNN K-Nearest Neighbours clusters

Q Centroids of clusters C {1…k}

20

Chapter 1 Introduction

1.1 Research Context and Motivation

Rapid innovations and elevated human dependency on technology are the key factors in the

enormous expansion of digital data. The data over the Internet is transmitted in the form of

an ordered sequence of instances called data streams. Internet of Things (IoT) devices

generate data streams from monitoring sensors, smart electrical appliances, vehicles,

robotics, etc., other sources include video streaming data, banking transactions and geo-

location of people and the objective is to extract the worthwhile knowledge from the data

streams.

Data Stream Mining (DSM) [1] has emerged in response to the generation of high-speed

data streams for extracting worthwhile knowledge from the data streams. The application

of DSM includes monitoring biodiversity and ecosystems [2], Internet of Robotic Things for

environment exploration [3], Sentiment Analysis [4], analysing big traffic data of large

cellular networks [5], Fraud-Detection Systems [6], Cyber Security [7], Human Activity

Recognition [8] etc.

Unlike traditional offline learning where complete datasets are available for training. DSM

applies online machine learning algorithms; ideally single-pass approaches due to the

‘velocity’ factor of Big Data. DSM represents the velocity of large datasets, which is one of

the four aspects of “Big Data”, the other three being volume, variety, and veracity [9].

For predictive analytics, supervised learning [10] [11] is beneficial when the ground truth

class labels are available, however, this is not the case for real-world data streams.

Unsupervised learning [12] [13] [14] does not essentially require the class labels, still the

clustering algorithms identify similar data and partition it into different clusters.

Semi-Supervised Learning (SSL) is a better choice because it makes use of both labelled and

unlabelled streaming data. Unlabelled data is cheaper to acquire than labelled data and can

improve the learning rate [15]. For example, it has been shown to be helpful in active

learning, proper learning, and co-training, see [16] [17].

Non-Stationary Environments (NSEs) is a special case of data stream mining in which the

data streams evolve over time. The probability distributions of data can be seen as different

concepts at different times. When new data arrives, the distribution of data may change over

time, therefore the learning models need to adapt and best represent the current concept.

Learning in NSEs requires the updating of predictive models to deal with changes in the

underlying probability distribution [18]. A survey by [19] and [20] provide comprehensive

information on NSEs adaptation methods. A comprehensive study of SSL algorithms

dealing with NSEs is available in Chapter 2.

21

In machine learning literature, the scarcity or delay of labelled data is referred to as

Verification Latency (VL) [21][23]. In another scenario, only limited labelled data is

followed by completely unlabelled instances; this is referred to as Extreme Verification

Latency (EVL) [22] [24] [25] [26]. DSM algorithms assume the availability of labelled data,

immediately or after some delay, to update the accuracy of the classifier and update the

prediction model.

Initially Labelled Non-Stationary Environment (ILNSE) [27] addresses both EVL and NSEs

issues simultaneously. For example, one of the real-world problems, keystroke dynamics

[135] recognizes users by their typing patterns instead of the straightforward password and

login verification, the patterns are utilised as a second security layer for user authentication.

Concept drifts are present in the dataset because the typing patterns of users change over

time as they learn to type more quickly and accurately. In another scenario, autonomous

robots [28] are initially trained inside a specific environment on labelled data. Later, they

are sent to explore an unknown environment without the supervision of humans. These

robots also need to adapt themselves to changing environments under the condition of

verification latency i.e. scarcity of true class labels.

This research comes at the intersection of EVL and NSE, while the data stream clustering

and stream classification are mutually intersected with both EVL and NSE. Figure 1.1 shows

the standing of the presented work in the literature.

Figure 1.1 Standing of the presented work in the literature.

Stream Classification [29][30] algorithm learns from labelled data and at any time

predicts/assigns class labels for unseen examples from one of the predefined classes.

Classification is an important method of DSM used for decision-making on unseen

examples. ‘Stream Clustering’ [12] [13] [14] identifies similarities between objects without

the need for labels. SSL is closely related to EVL, as it relies on clustering algorithms that

make use of unlabelled data to predict the pseudo-labels which are fed to the classifiers to

incrementally update the prediction models, and this continues in a loop. This process is

Stream

Clustering

Stream

Classification

‘NSE’

Concept

Drift

Detection

Extreme

Verification

Latency

The presented work

comes in this intersection.

22

also referred to as Cluster Guided Classification (CGC) [31]. A general approach to deal with

ILNSE is to apply both clustering and classification algorithms and apply drift detection

methods.

To deal with ILNSE, existing approaches rely on cluster-guided classification, which further

applies centroid-based clustering or micro-clustering. Centroid-based clustering such as K-

Means [33] organises the data into non-hierarchical clusters. Micro-clustering is used to

store summary statistics of data points. The authors of [31] proposed a Stream

Classification Algorithm Guided by Clustering (SCARGC) centroid-based clustering,

COMPacted Object Sample Extraction (COMPOSE) [22] applies a geometry-based

framework to learn from non-stationary streaming data, micro-cluster for Classification

(MClassification) [34] applies a micro-clustering approach to classify evolving data streams

with infinitely delayed labels and Learning extreme verification latency with importance

weighting (LEVELIW) [74].

Diversity measures of predictive models have not received much research interest for

evolving data streams [35]. Diversity is one of the key characteristics to consider in the

formation of multiple learning algorithms called ensembles. Ensembles [10][35][36] are

collections of learning models that are grouped to produce predictive performance higher

than a single classifier. Ensembles are broadly classified into Homogeneous and

Heterogeneous ensembles. The terms homogeneous and heterogeneous refer to the data

mining algorithms used in the process, where homogeneous refers to the use of only one

data mining algorithm, and heterogeneous refers to the use of different data mining

algorithms [37]. Chapter 2 outlines a key issue when the diversity of ensembles is

compromised due to the exclusion of base learners.

1.2 Research Motivation

One of the recent technological needs in DSM is finding an efficient and faster way of

extracting worthwhile knowledge from the data streams. Streaming data brings new

challenges to the existing state-of-the-art classification algorithms such as Naïve Bayes (NB)

[38] Hoeffding Trees (HT) [39] or K-Nearest Neighbour (KNN) [40] because the ground

truth class labels are not available. Hence, the algorithms need to learn under class label

scarcity in a single pass through the data.

Moreover, the NSEs make the online classifiers worse over time. A streaming classifier

should be able to timely detect and adapt concept drifts to best reflect the current concept

at any time. Concept drift is a characteristic of data streams, it occurs due to changes in the

distributions in a set of input variables and/or class labels. However, due to the small

amount of labelled data, it is difficult to know which type of machine learning algorithm

would be best to use as a base model beforehand. Therefore, the motivation is to

1) Develop an online SSL classifier capable of learning from both labelled and

unlabelled data in NSEs.

23

2) Analyse the diversity of learning models and their effect on predictive performances.

3) Reduce its dependency on human-predefined parameters.

The next Section 1.3 describes the formulation of the problem, Section 1.4 research

questions, Section 1.5 describes research aims and objectives, Section 1.6 describes the

methodology used in the research, Section 1.7 presents contributions of the presented

research, Section 1.8 provides organisation of the thesis and Section 1.9 summarises the

chapter.

1.3 Problem Formulation

Several approaches exist that address the problems associated with NSE and EVL in

isolation. However, few algorithms address both issues simultaneously. ILNSE is a

challenging task because the learning algorithms have no access to the true class labels

directly after the drift occurs. The existing approaches require more than one technique

such as cluster-guided classification [31], self-learning [41][42] micro-clustering [43].

However, from the literature, it is not clear on what conditions one approach is better than

the other and what causes other approaches to fail.

In data stream mining, the prediction models are trained under specific environments in

the presence of labelled data ‘x’ for which class labels ‘y’ and probability distributions Pt (x,

y) and Pt (x) are known. Figure 1.2 depicts this problem, the accuracy plot in the figure is

virtual because the estimate of accuracy is not possible due to the scarcity of true class label

after the time tUE.

Figure 1.2 Graphical representation of the problem, labelled data trains the

prediction models in a known environment and failed due to concept drifts in an

unknown environment.

𝑃𝑡𝑈𝐸
(𝑋, 𝑦) ≠ 𝑃𝑡𝑈𝐸+1

(𝑋, 𝑦)

In the beginning, Pt (x, y)
and Pt (x) are from

known distribution.

Time

P
re

d
ic

ti
o

n
 A

cc
u

ra
cy

 (
%

)

Parallel
Data

Streams

Pre-
processing

Initially
Labelled

Data

Training

{X, y}

Class Label Scarcity
Testing begins at time = tUE

Validating

Testing

{X, y =?}

y’ = f(X)
Predictions

Possible change in joint distribution

Known Environment

Change in Data Distribution

𝑃𝑡𝑈𝐸
(𝑋) ≠ 𝑃𝑡𝑈𝐸+1

(𝑋)

 Time = t Specific Environment t = tUE Unknown Environment t=n

Prediction
Model

24

However, when the prediction models are deployed in a future time (tUE) to an Unknown

Environment, changes may occur in a set of input variables ‘x’, i.e. Pt (x) ≠ Pt+1 (x). The

prediction models are unable to restore learning due to the scarcity of true class labels and

fail to represent the current concept. Most of the real-world data streams are continuous

and infinite. Unlike offline datasets, in data streams, there is no prior information about the

number of classes and this value may change in the future. Under specific conditions, the

CGC algorithms could be more effective than self-learning if the data is favouring clustering,

i.e. high-purity clusters. These issues make it difficult to choose the right EVL approach for

different problems. Two factors influencing the predictive results of ILNSE covered in this

research are hyperparameters and randomisation.

A good combination of different types of models can also sometimes lead to better predictive

performance than the use of a single type of model [35]. Therefore, it would be desirable for

online learning algorithms applied to NSEs not only to detect which is the best type of model

maintaining the highest classification accuracies but also to use a combination of different

types of models if that is found to be beneficial.

Despite using the weighting mechanism, some approaches do not exploit one of the key

aspects - the use of different types of base models. Dynamic ensembles are one of the most

popular ensemble approaches to deal with concept drift. However, their diversity is

compromised when a poor performing base learner is removed from the ensemble, which

may be deemed beneficial in future concepts. Figure 1.3 illustrates the problem of diversity

in NSEs. In Concept A, three different base learners or experts are stored in a dynamic

ensemble that has a feature to conditionally include or exclude a base learner. In the case of

concept drift concept B occurs, if a base learner ‘B’ is removed from the ensemble, its

diversity is compromised.

Figure 1.3 Diversity compromised in Non-Stationary Environment due to the

exclusion of base learner from the ensemble.

Concept ‘A’ Drift

Expert ‘B’ (worst in Concept ‘A’)

Base Learners

Dynamic Ensemble

Concept ‘B’

Expert ‘B’ not available

(which might be beneficial in

Concept ‘B’)

Diversity compromised.

Poor performing base learner

deleted

Expert ‘C’

Expert ‘B’

Expert ‘A’

Expert ‘C’

Expert ‘A’

25

Maintaining diversity in a dynamic online ensemble, especially when excluding one of its

base classifiers, is crucial for the ensemble's adaptability to changing data distributions.

Diversity in this context refers to using multiple prediction models called ensembles, that

are different from each other in some way. The terminologies used here are explained in

Section 2.1. Having diverse models can increase the likelihood that at least one of them will

be able to adapt effectively to the changing data. The diversity of online prediction models

can have a significant impact on predictive performance in NSEs. Many existing diverse

ensemble techniques leverage meta-learning [36] [88], guiding the determination of which

learning techniques are effective for specific types of data. Another study [89] constructed

a diverse ensemble using three distinct tree-based ensembles (Random Forest [90],

Rotation Forest [91], and Extremely Randomised Trees [92]). Kolter’s Weighted Majority

Algorithm (WMA) [11] achieves heterogeneity among its base learners, enhancing

ensemble diversity. However, it can not dynamically add new base learners and lacks

explicit methods to detect and handle concept drift, making it less effective in NSEs.

Hyperparameters are the parameters that must be initialised before learning begins. One of

the pitfalls of the clustering algorithms is their dependency on parameters such as the

number of clusters that must be specified before the learning. This parameter has a great

influence on clustering results. In offline machine learning, this parameter is iteratively

tuned on finite datasets. Two well-known algorithms for estimating the number of centroids

‘k’ in data streams are namely: Ordered Multiple Runs of K-Means (OMRk) [44] and

Bisecting K-Means (BkM) [45].

Randomisation is an effect in which the training examples are shuffled, it is different to

noise, as it is not a random displacement of examples. The predictive accuracy of learning

models depends on the instances seen so far [46]. The predictive performance of classifiers

depends on the order of instances in the dataset [47]. Apart from that in many real-world

data streams the instances arrive in sequential order, which are directly fed to the online

learning models. Both randomisation and hyperparameters have influences on the

clustering results.

1.4 Research Questions

Following are the questions addressed in the presented research, which are followed by

answers to the research questions and contributions to knowledge.

Research Question 1. How does the scarcity of true class labels impact prediction

accuracy in non-stationary environments, especially when learning algorithms lack direct

access to true class labels immediately following concept drifts?

To address the scarcity of class labels, existing approaches are broadly classified into three

categories: cluster-guided classification, self-learning using classifiers, and micro-

clustering. EVL in general deals with unlabelled data using clusters. However, when clusters

overlap, micro-clustering is a better option, but it requires extra processing time, which is

26

not ideal for DSM. However, in both cluster-guided classification and micro-clustering, the

new centroids receive labels from the ‘nearest’ centroids. It is more likely that micro-clusters

receive wrong class labels due to micro-cluster overlaps. On the other hand, self-learning

predicts the class labels for unlabelled data (also called pseudo-labels) and re-train the same

learning models on these pseudo-labels. Wrong predictions of pseudo-labels further

degrade predictive performance over time.

Research Question 2. What strategy should be implemented to maintain the diversity of

a dynamic online ensemble when excluding one of its base classifiers?

Due to the small amount of initial labelled data, determining the most suitable machine

learning algorithm is challenging. However, existing literature lacks evidence explaining

why certain prediction models are beneficial or which models to be avoided immediately

after the concept drift. Most of the work in online NSEs focuses on updating prediction

models to quickly recover from concept drift, while little attention has been dedicated to

investigating the most suitable type of predictive model at any given time.

Research Question 3. How can hyperparameters be autonomously optimized in

Incremental Learning, considering the evolving nature of data streams and minimizing

manual parameter tuning for improved classification?

Existing ILNSE approaches based on CGC rely on manual selection of the number of

centroids ‘k. Most clustering approaches necessitate prior knowledge of the number of

classes to generate corresponding centroids. In real-world streams, which are often

unstructured and noisy, the prior knowledge of the number of classes is unknown. While

offline machine learning iteratively tunes this parameter on finite datasets, data streams are

evolving and infinite, making the selection of an optimal value of ‘k’ is challenging. Current

approaches manually tune this parameter by applying arbitrary values, potentially leading

to poor classification results. This issue should be comprehensively addressed to reduce

dependency on human feedback.

Research Question 4. Are existing approaches always successful when applied to

different problems? What strategy should be adopted if one of the EVL approaches fails?

One approach to deal with EVL challenges involves implementing an active switching

mechanism, i.e. applying all existing EVL approaches to initial labelled data and

determining the most effective one for future use. Additionally, when cluster-guided or

micro-clustering approaches detect concept drift due to cluster overlaps, the learning

algorithm should integrate an efficient mechanism to prevent the incorrect propagation of

class labels to the clusters.

27

1.5 Research Aim and Objectives

The primary aim of the research is to scrutinize existing ILNSE approaches that address

non-stationary data streams, identifying gaps and limitations. The objective is to propose a

new algorithm to fill these gaps while reducing human dependency on existing DSM

algorithms. To achieve this aim, a few investigations, experimental studies, and empirical

evaluations have been performed and involved discussing the following proposition:

“Develop an online SSL method that can make use of unlabelled data from a streaming data

source in real-time with the ability to adapt to concept drifts. Analyse the impact of diversity

and heterogeneity in high volume and high velocity streaming data”.

Listed below are the key objectives of this research.

1. Conduct a comprehensive literature review to understand the challenging issues in

the existing data stream mining algorithms.

2. Critically assess the strengths and limitations of current algorithms, particularly

those addressing the scarcity of class labels.

3. Identify gaps in the literature that indicate a need for the development of a new

algorithm to address these limitations effectively.

4. Develop and implement the proposed algorithm.

5. Ensure the algorithm accommodates real-time processing constraints inherent in

data stream environments, addresses the need for diversity in ensembles and

adaptability to non-stationary characteristics.

6. Conduct through testing and evaluation to validate the algorithm’s effectiveness in

comparison to existing approaches.

7. Disseminate findings through conference presentations and peer-reviewed

publications.

1.6 Research Methodology

This section describes the nature of this research and the required methods to be applied in

this research appropriately. The applied methods and procedures for data collection,

validation, and evaluation techniques are also described. It further describes the

automation of experiments.

The review covers the literature published in the past decade. A total of 403 articles were

obtained using the keywords “Extreme Verification Latency” and/or “non-stationary”. A

total of 403 ACM (15), ScienceDirect (217), IEEE (70) and Scopus (185) articles were

retrieved of which 108 duplicated articles were eliminated and 295 articles were shortlisted

after analysing the keywords and abstracts. i.e. the abstracts which did not specify the

research in the core of ‘Semi-Supervised Learning’ were excluded.

28

This research focuses on developing a new Machine Learning algorithm, in this process,

several variants of the algorithms may evolve and by applying different parameters the

predictive accuracies of these algorithms may change on different data streams and real-

world datasets. To determine the statistically significant differences between algorithms,

non-parametric tests were carried out using Demsar’s methodology [49]. For the statistical

test, the Friedman test was applied with α= 0.05. The null hypothesis states that the

performances of all the algorithms are similar therefore their ranks should be equal. In the

experiments, the null hypothesis is, “no statistical difference between the algorithms”. If the

null hypothesis was rejected, the Nemenyi post hoc test [50] was applied to identify which

pairs of algorithms differ from each other and were represented in boxplots.

Non-stationary datasets used in the experiments are provided by the authors of SCARGC in

[31] which are available for the Machine Learning community. The artificial data streams

used in the experiments are generated through the Massive Online Analysis (MOA)

workbench [46]. The characteristics and configuration of these data streams are

summarised in Table 4.1. The MOA commands to generate these streams are available in

APPENDIX I.

A framework for fully automated evaluation of experiments has been developed in the MOA.

The source code of the automation program and the scripts of the experiments are publicly

available to the research community [54]. In this automation, the Friedman test and post

hoc test for multiple classifiers and datasets are performed automatically. The experiments’

scripts contain a list of MOA tasks which are performed in a sequential order, the

classification accuracies are automatically summarised in tables, and the rankings and the

box plots are automatically generated.

The following are some assumptions that were used in this thesis:

● The algorithm has no control over the sequence of the examples arriving online.

● The algorithm should be able to predict at any given time after seeing any number of

examples.

● Data streams have a fixed number of features, ideally less than 500 and there are a

limited number of class labels, typically less than 10.

1.7 Contributions of the Presented Research

As a part of this research, an ‘Online Semi-Supervised Learning (OSSL) framework for DSM

has been developed for MOA. The framework provides options to simultaneously run online

clustering and classification algorithms. A baseline method has been developed to evaluate

OSSL algorithms. Support of two training strategies namely incremental and batch

incremental has been provided. A semi-supervised evaluation method has been proposed,

which incrementally evaluates the pseudo-labelling accuracies. Figure 1.4 demonstrates the

key features of Predictor for Streaming Data with Scarce Labels (PSDSL) and

29

Heterogeneous Dynamic Weighted Majority (HDWM) which has been published in the

paper.

Figure 1.4 Development of algorithms and corresponding key features.

This research provides the following novel contributions:

1. An online SSL algorithm PSDSL has been proposed, PSDSL is made capable of

intelligently switching between self-learning, CGC and micro-clustering strategies,

based on the problem it is applied to, i.e. the different characteristics of the data streams.

2. Implemented SCARGC [31] algorithm and self-learning approach in MOA to compare

it with PSDSL. The average prediction accuracy of SCARGC was found higher than

COMPOSE [22], LEVELIW [74], and MClassification [34].

3. Empirically evaluated PSDSL against standalone approaches namely COMPOSE,

LEVELIW, SCARGC and MClassification on benchmarks NSE datasets [31] MOA data

streams and real-world datasets.

4. To analyse the influence of diversity on predictive performance, ‘Static vs. Dynamic’ and

‘Heterogeneous vs. Homogeneous’ classifiers were studied. As a result, an HDWM

classifier has been implemented which preserves the diversity of classifiers.

5. The HDWM algorithm has been evaluated on artificial and real-world data streams

against existing well-known approaches such as a Weighted Majority Algorithm (WMA)

[11] and a Dynamic Weighted Majority (DWM) [10]. The results show that HDWM

maintained the diversity and performed significantly better than WMA in NSEs. Also,

when recurring concept drifts were present.

6. Introduced auto parameter tuning mechanism to eliminate the human dependency and

to determine the best value of number of centroids ‘k’ from initial labelled data.

PSDSL

Online Semi-supervised

 Learner for Data Streams

HDWM

Ensemble Classifier

Features

• Stream Clustering and Classification

• Intelligent Pseudo labelling

• Envelope-Clustering

• Hyperparameter Tuning

Features

• Stream Classification

• Heterogeneous and Dynamic Ensemble

• Active and Passive Drift Handling

Predictions

30

7. A new approach called Envelope-Clustering has been introduced to resolve the conflict

during cluster labelling and suggested a confidence measure approach to ensure the

quality and correctness of labels assigned to the clusters.

8. Developed online SSL framework in MOA which enables researchers to implement

online SSL for DSM, mainly in the areas of EVL and NSE.

Some of the material presented in this thesis were published in the following papers:

1. Idrees, M. M., Stahl, F., & Badii, A. (2022). “Adaptive Learning with Extreme

Verification Latency in Non-Stationary Environments,” in IEEE Access, vol. 10, pp.

127345-127364, 2022, DOI: 10.1109/ACCESS.2022.3225225.

This paper builds the foundation for solving the problem of extreme verification latency

in non-stationary environments, an adaptive SSL learning algorithm (PSDSL) has been

developed, which has been explained in Chapter 5.

2. Lukats D., Berghöfer E., Stahl, F., Schneider J., Pieck D., Idrees, M. (2021)

et al., “Towards Concept Change Detection in Marine Ecosystems,” OCEANS 2021: San

Diego – Porto, 2021, pp. 1-10, DIO: 10.23919/OCEANS44145.2021.9706015.

This paper presented the implementation of DDM and EDDM which are the drift

detection methods used in the HDWM algorithm and described in Chapter 4. These

methods have been applied for change detection in marine ecosystems.

3. Idrees, M. M., Minku, L. L., Stahl, F., & Badii, A. (2020). A heterogeneous online

learning ensemble for Non-Stationary environments. Knowledge-Based Systems, 188,

104983. DOI: 10.1016/j.knosys.2019.104983.

The heterogeneity of online ensembles in non-stationary environments has been

investigated and presented in Chapter 3. The heterogeneous algorithm (HDWM) has

been developed and published in the paper above and described in Chapter 4.

1.8 The Organisation of the Thesis

This thesis is organised into six chapters which aim to support the foundation behind the

contributions to knowledge. Figure 1.5 provides an overview of how the research questions

correspond to the investigations conducted in each chapter.

https://doi.org/10.1109/ACCESS.2022.3225225
https://doi.org/10.23919/OCEANS44145.2021.9706015
https://doi.org/10.1016/j.knosys.2019.104983
https://doi.org/10.1016/j.knosys.2019.104983

31

Figure 1.5 Overview of how research questions are mapped with the aim of research.

Chapter 2 introduces the essential background of EVL and NSEs in data mining and the

characteristics of each type of approach in a streaming environment. Limitations of existing

verification latency algorithms for data streams were evaluated and compared with others.

In this chapter, there is also a comparison between traditional evaluation methods with

incremental and batch learning and evaluations in online settings.

Chapter 3 describes the preliminary investigations with the help of real scenarios to help

establish concrete evidence of the problem. To analyse the diversity of ensemble classifiers,

two types of online ensemble classifiers i.e. 1) Homogeneous ensembles and 2)

Heterogeneous ensembles have been investigated on artificially generated SEA [64] and

STAGGER [10] datasets. The problem of class label scarcity and its effect on prediction

accuracies of learning models on a real-world problem, i.e. the Keystroke dataset [135] has

also been analysed in this chapter.

Chapter 4 develops a new technique to overcome problems of existing dynamic ensembles

that may undergo loss of diversity due to the exclusion of base learners. This chapter also

investigates the HDWM classifier and performs experiments for evaluating it with DWM

due to its dynamicity and WMA for its diversity. The HDWM has been evaluated on MOA

data streams and real-world datasets. The results showed that the proposed HDWM

approach maintained the ensemble diversity of classifiers.

Chapter 5 proposes a method that deals with the scarcity of class labels under NSEs. The

PSDSL algorithm was developed which is capable of intelligent data-driven adaptation for

Chapter 3

Preliminary

Investigations of

Diversity and Scarcity

Research aim: investigate the existing ILNSE approaches which are dealing with non-
stationary data streams to identify gaps and limitations and fill these gaps by
proposing a new algorithm.

Predictor for Streaming Data with Scarce

Labels (PSDSL Algorithm)

Research Question 1

Chapter 5

Chapter 4

Research Question 2

Research Question 4

Research Question 3

Diversity of Online

Prediction Models

(HDWM Classifier)

Envelope-Clustering,
Active switching, and

Parameter Tuning

Chapter 5

32

convergence to the best pseudo-labelling strategy based on the given problem domain. This

chapter also describes the new concepts of envelope clustering to resolve the conflict in

transferring the labels to the clusters due to overlaps. It covers active switching and

Parameter Tuning aiming to reduce the dependency of machine learning on human input

have been discussed in this chapter. Finally, the chapter compares the predictive

performances of PSDSL under NSEs and class label scarcity. PSDSL has been evaluated

against SCARGC, LEVELIW, COMPOSE, and MClassification. To verify statistically

significant differences between algorithms, the chapter presents experiments for the PSDSL

classifier on MOA data streams and real-world datasets.

1.9 Summary

Existing DSM algorithms assume the availability of labelled and stationary data. However,

in many real-world applications such as Robotics, Internet of Things sensors, real-time data

on the Internet, Surveillance Cameras etc., high-speed big data streams are unlabelled and

non-stationary. These are the key challenges faced by learning models in extracting

worthwhile knowledge from the data streams. In the literature, this problem has been

identified as ILNSE i.e. EVL under NSEs.

From the above requirements, it was clear that ‘online SSL’ is a better choice which can help

in EVL scenarios as it makes use of both labelled and unlabelled data and incrementally

updates the prediction models. More specifically, CGC predicts the pseudo-labels for the

unlabelled data and the labels are fed to the classifiers to incrementally update the

prediction models. Secondly, the prediction models need to be learned under NSEs because

the data evolves and the underlying probability distributions may change over time,

resulting in concept drifts. ILNSE is challenging because the learning algorithms have no

access to the true class labels after the concept drifts.

The literature reveals several approaches for EVL and NSE in isolation, however, few

approaches address both issues simultaneously. Major gaps were identified, i.e. it is not

clear from the literature that when and under what conditions one ILNSE approach is better

than the other, and what causes one approach to fail. Diversity is intuitively an important

feature of meta classifiers, as there must be some variations between the predictions of the

base learners. Little work has been dedicated to investigating what type of predictive model

is most suitable at any given time.

The role of diversity has not been visible in the literature in the presence of concept drift.

The hyperparameters have a great influence on learning algorithm results; the existing EVL

approaches are rely on manual parameter selection. To accomplish the objectives, this

research investigates the class label scarcity and diversity problem under NSEs. Targets to

develop an ‘online SSL’ method for data streams with the ability to adapt to concept drifts.

Validate the system in a controlled environment, apply the new approach to real-world

problems and compare the results with existing approaches.

33

Chapter 2 Literature Review

In this chapter, relevant studies, findings, and methodologies that contribute to the

understanding of label scarcity, ensemble diversity and optimization of hyperparameters,

will be examined. The literature suggests several approaches dealing Non-Stationary

Environment (NSE) and Extreme Verification Latency (EVL) in isolation. However, few

algorithms address both issues simultaneously. The (RQ1), which is related to the scarcity

of true class labels in non-stationary conditions, the literature recognizes this issue as

Initially Labelled Non-Stationary Environment (ILNSE), where the data distribution may

change over time. A review of the literature shows that ILNSE approaches require more

than one technique such as Cluster-guided Classification (CGC) [31], self-learning [41][42]

micro-clustering [43]. However, from the literature, it is not clear on what conditions one

approach is better than the other and what causes other approaches to fail.

In ILNSE scenarios, human dependency can be significant due to the challenges posed by

concept drift, label scarcity, and non-stationary. As outlined in (RQ3), human analysts often

need to tune these parameters to optimize the model's performance for the specific problem

and data. Commonly tuned parameters might include learning rates, regularization terms,

and the number of clusters. The literature suggests combining two well-known algorithms

for estimating the number of clusters, OMRk [44] and BkM [45]. The concept of

hyperparameters is further explained in detail in Section 2.7.

Finally, the literature delves into the question of whether existing approaches for learning

in non-stationary conditions with class label scarcity are consistently successful when

applied to various problems (RQ4). The literature suggests that the CGC [31] approach can

help adapt to these changes by identifying clusters of similar data points and retraining or

updating classifiers for each cluster when necessary.

2.1 Definitions and Terminology

In this research online SSL approach has been considered which focuses on techniques that

leverage both the labelled and unlabelled data to build a predictive model [59]. For labelled

data {xL} the labels are drawn from a discrete set of multi-classes {1 . . . c} or y ∈ {−1, 1} for

binary classification. The unlabelled instances {xU} for which class labels are not available.

The labelled instance {xL,yL} learns a model y = f(x), so that for any example {x ∈ X} it can

predict correct labels ‘y’.

Definition 2.1. A data stream is a real-time, continuous, ordered sequence of data. A data

stream ‘S’ is represented as S = {x1, x2, x3... xN} where xi is ith instance. The instance is a d-

dimensional feature vector that goes to infinity.

34

The data is generated by different sources such as sensor networks, the internet of things,

credit card transactions, network traffic data, telecommunication, stock market, satellite,

weather forecasting etc.

Definition 2.2. EVL is a scenario in which limited labelled data is available for training

and true class labels are unavailable in the future or available after some delay.

In most real-world data streams true class labels are not available and the number of classes

is not known in advance. Therefore, clustering, being unsupervised, is one of the most

suitable data mining and data analysis methods for data streams.

EVL relies on the SSL approach in which the data streams contain labelled instances XL =

(x1, . . ., xL) in the beginning for which class labels YL = (y1, . . ., yL) ⊂ Y are available and for

unlabelled instances XU = (xL+1 , . . . , xU) the class labels are unavailable. A model trains on

XL which predicts pseudo-labels for XU and updates the training Model. EVL is perhaps the

most challenging case of all machine learning problems: labels for training data are never

available – except perhaps those provided initially, yet the classification algorithm is asked

to learn and track a drifting distribution with no access to labelled data.

Definition 2.3. Self-learning [35] or Active Learning [55][56] trains the classifiers on

labelled data, predicts the pseudo-labels for the unlabelled data and finally re-trains the

classifiers on the newly labelled data, this continues in a loop. While Active Learning decides

when and which instances should be used for labelling.

Definition 2.5. CGC [31] is an EVL approach in which a clustering step is followed by a

classification, these steps repeatedly apply in a closed-loop fashion. The clustering

algorithms make use of unlabelled data to predict the pseudo-labels which are fed to the

classifiers to update the prediction models.

Definition 2.6. Ensembles are collections of learning models that are grouped to produce

predictive performance. These predictive models {Ci . . . CN} learn some function ‘f’ to solve

a particular problem. To get a prediction on example ‘x’ each member in the ensemble

predicts f (Ci (x) … CN (x)), where Ci (x) denotes the prediction of member Ci for ‘x’. In

weighted voting, each member Ci has a corresponding weight wi. For a binary class problem,

with classes in {0, 1}, weighted voting is calculated using Equation 2.1.

Prediction(x) = {

1 if ∑ wii . Ci(x) > 𝜃

(2.1)
 0 otherwise

Where 𝜃 is a user-provided value for splitting the classes.

Literature shows that in terms of diversity, the ensembles are broadly classified into

homogeneous and heterogeneous, taking into consideration the drift handling capabilities

35

the ensembles are further categorised into active and passive ensembles. A summarised

information about these categories is available in Section 2.4.2.

Definition 2.7. Concept drift is a characteristic of the data stream, which describes that

the underlying distribution of data may change and evolve over time either due to the

change in the target concepts (classes of examples) and/or change in attribute distributions

[60].

Surveys by [19] and [20] provide comprehensive information on NSEs and concept drift

adaptation methods. Changes in distributions occur in a set of input variables ‘x’ and/or

class labels ‘y’, i.e. Pt (x, y) ≠ Pt+1 (x, y) at the time ‘t’. Two different types of concept drifts

exist,

1. “Virtual drift” in which only the distribution of input data ‘x’ changes, i.e. Pt (x) ≠

Pt+1(x) and does not affect the class labels, i.e. Pt (y|x) = Pt+1(y|x).

2. “Real drift” [20] refers to changes in class labels due to changes in the distribution

P (y|x).

Several approaches available in the literature for concept drift detection and adaptation

exist, e.g. [20] [60] [61] [62] [63]. However, existing drift detection approaches rely on true

class labels, taking into consideration that true labels are not available in EVL scenarios, the

drift handling in EVL is extremely challenging. The next section summarises SSL

approaches dealing with EVL and NSEs.

2.2 Learning Strategies in Data Streams

Existing work on learning in NSEs can also be divided into online and block-based

approaches [48] also called chunk-based or batches. This research focuses on ensemble

approaches, which can be further divided into three categories: online ensembles, which

learn incrementally one example at a time, block-based ensembles, which process blocks of

data and a combination of online and block-based ensembles that combine both these

approaches. Online and block-based are described in Section 2.2.1 and 2.2.2.

2.2.1 Online and Incremental Learning

In online stream learning tasks, the training examples with corresponding class labels are

presented to the learning algorithms to train the hypothesis H:X→Y and predict a class label

for a given input at any time-step ‘t’. Online approaches process each new training instance

separately and then discard it.

2.2.2 Block-Based Learning

The data stream ‘S’ is partitioned into evenly sized blocks {B1 … Bn} where each block

contains equal examples. Block-based approaches wait for a whole new chunk or batch of

data to arrive; and then use this new chunk for training before discarding it. The first block-

based ensemble was the Streaming Ensemble Algorithm (SEA) [64], which applies a

https://www.sciencedirect.com/topics/computer-science/ensemble-method
https://www.sciencedirect.com/topics/computer-science/ensemble-method

36

heuristic replacement strategy based on accuracy and diversity in which the worst classifiers

are replaced with a new classifier trained on the most recent examples. Wang et al. proposed

Accuracy Weighted Ensemble (AWE) [65] that processes a stream in chunks to build a new

classifier for each new chunk. Block-based approaches do not react to sudden changes

sufficiently quickly, while ensemble approaches that process streams incrementally, do not

take advantage of periodical adaptation mechanisms [48].

2.2.3 Hybrid Learning

A hybrid online and block-based approach was proposed by Nishida with the Adaptive

Classifier Ensemble (ACE) [66] their approach aims at tracking the error rate of a single

classifier with each incoming example.

Figure 2.1 Online block-based learning in data streams, formation of clusters in

blocks to retrieve class labels for unlabelled data and updating the classifier.

As shown in Figure 2.1 the incoming data stream is divided into the same sized blocks

{B1,….Bn}, the instances in each block form clusters, the centroids are continuously updated

and the unlabelled data receives the labels of the nearest centroids. In parallel, using

prequential evaluation each instance is used for predictions before training the classifiers.

2.2.4 Windowing Approaches

There are three commonly used time window models in data streams [67]: (a) Sliding

windows; (b) Damped windows; and (c) Landmark windows, these are described below.

 Sliding window

 In this approach, only the most recent examples are stored in a fixed or variable size

window ‘w’ at time ‘t’ such that the points within the window have a weight of ‘1’, for the

rest the weight is ‘0’. It applies the first in, first out rule to store and discard the examples

Unlabelled

B2 B1 Bn

Classifiers Predictions

Data Stream

Blocks

Clusters

Labelled &

unlabelled

Labelled

https://www.sciencedirect.com/topics/computer-science/weak-classifier

37

from the window. ADWIN [68] change detector uses sliding windows whose size, instead of

being fixed a priori, is recomputed online according to the rate of change observed from the

data in the window itself. SWClustering [69] was compared with CluStream [70]. In their

investigations, the CluStream failed to capture the precise distribution of recent records

because old records had a great influence on the formation of the micro-cluster.

 Damped window

The most recent examples are prioritised by assigning weights to objects from the data

stream [71]. More recent examples receive a higher weight than older examples, and the

weights of the examples decrease over time. It uses decay functions such as f(t) = 2-λ t where

‘t’ is the time elapsed and λ is the rate of decay.

 Landmark window

Some definitions state that the landmark window considers the data in the data stream from

the beginning until now and all the instances have an equal weight ‘1’. The landmark

window model splits data streams into fixed-size, non-overlapping chunks and maintains

the tuples that arrive after the landmark [72]. This approach is usually applied when

periodic results are needed (e.g. yearly, monthly, quarterly). When a new window is set,

then the previous window including its data instances is deleted [73].

2.2.5 Discussion

The hybrid learning approach is more beneficial in online SSL as the instances arrive at a

high rate and the prediction models need to predict the class labels in an online manner.

The pool or window in which the examples are temporarily stored is used for clustering.

This technique is useful when the learning models have tight time restrictions, and the

models have no time to read previous examples. On the other hand, the window models

approach directly impacts the prediction accuracies of the model as they are aligned with

the evaluation of the learning models, these approaches are also used for detecting the

concept drifts. While the block-based and online learning strategies focus on structuring the

examples. The performance of block-based algorithms heavily depends on the size of the

data blocks. Larger blocks can produce more accurate classifiers and report many concepts

drift in each block. On the other hand, smaller blocks can miss a concept drift, and these

usually produce less accurate classifiers.

2.3 SSL Approaches for NSEs

This section presents a comprehensive study of online SSL algorithms that can learn from

data streams under NSEs and EVL. As shown in Figure 2.2, EVL is a sub-problem of SSL

which is handled using Ensemble-based, Active-learning and Graph-based approaches.

38

 Figure 2.2 SSL Approaches dealing with NSEs, showing graph-based, ensemble

and active learning approaches and the algorithms dealing with EVL.

2.3.1 EVL Approaches for NSEs

A general approach to deal with ILNSE is to apply both clustering and classification

algorithms and apply active or passive drift detection methods. CGC is one of the

approaches in which clusters and micro-clustering predict the pseudo-labels, which further

update the classifiers. Table 2.1 shows approaches dealing with ILNSE.

Table 2.1 Algorithms dealing with ILNSE.

Algorithm Description Drift Handling

SCARGC [31]
CGC, K-Means,

k-Nearest Neighbours (k-NN)
Gradual

LEVELIW [74]
Semi-supervised

Pool and Accuracy based
Recurrent

COMPOSE [22]
CGC, K-Means and

Gaussian Mixture Models (GMM)
Gradual

MClassification [34] Micro-clustering Gradual

 SCARGC Algorithm

SCARGC [31] applies K-Nearest Neighbour to build the classification models. The

algorithm stores instances in batches or a pool. The initial classification is trained using

labelled instances ‘T’ and predicts the pseudo-labels for the unlabelled instances and stores

them in the pool. When the pool size reaches ‘θ’ which is a user-provided value, and the

clusters are formed, new centroids receive their labels from previous centroids. The new

Ensemble Graph Based

Active Learning

• ReaSC

• SPASC

• WEA

• AM

OWCE

• REDLLA

• KAOGINCSSL

ECU

EVL

• SCARGC

• COMPOSE

• LEVELIW

• MClassification

SSL & NSEs

39

centroids are used for the prediction of new class labels for the pool data. As shown in

Algorithm 2.1 it follows a closed loop by switching between clustering and classification.

The algorithm starts building an initial classifier using the available labelled data with ‘c’

classes. The initial labelled data is divided into k ≥ c clusters. If k = c, it uses the ‘c’ classes

as initial clusters. If k > c, it runs a clustering algorithm, and associates each cluster to one

class. The algorithm uses a simple centroid similarity calculation between the current and

previous centroids using Euclidean distance and the labels are obtained by the simple

nearest neighbour algorithm.

 MClassification

MClassification [34] uses the concept of micro-clusters. The centre and radius are

calculated using linear (LS) and squared sum (SS) of N data points. As shown in Algorithm

2.2, micro-clusters are generated for initially labelled examples, and new unlabelled

examples get labels from the nearest clusters using the Euclidean distance. The new data

points absorb and increase in the radius and centroids. If the radius is increased from the

threshold set by the user, it creates a new micro-cluster, and this process repeats in a loop

for each newly received unlabelled example. The centroid and radius are computed using

Equation 2.2 and 2.3.

Centroid =
LS⃗⃗⃗⃗

N

Radius = √
SS⃗⃗⃗⃗

N
+ (

LS⃗⃗⃗⃗

N
)2

 (2.2)

(2.3)

Where:

• LS⃗⃗⃗⃗ = ∑ x⃗ i
N
1 is the linear sum in N data points.

• SS⃗⃗⃗⃗ = ∑ (x⃗ i)
2 N

1 is the squared sum in N data points.

• N = number of data points.

• y = class label for a set of data points.

New data points are absorbed in the existing micro-clusters, and this results in an increase in

the radius and centroids. If the radius is increased from the threshold set by the user, it creates

a new micro-cluster, and this process repeats in a loop for each newly received unlabelled data

point. For example, a new data point x⃗ can be absorbed in MCA = (NA, LS⃗⃗⃗⃗ A, SS⃗⃗⃗⃗ A) updating the

summary statics in the following way:

LS⃗⃗⃗⃗ A ← LS⃗⃗⃗⃗ A + x⃗

SS⃗⃗⃗⃗ A ← SS⃗⃗⃗⃗ A + (x⃗)2

NA ← NA + 1

40

Similarly, when merging two disjoint micro-clusters MCA and MCB the union of these two

clusters is equal to the sum of its parts and the sufficient statistics is calculated as:

LS⃗⃗⃗⃗ C ← LS⃗⃗⃗⃗ A + LS⃗⃗⃗⃗ B

SS⃗⃗⃗⃗ C ← SS⃗⃗⃗⃗ A + SS⃗⃗⃗⃗ B

NC ← NA + NB

Micro-clusters are generated for initially labelled examples, and new unlabelled data

instances are accorded their respective labels from the nearest clusters based on the Euclidean

distance. In this way, new data points are absorbed, and this results in an increase in the

radius and centroids. If the radius is increased from the threshold set by the user, it creates a

new micro-cluster, and this process repeats in a loop for each newly received unlabelled

example.

 COMPOSE

COMPOSE [22] also addresses the EVL problem outlined in Algorithm 2.3. Initially, the

labelled instances build a base classifier, either the Gaussian mixture model or KNN to obtain

a hypothesis and predict class labels. The GMM can determine the probability which tells us

the degree of association among data points and closest clusters. It then constructs the ⍺-

shape (density estimation) using Compaction Percentage (CP) and assigns the labels that

typically lie in the centre of the feature space for each class. The Core Support Extraction

(CSE) extracts those newly labelled data drawn from the centre region of the current

distribution.

 LEVELIW

This approach suggested by [74] relies on the importance-weighted least-squares

probabilistic classifier IWLSPC [75], which predicts the labels for the unlabelled test data.

The pseudo-code and details of this approach are described below and summarised in

Algorithm 2.4. To predict the labels for the unlabelled test data the algorithm takes four

parameters. 1) The training data at the current time step, 2) the corresponding label 3) the

unlabelled test data at the current time step, and 4) the kernel width value σ which decides

the feature space to which training data will be mapped. The algorithm then follows a closed

loop.

 APT

Arbitrary Sub-Population Tracker algorithm (APT) [76] applies maximization (EM)

algorithm for one-to-one assignment between labelled instances in time-step ‘t’ and

unlabelled instances in time-step ‘t + 1’. As shown in Algorithm 2.5, the EM algorithm

predicts which examples are most likely to correspond to a given sub-population, and the

algorithm determines which drift parameters maximise the expectation. Finally, the classifier

is updated to reflect the population parameters of the newly received data.

41

Algorithm 2.1 SCARGC Algorithm (T, K, θ) [31]

Input: Initial training data T; Data Stream DS;
 θ pool size; Number of clusters k

Output: Updated classifier Φ; Label y for each x ∈ DS

1 Φ ← buildClassifier(T)
2 if k = c then

3 C ← actualclasses(T)
4 else

5 C ← kMean(T’,k)
6 end if

7 labels ← ∅
8 while DS has events do
9
10
11
12
13

 x ← next event(DS)

 y ← Φ(x)

 pool ← pool ∪ {x}

 labels ← labels ∪ {y}
 if |pool| = θ then

14 if countExamplesPerClass(labels, c) ≥ 10 then
15
16
17

 C ← clustering(pool, k)

M ← matching(C, labels)
if concordance(M) ≠ 1 then

18
19
20
21

 T ′ ← label_data(pool, C)

Φ ← buildClassifier(T ′)

pool ← ∅

labels ← ∅

Algorithm 2.2 MClassification Algorithm [34]

Input: Maximum micro-cluster radius ‘r’

1 Receive initial labelled data Dinit = {xi ; yi} ; i = 1, ..., T ; x ∈ X; y∈Y ={1, ..., c}
2 Build T micro-clusters as MCi = (Ni , LSi , SSi , yi); i=

1...,T where N = number of data points ; LS= Σ
N

j =1 ; SS= Σ
N

j =1 (xj)2

3 Calculate sufficient statistics of each micro-cluster using Eq. 2.2 and 2.3
4 Receive unlabelled data U t ={ x t

u ∈ X , u = 1…,N}

5 Measure distance between xt and each micro-cluster centroids centroidi
; i = {1... T} i.e. Dist (centroidi, xt) to find the closest micro-cluster, say MCN,
where Dist represents the Euclidean distance.

6 Assign label of MCN i.e. yt to classify example xt
7 Add example xt to MCN and compute its sufficient statistics radiusN ; and centroidN
8 if radiusN > r then
9 Create a new micro-cluster for example xt say MC’ N = (N’ N , LS’N , SS’N , yt)
10 else

11 Add example xt to MCN and update its statistics as

 (LSN) ← (LS N) + xt; (SSN) ← (SSN) + (xt)2 NN ← NN + 1
12 end if
13 Go to step 4 and repeat

42

Algorithm 2.3 COMPOSE Algorithm [22]

Input: SSL algorithm – SSL with relevant free parameters.
 CSE algorithm – CSE; α-shape detail level-α Compaction percentage – CP

1 Receive initial labelled data Dinit = {xi ; yi} ; i = 1, ..., M ; x ∈ X; y ∈ Y = {1, ..., c}

2 Set L0 ={ x t
i } // initial instances

3 Set Y0 ={ y t
i } // corresponding labels of initial instances

4 for t = 0, 1,.... do

5
6
7
8
9

 Receive unlabelled data U t ={ x t
u ∈ X , u = 1…,N}

 Run SSL with L t, Y t, and U t to obtain hypothesis, h t : X → Y

 Let D t ={(x t
l , y

t
l) ∪ (x t

u , h t(x t
u)))}

 Set L t+1 = ∅, Y t+1 = ∅
 for each class c = 1, 2,, C do

10 Run CSE with CP, α and Dt c to extract core supports, CSc

Add core supports to labelled data L t+1 = L t+1 ∪ CSc

Y t+1 = Y t+1 ∪ {yu : u ∈ [|CSc|], y = c}

11

12

13 end for
14 end for

Algorithm 2.4 LEVELIW Algorithm [74]

Inputs: Importance weighted least squares probabilistic classifier – IWLSPC; Kernel
width value σ

1 At t = 0, receive initial data x ∈ X and the corresponding labels y ∈ Y = 1, . . . , C

Set x
te

t=0
= x

Set y
te

t=0
= y

2 for t = 1,, do

3 Receive new unlabelled test data x t
t e ∈ X

4

5

 Set x t
t r = x

t e

t - 1

Set y t
t r = y

t e

t - 1

6 Call IWLSPC x t
t r , x t

t e , y t
t r and σ to estimate y t

t e

7 end for

Algorithm 2.5 APT Algorithm [76]

Inputs: Initial labelled data Dinit; A clustering algorithm with its own free parameters; a
suitable bandwidth matrices calculation algorithm; a suitable Expectation-Maximization
(EM) algorithm with its free parameters.

1 Receive M training examples form Dinit = {xi ; yi}; i = 1, ..., M ; x ∈ X; y ∈ {1, ..., c}

2 Run clustering algorithm to partition the data into ‘K’ disjoint subsets and associate
each cluster to one class among ‘c’ classes.

3 Estimate the conditional feature distribution of the data.

43

4 Receive new unlabelled instances U t = and assume N = M to associate
each new instance to one previous example.

5 Compute instance-to-exemplar correspondence by maximizing the likelihood using EM
algorithm.

6 Pass the cluster assignment from the example to their assigned instances to achieve
instance-to-cluster assignment.

7 Pass the class of an example xi i.e. yi to the class of its assigned instance.

8 Go to step 2 and Repeat.

2.3.2 Other SSL Approaches for NSEs

Realistic Stream Classifier (ReaSC) [30], Semi-supervised Pool and Accuracy Stream

Classification (SPASC) [77] and Weight Estimation Algorithm (WEA) [78] handle concept

drifts by updating the ensemble. Active Mining (AM) [55] is an Active Learning approach

that applies a decision tree for partially labelled data to handle gradual drifts. Table 2.2

summarises SSL approaches dealing with NSEs.

Table 2.2 SSL approaches dealing with NSEs.

Algorithm Description Category
Drift
Handling

ReaSC [30]

K-Means Micro-

Clustering and

K Nearest Neighbour

Ensemble Gradual

SPASC [77]
Semi-supervised Pool

and Accuracy based
Ensemble Recurrent

WEA [78] K-Means and GMM Ensemble Gradual

AM [55]

Demand-driven

Active Mining

of data streams,

Decision Tree

Active Learning Gradual

OWCE [56]

Minimum-variance,

Optimal Weight

Classifier

Active Learning,

Ensemble
Gradual

REDLLA [79]
K-Means to spread labels

at the leaves of a tree.
Graph-based

Recurrent

ECU [57]

Graph Based, Weighted

Ensemble Classification

and Clustering

Graph-based

Ensemble
Abrupt

KAOGINCSSL [80] Graph based SSL Graph-Based Abrupt

Optimal Weight Classifier Ensemble (OWCE) [56] applies both Ensemble-based and active

learning. REDLLA (Recurring Concept Drifts and Limited Labelled data) [79] applies a

44

decision tree of clusters for tracking the recurring concept drifts. ECU (Ensemble

Classification and Clustering) [57] is a graph-based ensemble in which prediction for new

instances is achieved using voting from both classifiers and clusters. KAOGINCSSL [80] is

a graph-based classifier that learns from partially labelled instances.

2.3.3 Comparative Analysis of Existing EVL approaches

In a comparative analysis of existing EVL learning algorithms, which was presented in [81],

the authors compared the classification accuracies for all three versions of COMPOSE with

SCARGC, MClassification and LEVELIW on 15 datasets. As shown in Table 2.3 none of these

algorithms showed significant differences among them. The ranking for these algorithms is

shown in the parenthesis, whereas the lower ranks represent better algorithms.

Table 2.3 Average classification accuracy of COMPOSE, SCARGC, MClassification and
LEVELIW presented in [81].

DATASETS

C
O

M
P

O
S

E

(α
-s

h
a

p
e

)

C
O

M
P

O
S

E

(G
M

M
)

F
A

S
T

 C
O

M
P

O
S

E

S
C

A
R

G
C

(1

-N
N

)

S
C

A
R

G
C

(S

V
M

)

M
C

la
s

s
if

ic
a

ti
o

n

L
E

V
E

L
IW

1CDT 99.9(2) 99.8(5) 99.9(1) 99.6(7) 99.7(6) 99.8(4) 99.9(3)

1CHT 99.6(2) 99.3(6) 99.5(3) 99.6(1) 99.2(7) 99.3(5) 99.5(4)

1Csurr 90.9(5) 89.7(6) 95.6(1) 94.5(3) 94.9(2) 85.1(7) 91.3(4)

2CDT 96.5(1) 95.9(2) 95.1(4) 87.7(6) 87.8(5) 95.2(3) 58.3(7)

2CHT 90.3(1) 89.6(2) 89.4(3) 83.6(5) 83.4(6) 87.9(4) 52.1(7)

4CE1CF 93.9(5) 93.9(6) 93.9(4) 94.0(3) 92.8(7) 94.4(2) 97.7(1)

4CR 99.9(2.5) 99.9(2.5) 99.9(2.5) 99.9(6) 98.9(7) 99.9(5) 99.9(2.5)

4CRE-V2 92.5(1) 92.3(3) 92.4(2) 91.3(6) 91.4(5) 91.6(4) 24.1(7)

FG_2C_2D 87.9(6) 95.5(5) 95.5(3) 95.5(4) 95.6(2) 62.5(7) 95.7(1)

GEARS_2C_2D 90.9(7) 95.8(3) 91.2(6) 95.9(2) 95.8(4) 94.7(5) 97.7(1)

MG_2C_2D 93.1(2) 93.2(1) 93.0(3) 92.9(5) 92.9(4) 80.6(7) 85.4(6)

UG_2C_2D 95.6(3) 95.7(1) 95.6(5) 95.6(2) 95.6(4) 95.3(6) 74.3(7)

UG_2C_3D 94.9(3) 95.2(1) 95.1(2) 94.8(5) 94.9(4) 94.7(6) 64.7(7)

UG_2C_5D 92.0(2) 92.1(1) 91.9(3) 91.3(4) 90.9(6) 91.2(5) 80.1(7)

keystroke 84.3(7) 87.2(5) 85.9(6) 88.0(3.5) 88.0(3.5) 90.6(1) 90.5(2)

AVG Rank 3.3 3.4 3.1 4.1 4.8 4.5 4.6

2.3.4 Discussion

The most influential parameter for LEVELIW is the value of the kernel width ‘σ’ as used in

the Gaussian kernel. The algorithm relies on Core Support Extraction (CSE), which is

computationally very expensive, especially for high-dimensional data. Secondly, COMPOSE

45

(α-shape) strongly depends on the parameter Compaction Percentage which defines the

percentage of currently labelled instances to use as core supports, and choosing the best

value is problematic. The next section discusses online ensembles which are commonly used

in NSEs. The APT algorithm was not included in the analyses, as its steep computational

complexity was prohibitive to running some of the larger datasets [80]. This behaviour of

APT was also previously reported even on a simple bi-dimensional problem [22].

2.4 Data Stream Classification using Ensembles

Data stream classification is a process to extract effective knowledge and thereby unlock

valuable insights arising from large amounts of real-time data. Ensemble methods are one

of the most promising research directions [82]. Ensembles combine multiple learning

algorithms to obtain better predictive performance than single classifiers. Various studies

about ensemble approaches for NSE have been published over the years, such as in [46]

[66] [83]. Online Ensembles can be categorised as follows.

• Active or passive drift handling ensembles.

• Static or dynamic ensembles.

• Homogeneous or heterogeneous ensembles.

Diversity is one of the key characteristics to consider in the formation of ensembles.

However, diversity measures have not received much research interest for evolving data

streams [35]. Static ensembles do not add a new member in the ensemble while dynamic

ensembles include and exclude the learning models. Figure 2.3 illustrates the categorization

of algorithms into Homogeneous and Heterogeneous ensembles.

Figure 2.3 Diversity and drift handling approaches of ensemble classifiers, based on

drift handling capabilities and selection of base classifiers.

Diversity

Drift

handling

Todi [84]

DDD [83]

DWM [10]

OAUE [48]

MC-NN [61]

ODAC [98]

EDDM [62]

BLAST [36]

M3 [86]

HEFT [87]

Ensemble

Homogeneous Heterogeneous
Drift Detection

Active Passive

ACE [66]

WMA [11]

AddExp [85]

DDM [60]

Active Passive

https://link.springer.com/chapter/10.1007/978-3-540-72523-7_49

46

Examples of ‘homogeneous active’ approaches are Diversity for Dealing with Drifts (DDD)

[83], and Adaptive Classifiers-Ensemble (ACE) [66]. Two Online Classifiers for Learning

and Detecting Concept Drift (Todi) [84]. Whereas ‘Homogeneous passive’ approaches are

Addictive Base Learner Ensembles (AddExp) [85] , DWM [10] and Online Accuracy

Updated Ensembles (OAUE) [48]. A few of the ‘heterogeneous passive’ ensembles are WMA

[11], Modal Mixture Model (M3) [86], Heterogeneous Ensemble with Feature drifT (HEFT)

[87] and BLAST (short for best last) [36].

2.4.1 Heterogeneous Passive Ensemble

Most existing heterogeneous ensemble techniques rely on meta-learning [36] [88] this

helps in deciding which learning techniques work well on what data. The authors of [87]

proposed a general framework to integrate feature selection and heterogeneous ensemble

learning for data stream classification. The authors in [89] built a heterogeneous ensemble

using three different tree-based ensembles (Random Forest [90], Rotation Forest [91], and

Extremely Randomised Trees [92]). It was shown that running heterogeneous/different, or

homogeneous/similar data stream classification techniques over vertically partitioned data

(data partitioned according to the feature space) resulted in comparable performance to

batch and centralised learning techniques [37].

WMA [11] uses fixed numbers of base learners C = (C1, C2 . . . CL) with an initial weight ‘wi

’ equal to ‘1’. The weight is penalised by a factor of ratio β on each wrong prediction i.e. (wi

←βwi), where the value of β is a user provided value between 0 and 1. The final prediction

is made based on the weighted majority vote among the base learners Ci. The diversity of

base learners has a significant effect in improving the performance on different streams.

WMA base learners are heterogeneous, potentially helping to produce more diverse

ensembles. However, it lacks the option to dynamically add new base learners. The

algorithm has no explicit method to detect and handle concept drift thus being less effective

in NSEs.

M3 [86] is a heterogeneous chunk-based ensemble for NSEs. New classifier members are

added to the ensemble at each data chunk and the weights are computed based on past

performances. A weighting mechanism is used to deal with NSEs. The algorithm

continuously updates the models regardless of whether real drift occurs or not.

HEFT [87] is an online classifier that incorporates feature selection by applying the Fast

Correlation Filter algorithm [93] that dynamically updates the relevant feature subsets for

data streams. This is beneficial because NSEs may present feature drift [87] [94]. In high-

dimensional datasets, not all features are significant for training a classifier and the

relevance of a feature may grow or shrink over time. Given a set of p different classifier

types, M = {M1, M2 . . . Mp}, the ensemble is initialised with ‘k’ classifiers of each model in

M. It determines the most discriminative feature subset on a chunk using a sliding window.

47

If the subset is different from the previous one, there is a feature drift. The approach then

looks for the most accurate classifier having the smallest aggregated error and builds a new

classifier. Finally, it removes the classifier with the least accuracy from the ensemble and

adds the best classifier to the ensemble. However, after the initialization stage, the

algorithm never utilises the ‘M’ models to create new classifiers. Therefore, there are

chances that the ensemble may become homogeneous again in the future.

BLAST [36] introduced an Online Performance Estimation framework to weight the votes

of (heterogeneous) ensemble members. Based on the zero/one loss function, i.e. returns ‘1’

on correct predictions and ‘0’ otherwise, the weights are increased accordingly. Based on

the performances on w (window s) it nominates one of its members to be an active classifier

and sets its weight to ‘1’ and the weights of the remaining classifiers to ‘0’. The weights are

updated on a predefined interval. The HEFT and OAUE apply a similar approach in which

worst performing models are replaced with new learners, unlike the BLAST that temporarily

reduces the weights of a poorly performing member. However, it utilises a static ensemble

size similar to WMA.

2.4.2 Active and Passive Homogeneous approaches

This section presents related work on passive and active online learning approaches for

NSEs which are based on Homogeneous ensembles.

 Active approaches

Active approaches for dealing with NSEs are typically based on single learners. They use

concept drift detection methods to determine whether a concept drift has occurred. When

concept drift detection occurs, methods for dealing with concept drift are triggered. A

common strategy is to reset the single learner to learn the new concept from scratch [29]

[46]. A few ensemble-based active approaches are also available in the literature.

ACE [66] is an active online ensemble that consists of one online learner, a set of offline

classifiers trained on old data, and a method that uses offline classifiers to detect concept

drift. Ensemble predictions are based on a weighted majority vote across all classifiers. The

classifier weights are based on their accuracy on the most recent training examples. ACE

claims to be able to handle sudden, gradual, and recurring concepts better than other

systems. However, its integral drift mechanism restricts the algorithm to integrate with

other drift detection methods.

Todi [84] is based on two online classifiers ‘H0’ and ‘H1’ for learning and detecting concept

drift. Drift detections are performed based on a statistical test of equal proportions to

compare ‘H0’s performance on recent and old training examples. When a concept drift is

detected, ‘H0 is reset. ‘H1’’ is never reinitialised upon drift detection but can be replaced by

‘H0’ when a concept drift is confirmed. Keeping the two classifiers can help to deal with false

positive drift detections, as ‘H1’’ can be selected for prediction in the case that the reset ‘H0’

48

classifier is inaccurate after the drift detection. The Todi predictions are the predictions

given by the classifier with the best accuracy with the most recent training examples.

DDD [83] is an online active ensemble learning approach that creates different ensembles

with different levels of diversity to achieve robustness for different types of concept drift. A

drift detection method is used to activate very high diversity ensembles which are not

helpful during stable concepts, but that can help to deal with slow drifts, or drifts that do

not cause too many changes with respect to the current concept. Even though these

approaches are based on single learners rather than heterogeneous ensembles, their use of

drift detection methods can inspire the proposal of novel heterogeneous ensemble

approaches.

 Passive approaches

Most passive learning approaches (those that do not rely on drift detection methods) deal

with concept drift by maintaining an ensemble of base models and use weights to emphasise

the models believed to best represent the current concept [35].

AddExp [85] adds a new base model (a.k.a. base learner) for every wrong classification

given by the ensemble. The weight assigned to the new base model is equal to the total

weight of the ensemble multiplied by the parameter γ ϵ (0, 1). The mechanism to update the

weight of each base model is analogous to WMA. The weight of each base model is updated

by being multiplied by a pre-defined parameter β, which is a user provided value between 0

and 1, when it gives a wrong prediction. A pruning method eliminates the oldest base

models for reducing the ensemble size. Alternatively, the base models whose weight is below

a certain threshold can be deleted. The prediction given by the ensemble is the weighted

majority vote of the predictions given by the base models.

OAUE [48] combines chunk-based and online ensemble methods. The weights of the base

learners are calculated by estimating the prediction error on the last d examples. The

window size is utilised to create a new base learner for a set of examples and periodically

removes the weaker base learners from the ensemble. The output is predicted by

aggregating the predictions of base learners using a weighted voting rule. However, the

algorithm is highly dependent on the window size. It is likely therefore that a small window

size may lose the sudden concept drift, while a larger window may result in false concept

detection.

DWM [10] is one of the most popular ensemble approaches to deal with concept drift. Each

base learner is associated with a weight. Weights start with value one and are multiplied by

a predefined parameter (β, 0 ≤ β < 1), when their associated learner gives a wrong prediction

in a time step multiple of period ρ. This weighting mechanism of DWM is inspired by the

WMA. The predictions are based on the weighted majority vote derived from the base

learners. DWM enables removal and addition of base learners at every ρ time step. A new

49

base learner is added whenever the ensemble prediction is wrong in a time step multiple of

parameter ‘ρ’, where the value of ρ must be provided by the user. Removal of learners is

controlled by a predefined weight threshold parameter θ. A base learner is removed if its

corresponding weight is lower than θ in a time step multiple of ‘ρ’. In this way, new learners

are created to learn new concepts and poorly performing learners, which possibly had learnt

old concepts, are removed. The algorithm normalises the weights by uniformly scaling them

such that the highest weight will be equal to one. This is done to prevent newly added base

learners from dominating the decision-making of existing ones. However, despite using the

WMA weighting mechanism, DWM does not exploit one of the key aspects of WMA — the

use of different types of base models.

2.4.3 Concept drift detection approaches

Several approaches for drift detection are available in the literature [95][96][97][20].

Although most of these approaches rely on true class labels, some data stream clustering

algorithms adapt to concept drift implicitly as part of the learning process. More specifically

in CGC, when new instances arrive, the clusters are updated to reflect new concepts. Gama

et al. [20] categorised concept drifts detection into four groups, Sequential Analysis,

Statistical Process Control, Window based and Contextual approaches.

The number of clustering algorithms explicitly addressing concept drift is very limited and

to address the non-stationary nature of data, most available algorithms apply window

models [14]. Exceptions to Online Divisive-Agglomerative Clustering (ODAC) [98] and Fast

Evolutionary Algorithm for Clustering data stream (FEAC-Stream) [99] that use explicit

concept drifts adaptation.

The ODAC [98] algorithm partitions the streams in different time windows. It constructs an

incremental tree-like hierarchy of clusters and continuously monitors the diameters of

clusters. The split and merge operators are based on these diameters and the confidence

levels which are given by the Hoeffding bounds. The authors observed that in stationary

datasets the diameter of a cluster reduces every time a split occurs. The system tests for

aggregation, so in case of concept drift it will not start to grow unnecessarily.

FEAC-Stream [99] uses the Page–Hinkley Test [100] to detect concept drifts. It is a

Sequential Analysis test which was applied to detect whether the assignment of an object to

the closest cluster increases the intra-cluster distances significantly.

Cumulative sum approach (CUSUM) [101] is also a Sequential Analysis technique that

triggers the alarm when the mean of the input data is significantly different from zero.

CUSUM applied in [102] for identifying virtual drifts in data stream clustering problems.

The authors also mentioned that the data stream clustering algorithms treat concept drift

implicitly as part of the learning process. The need for explicit drift detection and adaptation

is often neglected.

50

Drift Detection Method (DDM) [60] and Early Drift Detection Method (EDDM) [62] are

well known representatives of Statistical Process Control and rely on the estimate of

classifier error rate. Micro-Cluster Nearest Neighbour (MC-NN) [61], algorithm aims to

keep a recent and accurate summary of the data stream and these micro-clusters are used

for feature selection and detecting concept drifts. In EVL this estimate is not possible due

to unavailability of true class labels, therefore DDM and EDDM are not beneficial in such

conditions.

The Statistical Test of Equal Proportion to Detect concept drift (STEPD) [84] monitors the

two predictive accuracies of a single online classifier, i.e. accuracy among the most recent

examples and overall accuracy from the beginning of the learning. It detects significant

decreases in these predictive accuracies by using a statistical test of equal proportions. If the

accuracies are statistically similar, then it is assumed that there is no concept drift. If the

accuracies are significantly different, then a concept drift is detected. STEPD uses

significance levels for drifts and warnings. Like DDM and EDDM, it stores examples in a

short-term memory during the warning period and re-builds the classifier on drift detection

based on the stored examples.

2.4.4 Discussion

Existing passive ensembles can be seen as performing dynamic model selection approaches

when they assign different weights to their base learners and when they decide to remove

base learners from the ensemble. However, these approaches have not exploited the use of

different types of base learners, i.e. they have not exploited the potential benefit of

heterogeneous ensembles. Even though the weighting mechanism of DWM was inspired by

WMA, which is a heterogeneous ensemble, all the base learners in DWM are homogeneous,

e.g. either all of them are Naïve Bayes or all of them are Hoeffding Trees. It is worth

investigating how to combine heterogeneity and dynamicity features and develop an

algorithm which is dynamic and diverse at the same time.

2.5 Data Stream Clustering

In stream clustering, semantically similar objects are moved closer to each other, and the

algorithms try to group similar objects. However, stream clustering differs from offline

clustering, the data streams arrive at high speed, therefore in stream clustering only single

pass on data is possible and it is not feasible to store the data. Clustering is the most

appropriate method for real-time data stream processing because it does not require

labelled instances and can adapt to concept drifts [32]. Its main purpose is to group similar

objects closest to each other. Several surveys and reviews on stream clustering algorithms

are available [12][13][14]. Stream clustering differs from offline clustering, the data

streams arrive at high speed, therefore in stream clustering only single pass on data is

possible and it is not feasible to store the data. The stream clustering algorithms can be

categorised into three main classes: hierarchical, partitioning based, and density based.

51

2.5.1 Partitioning Approaches

It groups the instances into a predefined number of clusters based on similarity. The

examples are K-Means [33] for static clustering. For Stream clustering, incremental K-

Means [103], CluStream [70], StreamKM++[104], Stream LSearch [105], SWClustering

[69]. K-Means [33] is a clustering algorithm widely used in data mining. It groups the

instances into a predefined number of clusters by using the Euclidean distance between

each instance and the centroid using Equation 2.4.

f = ∑ ∑ |xi
k − ωk|

2

nk

i=1

K

k=1

 (2.4)

Where, ‘K’ is the number of clusters, ωk is the centroid of the kth cluster, nk is the number of

instances assigned to the kth cluster, wi
k is the ith instance belonging to the kth cluster.

ωk =
1

nk
 ∑xi

k

nk

i=1

 (2.5)

CluStream [70] uses two stages, online micro-clustering, and offline online macro-

clustering. In the online phase the instances are assigned to the micro-clusters or create new

micro-clusters, the nearest clusters can be merged to create space for new clusters. The

offline stages apply a weighted K-Means algorithm on the micro-clusters, to obtain the final

clusters.

The micro-clusters operate as an intermediate statistical representation for large volume of

data. On the other hand, the macro-clusters store a compact summary statistic of the micro-

clusters to produce clusters for analysis on demand.

2.5.2 Hierarchical Clustering

Hierarchical clustering uses binary trees and are divided into agglomerative and divisive.

Agglomerative algorithms (bottom-up) assign every instance as a cluster itself, and

gradually merge the similar clusters to reduce the cluster count. The divisive algorithm (top-

down) is opposite, it starts with a single cluster containing all instances, then gradually

breaks the clusters into smaller clusters. Examples are Hierarchical K-Means [106] BIRCH

[107], CHAMELEON [108], ODAC [98], E-Stream [109] and HUE-Stream [110].

2.5.3 Density Based Clustering

Density based algorithms are intended to group arbitrary shaped clusters and detect the

number of clusters. Examples are DenStream [111] , LDBSCAN [112], ACSC [113], D-

Stream [114] and MR-Stream [115], OPTICS [116], which combines agglomerative and

density approaches. Density-based hierarchical methods using sliding windows are also

available streaming data clustering [117].

52

2.5.4 Micro-clustering

BIRCH [107] introduced the Cluster Feature (CF) or micro-cluster which is a triple: CF =

(N, LS, and SS), where N is the number of instances, (LS) is a vector with the linear sum and

(SS) is a vector with the square sum of the N points. The centroid and radius are computed

using Equation 2.2 and 2.3.

2.5.5 Discussion

The problem of online SSL is relying on the choice of clustering algorithms. When data

arrives in streams, several problems arise here, such as computation and data storage.

Existing state-of-the-art online SSL algorithms use micro-clusters for acquiring the pseudo-

labels for large unlabelled data, which further train the classifiers to be used for predictions.

Density based algorithms are ideal for streams because it does not rely on the number of

clusters, it can group clusters of arbitrary shapes and can handle outliers and noise. These

algorithms often require all the raw instances to form clusters, which seems unrealistic in

data stream applications due to the time limitation. The agglomerative algorithms are too

slow for large datasets due to their complexity O(n3). While the Partitioning based

streaming algorithms, e.g. CluStream, produce spherical clusters, therefore are less accurate

than the density based. However, several parameters must be chosen manually.

2.6 Data Stream Evaluation Methods

For evaluating learning models in the data stream, three alternatives are prequential,

holdout [51] evaluations and Kappa statistics [52]. The details of these evaluation methods

are discussed as below.

2.6.1 Prequential

It is a general methodology to evaluate learning algorithms in data streams learning.

Prequential evaluation [118] also called test-then-train in which each new example is used

to test the model and then use the same example to train the model. According to [46] the

prequential error is computed based on an accumulated sum of a loss function ‘L’ between

the prediction yt and observed values ŷt using Equation 2.6

p0 = ∑L (ŷt, yt)

n

t=1

 (2.6)

Prequential evaluation can be applied with sliding windows and decaying factors to improve

classification results in evolving data streams [119]. However, this method can report initial

poor performance due to fewer training examples seen by the model.

53

2.6.2 Holdout

It uses predefined partitions of train and test instances, as it holds a subset of examples to

be used as a training set at regular intervals. In a holdout test set with M examples, the 0-1

loss is computed using Equation 2.7.

He(i) =
1

M
 ∑ L (yk , ŷk)

M

k=1

 =
1

M
 ∑ ek

M

k=1

 (2.7)

2.6.3 Kappa Statistics

Kappa statistics was introduced by [52] as a more sensitive measure for quantifying the

predictive performance of streaming classifiers. The Kappa statistic ‘k’ is calculated using

Equation 2.8.

k =
p0 − pc

1 − pc
 (2.8)

Where ‘p0’ is the relative observed accuracy of the classifier calculated using Equation 2.9

p0 =
TP− TN

n
 (2.9)

 Where, ‘TP’ = true positive’ and ‘TN’ = true negative and ‘n’ is the total number of

observations. ‘pc’ is the expected accuracy of the classifier agreed with the ground truth

label. It is calculated using Equation 2.10

pc =
(TP+ FN)(TP+FP)

n2
+

(FP+ TN)(FN+TN)

n2
 (2.10)

2.6.4 Discussion

Kappa statistics is a more sensitive measure for quantifying the predictive performance of

streaming classifiers since it is not sure if the classes are balanced. Class imbalance is a

condition when there are much more examples of a given class than the others and this class

may be emphasised in detriment of the other classes. For evolving data streams, performing

the error estimation is the key difference from traditional data mining evaluation because

the cross-validation may be too expensive. The holdout evaluation requires the user to

specify two parameters, i.e. the size of the window and the number of examples to test in

each window. However, choosing the right values for these parameters are problematic.

2.7 Hyperparameter Tuning

Hyperparameters are parameters that must be initialised before learning begins. Several

data stream clustering algorithms apply K-Means due to its simplicity, scalability, and

empirical success in many real-word applications. However, one of the pitfalls of the K-

Means is its dependency on the number of clusters ‘k’ that must be specified prior to the

learning. In an effort to extend K-Means-Based Algorithms for evolving data streams with

variable number of clusters the authors in [120] illustrated the potential of the proposed

54

framework by using three state-of-the-art algorithms for clustering data streams – Stream

Lsearch [105], CluStream [70] and StreamKM++[104], - combined with two well-known

algorithms for estimating the number of clusters, OMRk [44] and BkM [45].

2.8 Randomisation in Data Streams

In data streams, continuous data arrives at high speed and there is practically no control

over the sequence of training data presented to the learning algorithms. Randomisation is

thus different to noise, as it is not a random displacement of examples. The output of an

adaptive classifier at every time step depends on the instances seen so far. Hence,

performance depends on the order of instances in the dataset [47], the authors suggested

executing multiple tests with randomised copies of a data stream. Devices can generate

noisy data due to sensor inaccuracies or malfunctions. Cleaning the data helps in removing

noise, ensuring that the model is not influenced by irrelevant or erroneous information.

Cleaning data from devices before dealing with drifts is a critical step to ensure the reliability

and effectiveness of models, especially in dynamic and evolving environments.

2.9 Visualising Data Stream

Mining data streams has attracted a big deal of attention over the last decade [121].

However little work has been done for visualisation of data stream mining. Traditional data

Analysis systems like JMP [122] and WEKA [123] provide a wide range of interactive

visualisation techniques and exploratory data Analysis tools. However, these tools are

intended to work on offline datasets. MOA [46] is another comprehensive data stream

mining tool that provides real-time visualisation of clustering and as well as outlier

detections as shown in Figure 2.4.

Figure 2.4 Visualisation of online Clustering in MOA showing ground truth and micro-

clustering along with performance measures.

55

It provides a variety of visualisation support for supervised and unsupervised however the
visualisation of SSL is not available. In the research a visualisation tool for SSL has been
developed for MOA.

Gephi [132] is an interactive and hierarchical graph-based tool for real-time visualization

and exploration tool. It includes layout algorithms such as force-based and multi-level

algorithms. Figure 2.5 shows worldwide flight routes network as connected graph of airport

dataset [133]. The visualisation in Gephi has been created and can be found here [54]. The

directed graph is using 5,623 nodes (airports) and 37,596 edges (routes) presented as a

mixture overlay between network graph and geographic data using the Geo Layout plugin.

Figure 2.5 Visualizing Airline Routes Network using Gephi showing airports and
routes using mixed overlay between network graph and geographic data.

2.10 Limitations of the Approaches described in the Literature

To deal with EVL, the available approaches are not compared with each other and in extent

to our knowledge no comprehensive studies are available that justify the one approach over

the other. Furthermore, the reasons why one approach performs better than the other when

applied to different characteristics of data streams and why the other approach fails, is still

not clear in the literature. This section highlights a few gaps of the literature which are

identified in the literature review process.

Gap 1: To deal with the diversity of learning models, existing approaches are static or

dynamic and homogeneous or heterogeneous. NSEs approaches are either active or passive

therefore restricting to adaptation of either gradual or abrupt drifts. It has been a key

challenge in data stream mining, as some algorithms heavily rely on forgetting mechanisms

while others retain previous learning.

Gap 2: EVL deals with unlabelled data more effectively using clusters, however under NSEs

when the clusters overlap, existing approaches relying on micro-clustering. Apart from that,

this approach is computationally expensive for mining high speed data streams.

56

Furthermore, existing EVL approaches are human dependent on redefining the best type of

predictive models for a particular problem or pseudo-labelling strategy. i.e. CGC, or self-

learning.

The predictive performance of SCARGC is highly dependent on clustering, and it also

requires some prior knowledge such as the number of centroids ‘k’ and pool size ‘θ’ which

may significantly affect the predictive performance when such information is not available.

To choose the best value of ‘k’ which is suitable for a particular data stream, the algorithm

needs to run several times with different values of ‘k’ and pick the ‘k’ that gives the best

predictive accuracy.

While analysing the results published in the respective papers of LEVELIW and COMPOSE,

it is difficult to determine which performs better, it seems to be strongly dependent on the

application. COMPOSE showed better results than LEVELIW when there was a significant

class overlap. COMPOSE uses the parameter ‘k’, the number of centroids for, and LEVELIW

uses parameter σ which is the value of the kernel bandwidth. However, in case of complete

class overlap and a condition when no ground truth data is available, it is very challenging

for the algorithm to recover learning from it.

2.11 Summary

In this literature review, a comprehensive examination of existing studies, findings, and

methodologies have been conducted to enhance the understanding of key challenges in data

stream mining. The focus areas included label scarcity, maintaining ensemble diversity,

autonomous hyperparameter optimization, and the success and adaptability of existing

approaches. Addressing the scarcity of true class labels in non-stationary conditions (RQ1),

the Initially ILNSE approach has been identified and various techniques such as CGC, self-

learning, and micro-clustering have been explored. The literature addresses NSEs and EVL

separately, with limited algorithms handling both. Furthermore, a lack of clarity was noted

regarding the comparative effectiveness of these approaches. While analysing the results

published in the respective papers of LEVELIW and COMPOSE, it was difficult to determine

which algorithm performs better, both these algorithms were highly dependent on the

characteristics of datasets. COMPOSE showed better results than LEVELIW in the presence

of significant class overlap. However, the drawback of COMPOSE is parameter ‘k’, which is

used to define the number of centroids, the algorithm applies arbitrary values for ‘k’ to

achieve the best predictive performances. LEVELIW is based on parameter σ which is the

value of the kernel bandwidth. In case of complete class overlap and a condition when no

ground truth data is available, it is very challenging for the existing algorithm to recover

learning from it.

Concerning the diversity of the prediction models (RQ2), in the case of WMA its base

learners are heterogeneous, potentially helping to produce more diverse ensembles.

However, it lacks the option to dynamically add new base learners. The algorithm has no

57

explicit method to detect and handle concept drift thus being less effective in NSEs. Despite

using the WMA weighting mechanism, DWM does not exploit one of the key aspects from

WMA - the use of different types of base models. The HEFT and Online OAUE apply a

similar approach in which worst performing models are replaced with new learners, unlike

the BLAST that temporarily reduces the weights of a poorly performing member. However,

it utilises a static ensemble size like WMA.

ILNSE scenarios often involve significant human dependency, especially for parameter

tuning (RQ3). The literature review provided an in-depth analysis of various

hyperparameter tuning techniques employed in data stream mining. The literature showed

that, existing CGC approaches rely on prior knowledge concerning the number of classes for

generating the corresponding centroids. The evaluation of SCARGC involved the use of

various arbitrary values for 'k' and pool size θ, leading to adverse effects on the prediction

results.

The (RQ4) addresses the consistency of success for existing approaches across diverse

problems. The literature suggests that the CGC approach is effective in adapting to changes

by identifying and updating clusters. This way, the model can focus on adapting to the

evolving characteristics of different data clusters. self-learning approaches can help by

iteratively updating the model with new data points. When the environment becomes non-

stationary, the model can adapt by incorporating the most recent information from the

unlabelled data into its classification decisions. Micro-clustering can be especially useful in

ILNSE because it can capture fine-grained changes in the data distribution. By identifying

micro-clusters within the data, the model can monitor and adapt to subtle shifts in the data's

characteristics over time, which is essential in a non-stationary environment.

The common challenge in all these approaches is the potential for misclassification,

especially when dealing with overlapping clusters or incorrect pseudo-labels. To address

these issues, researchers might be exploring methods to improve the accuracy of cluster

assignments, reduce the processing time of micro-clustering, or develop more robust self-

learning techniques that can adapt to evolving data distributions while mitigating the

impact of incorrect pseudo-labels. The choice of approach may depend on the specific

requirements and constraints of the application, as well as the nature of the data and the

available computational resources. Researchers in this field likely work on refining and

combining these methods to achieve better results in non-stationary environments.

Learning task in data streams are divided into Online and block-based approaches, in online

learning the training examples are presented to the learning algorithms at any time-step,

which learns and predict a class label. On the other hand, in block-Based learning the data

stream is partitioned into different sized blocks containing equal examples. Block-based

approaches wait for a whole new chunk or batch of data to arrive; and then use this new

chunk for training before discarding it. The block/batches are useful in creating clusters

which can be used for pseudo-labelling in ILNSE. A hybrid approach applies both

58

incremental and block-based learning approach. Therefore, applying the hybrid approach

is more beneficial in ILNSE. One issue arises here is choosing the right value of batch size,

it is likely that a small batch size may lose the sudden concept drift, while a larger window

may result in false concept detection.

The literature review highlighted the need for more clarity on the comparative effectiveness

of ILNSE approaches and the challenges associated with diverse ensemble techniques. It

also emphasized the significant role of human analysts in parameter tuning and underlined

the potential of advanced algorithms for improved cluster estimation. The review provided

a foundation for understanding the current landscape of data stream mining challenges and

solutions, paving the way for further research in this dynamic field. analysts may need to

develop strategies for identifying and mitigating label noise, which can adversely affect

model training and adaptation. This might involve techniques like outlier detection,

consensus labelling, or active learning to improve the predictive performances of data

stream mining algorithms. The following chapter undertakes a preliminary investigation

into Extreme Verification Latency and its impact on prediction accuracies, aiming to

pinpoint gaps within the existing literature.

59

Chapter 3 Preliminary
Investigations on Extreme
Verification Latency

This chapter focuses on investigating the research questions by experimenting the problem

discussed in 0. i.e. the problem of EVL and its effect on prediction accuracies. The research

aims at creating a new algorithm for detecting changing environments. The literature

reveals that there are several algorithms exists that has ability to detect drift on streaming

data. Online ensemble classifiers such as DWM [10] has been successfully used to improve

the accuracy of single classifier in online and incremental learning and applies passive drift

detection approach which is suitable to detect gradual drifts. The dynamic ensemble method

of DWM combines the decisions of all the learners to predict the classes. The method uses

mechanism to dynamically add or remove the base learner based on the global algorithm’s

performance.

The DDM is an active drift detection method initially proposed by Gama et al. [60] monitors

the number of errors produced by the learning model during the prediction and suitable for

detecting sudden drifts. DWM is lacking active drift detection approach to handle sudden

drift and applied a passive approach i.e. represents weights to handle gradual drift. A recent

study revealed that different diversity levels in an ensemble of learning machines are

required to maintain high generalization on both old and new concepts. Therefore, a

comprehensive investigation has been carried out to incorporate DDM in DWM.

In the data stream mining, there is limitations to store all the data, for building a decision

tree there is the need to reuse the training examples to compute the best splitting attributes.

Domingos and Hulten [136] proposed the Hoeffding Tree (HT) which is a very fast decision

tree algorithm for streaming data. The most interesting feature of the HT is that it builds a

tree that provably converges to the tree built by a batch learner with sufficiently large data

[46]. HT applies Hoeffding bound [136] ‘ε’ used to split decision in the tree is calculated

using Equation 3.1.

∈ = √
R2ln (

1

δ
)

2n
 3.1

Where, ‘n’ is the count of independent observations of the variable ‘r’ and R is the range of

‘r’. δ is the desired probability and its value is provided by the user.

The Naïve Bayes (NB) [38] classifier is based on Bayes’ theorem in which the probability of

an event occurring is calculated. A data stream X = {X1, X2 ... XN} having discrete set of ‘y’

multi-classes. The authors in [38] determines the estimate of probability that an example

is belonging to class ‘y’ given the features X is calculated in using Equation 3.2 and for all

possible values of the class ‘y’ determine the maximum probability using Equation 3.3.

60

P(y|x̂) =
P(y)∏ P(x̂i|y) N

i=1

P(x̂)
 3.2

y = argmaxy P(y) ∏ P(x̂i|y)
N
i=1 3.3

Where, P(y) is called class probability and P (x̂i | y) is the conditional probability.

This chapter is organised as follows: Section 3.1 presents the analysis of EVL, Section 3.2

investigates the heterogeneous and homogeneous classifiers.

3.1 Analysis of Verification Latency

This section investigates the problem of class label scarcity also called EVL and its effect on

prediction accuracies on learning models. Under ILNSE the prediction accuracies of

learning models are greatly influenced by the scarcity of true class labels which are never

available to update the prediction models. Therefore, it is beneficial to analyses the concept

drifts and its consequences on prediction accuracies under the class label scarcity.

3.1.1 Experimental Design

All the experiments are evaluated in terms of predictive performance. As shown in Figure

3.1, the Keystroke datasets has been used with EVL option in which the size of labelled data

is set to 150 examples for a total of 55 thousand examples.

Figure 3.1 New Task ‘EvaluateEVLPrequential’ created in MOA.

61

A new Task ‘EvaluateEVLPrequential’ has been created in MOA [46], the EVL learning task is

provided with an option to define the size of labelled data and purposely removes the true class labels

from the remaining part of the data stream. An option has been added to compare the evaluation

results of 1) Applying 100 training data with 2) EVL i.e. partially initial labelled data streams.

3.1.2 Data Streams and datasets.

SEA_Drifts, HyperPlane (Incremental), RandomTree (No Drift) [46] data streams has been

applied in this experiment. The description of Random Tree and HyperPlane is available in

Section 4.4.1. SEA_Drifts has been explained in Section 3.2.2. The HyperPlane Incremental

drift is induced by changing the values of the HyperPlane weights as the time advances. It

is possible to modify the orientation and position of HyperPlane by gradually changing the

values of weights.

The Keystroke dataset [135] task is to predict the typing rhythms of genuine users and

impostors, based on their typing patterns. The dataset consists of 10 attributes and 4 class

labels containing records obtained from the users in 8 different sessions who typed a fixed

password. The configuration uses a batch size of 150 examples and a total of 150 training

examples i.e. only the first batch out of 55k has been used to train the classifier.

3.1.3 Significant Findings

The results show that under EVL conditions all the datasets have underperformed in terms

of prediction accuracies, as shown in Table 3.1, the EVL highly effected the keystroke

dataset and Incremental drifts and a slight reduction in the prediction accuracy in the data

stream with no drifts.

Table 3.1 Comparison of Prediction accuracies (%) of EVL and No EVL on drift
streams, no drift and real-world dataset.

Streams (with
Drifts)

EVL
(%)

100%
labelled.

training set

Difference
(%)

SEA_Drifts ↓ 69.9 ↑ 77.1 7.2

HyperPlane
(Incremental) ↓ 53.8 ↑ 82.8 29

RandomTree (No
Drift) ↓ 60.3 ↑ 64.1 3.8

Keystroke ↓ 49.0 ↑ 89.0 40

Average (%) 58.2 78.2 20

The SEA dataset consists of sudden concept drifts at epochs 25k and 75k as shown in the

dashed vertical lines. Under EVL the classifier trains on initial 50 labelled examples and

predicts fine until the first abrupt concept drift appears at epoch 25k. As shown in Figure

3.2 the predictions get worst between 25k and 75k, it is possible to timely recover from drift

62

and train on the new concept but under EVL, no true class labels are available. Likewise in

the HyperPlane data stream in which incremental drift exists and not true class labels are

available.

Time Step (Thousands)

Figure 3.2 Comparison of EVL and No EVL on Prediction accuracy (%) on SEA
Drift and HyperPlane incremental drift streams, the vertical dotted lines

representing sudden concept drifts.

In the Real-world dataset ‘Keystroke’ the true location of concept drift is not available. Figure

3.3 show the prediction accuracies of Keystroke and RandomTree under no EVL and with

EVL. It is evident from the plots that when no drifts are present the EVL does not significantly

affects the prediction capabilities, while the concept drifts significantly reduce the predictive

performance as in case of Keystroke, HyperPlane (Incremental Drift) and SEA (Drifts) data

streams.

Figure 3.3 Comparison of EVL and No EVL and its effect on Prediction accuracy
(%) on Real-world dataset and RandomTree having no drifts.

3.2 Heterogeneous VS Homogeneous Classifiers

As discussed in the literature review Section 2.4, the two categories of ensemble methods

based on configurations are: 1) Homogeneous ensembles: It uses same types of learners and

2) Heterogeneous ensembles: It uses different types of base learning algorithms. The base

learners can be NB or HT etc. The WMA [11] consists of heterogeneous base learners in its

ensemble but the size of learners in the ensemble is fixed. By integrating features of both

these classifiers and by incorporation the existing drift handling methods in the classifier

0

50

100

0 25 50 75 100

P
re

d
ic

ti
o

n
 A

cc
u

ra
cy

 %

SEA (Drifts)

EVL (69.96%)

NO EVL(77.12%)

0

50

100

0 25 50 75 100

HyperPlane (Incremental Drift)

EVL (53.79%)

NO EVL (82.82%)

0

50

100

0 100

P
re

d
ic

ti
o

n
 A

cc
u

ra
cy

 %

Time Step (Thousands)

RandomTree(No Drift)

EVL (60.31%)

NO EVL (64.16%)

0

50

100

0 1500Time Step

Keystroke

Static(49.06%)

Benchmark (89%)

63

would theoretically increase the performance and accuracy of the classifier. DWM is

homogeneous ensemble, but it has ability to deal with sudden drifts by adding and removing

the base classifiers. The following experiment will analyse the effect of homogeneous and

heterogeneous ensemble in the context of drift handing capabilities.

3.2.1 Experimental Design

All the experiments are evaluated in terms predictive performance and performed on

machines with Core i7 @ 3.4 GHz, 4 GB of RAM and executed within the MOA [46]

framework. The defaults parameters of DWM and WMA has been applied in the

experiments. The artificial datasets used in the experiments are generated in the MOA, a

detailed description of Random Tree and HyperPlane is available in Section 4.4.1.

Prequential evaluation [46] has been applied using frequency 1000 and instance size 100k.

3.2.2 Data Streams

The RandomTrees generates a stream based on a randomly generated tree. Hyperplane is

a flat n-dimensional space useful for simulating gradually drifting concepts. The orientation

and position can be modified by slightly changing its relative size of the weights. The

STAGGER [10] dataset consists of 120 training instances, each instance presented with 100

test instances. Generated the dataset consists of 12,000 training and testing examples. The

training instances contain the following concepts changing at epoch 40 and 80.

• Concept 1 = size ==small && colour == red

• Concept 2 = colour ==green || shape == circle

• Concept 3 = size ==medium ||size == large

The SEA [64] concepts consist of four concepts and three attributes, where Attribute (i) ∈ ℝ

such that 0.0 ≤ xi ≤ 10.0. The target concept is Attribute (1) + Attribute (2) ≤ b, where b ∈

{9, 7, 8, 9.5}.

• Concept 1 = Attribute (1) + Attribute (2) ≤ 8

• Concept 2 = Attribute (1) + Attribute (2) ≤ 9

• Concept 3 = Attribute (1) + Attribute (2) ≤ 7

• Concept 4 = Attribute (1) + Attribute (2) ≤ 9.5

The SEA_Drift datasets used in Section 3.2.4 for the experiments on concept drifts, consist

of 100,000 training, each instance presented with 2500 test instances therefore

PeriodicHeldout evaluation has been applied for these datasets. The training instances

contain sudden concepts drifts at epoch 2k and 75k. Figure 3.4 showing the learning

strategies and time changing concepts of SEA Drift data stream. The MOA commands to

generate this stream is available in APPENDIX I.

64

Figure 3.4 Changing concepts and learning strategies in SEA data streams.

3.2.3 Significant Findings in Heterogeneity

The prequential evaluation results in Figure 3.5 show that on RandomTree data stream the

prediction accuracy of HT classifier is (92.1%), which is higher than the NB classifier

(73.5%). Contrary to that, on Hyperplane data stream the prediction accuracy of NB is

higher (93.9%) than HT which is (89.4%). Therefore, it is extremely difficult to choose the

best performing classifiers for a specific problem.

Figure 3.5 Comparison of Prediction accuracy (%) of NB and HT classifiers on HP
and RandomTree data streams.

The DWM-NB (DWM using NB as base classifiers) when applied to Random Tree, the

prediction accuracy is low (72.35%) but improved in DWM-HT (85.45%) (DWM using HT

as base classifiers). Likewise, when DWM-NB base classifier is applied to HyperPlane data

stream, the prediction accuracy is higher (93.13%) than the DWM-HT base classifier

(84.64). This shows that the DWM which is a dynamic ensemble of classifiers also failed to

fill this prediction accuracy gap.

NaiveBayes on

HyperPlane(93.91%)
HoeffdingTree on

Hyperplane(89.46%)

NaiveBayes on

RandomTree(73.55%)

HoeffdingTree on

RandomTree(92.17%)

65

70

75

80

85

90

95

100

 - 20,000 40,000 60,000 80,000 100,000

A
cc

u
ra

cy
 (

%
)

Instances

Prediction Accuracies of NB and HT

Training instance
Concept 1

Testing Set
100 instances

Testing Set
100 instances

time <= 2500 time <= 2500 to 5000

Training instance
Concept 2

Training instance
Concept 3

Testing Set
100 instances

Testing Set
100 instances

time <= 5000 to 7500 time > 7500

Training instance
Concept 4

65

 Table 3.2 Prediction accuracies (%) of DWM-NB and DWM-HT.

Stream DWM-NB DWM-HT Difference

RandomTree 72.35 85.45 ↑ 13.1

HyperPlane 93.15 84.64 ↓ 8.51

Average (%) 82.75 85.04 -2.29

Apart from that, the WMA which is heterogeneous ensemble when applied on the similar

problem, the results in Table 3.3 shows that WMA overcomes this problem and maintains

the prediction accuracy (average 89.1%) on RandomTree and HyperPlane (94.0%). This

improvement is because the WMA uses both HT and NB base classifiers in its ensemble.

Table 3.3 Prediction accuracies (%) of WMA Heterogeneous ensemble classifiers.

Streams (No Drifts) Heterogeneous (WMA)

RandomTree 89.1

HyperPlane 94.06

Average (%) 91.58

3.2.4 Significant Findings in Concept Drifts

In another experiment, the WMA fails on STAGGER and SEA datasets which consists of two

sudden drifts at 25k and 75k. The results in Table 3.4 shows that when WMA is applied to

STAGGER_Drift and SEA_Drift, the WMA did not adapt to sudden drifts as compared to

DWM which deals the sudden drifts by added a new base classifier. Despite that the WMA

is heterogeneous, it is not capable to adapt to sudden concept drifts.

Table 3.4 Prediction accuracies (%) Homogeneous DWM and Heterogeneous
WMA ensemble classifiers.

Streams (with Drifts)
Homogeneous

DWM-NB

Heterogeneous
WMA

SEA_Drift ↑ 87.98 ↓ 85.79

STAGGER ↑ 86.20 ↓ 55.08

Average (%) 87.1 70.4

Figure 3.7 shows results on STAGGET datasets, WMA which is a heterogeneous classifier

and a better choice when no drift, as in case of Hyperplane and RandomTree, However the

WMA is unable to restore learning after the sudden drift at location ‘40’ and ‘80’. DWM on

the other hand is reactive to drifts but lacking heterogeneity. This requires investigating the

66

cause of this varying results and requires an approach that adapts to the given problem,

timing and conditions and maintains the accuracy on both these data streams.

Figure 3.6 shows results on SEA datasets, the WMA is not able to recover from the
sudden drift at 25k and 75k, however DWM recovered from the sudden drifts.

Figure 3.7 Comparison of Prediction accuracy (%) of WMA and DWM on SEA

dataset, the vertical dotted lines representing sudden concept drifts.

4
0

8
0

0

50

100

0 20 40 60 80 100 120

P
re

d
ic

ti
ve

 A
cc

u
ra

ci
es

 (
%

)

Instances

Predictive Accuracies - STAGGER

WMA(55.08%)

DWM-NB(86.2%)

True Drift

65

70

75

80

85

90

95

100

0 25 50 75 100

P
re

d
ic

ti
o

n
 A

cc
u

ra
cy

 %

Instances (Thousands)

Predictive Accuracies - SEA (Abrupt Drifts)

DWM-NB(87.98%)

WMA(85.79%)

Drift

67

3.3 Implementation of SCARGC in MOA

The implementation of SCARGC algorithm in JULIA language is available here [134]. The

SCARGC algorithm has been implemented in MOA to enable experiments on MOA data

streams and to standardise its comparison with our PSDSL approach. Figure 3.8 shows our

implementation of SCARGC in MOA, to assure the correctness of our implementation the

figure below showing the prediction accuracies achieved in 2CDT datasets using the pool

size 300 and only 50 instances out of 16,000 were labelled.

Figure 3.8 The implementation of SCARGC in MOA applied on 2CDT dataset.

A new option to edit the choice of base classifier has been added to experiment SCARGC to

apply different base classifiers, different clustering algorithms and pool size/period of the

data streams could be configured in the SCARGC algorithm. Figure 3.9 showing SCARGC

algorithms applying Naïve Bayes classifier and CluStream Clusterer.

68

Figure 3.9 Editing option for configuring the SCARGC algorithm in MOA.

3.4 Discussion

The presented chapter delves into the investigation of research questions outlined in

Chapter 1, particularly focusing on the challenge of evolving environments (EVL) and its

impact on prediction accuracies. The literature review established the existence of various

algorithms designed for detecting drift in streaming data, with online ensemble classifiers

like DWM showing success in enhancing accuracy in online and incremental learning.

Considering the findings, the chapter suggests the development of an 'Online SSL' method

tailored for data streams with the ability to adapt to concept drifts under EVL conditions.

The implementation of the SCARGC algorithm in MOA served as a benchmark for

comparisons in a controlled environment. The investigations lay the groundwork for

understanding the shortcomings of existing EVL approaches, particularly in preserving the

diversity of online classifiers.

3.5 Summary

This chapter focused on addressing RQ1 and RQ2 in close relation to the influence of

scarcity of true class labels and diversity of online classifiers under NSEs and its effect on

predictive performances with the help of real scenarios. To analyse the effect of EVL under

concept drifts, synthetic data streams and real-world datasets were applied. Diversity was

found to be one of the key characteristics of online ensembles, i.e. multiple learning

algorithms staked together. To analyse the diversity of ensemble classifiers, Homogeneous

vs. Heterogeneous and static vs. dynamic ensembles were investigated on the synthetic data

streams.

The experimental design consists of developing a new evaluation task for EVL in which each

new example is used to test the prediction model and the same example is then used to train

69

the model. The new mechanism also allows the users to define the size of initially labelled

data and purposely removes the true class labels from the remaining part of the data

streams. Synthetic data streams SEA and HyperPlane were generated by inducing sudden

and incremental drifts respectively. To analyse the effect on real-world datasets ‘Keystroke’

was evaluated for which the information about the true drift locations and their type is not

available. Furthermore, to analyse the effect of EVL when no concept drifts existed, a

RandomTree data stream was generated. This design helped in determining the influence

of concept drifts on EVL conditions. The results showed that under EVL all the datasets

underperformed in terms of prediction accuracies when concept drifts were present,

furthermore, highly affected the keystroke dataset and incremental drifts in the data

streams. The predictions get worse after the concept drifts, as no true class labels are

available to learn the new concepts. It was also analysed that when no drifts were present in

the data streams, EVL did not significantly affect the prediction capabilities.

To investigate the diversity of online classifier ensembles, DWM and WMA were

investigated for the ‘heterogeneity’ factors. The results showed that due to a small amount

of initial labelled data, it is difficult to choose the correct type of base learning algorithm i.e.

NB and HT in the ensemble. Perhaps on one data stream, the prediction accuracy of HT was

found higher than the NB classifier. Apart from that, on a different data stream, the

prediction accuracy of NB was found higher than HT. Therefore, it is extremely difficult to

choose the best-performing classifiers for specific problem.

In the perspectives of the above findings, it is worth developing an ‘Online SSL’ method for

data streams with the ability to adapt to concept drifts under EVL. For benchmark

comparison, the SCARGC algorithm was implemented in MOA to enable the experiments

on data streams and to standardise the comparisons in a controlled environment. The

investigations in this chapter also built a concrete foundation to investigate the root cause

of the failure of existing EVL approaches due to the diversity of online ensembles. This chapter

supported achieving the goal of overcoming the problems of losing the diversity of online

classifiers due to the exclusion of base learners from the ensembles, which will be addressed

in Chapter 4.

70

Chapter 4 Heterogeneous Online
Learning Ensemble for NSEs

This chapter aims at addressing the Gap 1 which was raised in Chapter 1, i.e. dealing with

the diversity of online learning models. More specifically, answering the (RQ2), i.e.

overcoming the problems of existing dynamic ensembles that may undergo loss of diversity

due to the exclusion of base learners. Even though it is well known that various types of

predictive models (e.g. Naïve Bayes, Hoeffding Trees, Multilayer Perceptron, etc.) can

provide a very different predictive performance depending on the problem being tackled,

little work has been dedicated to the investigation of what type of predictive model is most

adequate over time in NSEs.

Several approaches to handling concept drift can be found in the literature. Most studies in

this area are concerned with how to quickly detect and/or adapt to concept drift. In

particular, “Active approaches use methods to explicitly detect concept drifts. If a drift is

detected, new predictive models are typically created to learn the new concept, thus helping

the system to recover from the concept. Passive approaches do not use concept drift

detection methods. Instead, they usually maintain an ensemble of predictive models called

“base models and use weights to emphasise the models believed to best represent the

current concept. These approaches also typically create new base models and enable the

deletion of old base models to help in dealing with concept drifts.

For instance, when delivering online learning, it is difficult to know which type of machine

learning algorithm would be best to use as a base model for an ensemble learning algorithm

beforehand, due to the initially small amount of data available for evaluating base models.

However, as more data is received, it is desirable that online ensemble learning algorithms

automatically identify which types of base learners work best for the application domain. In

addition, if the best type of base learner changes due to concept drift, online ensemble

learning algorithms should also be able to automatically identify which types of models are

best suited to the situation encountered after concept drift.

4.1 The HDWM Algorithm

In this research, an online heterogeneous ensemble learning algorithm has been proposed

for NSEs known as the Heterogeneous Dynamic Weighted Majority (HDWM). The purpose

of introducing this new algorithm is to determine the best types of base models to be used

over time in NSEs. This will enable to keep different types of base models and use them to

improve predictive performance to manage concept drift.

 An overview of the proposed HDWM approach is shown in Figure 4.1. HDWM maintains

a dynamic list of learners. In Stage 1, the seed learners Ɛ1 to Ɛa are initialised. In Stage 2, the

71

learners in the dynamic learners’ collection are prequentially tested on each instance in the

data stream. In Stage 3, the same instance is used for training the dynamic list. In Stage 4,

the predictions from each of the base learners are combined and based on the weights given

to the base classifiers, the global predictions are generated. On globally wrong predictions

a best performing base learner is cloned from the list of seed learners and added to the

dynamic list. The max size of the dynamic list is controlled using parameter Bmax. The

learners of the ensemble (Ɛm) make their predictions use their corresponding weights wm.

Figure 4.1 Overview of HDWM.

The global predictions on instances xi for class label y’i from a set of classes ‘C’ is based on

the prediction made by ‘m’ base learners in dynamic list, Ɛ j (xi) ∈ C. The ground truth for

each example consists of pairs (xi, yi), and the aim was to combine the weighted predictions

of each learner using their corresponding weight wj using majority voting as shown in

Equation 4.1.

ýi = arg max
 c ∈ C

 ∑ ωi
j

n

j |εj (xi)=c

 (4.1)

Each learner in Ɛ is associated to a weight {w1, w2… wm}. The method to update the weights

is similar as defined in Dynamic Weighted Majority (DWM) [10], i.e. by being multiplied by

a factor β (0 ≤ β < 1) upon misclassifications at time-steps multiple of Period ‘ρ’, where ρ

>= 1 is a predefined parameter set by user. HDWM implements both an active and passive

approach for handling concept drifts, so that it can efficiently deal with different types of

drift (gradual and abrupt). To implement a passive approach, HDWM removes weaker

Seed Learner Ɛ a

Base Learner Ɛ m

Base Learner Ɛ a+1

Stage 2: Test Dynamic Learners

Stage1: Initialised
Seed Learners

 Seed Learner Ɛ 1

Dynamic Learners

Weights { w1,w2…wm}

Decrease
weights by β

on wrong
predictions.

Drift Detection
DDM, EDDM …

Reset
Learning

Seed

Learners

Stage 4: Clone Seed
Classifiers to create new
Base Classifiers

jwand jƐRemove

From dynamic
learners

j > aand θ <j won

Dynamic learner's
Predictions

Weighted
Majority

Stage 3:
Train Dynamic
Learners

Data Stream

72

learners and their associated weights from the dynamic list once their weights fall below the

value predefined in parameter θ. After every ‘ρ’ time-steps, it performs the following tasks.

1) When the global prediction of the ensemble is wrong, a new learner is cloned from

the “best” seed. The best seed corresponding to the base learner in Ɛ with the best

weight.

2) Once the ensemble size exceeds a user predefined threshold Bmax, remove the base

learner among Ɛj, a+1 ≤ j ≤ m, which has the lowest weight.

These two approaches restrict the ensemble size to reduce the computational costs while

enabling the ensemble to remain heterogeneous. To implement an active approach, HDWM

uses parameter δ to select a concept drift detection method, e.g. DDM [60] or EDDM [62]

and link it to each base learner in the ensemble. The predictions taken from the base

learners are injected into their corresponding drift detection methods to detect concept

drifts and warnings. To handle concept drifts, HDWM has two options 1), reset the learning

of the seeds and their corresponding weights and re-train them. 2) delete the weakest

learners and create new learners of the same type as the best performing learner by cloning

its seed.

The HDWM is outlined in Algorithm 4.1, initially, the seed learners ‘Ɛ1 to Ɛa are initialised

based on their base learning algorithm (line 2). Each learner in the dynamic list is assigned

equal weight 1.0 (line 3). Each base learner Ɛj in the dynamic list is asked for predictions

on ‘xi’ instances (Line 8), where ‘i’ is the time-step and ‘x’ is the vector representing

attributes in the data-stream. Similar to the DWM rule [10] the weights of the learners are

decreased on incorrect predictions (Line 10-11). Over time when the ensemble grows, the

base learners whose weights fall below θ are deleted while keeping intact the seeds in Ɛ for

future use (Line 13-15) and set the flag d = 1 which indicates that the base learner has been

deleted. By ensuring that at least one base learner of each type is maintained in Ɛ, it is certain

that a given type of base learner can repopulate the ensemble whenever it becomes

beneficial, even if this follows a period when this type of base learner was not beneficial.

73

Algorithm 4.1 HDWM ({x,y}
1
n , β, θ, ρ)

Input: {x , y }
1

n : Stream of examples and class label

 {LearningAlgorithm}
1

a: Set of Heterogeneous Seed Base Learning Algorithms
 β: factor to decrease weights, 0 ≤ β < 1
 θ: threshold to delete base learner
 ρ: period between base learner removal, creation, and weight update

{Ɛ,w,δ}
1
m : Set of Seeds, Dynamic learners, and Drift Detection Method

d {0,1}: base learner delete flag
Bmax: Max size of ensemble
c ∈ ℕ*: Number of classes, c ≥2
∧ , λ ∈ {1,…,c}: global and local predictions
σ ∈ ℝc : sum of weighted prediction for each class

1 for seed = 1 to a // Loop over seeds
2 Ɛseed ← Initialised_Seeds

(LearningAlgorithmseed)
// Clone seeds to Dynamic List

3 wseed ← 1.0
4 end for
5 for i = 1 to n // Loop over examples
6 for j = 1 to m // Loop over ensemble of learners
7 d ← 0 // Learner’s delete flag
8 λ = Classify (Ɛj, xi) // Classify using learners
9 if (i mod ρ = 0) then
10 if (λ≠ yi) then
11 wj ← β wj // Update weight using DWM rule
12 end if
13 if (wj < θ and 𝑗 > a) then // j>a prevents deletion of seeds
14 {Ɛj, wj } ← remove ({Ɛj, wj }, θ) // Delete learners, weights < θ
15 d ← 1; // Set deleted flag to True
16 end if
17 if (d ≠ 1) then // If no learners are deleted
18 σλ ← σλ + wj
19 wmin ← min(w), wmax ← max(w)
20 end if
21 end if
22 Call Active Drift Handler (λ , Ɛ, xi) (Algorithm 4.2)
23 end for
24 ∧ ← argmaxj σj
25 if (i mod ρ = 0) then
26 w ← normalise-weights (); // Using DWM rule
27 if (∧ ≠ yi) then // Global prediction is wrong
28 Call Passive Drift Handler (Algorithm 4.3)
29 end if
30 if size(Ɛ) = Bmax then
31 { Ɛ,w} ← remove({Ɛ,w}, wmin)
32 end if
33 for i = 1 to m
34 Train (Ɛi, xj)
35 end for
36 end if
37 end for

74

If no learner is deleted (line 17), the base learner’s prediction is used to compute the

weighted sum for each class (line 18). The maximum and minimum weights are stored in

appropriate variables (line 19). The class with the most weight is then set as the global

prediction (line 24). Weights are normalised (Line 26) and the parameter ρ is used to

control the period for adding or removing the new dynamic learners.

An active drift detection method such as DDM or EDDM is invoked (line 22) and in the case

of drift detection by any of the base learners, the Active Handle Drift (Algorithm 4.2) is

invoked. The integration method for active drift detection is explained in Section 4.2. On

global wrong predictions (Line 27) the Passive Drift Handler (Algorithm 4.3) is invoked on

(line 28). To control the ensemble size (line 30-32) parameter Bmax is a user defined value

to remove weaker learners from the dynamic learners list.

4.1.1 Active Drift Handling

Algorithm 4.2 outlines Active drift handling in HDWM. The seeds are reset upon the

occurrence of drifts. The weight of the seeds is set to 0.5 instead of 1.0 (Lines 3-6) to prevent

the domination of seeds over the new base learners. Finally, the seed learners are trained

when the warning state is detected.

Algorithm 4.2 HDWM Active drift Handling (λ, ɛ, δ, w, xj)

Input: Ɛ: Set of Seeds and Dynamic learners
 λ: local predictions from base learners

 w: ensemble weights
 δ: Drift detection Method

Output: none
1 δlocal ← DriftDetectionMethod(λ)
2 if (δlocal drift = true) then // drift is detected
3 for seed = 1 to a
4 Ɛseed ← reset
5 wseed ← 0.5
6 end for
7 end if
8 if (δlocal warning = true) then // warning is detected
9 for j = 1 to a // Loop over seed learners
10 Train (Ɛi, xj)
11 end for
12 end if

4.1.2 Passive Drift Handler

Algorithm 4.3 implements the Passive drift handling mechanism in HDWM. In the case of

globally wrong predictions the index position and the type of best seed learner is determined

(line 1), a new classifier of a similar type is created (line 2) and added to the list of dynamic

learners from the seed learner (line 3). New learners are given weights 0.5 (line 5) to prevent

new learners dominating over the existing ones.

75

Algorithm 4.3 PassiveHandleDrift (Ɛ, w)

Input: Ɛ: Set of Seeds and Dynamic learners

 w: ensemble weights

 wmax : maximum weight

 m: size of the dynamic learners

 {LearningAlgorithm}
1

a: Set of Seed Base Learners
Output: none
1 Seed ← bestLearner { Ɛ, wmax }

2 Nseed ← Initialised_Seeds {LearningAlgorithmseed}

3 Ɛ ← Ɛ U Nseed // append classifier to dynamic list

4 m ← m+1

5 wm ← 0.5

4.2 Integration with DDM

The purpose of integrating DWM with DDM is to cope with drift when it is detected and

take appropriate measures. Possible options include removing the poor performing base

classifiers from the ensemble or resetting the weights when a drift is detected. The newly

developed DWM-DDM (Dynamic Weighted Majority with Drift Detection) algorithm uses

an online ensemble and an explicit drift detection method for detecting changes in

environment.

Figure 4.2 Integration of DWM and DDM using online ensemble and an
explicit drift detection method for detecting changes in environment.

[Update Weights]
Reduce classifier weight by

factor β when wrong

Proposed Dynamic Weighted

Majority Drift Detection (DWM-

DD)

DDM [60]

Algorithm

 DWM [10].

Algorithm

getVoteforInstance

, example)tbes(C

TrainOnInstance(example)

Find Best Classifier from

Ensemble

Call DDM Drift Detection

Method

76

The integration mechanism is based on a set of ensemble classifiers accepting input “x” and

predicting class label y’, at the same time, the drift is detected based on the true class label

“y” as shown in Figure 4.2. DWM uses fixed numbers of base learners C = (C1, C2 . . . CL)

with an initial weight ‘wi ’ equal to ‘1’. The weight is penalised by a factor of ratio β on each

wrong prediction i.e. (wi ←βwi). The best classifier Cbest from the ensemble is chosen for the

prediction; the process is based on the highest weights of classifiers. The prediction results

are sent to the DDM algorithm for detecting the drift. The DWM-DD penalises the weights

of the classifiers who predicts the wrong class labels and reduces the weights of the

classifiers by a factor of β which is a user provided value between 0 and 1. The warning level

in DDM is reached if pi + si ≥ pmin + 2 × smin and the drift level is reached if pi +

 si ≥ pmin + 3 × smin . Where pi and si are the error rate and standard deviation at instant

‘i’ . pmin and smin are the minimum recorded error rate and standard deviation.

The pseudo-code for DWM-DD is outlined in Algorithm 4.4; the algorithms iterate through

the training examples. Each classifier Ɛj in the ensemble is asked for predictions on ‘xi’

instances (Line 4), where ‘i’ is the time-step and ‘x’ is the vector representing attributes in

the data-stream. At an interval of ρ (line 5) the weights of the learners are decreased on

incorrect predictions (line 6-7) similar to the DWM rule [10]. Next, the classifier having a

max weight is stored in Cbest (line 8). The Cbest is asked to predict the y’ class labels (line 11).

Algorithm 4.4 HDWM-DDM ({x,y}
1
n , β, δ, ρ)

Input: {x , y }
1

n : Stream of examples and class label

 {Ɛ,w}
1

m: Classifier with associated weights
 δ : Drift detection algorithm such as DDM or EDDM

 β: factor to decrease weights, 0 ≤ β < 1
 ρ: period between weight updates

1 w ← 1
2 for i = 1 to n // Loop over examples
3 for j = 1 to m // Loop over ensemble of learners
4 λ ← Classify (Ɛj, xi)
5 if (i mod ρ = 0) then
6 if (λ≠ yi) then
7 wj ← β wj // Update weight using DWM rule
8 Cbest ← max(C, wi)
9 end if
10 end for
11 y’ ← Classify (Cbest , xi)
12 drift_status ← δ (yi , y’) // drift detection using DDM or EDDM
13 if (i mod ρ = 0) then
14 w ← normalise-weights ();
15 for i = 1 to m
16 Train (Ɛi, xj)
17 if drift_status = True then
18 ResetLearning (Ɛ, w)
19 end if
20 end for

77

To implement an active approach, DWM-DD uses parameter δ to select a concept drift

detection method, e.g. DDM [60] or EDDM [62] (line 12). The prediction ‘y’ is injected into

drift detection methods to detect concept drifts and warnings. To handle concept drifts,

DWM-DD resets the learning, and their corresponding weights (line 18) are re-trained.

4.3 Analysis of HDWM

This Section investigates the HDWM algorithms and compares their accuracy and drift

handling capabilities with WMA (due to its heterogeneity) and DWM (due to its ability to

dynamically include and exclude base learners from the ensemble). Different variations of

HDWM are compared to evaluate its sensitivity to parameters (e.g. drift and warning

threshold, ensemble size) and variations of the algorithm that deactivate some of its

characteristics (e.g. drift detection, warning detection, weighted vote). The second set of

experiments concern the evaluation of computational resources usage (CPU time and RAM-

Hours). Finally, experiments were presented comparing HDWM and other state-of-the-art

ensemble classifiers.

For evaluating learning models in the data stream, three methods used are prequential

[118], holdout [51] and Kappa [52] evaluations. Prequential evaluation, also known as

interleaved test-then-train, is applied due to the streaming and non-stationary nature of

data. This method is applied because it provides a consistent and fair evaluation metric over

time. Traditional offline evaluation metrics such as precision, recall or F1 score may not be

suitable for data streams due to the evolving nature of the data. Holdout evaluation provides

a mechanism for assessing the performance of a model in a controlled manner while dealing

with the challenges posed by streaming data. This method was applied to help validate the

effectiveness of HDWM by assessing its performance on separate subsets of data that the

model has not seen during training. Since prediction accuracy can be misleading on datasets

with class imbalance or temporal dependencies, Kappa M and Kappa Temporal were also

used. Kappa M has advantages over Kappa statistic as it has a zero value for a majority class

classifier [52]. Kappa Temporal is applied since it replaces the majority class classifier with

the NoChange classifier [127]. This enables better estimations for datasets with temporal

dependencies.

The prequential accuracy is calculated based on the MOA Windows Classification

Performance Evaluator [46] with a window size of 1000. This evaluator facilitates the

evaluation of classification models on streaming data in a sliding window. The window moves

through the stream, and at each step, the model is evaluated on the most recent instances

within the window. In HDWM, the evaluator helps detecting concept drift by monitoring

changes in model performance within the sliding window. The Holdout method uses

predefined partitions of train and test instances. However, it requires labelled test datasets

which are difficult to obtain readily for real-world applications. The Holdout method is

applied in STAGGER (Drift) as predefined partitions of training and testing instances were

used; the details are explained in Section 4.4.

78

4.4 Data Streams

The artificial data streams used in the experiments are generated through the MOA

workbench [46] are described in Section 4.4.1 and the real-world datasets are described in

Section 4.4.2. The artificial datasets are generated so that the true position of concept drift

is known, whereas in real-world datasets the true location of the drifts is not available. The

description of the data streams and parameters are shown in Table 4.1.

Table 4.1 Description of the data streams and parameters.

Streams

#
 I

n
s

ta
n

c
e

s

#
 F

e
a

tu
r

e
s

C
la

s
s
e

s

#
 D

r
if

ts

P
e

r
io

d

F
r

e
q

.

E
v

a
lu

a
ti

o
n

SEA (S)

STAGGER (S)

2500 K

12 K

3

3

2

2

2

2

50

1

1K

1

P

H

RTree R

LED (S)

Wave (S)

Hyperplane (G)

SEA (G and S)

RRBF(G)

100K

10

7

40

10

3

2

2

10

3

2

2

5

2

1

1

3

2

2

50
1K

P

Electricity

Spam

Sensor

Forest Cover

45,312

9,324

100K

100K

8

500

5

54

2

2

58

7

N/A 50

100

500

1K

1K

P

 [P] = Prequential Evaluation, [H] Periodic Holdout Evaluation,
 [R]= Recurrent Drift, [S] = Sudden Drift, [G] =Gradual Drift

4.4.1 MOA Data Streams

The details of the streams are given below, and the MOA commands to generate these

streams are available in APPENDIX I.

• SEA data stream contains three attributes, function xi ∈ R and the value of xi is between

1.0 and 10.0. The target concept is determined using the equation y = [x0 + x1 + x2 ≤ θ],

such that θ ∈ {7, 8, 9, 9.5}.

• RandomTrees generates a stream based on a randomly generated tree.

• LED generates a stream defined by a 7-segment LED display and the task is to predict

the digit (0-9).

79

• Hyperplane is a flat n-dimensional space useful for simulating gradually drifting

concepts. The orientation and position can be modified by slightly changing its relative

size of the weights.

• Random Radial Basis Function (RRBF) consists of a fixed number of randomly

positioned centroids with a single standard deviation, class label and weight.

4.4.2 Real-World Datasets

Sensor dataset [128] deployed in the Intel Berkeley Research Lab, the sensor ID feature is

used to label the class. The dataset consists of 220k instances; the input attributes include

time-stamped topology information, along with humidity, temperature, light and voltage.

The true drift locations are not known, but gradual drifts exist as the light during working

hours is generally stronger than at night, and the temperature readings of specific sensors

may rise if there are meetings in the room.

Spam email dataset [129] contains input attributes that represent a gradual concept drift

by the SpamAssassin collection. The dataset consists of 9,324 instances, 500 attributes and

two target classes i.e. spam and legitimate. The attributes are representing the presence of

a given word in the email.

Electricity dataset [130] contains data consisting of 45,312 instances for a period of two

years collected from the Australian New South Wales Electricity Market. Input attributes

include day of the week, the NSW electricity demand, the Victoria electricity demand, and

the scheduled electricity transfer between states. The binary prediction task is to identify

the change (up or down) of the price relative to a moving average. The concept drift appears

due to changes in consumption habits due to unexpected events and seasonality.

Forest Cover type [131] dataset consists of the observation (30 x 30 metre cell)

determined from the US Forest Service (USFS) Region 2 Resource Information System

(RIS) data. The task is to predict the type of forest cover from cartographic variables such

as Elevation, Slope, soil type etc.

4.5 Test Configuration

All the experiments are evaluated in terms of time and predictive performance. Processing

time is measured in seconds and is based on the CPU time used for training and testing. All

the experiments were performed on machines with Core i7 @ 3.4 GHz, 4 GB of RAM and

experiments are presented in terms of CPU time. All experiments were executed within the

MOA [46] framework.

The cross-validation techniques for measuring model performance are not suitable as the data

streams originate from NSEs. Therefore, the prequential method [46] was used, which is a

commonly accepted estimation procedure in NSEs. In this method each example is first used

to test the model before it is used for training. The advantage of this method is that all the

80

instances are used in training and testing, and therefore no specific holdout set is needed. To

determine the statistically significant differences between algorithms, non-parametric tests

were carried out using the Demsar’s methodology from [49] For the statistical test the

Friedman test was applied with α= 0.05 and the null hypothesis, “no statistical difference

between the algorithms”. If the null hypothesis was rejected, the Nemenyi [50] post hoc test

was used to identify which pairs of algorithms differ from each other.

Table 4.2 Parameters used in the experiments.

Code Description

β Penalise learner's weight on wrong prediction

θ Threshold of weights to remove base learners

Period
The interval to create or remove base learners or to
manipulate their weights

Freq.
The number of training examples between samples of
learning performance

The base learners used in DWM are NB (Naïve Bayes) and HT (Hoeffding Tree). HDWM and

WMA are using four base learners, i.e. HT-MC (Majority Class at leaves), HT-NB (Naïve Bayes

at leaves), HT-NBAdaptive and NB. The values β = 0.05 and θ = 0.01 are used as per the

default values used in DWM. Table 4.2 gives a description of the parameters used in the

experiments. For the large data streams (size > 100K) and real-world datasets, the period is

‘50’. For small datasets, the period is ‘1’. 'Freq' is the MOA sample frequency parameter

corresponding to the number of training examples between samples of learning performance.

Freq=1k is used for instances more than 100k and for smaller streams a lower value is applied.

To investigate the heterogeneity and its influence on active and passive drift handling

approaches, a variant of HDWM, HDWM-P was developed which is heterogeneous although

not utilising the Active Drift handling option. This variant is used in the experiments in

Section 4.8. The details of variants used in the experiments are described in Table 4.3.

Table 4.3 Variants used in the experiments.

Algorithms Description of Algorithm

HDWM
HDWM uses Naïve Bayes and Hoeffding Tree; its Heterogeneous
ensemble uses both Active and Passive Drift Handling.

HDWM – P
HDWM uses Passive Drift Handling, as used in Heterogeneity
Analysis.

DWM-NB DWM algorithm using Naïve Bayes as base classifier

DWM-HT DWM algorithm using Hoeffding Tree as base classifier

WMA WMA using HT-MC (Majority Class at leaves), HT-NB (Naïve
Bayes at leaves), HT-NBAdaptive and NB

81

4.6 Analysis on MOA Streams

This section analysis the HDWM algorithm on MOA data stream and real-world datasets.

The predictive accuracies and kappa statistics have been compared against with DWM-NB,

DWM-HT and WMA.

4.6.1 Predictive Performance

The predictive capabilities of our new approach were tested on artificial data-streams and

real-world datasets, corresponding ranks are determined such that higher averages are

representing lower ranks. Significance tests and post hoc comparisons on ranks are

performed to determine significance level and CD. The predictive accuracies of HDWM,

DWM and WMA are shown in Table 4.4.

Table 4.4 Predictive Accuracies (%) of DWM-NB, DWM-HT, WMA and HDWM.

Streams HDWM DWM-NB DWM-HT WMA

SEA (S) 88.12 (1) 87.98 (2) 87.71 (3) 85.79 (4)

STAGGER (S) 82.8 (1) 81.82 (2) 81.26 (3) 55.08 (4)

RTree R 84.42 (1) 74.05 (4) 75.32 (3) 79.78 (2)

LED (S) 73.37 (3) 73.41 (1.5) 73.41 (1.5) 65.01 (4)

Wave (S) 82.16 (1) 80.31 (4) 80.34 (3) 80.65 (2)

Hyperplane (G) 88.12 (2) 88.08 (3) 88.19 (1) 80.54 (4)

SEA (G and S) 87.64 (1) 87.58 (2) 87.21 (3) 85.71 (4)

RRBF(G) 92.59 (3) 92.65 (2) 93.09 (1) 77.93 (4)

Electricity 88.4 (1) 79.73 (4) 84.06 (2) 80.92 (3)

Spam 90.54 (1) 87.83 (4) 88.39 (2) 88.04 (3)

Sensor 92.68 (1) 90.79 (3) 90.96 (2) 72.86 (4)

Forest Cover 89.8 (1) 82.92 (2) 79.33 (4) 80.65 (3)

Avg. Ranks 1.42 2.79 2.38 3.42

Table 4.5 Kappa Temporal DWM-NB, DWM-HT WMA and HDWM.

Streams HDWM DWM-NB DWM-HT WMA

SEA (S) 73.81 (1) 73.47 (2) 72.87 (3) 68.84 (4)

STAGGER (S) 49.2 (1) 40.14 (2) 39.44 (3) -19.43 (4)

RTree R 68.69 (1) 47.73 (4) 50.34 (3) 59.35 (2)

LED (S) 70.54 (1) 70.47 (2) 70.46 (3) 61.14 (4)

Wave (S) 73.36 (1) 70.41 (4) 70.46 (3) 70.94 (2)

Hyperplane (G) 75.05 (3) 76.14 (2) 76.37 (1) 61.07 (4)

SEA (G and S) 71.68 (3) 73.03 (1) 72.22 (2) 66.69 (4)

RRBF(G) 91.14 (2) 91.13 (3) 91.66 (1) 73.39 (4)

Electricity 16.91 (1) -44.88 (4) -14.83 (2) -36.85 (3)

Sensor 92.5 (1) 90.78 (3) 90.95 (2) 72.84 (4)

Forest Cover -153.1 (1) -361.2 (3) -163.1 (2) -388.9 (4)

Avg. Ranks 1.45 2.73 2.27 3.55

82

Table 4.5 provides the Kappa measures for the experiments. The larger the Kappa value, the

more generalised the classifier, negative Kappa values indicate low predictive accuracy.

Kappa values for Spam and Forest Cover datasets were negative in HDWM, DWM and

WMA due to the large numbers of attributes in these datasets.

In both drift and real-world data streams, the χ2
r statistic is 15.25 (df =3, N = 12) and the

p-value 0.0016 shows significant differences at the level of significance of 0.05. The method

to calculate chi-squared and p-value is described in the paper [49]. The Nemenyi test [50]

was applied for pairwise comparison. The CD is 1.35. It is evident from the box plot in Figure

4.3 that HDWM performed significantly better than DWM-NB i.e. (2.79 – 1.42 = 1.38 >

1.35) and WMA (3.42 – 1.42 = 2.0 > 1.35).

Figure 4.3 Bar chart for pairwise comparisons of ranks on predictive accuracies (%)
between HDWM, DWM-HT, DWM-NB and WMA showing HDWM performed

significantly better than other approaches.

The statistical tests applied on Kappa Temporal on drift and real-world streams, with the

χ2
r statistic of 15.76 (df =3, N = 11) and the p-value of 0.0012 showed significant differences

at the level of significance of 0.05. In statistical tests for Kappa M on both drift and real-

world streams, the χ2
r statistic is 15.10 (df =3, N = 11) and the p-value 0.0017 also shows

significant differences at the level of significance of 0.05. The Nemenyi test was applied for

Kappa Temporal and Kappa M for pairwise comparison. The CD is 1.41. HDWM performed

significantly better than WMA.

4.6.2 Analysis of Results

In this section, an in-depth Analysis of the results achieved in the previous experiment are

presented using the artificial data streams with concept drift. The predictive performances

are analysed, and the capabilities of each algorithm are graphically presented to investigate

how these algorithms react to different type of drifts. The ensemble size was also analysed.

The Ensemble Size in a dynamic base classifier is an important factor for balancing

performance because a larger ensemble requires more processing time but may improve

predictive accuracy.

1.42

2.79

3.42

2.38

83

4.6.3 Significant Findings

In HDWM the seeds are never deleted and retain the previously learnt concepts, this helps

HDWM in appropriately dealing with recurring concept drifts. Figure 4.4 (left), represents

RandomTree recurring concept drifts. HDWM (85.27%) and WMA (79.78%) handled the

drift on a recurring concept at 75,000 instances. DWM-NB (74.05%) and DWM-HT (75.32)

were unable to cope after the first sudden drift at 25,000. The base learners in DWM forgot

the previous learnt concepts due to inclusion and removal of their base learners; unlike the

WMA whose base learners are never deleted.

In RRBF Figure 4.4 (right), which represents gradual drifts, HDWM (92.59%) and DWM

can deal with concept drifts appropriately due to periodically including new base learners

while WMA does not; this being due to its static ensemble size. HDWM not only maintained

the predictive accuracy of DWM, but slightly improved it. SEA Figure 4.5 (left), represents

abrupt drifts at 25,000 instances and 75,000 instances. HDWM and DWM handled these

drifts appropriately, however, WMA failed to adapt to the new concept. SEA (Mixed) Figure

4.5 (right), represents gradual and sudden drifts. Gradual drift is centred around instance

25,000 with a window of 10,000 instances and is represented using a dotted line while the

sudden drift occurs at 75,000 instances. DWM and HDWM both handled these drifts

appropriately, but WMA reacted late on mixed concept drifts.

4.7 Analysis on Real-World Datasets

Several challenges emerge when dealing with real-world classification problems. The

primary issues are the identification and location of the concept drifts. Accordingly, the

HDWM was also evaluated on real-world data streams; namely: Sensor [128], Spam email

dataset [129], Electricity [130] and Forest Cover type [131]. As there are only 4 datasets

and thus 4 observations, no significance test was performed. However, the obtained results

show improvements. As shown in Figure 4.6, HDWM achieved the highest predictive

accuracies on Spam email (90.54%), Electricity (89.4%), Forest Cover type (91.03%) and

Sensor (92.04%).

84

Figure 4.4 Predictive Accuracies RandomTree (left) and RRBF (right) on Artificial Data Streams. Solid and dashed vertical black
lines indicate the centre point of the drifts, and start/end of the drifts, respectively. The time steps between the start and end of the
start and end of the drift (inclusive) compose the drift window.

Figure 4.5 Predictive Accuracies SEA Abrupt (left) and SEA Mixed (right) on Artificial Data Streams.

30

0 20 40 60 80 100

P
re

d
ic

ti
o

n
 A

cc
u

ra
cy

 %

Time Step (Thousands)

RRBF(Gradual Drifts)

HDWM(92.59%) DWM-NB(92.65%)

DWM-HT(93.09%) WMA(77.93%)

65

70

75

80

85

90

95

0 20 40 60 80 100

P
re

d
ic

ti
o

n
 A

cc
u

ra
cy

 %

Time Step (Thousands)

SEA (Abrupt Drifts)

HDWM(88.12%) DWM-NB(87.98%)
DWM-HT(87.71%) WMA(85.79%)

70

75

80

85

90

95

0 20 40 60 80 100

P
re

d
ic

ti
o

n
 A

cc
u

ra
cy

 %

Time Step (THousands)

SEA (Gradual & Sudden Drift)

HDWM(87.64%) DWM-NB(87.58%)
DWM-HT(87.21%) WMA(85.7%)

30

40

50

60

70

80

90

100

0 20 40 60 80 100

P
re

d
ic

ti
o

n
 A

cc
u

ra
cy

 %

Time Step (Thousands)

RandomTree (Recurrent Drift)

HDWM(84.42%) DWM-NB(74.05%)
DWM-HT(75.32%) WMA(79.78%)

85

Figure 4.6 Average Predictive Accuracies Real-world datasets.

50

100

0 1 2 3 4 5

P
re

d
ic

ti
ve

 A
cc

u
ra

cy
 (

%
)

Instances (Thousands)

Spam Email

HDWM(90.54%) DWM-NB(87.83%)
DWM-HT(88.39%) WMA(88.04%)

50

100

0 10 20 30 40

P
re

d
ic

ti
ve

 A
cc

u
ra

cy
 (

%
)

Instances (Thousands) Thousands

Electric

HDWM(89.4%) DWM-NB(79.73%)
DWM-HT(84.06%) WMA(80.92%)

50

75

100

0 20 40 60 80 100

P
re

d
ic

ti
o

n
 A

cc
u

ra
cy

 (
%

)

Instances (Thousands)

CoverType

HDWM(89.7%) DWM-NB(83.6%)
DWM-HT(86.86%) WMA(82.94%)

0

50

100

0 20 40 60 80 100
P

re
d

ic
ti

o
n

 A
cc

u
ra

cy
 %

Instances (Thousands)

Sensor

HDWM(92.68%) DWM-NB(90.79%)

DWM-HT(90.96%) WMA(72.86%)

86

4.8 Analysis of Heterogeneity

The objective of this Analysis is to investigate how the heterogeneity of an ensemble affects its

predictive performance, and whether the higher accuracy achieved in HDWM is due to its

heterogeneity or due to the active drift handling capabilities. The results of these experiments

are shown in Table 4.6.

Table 4.6 Heterogeneity Test, Predictive Accuracies (%)

Streams HDWM -P DWM (NB) DWM (HT)

SEA (S) 87.73 (2) 87.98 (1) 87.71 (3)

STAGGER (S) 82.31 (1) 81.82 (2) 81.26 (3)

RTree R 75.51 (1) 74.05 (3) 75.32 (2)

LED (S) 73.44 (1) 73.42 (2) 73.41 (3)

Wave (S) 80.35 (1) 80.31 (3) 80.34 (2)

Hyperplane (G) 88.21 (1) 88.08 (3) 88.19 (2)

SEA (G and S) 87.26 (2) 87.58 (1) 87.21 (3)

RRBF(G) 93.04 (2) 92.65 (3) 93.09 (1)

Electricity 84.09 (1) 79.73 (3) 84.06 (2)

Spam 88.72 (1) 87.83 (3) 88.39 (2)

Sensor 90.98 (1) 90.79 (3) 90.96 (2)

Forest Cover 86.92 (1) 82.92 (2) 79.33 (3)

Avg. Ranks 1.25 2.42 2.33

For this experiment the DWM performance was compared with the Naïve Base and

Hoeffding Tree as base learners in its ensemble and compared it with HDWM-P (a variant

of HDWM without active drift handling) which is reliant on a passive approach similar to

the DWM. The Friedman statistics in a heterogeneity test, the χ2
r statistic is 10.16 (df=2, N

= 12) and the p-value 0.0062 indicates significant differences at the level of significance of

0.05. Post-hoc test using the Nemenyi test was applied for pairwise comparison.

Figure 4.7 Boxplot for Heterogeneity Test.

The CD is 0.95. Boxplot in Figure 4.7 shows that HDWM-P performed significantly better

than DWM-NB i.e. (2.42 – 1.25 = 1.08 > 0.95). Given that the main difference between

HDWM-P and DWM is the heterogeneity, these results indicate that heterogeneity plays a key

87

role in improving the HDWM accuracy over DWM. In particular, the model switching

mechanism maintained the accuracy and made it independent of manually selecting base

learners.

4.9 Sensitivity Analysis of Hyperparameters

In terms of how to set the parameters in real-world problems, the difficulty is that the best

values may change over time. Potentially, one could run multiple versions of the approach

with different parameter settings. The parameters ‘β’, ‘θ’ and ‘Period’ were analysed and

their effect on prediction accuracy, ensemble size and drift detections. The values for β ' and

' θ ' are randomly chosen between 0 and 1.

Table 4.7 Effect of ‘Period’ on Predictive Accuracies % & Drift Detection, β = 0.5 and theta
= 0.01 (Fixed).

Streams

Period =1 Period =25 Period =50

A
C

C
%

#
 D

r
ifts

A
C

C
c

%

#
 D

r
ifts

A
C

C
%

#
 D

r
ifts

SEA (S) 84.0 (3) 0 87.9 (2) 2 88.1 (1) 2

STAGGER (S) 85.2 (1) 0 61.3 (2) 0 60.8 (3) 0

RTree R 76.5 (3) 6 82.5 (2) 1 84.4 (1) 1

LED (S) 54.8 (3) 4 72.2 (2) 1 73.4 (1) 1

Wave (S) 78.2 (3) 5 82.1 (2) 0 82.2 (1) 0

Hyperplane 77.5 (3) 4 85.5 (2) 0 87.5 (1) 0

SEA (G and S) 82.9 (3) 0 87.7 (1) 1 87.1 (2) 4

RRBF(G) 90.8 (3) 8 93.0 (1) 4 92.6 (2) 8

Electricity 89.4 (1) 8 89.3 (2) 2 88.4 (3) 2

Spam 93.9 (1) 2 89.9 (2) 0 89.7 (3) 0

Sensor 83.2 (3) 26 93.6 (1) 1 92.5 (2) 3

Forest Cover 90.7 (1) 10 90.4 (2) 0 89.7 (3) 0

Avg. (Ranks) 82.3(2.2) 6.08 84.6(1.7) 1.0 84.7(2.0) 1.75

While the period was also analysed on randomly values 1, 25 and 50. The period = 1

represents inclusion of all the instances in the data stream and then gradually increased by

skipping 25 instances. The results on the ‘effect of ‘Period’ on Predictive Accuracy and Drift

Detection’ is shown in Table 4.7. As evident from the table, the average prediction accuracy

is gradually increasing while the number of drift detections is decreasing by applying a larger

value of ‘period’. The effect of ‘β’ on Predictive Accuracy and Ensemble Size is analysed by

keeping a static value of ‘Period = 50’. This value was chosen for subsequent experiments, as

it achieved the highest accuracies in the experiments outlined in Table 4.7. In Table 4.8, the

average ensemble size and accuracy is increasing by choosing a larger value of ‘β’.

88

Table 4.8 Effect of ‘β’ on Accuracies % & Ensemble Size, Period = 50 and θ = 0.01(Fixed).

Streams

β = 0.1 β = 0.5 β = 0.75

A
C

C
%

E
n

s
e

m
b

le

S
iz

e

A
C

C
%

E
n

s
e

m
b

le

S
iz

e

A
C

C
%

E
n

s
e

m
b

le

S
iz

e

SEA (S) 87.6 (3) 13.5 88.1 (1) 23.6 87.9 (2) 23.7

STAGGER (S) 60.8 (1) 4.0 60.8 (2) 4.0 60.7 (3) 4.0

RTree R 75.2 (3) 8.5 84.4 (2) 13.7 88.8 (1) 20.5

LED (S) 72.5 (3) 9.4 73.4 (1) 23.8 73.4 (2) 24.5

Wave (S) 80.3 (3) 13.3 82.2 (2) 17.4 83.5 (1) 24.5

Hyperplane 88.2 (1) 9.4 87.5 (3) 19.8 87.6 (2) 24.4

SEA (G and S) 87.4 (2) 12.3 87.1 (3) 17.2 88.3 (1) 23.2

RRBF(G) 92.6 (2) 8.6 92.6 (1) 14.8 92.5 (3) 20.3

Electricity 85.8 (3) 7.07 88.4 (2) 10.7 89.7 (1) 15.8

Spam 89.2 (3) 6.36 89.7 (2) 8.6 90.1 (1) 9.5

Sensor 93.0 (1) 6.74 92.5 (2) 10.3 91.7 (3) 13.8

Forest 85.7 (3) 7.17 89.7 (2) 11.5 91.3 (1) 16.5

Avg. (Ranks) 83.2(2.2) 8.8 84.7(2.0) 14.6 85.5(1.7) 18.3

Table 4.9 Effect of ‘theta’ on Accuracies % & Ensemble Size, Period = 50, β = 0.5 (Fixed).

Streams

θ = 0.01 θ = 0.05 θ = 0.1

A
C

C
%

C
P

U
 tim

e

A
C

C
%

C
P

U
 tim

e

A
C

C
%

C
P

U
 tim

e

SEA (S) 88.1 (2) 102.5 88.1 (1) 103.6 88.0 (3) 95.1

STAGGER (S) 60.8 (2) 0.04 60.8 (2) 1.0 60.8 (2) 1.0

RTree R 84.4 (1) 238.5 81.0 (2) 195.9 79.9 (3) 155.0

LED (S) 73.4 (1) 664.5 73.3 (2) 690.0 73.3 (3) 589.3

Wave (S) 82.2 (1) 1195.6 81.9 (2) 766.1 81.5 (3) 730.1

Hyperplane 87.5 (3) 508.6 87.8 (2) 429.3 88.2 (1) 343.1

SEA (G and S) 87.1 (3) 127.1 87.7 (1) 106.4 87.6 (2) 99.7

RRBF(G) 92.6 (2) 203.4 92.6 (1) 127.2 92.5 (3) 121.5

Electricity 88.4 (1) 148.4 88.3 (2) 153.5 87.9 (3) 127.6

Spam 89.7 (3) 148.9 90.0 (1) 155.6 89.9 (2) 128.1

Sensor 92.5 (2) 106.5 92.5 (3) 965.2 92.9 (1) 788.1

Forest 89.7 (1) 668.2 89.3 (2) 607.0 88.4 (3) 492.6

Avg. (Ranks) 84.7(1.8) 442.5 84.4(1.8) 358.4 85.5(2.3) 305.9

89

Parameter ‘θ’ was analysed on predictive accuracies and CPU-time. Beta = 0.5 was fixed due

to the moderate average ensemble size in the experiment. The results in Table 4.9 show that

the CPU-time slightly decreased by increasing the value of θ. By increasing ‘θ’ the average

ranks increased from 1.8 to 2.3. The lower ranks show a higher predictive performance.

4.10 Analysis of the Effects of different Ensemble Sizes

Due to the seed learners that always remain in the dynamic list, HDWM maintained a larger

ensemble size (Average 27.6) and 11.29 in real-world datasets. Table 4.10 and Table 4.11

represents average ensemble sizes achieved in HDWM and DWM. The plots for the

ensemble size are shown in Figure 4.8 and Figure 4.9.

Table 4.10 Average ensemble size in Artificial MOA streams.

Streams HDWM DWM-NB DWM-HT

SEA (S) 61.39 (3) 35.72 (2) 25.38 (1)

STAGGER (S) 12.18 (3) 7.73 (2) 7.07 (1)

RTree R 13.19 (1) 28.37 (3) 16.69 (2)

LED (S) 33.94 (1) 37.1 (2.5) 37.1 (2.5)

Wave (S) 18.02 (1) 37.83 (3) 29.09 (2)

Hyperplane (G) 22.91 (3) 14.28 (2) 13.52 (1)

SEA (G and S) 43.56 (3) 37.89 (2) 25.6 (1)

RBF(G) 16.26 (1) 8.76 (2) 10.48 (1)

Average 27.6 25.9 20.6

Table 4.11 Average ensemble size (%) real-world datasets.

Datasets HDWM DWM-NB DWM-HT

Electricity 12.26 (3) 11.33 (1) 11.88 (2)

Spam 11.45 (3) 7.79 (1) 8.12 (2)

Sensor 8.04 (1) 8.58 (2) 9.06 (3)

Forest Cover 13.41 (2) 15.26 (3) 10.04 (1)

Average 11.29 10.74 9.78

90

Figure 4.8 Average Ensemble Size RandomTree (left) and RRBF (right) in Artificial Data Streams.

Figure 4.9 Average Ensemble Size SEA Abrupt (left) and SEA Mixed (right) in Artificial Data Streams.

0

50

100

0 20 40 60 80 100

A
V

G
 E

n
se

m
b

le
 S

iz
e

Time Step (Thousands)

RandomTree (Recurrent Drift)

HDWM(13.95)

DWM-NB(28.37)

DWM-HT(16.69)

0

25

50

0 20 40 60 80 100

A
vg

.
En

se
m

b
le

 S
iz

e

Time Step (Thousands)

RRBF (Gradual Drifts)

HDWM(16.03)

DWM-NB(8.76)

DWM-HT(10.48)

0

50

100

0 20 40 60 80 100

A
V

G
 E

n
se

m
b

le
 S

iz
e

Time Step (Thousands)

SEA (Abrupt Drifts)

HDWM(38.72)

DWM-NB(35.72)

DWM-HT(25.38)

0

50

100

0 20 40 60 80 100
A

vg
.

En
se

m
b

le
 S

iz
e

Time Steps (Thousands)

SEA (Gradual & Sudden Drift)

HDWM(17.21)
DWM-NB(35.67)
DWM-HT(24.19)

91

4.11 Comparison of Resource Consumption

To analyse the benefits in terms of resource usage, the algorithms HDWM, DWM and WMA

have been compared. Runtime evaluations are measured in CPU seconds by setting max

size of ensemble (Bmax) to 25, 50,100 for all the datasets. It is expected that HDWM requires

more processing time compared with WMA and DWM due to the seed learners that always

reside in the ensemble. As shown in Figure 4.10, the total CPU time is increasing by setting

a larger value of Bmax, however, the average predictive accuracies are not significantly

affected.

Figure 4.10 CPU time (Seconds) and Predictive Accuracies of HDWM, DWM and WMA.

4.12 Complexity Analysis

The time complexity of online ensemble classifiers heavily depends on the choice of base

classifiers. HDWM applies NB [38], HT [39] and KNN [40] base classifiers. Based on the

worst time complexity of these base classifiers, the total time complexity of HDWM for ‘τ’

number of labelled training examples is O (τ · d) + O (d · v · c). The space complexity for

storing the likelihood of each feature with respect to classes is O (l · d · v · c). Where ‘d’ is

dimensionality of the attributes, ‘v’ values per attribute, ‘c’ is number of classes and ‘l’ is the

current number of leaves.

4.13 Effect of Prediction Method

The objective of this experiment id to investigate the predictive performance of HDWM

algorithm due to change of prediction methods i.e. 1) prediction taken from classifiers, and

2) Prediction taken from Clusters. The data stream RandomRBFGeneratorEvents [46] that is

the stream designed for clustering in MOA is shown in Figure 4.11, which is based on the

92

random Radial Basis Function that adds drift to samples in a stream. A total 5 clusters are

generated at 5% noise level. The SEADriftStream and RandomRBFGeneratorEvents are

evaluated using HDWM classifier and MOA cluster. Max number of clusters 5 is applied,

which is the default settings for MOA clustering.

Figure 4.11 RandomRBFGeneratorEvent Stream in MOA.

4.13.1 Evaluation Results

The evaluation results are showing in Figure 4.12 and Figure 4.13. The results show that the

prediction accuracy is higher (89.5%) in RandomRBFGeneratorEvent when a clustering

algorithm is applied. However, prediction accuracy is low (56.7%) when classifier (HDWM)

is applied. The evaluation results of SEADriftStream in Figure 4.14 and Figure 4.15 shows

that the prediction accuracy is lower (68.75 %) when a clustering algorithm is applied.

However, prediction accuracy is higher (81.89%) when classifier (HDWM) is applied.

93

Figure 4.12 RandomRBFGeneratorEvent Stream Prediction taken from Clusters.

Figure 4.13 RandomRBFGeneratorEvent Stream Prediction taken from Classifier.

Figure 4.14 SEADriftStream Prediction taken from Clusters.

94

Figure 4.15 SEADriftStream Prediction taken from Classifiers.

4.13.2 Significant Findings

It is evident from the experiment that a specific algorithm method works well on particular

stream. It is extremely difficult for a learning algorithm to decide on which prediction

method should be used. A prediction Method is required that maintains prediction accuracy

on both these streams.

4.14 Discussion

The predictive performances of various algorithms are scrutinized, and their reactions to

different types of drifts are graphically illustrated. Notably, the ensemble size, a critical factor

in balancing performance in dynamic base classifiers, is examined, considering the trade-off

between processing time and predictive accuracy. The impact of ensemble heterogeneity on

predictive performance, specifically investigated whether HDWM's higher accuracy is

attributed to its heterogeneity or active drift handling. These results highlighted the crucial

role of heterogeneity, emphasizing the model switching mechanism's role in maintaining

accuracy independently of manual base learner selection. The integration of DWM with DDM

enabled the explicit drift detection to identify changes in the environment, allowing for

adaptive measures like removing poor-performing classifiers or resetting weights when a drift

is detected. The sensitivity analysis of hyperparameters explored the challenge of setting

parameters in real-world problems, acknowledging that optimal values may vary over time.

The study assessed the impact different parameters on prediction accuracy, ensemble size,

and drift detections. It was analysed that larger 'period' boosted the prediction accuracy and

reduces drift detections.

The experiments used artificial data streams, where the position of concept drift is known.

Real-world datasets are also employed, lacking known drift locations, adding unpredictability

to the analysis. It has been observed that due to non-stationary data streams from NSEs,

95

traditional cross-validation techniques are unsuitable. Instead, the prequential method was

used, ensuring each example is tested before being trained on. For statistical analysis of

algorithm differences, non-parametric tests and post hoc tests identified specific algorithm

pairs with significant differences. This approach guarantees a rigorous evaluation of

algorithms in terms of both time efficiency and predictive performance.

4.15 Summary

This chapter addressed the gaps that were identified in Chapter 3, i.e. varying predictive

performances of online classifier ensembles due to the diversity of base classifiers. It was

found extremely difficult to choose the best-performing classifiers for a specific problem.

More specifically, answered the (RQ2), i.e. obstacles in determining the type of machine

learning algorithm that would be best to use in EVL conditions and overcoming the

problems of existing dynamic ensembles that may undergo loss of diversity due to the

exclusion of base learners.

As a response to this question, a novel heterogeneous ensemble approach, HDWM was

proposed, which is capable of intelligently switching between different types of base models

in an ensemble. The new approach revealed the ability to reduce human dependency on

redefining the best type of predictive models for a particular problem. The proposed ‘Seed’

mechanism makes use of different types of base classifiers in its ensemble to maintain its

diversity. These seeds are never deleted and retain the previously learned concepts, which

helps to deal with the recurring concept drifts. It also implements both an active and passive

approach for handling concept drifts, the results showed that the new approach efficiently

handled both gradual and sudden concept drifts.

The results showed that WMA maintained the diversity but was unable to deal with the

concept drifts due to its inability to create or delete base learners. DWM on the other hand is

a dynamic ensemble but lacks diversity as it does not benefit from multiple types of base

learners. HDWM overcomes these problems and deals with concept drift through the addition

and removal of base learners. It achieves that by ensuring that seed learners of any type can

repopulate the ensemble whenever they become beneficial.

The HDWM was evaluated against WMA (due to its heterogeneity) and DWM (due to its

dynamicity) as well as sensitivity to its parameters. Eight synthetic data streams were

generated with concept drifts, and four real-world datasets ‘Sensors’, ‘Spam Email’,

‘Electricity’ and ‘Forest Cover’ were used in the experiments. Apart from prequential

evaluation, the periodic holdout approach and kappa statistics were applied as the evaluation

matrices. Non-parametric tests were carried out to determine the statistically significant

differences between the algorithms and if the null hypothesis was rejected, post-hoc tests were

used to identify which pairs of algorithms differ from each other.

96

The results showed that HDWM performed significantly better than WMA and DWM, also,

when recurring concept drifts were present. The predictive performance of HDWM showed

an improvement over DWM in both drift and real-world streams. It can be concluded that

HDWM is independent of deciding which type of base classifier should be used. In another

experiment, HDWM was compared with CluStream clustering on SEADriftStream and

RandomRBFGeneratorEvents. The interesting results showed that the prediction accuracy

of HDWM was found lower than the CluStream when applied to RandomRBF

GeneratorEvents. On the other hand, HDWM outperformed CluStream on SEADriftStream.

It was evident from the experiment that a specific algorithm works well on data streams.

Therefore, it is extremely difficult for a learning algorithm to decide on which prediction

method should be applied. Furthermore, HDWM has been designed as a supervised

learning algorithm, which means it assumes the availability of labelled data. It can be

concluded that under the EVL conditions, it is more challenging to determine which type of

machine learning algorithm would be best to use due to the small amount of initial labelled

data. The next Chapter 5 focuses on developing an online SSL for ILNSE which is capable

of learning from both labelled and unlabelled data.

97

Chapter 5 Predictor for Streaming
Data with Scarce Labels

5.1 Introduction

The aim of this chapter is to investigate and answer the (RQ1) which was raised in Chapter 1,

i.e. the scarcity of true class labels and its impact on prediction accuracy in non-stationary

environments, especially when learning algorithms lack direct access to true class labels

immediately following concept drifts. The new developed HDWM is a supervised learning

classifier which is highly dependent on true class labels. The results showed that the HDWM

automatically identifies the types of predictive models best suited to the situation encountered

after different types of drifts, such as gradual, sudden and recurring.

Extreme Verification Latency (EVL) and Non-Stationary Environments (NSEs) have recently

gained significant attention in the data stream mining community due to an enormous growth

streaming data which is evolving and unlabelled. Therefore, extracting worthwhile knowledge

is challenging from real-time data streams. The term, Initially Labelled Non-Stationary

Environment (ILNSE) is used in the literature that simultaneously deals with EVL and NSE.

Learning under Initially Labelled Non-Stationary Environment (ILNSE) is challenging task

because the learning algorithms have no access to the true class labels directly after the

concept drift and manual labelling of these data streams is not practical due to time

consumption and need for domain expertise. The existing approaches require more than one

technique such as CGC [31], self-learning [41] [42] micro-clustering [43]. However, from the

literature it is not clear on what conditions one approach is better than the other and what

causes other approaches to fail.

However, learning becomes more challenging when a small set of initially labelled data is

followed by data which consists of only unlabelled data. To deal with label scarcity problem

usually more than one technique is applied, for instance the authors of some approaches

[22] applied clustering and ensemble learning to deal with label scarcity and drift handling.

A series of online surveys incorporate the latest developments in the field of Online Semi-

Supervised Learning (OSSL) methods which is closely related to label scarcity issue in

online machine learning. However, the existing approaches focus on offline learning for

static data and make two basic assumptions, 1) the availability of large training dataset; and

(2) training and test data is stationary.

A data stream environment has different requirements from the traditional batch learning

setting [46]. Further requirements for the OSSL scenario have been identified and can be

derived as follows.

• Requirement 1 Process a labelled example at a time and inspect it only once (at most).

98

• Requirement 2 Use a limited amount of time and memory.

• Requirement 3 Process unlabelled example in small batches and predict pseudo-

labels.

• Requirement 4 Available to predict at any time.

Figure 5.1 shows the typical use of an online SSL data stream classification algorithm, and

how the requirements fit in a repeating cycle.

Figure 5.1 The Data Stream Online Semi-Supervised Learning Cycle.

1. The supervised learning algorithm is passed the next available labelled example from the
stream (Requirement 1).

2. The algorithm processes the labelled example, updates its data structures. It does so
without exceeding the memory and time bounds set on it (Req. 2).

3. The unsupervised learning algorithm is passed the next available unseen example from
the stream (Req. 2 and Req. 3).

4. The unsupervised learning algorithm is ready to accept the next example. On request, it
can predict the pseudo-labels (class of unseen examples) (Req. 4).

5. The supervised learning algorithm is ready to accept the pseudo-labelled example and
update the model. On request, it can predict the class of unseen examples (Req. 4)

5.2 Overview of PSDSL

This research directly responds to ILNSE challenge in proposing a novel algorithm “Predictor

for Streaming Data with Scarce Labels” (PSDSL), which is capable of intelligently selects the

best pseudo-labelling strategy based on the given problem domain. PSDSL is implemented in

MOA [46] which is an open-source framework for data stream mining. The PSDSL performs

the following tasks on the initial labelled data.

1. Decide on the best classifier from a pool of Heterogeneous classifiers.

1- Input Requirement 1 2- Learning Requirement 2

5- Supervised Model
Requirement 4

Learning
Examples

Unlabelled
Examples

4- Pseudo-labelling
Requirement 5

3- Unsupervised Model
Requirement 2 and 3

Prediction

99

2. Decide on the pseudo-labelling strategy, i.e. Cluster guided or self-learning using
classifiers.

3. Build offline micro-clusters and apply them online on-demand only in the case of drift
detection.

4. Perform hyperparameter tuning to determine the best value of ‘k’.

Figure 5.2 depicts the visual abstract of PSDSL algorithm. HDWM classifier is trained on a

small amount of labelled data from the data streams, at this stage the best learning parameters

are identified during the hyperparameter tuning phase. When unlabelled data arrives,

clusters are generated to predicts the pseudo labels which retrain the HDWM classifier and

finally predicts the class labels in the unseen environment.

Figure 5.2 Visual abstract for the predictor for streaming data with scarce labels

(PSDSL), HDWM is trained on small amount of labelled data, performs

hyperparameter tuning and pseudo labels are then predicted to re-train HDWM for

final predictions.

The data streams are continuous; therefore, the data has been divided into several batches B=

{B1, B2 . . . Bn}. The first batch is completely labelled, followed by labelled instances XL = (x1 .

. . xL) for which class labels YL = (y1 . . . yL) ⊂ Y are available and for unlabelled instances XU =

(xL+1 . . . xU) the class labels are unavailable. The unlabelled data stream generates and updates

the clustering on real-time data streams. To handle the Virtual drifts that occur due to changes

in the distribution of input data i.e. Pt (x) ≠ Pt+1 (x), PSDSL establishes a mapping between

current and previous clusters (Ct ⟶ Ct+1) by assigning the current centroid the label which is

the same label of the ‘k’ nearest past centroid.

Prediction Accuracy (%)

Pre-processing Parallel Data
Stream

Training
Self-Learning

Unknown EVL Environment Time

Concept Drifts Unlabelled Data

Macro / Micro
Clusters

HDWM
Classifie

r

Specific Environment / Training in the Labs

Initially
Labelled

Data

Cluster Guided

Switching
Hyperparameter

tuning.

HDWM
Classifie

r

Pseudo Labels

Labelled Data

Training Set

Testing Set

Predictions

Training

Envelope Clusters

100

5.3 Pseudo-labelling process of PSDSL algorithm

As shown in Figure 5.3, In step 1, a set of heterogeneous classifiers are trained on a small

number of labelled data examples, and ground truth clusters are formed. This information of

ground truth clusters is passed to the switching of pseudo-labelling states (step 3) and

hyperparameter tuning (step 2) which are explained in Section 5.4 and 5.5 respectively. In

step 4 overlapping of the clusters is determined, if confidence levels of cluster labels fall below

a user-provided threshold, envelope-clusters are formed to resolve the conflict in labelling.

The envelope-clusters are explained in Section 5.6. Finally, in step 5, the pseudo-labels are

fed back to update the classifiers for predictions.

Figure 5.3 Illustrative Pseudo-labelling process of PSDSL algorithm, key steps

include training of heterogeneous classifiers and generating clusters by using

limited amount of labelled data.

5.4 Switching of Pseudo-Labelling States

PSDSL can switch between the three learning states for pseudo-labelling, 1) Cluster guided 2)

Self-learning and 3) micro-clustering. The switching mechanism of PSDSL is illustrated in

Figure 5.4. In a situation where pseudo-labelling is not improving the predictive performance

on initially labelled data, PSDSL switches off the pseudo-labelling state. For this, Ensemble

‘GT (Ground Truth)’ is trained on the complete set of initial labelled data, while Ensemble ‘PL

(Pseudo-Labelling)’ is trained only on 80 % of the training data. Ensemble ‘PL’ predicts the

pseudo-labels for the remaining 20% and trains itself on these pseudo-labels. If the prediction

Prediction

Performances

 Train Heterogeneous

Classifiers

 Ground Truth

Clustering

 Micro

Clustering

Hyperparameter

Tuning

 Pseudo

Labelling

Update Classifiers

Detect & Handle

Cluster Drift

Data

Stream

k
Accuracies

 Self-Learning

Classification

 Cluster-Guided

Classification

 Centroid-Based

Clustering

Unlabelled Data

Initial Labelled Data

Update

Centroid

Labels

Switching of Pseudo-

labelling States

Update

Centroid

Positions

 3

2

5

4

1

101

accuracy of Ensemble ‘PL’ improves over ‘GT’, the self-learning state is enabled, otherwise it

is suspended. The cluster guided state is enabled when the mean values of F1-P and F1-R

[124] is higher than a user provided threshold ‘ρ’.

Figure 5.4 Switching of Pseudo-Labelling States between self-learning and CGC

based on the prediction accuracies from ground truth and pseudo-labelling

ensemble classifiers and comparing it with the average precision and recall of the

clusters.

The names F1-P and F1-R of evaluation metrics are given as the same names mentioned in

MOA [46]. The F1-measure is the harmonic mean of precision and recall. F1-P calculates the

total F1-score for each found cluster instead of for all ground truth clusters. While the F1-R

is calculated by maximising F1 for each ground truth class. Figure 5.5 showing a GUI for

Semi-Supervised Learner (SSLearner) developed in MOA to experiment with switching

strategies.

Y

Y

Split (80%) Split (20%)

Train

Pseudo

Labels

Train

T

ra
in

Prediction

Accuracy

Prediction

Accuracy

Ensemble

Ensemble

GT

PL

 Initial Labelled

Training instances

 if

ACC (PL) >

ACC (GT)

Stop Self

Learning

N

Self -Learning

TRUE

If

AVG Prec.

& Recall

> ρ

Stop CGC

N

CGC

TRUE

102

Figure 5.5 (left) Prediction methods (right) pseudo-labelling methods.

The supported pseudo-labelling method are "No Pre-labelling", "Self-Learning",

"Clustering", and “Active Switching". The available prediction methods are “Base Classifier”

and "Switching of Clusters and Classifiers". Figure 5.6 shows the graphical interface which

enables the visualisation of different states taken by PSDSL for pseudo-labelling.

Figure 5.6 Switching of pseudo-labelling strategy, 0=No pseudo-labelling,

1=self-learning, 2 = CGC.

Visualisation of pseudo-labelling strategy

103

5.5 Cluster Guided Classification in PSDSL

To utilise the information associated with unlabelled instances, CGC make use of clusters for

predicting the pseudo-labels, which further update the classification models. In case of

gradual movement of these clusters, the concept drifts are detected. For this purpose, PSDSL

relies on CGC for tracking the changing concepts. Figure 5.7 shows concept v1 (t) and v2 (t+1)

as a function of time ‘t’ and ‘x’ are the input attributes, and ‘c’ are the classes. The steps used

in this approach are given below.

1) In concept v1, at time (t), the labelled instances generate {C1…Cn} clusters representing

{c1…cn} classes in the initial labelled data.

2) When unlabelled data arrives at time (t+1) and data distribution changes, the concept

v1 changes to v2 and the clusters receive labels from the nearest clusters.

3) More new data arrives at time (t+2) for which class labels are missing (shown in white

circles) and pseudo-labels are required.

4) At time (t+3), the unlabelled instances ‘x’ receive pseudo-labels from the nearest clusters

‘C’ using the Euclidean distances between ‘C’ and ‘x’.

Time (t) (t +1) (t + 2) (t + 3)

 Concept Gradual Drift New unlabelled Label Propagation
 𝐯𝟏(𝐭) 𝐯𝟐(𝐭+𝟏) { 𝐜𝟏, 𝐜𝟐 = ? ? } 𝐜𝟏 ⟹ 𝐝𝟏 < 𝐝𝟐

 𝐂(𝐭+𝟏) ← 𝐂𝟐 ⟹ 𝐝𝟐 < 𝐝𝟏

Figure 5.7 Cluster Guided Classification in PSDSL showing representation of

different concepts at time ‘t’ due to gradual drifts and the process of label

propagation from nearest clusters.

5.6 Envelope-Clustering New Approach

Micro-clustering state applies on-demand when overlaps between clusters are detected.

When clusters overlap, the nearest labelling approach undergoes common issues such as

losing the correct labels. Envelope-clusters detects and resolves the labels assigned to the

clusters. Current micro-clusters receive their labels from the previously labelled clusters and

vote for the class labels from ‘k’ nearest neighbours.

c 2

𝑪𝟏

1

c 1

𝑪𝟐
𝑪𝟏

𝑪𝟐

1

𝑪(𝒕+𝟏)

1

𝒅𝟏

1

𝒅𝟐

1

𝑪𝟏

1
𝑪𝟐

1
c 2

𝒙𝟏

1

𝑪𝟏

1

𝒅𝟏
𝒅𝟐

1

c 1

𝑪𝟐

1

Data Stream (Few labelled) Big Data unlabelled (EVL + NSE)

𝒅𝒓𝒊𝒇𝒕

1

104

 Step-1 Step-2 Step-3

O
u

tc
o

m
e

 1

O

u
tc

o
m

e
 2

Figure 5.8 Cluster overlapping in 1Csurr dataset [26] showing one class

surrounding the other and resulting in two outcomes. 1) C1 transfers its label

to ‘C2’ or 2) C1’ gets re-labelled upon intersection with C2.

As shown in Figure 5.8, one group of clusters is stationary i.e. C2, and C1 is crossing it.

There are two possible outcomes 1) Triangle cluster ‘C1’ transfers its label to ‘C2’ upon

intersection with C2 as the circle cluster and converts the Circle cluster to Triangle; or,

outcome 2) whereby the Triangle cluster ‘C1’ gets re-labelled upon intersection with C2,

thus turning the Triangle cluster circle. The conflicted clusters receive labels from the

corresponding envelope-clusters. Section 5.6.1 and Section 5.6.2 describes conflict

detection and resolution steps in detail respectively.

5.6.1 Proposed Conflict Detection Method

The confidence level for the cluster labelling on the votes from k-nearest neighbours is

calculated as in Equation 5.1. When the confidence level reaches below a user-provided

threshold ‘α’ it reports the drift; otherwise, it transfers the labels to the corresponding clusters.

Confidence Level =
Votes (Max(λ) − Min(λ)

∑N

(5.1)

Where, λ are the class votes, Min and Max are the minimum and maximum number of votes

per class and ‘N’ are total votes. Figure 5.9 shows a plot for the 1Csurr dataset [125] as an

example; circle and triangle clusters are successfully labelled from previous clusters (unfilled

circle and triangles) with high confidence levels.

The figure shows 6 conflicts (diamond) at threshold α = 0.5 and 3-nearest neighbours. For

λ= [1,2] i.e. ‘1’ vote for ‘class 0’ and ‘2’ votes for class ‘1’, the confidence level is = (2-1)/3 =

105

0.3 < 0.5 threshold. When there were no conflicts, λ= [3, 0] the confidence ratio = (3-0)/3

= 1.0 > 0.5 resulted in successful label transfer shown in filled circle and triangle clusters.

Figure 5.9 Conflict detection in micro-cluster using class votes from 3-

nearest neighbours using threshold α = 0.5. The diamond shape

representing conflicts in cluster labelling due to low confidence value.

5.6.2 Conflict Resolution

PSDSL generates envelope-clusters by transforming the micro-clusters into micro instances.

Envelope-clusters are generated using centroid-based clustering, such as K-Means. When no

cluster overlaps are detected, the concept of Envelope-Clustering applies online micro-

clustering to calculate and store the summary statistics of the data stream; thus, applying it

offline to generate macro-clusters when overlaps are detected, increases the processing speed

of micro-clustering. Figure 5.10 shows that the labels to the ‘red’ diamonds, which are

conflicted micro-instances are assigned using the nearest envelope clusters. These nearest

clusters are determined by calculating Euclidean distances among each conflicted micro-

instances and the envelope clusters.

106

Figure 5.10 Envelope-Clustering for conflict resolution. The filled circle

and triangle represent recent micro-instances, and the opaque circle and

triangles are previous micro-instances.

5.7 Hyperparameter Tuning

This step is an essential automated hyperparameter tuning approach used in PSDSL that

determines the number of centroids ‘k’ to be used in clustering using the few initial labelled

instances. The cluster evaluation uses extrinsic methods to assign a score to the clustering

when the ground truth is available. It applies the mean values of (F1-P), (F1-R) and purity (P)

[126] to determine the optimum value of ‘k’. The Purity is a measure of the quality of clusters

and determines the extent to which clusters contain a single class.

5.8 PSDSL Pseudo code

The pseudocode for PSDSL is depicted in Algorithm 5.1. In EVL, initially available labelled

examples are of significant use in hyperparameter tuning to determine the optimal values for

‘k’ (number of centroids). This parameter tuning approach is described in Algorithm 5.2.

These labelled examples also play an important role in automatically deciding the best

pseudo-labelling approaches, such as self-learning or CGC.

107

Algorithm 5.1 PSDSL (τ, S, Ɛ, Ф, µ, θ, ρ, Kmax)

Input S: {xi; yi} ; i = 1, ..., n: Stream of examples

 τ: Initial set of labelled examples
 Ɛ: Set of Heterogeneous Base Classifiers {1…m}

 µ: Micro-clustering algorithm such as CluStream
 Ф: Clustering algorithm like K-Means
 θ: Pool Size
 P: purity threshold, default is 0.95
 Kmax : Maximum number of centroids

1 pool ← ∅

2 Kbest, Ф Purity, µ Purity ← TuneParameter (τ, Ф, µ, Kmax) // (Algorithm 5.2)

3 SwitchingLearningStates (ФPurity, µPurity) // (Algorithm 5.3)

4 for i = 1 to n // loop over instances

5 C micro ← Clustering (µ, xi)

6 if (xi is labelled) then // receive initial labelled data

7 C ← GTClustering (Ф, τ) // ground truth cluster

8 Ɛ ← buildClassifier (τ) // build initial classifier

9 else // unlabelled instances arrive

10 if (self-Learning = true) then

11 τ’ ← getVoteforinstance (Ɛ best, xi) // predict labels

12 Ɛ ← TrainClassifier (τ’)

13 else

14 pool ← pool ⋃ {xi}

15 if (i mod θ = 0) then // periodic execution

16 drift ← false;

17 µpoints ← DetectClusterDrift (C, C micro) // (Algorithm 5.4)

18 if (drift = true) then

19 CEnvelope ← Clustering (Ф, C, µpoints,
kbest)

20 LabelCentroids (C, CEnvelope)

21 CEnvelope ← {CEnvelope}⋃ { C }

22 C t+1 ← LabelCentroids (CEnvelope
 , C micro)

23 else

24 C t+1 ← Clustering (Ф, C, pool, kbest)

25 LabelCentroids (C, C t+1)

26 C t+1 ← {C t+1} ⋃ {C} // merge centroids

27 end if
28 τ’ ← Labeldata (pool, C t+1)

29 Ɛ ← TrainClassifier (τ’)

30 pool ← ∅

31 end if
32 end if
33 end if
34 end for

The PSDSL algorithm maintains a set of ‘m’ base classifiers and clusters. Inputs to the

algorithm are ‘n’ training examples in which τ instances are labelled, followed by complete

unlabelled examples. A list of all the parameters used in the algorithms is available in Table

108

5.2. As shown in Algorithm 5.1, both labelled and unlabelled instances incrementally create

the micro-clusters (line 5). When labelled instances arrive (line 6) a clustering algorithm is

executed to generate C t and divide the data into clusters and associates each cluster with one

of the classes (line 7) and trains the initial classifier Ɛ.

Upon arrival of unlabelled instances (line 9) it determines the learning state described in

Algorithm 5.3, if the self-learning state is active, it applies prequential evaluation to predict

the pseudo-labels by using the best classifier in the ensemble and re-training the ensemble on

these predicted pseudo-labels (line 10-12). In a condition when self-learning state is inactive,

it performs CGC (line 14-32). The unlabelled examples are stored in a pool or batch of size θ

(line 14) the value of which is set by the user and periodically performs the tasks listed in lines

(16 - 30). The pool data is periodically analysed for potential drifts due to cluster overlaps in

micro-clusters (line 17). This process returns labelled micro-cluster instances and reports the

state of drifts as described in Algorithm 5.4.

If drift is detected, envelope-clusters are formed using micro-cluster instances such that each

cluster represents a class in the data (line 19). Envelope-clusters then transfer their labels to

the nearest conflicted micro-clusters (lines 20-22). If no drift is detected, the clustering

algorithm Ф obtains C t+1 on the pool data (line 24) by applying the best values of ‘k’ obtained

in Algorithm 5.2. Each new centroid receives its label from the nearest centroids using the

Euclidean distances between Ct and Ct+1 (line 25). Finally, a set of heterogeneous base

classifiers is trained using the pseudo-labelled instances (line 29). The source code for the

algorithms is available in APPENDIX III.

5.8.1 Algorithm: Hyperparameter Tuning

As outlined in Algorithm 5.2, there are three input parameters, a set of labelled instances, a

clustering algorithm, and Kmax which is the maximum number of centroids (k) provided by

the user. Initially, the ground truth centroids are generated using the labelled instances (line

2) such that {c = k} where ‘c’ is the number of classes. Lines 3 and 4 generate and evaluate

purities µPurit for micro-clusters. Line 5 begins the loop to determine the best value of ‘k’ by

iterating in the range from ‘k=2’ to Kmax. In line 6, new clusters are generated after eliminating

the ground truth labels from the labelled data. A user-provided clustering algorithm is applied

while passing the incremented values of ‘k’. In line 7, the ground truth clustering and current

clustering are evaluated, and the corresponding F1-P, F1-R, and P are stored in sets of ‘Fprp’

and ‘Purities’ lines 8 and 9 respectively.

5.8.2 Algorithm: Switching Learning States

The switching algorithm takes µPurity and ФPurity inputs, and the parameter ρ is the switching

threshold set by the user. Algorithm 5.3 outlines the switching algorithm; The ensemble ‘ƐGT’

(Ground Truth) is trained on initial labelled data (line 5), this training set splits in the ratio of

80% and 20% (line 6). Another ensemble ƐPL (Pseudo Label) ‘trains on 80% of this training

examples, then ƐPL predicts the pseudo-labels for the remaining 20% and retrains itself on the

109

predicted pseudo-labels (line 7,8). As the ground truth labels of initial training set are known,

the predictive performance of both ƐGT and ƐPL is compared, if the overall prediction accuracy

of ƐPL becomes higher than the ƐGT, the self-learning state becomes active, otherwise the

pseudo-labelling is suspended.

5.8.3 Algorithm: Detect Cluster Drift

The algorithm to detect cluster drift is available in Algorithm 5.4 the current micro-clusters

Ct+1 are associated with previous clusters Ct by measuring similarity between ‘k’ nearest

centroids q t i; i = {1, ..., k} using Euclidean distance, i.e. Dist (qt, q t+1) (line 7). The ‘k’ nearest

clusters votes for the class labels to the current clusters (line 12). To calculate the conflict

ratio, min-max values of the votes are applied to the formula (line 15). If the ratio reaches

above the user-provided drift threshold, current micro-clusters are assigned the label of the

majority class vote.

Algorithm 5.2 PSDSL Auto tuning Parameter ‘k’ (τ, Ф, µ, Kmax)

Input: τ : initial set of labelled examples
 Ф: Clustering Algorithm
 µ: Micro-clustering algorithm
 Kmax : Maximum number of Centroids

Output: K, Ф Purity , µ Purity

1 i ← 0

2 C ← GTClustering (Ф, τ)

3 C µ ← Clustering (µ, τ)
4 µ Purity ← evaluateClustering (C, C µ)
5 for k = 2 to Kmax

6 C t + 1 ← Clustering (Ф, τ, k)

7 {F1P, F1R, P} ← evaluateClustering (C, C t + 1)

8 Fprp[i] ← (F1P+F1R + P)/3
9 Purities[i] = P;

10 i++;
11 end for
12 k ← argmax (Fprp) + 2
13 Ф Purity ← max (Purities)

Algorithm 5.3 SwitchingLearningStates (ФPurity, µPurity, ρ)

Input: τ : initial set of labelled examples
 {ƐGT }m

1 : Set of Classifiers train on true class labels
 {ƐPL }m

1 : Classifiers train on pseudo-labels
 µ : Micro-clustering algorithm, ρ: purity threshold
Output: none
1 Self-learning ←false
2 CGC ←false
3 split_pos ← trainSize * 0.8
4 for i = 1 to size| τ |
5 ƐGT ← train (τ i)

110

6 if (i < split_pos) then ƐPL ← train (τ i) else
7 τ' i ← predict (ƐPL , τ i)
8 ƐPS ← train (τ’ i)
9 end if

10 end for
11 C micro ← Clustering (µ , τ)
12 µ ACC% ← evaluate (Cmicro , C GT)
13 if (µ ACC% > ρ then CGC ←true else self-learning ←true end if
14 if ACC (ƐPS) < Acc(ƐGT) then self-learning ←false end if

Algorithm 5.4 DetectClusterDrift (knn, C, Cmicro)

Input: C: past clusters, Cmicro : Current micro-clusters
 α : Drift Threshold, knn : num of nearest neighbours,

 c : No. of classes
Output: Drift state, labelled micro-clusters

1 Labelledcluster ← ∅

2 conflict ← false

3 λ [c]
4 [q, q t+1]← getcentroids[C, C micro]

5 for (i = 0 to |C|)
6 for (j = 0 to | C micro |)
7 distances[i][j] ← dist (q i ,q t+1

j)
8 dist ← sort(distances[i])

9 for (j = 0 to | dist |)
10 if (binarySearch (distj , knn) then
11 classID ← Cj // ‘k’ nearest distances
12 λ [classID++] ← 1 // add vote to class
13 end for
14 maxpair[] = minMax(λ);
15 ratio ← (maxpair[0] - maxpair[1])/sum(maxpair)
16 if (ratio > α) then
17 C micro ← label(C micro , argmax(λ)) // Set id of cluster to max class vote.
18 CLabelled ← { CLabelled } ⋃ { C micro } // Add to labelled clusters
19 else
20 conflict ← true

21 end if
22 end for

5.9 Complexity of PSDSL

PSDSL is a single pass algorithm which splits the data stream into batches of predefined

size such that each batch contains n examples. These batches are sequentially processed,

requiring less computational time and space because only the information regarding the

centroids and data points of the current batch is stored in the memory. The complexity of

PSDSL depends on the choice of learners. PSDSL intelligently switches learning strategies

and applies an HDWM classifier for self-learning or K-Means and CluStream for CGC and

micro-clustering respectively. Under EVL, when labelled data arrives, PSDSL executes

hyperparameter tuning and switch learning strategy only once.

111

Hyperparameter tuning begins with formation of ground truth clusters which is dominated

by the complexity of sorting, which takes O (n · log n) time. Next, it iterates on different values

of Kmax to generate clusters, this phase takes O (n · k · i · Kmax) time, where i is the number of

iterations. It takes O (n · k) space because only the information of distances and centroids are

stored in the memory.

State switching (Algorithm 5.3) trains and evaluates HDWM ensemble classifier ‘Ɛ’, online

micro-clusters ‘µ’ and offline clusters Ф. The overall time complexity for classifiers for ‘τ’

number of labelled training examples is O (τ · Ɛ) and for clustering is O (τ µ + τ Ф). The time

complexity of online ensemble classifiers heavily depends on the choice of base classifiers.

HDWM applies NB [38], HT [39] and K-Nearest KNN [40] base classifiers. Based on the

worst time complexity of these base classifiers, the total time complexity of HDWM is O (τ

· d) + O (d · v · c). The space complexity for storing the likelihood of each feature with

respect to classes is O (l · d · v · c). Where ‘d’ is dimensionality of the attributes, ‘v’ values

per attribute, ‘c’ is number of classes and ‘l’ is the current number of leaves.

When unlabelled examples arrive, additional time and space is required for predicting the

pseudo-labels for unseen examples. PSDSL selects a best performing base classifier ‘Ɛbest’

and assigns it for pseudo-labelling in small batches, this phase takes O(n) time for

predictions. For clustering the nth batch using i number of iterations it takes O (n · k · i)

time and O (n · k) space to store the centroid and data points. Micro-clustering takes O (q ·

n · i · NInit) for the online phase, where q is the number of micro-clusters and NInit is the

initial number of examples. For merging two micro-clusters it takes O (q · n) and offline

phase takes O (q · n · k · i) time.

The time complexity of drift detection (Algorithm 5.4) depends on the time required to

compute the distances from previous centroids to the current centroids. The drifts are

detected at a regular interval ‘θ’. In the worst case, when all the batches contain drift, the

time complexity to compute distances is O (log n) using binary search. Once the drifts are

detected, transforming the micro-clusters into micro-instances and generation of envelope-

clusters requires O (1) and O (n · k · i) time respectively.

Therefore, the total time complexity of PSDSL in the worst scenario is O (n · k · i) + O (q · n

· NInit) + O (q · n) + O (q · n · k · i) which approximates to O (q · n · k · i) ≈ O (N) as n is much

larger than ‘q’, ‘k’ and ‘i'. The value of parameter k is constant, which has already been tuned

using Algorithm 5.2. PSDSL requires fewer iterations for convergence because the initial

centroids are trained on initial labelled data from the streams and the new centroids obtain

their labels from the nearest centroids. COMPOSE on the other hand is of order O (n(d+1)/2)

i.e. exponential in dimensionality [79]. SCARGC has the worst time complexity O (n · k · i).

5.10 GUI for online Semi-Supervise Learner

The purpose of developing the GUI for SSL is to visualize the results of both classification and

clustering and analyse the results and compare results for different configurations.

Furthermore, for qualitative analysis of the clustering and classification models.

https://doi.org/10.48550/arXiv.2011.14917

112

Figure 5.11 GUI for online SSL for data streams in MOA.

The clustering results as shown in the right part of the GUI as shown in Figure 5.11 includes

online evaluation of clusters such as F1, Precision, Recall, purity etc. The GUI also provides

option to pause and resume the stream at any time, adjust the speed of visualization, choose

the attributes to be displayed and visualize both the labelled and unlabelled data points in

respective windows.

The development process includes the extension and implementation of new classes in

MOA. The classes SSLMainTask is responsible to execute and maintain the SSL learning

task. Similarly, the SSLearner class controls the features and functionality of classifiers and

clusters and controlling the scarcity ratio of the training examples. The SSLVisualizer is

responsible for presenting and timely updating examples, the clustering and micro

clustering and evaluation results on the screen.

The pre-labelling accuracy, micro and macro clustering and ground truth clusters along

with switching of learning strategies are visually displayed. The classification results are

shown in the left part of the GUI which includes online evaluation of classifiers such as the

current and mean prediction accuracies, class label scarcity, time and memory details.

5.11 SSL Prequential and Periodic Holdout Tasks

Two online SSL learning tasks has been proposed, i.e. SSL Prequential and SSLHoldout. The

Holdout evaluation provides more accurate measurements on more recent data, as it has a

forgetting mechanism. There is an option to include this mechanism in Prequential evaluation

by using sliding window or fading factors that weigh the instances using a decay factor.

Algorithm 5.5 outlines overall stages of SSL periodic holdout task.

Black Dots = Scarce Labels Cluster visualization
Scarcity Ratio

Prediction Evaluations

Clustering Evaluations

113

Algorithm 5.5 SSLHoldout Evaluation ({x , y }
1

n , ntest , mbound , α,)

Input: {x , y }
1

n : ntrain : Stream of examples and class label

 ntest : Holdout examples as a test set
 mbound: the maximum memory allocation
 α: Percentage of initial labelled examples

Output: none
1 While evaluation is required do
2 for i = 1 to ntrain do // iterate on labelled examples
3 prob ← random%100

4 if (prob >= α) then
5 x i ← {x i , y i } // remove the class label from the example

6 Train and update the unsupervised model on {x i } , ensuring mbound is valid
7 end if
8 λ = Classify (xi) // predict pseudo-label using supervised model
9 i f y i i s a v a i l a b l e then
10 Train and update the supervised model on {x i , y i }
11 else
12 Train and update the supervised model on pseudo-labels {x i , λ}
13 e n d i f
14 Evaluate pseudo-labelling accuracy (y i , λ)
15 for i = 1 to ntest do
16 Get the next example from the stream
17 Test the model and update model accuracy
18 end for
19 end while

In the proposed SSLHoldout evaluation, the data stream is divided into two mutually

exclusive subsets. Initially, the class labels of training examples are randomly eliminated

(line 3-5), and an unsupervised model is trained (line 6). Next, the pseudo-labels ‘λ’ are

predicted using a supervised model (line 8). In case, if the arriving example is labelled, the

supervised model is trained on true class labels, otherwise pseudo-labels are used for

training and updating. A set of predefined size of examples are used in training phase before

an evaluation is performed on the test set. Similarly, in the proposed SSLPrequential the

error of the model is computed from the sequence of instances. For each instance in the

stream, the predictive model makes a prediction, and then incrementally update the model.

A specified ratio of the true class labels of examples are removed and the evaluation of both

clusters and classifiers are performed along with the visualisation of examples and clusters.

The source code for SSL periodic held out task is available in APPENDIX IV.

5.12 Evaluation of PSDSL

This section empirically evaluates PSDSL algorithm against existing standalone EVL

approaches namely SCARGC [31], LEVELIW [74], COMPOSE [22], and MClassification [34]

on benchmarks NSE datasets [31] as well as MOA data streams and real-world datasets.

These are the most relevant approaches dealing with EVL and NSEs. The APT algorithm [76]

was not included in the analyses, as its steep computational complexity was prohibitive on

running some of the larger datasets. A comparative analysis among these algorithms has been

presented in Section 2.3 .

114

To verify statistically significant differences between algorithms, the Friedman test was

applied, which is a suitable non-parametric test for multiple algorithms on multiple datasets

[49]. The Friedman test was applied with α=0.05 to test the null hypothesis that there is “no

statistical difference between the algorithms”. The Nemenyi post-hoc test [50] has been

applied to identify which pairs of algorithms differ from each other. In EVL few initial ground

truth labels are available; therefore, internal evaluations were applied to the clusters i.e.

Purity, Precision and Recall [124].

5.12.1 Experimental Setup

The evaluation procedure used are Kappa statistics and prequential testing. Prequential

testing is a facility of the MOA [46] in which each instance is used to test the model before it

is used for training, and the accuracy is updated incrementally. Prequential accuracy estimate

is appropriate when all classes are approximately balanced [53]. Kappa statistics is a more

sensitive measure for quantifying the predictive performance of streaming classifiers since it

cannot be ascertained whether the classes were balanced.

The PSDSL was compared with existing EVL approaches, static and benchmark setting. To

determine how PSDSL performs with and without pseudo-labelling the ‘Static’ approach was

used in which PSDSL does not apply pseudo-labelling. Further, to analyse the consequences

of unlabelled examples in the data stream and their impact on predictive performance, 95%

of the class labels were removed from each dataset and PSDSL was compared in the

‘benchmark’ setting in which all the training examples are labelled. The MOA commands to

execute these experiments are available in APPENDIX II.

All the experiments are evaluated in terms of time consumption and predictive performance.

Processing time is measured in seconds and is based on the CPU time used for training and

testing. All the experiments were performed on machines with Core i7 @ 3.4 GHz, 4 GB of

RAM. The experiments performed on non-stationary datasets [125] using MOA-generated

streams [46] and real-world datasets. The details of parameters used in the experiments for

these existing EVL approaches are provided in Table 5.1.

Table 5.1 Algorithms and parameters used in the experiments.

Algorithm Description

Static
The PSDSL classifier is not updated after it is trained with the
first examples in the data streams. i.e. no pseudo-labelling is
applied.

SCARGC Applied KNN base classifier and applying the parameters
suggested by Souza et al. [31]

Benchmark PSDSL classifier is applied on 100% labelled examples.

COMPOSE Gaussian mixture models (GMM) as core supports extraction,
applied the parameters suggested by Dyer et al [22]

MClassification r = 0.1 and |T| = 150 and where |T | represents the size of the
initial labelled set and r is the maximum radius of MC [34]

LEVELIW importance weighted least squares probabilistic base classifier
using the default parameters suggested by Umer et al [74]

115

5.12.2 PSDSL Learning Parameters

The parameter used in Evaluate EVL Prequential and PSDSL are shown in Table 5.2 and

Table 5.3.

Table 5.2 Learning parameters used in Evaluate EVL Prequential.

Param Command Description Default

-l SSLearner
Semi-Supervised learner to
train

SSLearner

-s stream Stream to learn from RandomTreeGenerator

-k normalise Normalize data stream
Do not Normalize
Stream

-e evaluatorOption
Classification performance
evaluation method

Window Classification
Performance Evaluator

-n noiselevel
Set Noise Level to data
stream

false

-r trainsize Size of labelled data 50

-i instanceLimit
Maximum number of
instances to test/train

1000

-f sampleFrequency
How many instances between
Samples of the learning
performance

100

Table 5.3 Learning parameters used in PSDSL.

Parm. Command Description Default

-l learner Set the classifiers (HDWM)

HoeffdingTree -l MC
kNN
HoeffdingTree -l
NBAdaptive
NaiveBayes

-q clusturer Clustering algorithm Clustream

-h horizon timeWindowOption 1000

-k maxNumKernels
Maximum number of micro
kernels to use

100

-x prelableing
Switch “No Pre-labelling" or
"Use Pre-labelling"

Use Pre-labelling

-p maxcluster Number of Max Clusters 15

-k knn Number of nearest neighbours 3

- α threshold

When the confidence level
reaches below ‘α’ it reports the
drift and generates envelope
clusters

0.1

-u PurityThreshold
Threshold for switching pre-
labelling strategies i.e. self-
learning, micro or CGC.

0.95

116

5.12.3 Non-Stationary datasets

Non-stationary datasets used in the experiments were provided by the authors of SCARGC

[31] and are available to the machine learning community [125]. These datasets have been

randomised and made available for further research [54]. They provide datasets with

incremental changes over time. Here, Unimodal Gaussian datasets represent two bi-

dimensional Gaussian clusters rotating around a common axis. The distance between the

Gaussian components changes over time. Class overlap exists in these datasets. The datasets

UG-2C-2D, UG-2C-3D, and MG-2C2D were originally proposed by Dyer et al [22].

5.12.4 MOA Data Streams

The artificial data streams used in the experiments are generated through the MOA

workbench [46]; the number of instances is 100,000 and the batch size is 1000 in all the

streams. The MOA commands to generate these streams are available in APPENDIX II.

5.12.5 Real-World Dataset

Keystroke dataset [135] task is to predict one of four users based on their typing patterns.

The dataset contains keystroke records obtained from the users in 8 different sessions who

typed a fixed password. The description of the datasets used in the experiments is provided

in Table 5.4 and Table 5.5.

Table 5.4 Description of Benchmark datasets.

Datasets
of

Instances
of

Feature
of

Classes
Drift

Interval
Class

 Overlap
1CDT 16,000 2 2 400 No

1CHT 16,000 2 2 400 No

1CSurr 55,283 2 2 600 yes

2CDT 16,000 2 2 400 yes

2CHT 16,000 2 2 400 yes

4CE1CF 173,000 2 4 750 No

4CR 144,000 2 4 400 No

4CRE-V1 125,000 2 4 1,000 yes

4CRE-V2 183,000 2 4 1,000 yes

5CVT 24,000 2 5 1,000 yes

FG_2C_2D 200,000 2 2 2,000 No

GEARS_2C_2D 200,000 2 2 2,000 No

MG_2C_2D 200,000 2 2 2,000 yes

UG_2C_2D 100,000 2 2 1,000 yes

UG_2C_3D 200,000 3 2 2,000 yes

UG_2C_5D 200,000 5 2 2,000 yes

C=Class, D=Diagonal, V=Vertical, H=Horizontal, T=Transaction, R=Rotating, E=Expanding U=

Unimodal, G= Multimodal, G= Gaussian

117

The batch size for the MOA Stream is 300 and for keystroke is 150. The information about

drifts and class overlap is not available for the real-world datasets. In Section 5.13 and 5.14,

the predictive capabilities of PSDSL were tested on MOA data streams, benchmark non-

stationary datasets and real-world datasets.

Table 5.5 Description of MOA streams.

MOA Stream Instances Feature Classes Drifts

SEA

100K

3 2 2

RandomTree 10 2 2

LED 24 10 1

Wave 21 3 1

Hyperplane 10 2 3

RRBF 2 5 2

Keystroke [135] 1600 10 4 NA

5.13 Comparative Analysis of PSDSL on Benchmark Datasets

Predictive accuracies of PSDSL, COMPOSE, LEVELIW, SCARGC and MClassification (MC)

were evaluated on benchmark non-stationary datasets [125] that have also been used in the

original SCARGC publication. Table 5.6 shows the Friedman statistic X2
r is 18.93 (df =5, n =

15). The p-value = .0019 shows significant difference in the algorithms at (p < .05). The

number in the brackets represents the ranks, the lower the rank and the higher the predictive

performance.

Table 5.6 Average accuracies on benchmark datasets.

Datasets Static
COMPOSE

(GMM)
LEVELIW

SCARGC

(1-NN)
MC PSDSL

1CDT 99.0(6) 99.8(3) 99.9(1) 99.7(5) 99.8(2) 99.6(5)

1CHT 94.5(6) 99.3(3) 99.5(1) 99.2(4.5) 99.3(2) 99.0(5)

1CSurr 65.6(6) 89.7(4) 91.3(3) 94.3(2) 85.1(5) 94.5(1)

2CDT 55.0(6) 95.9(1) 58.3(5) 90.9(3) 95.2(2) 90.7(4)

2CHT 54.5(5) 89.6(1) 52.1(6) 85.0(4) 87.8(2) 85.8(3)

4CE1CF 94.7(3) 93.9(6) 97.7(1) 94.0(5) 94.3(4) 94.7(2)

4CR 25.2(6) 99.9(2.5) 99.9(1) 99.9(5) 99.9(2.5) 99.9(4)

4CRE-V2 26.2(5) 92.3(1) 24.1(6) 91.9(2.5) 91.5(4) 91.8(3)

5CVT 48.1(4) 45.1(5) 33.1(6) 90.1(1) 88.4(2) 84.9(3)

FG_2C_2D 81.3(4) 95.5(2) 95.7(1) 95.1(3) 62.4(6) 64.9(5)

GEARS 94.9(5) 95.8(4) 97.7(1) 95.9(3) 94.7(6) 95.9(2)

MG_2C_2D 51.6(6) 93.2(1) 85.4(3) 92.7(2) 80.5(4) 64.5(5)

UG_2C_2D 45.8(6) 95.7(1) 74.3(5) 95.5(2.5) 95.2(4) 95.5(2)

UG_2C_3D 64.1(6) 95.2(1) 64.6(5) 94.7(3) 94.7(4) 94.8(2)

UG_2C_5D 69.2(6) 92.1(1) 80.1(5) 90.9(4) 91.2(2) 91.0(3)

Keystroke 68.7(6) 87.2(4) 90.5(2) 87.7(3) 90.6(1) 85.3(5)

Average 64.93(5.3) 91.2(2.5) 77.8(3.2) 93.6(3.1) 90.7(3.3) 89.6(3.3)

118

Figure 5.12 shows a critical difference diagram on ranked accuracies for non-stationary

datasets. For 6 algorithms and 16 datasets, the Critical Difference (CD) for the Nemenyi [50]

at (α=0.05) is (CD=1.82). The solid bar shows no significant differences between COMPOSE,

LEVELIW, SCARGC, MClassification and PSDSL, however these performed significantly

better than ‘Static’.

Figure 5.12 Critical Difference diagram for Non-Stationary Dataset’s accuracies

Table 5.7 presents the evaluation time in seconds; the results show that PSDSL achieved

similar accuracies in less average computation time (8.01 seconds) on non-stationary

datasets.

Table 5.7 Evaluation time in seconds (Non-Stationary Datasets).

Datasets
COMPOSE
(GMM)

LEVELIW
SCARGC
(1-NN)

MC PSDSL

1CDT 4.2 15.0 1.5 64.5 1.2

1CHT 4.0 15.3 1.2 62.6 0.4

1CSurr 7.3 43.8 4.2 220.9 3.8

2CDT 2.9 15.7 1.0 62.8 0.7

2CHT 3.5 15.8 1.6 60.7 0.9

4CE1CF 44.1 137.8 15.1 775.9 10.7

4CR 55.9 148.3 12.7 608.0 7.0

4CRE-V2 34.8 147.8 15.2 641.6 10.9

FG_2C_2D 16.0 185.7 8.2 870.2 6.2

GEARS_2C_2D 14.4 186.4 17.5 497.7 10.0

MG_2C_2D 15.4 190.8 18.0 740.5 10.6

UG_2C_2D 16.9 72.7 9.1 362.8 6.0

UG_2C_3D 15.6 176.5 19.4 881.7 16.0

UG_2C_5D 15.9 176.8 21.2 977.3 27.2

Average 17.9 109.2 10.4 487.5 8.0

Thus, LEVELIW is found to be the second-lowest performing algorithm in terms of

computational complexity after MClassification and performs significantly worse than all

other algorithms except SCARGC and PSDSL. In another experiment, Naïve Bayes [38]

classifier is applied as a base classifier, Table 5.8 shows an average 7.18 % improvements in

the prediction accuracies when pre-labelling was applied.

119

Table 5.8 Predictive Accuracies (%) PSDSL applied using Naïve Bayes Classifier.

Datasets
Without
 Pre-labelling

Pre-labelling Gain

UG_2C_2D 52.516 68.357 +15.841

UG_2C_3D 62.821 68.286 +5.465

1CSurr 63.943 73.329 +9.386

4CR 19.771 34.076 +14.305

4CRE-V2 24.080 32.892 +8.812

Stagger 52.808 52.925 +0.117

RandomTree 62.783 62.873 +0.090

LED 44.387 48.655 +4.268

Hyperplane 61.813 70.045 +8.232

SEA_Mixed 82.408 84.972 +2.564

RandomRBF 25.666 39.25 +13.584

CovType 63.19 70.50 +7.30

Sensor 14.878 18.263 +3.385

Average 48.54 55.72 7.18

5.14 Analysis of MOA Data Streams

Previous sets of experiments are performed on offline datasets, a comprehensive analysis was

made on MOA data streams. As can be seen from Table V the average prediction accuracy of

SCARGC is highest (93.64%) in all the benchmark datasets, therefore it has been

implemented it in the MOA to compare it with our approach. A recent comparative analysis

in the literature [81] reports no statistical significance at α = 0.05 for classification accuracy

among COMPOSE, LEVELIW, MClassification and SCARGC). LEVELIW performs rather

poorly on benchmark datasets with significant between-class overlap. MClassification and

LEVELIW are found to be computationally inefficient.

To analyse SCARGC and PSDSL, Prequential Accuracies, Kappa Statistics and Evaluation

time were used and the ranks for each algorithm were calculated. It is noted that SCARGC

and PSDSL were compared with the ‘Static’ and benchmarked approaches, which are

described in Table 5.2. The first batch i.e. 300 instances were kept labelled and the class labels

of the remaining data stream were removed.

5.14.1 Prequential Accuracies

In EVL these accuracies could not be evaluated due to the scarcity of true class labels; as true

labels become available, the accuracy is calculated and presented for comparison.

Table 5.9 presents the average accuracy (in %) achieved by the methods over the 12 MOA

streams. The best results were highlighted in a comparison between the proposed method

PSDSL and SCARGC, benchmark, and Static.

120

Table 5.9 Predictive Accuracies (%) PSDSL (MOA Streams).

MOA Stream Static Benchmark SCARGC PSDSL

SEA (Sudden Drift) 69.9(3) 77.1(2) 67.9(4) 78.0(1)

LED (Sudden Drift) 27.8(3) 63.6(1) 22.3(4) 41.7(2)

Wave (Sudden) 75.6(2) 89.2(1) 60.4(4) 75.3(3)

RRBF (Gradual Drift) 26.8(4) 98.3(1) 97.9(3) 98.0(2)

HP (Incremental) 53.7(3) 82.8(1) 50.5(4) 54.5(2)

RandomTree (Recurring) 63.1(3) 63.7(2) 56.0(4) 71.3(1)

SEA (No Drift) 77.1(2) 76.9(3) 68.6(4) 86.5(1)

LED (No Drift) 45.1(3) 64.1(2) 39.2(4) 74.0(1)

Hyperplane (No Drift) 83.1(3) 83.3(2) 61.2(4) 89.8(1)

RandomTree (No Drift) 60.3(3) 64.1(2) 54.8(4) 65.6(1)

RRBF (No Drift) 13.7(4) 94.5(1) 50.5(3) 54.5(2)

Wave (No Drift) 76.4(2) 75.3(3) 54.3(4) 83.1(1)

Average (Rank) 56.0(2.9) 77.7(1.7) 57.0(3.8) 72.7(1.5)

The overall results show that PSDSL performed better than all other approaches. The

Friedman statistic X2
r is 24.05 (df =3, n = 11), the p-value = .00002 shows a significant

difference in the algorithms at (p < .05). The number in brackets represents the rank. To

determine which algorithm(s) performed differently, Figure 5.13 is the critical difference

diagram on ranked accuracies for MOA streams. The connected solid lines represent groups

of algorithms that are like each other, and any two algorithms are significantly different if the

difference between their average ranks is at least CD [49]. For 4 algorithms and 12 streams,

the CD for the Nemenyi [50] at α=0.05 is 1.41. The results show two groups of algorithms, i.e.

PSDSL - Benchmark and SCARGC-Statics. Significant differences are found between PSDSL

and SCARGC, while the performance of PSDSL is closer to the benchmark, while no

significant difference was found between SCARGC and Static.

Figure 5.13 Critical Difference diagram for MOA Streams Accuracies,

comparison of all classifiers against each other with the Nemenyi test.

Groups of classifiers that are not significantly different (at p = 0.05) are

connected.

121

5.14.2 Kappa Statistics

The Kappa evaluation measure is widely used in data stream mining, as it can handle both

multi-class and imbalanced class problems. The larger the Kappa value, the more generalised

and better the classifier. The kappa statistics show similar results compared with average

accuracy, in which PSDSL performs significantly better than other algorithms. Table 5.10

provides the Kappa statistics for the experiments.

Table 5.10 Average kappa statistics on MOA streams

MOA Stream Static Benchmark SCARGC PSDSL

SEA (Sudden Drift) 42.3(3) 52.3(2) 35.6(4) 55.6(1)

LED (Sudden Drift) 19.8(3) 59.5(1) 13.4(4) 34.6(2)

Wave (Sudden) 33.3(2) 75.4(1) 9.3(4) 32.5(3)

RRBF (Gradual Drift) 8.3(4) 97.9(1) 97.4(3) 97.5(2)

HP(Incremental) 7.6(3) 65.6(1) 0.6(4) 9.0(2)

RandomTree (Recurring) 25.2(3) 25.5(2) 9.8(4) 41.4(1)

SEA (No Drift) 52.9(2) 52.8(3) 37.0(4) 70.0(1)

LED (No Drift) 39.0(3) 60.1(2) 32.5(4) 71.1(1)

Hyperplane (No Drift) 66.3(3) 66.7(2) 22.3(4) 79.6(1)

RandomTree (No Drift) 22.7(3) 60.1(1) 9.7(4) 29.1(2)

RRBF (No Drift) 1.5(3) 88.9(1) 0.6(4) 9.0(2)

Wave (No Drift) 64.6(2) 63.0(3) 31.6(4) 74.7(1)

Average (Rank) 32.0(2.8) 64.0(1.6) 25.0(3.9) 50.4(1.5)

5.14.3 Evaluation Time

Table 5.11 presents the Evaluation time in Seconds for Static, Benchmark, SCARGC and

PSDSL on MOA Streams.

Table 5.11 Evaluation time in seconds (MOA streams).

MOA Stream Static Benchmark SCARGC PSDSL

SEA (Sudden Drift) 7.5 9.8 120.9 35.89
LED (Sudden Drift) 182.3 55.37 164.9 70.04
Wave (Sudden) 43.81 46.56 109 116.8
RRBF (Gradual Drift) 11.93 10.5 146.2 27.9
HP(Incremental) 29.1 27.18 122.1 50.62
RandomTree (Recurring) 9.56 24.48 136.8 49.45
SEA (No Drift) 6.9 7.3 95.14 36.71
LED (No Drift) 156.75 66.2 164.7 69.20
Hyperplane (No Drift) 20.14 20.54 93.34 49.93
RRBF (No Drift) 4.26 11.87 72.09 3.63
RandomTree (No Drift) 18.89 55.07 100.98 72.17
Wave (No Drift) 37.4 40.76 115.2 118.2

Average 44.05 31.30 120.11 58.38

The results show that PSDSL achieved better average accuracies (72.7%) in less average

computation time (58.38 seconds) than SCARGC Accuracy = 57.0% in 120.11 seconds, but

not as far as Benchmark and Static because these do not apply pseudo-labelling.

122

5.15 Analysis on Real-world Problem

A keystroke dataset [134][135] applied in the research is a collection of data that records

information about keystrokes, such as the time and duration of each keystroke, the keys that

were pressed, and the order in which they were pressed. Keystroke datasets can be used for a

variety of purposes, including:

1. Biometric identification: Keystroke dynamics, or the way a person types on a

keyboard, can be used as a biometric identifier, similar to a fingerprint or a retinal

scan. Keystroke datasets can be used to train machine learning models to recognize

the unique typing patterns of individuals.

2. Behavioural analysis: Keystroke datasets can also be used to analyse user behaviour,

such as how quickly or accurately they type, which keys they tend to use most

frequently, and whether they make frequent mistakes.

3. Cyber security: Keystroke datasets can be used to detect fraudulent activity, such as

when someone attempts to impersonate another person by typing in their login

credentials.

The task of this dataset is to predict one of four users based on their typing patterns. The

dataset contains keystroke records obtained from 51 subjects who typed a 10-character

password (.tie5Roanl). Each subject typed 400 repetitions of the password over 8 sessions of

50 repetitions each (spread over different days). Each record in the dataset contains

information about the time and duration of each keystroke, the key that was pressed, and the

order in which the keys were pressed.

5.15.1 Features Exploratory Analysis

Feature exploratory analysis is an important step in predictive analysis which helps

understanding the characteristics of the different features or variables in a dataset. The

keystroke dataset contains data from four users, identified as "S1," "S2," "S3," and "S4," and

includes a total of 1600 records, with 400 records for each user. The actual keystroke dataset

[135] includes a total of 31 features, such as key down, key, up, hold time, and latency,

which can be used to train machine learning models to recognize the unique typing patterns

of each user. A total 10 features (fight time) are applied (i.e. one feature for each character

in the password) to compare the predictive performance with the benchmarks algorithms.

This reduced dataset is available by the authors of the ATISLabs [134]. The Flight time is

the time difference between the key press and when it is released.

A correlation heat map [137] is a graphical representation of the correlation matrix, which

shows the pairwise correlation coefficients between different variables in a dataset. Figure

5.14 showing correlation heat map of keystroke dataset, the features { . t R a n i } are highly

correlated (dark blue on the heat map) with respect to the target class, while the features {

a , n } and { l , n } are having medium positive correlation within the features.

123

Figure 5.14 Correlation heat map of keystroke dataset.

5.15.2 Clustering Analysis

In clustering the movement of centroids refers to the movement of the central point or

average of a set of data points. It is often used in clustering algorithms to track how the

cluster centres move as new data points are added or removed from the dataset. In case of

keystroke dataset, the location of centroids can be useful for understanding how the

distribution of data is changing over time. This can be due to changes in the environment

or other factors that affect the data. Figure 5.15 showing movement of centroids in

keystroke dataset at different timestamps.

Figure 5.15 Movement of clusters in keystroke dataset, time step 300 (left) and

time step 600 (right).

It is evident from the figures that the centroids are non-stationary and moving, this is because

the position of the centroids depends on the data points that are assigned to the cluster, and

as new data points are added or removed, the position of the centroids may shift. In keystroke

dynamics, this change gradual change in the position of centroids is due to gradual change in

124

the typing speed of the users, as they learn to type passwords faster and more accurate over

time. The next section demonstrates the experiments and significant findings of PSDSL

applied on the keystroke datasets.

5.15.3 Experimental Setup

Considering the task of predicting 1 user out of 4, the PSDSL and SCARGC algorithms are

evaluated under Static (no pseudo-labelling) and Benchmark scenarios (complete labelled).

As each user types the password 50 time per session, the classifiers are trained on first 150

examples and incrementally evaluated on data from remaining 7 sessions.

 All the experiments are evaluated in terms of time consumption and predictive performance.

Processing time is measured in seconds and is based on the CPU time used for training and

testing. All the experiments were performed on machines with Core i7 @ 3.4 GHz, 4 GB of

RAM. The details of parameters used in the experiments for these existing EVL approaches

are provided in Table 5.12.

Table 5.12 Algorithms and parameters used in the experiments.

Algorithm Description

Static The classifier is not updated after it is trained with the first
examples in the data streams. i.e. no pseudo-labelling is applied.

SCARGC
Applied KNN base classifier and applying the parameters
suggested by Souza et al. [31]

Benchmark
Both PSDSL and SCARGC classifier are evaluated on 100%
labelled examples.

PSDSL HDWM Classifier, envelop clustering, nearest neighbours =3,
purity threshold = 0.95, Pool Size = 150

5.16 Significant Findings

As the PSDSL does not apply a CGC approach on MOA streams and switches to a self-

learning state, this improvement is due to the switching mechanism of heterogeneous base

classifiers. As shown in Figure 5.16, the PSDSL achieved the highest predictive performance

as compared to the SCARGC (81.67%) and Static (49%) is the accuracy when no EVL is

handled by using pseudo labels. The prediction time as shown in Figure 5.17 are lower than

the Benchmark and Static but slightly higher than the SCARGC.

125

Figure 5.16 Prediction accuracies keystroke dataset, comparing PSDSL, SCARGC, Static
and Benchmark.

Figure 5.17 Comparison of prediction time PSDSL, SCARGC, Static and Benchmark.

In SCARGC algorithm the value of ‘k’ which is the initial number of clusters and it value is

manually chosen, Figure 5.18 is showing the predictive accuracies of SCARGC on keystroke

dataset by applying different values of this parameter ‘k’. In this experiment ‘k=4, 6, 8 and 11

have been applied, the results shows that the predictive accuracies have changed significantly

(41.1% to 81.6%).

0

25

50

75

100

0 150 300 450 600 750 900 1050 1200 1350 1500

P
re

d
ic

ti
ve

 P
er

fo
rm

an
ce

s
(%

)

Instances

Predictive Accuracies - Keystroke

PSDSL(85.33%)

SCARGC(81.67%)

Static(49.06%)

Benchmark (89%)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 150 300 450 600 750 900 1050 1200 1350 1500

Ti
m

e
(S

ec
o

n
d

s)

Instances

Prediction Time - Keystroke

PSDSL(1.31s)

 SCARGC (0.875s)

Static(1.09s)

Benchmark(1.81s)

126

Figure 5.18 Predictive performance of SCARGC by applying different values of ‘k’.

Figure 5.19 shows the results of experiment performed on keystroke dataset [137]. The

PSDSL detects and resolves the cluster labelling issue arises in the micro-clusters in a

situation when there is a dispute in micro-cluster labelling.

Figure 5.19 Visualisation of envelope, macro and micro-clusters in
Keystroke dataset [137].

To overcome these issues, PSDSL transforms the centroids’ information of micro-clusters

into micro-instances, these instances generate clusters using a centroid based clustering

0

25

50

75

100

0 150 300 450 600 750 900 1050 1200 1350 1500

P
re

d
ic

ti
o

n
 A

cc
u

ra
cy

 (
%

)

Examples

Predictive Accuracies (SCARGC) - Keystroke

SCARGC k=8(52.73%) SCARGC k=11(81.67%)

SCARGC k=4(57.53%) SCARGC k=6(41.13%)

Micro Clusters

Macro Clusters Envelope Clusters

Unlabeled examples
Clusters

127

algorithm such as K-Means to generate cluster called envelope clusters. Finally, the nearest

envelope clusters assist the conflicted micro-clusters in assigning their labels. The

visualisation shows envelope clusters in the right pan, and the micro and macro clusters and

shown in the right pan. A total 55 thousand examples were trained out of which only 150

initial examples were labelled followed by complete unlabelled examples which are shown

in the right pan. The envelope clusters increased the prediction accuracy.

Figure 5.20 shows the predictive accuracy plots for MOA Streams in which no drift is

induced. The results show that PSDSL performed significantly better than SCARGC on all

the MOA Streams when there are no concept drifts.

Figure 5.20 Predictive accuracy plots for MOA Streams (No drift).

Figure 5.21 shows the predictive accuracy plots for MOA Streams in which artificial drift is

induced. The results show that in EVL, when the CGC fails, restoring from the concept drift

is challenging due to unavailability of true class labels. In SEA (Abrupt) and RandomTree

0

25

50

75

100

0 25 50 75 100

Hyperplane (No Drift)

PSDSL(89.83%) SCARGC(61.2%)
Static(83.18%) Benchmark(83.37%)

0

25

50

75

100

0 25 50 75 100

P
re

d
ic

ti
o

n
 A

cc
u

ra
cy

 %

RRBF (No Drift)

PSDSL(54.53%) SCARGC(50.53%)

Static(13.72%) Benchmark(94.56%)

0

25

50

75

100

0 25 50 75 100

P
re

d
ic

ti
o

n
 A

cc
u

ra
cy

 %

Time Step (Thousands)

Wave (No Drift)

PSDSL(83.17%) SCARGC(54.38%)

Static(76.42%) Benchmark(75.37%)

0

25

50

75

100

0 25 50 75 100

SEA (No Drift)

PSDSL(86.57%) SCARGC(68.63%)

Static(77.13%) Benchmark(76.96%)

0

25

50

75

100

0 25 50 75 100

P
re

d
ic

ti
o

n
 A

cc
u

ra
cy

 %

LED (No Drift)

PSDSL(74%) SCARGC(39.27%)
Static(45.14%) Benchmark(64.16%)

0

25

50

75

100

0 25 50 75 100

Time Step (Thousands)

RandomTree (No Drift)

PSDSL(65.65%) SCARGC(54.88%)

Static(60.31%) Benchmark(64.16%)

128

(Recurring Drift) streams, all the algorithms restored learning after the sudden drifts.

However, the graphs show that, before the first and after the last drift the PSDSL predictive

performance is higher than the competing algorithms. This demonstrates that under EVL

conditions, PSDSL adapted to the abrupt as well as recurring drifts better than other

algorithms. On LED which is a multi-class problem, and Hyperplane which contains

incremental drifts, none of the approaches adapted to the drifts in these two streams.

Overall, PSDSL performed better than other approaches on drift induced MOA streams.

Figure 5.21 Predictive Accuracy Plots for MOA Streams (Artificial drift

induced), red vertical lines representing the actual location of abrupt drifts.

SCARGC performed best in non-stationary datasets, however its predictive performance did

not improve when applied to MOA data streams. To further investigate the cause(s) of this

failure, a randomisation analysis was made and is presented in Section 5.16.1.

0

25

50

75

100

0 25 50 75 100

SEA (Abrupt Drifts)

PSDSL(78%) SCARGC(67.95%)
Static(69.96%) Benchmark(77.12%)

0

25

50

75

100

0 25 50 75 100
P

re
d

ic
ti

o
n

 A
cc

u
ra

cy
 %

LED (Sudden Drift)

PSDSL(41.78%) SCARGC(22.31%)

Static(27.88%) Benchmark(63.67%)

0

25

50

75

100

0 25 50 75 100

HyperPlane (Incremental Drift)

PSDSL(54.53%) SCARGC(50.53%)

EVL (53.79%) NO EVL (82.82%)
0

25

50

75

100

0 25 50 75 100

P
re

d
ic

ti
o

n
 A

cc
u

ra
cy

 %

RRBF (Gradual Drift)

SCARGC(97.45%) PSDSL(98.06%)

Static(26.83%) Benchmark(98.34%)

0

25

50

75

100

0 25 50 75 100

RandomTrees (Recurring Drift)

PSDSL(71.37%) SCARGC(56.07%)

Static(63.15%) Benchmark(63.72%)

0

25

50

75

100

0 25 50 75 100

P
re

d
ic

ti
o

n
 A

cc
u

ra
cy

 %

Wave (Sudden Drift)

PSDSL(75.34%) SCARGC(60.5%)

Static(75.61%) Benchmark(89.22%)

129

5.16.1 Analysis of Randomisation

This experiment analyses the sequence of training data and its influence on prediction

accuracies for CGC algorithms. In data streams, continuous data arrives at high speed and

there is practically no control over the sequence of training data presented to the learning

algorithms. Randomisation is thus different to noise, as it is not a random displacement of

examples, but a random order in which data instances are presented to the learning

algorithm. In case of noise, the data needed to be cleaned before PSDSL deals with drifts.

In this section, (RQ4) is addressed, which is “are existing ILNSE approaches always

successful when applied to different problems and why does this approach sometimes fail?”.

The benchmark non-stationary datasets [31] [125] are randomised by shuffling the order

of examples in the datasets.

Figure 5.22 shows a plot of Four Class Rotating (4CR) [125] dataset. The plot ‘4CR original

dataset’ on the left shows initial 1000 examples, and on the right ‘4CR randomised’ are

initial 1000 instances after shuffling 144k instances in the dataset. The centroids in the

dataset are gradually rotating, therefore the examples which are located above the 1000

appeared in the first batch and resulted in a noise effect. The change in the order of examples

resulted in the loss of cluster boundaries. This is the scenario in real-time data streams, i.e.

no control over the order of examples.

4CR Original Dataset 4CR Randomised

Figure 5.22 Plot for initial 1000 instances of 4CR dataset versus randomised 4CR dataset.

The results in Table 5.13 show the prediction accuracies achieved by the SCARGC and PSDSL

algorithm on original and randomised datasets. The results show that SCARGC had a

significant drop in average prediction accuracy by 35.3% on randomised datasets, whereas

PSDSL only dropped by 20.9%.

130

Table 5.13 Predictive accuracy (in %) on original and randomised benchmark datasets.

Datasets
SCARGC
Original

SCARGC
Randomised

PSDSL
Original

PSDSL
Randomised

1CDT 99.8 88.3 99.6 99.2

1CHT 99.3 88.4 99.1 98.2

1CSurr 94.4 59.4 94.5 66.7

2CDT 90.9 59.9 90.7 60.3

2CHT 85.0 59.7 85.8 60.1

4CE1CF 94.1 92.9 94.7 95.31

4CR 99.9 24.9 99.9 25.1

4CRE-V2 91.9 24.3 91.8 25.0

5CVT 90.1 38.9 84.9 66.9

FG_2C_2D 95.2 43.2 64.9 74.3

GEARS 95.9 95.4 95.9 95.6

MG_2C_2D 92.7 50.1 64.5 59.6

UG_2C_2D 95.6 53.4 95.6 58.2

UG_2C_3D 94.8 51.0 94.8 70.5

UG_2C_5D 91.0 51.1 91.0 79.8

Average 94.0 58.7 89.8 68.9

5.16.2 Analysis of Switching Mechanism in PSDSL

To address (RQ4), what strategy should be adopted if the CGC or self-learning approaches

fail? PSDSL is made capable of intelligently switching learning states ‘CGC with K-Means,

micro-clusters, or self-learning. For this set of experiments, the first batch of the data stream

is 100% labelled, followed by 5% labelled instances in each batch of size 1000.

As shown in Table 5.16 the switching mode in PSDSL is dependent on {F1-P, F1-R and purity}

of K-Means and micro-clusters. Whichever is higher, it adapts the learning mode accordingly.

For values lower than threshold ‘ρ’ such as in randomised datasets or MOA Streams, it

switches to self-learning. Further, it monitors the performance of pseudo-labelling. In the

case that pseudo-labelling does not improve the predictive performance on initial labelled

data, PSDSL suspends the pseudo-labelling.

Table 5.14 shows that overall, 7.2% prediction accuracy of classifier (NB) has been improved

by applying self-learning. Table 5.15 shows improvement (23.9%) when active switching of

classifier (NB) and clusters (K-Means) was applied.

As shown in Table 5.16 the switching mode in PSDSL is dependent on {F1-P, F1-R and purity}

of K-Means and micro-clusters. Whichever is higher, it adapts the learning mode accordingly.

For values lower than threshold ‘ρ’ such as in randomised datasets or MOA Streams, it

switches to self-learning. Further, it monitors the performance of pseudo-labelling. In the

case that pseudo-labelling does not improve the predictive performance on initial labelled

data, PSDSL suspends the pseudo-labelling.

131

Table 5.14 Prediction accuracies (%) by applying self-learning.

Datasets No Pre-labelling Pre-labelling Gain/Loss
UG_2C_2D 52.51 68.35 +15.84
UG_2C_3D 62.82 68.28 +5.46
1CSurr 63.94 73.32 +9.38
4CR 19.77 34.07 +14.30
4CRE-V2 24.08 32.89 +8.81
STAGGER 52.80 52.92 +0.11
RandomTree 62.78 62.87 +0.09
LED 44.38 48.65 +4.26
Hyperplane 61.81 70.04 +8.23
SEA_Mixed 82.40 84.97 +2.56
RandomRBF 25.66 39.25 +13.58
Sensor 14.87 18.26 +3.38
Covtype 63.19 70.50 +7.30

Average (%) 48.5 55.7 7.2

Table 5.15 Prediction accuracies (%) self by applying active switching of classifiers
and clusters as prediction method.

Datasets No Pre-labelling Pre-labelling Gain/Loss
UG_2C_2D 52.51 94.20 +41.69
UG_2C_3D 62.82 92.66 +29.84
1CSurr 63.94 85.97 +22.02
4CR 19.77 95.76 +75.99
4CRE-V2 24.08 84.76 +60.68
STAGGER 52.80 55.20 +2.39
RandomTree 62.78 66.10 +3.32
LED 44.38 48.67 +4.29
Hyperplane 61.81 68.94 +7.12
SEA_Mixed 82.40 82.59 +0.18
RandomRBF 25.66 74.764 +49.09
Sensor 14.87 22.12 +7.24
Covtype 63.19 69.47 +6.28
Average (%) 45.5 72.4 23.9

Table 5.16 PSDSL purity and switching mode.

Non-Stationary
Datasets

µACC% Ф Purity µ Purity LM

1CDT 100 0.97 ↑ 0.91 C

1CHT 100 0.94 0.95↑ M

1CSurr 100 0.97 0.98↑ M

2CDT 100 1.00 ↑ 0.98 C

2CHT 100 0.97 ↑ 0.92 C

4CE1CF 100 0.89 ↑ 0.86 C

4CR 100 1.00 1.00 C

4CRE-V2 100 1.00 ↑ 0.97 C

5CVT 100 0.90 0.96↑ M

FG_2C_2D 100 0.92 ↑ 0.90 C

GEARS_2C_2D 100 0.95 ↑ 0.92 C

132

Non-Stationary
Datasets

µACC% Ф Purity µ Purity LM

MG_2C_2D 100 1.00 1.00 C
 UG_2C_2D 100 1.00 1.00 C
UG_2C_3D 100 1.00 1.00 C
UG_2C_5D 100 1.00 1.00 C
MG_2C_2D 100 1.00 1.00 C
SEA (Sudden Drift) 86.6 0.75 0.76 S
LED (Sudden Drift) 47.1 0.00 0.35 S
Wave (Sudden) 85.3 0.00 0.64 S
RRBF (Gradual Drift) 100 1.00 1.00 C
Hyperplane (Incremental) 76.2 0.67 0.56 S

RandomTree (Recurring) 79.1 1.00 ↑ 0.62 S

SEA (No Drift) 86.3 0.70 0.80 S
LED (No Drift) 47.1 0.00 0.35 S

Hyperplane ((No Drift) 79.2 1.00 ↑ 0.58 S

RandomTree (No Drift) 92.4 0.99 ↑ 0.54 S

Wave (No Drift) 76.7 0.00 0.60 S
KEYSTROKE 99.3 0.34 0.93↑ M

labelling -Means purities, µACC%= pseudo-= KPurityclustering purities, Ф -micro = CluStreamPurityµ
Accuracy for µ, LM= Learning modes {C = CGC using K-Means, M = micro-clustering, S= Self-
learning}

As shown in Figure 5.23, a GUI has been developed for visually outputs the current state of

the switching mode in PSDSL.

Figure 5.23 GUI for switching learning states.

133

Figure 5.24 Switching states of Non-Stationary Datasets, 1=No pre-labelling, 2=

pre-labelling using clusters and 3= pre-labelling using classifiers as self-learning.

Figure 5.24 showing switching states for non-stationary datasets. It is evident from the plots

that the PDSL, switches the learning strategies based on conditions and on different times

steps the pseudo-labelling was terminated as resumed afterwards because it was not

beneficial at that specific period of time.

5.16.3 Analysis of Pseudo-labelling without Switching

This experiment determines the sensitivity analysis of switching mechanism. The effect of

pseudo-labelling and without pseudo-labelling has been analysed on different

characteristics of datasets, which includes numerical, categorical, and mixed attributes and

normalized data has been shown in Table 5.17.

It is evident from the results that in some data streams the pseudo-labelling reduced the

overall prediction accuracies, therefore a mechanism has been added to intelligently

determine and stop the pre-labelling strategy if it is not beneficial.

134

Table 5.17 PSDSL Analysis of Pseudo-labelling without Switching.

Datasets Types of attributes
No pseudo-

labelling
(1)

Pseudo-
labelling

(2)

Gain/Loss

(2) – (1)

 UG_2C_2D

N, Norm

93.985 95.653 1.668

UG_2C_3D 92.957 93.678 0.721

1CSurr 87.518 92.093 4.575

4CR 97.015 99.870 2.855

4CRE-V2 86.038 89.857 3.819

Stagger C 76.708 72.450 -4.258

RandomTree C and N 70.5 67.858 -2.642

LED C 44.979 36.445 -8.534

Hyperplane N 64.286 71.007 6.721

SEA_Mixed C 81.835 79.956 -1.879

RandomRBF N 21.23 80.167 58.937

Sensor N 15.095 22.788 7.693

Covtype C and N, Norm 69.206 71.930 2.724

N = Numerical, C= Categorical, Norm = Normalised

5.17 Hyperparameter Tuning

This section presents the analysis carried out to address (RQ3): Does this approach depend

on parameters that require manual tuning by the users before inducing the training models?

As shown in Table 5.18,

Table 5.18 PSDSL auto-tuned ‘k’ and learning mode.

Non-Stationary
Datasets

No. of
Classes

in datasets

SCARGC
Manual

‘k’

PSDSL
Auto-tune

‘k’

SCARGC
ACC%

PSDSL
ACC%

1CDT 2 = 2 2 99.75 99.67
1CHT 2 = 2 2 99.25 99.09
1CSurr 2 ≠ 4 4 94.35 94.51
2CDT 2 = 2 2 90.92 90.74
2CHT 2 = 2 2 85.02 85.82
4CE1CF 4 ≠ 5 5 94.08 94.09
4CR 4 = 4 4 99.95 99.97
4CRE-V2 4 = 4 4 91.9 91.88
5CVT 4 ≠ 5 5 90.15 84.99
FG_2C_2D 5 ≠ 4 ≠ 2 95.16 64.94
GEARS_2C_2D 2 = 2 2 95.89 95.93
MG_2C_2D 2 ≠ 4 ≠ 2 92.71 64.52
UG_2C_2D 2 = 2 2 95.56 95.57
UG_2C_3D 2 = 2 2 94.77 94.80
UG_2C_5D 2 = 2 2 90.98 91.05
KEYSTROKE 4 ≠ 12 *4 87.72 85.33

135

SCARGC applies k=4 for (1CSurr) which is a binary class problem; similarly, SCARGC applies

k=4 for (FG_2C_2D) (MG_2C_2D) which contains 5 and 2 classes in the datasets

respectively. Furthermore, the real-world dataset ‘keystroke’ contains 4-classes, but SCARGC

applies k=12 (number of centroids). In SCARGC these values need to be manually chosen by

the user to achieve the best results. Contrary to this, PSDSL automatically tuned the best

values for the ‘k’. As evident in the Table, in most of the datasets, PSDSL predicted similar

values for ‘k’ as SCARGC. However, the difference is that the parameter ‘k’ was sent manually

in SCARGC, while PSDSL automatically adapts and parameter ‘k’ to optimise the

classification results over time.

5.18 Parameter Sensitivity Analysis

The influence of the PSDSL parameters pool size (θ) and number of labelled examples |T|

is analysed against the prediction accuracy. Figure 5.25 shows the prediction accuracy in %

on different values of θ from 300 to 1500 and |T | from 50 to 1000. As it is clear from the

plot, increasing the pool size increases the prediction accuracy; however, |T| has no

significant effect on the accuracy.

Figure 5.25 Prediction accuracy for 4CRE-V2 dataset changing values of

pool size θ and size of initial labelled data ‘T’.

136

5.19 Development of online SSL framework for data streams

An online SSL framework is developed in MOA which will enable the DSM researchers to

implement online SSL for DSM, mainly in the areas of EVL and NSE. The option was to

visually monitor the real-time prediction results and evaluations for both clustering and

classification algorithms. The clustering results appears in the right part of the GUI and the

classification results appears in the left part of the GUI. The clustering evaluations includes

an online evaluation of clusters such as F1, Precision, Recall, purity etc. Figure 5.26 shows

SSLHoldout evaluation in which two mutually exclusive subsets are created for training and

testing. Figure 5.27 shows the SSL Learner developed in MOA. The option is added to apply

an ensemble of classifiers and clusters, with an option to define the drift handling method.

Figure 5.26 GUI for SSL Periodic Holdout Evaluation Task developed in MOA.

The evaluation of classifiers includes average prediction accuracies, class label scarcity, time

and memory consumption etc. In the SSL framework, the pseudo-labelling accuracy, micro-

macro clustering and the ground truth clusters along with switching of learning strategies

are visually displayed. PSDSL was evaluated on non-stationary datasets, synthetic data-

Ratio of Scarcity

DataStream

Semi supervised Learner

Size of training and testing set

SSLPeriodicHeldOut Task

137

streams, and real-world datasets. The approach has shown promising results on

randomised datasets as well as on synthetic data-streams, as compared with state-of-the-

art approaches. This is the first large-scale study on an adaptive extreme verification

approach that supports automatic parameter tuning and intelligent switching of pseudo-

labelling strategy, thus reducing the dependency of machine learning on human input. To

measure and analyse the performance of the clustering and classification models two SSL

learning tasks, i.e. SSLPrequential and Holdout have been developed.

Figure 5.27 A developed Semi-Supervised Diversity Ensemble (SSLearner).

Initially, both the supervised and unsupervised models are trained on labelled examples

after randomly eliminating the true class labels from a certain ratio from the training set.

An option is created to predict the pseudo-labels using supervised models for unlabelled

examples, and the supervised models are re-trained on these new labels. The accuracies of

pseudo-labelling, ratio of scarcity and the evaluation of both supervised and unsupervised

models are updated incrementally. Similarly, the error of the model is computed for the

sequence of each example in the SSL Prequential task.

Clustering Algorithms

Classifier Algorithms

Drift handling

Method

138

5.20 Critical Evaluation of Research and Scientific Contributions

This section provides a critical evaluation of the entire research journey and outcomes, which

involves an assessment of the research process, and evaluating the answers to the research

questions about the robustness and alignment with the intended contributions. Evaluates the

methodology, data analysis, and interpretation to provide a comprehensive understanding of

how the research outcomes contribute to advancing knowledge in the data stream mining

domain.

5.20.1 Evaluation of Research Questions

The research addresses several key questions, providing insights and contributions to

knowledge. In (RQ1), the focus is on methods enabling data stream mining algorithms to

learn efficiently from limited labelled data under non-stationary conditions. Various

approaches, such as cluster-guided classification, self-learning using classifiers, and micro-

clustering, are explored, each presenting its challenges and trade-offs. (RQ2) delves into the

impact of ensemble diversity on predictive performance in non-stationary environments. The

lack of evidence in the literature regarding the suitability of prediction models post-concept

drift prompts a critical examination of the types of models applicable at different times. (RQ3)

revolves around methodologies for automatic hyperparameter discovery and adjustment,

specifically addressing the dependency on parameters tuned by human analysts in existing

ILNSE approaches. Finally, (RQ4) considers the success of existing approaches across diverse

problems and proposes an active switching mechanism when an EVL approach fails.

Additionally, strategies for preventing incorrect propagation of class labels during concept

drifts are suggested.

5.20.2 Evaluation of Scientific Contributions

This research makes noteworthy contributions to the field. Through empirical evaluation,

PSDSL exhibits higher prediction accuracy compared to existing approaches like SCARGC,

COMPOSE, LEVELIW, and MClassification. The published work established the groundwork

for addressing extreme verification latency in non-stationary environments. Additionally, the

implementation of DDM and EDDM, the drift detection methods utilized in the HDWM

algorithm has been published. These methods have been applied for change detection in the

marine ecosystem. The heterogeneity of online ensembles in non-stationary environments,

culminating in the development of the heterogeneous algorithm (HDWM) has also been

published.

5.21 Discussion

As outlined in the methodology, PSDSL underwent a comparative analysis with established

EVL approaches, evaluated without pseudo-labelling and benchmark settings, where 95%

of class labels are removed. The evaluation used Kappa statistics and prequential testing,

with the latter assessing accuracy incrementally, suitable for balanced classes. Kappa

statistics provided a sensitive measure in streaming classifiers, regardless of class balance

139

certainty. The nearest labelling approach faced challenges when clusters overlap. Envelope-

clusters addressed this issue by detecting and resolving labels assigned to clusters.

The GUI for OSSL aimed to visualize and qualitatively analysing both clustering and

classification models for a comprehensive evaluation. Requirements for OSSL were

identified as, include processing one labelled example at a time, using limited time and

memory, handling unlabelled examples in small batches with pseudo-label predictions, and

being available for prediction at any time.

PSDSL's improved performance on MOA streams, particularly in self-learning states

without the CGC approach and outperformed SCARGC which showed varying predictive

accuracies on the ‘keystroke’ dataset with different values of the parameter 'k'. PSDSL

addressed this issue by applying automated hypermeter tuning and resolved cluster

labelling issues that were raised in micro-clusters when conflicting labels occurred.

5.22 Summary

This chapter suggested a novel approach that deals with the scarcity of class labels under

NSEs. i.e. ILNSE. To address RQ1, a new algorithm PSDSL was made capable of intelligently

selecting the best pseudo-labelling strategy based on the given problem domain. it could

switch on the pseudo-labelling strategy, i.e. cluster-guided, self-learning or micro-clustering,

and select whichever approach is beneficial, based on the characteristics of the data stream.

To address RQ2, PSDSL was made capable of automatically choosing the best classifier from

a pool of heterogeneous classifiers by applying the strategy from the HDWM classifier hence

preserving the diversity of the ensemble classifier.

The PSDSL algorithm also introduced automated parameter tuning that aimed to address

RQ3 for reducing the dependency of machine learning on human’ input. PSDSL addressed

the RQ4 i.e. what strategy should be adopted if one of the EVL approaches fails? by

proposing a new concept of Envelope-Clustering which aims at resolving the conflict in

assigning the class labels to the clusters in case of cluster overlaps.

Predictive performances of PSDSL were compared against existing EVL approaches namely

SCARGC, LEVELIW, COMPOSE, and MClassification. Finally, to determine significant

differences between algorithms the chapter presented experiments on non-stationary

benchmark datasets, MOA data streams and real-world datasets. The results showed that

PSDSL performed significantly better than SCARGC on most real-time data streams,

including randomised data instances. Thus, the prediction performance of pseudo-labelling

has been evaluated by automatically switching between self-labelling and cluster labelling

based on the characteristics of the training instances. It was also discovered that SCARGC or

COMPOSE performed well for certain datasets in which centroids are moving with a constant

velocity. However, when SCARGC was evaluated after shuffling the training instances of the

same datasets by changing the training orders, its predictive performance was significantly

reduced.

140

Finally, it was found that, for SCARGC to achieve the best results in different datasets, the

values of ‘k’ needed to be manually chosen, whereas, in contrast, PSDSL achieved similar

predictive accuracies without the need for manual selection of the value of the parameter ‘k’.

This novel approach proposed in this research further paves the way for reducing the

dependency of machine learning on human input which essentially liberates the process from

this hard constraint, as a critical bottleneck, to enable mass-scale deployment of dynamically

adaptive labelling of data instances in various emerging data streams.

141

Chapter 6 Conclusions and Future
Work

This research mainly focused on improving the DSM algorithms which assume the availability

of labelled data, immediately or after some delay (verification latency), to update the accuracy

of the classifier and at the same time predict under the condition of NSEs. In many real-world

applications of online data stream mining, the data originates from different sources such as

sensor devices, social media, business/financial transactions, etc. The data evolves over time,

and therefore extracting worthwhile knowledge is hard to achieve in such NSEs. The

underlying probability distributions of the data stream change over time, resulting in concept

drifts.

Due to the streaming nature of the data and scarcity of class label, the problem was identified

as online SSL. The literature is referring to this problem as ILNSE. The ILNSE addresses both

EVL and NSEs simultaneously, for example, autonomous robots are initially trained on

labelled data, and later they are asked to predict the class labels on unseen data. They are also

sent to explore an unknown environment without the supervision of humans. The robots need

to learn under NSEs and do so under the scarcity of true class labels (EVL). Another

application in banking is credit card fraud detection. The actual class labels (fraud or non-

fraud) of the transactions are not available to update the online prediction models until the

user receives and reviews the monthly statement. Furthermore, the transactions of the credit

cards contain concept drifts due to the customers' patterns of spending, which change

seasonally and/or during holidays.

6.1 Summary of Findings

It was analysed that in data streams the instances arrive in a sequential order which is directly

fed into the online learning models, thus storing, and referring to the previous data is not

practical due to time limitations. The output of an adaptive classifier at every time step

depends on instances the classifier has been trained on to-date. Hence, performance depends

on the order of instances in the dataset. Existing benchmarks for non-stationary datasets are

designed to evaluate CGC on EVL, by inducing gradual shifting to the clusters. CGC showed

promising results due to the high purity of clusters; however, when the order of these datasets

is randomised the CGC performance drops considerably. This supported the fact that the

existing CGC approaches succeed only under certain conditions.

The results for all the non-stationary datasets provided by the authors of SCARGC were

verified with our implementation. Furthermore, the visualisation of clusters and real-time

evaluation of prediction results at predefined regular intervals were displayed using a

graphical interface. Finally, PSDSL was empirically evaluated against standalone

approaches namely COMPOSE, LEVELIW, SCARGC and MClassification on benchmarks

142

NSE datasets [31] MOA data streams and real-world datasets. It was concluded that the

existing approaches such as SCARGC or COMPOSE perform well for certain datasets in

which centroids are moving with a constant velocity.

However, when SCARGC was evaluated after shuffling the training instances of the same

datasets by changing the training orders, its predictive performance was significantly

reduced. The results showed that PSDSL performed significantly better than SCARGC on

most real-time data streams, including randomised data instances. Thus, the prediction

performance of pseudo-labelling has been evaluated by automatically switching between

self-labelling and clusters labelling based on the characteristics of the training instances.

The PSDSL algorithm performed better than SCARGC for some non-stationary datasets

when these were randomised. PSDSL was evaluated on artificially induced MOA streams

and real-world data streams and the results showed significantly enhanced performance

over SCARGC for most of the MOA streams. The sequence of training data has been

analysed the sequence of training data and its influence on prediction accuracies on 15

benchmark non-stationary datasets. The results showed that SCARGC had a significant

drop in average prediction accuracy by 35.3% on randomised datasets, whereas PSDSL

performed significantly better than existing approaches.

Most work in DSM is concerned with updating the learning system so that it can quickly

recover from concept drift, while little work has been dedicated to investigating what type

of predictive model is most suitable at any given time. It was aimed to investigate the

benefits of online model selection for predictive modelling in NSEs. To analyse the influence

of diversity on predictive performance (RQ2), ‘Static vs. Dynamic’ and ‘Heterogeneous vs.

Homogeneous’ classifiers were comprehensively studied.

6.1.1 Reasons for the Failure of Existing EVL Approaches

The existing EVL approaches such as CGC rely on the assumption that the data follows a

normal or Gaussian distribution. This supports the clustering process by helping to generate

distinct clusters. This assumption also makes CGC a more effective choice in class labels

imputation for missing class labels. However, the normal (Gaussian) EVL approaches cannot

hold for randomised datasets or for real-world data streams, as most such streams are

unstructured and contain noise.

The choice of pseudo-labels in cluster labelling could be problematic because the pseudo-

labels are predicted using the same learning model on which it was trained, and the same

models are used to predictions. Furthermore, due to NSEs these labels could make the models

less reliable over time due to concept drifts. In CGC, the labels from the nearest clusters are

transferred, however, the algorithm does not implement a confidence measure approach to

assure the quality and correctness of labels assigned to the clusters.

143

It was also analysed that EVL deals with unlabelled data more effectively when clustering is

applied, however under NSEs when the clusters overlap, the results showed that existing

micro-clustering is more beneficial. Micro-clustering approach is a computationally

expensive task for data streams mining.

The key feature i.e. diversity of learning models has recently gained attention by the DSM

research community. Even though ensembles have been developed to handle NSEs, the

literature did not contain any deep study of why and how the diversity of ensembles can be

helpful in EVL conditions. • it is difficult to determine which type of machine learning

model would be best to use. There is no evidence in the literature that suggests why, and which

type of prediction models are beneficial or which models should not be used right after the

concept drift.

Existing ILNSE approaches were found to be heavily dependent on the parameters ‘k’ which

needs to be tuned before building the training models (RQ3). Most of the existing CGC

approaches require prior knowledge of the number of classes to generate the corresponding

centroids. However, in most of the real-world streams, the prior knowledge of the number of

classes is not available. The SCARGC and COMPOSE were evaluated with different arbitrary

values of ‘k’ and pool size θ, which negatively changed the prediction results.

6.1.2 Key Findings from Comparative Analysis

SCARGC, COMPOSE, MClassification and LEVELIW addressing the ILNSE, but these are

highly dependent on the parameters defined by the users as well as the problems these are

applied to i.e. characteristic of data streams. In the new approach, PSDSL automatically

decides the use of the best classifier from a pool of heterogeneous classifiers, it can switch on

the pseudo-labelling strategy, i.e. cluster guided, self-learning or micro-clustering, and selects

whichever approach is beneficial, based on the characteristics of the data stream.

To investigate the diversity of online classifier (RQ2) under ILNSE conditions, DWM[10]

and WMA [11] algorithms were investigated for the ‘dynamicity’ and ‘heterogeneity’ factors

of the online ensembles, which includes determining the reasons and mechanism for

exclusion and inclusion the base learners from an ensemble. It was concluded that under

the EVL conditions it is difficult to determine which type of machine learning algorithm

would be best to use due to small amount of initial labelled data. There is no evidence found

in the literature that suggests why and which type of prediction models are beneficial right

after the concept drift. Most work under NSEs is concerned with updating the prediction

models for adapting the concept drift, while little work has been dedicated to investigating

the diversity of the online ensembles.

PSDSL has been evaluated on ‘keystroke dynamics’ dataset which is a collection of data that

records the timing and pattern of keystrokes made by an individual while typing on a

keyboard. The results shows that PSDSL successfully guided the cluster labelling process

file:///C:/Users/fstahl/Desktop/Chapter%207%20Conclusion.docx%23RQ3
file:///C:/Users/fstahl/Desktop/Chapter%207%20Conclusion.docx%23RQ2

144

after the concept drift in the absence of true class labels. PSDSL and SCARGC when

evaluated on 10% of the labelled examples, PSDSL achieved higher prediction accuracy

(85.3%) then SCARGC (81.6%). Without handling ILNSE approach, the predictive accuracy

on this dataset is 49.0%. Furthermore, the predictive accuracy of SCARGC was found highly

fluctuated in the range of (41.1% to 81.6%) based on the parameter ‘k’ (number of clusters),

apart from that, the PSDSL automatically fine-tuned the best values of ‘k.’ for generating

the centroids to guide the pre-labelling process.

6.1.3 How PSDSL and HDWM resolve the identified issues?

PSDSL applies HDWM classifier for self-learning, it is an online ensemble classifier that

implements both an active and passive approach to simultaneously deal with gradual and

abrupt concept drifts. HDWM is made heterogeneous to maintain different types to base

classifiers and preserving the diversity. PSDSL and HDWM filled the gaps in the literature in

the following ways.

• This research introduced a novel approach called Envelope-Clustering which is a

centroid-based clustering approach for micro-clustering applied to resolve the conflict

during the cluster labelling. Issues were identified in existing approaches in the cluster

labelling phase when nearest neighbour algorithm is applied. It was identified that

when one group of clusters crossing other groups (gradual drifts), the clusters may

receive wrong labels. Either the moving clusters receive the labels of the stationary

clusters, or the moving cluster transfers its label to the stationary clusters.

• The proposed switching mechanism of PSDSL automatically switches the pseudo-

labelling strategy and the algorithm adapts to the learning mode accordingly. In the

case that pseudo-labelling does not improve the predictive performance on initial

labelled data, PSDSL suspends the pseudo-labelling.

• To address (RQ3), PSDSL was made capable to automatically tune the best values for

the parameter, (number of clusters ‘k)’. It was found that, for SCARGC to achieve the

best results in different datasets, the values of ‘k’ needed to be manually chosen,

whereas, in contrast, PSDSL achieved similar predictive accuracies without the need

for manual selection of the value of the parameter ‘k’. The novel approach proposed in

this research further paves the way for reducing the dependency of machine learning

on human input.

• HDWM automatically identifies which types of predictive models best suited to the

situation encountered after concept drifts. HDWM’s seeding mechanism and dynamic

inclusion of new base learners benefiting the use of both forgetting and retaining the

models and therefore adaptive to both sudden and gradual drifts.

• HDWM was designed in such a way that it made use of “seed” learners of different types

to maintain ensemble diversity. This overcomes the problems of existing dynamic

file:///C:/Users/fstahl/Desktop/Chapter%207%20Conclusion.docx%23RQ3

145

ensembles that may undergo loss of diversity due to the exclusion of base learners. The

algorithm was evaluated on artificial and real-world data streams against existing well-

known approaches such as a heterogeneous WMA and a homogeneous DWM. The

results showed that HDWM performed significantly better than WMA in under NSEs.

Also, when recurring concept drifts were present, the predictive performance of

HDWM showed an improvement over DWM.

• The seeding mechanism and dynamic inclusion of new base learners in the HDWM

algorithms benefiting the use of both forgetting and retaining the models. HDWM

achieved similar prediction accuracies as compared to the WMA and DWM but using a

smaller size of ensemble and reduced CPU time. The algorithm also provided the

independence of selecting the optimal base classifier in its ensemble depending on the

problem.

• The development of HDWM algorithms revealed the ability to reduce human dependency

on redefining the best type of predictive models for a particular problem. The algorithm

exhibited responsive adaptation; dealing appropriately with changing environments in a

shorter period to increase the reliability and predictive accuracy of the model. It was also

found that heterogeneity was a key enabler for the improved accuracy achieved by

HDWM. HDWM improved the predictive accuracy in the presence of different types of

drifts, such as Gradual, Sudden and Recurring. It has been a key challenge in data stream

mining, as some algorithms heavily rely on forgetting mechanisms while others retain

previous learning.

6.2 Recommendations for Future Work

Future work in the realm of ILNSE involves the exploration of the integration of active

learning techniques tailored for non-stationary environments. Design algorithms that

intelligently select which instances to label, considering the evolving nature of the data

distribution. The developed pseudo-labelling approach in PSDSL selects all the unlabelled

examples in the pool and assigns predicted labels to them. It is also worth investigating

transfer learning techniques that facilitate knowledge transfer between different stages of

non-stationary data. Develop models capable of leveraging information gained from initial

labels to accelerate learning on emerging patterns.

It is also recommended to consider applying transfer learning for ensemble diversity, which

involves leveraging knowledge gained from pre-trained models to enhance the diversity of

individual models within an ensemble. By incorporating insights from different sources or

stages of learning, transfer learning aims to create a more varied set of base models within the

ensemble. This diversity contributes to the ensemble's ability to capture and leverage a

broader range of patterns and information, enhancing its overall effectiveness in handling

complex tasks and adapting to different data distributions.

146

It is beneficial to investigate the HDWM performance on more diverse problems and in the

presence of large number of attributes. Furthermore, investigate to reduce its dependency on

human predefined parameters such as β, which is the weight to penalise the leaner models on

each wrong prediction and the parameter ρ which is the period between base learner removal,

creation and updating the weight.

The predictive performance of PSDSL is highly dependent on pool size ‘θ’ which may

significantly affect the predictive performance. A larger value of θ’ may result in a higher

processing time required in the formation of clusters. On the other hand, a lower value of θ

may result in losing the important clustering information. Sliding window is a widely accepted

model for DSM because it has ability the to emphasise on more recent data. One of the

approaches for determining the pool/window size is to obtain it from the user.

However, the user must have prior knowledge about the time location of concept drifts within

the data streams, which is practically not possible due to unpredictable evolving nature of data

streams. By applying a fixed window size, the performance of the predictive model is degraded

due to concept drifts. Based on these conditions, it is useful to investigate on variable size

sliding window for observing recent concept changes and the window size can be determined

dynamically based on the amounts of concept drifts that occur within the data streams.

The conflict detection mechanism and assigning the class labels to the cluster in a case of

overlaps of the centroids, particularly when one clusters is passing through another cluster,

such as in 1Csurr dataset. It is beneficial to track the direction and velocity of the clusters and

store it in the summary statistics. This information could be useful in assigning more accurate

class labels to the clusters after the overlaps.

Another research direction is to apply PSDSL in robotics is in the context of autonomous

driving. In this case, the robot or vehicle makes decisions based on a stream of sensor data,

such as camera images and radar data. However, verifying the correctness of these decisions

can be difficult and time-consuming, particularly when it comes to situations that are rare or

unexpected. For example, consider the case where a self-driving car encounters a situation

where the road is blocked by a fallen tree. The vehicle must decide whether to stop or attempt

to navigate around the obstacle. However, verifying the correctness of this decision may

require human review, as it can be difficult to determine the best course of action based solely

on sensor data. PSDSL’s ability to adapt learn from past data and improve the accuracy of the

robot's decision-making process. For example, a model could be trained to recognize different

types of obstacles and make decisions based on this information.

Feature engineering is an important aspect of DSM that involves identifying and extracting

relevant features from the data to build accurate predictive models. This aspect must be

explored in the future because the feature engineering helps to reduce the dimensionality of

the data, identify the most important features, improve model accuracy, reduce

computational complexity, improve interpretability, and increase the robustness of the

147

predictive models to noise and outliers. Overall, feature engineering is essential in data stream

mining to build more accurate and robust predictive models. It is also worth to investigate

learning on imbalanced data, which refers to the situation where the classes of interest are not

evenly represented in the data, leading to biased models that may not accurately represent

the minority class. Techniques such as oversampling, under sampling, and cost-sensitive

learning can be used to address imbalanced data.

Finally, the research identified potential future directions for research in hyperparameter

tuning for data stream mining. This includes exploring adaptive and online hyperparameter

tuning strategies, developing benchmark datasets that capture realistic streaming scenarios,

and investigating the integration of domain knowledge into the tuning process.

148

6.3 References

[1] Gaber, M. M., Zaslavsky, A., & Krishnaswamy, S. (2005). Mining data streams: a

review. ACM Sigmod Record, 34(2), 18-26, DOI: 10.1145/1083784.1083789

[2] Lukats, D., Berghöfer, E., Stahl, F., Schneider, J., Pieck, D., Idrees, M. M. & Zielinski,

O. (2021, September). Towards Concept Change Detection in Marine Ecosystems.

In OCEANS 2021: San Diego–Porto (pp. 1-10). IEEE. DOI:

10.23919/OCEANS44145.2021.9706015

[3] Vermesan, O., Bahr, R., Ottella, M., Serrano, M., Karlsen, T., Wahlstrøm, T., &

Gamba, M. T. (2020). Internet of robotic things intelligent connectivity and

platforms. Frontiers in Robotics and AI, 7, 104. DOI: 10.3389/frobt.2020.00104

[4] Cambria, E., Li, Y., Xing, F. Z., Poria, S., & Kwok, K. (2020, October). SenticNet 6:

Ensemble application of symbolic and subsymbolic AI for sentiment analysis.

In Proceedings of the 29th ACM international conference on information &

knowledge management (pp. 105-114). DOI: 10.1145/3340531.3412003

[5] Liu, J., Liu, F., & Ansari, N. (2014). Monitoring and analyzing big traffic data of a

large-scale cellular network with Hadoop. IEEE network, 28(4), 32-39. DOI:

10.1109/MNET.2014.6863129

[6] Dal Pozzolo, A., Boracchi, G., Caelen, O., Alippi, C., & Bontempi, G. (2015, July).

Credit card fraud detection and concept-drift adaptation with delayed supervised

information. In 2015 international joint conference on Neural networks (IJCNN)

(pp. 1-8). IEEE. DOI: 10.1109/IJCNN.2015.7280527

[7] Watkins, L., Beck, S., Zook, J., Buczak, A., Chavis, J., Robinson, W. H. & Mishra, S.

(2017, January). Using semi-supervised machine learning to address the big data

problem in DNS networks. In 2017 IEEE 7th Annual Computing and Communication

Workshop and Conference (CCWC) (pp. 1-6). IEEE. DOI:

10.1109/CCWC.2017.7868376

[8] Chernbumroong, S., Atkins, A. S., & Yu, H. (2011, September). Activity classification

using a single wrist-worn accelerometer. In 2011 5th International Conference on

Software, Knowledge Information, Industrial Management and Applications

(SKIMA) Proceedings (pp. 1-6). IEEE. DOI: 10.1109/SKIMA.2011.6089975

[9] Le, T., Stahl, F., Gaber, M. M., Gomes, J. B., & Di Fatta, G. (2017). On expressiveness

and uncertainty awareness in rule-based classification for data

streams. Neurocomputing, 265, 127-141. DOI: 10.1016/j.neucom.2017.05.081

[10] Kolter, J. Z., & Maloof, M. A. (2007). Dynamic weighted majority: An ensemble

method for drifting concepts. The Journal of Machine Learning Research, 8, 2755-

2790. DOI: 10.1109/ICDM.2003.1250911

[11] Littlestone, N., & Warmuth, M. K. (1994). The weighted majority algorithm.

https://doi.org/10.1145/1083784.1083789
http://dx.doi.org/10.23919/OCEANS44145.2021.9706015
https://doi.org/10.3389%2Ffrobt.2020.00104
https://doi.org/10.1145/3340531.3412003
https://doi.org/10.1109/MNET.2014.6863129
https://doi.org/10.1109/IJCNN.2015.7280527
https://doi.org/10.1109/IJCNN.2015.7280527
https://doi.org/10.1109/IJCNN.2015.7280527
https://doi.org/10.1109/IJCNN.2015.7280527
https://doi.org/10.1109/IJCNN.2015.7280527
https://ieeexplore.ieee.org/abstract/document/6089975
https://doi.org/10.1016/j.neucom.2017.05.081

149

Information and computation, 108(2), 212-261. DOI: 10.1006/inco.1994.1009

[12] Zubaroğlu, A., & Atalay, V. (2020). Data Stream Clustering: A Review. arXiv preprint

arXiv:2007.10781.

[13] Nguyen, H. L., Woon, Y. K., & Ng, W. K. (2015). A survey on data stream clustering

and classification. Knowledge and information systems, 45(3), 535-569. DOI:

10.1007/s10115-014-0808-1

[14] Silva, J. A., Faria, E. R., Barros, R. C., Hruschka, E. R., Carvalho, A. C. D., & Gama, J.

(2013). Data stream clustering: A survey. ACM Computing Surveys (CSUR), 46(1),

1-31. DOI: 10.1145/2522968.2522981

[15] Göpfert, C., Ben-David, S., Bousquet, O., Gelly, S., Tolstikhin, I., & Urner, R. (2019,

June). When can unlabelled data improve the learning rate? In Conference on

Learning Theory (pp. 1500-1518). PMLR. DOI:

10.48550/arXiv.1905.11866

[16] Urner, R., Shalev-Shwartz, S., & Ben-David, S. (2011, January). Access to unlabelled

data can speed up prediction time. In ICML.

[17] Urner, R., & Ben-David, S. (2013, December). Probabilistic lipschitzness a niceness

assumption for deterministic labels. In Learning Faster from Easy Data-Workshop@

NIPS (Vol. 2, p. 1). https://arxiv.org/pdf/2205.09817.pdf

[18] Idrees, M. M., Minku, L. L., Stahl, F., & Badii, A. (2020a). A heterogeneous online

learning ensemble for NSEs. Knowledge-Based Systems, 188, 104983. DOI:

10.1016/j.knosys.2019.104983

[19] Ditzler, G., Roveri, M., Alippi, C., & Polikar, R. (2015). Learning in nonstationary

environments: A survey. IEEE Computational Intelligence Magazine, 10(4), 12-25.

DOI: 10.1109/MCI.2015.2471196

[20] Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M., & Bouchachia, A. (2014). A survey

on concept drift adaptation. ACM computing surveys (CSUR), 46(4), 1-37. DOI:

10.1145/2523813

[21] Cabral, G. G., Minku, L. L., Shihab, E., & Mujahid, S. (2019, May). Class imbalance

evolution and verification latency in just-in-time software defect prediction. In 2019

IEEE/ACM 41st International Conference on Software Engineering (ICSE) (pp. 666-

676). IEEE. DOI: 10.1109/ICSE.2019.00076

[22] Dyer, K. B., Capo, R., & Polikar, R. (2013). Compose: A semisupervised learning

framework for initially labelled nonstationary streaming data. IEEE transactions on

neural networks and learning systems, 25(1), 12-26. DOI:

10.1109/TNNLS.2013.2277712

[23] Marrs, G. R., Hickey, R. J., & Black, M. M. (2010, September). The impact of latency

on online classification learning with concept drift. In International Conference on

https://doi.org/10.1007/s10115-014-0808-1
https://doi.org/10.1145/2522968.2522981
https://doi.org/10.48550/arXiv.1905.11866
https://doi.org/10.48550/arXiv.1905.11866
https://arxiv.org/pdf/2205.09817.pdf
https://doi.org/10.1016/j.knosys.2019.104983
https://doi.org/10.1016/j.knosys.2019.104983
https://doi.org/10.1016/j.knosys.2019.104983
https://doi.org/10.1109/MCI.2015.2471196
https://doi.org/10.1109/MCI.2015.2471196
https://doi.org/10.1145/2523813
https://doi.org/10.1145/2523813
https://doi.org/10.1145/2523813
https://doi.org/10.1109/ICSE.2019.00076
https://doi.org/10.1109/ICSE.2019.00076
https://doi.org/10.1109/ICSE.2019.00076
https://doi.org/10.1109/ICSE.2019.00076

150

Knowledge Science, Engineering and Management (pp. 459-469). Springer, Berlin,

Heidelberg.DOI: 10.1007/978-3-642-15280-1_42

[24] Razavi-Far, R., Hallaji, E., Saif, M., & Ditzler, G. (2018). A novelty detector and

extreme verification latency model for nonstationary environments. IEEE

Transactions on Industrial Electronics, 66(1), 561-570. IEEE. DOI:

10.1109/TIE.2018.2826477.

[25] Bilbao, M. N., & Del Ser, J. (2018). Concept Tracking and Adaptation for Drifting

Data Streams under Extreme Verification Latency. Intelligent Distributed

Computing XII, 798, 11. DOI: 10.1007/978-3-319-99626-4_2

[26] Frederickson, C., & Polikar, R. (2018, July). Resampling Techniques for Learning

Under Extreme Verification Latency with Class Imbalance. In 2018 International

Joint Conference on Neural Networks (IJCNN) (pp. 1-8). IEEE.

[27] Dyer, K. B., & Polikar, R. (2012, June). Semi-supervised learning in initially labelled

Non-Stationary environments with gradual drift. In The 2012 International Joint

Conference on Neural Networks (IJCNN) (pp. 1-9). IEEE.

[28] Suzuki, E., Deguchi, Y., Takayama, D., Takano, S., Scuturici, V. M., & Petit, J. M.

(2013, September). Towards Facilitating the Development of Monitoring Systems

with Low-Cost Autonomous Mobile Robots. In International Workshop on

Information Search, Integration, and Personalization (pp. 57-70). Springer, Cham.

DOI: 10.1007/978-3-319-08732-0_5

[29] Gomes, H. M., Barddal, J. P., Enembreck, F., & Bifet, A. (2017a). A survey on

ensemble learning for data stream classification. ACM Computing Surveys (CSUR),

50(2), 1-36.

[30] Masud, M. M., Woolam, C., Gao, J., Khan, L., Han, J., Hamlen, K. W., & Oza, N. C.

(2012). Facing the reality of data stream classification: coping with scarcity of

labelled data. Knowledge and information systems, 33(1), 213-244.

[31] Souza, V. M., Silva, D. F., Gama, J., & Batista, G. E. (2015a, June). Data stream

classification guided by clustering on nonstationary environments and extreme

verification latency (SCARGC). In Proceedings of the 2015 SIAM International

Conference on Data Mining (pp. 873-881). Society for Industrial and Applied

Mathematics. DOI: 10.1137/1.9781611974010.98.

[32] Spinosa, E. J., de Leon F. de Carvalho, A. P., & Gama, J. (2007, March). Olindda: A

cluster-based approach for detecting novelty and concept drift in data streams.

In Proceedings of the 2007 ACM symposium on Applied computing (pp. 448-452).

DOI: 10.1145/1244002.1244107

[33] MacQueen, J. (1967, June). Some methods for classification and analysis of

multivariate observations. In Proceedings of the fifth Berkeley symposium on

mathematical statistics and probability (Vol. 1, No. 14, pp. 281-297).

https://doi.org/10.1109/TIE.2018.2826477
https://doi.org/10.1109/TIE.2018.2826477
https://doi.org/10.1109/TIE.2018.2826477
https://doi.org/10.1109/TIE.2018.2826477
https://doi.org/10.1007/978-3-319-08732-0_5
http://dx.doi.org/10.1137/1.9781611974010.98
http://dx.doi.org/10.1137/1.9781611974010.98
http://dx.doi.org/10.1137/1.9781611974010.98
http://dx.doi.org/10.1137/1.9781611974010.98
http://dx.doi.org/10.1137/1.9781611974010.98
https://doi.org/10.1145/1244002.1244107

151

[34] Souza, V. M., Silva, D. F., Batista, G. E., & Gama, J. (2015b, December). Classification

of evolving data streams with infinitely delayed labels. In 2015 IEEE 14th

International Conference on Machine Learning and Applications (ICMLA) (pp. 214-

219). IEEE. DOI: 10.1109/ICMLA.2015.174

[35] Krawczyk, B., Minku, L. L., Gama, J., Stefanowski, J., & Woźniak, M. (2017).

Ensemble learning for data stream analysis: A survey. Information Fusion, 37, 132-

156.

[36] Van Rijn, J. N., Holmes, G., Pfahringer, B., & Vanschoren, J. (2015, November).

Having a blast: Meta-learning and heterogeneous ensembles for data streams.

In 2015 IEEE international conference on data mining (pp. 1003-1008). IEEE. DOI:

10.1109/ICDM.2015.55

[37] Stahl, F., Gaber, M. M., Aldridge, P., May, D., Liu, H., Bramer, M., & Philip, S. Y.

(2012). Homogeneous and heterogeneous distributed classification for pocket data

mining. In Transactions on Large-Scale Data-and Knowledge-Centreed Systems V

(pp. 183-205). Springer, Berlin, Heidelberg. DOI: 10.1007/978-3-642-28148-8_8

[38] Rish, I. (2001, August). An empirical study of the naive Bayes classifier. In IJCAI

2001 workshop on empirical methods in artificial intelligence (Vol. 3, No. 22, pp. 41-

46).

[39] Hoeffding, W. (1994). Probability inequalities for sums of bounded random

variables. In The Collected Works of Wassily Hoeffding (pp. 409-426). Springer, New

York, NY.

[40] Fix, E., & Hodges, J. L. (1989). Discriminatory analysis. Nonparametric

discrimination: Consistency properties. International Statistical Review/Revue

Internationale de Statistique, 57(3), 238-247.

[41] Hu, Z., Bodyanskiy, Y. V., Tyshchenko, O. K., & Boiko, O. O. (2018). A neuro-fuzzy

Kohonen network for data stream possibilistic clustering and its online self-learning

procedure. Applied soft computing, 68, 710-718. DOI: 10.1016/j.asoc.2017.09.042

[42] Korycki, Ł., & Krawczyk, B. (2017, May). Combining active learning and self-labelling

for data stream mining. In International Conference on Computer Recognition

Systems (pp. 481-490). Springer, Cham, DOI: 10.1007/978-3-319-59162-9_50

[43] Din, S. U., & Shao, J. (2020). Exploiting evolving micro-clusters for data stream

classification with emerging class detection. Information Sciences, 507, 404-420.

DOI: 10.1016/j.ins.2019.08.050

[44] Naldi, M. C., Ricardo J. C., Eduardo R. H., and Carvalho F., "Efficiency issues of

evolutionary k-means." Applied Soft Computing 11, no. 2 (2011): 1938-1952.

DOI:10.1016/j.asoc.2010.06.010

[45] Yin, Y., Wei, C., Zhang, G., & Li, C. (2012, November). Implementation of Space

Optimized Bisecting K-Means (BKM) Based on Hadoop. In 2012 Ninth Web

https://doi.org/10.1109/ICMLA.2015.174
https://doi.org/10.1007/978-3-642-28148-8_8
https://doi.org/10.1016/j.asoc.2017.09.042
https://doi.org/10.1007/978-3-319-59162-9_50
https://doi.org/10.1016/j.ins.2019.08.050
https://doi.org/10.1016/j.asoc.2010.06.010

152

Information Systems and Applications Conference (pp. 170-175). IEEE. DOI

10.1109/WISA.2012.47

[46] Bifet, A., Holmes, G., Pfahringer, B., Kranen, P., Kremer, H., Jansen, T., & Seidl, T.

(2010, September). Moa: Massive online analysis, a framework for stream

classification and clustering. In Proceedings of the First Workshop on Applications

of Pattern Analysis (pp. 44-50). PMLR. DOI:10.1007/s10994-014-5441-4

[47] Žliobaitė, I. (2011, October). Controlled permutations for testing adaptive classifiers.

In International Conference on Discovery Science (pp. 365-379). Springer, Berlin,

Heidelberg. DOI: 10.1007/978-3-642-24477-3_29

[48] Brzezinski, D., & Stefanowski, J. (2014). Combining block-based and online methods

in learning ensembles from concept drifting data streams. Information Sciences, 265,

50-67. DOI: 10.1016/j.ins.2013.12.011

[49] Demšar, J., (2006). Statistical comparisons of classifiers over multiple datasets. The

Journal of Machine Learning Research, 7, pp.1-30.

[50] Nemenyi P. B. 1963, Distribution-free multiple comparisons. PhD thesis, Princeton

University

[51] Gama, J., Sebastiao, R., & Rodrigues, P. P. (2009, June). Issues in evaluation of

stream learning algorithms. In Proceedings of the 15th ACM SIGKDD international

conference on Knowledge discovery and data mining (pp. 329-338). DOI:

10.1145/1557019.1557060

[52] Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and

psychological measurement, 20(1), 37-46. DOI: 10.1177/001316446002000104

[53] Japkowicz, N., & Shah, M. (2011). Evaluating learning algorithms: a classification

perspective. Cambridge University Press. DOI: 10.1017/CBO9780511921803

[54] Idrees M., Non-Stationary datasets [Online]. Available:

https://github.com/mimm1/Non-Stationary-environments [Accessed May 2022]

[55] Fan, W., Huang, Y. A., Wang, H., & Yu, P. S. (2004, April). Active mining of data

streams. In Proceedings of the 2004 SIAM International Conference on Data

Mining (pp. 457-461). Society for Industrial and Applied Mathematics. DOI:

10.1137/1.9781611972740.46

[56] Zhu, X., Zhang, P., Lin, X., & Shi, Y. (2010). Active learning from stream data using

optimal weight classifier ensemble. IEEE Transactions on Systems, Man, and

Cybernetics, Part B (Cybernetics), 40(6), 1607-1621. DOI:

10.1109/TSMCB.2010.2042445

[57] Zhang, P., Zhu, X., Tan, J., & Guo, L. (2010, December). Classifier and cluster

ensembles for mining concept drifting data streams. In 2010 IEEE International

Conference on Data Mining (pp. 1175-1180). IEEE. DOI: 10.1109/ICDM.2010.125

https://doi.org/10.1109/WISA.2012.47
https://doi.org/10.1007/s10994-014-5441-4
https://doi.org/10.1007/s10994-014-5441-4
https://doi.org/10.1007/s10994-014-5441-4
https://doi.org/10.1007/s10994-014-5441-4
https://doi.org/10.1007/978-3-642-24477-3_29
https://doi.org/10.1016/j.ins.2013.12.011
https://doi.org/10.1016/j.ins.2013.12.011
https://doi.org/10.1016/j.ins.2013.12.011
https://doi.org/10.1177%2F001316446002000104
https://doi.org/10.1017/CBO9780511921803
https://github.com/mimm1/non-stationary-environments
https://doi.org/10.1137/1.9781611972740.46
https://doi.org/10.1109/TSMCB.2010.2042445
https://ieeexplore.ieee.org/abstract/document/5694104

153

[58] Wu, X., Li, P., & Hu, X. (2012). Learning from concept drifting data streams with

unlabelled data. Neurocomputing, 92, 145-155. DOI:

10.1016/j.neucom.2011.08.041

[59] Chapelle, O., Scholkopf, B., & Zien, A. (2009). Semi-supervised learning (chapelle, o.

et al., eds.; 2006)[book reviews]. IEEE Transactions on Neural Networks, 20(3), 542-

542.

[60] Gama, J., Medas, P., Castillo, G., & Rodrigues, P. (2004, September). Learning with

drift detection. In Brazilian symposium on artificial intelligence (pp. 286-295).

Springer, Berlin, Heidelberg. DOI: 10.1007/978-3-540-28645-5_29

[61] Hammoodi, M. S., Stahl, F., & Badii, A. (2018). Real-time feature selection technique

with concept drift detection using adaptive micro-clusters for data stream

mining. Knowledge-Based Systems, 161, 205-239. DOI:

10.1016/j.knosys.2018.08.007

[62] Baena-Garcıa, M., del Campo-Ávila, J., Fidalgo, R., Bifet, A., Gavalda, R., & Morales-

Bueno, R. (2006, September). Early drift detection method. In Fourth international

workshop on knowledge discovery from data streams (Vol. 6, pp. 77-86).

[63] Sun, Y., Tang, K., Zhu, Z., & Yao, X. (2018). Concept drift adaptation by exploiting

historical knowledge. IEEE transactions on neural networks and learning. DOI:

10.1109/TNNLS.2017.2775225.

[64] Street, W. N., & Kim, Y. (2001, August). A streaming ensemble algorithm (SEA) for

large-scale classification. In Proceedings of the seventh ACM SIGKDD international

conference on Knowledge discovery and data mining (pp. 377-382). DOI:

10.1145/502512.502568

[65] Wang, H., Fan, W., Yu, P. S., & Han, J. (2003, August). Mining concept-drifting data

streams using ensemble classifiers. In Proceedings of the ninth ACM SIGKDD

international conference on Knowledge discovery and data mining (pp. 226-235).

[66] Nishida, K., Yamauchi, K., & Omori, T. (2005, June). ACE: Adaptive classifiers-

ensemble system for concept-drifting environments. In International Workshop on

Multiple Classifier Systems (pp. 176-185). Springer, Berlin, Heidelberg. DOI:

10.1109/ICMLC.2007.4370772

[67] Zhu, Y., & Shasha, D. (2002, January). Statstream: Statistical monitoring of

thousands of data streams in real time. In VLDB'02: Proceedings of the 28th

International Conference on Very Large Databases (pp. 358-369). Morgan

Kaufmann.

[68] Bifet, A., & Gavalda, R. (2007, April). Learning from time-changing data with

adaptive windowing. In Proceedings of the 2007 SIAM international conference on

data mining (pp. 443-448). Society for Industrial and Applied Mathematics. DOI:

10.1137/1.9781611972771.42

https://doi.org/10.1016/j.neucom.2011.08.041
https://www.sciencedirect.com/science/article/abs/pii/S0925231212001270
https://doi.org/10.1007/978-3-540-28645-5_29
https://doi.org/10.1016/j.knosys.2018.08.007
https://doi.org/10.1109/TNNLS.2017.2775225
https://doi.org/10.1145/502512.502568

154

[69] Zhou, A., Cao, F., Qian, W., & Jin, C. (2008). Tracking clusters in evolving data

streams over sliding windows. Knowledge and Information Systems, 15(2), 181-214.

DOI: 10.1007/s10115-007-0070-x

[70] Aggarwal, C. C., Philip, S. Y., Han, J., & Wang, J. (2003, January). A framework for

clustering evolving data streams. In Proceedings 2003 VLDB conference (pp. 81-92).

Morgan Kaufmann. DOI: 10.1016/B978-012722442-8/50016-1.

[71] Jiang, N., & Gruenwald, L. (2006). Research issues in data stream association rule

mining. ACM Sigmod Record, 35(1), 14-19. DOI: 10.1145/1121995.1121998

[72] Youn, J., Shim, J., & Lee, S. G. (2018). Efficient data stream clustering with sliding

windows based on locality-sensitive hashing. IEEE Access, 6, 63757-63776. DOI:

10.1109/ACCESS.2018.2877138

[73] Stahl, F., Le, T., Badii, A., & Gaber, M. M. (2021). A Frequent Pattern Conjunction

Heuristic for Rule Generation in Data Streams. Information, 12(1), 24. ISSN 2078-

2489

[74] Umer, M., Polikar, R., & Frederickson, C. (2017, May). Level iw: Learning extreme

verification latency with importance weighting. In 2017 International Joint

Conference on Neural Networks (IJCNN) (pp. 1740-1747). IEEE. DOI:

10.1109/IJCNN.2017.7966061.

[75] Hachiya, H., Sugiyama, M., & Ueda, N. (2012). Importance-weighted least-squares

probabilistic classifier for covariate shift adaptation with application to human

activity recognition. Neurocomputing, 80, 93-101. DOI:

10.1016/j.neucom.2011.09.016

[76] Krempl, G.. "The algorithm APT to classify in concurrence of latency and drift." Intl.

Symposium on Intelligent Data Analysis. Springer, Berlin, Heidelberg, 2011. DOI:

10.1007/978-3-642-24800-9_22

[77] Hosseini, M. J., Gholipour, A., & Beigy, H. (2016). An ensemble of cluster-based

classifiers for semi-supervised classification of Non-Stationary data

streams. Knowledge and information systems, 46(3), 567-597.

[78] Ditzler, G., & Polikar, R. (2011, July). Semi-supervised learning in nonstationary

environments. In The 2011 International Joint Conference on Neural Networks (pp.

2741-2748). IEEE. DOI: 10.1109/IJCNN.2011.6033578

[79] Li, P., Wu, X., & Hu, X. (2010, October). Mining recurring concept drifts with limited

labelled streaming data. In Proceedings of 2nd Asian conference on machine

learning (pp. 241-252). JMLR Workshop and Conference Proceedings. DOI:

10.1145/2089094.2089105

[80] Bertini, J. R., Lopes, A. D. A., & Zhao, L. (2012). Partially labelled data stream

classification with the semi-supervised K-associated graph. Journal of the Brazilian

Computer Society, 18(4), 299-310. DOI: 10.1007/s13173-012-0072-8

https://doi.org/10.1007/s10115-007-0070-x
https://doi.org/10.1016/B978-012722442-8/50016-1
https://doi.org/10.1016/B978-012722442-8/50016-1
https://doi.org/10.1016/B978-012722442-8/50016-1
https://doi.org/10.1145/1121995.1121998
https://doi.org/10.1109/ACCESS.2018.2877138
https://www.sciencedirect.com/science/article/abs/pii/S0925231211006011
http://dx.doi.org/10.1109/IJCNN.2011.6033578
https://doi.org/10.1145/2089094.2089105

155

[81] Umer, M., & Polikar, R. (2020). Comparative analysis of extreme verification latency

learning algorithms. arXiv preprint arXiv:2011.14917.

[82] Woźniak, M., Grana, M., & Corchado, E. (2014). A survey of multiple classifier

systems as hybrid systems. Information Fusion, 16, 3-17. DOI:

10.1016/j.inffus.2013.04.006

[83] Minku, L. L., & Yao, X. (2011). DDD: A new ensemble approach for dealing with

concept drift. IEEE transactions on knowledge and data engineering, 24(4), 619-633.

DOI: 10.1109/TKDE.2011.58

[84] Nishida, K. (2008). Learning and Detecting Concept Drift, PhD thesis, Hokkaido

University, Japan

[85] Kolter, J. Z., & Maloof, M. A. (2005, August). Using additive expert ensembles to cope

with concept drift. In Proceedings of the 22nd international conference on Machine

learning (pp. 449-456). DOI: 10.1145/1102351.1102408

[86] Parker, B. S., Khan, L., & Bifet, A. (2014, December). Incremental ensemble classifier

addressing Non-Stationary fast data streams. In 2014 IEEE International

Conference on Data Mining Workshop (pp. 716-723). IEEE. DOI:

10.1109/ICDMW.2014.116

[87] Nguyen, H. L., Woon, Y. K., Ng, W. K., & Wan, L. (2012, May). Heterogeneous

ensemble for feature drifts in data streams. In Pacific-Asia conference on knowledge

discovery and data mining (pp. 1-12). Springer, Berlin, Heidelberg. DOI:

10.1007/978-3-642-30220-6_1

[88] Rossi, A. L. D., de Leon Ferreira, A. C. P., Soares, C., & De Souza, B. F. (2014).

MetaStream: A meta-learning based method for periodic algorithm selection in time-

changing data. Neurocomputing, 127, 52-64. DOI: 10.1016/j.neucom.2013.05.048

[89] Cheng, W. X., Katuwal, R., Suganthan, P. N., & Qiu, X. (2017). A heterogeneous

ensemble of trees. In 2017 IEEE Symposium Series on Computational Intelligence

(SSCI) (pp. 1-6). IEEE. DOI: 10.1109/SSCI.2017.8285445.

[90] Ho, T. K. (1995, August). Random decision forests. In Proceedings of 3rd

international conference on document analysis and recognition (Vol. 1, pp. 278-282).

IEEE. DOI: 10.1109/ICDAR.1995.598994

[91] Rodriguez, J. J., Kuncheva, L. I., & Alonso, C. J. (2006). Rotation forest: A new

classifier ensemble method. IEEE transactions on pattern analysis and machine

intelligence, 28(10), 1619-1630. DOI: 10.1109/TPAMI.2006.211

[92] Geurts, P., Ernst, D., & Wehenkel, L. (2006). Extremely randomised trees. Machine

learning, 63(1), 3-42. DOI: 10.1007/s10994-006-6226-1

[93] Yu, L., & Liu, H. (2003). Feature selection for high-dimensional data: A fast

correlation-based filter solution. In Proceedings of the 20th international conference

https://doi.org/10.1016/j.inffus.2013.04.006
https://doi.org/10.1145/1102351.1102408
https://doi.org/10.1109/ICDAR.1995.598994
https://doi.org/10.1109/TPAMI.2006.211
https://doi.org/10.1007/s10994-006-6226-1

156

on machine learning (ICML-03) (pp. 856-863).

[94] Barddal, J. P., Gomes, H. M., & Enembreck, F. (2015, November). A survey on feature

drift adaptation. In 2015 IEEE 27th International Conference on Tools with Artificial

Intelligence (ICTAI) (pp. 1053-1060). IEEE. DOI: 10.1016/j.jss.2016.07.005

[95] Yang, L., & Shami, A. (2021). A Lightweight Concept Drift Detection and Adaptation

Framework for IoT Data Streams. DOI: 10.1109/IOTM.0001.2100012

[96] Bayram, B., Köroğlu, B., & Gönen, M. (2020, December). Improving Fraud Detection

and Concept Drift Adaptation in Credit Card Transactions Using Incremental

Gradient Boosting Trees. In 2020 19th IEEE International Conference on Machine

Learning and Applications (ICMLA) (pp. 545-550). IEEE. DOI:

10.1109/ICMLA51294.2020.00091

[97] Sun, Y., Tang, K., Zhu, Z., & Yao, X. (2018). Concept drift adaptation by exploiting

historical knowledge. IEEE transactions on neural networks and learning systems,

29(10), 4822-4832. DOI: 10.1109/TNNLS.2017.2775225

[98] Rodrigues, P. P., Gama, J., & Pedroso, J. P. (2006, April). ODAC: Hierarchical

clustering of time series data streams. In Proceedings of the 2006 SIAM international

conference on data mining (pp. 499-503). Society for Industrial and Applied

Mathematics. DOI: 10.1016/j.patrec.2011.11.022

[99] Silva, A. J., Hruschka, E. R., & Gama, J. (2017). An evolutionary algorithm for

clustering data streams with a variable number of clusters. Expert Systems with

Applications, 67, 228-238. DOI:10.1016/j.eswa.2016.09.020

[100] Mouss, H., Mouss, D., Mouss, N., & Sefouhi, L. (2004, July). Test of page-hinckley,

an approach for fault detection in an agro-alimentary production system. In 2004 5th

Asian Control Conference (IEEE Cat. No. 04EX904) (Vol. 2, pp. 815-818). IEEE.

ISBN:0-7803-8873-9

[101] Williams, S. M., Parry, B. R., & Schlup, M. M. (1992). Quality control: an application

of the cusum. BMJ: British medical journal, 304(6838), 1359. DOI:

10.1136/bmj.304.6838.1359

[102] Namitha K. and G. Santhosh Kumar. 2020. CUSUM Based Concept Drift Detector for

Data Stream Clustering. In Proceedings of the 2020 the 4th International Conference

on Big Data and Internet of Things (BDIOT 2020). Association for Computing

Machinery, New York, NY, USA, 90–95. DOI: 10.1145/3421537.3421548.

[103] Ordonez, C. (2003, June). Clustering binary data streams with k-means. In

Proceedings of the 8th ACM SIGMOD workshop on Research issues in data mining

and knowledge discovery (pp. 12-19).

[104] Ackermann, M. R., Märtens, M., Raupach, C., Swierkot, K., Lammersen, C., & Sohler,

C. (2012). Streamkm++ a clustering algorithm for data streams. Journal of

Experimental Algorithmics (JEA), 17, 2-1. DOI: 10.1145/2133803.2184450

https://doi.org/10.1109/IOTM.0001.2100012
https://doi.org/10.1109/ICMLA51294.2020.00091
https://doi.org/10.1109/TNNLS.2017.2775225
https://doi.org/10.1016/j.patrec.2011.11.022
https://doi.org/10.1136%2Fbmj.304.6838.1359
https://doi.org/10.1145/2133803.2184450

157

[105] O'callaghan, L., Mishra, N., Meyerson, A., Guha, S., & Motwani, R. (2002, February).

Streaming-data algorithms for high-quality clustering. In Proceedings 18th

International Conference on Data Engineering (pp. 685-694). IEEE.

DOI:10.1109/ICDE.2002.994785

[106] Xu, T. S., Chiang, H. D., Liu, G. Y., & Tan, C. W. (2015). Hierarchical K-means method

for clustering large-scale advanced metering infrastructure data. IEEE Transactions

on Power Delivery, 32(2), 609-616. DOI: 10.1109/TPWRD.2015.2479941

[107] Zhang, T., Ramakrishnan, R., & Livny, M. (1996). BIRCH: an efficient data clustering

method for very large databases. ACM sigmod record, 25(2), 103-114. DOI:

10.1145/235968.233324

[108] Karypis, G., Han, E. H., & Kumar, V. (1999). Chameleon: Hierarchical clustering

using dynamic modeling. Computer, 32(8), 68-75. DOI: 10.1109/2.781637

[109] Udommanetanakit, K., Rakthanmanon, T., & Waiyamai, K. (2007, August). E-

stream: Evolution-based technique for stream clustering. In International conference

on advanced data mining and applications (pp. 605-615). Springer, Berlin,

Heidelberg. DOI: 10.1007/978-3-540-73871-8_58

[110] Meesuksabai, W., Kangkachit, T., & Waiyamai, K. (2011, December). Hue-stream:

Evolution-based clustering technique for heterogeneous data streams with

uncertainty. In International Conference on Advanced Data Mining and Applications

(pp. 27-40). Springer, Berlin, Heidelberg. DOI: 10.1007/978-3-642-25856-5_3

[111] Cao, F., Estert, M., Qian, W., & Zhou, A. (2006, April). Density-based clustering over

an evolving data stream with noise. In Proceedings of the 2006 SIAM international

conference on data mining (pp. 328-339). Society for industrial and applied

mathematics. DOI: 10.1137/1.9781611972764.29

[112] Duan L, Xiong D, Lee J, Guo F (2006) A local density based spatial clustering

algorithm with noise. vol 32, pp 4061–4066, DOI 10.1109/ICSMC.2006.384769

[113] Fahy, C., Yang, S., & Gongora, M. (2018). Ant colony stream clustering: A fast density

clustering algorithm for dynamic data streams. IEEE transactions on cybernetics,

49(6), 2215-2228. DOI: 10.1109/TCYB.2018.2822552

[114] Chen, Y., & Tu, L. (2007, August). Density-based clustering for real-time stream data.

In Proceedings of the 13th ACM SIGKDD international conference on Knowledge

discovery and data mining (pp. 133-142). DOI:10.1145/1281192.1281210

[115] Wan, L., Ng, W. K., Dang, X. H., Yu, P. S., & Zhang, K. (2009). Density-based

clustering of data streams at multiple resolutions. ACM Transactions on Knowledge

discovery from Data (TKDD), 3(3), 1-28. DOI: 10.1145/1552303.1552307

[116] Ankerst, M., Breunig, M. M., Kriegel, H. P., & Sander, J. (1999). OPTICS: Ordering

points to identify the clustering structure. ACM Sigmod record, 28(2), 49-60. DOI:

10.1145/304181.304187

https://doi.org/10.1109/ICDE.2002.994785
https://doi.org/10.1109/TPWRD.2015.2479941
https://doi.org/10.1145/235968.233324
https://doi.org/10.1109/2.781637
https://doi.org/10.1007/978-3-540-73871-8_58
https://doi.org/10.1007/978-3-642-25856-5_3
http://dx.doi.org/10.1137/1.9781611972764.29
https://doi.org/10.1109/TCYB.2018.2822552
https://doi.org/10.1145/1281192.1281210
https://doi.org/10.1145/1552303.1552307
https://doi.org/10.1145/304181.304187

158

[117] Tu, Q., Lu, J. F., Yuan, B., Tang, J. B., & Yang, J. Y. (2012). Density-based hierarchical

clustering for streaming data. Pattern Recognition Letters, 33(5), 641-645. DOI:

10.1016/j.patrec.2011.11.022

[118] Dawid, A. P. (1984), The prequential approach. Journal of the Royal Statistical

Society-A, 147:278–292.

[119] Gama J, Sebastião R, Rodrigues PP (2013) On evaluating stream learning algorithms.

Mach Learn 90(3):317–346. DOI: 10.1007/s10994-012-5320-9

[120] Andrade Silva, J., & Hruschka, E. R. (2011, December). Extending k-means-based

algorithms for evolving data streams with variable number of clusters. In 2011 10th

International Conference on Machine Learning and Applications and Workshops

(Vol. 2, pp. 14-19). IEEE. DOI: 10.1109/ICMLA.2011.67.

[121] Stahl, F., Gabrys, B., Gaber, M. M, and Berendsen, M. (2013) An overview of

interactive visual data mining techniques for knowledge discovery. WIREs: Data

Mining and Knowledge Discovery, Wiley, 3 (4). pp. 239-256. ISSN 1942-4795 DOI:

10.1002/widm.1093

[122] SAS Institute. 2018. Using JMP 14. SAS Institute Inc., USA. ISBN:978-1-63526-541-

5

[123] Holmes, G., Donkin, A., & Witten, I. H. (1994, November). Weka: A machine learning

workbench. In Proceedings of ANZIIS'94-Australian New Zealnd Intelligent

Information Systems Conference (pp. 357-361). IEEE.

[124] Schütze, H., Manning, C. D., & Raghavan, P. (2008). Introduction to information

retrieval (Vol. 39, pp. 234-65). Cambridge: Cambridge University Press.

[125] Souza V. M. et al., Non-stationary datasets archive, [Online]. Available:

https://sites.google.com/site/nonstationaryarchive/datasets [Accessed June 13,

2022].

[126] Reddy, H. V., Agrawal, P., & Raju, S. V. (2013, August). Data labelling method based

on cluster purity using relative rough entropy for categorical data clustering. In 2013

International Conference on Advances in Computing, Communications and

Informatics (ICACCI) (pp. 500-506). IEEE. DOI: 10.1109/ICACCI.2013.6637222

[127] Žliobaitė, I., Bifet, A., Read, J., Pfahringer, B., & Holmes, G. (2015). Evaluation

methods and decision theory for classification of streaming data with temporal

dependence. Machine Learning, 98(3), 455-482. DOI: 10.1007/s10994-014-5441-4

[128] Bodik, P., Hong, W., Guestrin, C., Madden, S., Paskin, M., & Thibaux, R. (2004). Intel

lab data. Online dataset, 90. http://db.csail.mit.edu/labdata/labdata.html

[Accessed May 2018]

[129] The Apache SpamAssasin Project - http://spamassassin.apache.org/ [Accessed May

2018]

https://doi.org/10.1016/j.patrec.2011.11.022
https://doi.ieeecomputersociety.org/10.1109/ICMLA.2011.67
https://sites.google.com/site/nonstationaryarchive/datasets
https://doi.org/10.1109/ICACCI.2013.6637222
http://db.csail.mit.edu/labdata/labdata.html
http://spamassassin.apache.org/

159

[130] M. Harries. “Splice-2 comparative evaluation: Electricity pricing". Technical report,

The University of South Wales, 1999.

[131] Massive Online Analysis, datasets https://moa.cms.waikato.ac.nz/datasets/

[Assessed Jan 2019]

[132] Bastian M., Heymann S., Jacomy M. (2009). Gephi: an open source Software for

exploring and manipulating networks. International AAAI Conference on Weblogs

and Social Media

[133] Airport, airline and route data [Online]. Available https://openflights.org/data.html

Retrieved 2018-01-01. [Accessed May 2022]

[134] GitHub - ATISLabs/SCARGC.jl: A Julia implementation of Stream Classification

Algorithm Guided by Clustering – SCARGC [Online]. Available:

https://github.com/ATISLabs/SCARGC.jl

[135] Killourhy, K., & Maxion, R. (2010, September). Why did my detector do that?!.

In International workshop on recent advances in intrusion detection (pp. 256-276).

Springer, Berlin, Heidelberg.

[136] Domingos, P., & Hulten, G. (2003). A general framework for mining massive data

streams. Journal of Computational and Graphical Statistics, 12(4), 945-949.

[137] Haarman, B. C. et al., (2015). Feature-expression heat maps–A new visual method to

explore complex associations between two variable sets. Journal of biomedical

informatics, 53, 156-161.

https://moa.cms.waikato.ac.nz/datasets/
https://gephi.org/publications/gephi-bastian-feb09.pdf
https://gephi.org/publications/gephi-bastian-feb09.pdf
https://gephi.org/publications/gephi-bastian-feb09.pdf
https://openflights.org/data.html%20Retrieved%202018-01-01
https://openflights.org/data.html%20Retrieved%202018-01-01
https://github.com/ATISLabs/SCARGC.jl
https://github.com/ATISLabs/SCARGC.jl
https://github.com/ATISLabs/SCARGC.jl

160

APPENDIX I. DataStream Generation Commands

Massive Online Analysis (MOA) commands to generate drift streams and running
prequential evaluation task on data stream and real-world datasets.

System.out.println("SEA Drift");

DoTask.main("EvaluatePrequential -l (drift.HDWM) -s (ConceptDriftStream -s
(generators.SEAGenerator -f 4) -d (ConceptDriftStream -s (generators.SEAGenerator -f 3) -
d (generators.SEAGenerator -f 2) -p 50000 -w 1) -p 25000 -w 1) -i 100000 -f 1000".split("
"));

System.out.println("STAGGER Drift");

DoTask.main("EvaluatePeriodicHeldOutTest -l (drift.HDWM -p 1) -s (ArffFileStream -f
C:\\test\\Dataset\\Drifts\\stagger.arff) -n 100 -i 120 -f 1".split(" "));

System.out.println("RTREE Recurring Drift");

DoTask.main("EvaluatePrequential -l (drift.HDWM) -s (RecurrentConceptDriftStream -x
10000 -s (generators.RandomTreeGenerator -o 0) -d (generators.RandomTreeGenerator -u
0) -p 25000 -w 1) -i 100000 -f 1000".split(" "));

System.out.println("LED");

DoTask.main("EvaluatePrequential -l drift.HDWM -s (ConceptDriftStream -s
generators.LEDGenerator -d (generators.LEDGeneratorDrift -d 7) -p 50000) -i 100000 -f
1000".split(" "));

System.out.println("Wave Drift");

DoTask.main("EvaluatePrequential -l drift.HDWM -s (ConceptDriftStream -s
generators.WaveformGenerator -d (generators.WaveformGeneratorDrift -d 20) -p 50000 -w
1) -i 100000 -f 1000".split(" "));

System.out.println("Hyperplane Incremental Drift");

DoTask.main("EvaluatePrequential -l (drift.HDWM) -s (generators.HyperplaneGenerator -
k 10 -t 0.01) -i 100000 -f 1000".split(" "));

System.out.println("SEA Mixed Drift");

DoTask.main("EvaluatePrequential -l (drift.HDWM) -s (ConceptDriftStream -s
(generators.SEAGenerator -f 2) -d (ConceptDriftStream -s (generators.SEAGenerator -f 3) -
d (generators.SEAGenerator -f 4) -p 50000 -w 1) -p 25000 -w 10000) -i 100000 -f
1000".split(" "));

System.out.println("RandomRBF");

DoTask.main("EvaluatePrequential -l (drift.HDWM) -s
(clustering.RandomRBFGeneratorEvents -n) -i 100000 -f 1000".split(" "));

161

Real-world Experiments

System.out.println("Electric");

DoTask.main("EvaluatePrequential -l (drift.HDWM) -s (ArffFileStream -f
C:\\test\\Dataset\\Drifts\\elec.arff) -f 500".split(" "));

System.out.println("Spam email");

DoTask.main("EvaluatePrequential -l (drift.HDWM) -s (ArffFileStream -f
C:\\test\\Dataset\\Drifts\\spam_data.arff) -i 5000 -f 100".split(" "));

System.out.println("Sensor");

DoTask.main("EvaluatePrequential -l (drift.HDWM) -s (ArffFileStream -f
C:\\test\\Dataset\\Drifts\\sensor.arff) -i 100000 -f 1000".split(" "));

System.out.println("covtypeNorm.arff");

DoTask.main("EvaluatePrequential -l (drift.HDWM -p 5) -s (ArffFileStream -f
C:\\test\\Dataset\\Drifts\\covtypeNorm.arff) -i 100000 -f 1000".split(" "));

162

APPENDIX II. Non-Stationary Dataset

MOA commands to Execute EVL prequential evaluation task on non-stationary datasets,
real-time data streams and real-world datasets.

1CSurr: EvaluateEVLPrequential -l (moa.labelscarcity.PSDSL -q (clustream.Clustream -h
100 -k 49)) -s (ArffFileStream -f C:\\1CSurr.arff) -r 50 -i 55000 -f 300

1CDT: EvaluateEVLPrequential -l (moa.labelscarcity.PSDSL -q (clustream.Clustream -h
200 -k 49)) -s (ArffFileStream -f C:\\1CDT.arff) -i 16000 -f 300.

1CHT: EvaluateEVLPrequential -l (moa.labelscarcity.PSDSL -q (clustream.Clustream -h
300 -k 49)) -s (ArffFileStream -f C:\\1CHT.arff) -i 16000 -f 300.

2CDT: EvaluateEVLPrequential -l (moa.labelscarcity.PSDSL -q (clustream.Clustream -h
100 -k 49)) -s (ArffFileStream -f C:\\2CDT.arff) -i 16000 -f 300.

2CHT: EvaluateEVLPrequential -l (moa.labelscarcity.PSDSL -q (clustream.Clustream -h
100 -k 49)) -s (ArffFileStream -f C:\\2CHT.arff) -i 16000 -f 300.

4CE1CF: EvaluateEVLPrequential -l (moa.labelscarcity.PSDSL -q (clustream.Clustream -h
100 -k 49)) -s (ArffFileStream -f C:\\4CE1CF.arff) -i 173000 -f 300.

4CR: EvaluateEVLPrequential -l (moa.labelscarcity.PSDSL -q (clustream.Clustream -h 100
-k 49)) -s (ArffFileStream -f C:\\4CR.arff) -i 144400 -f 300.

4CRE-V1: EvaluateEVLPrequential -l (moa.labelscarcity.PSDSL -q (clustream.Clustream -
h 100)) -s (ArffFileStream -f C:\\4CRE-V1.arff) -i 125000 -f 300.

4CRE-V2: EvaluateEVLPrequential -l (moa.labelscarcity.PSDSL -q (clustream.Clustream -
h 100 -k 49)) -s (ArffFileStream -f C:\\4CRE-V2.arff) -i 183000 -f 300.

5CVT: EvaluateEVLPrequential -l (moa.labelscarcity.PSDSL -q (clustream.Clustream -h
100 -k 49)) -s (ArffFileStream -f C:\\5CVT.arff) -i 24000 -f 300.

FG_2C_2D: EvaluateEVLPrequential -l (moa.labelscarcity.PSDSL -q
(clustream.Clustream -h 100 -k 49)) -s (ArffFileStream -f C:\\FG_2C_2D.arff) -i 100000 -f
300.

GEARS_2C_2D: EvaluateEVLPrequential -l (moa.labelscarcity.PSDSL -q
(clustream.Clustream -h 100 -k 49)) -s (ArffFileStream -f C:\\GEARS_2C_2D.arff) -i
200000 -f 300.

MG_2C_2D: EvaluateEVLPrequential -l (moa.labelscarcity.PSDSL -q
(clustream.Clustream -h 100 -k 49)) -s (ArffFileStream -f C:\\MG_2C_2D.arff) -i 200000 -f
300.

UG_2C_2D: EvaluateEVLPrequential -l (moa.labelscarcity.PSDSL -q
(clustream.Clustream -h 100 -k 49)) -s (ArffFileStream -f C:\\UG_2C_2D.arff) -i 200000 -f
300.

UG_2C_3D: EvaluateEVLPrequential -l (moa.labelscarcity.PSDSL -q
(clustream.Clustream -h 100 -k 49)) -s (ArffFileStream -f C:\\UG_2C_3D.arff) -i 200000 -f
300.

163

UG_2C_5D: EvaluateEVLPrequential -l (moa.labelscarcity.PSDSL -q
(clustream.Clustream -h 100 -k 49)) -s (ArffFileStream -f C:\\UG_2C_5D.arff) -i 200000 -f
300.

MOA Data Streams

SEA_Sudden: EvaluateEVLPrequential -l moa.labelscarcity.PSDSL -s (ArffFileStream -f
C:\\SEA_Sudden.arff) -r 1000 -i 2000 -f 1000

LED_sudden: EvaluateEVLPrequential -l moa.labelscarcity.PSDSL -s (ArffFileStream -f
C:\\LED_sudden.arff) -r 1000 -i 2000 -f 1000

RBF_Gradual: EvaluateEVLPrequential -l moa.labelscarcity.PSDSL -s (ArffFileStream -f
C:\\RBF_Gradual.arff) -r 1000 -i 2000 -f 1000

HyperIncremental: EvaluateEVLPrequential -l moa.labelscarcity.PSDSL -s
(ArffFileStream -f C:\\HyperIncremental.arff) -r 1000 -i 2000 -f 1000

Random Trees Recurring Drift: EvaluateEVLPrequential -l moa.labelscarcity.PSDSL -s
(ArffFileStream -f (C:\\Random Trees Recurring Drift.arff)) -r 1000 -i 2000 -f 1000

SEA_NoDrift: EvaluateEVLPrequential -l moa.labelscarcity.PSDSL -s (ArffFileStream -f
C:\\SEA_NoDrift.arff) -r 1000 -i 2000 -f 1000

LED_NoDrift: EvaluateEVLPrequential -l moa.labelscarcity.PSDSL -s (ArffFileStream -f
C:\\LED_NoDrift.arff) -r 1000 -i 2000 -f 1000

Hyperplane_NoDrift: EvaluateEVLPrequential -l moa.labelscarcity.PSDSL -s
(ArffFileStream -f C:\\Hyper_NoDrift.arff) -r 1000 -i 2000 -f 1000

RBF_NoDrift: EvaluateEVLPrequential -l moa.labelscarcity.PSDSL -s (ArffFileStream -f
C:\\RBF_NoDrift.arff) -r 1000 -i 2000 -f 1000

Wave_NoDrift: EvaluateEVLPrequential -l moa.labelscarcity.PSDSL -s (ArffFileStream -f
C:\\Wave_NoDrift.arff) -r 1000 -i 2000 -f 1000

Real-world Dataset

Keystroke: EvaluateEVLPrequential -l (moa.labelscarcity.PSDSL -q (clustream.Clustream
-h 100 - k 149)) -s (ArffFileStream -f C:\\keystroke.arff) -e
(WindowClassificationPerformanceEvaluator -w 150) -r 150 -i 55000 -f 150

164

APPENDIX III. Source code for Train Algorithms

Algorithm 1: Source code to train classifier and clusters on input labelled examples,

predict the pseudo-codes for unlabelled examples and re-train the classifier. Output is

trained HDWM classifier.

/**
Author: Mobin M. Idrees
*/
public void trainOnInstanceImpl(Instance inst) {
 this.epochs++;
 double[] Pr_cluster = new double[num_classes];
 DataPoint point0 = new DataPoint(epochs);
 while(poolData.size() >= batch_size)
 poolData.removeFirst();
 while(labeledData.size() >= batch_size)
 labeledData.removeFirst();
 if(epochs <= trainSize) // Labeled examples arrive
 {
 labeledData.add(point0);
 Train(HDWM,point0)
 }
 else { // unlabeled examples arrive
 if(prelabelingstate == 0) {
 Pr_cluster = knnClassification(labeledData,inst);
 Instance labelinst= InstancePreLabeling(Pr_cluster,inst);
 DataPoint labelpoint = new DataPoint(labelinst, epochs);
 poolData.add(labelpoint);
 }
 else {
 DataPoint labelpoint = new DataPoint(epochs);
 poolData.add(labelpoint);
 }
 }
 if (epochs == trainSize) // Build centroid using labeled data
 Centroids = findCentroids(labeledData); //Algorithm 5
 if (testepochs % batch_size == 0 && epochs > trainSize) {
 Clustering tempCentroids = Kmean(poolData);
 Clustering intermed= findLabelForCentroids(Centroids, tempCentroids);
//Algorithm 6
 Centroids = (Clustering) intermed.copy();
 FindLabels(poolData,intermed,Centroids); //Algorithm 3
 }
 Train(HDWM,poolData);
}

165

Algorithm 2: Predictor for Streaming Data with Scarce Labels (PSDSL).

/**
Author: Mobin M. Idrees
*/
public void trainOnInstanceImpl(Instance inst) {
 this.epochs++;
 Initialize(inst);
 if(this.epochs <= trainSize)
 DetermineSelfLearningState(inst);
 if (epochs == batch_size)
 this.bestseed = bestseed();
 if (epochs == trainSize) {
 FindBestK(inst);
 double acc_micro_count = 0;
 double acc_micro = 0;
 MicroLabeling(labeledData,Centroids);
 Clustering kmean = findCentroids(labeledData);
 kmean = MobinKmean(kmean,labeledData,this.K);
 MicroLabeling(labeledData,kmean);
 for(int i = 0; i < labeledData.size(); i++) {
 double[] Pr_micro =
getClusterWeightedVote(Centroids,labeledData.get(i));
 if(Utils.maxIndex(Pr_micro) == labeledData.get(i).classValue())
 acc_micro_count++;
 acc_micro = ((double)acc_micro_count/trainSize);
 }
 if(acc_micro > PurityThreshold.getValue()){
 if((this.microPurity+this.microFP) >
(this.kMEAN_Purity+this.kMEAN_FP)){
 MicroLabeling(labeledData,Centroids);
 System.out.printf(" micro ");
 microLearning = true;
 }
 else
 {
 System.out.printf(" CGC ");
 CGC = true;
 if(num_classes == this.K) {
 Centroids = findCentroids(labeledData);
 }
 else
 {
 Clustering tempClustering =
findCentroids(labeledData);
 Centroids =
MobinKmean(tempClustering,labeledData,this.K);
 MicroLabeling(labeledData,Centroids);
 }
 }
 prelableing.setChosenIndex(1);
 foundClustering.clear();
 foundClustering.add(Centroids);
 }
 else
 {
 System.out.printf(" SELF ");
 double preAccCLA =
this.prelabelearner[this.bestseed].evaluator.getFractionCorrectlyClassified()*100;
 double seedAccCLA =
this.seedlearner[this.bestseed].evaluator.getFractionCorrectlyClassified()*100;

166

 if(preAccCLA > seedAccCLA) {
 prelableing.setChosenIndex(1);
 selfLearning = true;
 }
 else {
 prelableing.setChosenIndex(0); // do not apply prelabeling
 selfLearning = false;
 }
 }
 }
 if (testepochs % batch_size == 0 && epochs > trainSize) {
 if(microLearning == true || CGC == true) {
 microlearning(inst);
 labeledData.clear();
 labeledData.addAll(poolData);
 correctlabelAssigned = 0;
 if(prelableing.getChosenIndex() == 1)
 for(int i = 0; i < labeledData.size(); i++) {

 labeledData.get(i).setClassValue(newLabeledData[i]);
 // train classifiers

 this.seedlearner[this.bestseed].trainOnInstance(labeledData.get(i));
 if(labeledData.get(i).classValue() ==
labeledData.get(i).getTrueLabel())
 correctlabelAssigned++;
 correctlabelAssignedRatio =
((double)correctlabelAssigned/batch_size)*100;
 }
 foundClustering.clear();
 foundClustering.add(Centroids);
 }
 poolData.clear();
 }
}

Algorithm 3: Heterogeneous Dynamic Weighted Majority (HDWM) classifier.

public void trainOnInstanceImpl(Instance inst) {
 this.epochs++;
 double[] Pr = new double[inst.numClasses()];
 bestLearnerIndex = 0;
 double maxWeight = 0.0;
 double weakestExpertWeight = 1.0;
 int weakestExpertIndex = -1;
 boolean prediction = false;
 boolean driftstate = false ;
 // Loop over seeds
 for (int i = 0; i < this.experts.size(); i++) {
 boolean deleted = false;
 double[] pr = this.experts.get(i).getVotesForInstance(inst);
 int yHat = Utils.maxIndex(pr);
 if(this.epochs % this.periodOption.getValue() == 0)
 {
 if ((yHat != (int) inst.classValue()))
 this.weights.set(i, this.weights.get(i) * this.betaOption.getValue());
 }
 // delete learner's that has weight below theta and that does not belong
to seed experts
 if (weights.get(i) < this.thetaOption.getValue() && i > bagSize

167

 experts.remove(i);
 weights.remove(i);
 ddm.remove(i);
 deleted = true;
 }

 // do not take prediction and do not add weight if the learner is deleted
 if(!deleted){
 Pr[yHat] += this.weights.get(i);
 maxWeight = Math.max(maxWeight, this.weights.get(i));
 if (this.weights.get(i) < weakestExpertWeight && i > bagSize) {
 weakestExpertIndex = i;
 weakestExpertWeight = weights.get(i);
 }
 if ((yHat != (int) inst.classValue()))
 prediction = false;
 else
 prediction = true;
 this.ddm.get(i).input(prediction ? 0.0 : 1.0);
 if (this.ddm.get(i).getChange()) {
 // numberOfDrifts++;
 driftstate = true;
 }
 if (this.ddm.get(i).getWarningZone())
 for (int j = 0; j < experts.size(); j++)
 this.experts.get(j).trainOnInstance(inst);
 } // deleted
 }
 //Active Drift
 if (driftstate ==true && this.epochs % this.periodOption.getValue() == 0)
 { //
 removeWeakestLearner(weakestExpertIndex);
 int index = getIndexOfMin(weights);
 this.weights.set(index, 0.5);
 }
 if (this.epochs % this.periodOption.getValue() == 0) {
 //Global Prediction
 int yHat = Utils.maxIndex(Pr);
 if (yHat != (int) inst.classValue())
 prediction = false;
 else
 prediction = true;
 driftDetectionGlobal.input(prediction ? 0.0 : 1.0);
 if (driftDetectionGlobal.getChange())
 numberOfDrifts++;
 if (driftDetectionGlobal.getWarningZone())
 numberOfWarning++;
 scaleWeights(maxWeight);
 if (yHat != (int) inst.classValue()) {
 if (experts.size() >= this.maxexpertsOption.getValue() && experts.size() >
bagSize) {
 removeWeakestLearner(weakestExpertIndex);
 }
 // add new learner when Global wrong prediction is detected
 addLearner();
 }
 }
 for (Classifier expert : this.experts) {
 expert.trainOnInstance(inst);
 }

168

Algorithm 4: Source code to predict class label for a test example. Inputs is test example

data Point, Output is predictions for each class.

/**
 Author: Mobin M. Idrees
*/

public double[] getVotesForInstance(Instance inst) {
 double[] Pr_cluster = new double[num_classes];
 if (this.trainingWeightSeenByModel > 0.0)
 Pr_cluster = knnClassification(labeledData,inst);
 testepochs++;
 return Pr_cluster;
 }

Algorithm 5: Source code to determine class labels for unlabelled examples stored in a

pool. Inputs is unlabelled data Point, previous and current centroids. Output is labelled

data points.

/**

 Author: Mobin M. Idrees

*/

private void FindLabels(points, Clustering intermed, Clustering centroids) {

 double[] Pr_cluster;

 labeledData.clear();

 for (int i = 0; i < points.size(); i++) {

 Pr_cluster = getknnClassification(points.get(i));

 Instance inst= InstancePreLabeling(Pr_cluster,points.get(i));

 labeledData.add((DataPoint) inst);

 }

}

Algorithm 6: Source code to determine nearest cluster by using K-Nearest Neighbour

algorithm. Inputs is unlabeled dataPoint. Output is nearest centroids for the data point.

/**
Author: Mobin M. Idrees
*/
private double[] getknnClassification(DataPoint dataPoint) {
 double[] Pr_cluster = new double[num_classes];
 SphereCluster Kernel = null;
 SphereCluster closestKernel = null;
 for (int i = 0; i < foundClustering.size(); i++) {
 Clustering c = foundClustering.get(i)
 double minDistance = Double.MAX_VALUE;
 for (int j = 0; j < c.size(); j++) {
 Kernel = (SphereCluster) c.get(j);

169

 double distance = Kernel.getCenterDistance(dataPoint);
 if (distance < minDistance) {
 minDistance = distance;
 closestKernel=Kernel;
 }
 }
 }
 if(closestKernel != null) {
 double yHat_cluster = closestKernel.getId();
 if(yHat_cluster != -1)
 Pr_cluster[(int) yHat_cluster] += 1;
 }
 return Pr_cluster;
}

Algorithm 7: Source code to generate ground truth clusters by using initial labelled data.

Inputs are labelled data. Output is ground truth centroids.

/**
 Author: Mobin M. Idrees

public Clustering findCentroids(points){
 HashMap<Integer, Integer> labelMap = classValues(points);
 num_classes = labelMap.size();
 num_Attributes = points.get(0).dataset().numAttributes()-1;
 Attribute classLabel = points.get(0).dataset().classAttribute();
 num_classes = labelMap.size();
 sorted_points = new ArrayList[num_classes];
 oldcenters = new ArrayList[num_classes];
 for (int i = 0; i < num_classes; i++) {
 sorted_points[i] = new ArrayList<Instance>();
 oldcenters[i] = new ArrayList<Double>();
 }
 for (Instance point : points) {
 int clusterid = (int)point.classValue();
 sorted_points[labelMap.get(clusterid)].add((Instance)point);
 }
 clusters = new AutoExpandVector<Cluster>();
 for (int i = 0; i < num_classes; i++) {
 if(!sorted_points[i].isEmpty()) {
 oldcenters[i].addAll(getCentroids(sorted_points[i])) ;
 SphereCluster s = new SphereCluster();
 double[] cent = new double[oldcenters[i].size()];
 for (int j = 0; j < oldcenters[i].size(); j++)
 cent[j] = oldcenters[i].get(j).doubleValue();
 s.setCenter(cent);
 s.setId(sorted_points[i].get(0).classValue());
 s.setGroundTruth(sorted_points[i].get(0).classValue());
 clusters.add(s);
 }
 }
return new Clustering(this.clusters);

170

Algorithm 8: Source code to determine label for current centroid. Inputs are previous

and current centroids. Output labelled centroids.

/**
Author: Mobin M. Idrees
*/

private Clustering findLabelForCentroids(Clustering gtCentroids, Clustering
tempCurrentCentroids) {
 AutoExpandVector<Cluster> interm = new AutoExpandVector<Cluster>() ;
 double[] cent = new double[this.num_Attributes];
 double[] gtLabels = new double[tempCurrentCentroids.size()];
 for(int i =0; i < tempCurrentCentroids.size(); i++) {
 int closestCluster = 0;
 double minDistance = Double.MAX_VALUE;
 double distances;
 int bestPoint = 0;
 for (int j=0; j< tempCurrentCentroids.size(); j++){
 distances = distance(gtCentroids.get(i).getCenter(),
tempCurrentCentroids.get(j).getCenter());
 if (distances < minDistance) {
 minDistance = distances ;
 bestPoint = j;
 }
 }
 gtLabels[i] = bestPoint;
 double[] c = gtCentroids.get(i).getCenter();
 double[] t = tempCurrentCentroids.get(bestPoint).getCenter();
 for (int j=0; j< cent.length; j++){
 ArrayList<Double> temp_points = (ArrayList<Double>) new ArrayList();
 temp_points.add(c[j]);
 temp_points.add(t[j]);
 cent[j] = median(temp_points);
 }
 interm.add((Cluster) new SphereCluster(cent,0).copy());
 interm.get(i).setGroundTruth(bestPoint);
 interm.get(i).setId(bestPoint);
 tempCurrentCentroids.get(i).setGroundTruth(bestPoint);
 tempCurrentCentroids.get(i).setId(bestPoint);
 } // end iterate macro
 return new Clustering (interm);
}

171

APPENDIX IV. Source code for SSL Periodic Holdout Test

Algorithm 1: Source code for evaluating label scarcity classifier on a stream by periodically

testing on a holdout set.

/**
 Author: Mobin M. Idrees
*/
public class EvaluateSSLPeriodicHeldOut extends SSLMainTask {
 // Training Begin
 while (instancesProcessed < this.trainSizeOption.getValue()) {
 //batch or chunk loop
 while (instancesProcessed < instancesTarget && stream.hasMoreInstances() == true)
{
 InduceLabelScarcity(scarsetrainInst,instancesProcessed);
 SSLearner.trainOnInstance((Example) scarsetrainInst);
 if (monitor.resultVisualRequested())
 visualizer.drawpoints(scarsetrainInst,instancesProcessed);
 // End of batch or chunk loop
 pointarray0=SSLearner.getCluster();
 gtClustering0 = SSLearner.gtClustering0(pointarray0);
 macro0 = SSLearner.gtmacro0(gtClustering0);
 evalClustering0 = macro0;
 evaluateClustering(evalClustering0, gtClustering0, pointarray0);
 visualizer.drawClusterings(SSLearner);
 }
 // Testing Begin
 double[] prediction = SSLearner.getVotesForInstance(testInst);
 evaluator.addResult(testInst, prediction);
 }

Algorithm 2: Source code for inducing label scarcity on a stream, input is labelled

example from data stream and time step. Output is unlabelled example

protected void InduceLabelScarcity(Instance inst, long epochs) {
Instance inst = inst.getData();
prob = Math.random()%100;
if (prob >= (double) this.m_dUlRate.getValue()/100){
 inst.setScarceLabel(false);
else {
 inst.setScarceLabel(true);
 unLabeledCount++;
}

