
 
i 

 

 

 

 

Online Semi-Supervised Learning in  

Non-Stationary Environments  
 

 

 

 

By: 

Mobin M Idrees 

 

Supervisor:  

Dr Frederic Stahl  

 

 

THESIS  

 

Submitted in partial fulfilment of the requirement for the degree of Doctor of Philosophy 

in the Department of Computer Science at the School of Mathematical, Physical and 

Computational Sciences  

(SMPCS) 

 

 

 

 

September 2023 

Reading, UK 

 

  



 
 
 

ii 

 

 

ABSTRACT 

 

  

Existing Data Stream Mining (DSM) algorithms assume the availability of labelled and 

balanced data, immediately or after some delay, to extract worthwhile knowledge from the 

continuous and rapid data streams. However, in many real-world applications such as 

Robotics, Weather Monitoring, Fraud Detection Systems, Cyber Security, and Computer 

Network Traffic Flow, an enormous amount of high-speed data is generated by Internet of 

Things sensors and real-time data on the Internet. Manual labelling of these data streams 

is not practical due to time consumption and the need for domain expertise. Another 

challenge is learning under Non-Stationary Environments (NSEs), which occurs due to 

changes in the data distributions in a set of input variables and/or class labels. The problem 

of Extreme Verification Latency (EVL) under NSEs is referred to as Initially Labelled Non-

Stationary Environment (ILNSE). This is a challenging task because the learning algorithms 

have no access to the true class labels directly when the concept evolves. Several approaches 

exist that deal with NSE and EVL in isolation. However, few algorithms address both issues 

simultaneously. This research directly responds to ILNSE’s challenge in proposing two 

novel algorithms “Predictor for Streaming Data with Scarce Labels” (PSDSL) and 

Heterogeneous Dynamic Weighted Majority (HDWM) classifier. PSDSL is an Online Semi-

Supervised Learning (OSSL) method for real-time DSM and is closely related to label 

scarcity issues in online machine learning.  

The key capabilities of PSDSL include learning from a small amount of labelled data in an 

incremental or online manner and being available to predict at any time. To achieve this, 

PSDSL utilises both labelled and unlabelled data to train the prediction models, meaning it 

continuously learns from incoming data and updates the model as new labelled or 

unlabelled data becomes available over time. Furthermore, it can predict under NSE 

conditions under the scarcity of class labels. PSDSL is built on top of the HDWM classifier, 

which preserves the diversity of the classifiers. PSDSL and HDWM can intelligently switch 

and adapt to the conditions. The PSDSL adapts to learning states between self-learning, 

micro-clustering and CGC, whichever approach is beneficial, based on the characteristics of 

the data stream. HDWM makes use of “seed” learners of different types in an ensemble to 

maintain its diversity. The ensembles are simply the combination of predictive models 

grouped to improve the predictive performance of a single classifier. 

PSDSL is empirically evaluated against COMPOSE, LEVELIW, SCARGC and MClassification 

on benchmarks, NSE datasets as well as Massive Online Analysis (MOA) data streams and 
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real-world datasets. The results showed that PSDSL performed significantly better than 

existing approaches on most real-time data streams including randomised data instances. 

PSDSL performed significantly better than ‘Static’ i.e. the classifier is not updated after it is 

trained with the first examples in the data streams. When applied to MOA-generated data 

streams, PSDSL ranked highest (1.5) and thus performed significantly better than SCARGC, 

while SCARGC performed the same as the Static. PSDSL achieved better average prediction 

accuracies in a short time than SCARGC. 

The HDWM algorithm is evaluated on artificial and real-world data streams against existing 

well-known approaches such as the heterogeneous WMA and the homogeneous Dynamic 

DWM algorithm. The results showed that HDWM performed significantly better than WMA 

and DWM. Also, when recurring concept drifts were present, the predictive performance of 

HDWM showed an improvement over DWM. In both drift and real-world streams, 

significance tests and post hoc comparisons found significant differences between 

algorithms, HDWM performed significantly better than DWM and WMA   when applied to 

MOA data streams and 4 real-world datasets Electric, Spam, Sensor and Forest cover. The 

seeding mechanism and dynamic inclusion of new base learners in the HDWM algorithms 

benefit from the use of both forgetting and retaining the models. The algorithm also 

provides the independence of selecting the optimal base classifier in its ensemble depending 

on the problem. 

A new approach, Envelope-Clustering is introduced to resolve the cluster overlap conflicts 

during the cluster labelling process. In this process, PSDSL transforms the centroids’ 

information of micro-clusters into micro-instances and generates new clusters called 

Envelopes. The nearest envelope clusters assist the conflicted micro-clusters and 

successfully guide the cluster labelling process after the concept drifts in the absence of true 

class labels. PSDSL has been evaluated on real-world problem ‘keystroke dynamics’, and 

the results show that PSDSL achieved higher prediction accuracy (85.3%) and SCARGC 

(81.6%), while the Static (49.0%) significantly degrades the performance due to changes in 

the users typing pattern. Furthermore, the predictive accuracies of SCARGC are found 

highly fluctuated between (41.1% to 81.6%) based on different values of parameter ‘k’ 

(number of clusters), while PSDSL automatically determine the best values for this 

parameter.  
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M3 Modal Mixture Model 

MC Micro-Clusters 

MC-NN Micro-Cluster Nearest Neighbour 

NSE Non-Stationary Environments 

OAUE Online Accuracy Updated Ensemble 

ODAC Online Divisive-Agglomerative Clustering 

OMRk Ordered Multiple Runs of K-Means 

pc’ Expected accuracy of classifier 

PL Pre-Labelling 

SCARGC Stream Classification Algorithm Guided by Clustering 

SEA Streaming Ensemble Algorithm 

SS Squared Sum 

SSL Semi-Supervised Learning 

STEPD Statistical Test of Equal Proportion to Detect concept drift 

TN True Negative 

Todi 
Two Online Classifiers for Learning and Detecting Concept 
Drift 

TP True positive 

VL Verification Latency 

WMA Weighted Majority Algorithm 

1CDT One Class Diagonal Translation 

1CHT One Class Horizontal Translation 

1CSurr One Class Surrounding another Class 

4CE1CF Four class expanding and one class fixed 

4CR Four class rotating 

4CRE Four Classes Rotating with Expansion 

FG_2C_2D Two Bidimensional Classes as Four Gaussians 

UG_2C_2D Two Bidimensional Unimodal Gaussian Classes 

RRBF Random Radial Basis Function 

RTree Random Tree 
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GLOSSARY OF VARIABLES 

Symbol  Description 

τ = {xi ; yi} Initial set of labelled instances x ∈ X; y ∈Y = {1, ..., c}  

τ' Predicted instances  

β Factor to decrease weights, 0 ≤ β < 1 

ρ Period between base learner removal, creation and weight update 

σ ∈ ℝc Sum of weighted prediction for each class 

λ Local predictions from base learners 

δ Active Drift detection Method 

µ Micro-clustering algorithm such as CluStream 

Ф Clustering algorithm such as K-Means 

C t Clusters at time ‘t’  

{1, ..., c} Set of Class Labels 

Ɛ Set of heterogeneous base classifiers 

ƐGT Set of classifiers trained on true class labels 

ƐPL Classifiers train on pseudo-labels 

Α Confidence drift threshold 

Λ Class votes 

K Number of centroids 

Kmax Max limit of centroids 

Ρ Purity threshold 

θ Pool or batch size 

KNN K-Nearest Neighbours clusters 

Q Centroids of clusters C {1…k} 
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Chapter 1 Introduction 

1.1 Research Context and Motivation 

Rapid innovations and elevated human dependency on technology are the key factors in the 

enormous expansion of digital data. The data over the Internet is transmitted in the form of 

an ordered sequence of instances called data streams. Internet of Things (IoT) devices 

generate data streams from monitoring sensors, smart electrical appliances, vehicles, 

robotics, etc., other sources include video streaming data, banking transactions and geo-

location of people and the objective is to extract the worthwhile knowledge from the data 

streams. 

Data Stream Mining (DSM) [1] has emerged in response to the generation of high-speed 

data streams for extracting worthwhile knowledge from the data streams. The application 

of DSM includes monitoring biodiversity and ecosystems [2], Internet of Robotic Things for 

environment exploration [3], Sentiment Analysis [4], analysing big traffic data of large 

cellular networks [5], Fraud-Detection Systems [6], Cyber Security [7], Human Activity 

Recognition [8] etc. 

Unlike traditional offline learning where complete datasets are available for training. DSM 

applies online machine learning algorithms; ideally single-pass approaches due to the 

‘velocity’ factor of Big Data. DSM represents the velocity of large datasets, which is one of 

the four aspects of “Big Data”, the other three being volume, variety, and veracity [9]. 

For predictive analytics, supervised learning [10] [11] is beneficial when the ground truth 

class labels are available, however, this is not the case for real-world data streams. 

Unsupervised learning [12] [13] [14] does not essentially require the class labels, still the 

clustering algorithms identify similar data and partition it into different clusters.  

Semi-Supervised Learning (SSL) is a better choice because it makes use of both labelled and 

unlabelled streaming data. Unlabelled data is cheaper to acquire than labelled data and can 

improve the learning rate [15]. For example, it has been shown to be helpful in active 

learning, proper learning, and co-training, see  [16] [17].  

Non-Stationary Environments (NSEs) is a special case of data stream mining in which the 

data streams evolve over time. The probability distributions of data can be seen as different 

concepts at different times. When new data arrives, the distribution of data may change over 

time, therefore the learning models need to adapt and best represent the current concept. 

Learning in NSEs requires the updating of predictive models to deal with changes in the 

underlying probability distribution [18]. A survey by [19] and [20] provide comprehensive 

information on NSEs adaptation methods. A comprehensive study of SSL algorithms 

dealing with NSEs is available in Chapter 2. 
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In machine learning literature, the scarcity or delay of labelled data is referred to as 

Verification Latency (VL) [21][23]. In another scenario, only limited labelled data is 

followed by completely unlabelled instances; this is referred to as Extreme Verification 

Latency (EVL) [22] [24] [25] [26]. DSM algorithms assume the availability of labelled data, 

immediately or after some delay, to update the accuracy of the classifier and update the 

prediction model. 

Initially Labelled Non-Stationary Environment (ILNSE) [27] addresses both EVL and NSEs 

issues simultaneously. For example, one of the real-world problems, keystroke dynamics 

[135] recognizes users by their typing patterns instead of the straightforward password and 

login verification, the patterns are utilised as a second security layer for user authentication. 

Concept drifts are present in the dataset because the typing patterns of users change over 

time as they learn to type more quickly and accurately. In another scenario, autonomous 

robots [28] are initially trained inside a specific environment on labelled data. Later, they 

are sent to explore an unknown environment without the supervision of humans. These 

robots also need to adapt themselves to changing environments under the condition of 

verification latency i.e. scarcity of true class labels.  

This research comes at the intersection of EVL and NSE, while the data stream clustering 

and stream classification are mutually intersected with both EVL and NSE. Figure 1.1 shows 

the standing of the presented work in the literature. 

 

Figure 1.1 Standing of the presented work in the literature. 

 

Stream Classification [29][30] algorithm learns from labelled data and at any time 

predicts/assigns class labels for unseen examples from one of the predefined classes. 

Classification is an important method of DSM used for decision-making on unseen 

examples. ‘Stream Clustering’ [12] [13] [14] identifies similarities between objects without 

the need for labels. SSL is closely related to EVL, as it relies on clustering algorithms that 

make use of unlabelled data to predict the pseudo-labels which are fed to the classifiers to 

incrementally update the prediction models, and this continues in a loop. This process is 
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also referred to as Cluster Guided Classification (CGC) [31]. A general approach to deal with 

ILNSE is to apply both clustering and classification algorithms and apply drift detection 

methods. 

To deal with ILNSE, existing approaches rely on cluster-guided classification, which further 

applies centroid-based clustering or micro-clustering. Centroid-based clustering such as K-

Means [33] organises the data into non-hierarchical clusters. Micro-clustering is used to 

store summary statistics of data points. The authors of [31] proposed a Stream 

Classification Algorithm Guided by Clustering (SCARGC) centroid-based clustering, 

COMPacted Object Sample Extraction (COMPOSE) [22] applies a geometry-based 

framework to learn from non-stationary streaming data, micro-cluster for Classification 

(MClassification) [34] applies a micro-clustering approach to classify evolving data streams 

with infinitely delayed labels and Learning extreme verification latency with importance 

weighting (LEVELIW) [74]. 

Diversity measures of predictive models have not received much research interest for 

evolving data streams [35]. Diversity is one of the key characteristics to consider in the 

formation of multiple learning algorithms called ensembles. Ensembles [10][35][36] are 

collections of learning models that are grouped to produce predictive performance higher 

than a single classifier. Ensembles are broadly classified into Homogeneous and 

Heterogeneous ensembles. The terms homogeneous and heterogeneous refer to the data 

mining algorithms used in the process, where homogeneous refers to the use of only one 

data mining algorithm, and heterogeneous refers to the use of different data mining 

algorithms [37]. Chapter 2 outlines a key issue when the diversity of ensembles is 

compromised due to the exclusion of base learners. 

1.2 Research Motivation 

One of the recent technological needs in DSM is finding an efficient and faster way of 

extracting worthwhile knowledge from the data streams. Streaming data brings new 

challenges to the existing state-of-the-art classification algorithms such as Naïve Bayes (NB) 

[38] Hoeffding Trees (HT) [39] or K-Nearest Neighbour (KNN) [40] because the ground 

truth class labels are not available. Hence, the algorithms need to learn under class label 

scarcity in a single pass through the data.  

Moreover, the NSEs make the online classifiers worse over time. A streaming classifier 

should be able to timely detect and adapt concept drifts to best reflect the current concept 

at any time. Concept drift is a characteristic of data streams, it occurs due to changes in the 

distributions in a set of input variables and/or class labels. However, due to the small 

amount of labelled data, it is difficult to know which type of machine learning algorithm 

would be best to use as a base model beforehand.  Therefore, the motivation is to  

1) Develop an online SSL classifier capable of learning from both labelled and 

unlabelled data in NSEs. 
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2) Analyse the diversity of learning models and their effect on predictive performances. 

3) Reduce its dependency on human-predefined parameters.      

The next Section 1.3 describes the formulation of the problem, Section 1.4 research 

questions, Section 1.5 describes research aims and objectives, Section 1.6 describes the 

methodology used in the research, Section 1.7 presents contributions of the presented 

research, Section 1.8 provides organisation of the thesis and Section 1.9 summarises the 

chapter. 

1.3 Problem Formulation 

Several approaches exist that address the problems associated with NSE and EVL in 

isolation. However, few algorithms address both issues simultaneously. ILNSE is a 

challenging task because the learning algorithms have no access to the true class labels 

directly after the drift occurs.  The existing approaches require more than one technique 

such as cluster-guided classification [31], self-learning [41][42] micro-clustering [43]. 

However, from the literature, it is not clear on what conditions one approach is better than 

the other and what causes other approaches to fail. 

In data stream mining, the prediction models are trained under specific environments in 

the presence of labelled data ‘x’ for which class labels ‘y’ and probability distributions Pt (x, 

y) and Pt (x) are known. Figure 1.2 depicts this problem, the accuracy plot in the figure is 

virtual because the estimate of accuracy is not possible due to the scarcity of true class label 

after the time tUE. 

 
Figure 1.2 Graphical representation of the problem, labelled data trains the 

prediction models in a known environment and failed due to concept drifts in an 

unknown environment. 
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However, when the prediction models are deployed in a future time (tUE) to an Unknown 

Environment, changes may occur in a set of input variables ‘x’, i.e. Pt (x) ≠ Pt+1 (x). The 

prediction models are unable to restore learning due to the scarcity of true class labels and 

fail to represent the current concept. Most of the real-world data streams are continuous 

and infinite. Unlike offline datasets, in data streams, there is no prior information about the 

number of classes and this value may change in the future.  Under specific conditions, the 

CGC algorithms could be more effective than self-learning if the data is favouring clustering, 

i.e. high-purity clusters.  These issues make it difficult to choose the right EVL approach for 

different problems. Two factors influencing the predictive results of ILNSE covered in this 

research are hyperparameters and randomisation.  

A good combination of different types of models can also sometimes lead to better predictive 

performance than the use of a single type of model [35]. Therefore, it would be desirable for 

online learning algorithms applied to NSEs not only to detect which is the best type of model 

maintaining the highest classification accuracies but also to use a combination of different 

types of models if that is found to be beneficial. 

Despite using the weighting mechanism, some approaches do not exploit one of the key 

aspects - the use of different types of base models. Dynamic ensembles are one of the most 

popular ensemble approaches to deal with concept drift. However, their diversity is 

compromised when a poor performing base learner is removed from the ensemble, which 

may be deemed beneficial in future concepts. Figure 1.3 illustrates the problem of diversity 

in NSEs. In Concept A, three different base learners or experts are stored in a dynamic 

ensemble that has a feature to conditionally include or exclude a base learner. In the case of 

concept drift concept B occurs, if a base learner ‘B’ is removed from the ensemble, its 

diversity is compromised.      

 

Figure 1.3 Diversity compromised in Non-Stationary Environment due to the 

exclusion of base learner from the ensemble. 
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Maintaining diversity in a dynamic online ensemble, especially when excluding one of its 

base classifiers, is crucial for the ensemble's adaptability to changing data distributions.  

Diversity in this context refers to using multiple prediction models called ensembles, that 

are different from each other in some way. The terminologies used here are explained in 

Section 2.1. Having diverse models can increase the likelihood that at least one of them will 

be able to adapt effectively to the changing data. The diversity of online prediction models 

can have a significant impact on predictive performance in NSEs. Many existing diverse 

ensemble techniques leverage meta-learning [36] [88], guiding the determination of which 

learning techniques are effective for specific types of data. Another study [89] constructed 

a diverse ensemble using three distinct tree-based ensembles (Random Forest [90], 

Rotation Forest [91], and Extremely Randomised Trees [92]). Kolter’s Weighted Majority 

Algorithm (WMA) [11] achieves heterogeneity among its base learners, enhancing 

ensemble diversity. However, it can not dynamically add new base learners and lacks 

explicit methods to detect and handle concept drift, making it less effective in NSEs.  

Hyperparameters are the parameters that must be initialised before learning begins. One of 

the pitfalls of the clustering algorithms is their dependency on parameters such as the 

number of clusters that must be specified before the learning. This parameter has a great 

influence on clustering results. In offline machine learning, this parameter is iteratively 

tuned on finite datasets. Two well-known algorithms for estimating the number of centroids 

‘k’ in data streams are namely: Ordered Multiple Runs of K-Means (OMRk) [44] and 

Bisecting K-Means (BkM) [45]. 

Randomisation is an effect in which the training examples are shuffled, it is different to 

noise, as it is not a random displacement of examples. The predictive accuracy of learning 

models depends on the instances seen so far [46]. The predictive performance of classifiers 

depends on the order of instances in the dataset [47]. Apart from that in many real-world 

data streams the instances arrive in sequential order, which are directly fed to the online 

learning models. Both randomisation and hyperparameters have influences on the 

clustering results.  

1.4 Research Questions 

Following are the questions addressed in the presented research, which are followed by 

answers to the research questions and contributions to knowledge. 

Research Question 1. How does the scarcity of true class labels impact prediction 

accuracy in non-stationary environments, especially when learning algorithms lack direct 

access to true class labels immediately following concept drifts? 

To address the scarcity of class labels, existing approaches are broadly classified into three 

categories: cluster-guided classification, self-learning using classifiers, and micro-

clustering. EVL in general deals with unlabelled data using clusters. However, when clusters 

overlap, micro-clustering is a better option, but it requires extra processing time, which is 
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not ideal for DSM. However, in both cluster-guided classification and micro-clustering, the 

new centroids receive labels from the ‘nearest’ centroids. It is more likely that micro-clusters 

receive wrong class labels due to micro-cluster overlaps. On the other hand, self-learning 

predicts the class labels for unlabelled data (also called pseudo-labels) and re-train the same 

learning models on these pseudo-labels. Wrong predictions of pseudo-labels further 

degrade predictive performance over time.  

Research Question 2. What strategy should be implemented to maintain the diversity of 

a dynamic online ensemble when excluding one of its base classifiers? 

Due to the small amount of initial labelled data, determining the most suitable machine 

learning algorithm is challenging. However, existing literature lacks evidence explaining 

why certain prediction models are beneficial or which models to be avoided immediately 

after the concept drift. Most of the work in online NSEs focuses on updating prediction 

models to quickly recover from concept drift, while little attention has been dedicated to 

investigating the most suitable type of predictive model at any given time.  

Research Question 3. How can hyperparameters be autonomously optimized in 

Incremental Learning, considering the evolving nature of data streams and minimizing 

manual parameter tuning for improved classification?  

Existing ILNSE approaches based on CGC rely on manual selection of the number of 

centroids ‘k.  Most clustering approaches necessitate prior knowledge of the number of 

classes to generate corresponding centroids. In real-world streams, which are often 

unstructured and noisy, the prior knowledge of the number of classes is unknown. While 

offline machine learning iteratively tunes this parameter on finite datasets, data streams are 

evolving and infinite, making the selection of an optimal value of ‘k’ is challenging. Current 

approaches manually tune this parameter by applying arbitrary values, potentially leading 

to poor classification results. This issue should be comprehensively addressed to reduce 

dependency on human feedback.  

Research Question 4. Are existing approaches always successful when applied to 

different problems? What strategy should be adopted if one of the EVL approaches fails?  

One approach to deal with EVL challenges involves implementing an active switching 

mechanism, i.e. applying all existing EVL approaches to initial labelled data and 

determining the most effective one for future use. Additionally, when cluster-guided or 

micro-clustering approaches detect concept drift due to cluster overlaps, the learning 

algorithm should integrate an efficient mechanism to prevent the incorrect propagation of 

class labels to the clusters.   
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1.5 Research Aim and Objectives  

The primary aim of the research is to scrutinize existing ILNSE approaches that address 

non-stationary data streams, identifying gaps and limitations. The objective is to propose a 

new algorithm to fill these gaps while reducing human dependency on existing DSM 

algorithms. To achieve this aim, a few investigations, experimental studies, and empirical 

evaluations have been performed and involved discussing the following proposition:  

“Develop an online SSL method that can make use of unlabelled data from a streaming data 

source in real-time with the ability to adapt to concept drifts. Analyse the impact of diversity 

and heterogeneity in high volume and high velocity streaming data”.  

Listed below are the key objectives of this research. 

1. Conduct a comprehensive literature review to understand the challenging issues in 

the existing data stream mining algorithms. 

2. Critically assess the strengths and limitations of current algorithms, particularly 

those addressing the scarcity of class labels. 

3. Identify gaps in the literature that indicate a need for the development of a new 

algorithm to address these limitations effectively. 

4. Develop and implement the proposed algorithm.  

5. Ensure the algorithm accommodates real-time processing constraints inherent in 

data stream environments, addresses the need for diversity in ensembles and 

adaptability to non-stationary characteristics. 

6. Conduct through testing and evaluation to validate the algorithm’s effectiveness in 

comparison to existing approaches. 

7. Disseminate findings through conference presentations and peer-reviewed 

publications. 

1.6 Research Methodology 

This section describes the nature of this research and the required methods to be applied in 

this research appropriately. The applied methods and procedures for data collection, 

validation, and evaluation techniques are also described. It further describes the 

automation of experiments.  

The review covers the literature published in the past decade. A total of 403 articles were 

obtained using the keywords “Extreme Verification Latency” and/or “non-stationary”. A 

total of 403 ACM (15), ScienceDirect (217), IEEE (70) and Scopus (185) articles were 

retrieved of which 108 duplicated articles were eliminated and 295 articles were shortlisted 

after analysing the keywords and abstracts. i.e. the abstracts which did not specify the 

research in the core of ‘Semi-Supervised Learning’ were excluded. 
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This research focuses on developing a new Machine Learning algorithm, in this process, 

several variants of the algorithms may evolve and by applying different parameters the 

predictive accuracies of these algorithms may change on different data streams and real-

world datasets. To determine the statistically significant differences between algorithms, 

non-parametric tests were carried out using Demsar’s methodology [49]. For the statistical 

test, the Friedman test was applied with α= 0.05. The null hypothesis states that the 

performances of all the algorithms are similar therefore their ranks should be equal. In the 

experiments, the null hypothesis is, “no statistical difference between the algorithms”. If the 

null hypothesis was rejected, the Nemenyi post hoc test [50] was applied to identify which 

pairs of algorithms differ from each other and were represented in boxplots.  

Non-stationary datasets used in the experiments are provided by the authors of SCARGC in 

[31] which are available for the Machine Learning community. The artificial data streams 

used in the experiments are generated through the Massive Online Analysis (MOA) 

workbench [46]. The characteristics and configuration of these data streams are 

summarised in Table 4.1. The MOA commands to generate these streams are available in 

APPENDIX I.   

A framework for fully automated evaluation of experiments has been developed in the MOA. 

The source code of the automation program and the scripts of the experiments are publicly 

available to the research community [54]. In this automation, the Friedman test and post 

hoc test for multiple classifiers and datasets are performed automatically. The experiments’ 

scripts contain a list of MOA tasks which are performed in a sequential order, the 

classification accuracies are automatically summarised in tables, and the rankings and the 

box plots are automatically generated.  

The following are some assumptions that were used in this thesis: 

● The algorithm has no control over the sequence of the examples arriving online. 

● The algorithm should be able to predict at any given time after seeing any number of 

examples. 

● Data streams have a fixed number of features, ideally less than 500 and there are a 

limited number of class labels, typically less than 10. 

1.7 Contributions of the Presented Research 

As a part of this research, an ‘Online Semi-Supervised Learning (OSSL) framework for DSM 

has been developed for MOA. The framework provides options to simultaneously run online 

clustering and classification algorithms. A baseline method has been developed to evaluate 

OSSL algorithms. Support of two training strategies namely incremental and batch 

incremental has been provided. A semi-supervised evaluation method has been proposed, 

which incrementally evaluates the pseudo-labelling accuracies. Figure 1.4 demonstrates the 

key features of Predictor for Streaming Data with Scarce Labels (PSDSL) and 
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Heterogeneous Dynamic Weighted Majority (HDWM) which has been published in the 

paper. 

 

Figure 1.4 Development of algorithms and corresponding key features. 

 

This research provides the following novel contributions: 

1. An online SSL algorithm PSDSL has been proposed, PSDSL is made capable of 

intelligently switching between self-learning, CGC and micro-clustering strategies, 

based on the problem it is applied to, i.e. the different characteristics of the data streams. 

2. Implemented SCARGC [31] algorithm and self-learning approach in MOA to compare 

it with PSDSL. The average prediction accuracy of SCARGC was found higher than 

COMPOSE [22], LEVELIW [74], and MClassification [34]. 

3. Empirically evaluated PSDSL against standalone approaches namely COMPOSE, 

LEVELIW, SCARGC and MClassification on benchmarks NSE datasets [31] MOA data 

streams and real-world datasets. 

4. To analyse the influence of diversity on predictive performance, ‘Static vs. Dynamic’ and 

‘Heterogeneous vs. Homogeneous’ classifiers were studied. As a result, an HDWM 

classifier has been implemented which preserves the diversity of classifiers.  

5. The HDWM algorithm has been evaluated on artificial and real-world data streams 

against existing well-known approaches such as a Weighted Majority Algorithm (WMA) 

[11] and a Dynamic Weighted Majority (DWM) [10]. The results show that HDWM 

maintained the diversity and performed significantly better than WMA in NSEs. Also, 

when recurring concept drifts were present. 

6. Introduced auto parameter tuning mechanism to eliminate the human dependency and 

to determine the best value of number of centroids ‘k’ from initial labelled data.  
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7. A new approach called Envelope-Clustering has been introduced to resolve the conflict 

during cluster labelling and suggested a confidence measure approach to ensure the 

quality and correctness of labels assigned to the clusters. 

8. Developed online SSL framework in MOA which enables researchers to implement 

online SSL for DSM, mainly in the areas of EVL and NSE. 

Some of the material presented in this thesis were published in the following papers: 

1. Idrees, M. M., Stahl, F., & Badii, A. (2022). “Adaptive Learning with Extreme 

Verification Latency in Non-Stationary Environments,” in IEEE Access, vol. 10, pp. 

127345-127364, 2022, DOI: 10.1109/ACCESS.2022.3225225. 

This paper builds the foundation for solving the problem of extreme verification latency 

in non-stationary environments, an adaptive SSL learning algorithm (PSDSL) has been 

developed, which has been explained in Chapter 5.  

2. Lukats D., Berghöfer E., Stahl, F., Schneider J., Pieck D., Idrees, M. (2021) 

et al., “Towards Concept Change Detection in Marine Ecosystems,” OCEANS 2021: San 

Diego – Porto, 2021, pp. 1-10, DIO: 10.23919/OCEANS44145.2021.9706015. 

This paper presented the implementation of DDM and EDDM which are the drift 

detection methods used in the HDWM algorithm and described in Chapter 4. These 

methods have been applied for change detection in marine ecosystems. 

3. Idrees, M. M., Minku, L. L., Stahl, F., & Badii, A. (2020). A heterogeneous online 

learning ensemble for Non-Stationary environments. Knowledge-Based Systems, 188, 

104983. DOI: 10.1016/j.knosys.2019.104983. 

The heterogeneity of online ensembles in non-stationary environments has been 

investigated and presented in Chapter 3. The heterogeneous algorithm (HDWM) has 

been developed and published in the paper above and described in Chapter 4.  

1.8 The Organisation of the Thesis 

This thesis is organised into six chapters which aim to support the foundation behind the 

contributions to knowledge. Figure 1.5 provides an overview of how the research questions 

correspond to the investigations conducted in each chapter. 

https://doi.org/10.1109/ACCESS.2022.3225225
https://doi.org/10.23919/OCEANS44145.2021.9706015
https://doi.org/10.1016/j.knosys.2019.104983
https://doi.org/10.1016/j.knosys.2019.104983
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Figure 1.5 Overview of how research questions are mapped with the aim of research. 

 

Chapter 2 introduces the essential background of EVL and NSEs in data mining and the 

characteristics of each type of approach in a streaming environment. Limitations of existing 

verification latency algorithms for data streams were evaluated and compared with others. 
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convergence to the best pseudo-labelling strategy based on the given problem domain.  This 

chapter also describes the new concepts of envelope clustering to resolve the conflict in 

transferring the labels to the clusters due to overlaps. It covers active switching and 

Parameter Tuning aiming to reduce the dependency of machine learning on human input 

have been discussed in this chapter. Finally, the chapter compares the predictive 

performances of PSDSL under NSEs and class label scarcity. PSDSL has been evaluated 

against SCARGC, LEVELIW, COMPOSE, and MClassification. To verify statistically 

significant differences between algorithms, the chapter presents experiments for the PSDSL 

classifier on MOA data streams and real-world datasets.   

1.9 Summary 

Existing DSM algorithms assume the availability of labelled and stationary data. However, 

in many real-world applications such as Robotics, Internet of Things sensors, real-time data 

on the Internet, Surveillance Cameras etc., high-speed big data streams are unlabelled and 

non-stationary. These are the key challenges faced by learning models in extracting 

worthwhile knowledge from the data streams. In the literature, this problem has been 

identified as ILNSE i.e. EVL under NSEs. 

From the above requirements, it was clear that ‘online SSL’ is a better choice which can help 

in EVL scenarios as it makes use of both labelled and unlabelled data and incrementally 

updates the prediction models. More specifically, CGC predicts the pseudo-labels for the 

unlabelled data and the labels are fed to the classifiers to incrementally update the 

prediction models. Secondly, the prediction models need to be learned under NSEs because 

the data evolves and the underlying probability distributions may change over time, 

resulting in concept drifts. ILNSE is challenging because the learning algorithms have no 

access to the true class labels after the concept drifts. 

The literature reveals several approaches for EVL and NSE in isolation, however, few 

approaches address both issues simultaneously. Major gaps were identified, i.e. it is not 

clear from the literature that when and under what conditions one ILNSE approach is better 

than the other, and what causes one approach to fail. Diversity is intuitively an important 

feature of meta classifiers, as there must be some variations between the predictions of the 

base learners. Little work has been dedicated to investigating what type of predictive model 

is most suitable at any given time.  

The role of diversity has not been visible in the literature in the presence of concept drift. 

The hyperparameters have a great influence on learning algorithm results; the existing EVL 

approaches are rely on manual parameter selection. To accomplish the objectives, this 

research investigates the class label scarcity and diversity problem under NSEs. Targets to 

develop an ‘online SSL’ method for data streams with the ability to adapt to concept drifts. 

Validate the system in a controlled environment, apply the new approach to real-world 

problems and compare the results with existing approaches.  
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Chapter 2 Literature Review 

In this chapter, relevant studies, findings, and methodologies that contribute to the 

understanding of label scarcity, ensemble diversity and optimization of hyperparameters, 

will be examined. The literature suggests several approaches dealing Non-Stationary 

Environment (NSE) and Extreme Verification Latency (EVL) in isolation. However, few 

algorithms address both issues simultaneously. The (RQ1), which is related to the scarcity 

of true class labels in non-stationary conditions, the literature recognizes this issue as 

Initially Labelled Non-Stationary Environment (ILNSE), where the data distribution may 

change over time. A review of the literature shows that ILNSE approaches require more 

than one technique such as Cluster-guided Classification (CGC) [31], self-learning [41][42] 

micro-clustering [43]. However, from the literature, it is not clear on what conditions one 

approach is better than the other and what causes other approaches to fail. 

In ILNSE scenarios, human dependency can be significant due to the challenges posed by 

concept drift, label scarcity, and non-stationary. As outlined in (RQ3), human analysts often 

need to tune these parameters to optimize the model's performance for the specific problem 

and data. Commonly tuned parameters might include learning rates, regularization terms, 

and the number of clusters. The literature suggests combining two well-known algorithms 

for estimating the number of clusters, OMRk [44] and BkM [45]. The concept of 

hyperparameters is further explained in detail in Section 2.7.  

Finally, the literature delves into the question of whether existing approaches for learning 

in non-stationary conditions with class label scarcity are consistently successful when 

applied to various problems (RQ4). The literature suggests that the CGC [31] approach can 

help adapt to these changes by identifying clusters of similar data points and retraining or 

updating classifiers for each cluster when necessary.  

2.1 Definitions and Terminology 

In this research online SSL approach has been considered which focuses on techniques that 

leverage both the labelled and unlabelled data to build a predictive model [59]. For labelled 

data {xL} the labels are drawn from a discrete set of multi-classes {1 . . . c} or y ∈ {−1, 1} for 

binary classification. The unlabelled instances {xU}  for which class labels are not available. 

The labelled instance {xL,yL} learns a model y = f(x), so that for any example {x ∈ X} it can 

predict correct labels ‘y’.  

 

Definition 2.1. A data stream is a real-time, continuous, ordered sequence of data. A data 

stream ‘S’ is represented as S = {x1, x2, x3... xN} where xi is ith instance. The instance is a d-

dimensional feature vector that goes to infinity.  
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The data is generated by different sources such as sensor networks, the internet of things, 

credit card transactions, network traffic data, telecommunication, stock market, satellite, 

weather forecasting etc.  
 

Definition 2.2. EVL is a scenario in which limited labelled data is available for training 

and true class labels are unavailable in the future or available after some delay. 

In most real-world data streams true class labels are not available and the number of classes 

is not known in advance. Therefore, clustering, being unsupervised, is one of the most 

suitable data mining and data analysis methods for data streams.  

EVL relies on the SSL approach in which the data streams contain labelled instances XL = 

(x1, . . ., xL) in the beginning for which class labels YL = (y1, . . ., yL) ⊂ Y are available and for 

unlabelled instances XU = (xL+1  , . . . , xU) the class labels are unavailable. A model trains on 

XL which predicts pseudo-labels for XU and updates the training Model. EVL is perhaps the 

most challenging case of all machine learning problems: labels for training data are never 

available – except perhaps those provided initially, yet the classification algorithm is asked 

to learn and track a drifting distribution with no access to labelled data. 

Definition 2.3. Self-learning [35] or Active Learning [55][56] trains the classifiers on 

labelled data, predicts the pseudo-labels for the unlabelled data and finally re-trains the 

classifiers on the newly labelled data, this continues in a loop. While Active Learning decides 

when and which instances should be used for labelling. 

Definition 2.5. CGC [31] is an EVL approach in which a clustering step is followed by a 

classification, these steps repeatedly apply in a closed-loop fashion. The clustering 

algorithms make use of unlabelled data to predict the pseudo-labels which are fed to the 

classifiers to update the prediction models.   

Definition 2.6. Ensembles are collections of learning models that are grouped to produce 

predictive performance. These predictive models {Ci . . . CN} learn some function ‘f’ to solve 

a particular problem. To get a prediction on example ‘x’ each member in the ensemble 

predicts f (Ci (x) … CN (x)), where Ci (x) denotes the prediction of member Ci for ‘x’. In 

weighted voting, each member Ci has a corresponding weight wi. For a binary class problem, 

with classes in {0, 1}, weighted voting is calculated using Equation 2.1. 

Prediction(x) = { 

1      if  ∑ wii   . Ci(x) > 𝜃 

(2.1) 
 0     otherwise 

 

Where 𝜃 is a user-provided value for splitting the classes. 

Literature shows that in terms of diversity, the ensembles are broadly classified into 

homogeneous and heterogeneous, taking into consideration the drift handling capabilities 
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the ensembles are further categorised into active and passive ensembles. A summarised 

information about these categories is available in Section 2.4.2. 

Definition 2.7. Concept drift is a characteristic of the data stream, which describes that 

the underlying distribution of data may change and evolve over time either due to the 

change in the target concepts (classes of examples) and/or change in attribute distributions 

[60]. 

Surveys by [19] and [20] provide comprehensive information on NSEs and concept drift 

adaptation methods. Changes in distributions occur in a set of input variables ‘x’ and/or 

class labels ‘y’, i.e. Pt (x, y) ≠ Pt+1 (x, y) at the time ‘t’. Two different types of concept drifts 

exist,  

1. “Virtual drift” in which only the distribution of input data ‘x’ changes, i.e. Pt (x) ≠ 

Pt+1(x) and does not affect the class labels, i.e. Pt (y|x) = Pt+1(y|x).  
 

2. “Real drift” [20] refers to changes in class labels due to changes in the distribution 

P (y|x). 

Several approaches available in the literature for concept drift detection and adaptation 

exist, e.g. [20] [60] [61] [62] [63]. However, existing drift detection approaches rely on true 

class labels, taking into consideration that true labels are not available in EVL scenarios, the 

drift handling in EVL is extremely challenging. The next section summarises SSL 

approaches dealing with EVL and NSEs. 

2.2 Learning Strategies in Data Streams 

Existing work on learning in NSEs can also be divided into online and block-based 

approaches [48] also called chunk-based or batches. This research focuses on ensemble 

approaches, which can be further divided into three categories: online ensembles, which 

learn incrementally one example at a time, block-based ensembles, which process blocks of 

data and a combination of online and block-based ensembles that combine both these 

approaches. Online and block-based are described in Section 2.2.1 and 2.2.2. 

2.2.1 Online and Incremental Learning  

In online stream learning tasks, the training examples with corresponding class labels are 

presented to the learning algorithms to train the hypothesis H:X→Y and predict a class label 

for a given input at any time-step ‘t’. Online approaches process each new training instance 

separately and then discard it.  

2.2.2 Block-Based Learning 

The data stream ‘S’ is partitioned into evenly sized blocks {B1 … Bn} where each block 

contains equal examples. Block-based approaches wait for a whole new chunk or batch of 

data to arrive; and then use this new chunk for training before discarding it. The first block-

based ensemble was the Streaming Ensemble Algorithm (SEA) [64], which applies a 

https://www.sciencedirect.com/topics/computer-science/ensemble-method
https://www.sciencedirect.com/topics/computer-science/ensemble-method


36 

heuristic replacement strategy based on accuracy and diversity in which the worst classifiers 

are replaced with a new classifier trained on the most recent examples. Wang et al. proposed 

Accuracy Weighted Ensemble (AWE) [65] that processes a stream in chunks to build a new 

classifier for each new chunk. Block-based approaches do not react to sudden changes 

sufficiently quickly, while ensemble approaches that process streams incrementally, do not 

take advantage of periodical adaptation mechanisms [48]. 

2.2.3 Hybrid Learning 

A hybrid online and block-based approach was proposed by Nishida with the Adaptive 

Classifier Ensemble (ACE) [66] their approach aims at tracking the error rate of a single 

classifier with each incoming example.  

 

Figure 2.1 Online block-based learning in data streams, formation of clusters in 

blocks to retrieve class labels for unlabelled data and updating the classifier.  

As shown in Figure 2.1 the incoming data stream is divided into the same sized blocks 

{B1,….Bn}, the instances in each block form clusters, the centroids are continuously updated 

and the unlabelled data receives the labels of the nearest centroids. In parallel, using 

prequential evaluation each instance is used for predictions before training the classifiers. 

2.2.4 Windowing Approaches 

There are three commonly used time window models in data streams [67]: (a) Sliding 

windows; (b) Damped windows; and (c) Landmark windows, these are described below. 

 Sliding window 

 In this approach, only the most recent examples are stored in a fixed or variable size 

window ‘w’ at time ‘t’ such that the points within the window have a weight of ‘1’, for the 

rest the weight is ‘0’. It applies the first in, first out rule to store and discard the examples 

Unlabelled 
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https://www.sciencedirect.com/topics/computer-science/weak-classifier
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from the window. ADWIN [68] change detector uses sliding windows whose size, instead of 

being fixed a priori, is recomputed online according to the rate of change observed from the 

data in the window itself. SWClustering [69] was compared with CluStream [70]. In their 

investigations, the CluStream failed to capture the precise distribution of recent records 

because old records had a great influence on the formation of the micro-cluster.  

 Damped window 

The most recent examples are prioritised by assigning weights to objects from the data 

stream [71]. More recent examples receive a higher weight than older examples, and the 

weights of the examples decrease over time. It uses decay functions such as f(t) = 2-λ t  where 

‘t’ is the time elapsed and λ is the rate of decay.  

 Landmark window 

Some definitions state that the landmark window considers the data in the data stream from 

the beginning until now and all the instances have an equal weight ‘1’. The landmark 

window model splits data streams into fixed-size, non-overlapping chunks and maintains 

the tuples that arrive after the landmark [72].  This approach is usually applied when 

periodic results are needed (e.g. yearly, monthly, quarterly). When a new window is set, 

then the previous window including its data instances is deleted [73].  

2.2.5 Discussion 

The hybrid learning approach is more beneficial in online SSL as the instances arrive at a 

high rate and the prediction models need to predict the class labels in an online manner. 

The pool or window in which the examples are temporarily stored is used for clustering. 

This technique is useful when the learning models have tight time restrictions, and the 

models have no time to read previous examples. On the other hand, the window models 

approach directly impacts the prediction accuracies of the model as they are aligned with 

the evaluation of the learning models, these approaches are also used for detecting the 

concept drifts. While the block-based and online learning strategies focus on structuring the 

examples. The performance of block-based algorithms heavily depends on the size of the 

data blocks. Larger blocks can produce more accurate classifiers and report many concepts 

drift in each block. On the other hand, smaller blocks can miss a concept drift, and these 

usually produce less accurate classifiers. 

2.3 SSL Approaches for NSEs 

This section presents a comprehensive study of online SSL algorithms that can learn from 

data streams under NSEs and EVL. As shown in Figure 2.2, EVL is a sub-problem of SSL 

which is handled using Ensemble-based, Active-learning and Graph-based approaches.  
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 Figure 2.2 SSL Approaches dealing with NSEs, showing graph-based, ensemble 

and active learning approaches and the algorithms dealing with EVL. 
 

 

2.3.1 EVL Approaches for NSEs 

A general approach to deal with ILNSE is to apply both clustering and classification 

algorithms and apply active or passive drift detection methods. CGC is one of the 

approaches in which clusters and micro-clustering predict the pseudo-labels, which further 

update the classifiers. Table 2.1 shows approaches dealing with ILNSE. 
 

Table 2.1 Algorithms dealing with ILNSE. 

Algorithm Description Drift Handling 

SCARGC [31] 
CGC, K-Means, 

k-Nearest Neighbours (k-NN) 
Gradual 

LEVELIW [74]  
Semi-supervised 

Pool and Accuracy based 
Recurrent 

COMPOSE [22] 
CGC, K-Means and 

Gaussian Mixture Models (GMM) 
Gradual 

MClassification [34] Micro-clustering Gradual 

 SCARGC Algorithm  

SCARGC [31] applies K-Nearest Neighbour to build the classification models.  The 

algorithm stores instances in batches or a pool.  The initial classification is trained using 

labelled instances ‘T’ and predicts the pseudo-labels for the unlabelled instances and stores 

them in the pool. When the pool size reaches ‘θ’ which is a user-provided value, and the 

clusters are formed, new centroids receive their labels from previous centroids. The new 
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centroids are used for the prediction of new class labels for the pool data.  As shown in 

Algorithm 2.1 it follows a closed loop by switching between clustering and classification.  

The algorithm starts building an initial classifier using the available labelled data with ‘c’ 

classes. The initial labelled data is divided into k ≥ c clusters. If k = c, it uses the ‘c’ classes 

as initial clusters. If k > c, it runs a clustering algorithm, and associates each cluster to one 

class. The algorithm uses a simple centroid similarity calculation between the current and 

previous centroids using Euclidean distance and the labels are obtained by the simple 

nearest neighbour algorithm. 

 MClassification 

MClassification [34] uses the concept of micro-clusters. The centre and radius are 

calculated using linear (LS) and squared sum (SS) of N data points.  As shown in Algorithm 

2.2, micro-clusters are generated for initially labelled examples, and new unlabelled 

examples get labels from the nearest clusters using the Euclidean distance.  The new data 

points absorb and increase in the radius and centroids. If the radius is increased from the 

threshold set by the user, it creates a new micro-cluster, and this process repeats in a loop 

for each newly received unlabelled example.  The centroid and radius are computed using 

Equation 2.2 and 2.3.   

 

Centroid =  
LS⃗⃗⃗⃗ 

N
  

Radius =  √ 
SS⃗⃗⃗⃗ 

N
+ (

LS⃗⃗⃗⃗ 

N
)2 

   (2.2) 

 

(2.3) 

Where: 

• LS⃗⃗⃗⃗ = ∑ x⃗ i
N
1  is the linear sum in N data points.  

• SS⃗⃗⃗⃗ = ∑ (x⃗ i)
2 N

1 is the squared sum in N data points. 

• N = number of data points. 

• y = class label for a set of data points. 

 

New data points are absorbed in the existing micro-clusters, and this results in an increase in 

the radius and centroids. If the radius is increased from the threshold set by the user, it creates 

a new micro-cluster, and this process repeats in a loop for each newly received unlabelled data 

point. For example, a new data point x⃗  can be absorbed in MCA = (NA, LS⃗⃗⃗⃗ A, SS⃗⃗⃗⃗ A) updating the 

summary statics in the following way: 

LS⃗⃗⃗⃗ A  ← LS⃗⃗⃗⃗ A + x⃗   

SS⃗⃗⃗⃗ A  ← SS⃗⃗⃗⃗ A + (x⃗ )2 

NA ← NA + 1 
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Similarly, when merging two disjoint micro-clusters MCA and MCB the union of these two 

clusters is equal to the sum of its parts and the sufficient statistics is calculated as: 

LS⃗⃗⃗⃗ C  ← LS⃗⃗⃗⃗ A + LS⃗⃗⃗⃗ B 

SS⃗⃗⃗⃗ C  ← SS⃗⃗⃗⃗ A + SS⃗⃗⃗⃗ B 

NC ← NA + NB  

Micro-clusters are generated for initially labelled examples, and new unlabelled data 

instances are accorded their respective labels from the nearest clusters based on the Euclidean 

distance.  In this way, new data points are absorbed, and this results in an increase in the 

radius and centroids. If the radius is increased from the threshold set by the user, it creates a 

new micro-cluster, and this process repeats in a loop for each newly received unlabelled 

example. 

 COMPOSE  

COMPOSE [22] also addresses the EVL problem outlined in Algorithm 2.3.  Initially, the 

labelled instances build a base classifier, either the Gaussian mixture model or KNN to obtain 

a hypothesis and predict class labels. The GMM can determine the probability which tells us 

the degree of association among data points and closest clusters. It then constructs the ⍺-

shape (density estimation) using Compaction Percentage (CP) and assigns the labels that 

typically lie in the centre of the feature space for each class.  The Core Support Extraction 

(CSE) extracts those newly labelled data drawn from the centre region of the current 

distribution. 

 LEVELIW  

This approach suggested by [74] relies on the importance-weighted least-squares 

probabilistic classifier IWLSPC [75], which predicts the labels for the unlabelled test data. 

The pseudo-code and details of this approach are described below and summarised in 

Algorithm 2.4. To predict the labels for the unlabelled test data the algorithm takes four 

parameters. 1) The training data at the current time step, 2) the corresponding label 3) the 

unlabelled test data at the current time step, and 4) the kernel width value σ which decides 

the feature space to which training data will be mapped.  The algorithm then follows a closed 

loop. 

 APT 

Arbitrary Sub-Population Tracker algorithm (APT) [76] applies maximization (EM) 

algorithm for one-to-one assignment between labelled instances in time-step ‘t’ and 

unlabelled instances in time-step ‘t + 1’. As shown in Algorithm 2.5, the EM algorithm 

predicts which examples are most likely to correspond to a given sub-population, and the 

algorithm determines which drift parameters maximise the expectation. Finally, the classifier 

is updated to reflect the population parameters of the newly received data. 
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Algorithm 2.1 SCARGC Algorithm (T, K, θ)  [31] 

Input:   Initial training data T; Data Stream DS;  
              θ pool size; Number of clusters k  

Output: Updated classifier Φ; Label y for each x ∈ DS 

1    Φ ← buildClassifier(T ) 
2    if k = c then  

3        C ← actualclasses(T )   
4    else  

5        C ← kMean(T’,k )  
6    end if 

7    labels ← ∅  
8    while DS has events do 
9 
10 
11 
12 
13 

 x ← next event(DS)  

 y ← Φ(x) 

 pool ← pool ∪ {x}  

 labels ← labels ∪ {y}  
 if  |pool| = θ then 

14     if countExamplesPerClass(labels, c) ≥ 10 then 
15 
16 
17 

  C ← clustering(pool, k)  

M ← matching(C, labels)  
if concordance(M) ≠ 1 then 

18 
19 
20 
21 

   T ′ ← label_data(pool, C)  

Φ ← buildClassifier(T ′ )  

pool ← ∅  

labels ← ∅ 

 

Algorithm 2.2 MClassification Algorithm [34] 

Input:   Maximum micro-cluster radius ‘r’ 

1 Receive initial labelled data Dinit = {xi ; yi} ; i = 1, ..., T  ; x ∈ X; y∈Y ={1, ..., c} 
2 Build T micro-clusters as MCi = (Ni , LSi , SSi , yi); i= 

1...,T where N = number of data points ; LS= Σ  
N

j =1   ; SS= Σ  
N

j =1  (xj)2 

3 Calculate sufficient statistics of each micro-cluster using Eq. 2.2 and 2.3 
4 Receive unlabelled data U t ={ x t

u ∈  X , u = 1…,N} 

5 Measure distance between xt and each micro-cluster centroids centroidi 
; i = {1... T} i.e. Dist (centroidi, xt) to find the closest micro-cluster, say MCN, 
where Dist represents the Euclidean distance. 

6 Assign label of MCN i.e. yt to classify example xt 
7 Add example xt to MCN and compute its sufficient statistics radiusN ; and centroidN 
8 if radiusN > r then 
9    Create a new micro-cluster for example xt say MC’ N = (N’ N , LS’N , SS’N , yt) 
10 else 

11     Add example xt to MCN and update its statistics as  

    (LSN) ← (LS N ) + xt; (SSN ) ← (SSN ) + (xt)2 NN ← NN + 1 
12 end if 
13 Go to step 4 and repeat  
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Algorithm 2.3 COMPOSE Algorithm [22] 

Input:   SSL algorithm – SSL with relevant free parameters. 
              CSE algorithm – CSE; α-shape detail level-α Compaction percentage – CP 

1    Receive initial labelled data Dinit = {xi ; yi} ; i = 1, ..., M ; x ∈ X; y ∈ Y = {1, ..., c} 

2     Set L0 ={ x t
i  }    // initial instances 

3     Set Y0 ={ y t
i  }    // corresponding labels of initial instances 

4    for t = 0, 1,.... do 

5 
6 
7 
8 
9 

  Receive unlabelled data U t ={ x t
u ∈  X , u = 1…,N}     

  Run SSL with L t, Y t, and U t to obtain hypothesis, h t : X → Y 

  Let  D t  ={(  x t
l  ,  y

t
l  )  ∪  (x t

u  ,  h t(x t
u ) ) )}   

  Set L t+1 = ∅, Y t+1 = ∅ 
  for each class c = 1, 2, ...., C do 

10   Run CSE with CP, α and Dt      c    to extract core supports, CSc 

Add core supports to labelled data   L t+1 = L t+1 ∪ CSc 

Y t+1 = Y t+1 ∪ {yu : u ∈ [|CSc|], y = c} 

11 

12 

 

13  end for 
14   end for 

 
 

Algorithm 2.4 LEVELIW Algorithm [74] 

Inputs: Importance weighted least squares probabilistic classifier – IWLSPC; Kernel 
width value σ 

1 At t = 0, receive initial data x ∈ X and the corresponding labels y ∈ Y = 1, . . . , C 

Set x
te

t=0
= x 

Set y
te

t=0
= y    

2 for t = 1, ...., do 

3     Receive new unlabelled test data x t
t e  ∈ X  

4 

5 

 Set x t
t r  = x

t e

t - 1  

Set y t
t r  = y

t e

t - 1  

 

6  Call IWLSPC x t
t r , x t

t e , y t
t r  and σ to estimate y t

t e   

7    end for  

Algorithm 2.5 APT Algorithm  [76] 

Inputs: Initial labelled data Dinit; A clustering algorithm with its own free parameters; a 
suitable bandwidth matrices calculation algorithm; a suitable Expectation-Maximization 
(EM) algorithm with its free parameters. 

1 Receive M training examples form Dinit = {xi ; yi}; i = 1, ..., M ; x ∈ X; y ∈  {1, ..., c} 

2 Run clustering algorithm to partition the data into ‘K’ disjoint subsets and associate 
each cluster to one class among ‘c’ classes. 

3 Estimate the conditional feature distribution of the data. 
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4 Receive new unlabelled instances U t =  and assume N = M to associate 
each new instance to one previous example. 

5 Compute instance-to-exemplar correspondence by maximizing the likelihood using EM 
algorithm.  

6 Pass the cluster assignment from the example to their assigned instances to achieve 
instance-to-cluster assignment.  

7 Pass the class of an example xi i.e. yi to the class of its assigned instance.  

8 Go to step 2 and Repeat. 

2.3.2 Other SSL Approaches for NSEs 

Realistic Stream Classifier (ReaSC) [30], Semi-supervised Pool and Accuracy Stream 

Classification (SPASC) [77] and Weight Estimation Algorithm (WEA) [78] handle concept 

drifts by updating the ensemble. Active Mining (AM) [55] is an Active Learning approach 

that applies a decision tree for partially labelled data to handle gradual drifts. Table 2.2 

summarises SSL approaches dealing with NSEs. 
 

Table 2.2 SSL approaches dealing with NSEs. 

Algorithm Description Category  
Drift 
Handling 

ReaSC [30] 

K-Means Micro- 

Clustering and 

K Nearest Neighbour 

Ensemble Gradual 

SPASC [77] 
Semi-supervised Pool 

and Accuracy based 
Ensemble Recurrent 

WEA [78] K-Means and GMM Ensemble Gradual 

AM [55] 

Demand-driven   

Active Mining 

of data streams,  

Decision Tree 

Active Learning Gradual 

OWCE [56] 

Minimum-variance, 

Optimal Weight 

Classifier 

Active Learning, 

Ensemble 
Gradual 

REDLLA [79] 
K-Means to spread labels 

at the leaves of a tree. 
Graph-based 

Recurrent 

 

ECU [57] 

Graph Based, Weighted  

Ensemble Classification 

and Clustering 

Graph-based 

Ensemble 
Abrupt 

KAOGINCSSL [80] Graph based SSL Graph-Based Abrupt 

 

Optimal Weight Classifier Ensemble (OWCE) [56] applies both Ensemble-based and active 

learning. REDLLA (Recurring Concept Drifts and Limited Labelled data) [79] applies a 
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decision tree of clusters for tracking the recurring concept drifts. ECU (Ensemble 

Classification and Clustering) [57] is a graph-based ensemble in which prediction for new 

instances is achieved using voting from both classifiers and clusters. KAOGINCSSL [80] is 

a graph-based classifier that learns from partially labelled instances. 

2.3.3 Comparative Analysis of Existing EVL approaches  

In a comparative analysis of existing EVL learning algorithms, which was presented in [81], 

the authors compared the classification accuracies for all three versions of COMPOSE with 

SCARGC, MClassification and LEVELIW on 15 datasets. As shown in Table 2.3 none of these 

algorithms showed significant differences among them. The ranking for these algorithms is 

shown in the parenthesis, whereas the lower ranks represent better algorithms. 

 

Table 2.3 Average classification accuracy of COMPOSE, SCARGC, MClassification and 
LEVELIW presented in [81]. 
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1CDT 99.9(2) 99.8(5) 99.9(1) 99.6(7) 99.7(6) 99.8(4) 99.9(3) 

1CHT 99.6(2) 99.3(6) 99.5(3) 99.6(1) 99.2(7) 99.3(5) 99.5(4) 

1Csurr 90.9(5) 89.7(6) 95.6(1) 94.5(3) 94.9(2) 85.1(7) 91.3(4) 

2CDT 96.5(1) 95.9(2) 95.1(4) 87.7(6) 87.8(5) 95.2(3) 58.3(7) 

2CHT 90.3(1) 89.6(2) 89.4(3) 83.6(5) 83.4(6) 87.9(4) 52.1(7) 

4CE1CF 93.9(5) 93.9(6) 93.9(4) 94.0(3) 92.8(7) 94.4(2) 97.7(1) 

4CR 99.9(2.5) 99.9(2.5) 99.9(2.5) 99.9(6) 98.9(7) 99.9(5) 99.9(2.5) 

4CRE-V2 92.5(1) 92.3(3) 92.4(2) 91.3(6) 91.4(5) 91.6(4) 24.1(7) 

FG_2C_2D 87.9(6) 95.5(5) 95.5(3) 95.5(4) 95.6(2) 62.5(7) 95.7(1) 

GEARS_2C_2D 90.9(7) 95.8(3) 91.2(6) 95.9(2) 95.8(4) 94.7(5) 97.7(1) 

MG_2C_2D 93.1(2) 93.2(1) 93.0(3) 92.9(5) 92.9(4) 80.6(7) 85.4(6) 

UG_2C_2D 95.6(3) 95.7(1) 95.6(5) 95.6(2) 95.6(4) 95.3(6) 74.3(7) 

UG_2C_3D 94.9(3) 95.2(1) 95.1(2) 94.8(5) 94.9(4) 94.7(6) 64.7(7) 

UG_2C_5D 92.0(2) 92.1(1) 91.9(3) 91.3(4) 90.9(6) 91.2(5) 80.1(7) 

keystroke 84.3(7) 87.2(5) 85.9(6) 88.0(3.5) 88.0(3.5) 90.6(1) 90.5(2) 

AVG Rank 3.3 3.4 3.1 4.1 4.8 4.5 4.6 
 

2.3.4 Discussion  

The most influential parameter for LEVELIW is the value of the kernel width ‘σ’ as used in 

the Gaussian kernel.  The algorithm relies on Core Support Extraction (CSE), which is 

computationally very expensive, especially for high-dimensional data. Secondly, COMPOSE 
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(α-shape) strongly depends on the parameter Compaction Percentage which defines the 

percentage of currently labelled instances to use as core supports, and choosing the best 

value is problematic. The next section discusses online ensembles which are commonly used 

in NSEs. The APT algorithm was not included in the analyses, as its steep computational 

complexity was prohibitive to running some of the larger datasets [80]. This behaviour of 

APT was also previously reported even on a simple bi-dimensional problem [22]. 

2.4 Data Stream Classification using Ensembles 

Data stream classification is a process to extract effective knowledge and thereby unlock 

valuable insights arising from large amounts of real-time data.  Ensemble methods are one 

of the most promising research directions [82]. Ensembles combine multiple learning 

algorithms to obtain better predictive performance than single classifiers. Various studies 

about ensemble approaches for NSE have been published over the years, such as in [46] 

[66] [83]. Online Ensembles can be categorised as follows.  

• Active or passive drift handling ensembles. 

• Static or dynamic ensembles. 

• Homogeneous or heterogeneous ensembles.  

Diversity is one of the key characteristics to consider in the formation of ensembles. 

However, diversity measures have not received much research interest for evolving data 

streams [35]. Static ensembles do not add a new member in the ensemble while dynamic 

ensembles include and exclude the learning models. Figure 2.3 illustrates the categorization 

of algorithms into Homogeneous and Heterogeneous ensembles.  

 

 

Figure 2.3 Diversity and drift handling approaches of ensemble classifiers, based on 

drift handling capabilities and selection of base classifiers. 
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Examples of ‘homogeneous active’ approaches are Diversity for Dealing with Drifts (DDD) 

[83], and Adaptive Classifiers-Ensemble (ACE) [66]. Two Online Classifiers for Learning 

and Detecting Concept Drift (Todi) [84]. Whereas ‘Homogeneous passive’ approaches are 

Addictive Base Learner Ensembles (AddExp) [85] , DWM [10] and Online Accuracy 

Updated Ensembles (OAUE) [48]. A few of the ‘heterogeneous passive’ ensembles are WMA 

[11], Modal Mixture Model (M3) [86], Heterogeneous Ensemble with Feature drifT (HEFT) 

[87] and BLAST (short for best last) [36]. 

2.4.1 Heterogeneous Passive Ensemble 

Most existing heterogeneous ensemble techniques rely on meta-learning [36] [88] this 

helps in deciding which learning techniques work well on what data. The authors of [87] 

proposed a general framework to integrate feature selection and heterogeneous ensemble 

learning for data stream classification. The authors in [89] built a heterogeneous ensemble 

using three different tree-based ensembles (Random Forest [90], Rotation Forest [91], and 

Extremely Randomised Trees [92]). It was shown that running heterogeneous/different, or 

homogeneous/similar data stream classification techniques over vertically partitioned data 

(data partitioned according to the feature space) resulted in comparable performance to 

batch and centralised learning techniques [37]. 

 

WMA [11] uses fixed numbers of base learners C = (C1, C2 . . . CL) with an initial weight ‘wi 

’ equal to ‘1’. The weight is penalised by a factor of ratio β on each wrong prediction i.e. (wi 

←βwi), where the value of β is a user provided value between 0 and 1. The final prediction 

is made based on the weighted majority vote among the base learners Ci. The diversity of 

base learners has a significant effect in improving the performance on different streams. 

WMA base learners are heterogeneous, potentially helping to produce more diverse 

ensembles. However, it lacks the option to dynamically add new base learners. The 

algorithm has no explicit method to detect and handle concept drift thus being less effective 

in NSEs. 

 

M3 [86] is a heterogeneous chunk-based ensemble for NSEs. New classifier members are 

added to the ensemble at each data chunk and the weights are computed based on past 

performances. A weighting mechanism is used to deal with NSEs. The algorithm 

continuously updates the models regardless of whether real drift occurs or not. 

 

HEFT [87] is an online classifier that incorporates feature selection by applying the Fast 

Correlation Filter algorithm [93] that dynamically updates the relevant feature subsets for 

data streams. This is beneficial because NSEs may present feature drift [87] [94]. In high-

dimensional datasets, not all features are significant for training a classifier and the 

relevance of a feature may grow or shrink over time. Given a set of p different classifier 

types, M = {M1, M2 . . . Mp}, the ensemble is initialised with ‘k’ classifiers of each model in 

M. It determines the most discriminative feature subset on a chunk using a sliding window. 
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If the subset is different from the previous one, there is a feature drift. The approach then 

looks for the most accurate classifier having the smallest aggregated error and builds a new 

classifier. Finally, it removes the classifier with the least accuracy from the ensemble and 

adds the best classifier to the ensemble. However, after the initialization stage, the 

algorithm never utilises the ‘M’ models to create new classifiers. Therefore, there are 

chances that the ensemble may become homogeneous again in the future. 

 

BLAST [36] introduced an Online Performance Estimation framework to weight the votes 

of (heterogeneous) ensemble members. Based on the zero/one loss function, i.e. returns ‘1’ 

on correct predictions and ‘0’ otherwise, the weights are increased accordingly. Based on 

the performances on w (window s) it nominates one of its members to be an active classifier 

and sets its weight to ‘1’ and the weights of the remaining classifiers to ‘0’. The weights are 

updated on a predefined interval. The HEFT and OAUE apply a similar approach in which 

worst performing models are replaced with new learners, unlike the BLAST that temporarily 

reduces the weights of a poorly performing member. However, it utilises a static ensemble 

size similar to WMA. 

2.4.2 Active and Passive Homogeneous approaches 

This section presents related work on passive and active online learning approaches for 

NSEs which are based on Homogeneous ensembles. 

 Active approaches 

Active approaches for dealing with NSEs are typically based on single learners. They use 

concept drift detection methods to determine whether a concept drift has occurred. When 

concept drift detection occurs, methods for dealing with concept drift are triggered. A 

common strategy is to reset the single learner to learn the new concept from scratch [29] 

[46]. A few ensemble-based active approaches are also available in the literature.    

ACE [66] is an active online ensemble that consists of one online learner, a set of offline 

classifiers trained on old data, and a method that uses offline classifiers to detect concept 

drift. Ensemble predictions are based on a weighted majority vote across all classifiers. The 

classifier weights are based on their accuracy on the most recent training examples. ACE 

claims to be able to handle sudden, gradual, and recurring concepts better than other 

systems. However, its integral drift mechanism restricts the algorithm to integrate with 

other drift detection methods.  

Todi [84] is based on two online classifiers ‘H0’ and ‘H1’ for learning and detecting concept 

drift. Drift detections are performed based on a statistical test of equal proportions to 

compare ‘H0’s performance on recent and old training examples. When a concept drift is 

detected, ‘H0 is reset. ‘H1’’ is never reinitialised upon drift detection but can be replaced by 

‘H0’ when a concept drift is confirmed. Keeping the two classifiers can help to deal with false 

positive drift detections, as ‘H1’’ can be selected for prediction in the case that the reset ‘H0’ 
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classifier is inaccurate after the drift detection. The Todi predictions are the predictions 

given by the classifier with the best accuracy with the most recent training examples.  

DDD [83] is an online active ensemble learning approach that creates different ensembles 

with different levels of diversity to achieve robustness for different types of concept drift. A 

drift detection method is used to activate very high diversity ensembles which are not 

helpful during stable concepts, but that can help to deal with slow drifts, or drifts that do 

not cause too many changes with respect to the current concept. Even though these 

approaches are based on single learners rather than heterogeneous ensembles, their use of 

drift detection methods can inspire the proposal of novel heterogeneous ensemble 

approaches. 

 Passive approaches 

Most passive learning approaches (those that do not rely on drift detection methods) deal 

with concept drift by maintaining an ensemble of base models and use weights to emphasise 

the models believed to best represent the current concept [35]. 

AddExp [85] adds a new base model (a.k.a. base learner) for every wrong classification 

given by the ensemble. The weight assigned to the new base model is equal to the total 

weight of the ensemble multiplied by the parameter γ ϵ (0, 1). The mechanism to update the 

weight of each base model is analogous to WMA. The weight of each base model is updated 

by being multiplied by a pre-defined parameter β, which is a user provided value between 0 

and 1, when it gives a wrong prediction.  A pruning method eliminates the oldest base 

models for reducing the ensemble size. Alternatively, the base models whose weight is below 

a certain threshold can be deleted. The prediction given by the ensemble is the weighted 

majority vote of the predictions given by the base models.  

OAUE [48] combines chunk-based and online ensemble methods. The weights of the base 

learners are calculated by estimating the prediction error on the last d examples. The 

window size is utilised to create a new base learner for a set of examples and periodically 

removes the weaker base learners from the ensemble. The output is predicted by 

aggregating the predictions of base learners using a weighted voting rule. However, the 

algorithm is highly dependent on the window size. It is likely therefore that a small window 

size may lose the sudden concept drift, while a larger window may result in false concept 

detection. 

DWM [10] is one of the most popular ensemble approaches to deal with concept drift. Each 

base learner is associated with a weight. Weights start with value one and are multiplied by 

a predefined parameter (β, 0 ≤ β < 1), when their associated learner gives a wrong prediction 

in a time step multiple of period ρ. This weighting mechanism of DWM is inspired by the 

WMA. The predictions are based on the weighted majority vote derived from the base 

learners. DWM enables removal and addition of base learners at every ρ time step. A new 
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base learner is added whenever the ensemble prediction is wrong in a time step multiple of 

parameter ‘ρ’, where the value of ρ must be provided by the user. Removal of learners is 

controlled by a predefined weight threshold parameter θ. A base learner is removed if its 

corresponding weight is lower than θ in a time step multiple of ‘ρ’. In this way, new learners 

are created to learn new concepts and poorly performing learners, which possibly had learnt 

old concepts, are removed. The algorithm normalises the weights by uniformly scaling them 

such that the highest weight will be equal to one. This is done to prevent newly added base 

learners from dominating the decision-making of existing ones. However, despite using the 

WMA weighting mechanism, DWM does not exploit one of the key aspects of WMA — the 

use of different types of base models. 

2.4.3 Concept drift detection approaches  

Several approaches for drift detection are available in the literature [95][96][97][20]. 

Although most of these approaches rely on true class labels, some data stream clustering 

algorithms adapt to concept drift implicitly as part of the learning process. More specifically 

in CGC, when new instances arrive, the clusters are updated to reflect new concepts. Gama 

et al. [20] categorised concept drifts detection into four groups, Sequential Analysis, 

Statistical Process Control, Window based and Contextual approaches. 

The number of clustering algorithms explicitly addressing concept drift is very limited and 

to address the non-stationary nature of data, most available algorithms apply window 

models [14]. Exceptions to Online Divisive-Agglomerative Clustering (ODAC) [98] and Fast 

Evolutionary Algorithm for Clustering data stream (FEAC-Stream) [99] that use explicit 

concept drifts adaptation.  

The ODAC [98] algorithm partitions the streams in different time windows. It constructs an 

incremental tree-like hierarchy of clusters and continuously monitors the diameters of 

clusters.  The split and merge operators are based on these diameters and the confidence 

levels which are given by the Hoeffding bounds. The authors observed that in stationary 

datasets the diameter of a cluster reduces every time a split occurs. The system tests for 

aggregation, so in case of concept drift it will not start to grow unnecessarily.  

FEAC-Stream [99] uses the Page–Hinkley Test [100] to detect concept drifts. It is a 

Sequential Analysis test which was applied to detect whether the assignment of an object to 

the closest cluster increases the intra-cluster distances significantly. 

Cumulative sum approach (CUSUM) [101] is also a Sequential Analysis technique that 

triggers the alarm when the mean of the input data is significantly different from zero. 

CUSUM applied in [102] for identifying virtual drifts in data stream clustering problems. 

The authors also mentioned that the data stream clustering algorithms treat concept drift 

implicitly as part of the learning process. The need for explicit drift detection and adaptation 

is often neglected. 
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Drift Detection Method (DDM) [60] and Early Drift Detection Method (EDDM) [62] are 

well known representatives of Statistical Process Control and rely on the estimate of 

classifier error rate. Micro-Cluster Nearest Neighbour (MC-NN) [61], algorithm aims to 

keep a recent and accurate summary of the data stream and these micro-clusters are used 

for feature selection and detecting concept drifts. In EVL this estimate is not possible due 

to unavailability of true class labels, therefore DDM and EDDM are not beneficial in such 

conditions. 

The Statistical Test of Equal Proportion to Detect concept drift (STEPD) [84] monitors the 

two predictive accuracies of a single online classifier, i.e. accuracy among the most recent 

examples and overall accuracy from the beginning of the learning. It detects significant 

decreases in these predictive accuracies by using a statistical test of equal proportions. If the 

accuracies are statistically similar, then it is assumed that there is no concept drift. If the 

accuracies are significantly different, then a concept drift is detected. STEPD uses 

significance levels for drifts and warnings. Like DDM and EDDM, it stores examples in a 

short-term memory during the warning period and re-builds the classifier on drift detection 

based on the stored examples. 

2.4.4 Discussion 

Existing passive ensembles can be seen as performing dynamic model selection approaches 

when they assign different weights to their base learners and when they decide to remove 

base learners from the ensemble. However, these approaches have not exploited the use of 

different types of base learners, i.e. they have not exploited the potential benefit of 

heterogeneous ensembles. Even though the weighting mechanism of DWM was inspired by 

WMA, which is a heterogeneous ensemble, all the base learners in DWM are homogeneous, 

e.g. either all of them are Naïve Bayes or all of them are Hoeffding Trees. It is worth 

investigating how to combine heterogeneity and dynamicity features and develop an 

algorithm which is dynamic and diverse at the same time.  

2.5 Data Stream Clustering 

In stream clustering, semantically similar objects are moved closer to each other, and the 

algorithms try to group similar objects. However, stream clustering differs from offline 

clustering, the data streams arrive at high speed, therefore in stream clustering only single 

pass on data is possible and it is not feasible to store the data. Clustering is the most 

appropriate method for real-time data stream processing because it does not require 

labelled instances and can adapt to concept drifts [32]. Its main purpose is to group similar 

objects closest to each other. Several surveys and reviews on stream clustering algorithms 

are available [12][13][14]. Stream clustering differs from offline clustering, the data 

streams arrive at high speed, therefore in stream clustering only single pass on data is 

possible and it is not feasible to store the data. The stream clustering algorithms can be 

categorised into three main classes: hierarchical, partitioning based, and density based. 
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2.5.1 Partitioning Approaches 

It groups the instances into a predefined number of clusters based on similarity. The 

examples are K-Means [33] for static clustering. For Stream clustering, incremental K-

Means [103], CluStream [70], StreamKM++[104], Stream LSearch [105], SWClustering 

[69]. K-Means [33] is a clustering algorithm widely used in data mining. It groups the 

instances into a predefined number of clusters by using the Euclidean distance between 

each instance and the centroid using Equation 2.4. 

f =  ∑    ∑  |xi
k − ωk|

2

nk

i=1

K

k=1

                                                      (2.4)  

Where, ‘K’ is the number of clusters, ωk is the centroid of the kth cluster, nk is the number of 

instances assigned to the kth cluster, wi
k is the ith instance belonging to the kth cluster. 

ωk =  
1
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 ∑xi

k 

nk

i=1

                                                              (2.5) 

CluStream [70] uses two stages, online micro-clustering, and offline online macro-

clustering. In the online phase the instances are assigned to the micro-clusters or create new 

micro-clusters, the nearest clusters can be merged to create space for new clusters. The 

offline stages apply a weighted K-Means algorithm on the micro-clusters, to obtain the final 

clusters. 

The micro-clusters operate as an intermediate statistical representation for large volume of 

data. On the other hand, the macro-clusters store a compact summary statistic of the micro-

clusters to produce clusters for analysis on demand. 

2.5.2 Hierarchical Clustering 

Hierarchical clustering uses binary trees and are divided into agglomerative and divisive. 

Agglomerative algorithms (bottom-up) assign every instance as a cluster itself, and 

gradually merge the similar clusters to reduce the cluster count. The divisive algorithm (top-

down) is opposite, it starts with a single cluster containing all instances, then gradually 

breaks the clusters into smaller clusters. Examples are Hierarchical K-Means [106] BIRCH 

[107], CHAMELEON [108], ODAC [98], E-Stream [109] and HUE-Stream [110].  

2.5.3 Density Based Clustering 

Density based algorithms are intended to group arbitrary shaped clusters and detect the 

number of clusters.  Examples are DenStream [111] , LDBSCAN [112], ACSC [113], D-

Stream [114] and MR-Stream [115], OPTICS [116], which combines agglomerative and 

density approaches. Density-based hierarchical methods using sliding windows are also 

available streaming data clustering [117].   
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2.5.4 Micro-clustering 

BIRCH [107] introduced the Cluster Feature (CF) or micro-cluster which is a triple: CF = 

(N, LS, and SS), where N is the number of instances, (LS) is a vector with the linear sum and 

(SS) is a vector with the square sum of the N points. The centroid and radius are computed 

using Equation 2.2 and 2.3.    

2.5.5 Discussion 

The problem of online SSL is relying on the choice of clustering algorithms. When data 

arrives in streams, several problems arise here, such as computation and data storage. 

Existing state-of-the-art online SSL algorithms use micro-clusters for acquiring the pseudo-

labels for large unlabelled data, which further train the classifiers to be used for predictions. 

Density based algorithms are ideal for streams because it does not rely on the number of 

clusters, it can group clusters of arbitrary shapes and can handle outliers and noise. These 

algorithms often require all the raw instances to form clusters, which seems unrealistic in 

data stream applications due to the time limitation. The agglomerative algorithms are too 

slow for large datasets due to their complexity O(n3). While the Partitioning based 

streaming algorithms, e.g. CluStream, produce spherical clusters, therefore are less accurate 

than the density based. However, several parameters must be chosen manually.    

2.6 Data Stream Evaluation Methods 

For evaluating learning models in the data stream, three alternatives are prequential, 

holdout [51] evaluations and Kappa statistics [52]. The details of these evaluation methods 

are discussed as below. 

2.6.1 Prequential  

It is a general methodology to evaluate learning algorithms in data streams learning. 

Prequential evaluation [118] also called test-then-train in which each new example is used 

to test the model and then use the same example to train the model. According to [46] the 

prequential error is computed based on an accumulated sum of a loss function ‘L’ between 

the prediction yt and observed values ŷt using Equation 2.6 

p0 = ∑L (ŷt, yt)

n

t=1

                                                             (2.6) 

 

Prequential evaluation can be applied with sliding windows and decaying factors to improve 

classification results in evolving data streams [119]. However, this method can report initial 

poor performance due to fewer training examples seen by the model.  
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2.6.2 Holdout  

It uses predefined partitions of train and test instances, as it holds a subset of examples to 

be used as a training set at regular intervals. In a holdout test set with M examples, the 0-1 

loss is computed using Equation 2.7. 

He(i) =
1

M
 ∑ L (yk , ŷk)

M

k=1

 =  
1

M
 ∑ ek

M

k=1

                                            (2.7) 

2.6.3 Kappa Statistics  

Kappa statistics was introduced by [52] as a more sensitive measure for quantifying the 

predictive performance of streaming classifiers. The Kappa statistic ‘k’ is calculated using 

Equation 2.8. 

k =  
p0 − pc 

1 − pc
                                                     (2.8) 

Where ‘p0’ is the relative observed accuracy of the classifier calculated using Equation 2.9 

p0 = 
TP− TN

n
                                                       (2.9)                                                      

 Where, ‘TP’ = true positive’ and ‘TN’ = true negative and ‘n’ is the total number of 

observations. ‘pc’ is the expected accuracy of the classifier agreed with the ground truth 

label. It is calculated using Equation 2.10 

pc = 
(TP+ FN)(TP+FP) 

n2
+ 

(FP+ TN)(FN+TN) 

n2
                         (2.10)                          

2.6.4 Discussion 

Kappa statistics is a more sensitive measure for quantifying the predictive performance of 

streaming classifiers since it is not sure if the classes are balanced. Class imbalance is a 

condition when there are much more examples of a given class than the others and this class 

may be emphasised in detriment of the other classes. For evolving data streams, performing 

the error estimation is the key difference from traditional data mining evaluation because 

the cross-validation may be too expensive. The holdout evaluation requires the user to 

specify two parameters, i.e. the size of the window and the number of examples to test in 

each window. However, choosing the right values for these parameters are problematic. 

2.7 Hyperparameter Tuning 

Hyperparameters are parameters that must be initialised before learning begins. Several 

data stream clustering algorithms apply K-Means due to its simplicity, scalability, and 

empirical success in many real-word applications. However, one of the pitfalls of the K-

Means is its dependency on the number of clusters ‘k’ that must be specified prior to the 

learning.  In an effort to extend K-Means-Based Algorithms for evolving data streams with 

variable number of clusters the authors in [120] illustrated the potential of the proposed 
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framework by using three state-of-the-art algorithms for clustering data streams – Stream 

Lsearch [105], CluStream [70] and StreamKM++[104], - combined with two well-known 

algorithms for estimating the number of clusters, OMRk [44] and BkM [45]. 

2.8 Randomisation in Data Streams 

In data streams, continuous data arrives at high speed and there is practically no control 

over the sequence of training data presented to the learning algorithms.  Randomisation is 

thus different to noise, as it is not a random displacement of examples. The output of an 

adaptive classifier at every time step depends on the instances seen so far. Hence, 

performance depends on the order of instances in the dataset [47], the authors suggested 

executing multiple tests with randomised copies of a data stream. Devices can generate 

noisy data due to sensor inaccuracies or malfunctions. Cleaning the data helps in removing 

noise, ensuring that the model is not influenced by irrelevant or erroneous information. 

Cleaning data from devices before dealing with drifts is a critical step to ensure the reliability 

and effectiveness of models, especially in dynamic and evolving environments. 

2.9 Visualising Data Stream  

Mining data streams has attracted a big deal of attention over the last decade [121]. 

However little work has been done for visualisation of data stream mining. Traditional data 

Analysis systems like JMP [122] and WEKA [123] provide a wide range of interactive 

visualisation techniques and exploratory data Analysis tools. However, these tools are 

intended to work on offline datasets. MOA [46] is another comprehensive data stream 

mining tool that provides real-time visualisation of clustering and as well as outlier 

detections as shown in Figure 2.4.  

 
Figure 2.4 Visualisation of online Clustering in MOA showing ground truth and micro-

clustering along with performance measures. 



55 

It provides a variety of visualisation support for supervised and unsupervised however the 
visualisation of SSL is not available. In the research a visualisation tool for SSL has been 
developed for MOA. 

Gephi [132] is an interactive and hierarchical graph-based tool for real-time visualization 

and exploration tool. It includes layout algorithms such as force-based and multi-level 

algorithms. Figure 2.5 shows worldwide flight routes network as connected graph of airport 

dataset [133]. The visualisation in Gephi has been created and can be found here [54]. The 

directed graph is using 5,623 nodes (airports) and 37,596 edges (routes) presented as a 

mixture overlay between network graph and geographic data using the Geo Layout plugin. 

 

 

Figure 2.5 Visualizing Airline Routes Network using Gephi showing airports and 
routes using mixed overlay between network graph and geographic data. 

 

2.10 Limitations of the Approaches described in the Literature 

To deal with EVL, the available approaches are not compared with each other and in extent 

to our knowledge no comprehensive studies are available that justify the one approach over 

the other. Furthermore, the reasons why one approach performs better than the other when 

applied to different characteristics of data streams and why the other approach fails, is still 

not clear in the literature. This section highlights a few gaps of the literature which are 

identified in the literature review process. 

Gap 1: To deal with the diversity of learning models, existing approaches are static or 

dynamic and homogeneous or heterogeneous. NSEs approaches are either active or passive 

therefore restricting to adaptation of either gradual or abrupt drifts. It has been a key 

challenge in data stream mining, as some algorithms heavily rely on forgetting mechanisms 

while others retain previous learning. 

Gap 2: EVL deals with unlabelled data more effectively using clusters, however under NSEs 

when the clusters overlap, existing approaches relying on micro-clustering. Apart from that, 

this approach is computationally expensive for mining high speed data streams. 
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Furthermore, existing EVL approaches are human dependent on redefining the best type of 

predictive models for a particular problem or pseudo-labelling strategy. i.e. CGC, or self-

learning. 

The predictive performance of SCARGC is highly dependent on clustering, and it also 

requires some prior knowledge such as the number of centroids ‘k’ and pool size ‘θ’ which 

may significantly affect the predictive performance when such information is not available.  

To choose the best value of ‘k’ which is suitable for a particular data stream, the algorithm 

needs to run several times with different values of ‘k’ and pick the ‘k’ that gives the best 

predictive accuracy.  

While analysing the results published in the respective papers of LEVELIW and COMPOSE, 

it is difficult to determine which performs better, it seems to be strongly dependent on the 

application. COMPOSE showed better results than LEVELIW when there was a significant 

class overlap.  COMPOSE uses the parameter ‘k’, the number of centroids for, and LEVELIW 

uses parameter σ which is the value of the kernel bandwidth.  However, in case of complete 

class overlap and a condition when no ground truth data is available, it is very challenging 

for the algorithm to recover learning from it. 

2.11 Summary 

In this literature review, a comprehensive examination of existing studies, findings, and 

methodologies have been conducted to enhance the understanding of key challenges in data 

stream mining. The focus areas included label scarcity, maintaining ensemble diversity, 

autonomous hyperparameter optimization, and the success and adaptability of existing 

approaches. Addressing the scarcity of true class labels in non-stationary conditions (RQ1), 

the Initially ILNSE approach has been identified and various techniques such as CGC, self-

learning, and micro-clustering have been explored. The literature addresses NSEs and EVL 

separately, with limited algorithms handling both. Furthermore, a lack of clarity was noted 

regarding the comparative effectiveness of these approaches. While analysing the results 

published in the respective papers of LEVELIW and COMPOSE, it was difficult to determine 

which algorithm performs better, both these algorithms were highly dependent on the 

characteristics of datasets. COMPOSE showed better results than LEVELIW in the presence 

of significant class overlap. However, the drawback of COMPOSE is parameter ‘k’, which is 

used to define the number of centroids, the algorithm applies arbitrary values for ‘k’ to 

achieve the best predictive performances.  LEVELIW is based on parameter σ which is the 

value of the kernel bandwidth.  In case of complete class overlap and a condition when no 

ground truth data is available, it is very challenging for the existing algorithm to recover 

learning from it. 

Concerning the diversity of the prediction models (RQ2), in the case of WMA its base 

learners are heterogeneous, potentially helping to produce more diverse ensembles. 

However, it lacks the option to dynamically add new base learners. The algorithm has no 
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explicit method to detect and handle concept drift thus being less effective in NSEs. Despite 

using the WMA weighting mechanism, DWM does not exploit one of the key aspects from 

WMA - the use of different types of base models. The HEFT and Online OAUE apply a 

similar approach in which worst performing models are replaced with new learners, unlike 

the BLAST that temporarily reduces the weights of a poorly performing member. However, 

it utilises a static ensemble size like WMA. 

ILNSE scenarios often involve significant human dependency, especially for parameter 

tuning (RQ3). The literature review provided an in-depth analysis of various 

hyperparameter tuning techniques employed in data stream mining. The literature showed 

that, existing CGC approaches rely on prior knowledge concerning the number of classes for 

generating the corresponding centroids. The evaluation of SCARGC involved the use of 

various arbitrary values for 'k' and pool size θ, leading to adverse effects on the prediction 

results. 

The (RQ4) addresses the consistency of success for existing approaches across diverse 

problems. The literature suggests that the CGC approach is effective in adapting to changes 

by identifying and updating clusters. This way, the model can focus on adapting to the 

evolving characteristics of different data clusters. self-learning approaches can help by 

iteratively updating the model with new data points. When the environment becomes non-

stationary, the model can adapt by incorporating the most recent information from the 

unlabelled data into its classification decisions. Micro-clustering can be especially useful in 

ILNSE because it can capture fine-grained changes in the data distribution. By identifying 

micro-clusters within the data, the model can monitor and adapt to subtle shifts in the data's 

characteristics over time, which is essential in a non-stationary environment.  

The common challenge in all these approaches is the potential for misclassification, 

especially when dealing with overlapping clusters or incorrect pseudo-labels. To address 

these issues, researchers might be exploring methods to improve the accuracy of cluster 

assignments, reduce the processing time of micro-clustering, or develop more robust self-

learning techniques that can adapt to evolving data distributions while mitigating the 

impact of incorrect pseudo-labels. The choice of approach may depend on the specific 

requirements and constraints of the application, as well as the nature of the data and the 

available computational resources. Researchers in this field likely work on refining and 

combining these methods to achieve better results in non-stationary environments. 

Learning task in data streams are divided into Online and block-based approaches, in online 

learning the training examples are presented to the learning algorithms at any time-step, 

which learns and predict a class label. On the other hand, in block-Based learning the data 

stream is partitioned into different sized blocks containing equal examples. Block-based 

approaches wait for a whole new chunk or batch of data to arrive; and then use this new 

chunk for training before discarding it. The block/batches are useful in creating clusters 

which can be used for pseudo-labelling in ILNSE. A hybrid approach applies both 
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incremental and block-based learning approach. Therefore, applying the hybrid approach 

is more beneficial in ILNSE. One issue arises here is choosing the right value of batch size, 

it is likely that a small batch size may lose the sudden concept drift, while a larger window 

may result in false concept detection.   

The literature review highlighted the need for more clarity on the comparative effectiveness 

of ILNSE approaches and the challenges associated with diverse ensemble techniques. It 

also emphasized the significant role of human analysts in parameter tuning and underlined 

the potential of advanced algorithms for improved cluster estimation. The review provided 

a foundation for understanding the current landscape of data stream mining challenges and 

solutions, paving the way for further research in this dynamic field. analysts may need to 

develop strategies for identifying and mitigating label noise, which can adversely affect 

model training and adaptation. This might involve techniques like outlier detection, 

consensus labelling, or active learning to improve the predictive performances of data 

stream mining algorithms. The following chapter undertakes a preliminary investigation 

into Extreme Verification Latency and its impact on prediction accuracies, aiming to 

pinpoint gaps within the existing literature. 
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Chapter 3 Preliminary 
Investigations on Extreme 
Verification Latency  

This chapter focuses on investigating the research questions by experimenting the problem 

discussed in 0. i.e. the problem of EVL and its effect on prediction accuracies. The research 

aims at creating a new algorithm for detecting changing environments. The literature 

reveals that there are several algorithms exists that has ability to detect drift on streaming 

data. Online ensemble classifiers such as DWM [10] has been successfully used to improve 

the accuracy of single classifier in online and incremental learning and applies passive drift 

detection approach which is suitable to detect gradual drifts. The dynamic ensemble method 

of DWM combines the decisions of all the learners to predict the classes. The method uses 

mechanism to dynamically add or remove the base learner based on the global algorithm’s 

performance. 

The DDM is an active drift detection method initially proposed by Gama et al. [60] monitors 

the number of errors produced by the learning model during the prediction and suitable for 

detecting sudden drifts. DWM is lacking active drift detection approach to handle sudden 

drift and applied a passive approach i.e. represents weights to handle gradual drift. A recent 

study revealed that different diversity levels in an ensemble of learning machines are 

required to maintain high generalization on both old and new concepts. Therefore, a 

comprehensive investigation has been carried out to incorporate DDM in DWM. 

In the data stream mining, there is limitations to store all the data, for building a decision 

tree there is the need to reuse the training examples to compute the best splitting attributes. 

Domingos and Hulten [136] proposed the Hoeffding Tree (HT) which is a very fast decision 

tree algorithm for streaming data. The most interesting feature of the HT is that it builds a 

tree that provably converges to the tree built by a batch learner with sufficiently large data 

[46]. HT applies Hoeffding bound [136] ‘ε’ used to split decision in the tree is calculated 

using Equation 3.1.  

∈ =  √
R2ln (

1

δ
)

2n
                                                                  3.1 

Where, ‘n’ is the count of independent observations of the variable ‘r’ and R is the range of 

‘r’. δ is the desired probability and its value is provided by the user.  

The Naïve Bayes (NB) [38] classifier is based on Bayes’ theorem in which the probability of 

an event occurring is calculated. A data stream X = {X1, X2 ... XN} having discrete set of ‘y’ 

multi-classes. The authors in [38]  determines the estimate of probability that an example 

is belonging to class ‘y’ given the features X is calculated in using Equation 3.2 and for all 

possible values of the class ‘y’ determine the maximum probability using Equation 3.3.  
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P(y|x̂) =
P(y)∏ P(x̂i|y) N

i=1

P(x̂)
                                                        3.2 

y = argmaxy P(y) ∏ P(x̂i|y)
N
i=1                                                3.3 

  

Where, P(y) is called class probability and P (x̂i | y) is the conditional probability. 

This chapter is organised as follows: Section 3.1 presents the analysis of EVL, Section 3.2 

investigates the heterogeneous and homogeneous classifiers.  

3.1 Analysis of Verification Latency 

This section investigates the problem of class label scarcity also called EVL and its effect on 

prediction accuracies on learning models. Under ILNSE the prediction accuracies of 

learning models are greatly influenced by the scarcity of true class labels which are never 

available to update the prediction models. Therefore, it is beneficial to analyses the concept 

drifts and its consequences on prediction accuracies under the class label scarcity.   

3.1.1 Experimental Design 

All the experiments are evaluated in terms of predictive performance. As shown in Figure 

3.1, the Keystroke datasets has been used with EVL option in which the size of labelled data 

is set to 150 examples for a total of 55 thousand examples. 

 

Figure 3.1 New Task ‘EvaluateEVLPrequential’ created in MOA. 



61 

 

A new Task ‘EvaluateEVLPrequential’ has been created in MOA [46], the EVL learning task is 

provided with an option to define the size of labelled data and purposely removes the true class labels 

from the remaining part of the data stream. An option has been added to compare the evaluation 

results of 1) Applying 100 training data with 2) EVL i.e. partially initial labelled data streams. 

3.1.2 Data Streams and datasets. 

SEA_Drifts, HyperPlane (Incremental), RandomTree (No Drift) [46] data streams has been 

applied in this experiment. The description of Random Tree and HyperPlane is available in 

Section 4.4.1. SEA_Drifts has been explained in Section 3.2.2. The HyperPlane Incremental 

drift is induced by changing the values of the HyperPlane weights as the time advances.  It 

is possible to modify the orientation and position of HyperPlane by gradually changing the 

values of weights. 

The Keystroke dataset [135] task is to predict the typing rhythms of genuine users and 

impostors, based on their typing patterns.  The dataset consists of 10 attributes and 4 class 

labels containing records obtained from the users in 8 different sessions who typed a fixed 

password. The configuration uses a batch size of 150 examples and a total of 150 training 

examples i.e. only the first batch out of 55k has been used to train the classifier. 

3.1.3 Significant Findings 

The results show that under EVL conditions all the datasets have underperformed in terms 

of prediction accuracies, as shown in Table 3.1, the EVL highly effected the keystroke 

dataset and Incremental drifts and a slight reduction in the prediction accuracy in the data 

stream with no drifts. 

Table 3.1 Comparison of Prediction accuracies (%) of EVL and No EVL on drift 
streams, no drift and real-world dataset. 

Streams (with 
Drifts) 

EVL 
(%) 

100% 
labelled. 

training set 

Difference 
(%) 

SEA_Drifts ↓ 69.9 ↑ 77.1 7.2 

HyperPlane 
(Incremental) ↓ 53.8 ↑ 82.8 29 

RandomTree (No 
Drift) ↓ 60.3 ↑ 64.1 3.8 

Keystroke ↓ 49.0 ↑ 89.0 40 

Average (%) 58.2 78.2 20 

 

The SEA dataset consists of sudden concept drifts at epochs 25k and 75k as shown in the 

dashed vertical lines. Under EVL the classifier trains on initial 50 labelled examples and 

predicts fine until the first abrupt concept drift appears at epoch 25k. As shown in Figure 

3.2 the predictions get worst between 25k and 75k, it is possible to timely recover from drift 
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and train on the new concept but under EVL, no true class labels are available. Likewise in 

the HyperPlane data stream in which incremental drift exists and not true class labels are 

available.  

 

Time Step (Thousands) 
 

Figure 3.2 Comparison of EVL and No EVL on Prediction accuracy (%) on SEA 
Drift and HyperPlane incremental drift streams, the vertical dotted lines 

representing sudden concept drifts. 
 

In the Real-world dataset ‘Keystroke’ the true location of concept drift is not available. Figure 

3.3 show the prediction accuracies of Keystroke and RandomTree under no EVL and with 

EVL. It is evident from the plots that when no drifts are present the EVL does not significantly 

affects the prediction capabilities, while the concept drifts significantly reduce the predictive 

performance as in case of Keystroke, HyperPlane (Incremental Drift) and SEA (Drifts) data 

streams.  

 

Figure 3.3 Comparison of EVL and No EVL and its effect on Prediction accuracy 
(%) on Real-world dataset and RandomTree having no drifts.  

3.2 Heterogeneous VS Homogeneous Classifiers 

As discussed in the literature review Section 2.4, the two categories of ensemble methods 

based on configurations are: 1) Homogeneous ensembles:  It uses same types of learners and 

2) Heterogeneous ensembles:  It uses different types of base learning algorithms. The base 

learners can be NB or HT etc. The WMA [11]  consists of heterogeneous base learners in its 

ensemble but the size of learners in the ensemble is fixed. By integrating features of both 

these classifiers and by incorporation the existing drift handling methods in the classifier 
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would theoretically increase the performance and accuracy of the classifier. DWM is 

homogeneous ensemble, but it has ability to deal with sudden drifts by adding and removing 

the base classifiers. The following experiment will analyse the effect of homogeneous and 

heterogeneous ensemble in the context of drift handing capabilities.          

3.2.1 Experimental Design 

All the experiments are evaluated in terms predictive performance and performed on 

machines with Core i7 @ 3.4 GHz, 4 GB of RAM and executed within the MOA [46] 

framework. The defaults parameters of DWM and WMA has been applied in the 

experiments. The artificial datasets used in the experiments are generated in the MOA, a 

detailed description of Random Tree and HyperPlane is available in Section 4.4.1. 

Prequential evaluation [46] has been applied using frequency 1000 and instance size 100k.  

3.2.2 Data Streams 

The RandomTrees generates a stream based on a randomly generated tree.  Hyperplane is 

a flat n-dimensional space useful for simulating gradually drifting concepts. The orientation 

and position can be modified by slightly changing its relative size of the weights. The 

STAGGER [10] dataset consists of 120 training instances, each instance presented with 100 

test instances. Generated the dataset consists of 12,000 training and testing examples. The 

training instances contain the following concepts changing at epoch 40 and 80. 

• Concept 1 = size ==small && colour == red 

• Concept 2 = colour ==green || shape == circle 

• Concept 3 = size ==medium ||size == large 

The SEA [64] concepts consist of four concepts and three attributes, where Attribute (i) ∈ ℝ 

such that 0.0 ≤ xi ≤ 10.0. The target concept is Attribute (1) + Attribute (2) ≤ b, where b ∈ 

{9, 7, 8, 9.5}. 

• Concept 1 = Attribute (1) + Attribute (2) ≤ 8 

• Concept 2 = Attribute (1) + Attribute (2) ≤ 9 

• Concept 3 = Attribute (1) + Attribute (2) ≤ 7 

• Concept 4 = Attribute (1) + Attribute (2) ≤ 9.5 

 

The SEA_Drift datasets used in Section 3.2.4 for the experiments on concept drifts, consist 

of 100,000 training, each instance presented with 2500 test instances therefore 

PeriodicHeldout evaluation has been applied for these datasets. The training instances 

contain sudden concepts drifts at epoch 2k and 75k. Figure 3.4 showing the learning 

strategies and time changing concepts of SEA Drift data stream. The MOA commands to 

generate this stream is available in APPENDIX I. 
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Figure 3.4 Changing concepts and learning strategies in SEA data streams.  

3.2.3 Significant Findings in Heterogeneity 

The prequential evaluation results in Figure 3.5 show that on RandomTree data stream the 

prediction accuracy of HT classifier is (92.1%), which is higher than the NB classifier 

(73.5%). Contrary to that, on Hyperplane data stream the prediction accuracy of NB is 

higher (93.9%) than HT which is (89.4%). Therefore, it is extremely difficult to choose the 

best performing classifiers for a specific problem.  

 

Figure 3.5 Comparison of Prediction accuracy (%) of NB and HT classifiers on HP 
and RandomTree data streams.  

The DWM-NB (DWM using NB as base classifiers) when applied to Random Tree, the 

prediction accuracy is low (72.35%) but improved in DWM-HT (85.45%) (DWM using HT 

as base classifiers). Likewise, when DWM-NB base classifier is applied to HyperPlane data 

stream, the prediction accuracy is higher (93.13%) than the DWM-HT base classifier 

(84.64). This shows that the DWM which is a dynamic ensemble of classifiers also failed to 

fill this prediction accuracy gap.   
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       Table 3.2 Prediction accuracies (%) of DWM-NB and DWM-HT.  

Stream DWM-NB DWM-HT Difference 

RandomTree 72.35 85.45 ↑ 13.1 

HyperPlane 93.15 84.64 ↓  8.51 

Average (%) 82.75 85.04 -2.29 

 

Apart from that, the WMA which is heterogeneous ensemble when applied on the similar 

problem, the results in Table 3.3 shows that WMA overcomes this problem and maintains 

the prediction accuracy (average 89.1%) on RandomTree and HyperPlane (94.0%). This 

improvement is because the WMA uses both HT and NB base classifiers in its ensemble.  

 

Table 3.3 Prediction accuracies (%) of WMA Heterogeneous ensemble classifiers. 

Streams (No Drifts) Heterogeneous (WMA) 

RandomTree 89.1 

HyperPlane 94.06 

Average (%) 91.58 

 

3.2.4 Significant Findings in Concept Drifts 

In another experiment, the WMA fails on STAGGER and SEA datasets which consists of two 

sudden drifts at 25k and 75k. The results in Table 3.4 shows that when WMA is applied to 

STAGGER_Drift and SEA_Drift, the WMA did not adapt to sudden drifts as compared to 

DWM which deals the sudden drifts by added a new base classifier. Despite that the WMA 

is heterogeneous, it is not capable to adapt to sudden concept drifts.  

 

Table 3.4 Prediction accuracies (%) Homogeneous DWM and Heterogeneous 
WMA ensemble classifiers. 

Streams (with Drifts) 
Homogeneous 

DWM-NB 

Heterogeneous  
WMA 

SEA_Drift ↑ 87.98 ↓ 85.79 

STAGGER  ↑ 86.20 ↓ 55.08 

Average (%) 87.1 70.4 

 

Figure 3.7 shows results on STAGGET datasets, WMA which is a heterogeneous classifier 

and a better choice when no drift, as in case of Hyperplane and RandomTree, However the 

WMA is unable to restore learning after the sudden drift at location ‘40’ and ‘80’. DWM on 

the other hand is reactive to drifts but lacking heterogeneity. This requires investigating the 
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cause of this varying results and requires an approach that adapts to the given problem, 

timing and conditions and maintains the accuracy on both these data streams. 

 

Figure 3.6 shows results on SEA datasets, the WMA is not able to recover from the 
sudden drift at 25k and 75k, however DWM recovered from the sudden drifts.  

 

 
Figure 3.7 Comparison of Prediction accuracy (%) of WMA and DWM on SEA 

dataset, the vertical dotted lines representing sudden concept drifts. 
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3.3 Implementation of SCARGC in MOA 

The implementation of SCARGC algorithm in JULIA language is available here [134]. The 

SCARGC algorithm has been implemented in MOA to enable experiments on MOA data 

streams and to standardise its comparison with our PSDSL approach. Figure 3.8 shows our 

implementation of SCARGC in MOA, to assure the correctness of our implementation the 

figure below showing the prediction accuracies achieved in 2CDT datasets using the pool 

size 300 and only 50 instances out of 16,000 were labelled.  

 

 
Figure 3.8 The implementation of SCARGC in MOA applied on 2CDT dataset. 

 

A new option to edit the choice of base classifier has been added to experiment SCARGC to 

apply different base classifiers, different clustering algorithms and pool size/period of the 

data streams could be configured in the SCARGC algorithm. Figure 3.9 showing SCARGC 

algorithms applying Naïve Bayes classifier and CluStream Clusterer. 
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Figure 3.9 Editing option for configuring the SCARGC algorithm in MOA. 

3.4 Discussion 

The presented chapter delves into the investigation of research questions outlined in 

Chapter 1, particularly focusing on the challenge of evolving environments (EVL) and its 

impact on prediction accuracies. The literature review established the existence of various 

algorithms designed for detecting drift in streaming data, with online ensemble classifiers 

like DWM showing success in enhancing accuracy in online and incremental learning. 

Considering the findings, the chapter suggests the development of an 'Online SSL' method 

tailored for data streams with the ability to adapt to concept drifts under EVL conditions. 

The implementation of the SCARGC algorithm in MOA served as a benchmark for 

comparisons in a controlled environment. The investigations lay the groundwork for 

understanding the shortcomings of existing EVL approaches, particularly in preserving the 

diversity of online classifiers. 

3.5 Summary 

This chapter focused on addressing RQ1 and RQ2 in close relation to the influence of 

scarcity of true class labels and diversity of online classifiers under NSEs and its effect on 

predictive performances with the help of real scenarios. To analyse the effect of EVL under 

concept drifts, synthetic data streams and real-world datasets were applied. Diversity was 

found to be one of the key characteristics of online ensembles, i.e. multiple learning 

algorithms staked together. To analyse the diversity of ensemble classifiers, Homogeneous 

vs. Heterogeneous and static vs. dynamic ensembles were investigated on the synthetic data 

streams.  

The experimental design consists of developing a new evaluation task for EVL in which each 

new example is used to test the prediction model and the same example is then used to train 
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the model. The new mechanism also allows the users to define the size of initially labelled 

data and purposely removes the true class labels from the remaining part of the data 

streams. Synthetic data streams SEA and HyperPlane were generated by inducing sudden 

and incremental drifts respectively. To analyse the effect on real-world datasets ‘Keystroke’ 

was evaluated for which the information about the true drift locations and their type is not 

available. Furthermore, to analyse the effect of EVL when no concept drifts existed, a 

RandomTree data stream was generated. This design helped in determining the influence 

of concept drifts on EVL conditions. The results showed that under EVL all the datasets 

underperformed in terms of prediction accuracies when concept drifts were present, 

furthermore, highly affected the keystroke dataset and incremental drifts in the data 

streams. The predictions get worse after the concept drifts, as no true class labels are 

available to learn the new concepts. It was also analysed that when no drifts were present in 

the data streams, EVL did not significantly affect the prediction capabilities. 

To investigate the diversity of online classifier ensembles, DWM and WMA were 

investigated for the ‘heterogeneity’ factors. The results showed that due to a small amount 

of initial labelled data, it is difficult to choose the correct type of base learning algorithm i.e. 

NB and HT in the ensemble. Perhaps on one data stream, the prediction accuracy of HT was 

found higher than the NB classifier. Apart from that, on a different data stream, the 

prediction accuracy of NB was found higher than HT. Therefore, it is extremely difficult to 

choose the best-performing classifiers for specific problem. 

In the perspectives of the above findings, it is worth developing an ‘Online SSL’ method for 

data streams with the ability to adapt to concept drifts under EVL. For benchmark 

comparison, the SCARGC algorithm was implemented in MOA to enable the experiments 

on data streams and to standardise the comparisons in a controlled environment. The 

investigations in this chapter also built a concrete foundation to investigate the root cause 

of the failure of existing EVL approaches due to the diversity of online ensembles. This chapter 

supported achieving the goal of overcoming the problems of losing the diversity of online 

classifiers due to the exclusion of base learners from the ensembles, which will be addressed 

in Chapter 4.    
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Chapter 4 Heterogeneous Online 
Learning Ensemble for NSEs  

This chapter aims at addressing the Gap 1 which was raised in Chapter 1, i.e. dealing with 

the diversity of online learning models. More specifically, answering the (RQ2), i.e. 

overcoming the problems of existing dynamic ensembles that may undergo loss of diversity 

due to the exclusion of base learners. Even though it is well known that various types of 

predictive models (e.g. Naïve Bayes, Hoeffding Trees, Multilayer Perceptron, etc.) can 

provide a very different predictive performance depending on the problem being tackled, 

little work has been dedicated to the investigation of what type of predictive model is most 

adequate over time in NSEs. 

Several approaches to handling concept drift can be found in the literature. Most studies in 

this area are concerned with how to quickly detect and/or adapt to concept drift. In 

particular, “Active approaches use methods to explicitly detect concept drifts. If a drift is 

detected, new predictive models are typically created to learn the new concept, thus helping 

the system to recover from the concept. Passive approaches do not use concept drift 

detection methods. Instead, they usually maintain an ensemble of predictive models called 

“base models and use weights to emphasise the models believed to best represent the 

current concept. These approaches also typically create new base models and enable the 

deletion of old base models to help in dealing with concept drifts. 

For instance, when delivering online learning, it is difficult to know which type of machine 

learning algorithm would be best to use as a base model for an ensemble learning algorithm 

beforehand, due to the initially small amount of data available for evaluating base models. 

However, as more data is received, it is desirable that online ensemble learning algorithms 

automatically identify which types of base learners work best for the application domain. In 

addition, if the best type of base learner changes due to concept drift, online ensemble 

learning algorithms should also be able to automatically identify which types of models are 

best suited to the situation encountered after concept drift. 

4.1 The HDWM Algorithm 

In this research, an online heterogeneous ensemble learning algorithm has been proposed 

for NSEs known as the Heterogeneous Dynamic Weighted Majority (HDWM). The purpose 

of introducing this new algorithm is to determine the best types of base models to be used 

over time in NSEs. This will enable to keep different types of base models and use them to 

improve predictive performance to manage concept drift. 

 An overview of the proposed HDWM approach is shown in Figure 4.1. HDWM maintains 

a dynamic list of learners. In Stage 1, the seed learners Ɛ1 to Ɛa are initialised. In Stage 2, the 
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learners in the dynamic learners’ collection are prequentially tested on each instance in the 

data stream. In Stage 3, the same instance is used for training the dynamic list. In Stage 4, 

the predictions from each of the base learners are combined and based on the weights given 

to the base classifiers, the global predictions are generated. On globally wrong predictions 

a best performing base learner is cloned from the list of seed learners and added to the 

dynamic list. The max size of the dynamic list is controlled using parameter Bmax. The 

learners of the ensemble (Ɛm) make their predictions use their corresponding weights wm. 

 

Figure 4.1 Overview of HDWM. 
 

The global predictions on instances xi for class label y’i from a set of classes ‘C’ is based on 

the prediction made by ‘m’ base learners in dynamic list, Ɛ j (xi) ∈ C. The ground truth for 

each example consists of pairs (xi, yi), and the aim was to combine the weighted predictions 

of each learner using their corresponding weight wj using majority voting as shown in 

Equation 4.1. 

ýi = arg max
                c ∈ C

  ∑ ωi
j

n

j  |εj (xi )=c

 (4.1) 

 

Each learner in Ɛ is associated to a weight {w1, w2… wm}. The method to update the weights 

is similar as defined in Dynamic Weighted Majority (DWM) [10], i.e. by being multiplied by 

a factor β (0 ≤ β < 1) upon misclassifications at time-steps multiple of Period ‘ρ’, where ρ 

>= 1 is a predefined parameter set by user. HDWM implements both an active and passive 

approach for handling concept drifts, so that it can efficiently deal with different types of 

drift (gradual and abrupt). To implement a passive approach, HDWM removes weaker 
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learners and their associated weights from the dynamic list once their weights fall below the 

value predefined in parameter θ. After every ‘ρ’ time-steps, it performs the following tasks.  

1) When the global prediction of the ensemble is wrong, a new learner is cloned from 

the “best” seed. The best seed corresponding to the base learner in Ɛ with the best 

weight. 

2) Once the ensemble size exceeds a user predefined threshold Bmax, remove the base 

learner among Ɛj, a+1 ≤ j ≤ m, which has the lowest weight.  

These two approaches restrict the ensemble size to reduce the computational costs while 

enabling the ensemble to remain heterogeneous.  To implement an active approach, HDWM 

uses parameter δ to select a concept drift detection method, e.g. DDM [60] or EDDM [62] 

and link it to each base learner in the ensemble. The predictions taken from the base 

learners are injected into their corresponding drift detection methods to detect concept 

drifts and warnings. To handle concept drifts, HDWM has two options 1), reset the learning 

of the seeds and their corresponding weights and re-train them. 2) delete the weakest 

learners and create new learners of the same type as the best performing learner by cloning 

its seed. 

The HDWM is outlined in Algorithm 4.1, initially, the seed learners ‘Ɛ1 to Ɛa are initialised 

based on their base learning algorithm (line 2). Each learner in the dynamic list is assigned 

equal weight 1.0 (line 3).  Each base learner Ɛj in the dynamic list is asked for predictions 

on ‘xi’ instances (Line 8), where ‘i’ is the time-step and ‘x’ is the vector representing 

attributes in the data-stream. Similar to the DWM rule [10] the weights of the learners are 

decreased on incorrect predictions (Line 10-11). Over time when the ensemble grows, the 

base learners whose weights fall below θ are deleted while keeping intact the seeds in Ɛ for 

future use (Line 13-15) and set the flag d = 1 which indicates that the base learner has been 

deleted. By ensuring that at least one base learner of each type is maintained in Ɛ, it is certain 

that a given type of base learner can repopulate the ensemble whenever it becomes 

beneficial, even if this follows a period when this type of base learner was not beneficial.  
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Algorithm 4.1 HDWM ({x,y}
1
n , β, θ, ρ) 

Input: {x ,  y }  
1

n  : Stream of examples and class label 

           {LearningAlgorithm} 
1

a: Set of Heterogeneous Seed Base Learning Algorithms 
 β: factor to decrease weights, 0 ≤ β < 1  
 θ: threshold to delete base learner 
 ρ: period between base learner removal, creation, and weight update 

{Ɛ,w,δ}
1
m : Set of Seeds, Dynamic learners, and Drift Detection Method    

d {0,1}: base learner delete flag 
Bmax: Max size of ensemble  
c ∈ ℕ*: Number of classes, c ≥2 
∧ , λ ∈ {1,…,c}: global and local predictions 
σ ∈ ℝc : sum of weighted prediction for each class 

1 for seed = 1 to a     // Loop over seeds 
2  Ɛseed ← Initialised_Seeds 

(LearningAlgorithmseed) 
// Clone seeds to Dynamic List    

3  wseed  ← 1.0                                                  
4 end for  
5 for  i = 1 to n   // Loop over examples                                            
6  for  j = 1 to m                                                                      // Loop over ensemble of learners                                            
7   d ← 0                                                                            // Learner’s delete flag                                            
8    λ = Classify (Ɛj, xi )  // Classify using learners 
9       if (i mod ρ = 0) then  
10    if (λ≠ yi ) then  
11     wj  ← β wj  // Update weight using DWM rule 
12    end if  
13    if (wj  < θ and 𝑗 > a) then                        // j>a prevents deletion of seeds  
14     {Ɛj, wj  } ← remove ({Ɛj, wj  }, θ)               // Delete learners, weights < θ  
15     d ← 1;                                                               // Set deleted flag to True 
16    end if  
17    if (d ≠ 1) then                                                           // If no learners are deleted 
18     σλ  ← σλ + wj  
19     wmin  ← min(w), wmax  ← max(w)     
20    end if  
21     end if  
22   Call Active Drift Handler (λ , Ɛ, xi ) (Algorithm 4.2) 
23  end for  
24  ∧  ← argmaxj σj     
25  if (i mod ρ = 0) then  
26   w ← normalise-weights ();   // Using DWM rule 
27   if (∧ ≠ yi) then // Global prediction is wrong 
28    Call Passive Drift Handler (Algorithm 4.3)  
29   end if  
30   if  size(Ɛ) = Bmax then  
31    { Ɛ,w} ← remove({Ɛ,w}, wmin)                                             
32   end if  
33   for i = 1 to m  
34    Train (Ɛi, xj )                                                                                                  
35   end for  
36  end if  
37 end for  
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If no learner is deleted (line 17), the base learner’s prediction is used to compute the 

weighted sum for each class (line 18). The maximum and minimum weights are stored in 

appropriate variables (line 19). The class with the most weight is then set as the global 

prediction (line 24). Weights are normalised (Line 26) and the parameter ρ is used to 

control the period for adding or removing the new dynamic learners.   

An active drift detection method such as DDM or EDDM is invoked (line 22) and in the case 

of drift detection by any of the base learners, the Active Handle Drift (Algorithm 4.2) is 

invoked. The integration method for active drift detection is explained in Section 4.2. On 

global wrong predictions (Line 27) the Passive Drift Handler (Algorithm 4.3) is invoked on 

(line 28). To control the ensemble size (line 30-32) parameter Bmax is a user defined value 

to remove weaker learners from the dynamic learners list. 

4.1.1 Active Drift Handling 

Algorithm 4.2 outlines Active drift handling in HDWM. The seeds are reset upon the 

occurrence of drifts. The weight of the seeds is set to 0.5 instead of 1.0 (Lines 3-6) to prevent 

the domination of seeds over the new base learners. Finally, the seed learners are trained 

when the warning state is detected. 

Algorithm 4.2 HDWM Active drift Handling (λ, ɛ, δ, w, xj) 

Input: Ɛ:  Set of Seeds and Dynamic learners  
            λ: local predictions from base learners 

            w: ensemble weights 
            δ: Drift detection Method 

Output: none 
1 δlocal ← DriftDetectionMethod(λ) 
2 if (δlocal drift = true )  then             // drift is detected 
3  for  seed = 1 to a 
4   Ɛseed  ←  reset   
5   wseed   ←  0.5   
6  end for 
7 end if 
8 if (δlocal  warning = true) then      // warning is detected 
9        for  j = 1 to a                            // Loop over seed learners 
10        Train (Ɛi, xj ) 
11        end for 
12 end if 

4.1.2 Passive Drift Handler 

Algorithm 4.3 implements the Passive drift handling mechanism in HDWM. In the case of 

globally wrong predictions the index position and the type of best seed learner is determined 

(line 1), a new classifier of a similar type is created (line 2) and added to the list of dynamic 

learners from the seed learner (line 3). New learners are given weights 0.5 (line 5) to prevent 

new learners dominating over the existing ones. 
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Algorithm 4.3 PassiveHandleDrift (Ɛ, w) 

Input: Ɛ:  Set of Seeds and Dynamic learners 

            w: ensemble weights 

            wmax : maximum weight 

            m: size of the dynamic learners 

          {LearningAlgorithm} 
1

a: Set of Seed Base Learners  
Output: none 
1 Seed ← bestLearner { Ɛ, wmax } 

2 Nseed  ← Initialised_Seeds {LearningAlgorithmseed}     

3 Ɛ  ← Ɛ U Nseed    // append classifier to dynamic list  

4 m   ← m+1 

5 wm ← 0.5 

4.2 Integration with DDM 

The purpose of integrating DWM with DDM is to cope with drift when it is detected and 

take appropriate measures. Possible options include removing the poor performing base 

classifiers from the ensemble or resetting the weights when a drift is detected. The newly 

developed DWM-DDM (Dynamic Weighted Majority with Drift Detection) algorithm uses 

an online ensemble and an explicit drift detection method for detecting changes in 

environment.  

 
 

Figure 4.2 Integration of DWM and DDM using online ensemble and an 
explicit drift detection method for detecting changes in environment. 
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The integration mechanism is based on a set of ensemble classifiers accepting input “x” and 

predicting class label y’, at the same time, the drift is detected based on the true class label 

“y” as shown in Figure 4.2. DWM uses fixed numbers of base learners C = (C1, C2 . . . CL) 

with an initial weight ‘wi ’ equal to ‘1’. The weight is penalised by a factor of ratio β on each 

wrong prediction i.e. (wi ←βwi). The best classifier Cbest from the ensemble is chosen for the 

prediction; the process is based on the highest weights of classifiers. The prediction results 

are sent to the DDM algorithm for detecting the drift. The DWM-DD penalises the weights 

of the classifiers who predicts the wrong class labels and reduces the weights of the 

classifiers by a factor of β which is a user provided value between 0 and 1. The warning level 

in DDM is reached if   pi + si   ≥   pmin + 2 × smin  and the drift level is reached if   pi +

 si   ≥   pmin + 3 × smin . Where pi and si are the error rate and standard deviation at instant 

‘i’ . pmin and smin are the minimum recorded error rate and standard deviation. 
 

 

The pseudo-code for DWM-DD is outlined in Algorithm 4.4; the algorithms iterate through 

the training examples. Each classifier Ɛj in the ensemble is asked for predictions on ‘xi’ 

instances (Line 4), where ‘i’ is the time-step and ‘x’ is the vector representing attributes in 

the data-stream. At an interval of ρ (line 5) the weights of the learners are decreased on 

incorrect predictions (line 6-7) similar to the DWM rule [10]. Next, the classifier having a 

max weight is stored in Cbest (line 8). The Cbest is asked to predict the y’ class labels (line 11).  

Algorithm 4.4 HDWM-DDM ({x,y}
1
n , β,  δ, ρ) 

Input: {x ,  y }  
1

n  : Stream of examples and class label 

           {Ɛ,w} 
1

m: Classifier with associated weights  
            δ : Drift detection algorithm such as DDM or EDDM 

  β: factor to decrease weights, 0 ≤ β < 1  
  ρ: period between weight updates 

 

1 w ← 1  
2 for  i = 1 to n   // Loop over examples                                            
3  for  j = 1 to m                                                                      // Loop over ensemble of learners                                            
4    λ ←  Classify (Ɛj, xi )   
5       if (i mod ρ = 0) then 
6    if (λ≠ yi ) then 
7     wj  ← β wj  // Update weight using DWM rule 
8    Cbest  ← max(C, wi)    
9     end if 
10  end for 
11  y’ ←  Classify (Cbest , xi ) 
12  drift_status ←  δ  (yi , y’ )              // drift detection using DDM or EDDM 
13  if (i mod ρ = 0) then 
14   w ← normalise-weights (); 
15   for i = 1 to m 
16    Train (Ɛi, xj )                                                                                                 
17   if drift_status = True then 
18             ResetLearning (Ɛ, w) 
19  end if 
20 end for 
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To implement an active approach, DWM-DD uses parameter δ to select a concept drift 

detection method, e.g. DDM [60] or EDDM [62] (line 12). The prediction ‘y’ is injected into 

drift detection methods to detect concept drifts and warnings. To handle concept drifts, 

DWM-DD resets the learning, and their corresponding weights (line 18) are re-trained. 

4.3 Analysis of HDWM 

This Section investigates the HDWM algorithms and compares their accuracy and drift 

handling capabilities with WMA (due to its heterogeneity) and DWM (due to its ability to 

dynamically include and exclude base learners from the ensemble). Different variations of 

HDWM are compared to evaluate its sensitivity to parameters (e.g. drift and warning 

threshold, ensemble size) and variations of the algorithm that deactivate some of its 

characteristics (e.g. drift detection, warning detection, weighted vote). The second set of 

experiments concern the evaluation of computational resources usage (CPU time and RAM-

Hours). Finally, experiments were presented comparing HDWM and other state-of-the-art 

ensemble classifiers.  

For evaluating learning models in the data stream, three methods used are prequential 

[118], holdout [51] and Kappa [52] evaluations. Prequential evaluation, also known as 

interleaved test-then-train, is applied due to the streaming and non-stationary nature of 

data. This method is applied because it provides a consistent and fair evaluation metric over 

time. Traditional offline evaluation metrics such as precision, recall or F1 score may not be 

suitable for data streams due to the evolving nature of the data. Holdout evaluation provides 

a mechanism for assessing the performance of a model in a controlled manner while dealing 

with the challenges posed by streaming data. This method was applied to help validate the 

effectiveness of HDWM by assessing its performance on separate subsets of data that the 

model has not seen during training. Since prediction accuracy can be misleading on datasets 

with class imbalance or temporal dependencies, Kappa M and Kappa Temporal were also 

used. Kappa M has advantages over Kappa statistic as it has a zero value for a majority class 

classifier [52]. Kappa Temporal is applied since it replaces the majority class classifier with 

the NoChange classifier [127]. This enables better estimations for datasets with temporal 

dependencies. 

The prequential accuracy is calculated based on the MOA Windows Classification 

Performance Evaluator [46] with a window size of 1000. This evaluator facilitates the 

evaluation of classification models on streaming data in a sliding window. The window moves 

through the stream, and at each step, the model is evaluated on the most recent instances 

within the window. In HDWM, the evaluator helps detecting concept drift by monitoring 

changes in model performance within the sliding window. The Holdout method uses 

predefined partitions of train and test instances. However, it requires labelled test datasets 

which are difficult to obtain readily for real-world applications.  The Holdout method is 

applied in STAGGER (Drift) as predefined partitions of training and testing instances were 

used; the details are explained in Section 4.4.  
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4.4 Data Streams 

The artificial data streams used in the experiments are generated through the MOA 

workbench [46] are described in Section 4.4.1 and the real-world datasets are described in 

Section 4.4.2. The artificial datasets are generated so that the true position of concept drift 

is known, whereas in real-world datasets the true location of the drifts is not available. The 

description of the data streams and parameters are shown in Table 4.1. 
 

Table 4.1  Description of the data streams and parameters. 
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  [P] = Prequential Evaluation, [H] Periodic Holdout Evaluation, 
  [R]= Recurrent Drift, [S] = Sudden Drift, [G] =Gradual Drift 

 

4.4.1 MOA Data Streams 

The details of the streams are given below, and the MOA commands to generate these 

streams are available in APPENDIX I.  

• SEA data stream contains three attributes, function xi  ∈ R and the value of xi is between 

1.0 and 10.0. The target concept is determined using the equation y = [x0 + x1 + x2 ≤ θ], 

such that θ ∈ {7, 8, 9, 9.5}.  

• RandomTrees generates a stream based on a randomly generated tree.  

• LED generates a stream defined by a 7-segment LED display and the task is to predict 

the digit (0-9). 
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• Hyperplane is a flat n-dimensional space useful for simulating gradually drifting 

concepts. The orientation and position can be modified by slightly changing its relative 

size of the weights.  

• Random Radial Basis Function (RRBF) consists of a fixed number of randomly 

positioned centroids with a single standard deviation, class label and weight. 

4.4.2 Real-World Datasets 

Sensor dataset [128] deployed in the Intel Berkeley Research Lab, the sensor ID feature is 

used to label the class. The dataset consists of 220k instances; the input attributes include 

time-stamped topology information, along with humidity, temperature, light and voltage. 

The true drift locations are not known, but gradual drifts exist as the light during working 

hours is generally stronger than at night, and the temperature readings of specific sensors 

may rise if there are meetings in the room. 

Spam email dataset [129] contains input attributes that represent a gradual concept drift 

by the SpamAssassin collection. The dataset consists of 9,324 instances, 500 attributes and 

two target classes i.e. spam and legitimate. The attributes are representing the presence of 

a given word in the email. 

Electricity dataset [130] contains data consisting of 45,312 instances for a period of two 

years collected from the Australian New South Wales Electricity Market. Input attributes 

include day of the week, the NSW electricity demand, the Victoria electricity demand, and 

the scheduled electricity transfer between states. The binary prediction task is to identify 

the change (up or down) of the price relative to a moving average. The concept drift appears 

due to changes in consumption habits due to unexpected events and seasonality. 

Forest Cover type [131] dataset consists of the observation (30 x 30 metre cell) 

determined from the US Forest Service (USFS) Region 2 Resource Information System 

(RIS) data. The task is to predict the type of forest cover from cartographic variables such 

as Elevation, Slope, soil type etc.  

4.5 Test Configuration  

All the experiments are evaluated in terms of time and predictive performance. Processing 

time is measured in seconds and is based on the CPU time used for training and testing. All 

the experiments were performed on machines with Core i7 @ 3.4 GHz, 4 GB of RAM and 

experiments are presented in terms of CPU time. All experiments were executed within the 

MOA [46] framework.  

The cross-validation techniques for measuring model performance are not suitable as the data 

streams originate from NSEs.  Therefore, the prequential method [46] was used, which is a 

commonly accepted estimation procedure in NSEs. In this method each example is first used 

to test the model before it is used for training. The advantage of this method is that all the 
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instances are used in training and testing, and therefore no specific holdout set is needed. To 

determine the statistically significant differences between algorithms, non-parametric tests 

were carried out using the Demsar’s methodology from [49] For the statistical test the 

Friedman test was applied with α= 0.05 and the null hypothesis, “no statistical difference 

between the algorithms”. If the null hypothesis was rejected, the Nemenyi [50] post hoc test 

was used to identify which pairs of algorithms differ from each other. 
 

Table 4.2  Parameters used in the experiments. 

Code Description 

β Penalise learner's weight on wrong prediction 

θ Threshold of weights to remove base learners 

Period 
The interval to create or remove base learners or to 
manipulate their weights 

Freq. 
The number of training examples between samples of 
learning performance 

 
The base learners used in DWM are NB (Naïve Bayes) and HT (Hoeffding Tree). HDWM and 

WMA are using four base learners, i.e. HT-MC (Majority Class at leaves), HT-NB (Naïve Bayes 

at leaves), HT-NBAdaptive and NB. The values β = 0.05 and θ = 0.01 are used as per the 

default values used in DWM. Table 4.2 gives a description of the parameters used in the 

experiments. For the large data streams (size > 100K) and real-world datasets, the period is 

‘50’. For small datasets, the period is ‘1’. 'Freq' is the MOA sample frequency parameter 

corresponding to the number of training examples between samples of learning performance. 

Freq=1k is used for instances more than 100k and for smaller streams a lower value is applied. 

To investigate the heterogeneity and its influence on active and passive drift handling 

approaches, a variant of HDWM, HDWM-P was developed which is heterogeneous although 

not utilising the Active Drift handling option. This variant is used in the experiments in 

Section 4.8. The details of variants used in the experiments are described in  Table 4.3. 

Table 4.3 Variants used in the experiments. 

Algorithms Description of Algorithm 

HDWM  
HDWM uses Naïve Bayes and Hoeffding Tree; its Heterogeneous 
ensemble uses both Active and Passive Drift Handling. 

HDWM – P 
HDWM uses Passive Drift Handling, as used in Heterogeneity 
Analysis. 

DWM-NB DWM algorithm using Naïve Bayes as base classifier 

DWM-HT DWM algorithm using Hoeffding Tree as base classifier 

WMA WMA using HT-MC (Majority Class at leaves), HT-NB (Naïve 
Bayes at leaves), HT-NBAdaptive and NB 
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4.6 Analysis on MOA Streams 

This section analysis the HDWM algorithm on MOA data stream and real-world datasets. 

The predictive accuracies and kappa statistics have been compared against with DWM-NB, 

DWM-HT and WMA. 

4.6.1 Predictive Performance 

The predictive capabilities of our new approach were tested on artificial data-streams and 

real-world datasets, corresponding ranks are determined such that higher averages are 

representing lower ranks. Significance tests and post hoc comparisons on ranks are 

performed to determine significance level and CD. The predictive accuracies of HDWM, 

DWM and WMA are shown in Table 4.4. 
 

Table 4.4  Predictive Accuracies (%) of DWM-NB, DWM-HT, WMA and HDWM. 

Streams HDWM DWM-NB DWM-HT WMA 

SEA (S) 88.12 (1) 87.98 (2) 87.71 (3) 85.79 (4) 

STAGGER (S) 82.8 (1) 81.82 (2) 81.26 (3) 55.08 (4) 

RTree R 84.42 (1) 74.05 (4) 75.32 (3) 79.78 (2) 

LED (S) 73.37 (3) 73.41 (1.5) 73.41 (1.5) 65.01 (4) 

Wave (S) 82.16 (1) 80.31 (4) 80.34 (3) 80.65 (2) 

Hyperplane (G) 88.12 (2) 88.08 (3) 88.19 (1) 80.54 (4) 

SEA (G and S) 87.64 (1) 87.58 (2) 87.21 (3) 85.71 (4) 

RRBF(G) 92.59 (3) 92.65 (2) 93.09 (1) 77.93 (4) 

Electricity 88.4 (1) 79.73 (4) 84.06 (2) 80.92 (3) 

Spam 90.54 (1) 87.83 (4) 88.39 (2) 88.04 (3) 

Sensor 92.68 (1) 90.79 (3) 90.96 (2) 72.86 (4) 

Forest Cover 89.8 (1) 82.92 (2) 79.33 (4) 80.65 (3) 

Avg. Ranks 1.42 2.79 2.38 3.42 

 

Table 4.5  Kappa Temporal DWM-NB, DWM-HT WMA and HDWM. 

Streams HDWM DWM-NB DWM-HT WMA 

SEA (S) 73.81 (1) 73.47 (2) 72.87 (3) 68.84 (4) 

STAGGER (S) 49.2 (1) 40.14 (2) 39.44 (3) -19.43 (4) 

RTree R 68.69 (1) 47.73 (4) 50.34 (3) 59.35 (2) 

LED (S) 70.54 (1) 70.47 (2) 70.46 (3) 61.14 (4) 

Wave (S) 73.36 (1) 70.41 (4) 70.46 (3) 70.94 (2) 

Hyperplane (G) 75.05 (3) 76.14 (2) 76.37 (1) 61.07 (4) 

SEA (G and S) 71.68 (3) 73.03 (1) 72.22 (2) 66.69 (4) 

RRBF(G) 91.14 (2) 91.13 (3) 91.66 (1) 73.39 (4) 

Electricity 16.91 (1) -44.88 (4) -14.83 (2) -36.85 (3) 

Sensor 92.5 (1) 90.78 (3) 90.95 (2) 72.84 (4) 

Forest Cover -153.1 (1) -361.2 (3) -163.1 (2) -388.9 (4) 

Avg. Ranks 1.45 2.73 2.27 3.55 
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Table 4.5 provides the Kappa measures for the experiments. The larger the Kappa value, the 

more generalised the classifier, negative Kappa values indicate low predictive accuracy. 

Kappa values for Spam and Forest Cover datasets were negative in HDWM, DWM and 

WMA due to the large numbers of attributes in these datasets. 

In both drift and real-world data streams, the χ2
r statistic is 15.25 (df =3, N = 12) and the 

p-value 0.0016 shows significant differences at the level of significance of 0.05. The method 

to calculate chi-squared and p-value is described in the paper [49]. The Nemenyi test [50] 

was applied for pairwise comparison. The CD is 1.35. It is evident from the box plot in Figure 

4.3 that HDWM performed significantly better than DWM-NB i.e. (2.79 – 1.42 = 1.38 > 

1.35) and WMA (3.42 – 1.42 = 2.0 > 1.35).  

 

Figure 4.3 Bar chart for pairwise comparisons of ranks on predictive accuracies (%) 
between HDWM, DWM-HT, DWM-NB and WMA showing HDWM performed 

significantly better than other approaches. 

 

The statistical tests applied on Kappa Temporal on drift and real-world streams, with the 

χ2
r statistic of 15.76 (df =3, N = 11) and the p-value of 0.0012 showed significant differences 

at the level of significance of 0.05. In statistical tests for Kappa M on both drift and real-

world streams, the χ2
r statistic is 15.10 (df =3, N = 11) and the p-value 0.0017 also shows 

significant differences at the level of significance of 0.05. The Nemenyi test was applied for 

Kappa Temporal and Kappa M for pairwise comparison. The CD is 1.41. HDWM performed 

significantly better than WMA.  

4.6.2  Analysis of Results 

In this section, an in-depth Analysis of the results achieved in the previous experiment are 

presented using the artificial data streams with concept drift.  The predictive performances 

are analysed, and the capabilities of each algorithm are graphically presented to investigate 

how these algorithms react to different type of drifts. The ensemble size was also analysed. 

The Ensemble Size in a dynamic base classifier is an important factor for balancing 

performance because a larger ensemble requires more processing time but may improve 

predictive accuracy. 

1.42 

2.79 

3.42 

2.38 
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4.6.3 Significant Findings 

In HDWM the seeds are never deleted and retain the previously learnt concepts, this helps 

HDWM in appropriately dealing with recurring concept drifts. Figure 4.4  (left), represents 

RandomTree recurring concept drifts. HDWM (85.27%) and WMA (79.78%) handled the 

drift on a recurring concept at 75,000 instances. DWM-NB (74.05%) and DWM-HT (75.32) 

were unable to cope after the first sudden drift at 25,000. The base learners in DWM forgot 

the previous learnt concepts due to inclusion and removal of their base learners; unlike the 

WMA whose base learners are never deleted.  

In RRBF Figure 4.4 (right), which represents gradual drifts, HDWM (92.59%) and DWM 

can deal with concept drifts appropriately due to periodically including new base learners 

while WMA does not; this being due to its static ensemble size. HDWM not only maintained 

the predictive accuracy of DWM, but slightly improved it. SEA Figure 4.5 (left), represents 

abrupt drifts at 25,000 instances and 75,000 instances. HDWM and DWM handled these 

drifts appropriately, however, WMA failed to adapt to the new concept. SEA (Mixed) Figure 

4.5 (right), represents gradual and sudden drifts. Gradual drift is centred around instance 

25,000 with a window of 10,000 instances and is represented using a dotted line while the 

sudden drift occurs at 75,000 instances. DWM and HDWM both handled these drifts 

appropriately, but WMA reacted late on mixed concept drifts. 

4.7 Analysis on Real-World Datasets 

Several challenges emerge when dealing with real-world classification problems. The 

primary issues are the identification and location of the concept drifts. Accordingly, the 

HDWM was also evaluated on real-world data streams; namely: Sensor [128], Spam email 

dataset [129], Electricity [130] and Forest Cover type [131]. As there are only 4 datasets 

and thus 4 observations, no significance test was performed. However, the obtained results 

show improvements. As shown in Figure 4.6, HDWM achieved the highest predictive 

accuracies on Spam email (90.54%), Electricity (89.4%), Forest Cover type (91.03%) and 

Sensor (92.04%). 
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Figure 4.4 Predictive Accuracies RandomTree (left) and RRBF (right) on Artificial Data Streams. Solid and dashed vertical black 
lines indicate the centre point of the drifts, and start/end of the drifts, respectively. The time steps between the start and end of the 
start and end of the drift (inclusive) compose the drift window. 

        

Figure 4.5 Predictive Accuracies SEA Abrupt (left) and SEA Mixed (right) on Artificial Data Streams. 
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Figure 4.6 Average Predictive Accuracies Real-world datasets.
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4.8 Analysis of Heterogeneity 

The objective of this Analysis is to investigate how the heterogeneity of an ensemble affects its 

predictive performance, and whether the higher accuracy achieved in HDWM is due to its 

heterogeneity or due to the active drift handling capabilities. The results of these experiments 

are shown in Table 4.6. 
 

Table 4.6 Heterogeneity Test, Predictive Accuracies (%) 

Streams HDWM -P DWM (NB) DWM (HT) 

SEA (S) 87.73 (2) 87.98 (1) 87.71 (3) 

STAGGER (S) 82.31 (1) 81.82 (2) 81.26 (3) 

RTree R 75.51 (1) 74.05 (3) 75.32 (2) 

LED (S) 73.44 (1) 73.42 (2) 73.41 (3) 

Wave (S) 80.35 (1) 80.31 (3) 80.34 (2) 

Hyperplane (G) 88.21 (1) 88.08 (3) 88.19 (2) 

SEA (G and S) 87.26 (2) 87.58 (1) 87.21 (3) 

RRBF(G) 93.04 (2) 92.65 (3) 93.09 (1) 

Electricity 84.09 (1) 79.73 (3) 84.06 (2) 

Spam 88.72 (1) 87.83 (3) 88.39 (2) 

Sensor 90.98 (1) 90.79 (3) 90.96 (2) 

Forest Cover 86.92 (1) 82.92 (2) 79.33 (3) 

Avg. Ranks 1.25 2.42 2.33 

 

For this experiment the DWM performance was compared with the Naïve Base and 

Hoeffding Tree as base learners in its ensemble and compared it with HDWM-P (a variant 

of HDWM without active drift handling) which is reliant on a passive approach similar to 

the DWM. The Friedman statistics in a heterogeneity test, the χ2
r statistic is 10.16 (df=2, N 

= 12) and the p-value 0.0062 indicates significant differences at the level of significance of 

0.05. Post-hoc test using the Nemenyi test was applied for pairwise comparison.  

 

Figure 4.7 Boxplot for Heterogeneity Test. 
 

The CD is 0.95. Boxplot in Figure 4.7 shows that HDWM-P performed significantly better 

than DWM-NB i.e. (2.42 – 1.25 = 1.08 > 0.95). Given that the main difference between 

HDWM-P and DWM is the heterogeneity, these results indicate that heterogeneity plays a key 
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role in improving the HDWM accuracy over DWM. In particular, the model switching 

mechanism maintained the accuracy and made it independent of manually selecting base 

learners.  

4.9 Sensitivity Analysis of Hyperparameters 

In terms of how to set the parameters in real-world problems, the difficulty is that the best 

values may change over time. Potentially, one could run multiple versions of the approach 

with different parameter settings. The parameters ‘β’, ‘θ’ and ‘Period’ were analysed and 

their effect on prediction accuracy, ensemble size and drift detections. The values for β ' and 

' θ ' are randomly chosen between 0 and 1.  

 

Table 4.7  Effect of ‘Period’ on Predictive Accuracies % & Drift Detection, β = 0.5 and theta 
= 0.01 (Fixed). 

Streams 

Period =1 Period =25 Period =50 

A
C

C
%

 

#
 D

r
ifts

 

A
C

C
c

%
 

#
 D

r
ifts

 

A
C

C
%

 

#
 D

r
ifts

 

SEA (S) 84.0 (3) 0 87.9 (2) 2 88.1 (1) 2 

STAGGER (S) 85.2 (1) 0 61.3 (2) 0 60.8 (3) 0 

RTree R 76.5 (3) 6 82.5 (2) 1 84.4 (1) 1 

LED (S) 54.8 (3) 4 72.2 (2) 1 73.4 (1) 1 

Wave (S) 78.2 (3) 5 82.1 (2) 0 82.2 (1) 0 

Hyperplane 77.5 (3) 4 85.5 (2) 0 87.5 (1) 0 

SEA (G and S) 82.9 (3) 0 87.7 (1) 1 87.1 (2) 4 

RRBF(G) 90.8 (3) 8 93.0 (1) 4 92.6 (2) 8 

Electricity 89.4 (1) 8 89.3 (2) 2 88.4 (3) 2 

Spam 93.9 (1) 2 89.9 (2) 0 89.7 (3) 0 

Sensor 83.2 (3) 26 93.6 (1) 1 92.5 (2) 3 

Forest Cover 90.7 (1) 10 90.4 (2) 0 89.7 (3) 0 

Avg. (Ranks) 82.3(2.2) 6.08 84.6(1.7) 1.0 84.7(2.0) 1.75 

 

While the period was also analysed on randomly values 1, 25 and 50. The period = 1 

represents inclusion of all the instances in the data stream and then gradually increased by 

skipping 25 instances. The results on the ‘effect of ‘Period’ on Predictive Accuracy and Drift 

Detection’ is shown in Table 4.7.  As evident from the table, the average prediction accuracy 

is gradually increasing while the number of drift detections is decreasing by applying a larger 

value of ‘period’. The effect of ‘β’ on Predictive Accuracy and Ensemble Size is analysed by 

keeping a static value of ‘Period = 50’. This value was chosen for subsequent experiments, as 

it achieved the highest accuracies in the experiments outlined in Table 4.7.  In Table 4.8, the 

average ensemble size and accuracy is increasing by choosing a larger value of ‘β’. 
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Table 4.8  Effect of ‘β’ on Accuracies % & Ensemble Size, Period = 50 and θ = 0.01(Fixed). 

Streams 

β = 0.1 β = 0.5 β = 0.75 
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SEA (S) 87.6 (3) 13.5 88.1 (1) 23.6 87.9 (2) 23.7 

STAGGER (S) 60.8 (1) 4.0 60.8 (2) 4.0 60.7 (3) 4.0 

RTree R 75.2 (3) 8.5 84.4 (2) 13.7 88.8 (1) 20.5 

LED (S) 72.5 (3) 9.4 73.4 (1) 23.8 73.4 (2) 24.5 

Wave (S) 80.3 (3) 13.3 82.2 (2) 17.4 83.5 (1) 24.5 

Hyperplane  88.2 (1) 9.4 87.5 (3) 19.8 87.6 (2) 24.4 

SEA (G and S) 87.4 (2) 12.3 87.1 (3) 17.2 88.3 (1) 23.2 

RRBF(G) 92.6 (2) 8.6 92.6 (1) 14.8 92.5 (3) 20.3 

Electricity 85.8 (3) 7.07 88.4 (2) 10.7 89.7 (1) 15.8 

Spam 89.2 (3) 6.36 89.7 (2) 8.6 90.1 (1) 9.5 

Sensor 93.0 (1) 6.74 92.5 (2) 10.3 91.7 (3) 13.8 

Forest  85.7 (3) 7.17 89.7 (2) 11.5 91.3 (1) 16.5 

Avg. (Ranks) 83.2(2.2) 8.8 84.7(2.0) 14.6 85.5(1.7) 18.3 

 

Table 4.9 Effect of ‘theta’ on Accuracies % & Ensemble Size, Period = 50, β = 0.5 (Fixed). 

Streams 

θ = 0.01 θ = 0.05 θ = 0.1 

A
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%
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SEA (S) 88.1 (2) 102.5 88.1 (1) 103.6 88.0 (3) 95.1 

STAGGER (S) 60.8 (2) 0.04 60.8 (2) 1.0 60.8 (2) 1.0 

RTree R 84.4 (1) 238.5 81.0 (2) 195.9 79.9 (3) 155.0 

LED (S) 73.4 (1) 664.5 73.3 (2) 690.0 73.3 (3) 589.3 

Wave (S) 82.2 (1) 1195.6 81.9 (2) 766.1 81.5 (3) 730.1 

Hyperplane 87.5 (3) 508.6 87.8 (2) 429.3 88.2 (1) 343.1 

SEA (G and S) 87.1 (3) 127.1 87.7 (1) 106.4 87.6 (2) 99.7 

RRBF(G) 92.6 (2) 203.4 92.6 (1) 127.2 92.5 (3) 121.5 

Electricity 88.4 (1) 148.4 88.3 (2) 153.5 87.9 (3) 127.6 

Spam 89.7 (3) 148.9 90.0 (1) 155.6 89.9 (2) 128.1 

Sensor 92.5 (2) 106.5 92.5 (3) 965.2 92.9 (1) 788.1 

Forest 89.7 (1) 668.2 89.3 (2) 607.0 88.4 (3) 492.6 

Avg. (Ranks) 84.7(1.8) 442.5 84.4(1.8) 358.4 85.5(2.3) 305.9 
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Parameter ‘θ’ was analysed on predictive accuracies and CPU-time. Beta = 0.5 was fixed due 

to the moderate average ensemble size in the experiment. The results in Table 4.9 show that 

the CPU-time slightly decreased by increasing the value of θ. By increasing ‘θ’ the average 

ranks increased from 1.8 to 2.3. The lower ranks show a higher predictive performance.  

4.10 Analysis of the Effects of different Ensemble Sizes 

Due to the seed learners that always remain in the dynamic list, HDWM maintained a larger 

ensemble size (Average 27.6) and 11.29 in real-world datasets. Table 4.10 and Table 4.11 

represents average ensemble sizes achieved in HDWM and DWM. The plots for the 

ensemble size are shown in Figure 4.8 and Figure 4.9. 

Table 4.10 Average ensemble size in Artificial MOA streams. 

Streams HDWM DWM-NB DWM-HT 

SEA (S) 61.39 (3) 35.72 (2) 25.38 (1) 

STAGGER (S) 12.18 (3) 7.73 (2) 7.07 (1) 

RTree R 13.19 (1) 28.37 (3) 16.69 (2) 

LED (S) 33.94 (1) 37.1 (2.5) 37.1 (2.5) 

Wave (S) 18.02 (1) 37.83 (3) 29.09 (2) 

Hyperplane (G) 22.91 (3) 14.28 (2) 13.52 (1) 

SEA (G and S) 43.56 (3) 37.89 (2) 25.6 (1) 

RBF(G) 16.26 (1) 8.76 (2) 10.48 (1) 

Average 27.6 25.9 20.6 

 

Table 4.11 Average ensemble size (%) real-world datasets. 

Datasets HDWM DWM-NB DWM-HT 

Electricity 12.26 (3) 11.33 (1) 11.88 (2) 

Spam 11.45 (3) 7.79 (1) 8.12 (2) 

Sensor 8.04 (1) 8.58 (2) 9.06 (3) 

Forest Cover 13.41 (2) 15.26 (3) 10.04 (1) 

Average 11.29 10.74 9.78 
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Figure 4.8 Average Ensemble Size RandomTree (left) and RRBF (right) in Artificial Data Streams. 

       

Figure 4.9 Average Ensemble Size SEA Abrupt (left) and SEA Mixed (right) in Artificial Data Streams. 
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4.11 Comparison of Resource Consumption 

To analyse the benefits in terms of resource usage, the algorithms HDWM, DWM and WMA 

have been compared. Runtime evaluations are measured in CPU seconds by setting max 

size of ensemble (Bmax) to 25, 50,100 for all the datasets. It is expected that HDWM requires 

more processing time compared with WMA and DWM due to the seed learners that always 

reside in the ensemble. As shown in Figure 4.10, the total CPU time is increasing by setting 

a larger value of Bmax, however, the average predictive accuracies are not significantly 

affected.  

 

 

Figure 4.10 CPU time (Seconds) and Predictive Accuracies of HDWM, DWM and WMA. 

4.12 Complexity Analysis 

The time complexity of online ensemble classifiers heavily depends on the choice of base 

classifiers. HDWM applies NB [38], HT [39] and KNN [40] base classifiers. Based on the 

worst time complexity of these base classifiers, the total time complexity of HDWM for ‘τ’ 

number of labelled training examples is O (τ · d) + O (d · v · c).  The space complexity for 

storing the likelihood of each feature with respect to classes is O (l · d · v · c).  Where ‘d’ is 

dimensionality of the attributes, ‘v’ values per attribute, ‘c’ is number of classes and ‘l’ is the 

current number of leaves. 

4.13 Effect of Prediction Method 

The objective of this experiment id to investigate the predictive performance of HDWM 

algorithm due to change of prediction methods i.e. 1) prediction taken from classifiers, and 

2) Prediction taken from Clusters. The data stream RandomRBFGeneratorEvents [46] that is 

the stream designed for clustering in MOA is shown in Figure 4.11, which is based on the 
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random Radial Basis Function that adds drift to samples in a stream. A total 5 clusters are 

generated at 5% noise level. The SEADriftStream and RandomRBFGeneratorEvents are 

evaluated using HDWM classifier and MOA cluster. Max number of clusters 5 is applied, 

which is the default settings for MOA clustering. 

 

 

Figure 4.11 RandomRBFGeneratorEvent Stream in MOA. 

 

4.13.1 Evaluation Results 

The evaluation results are showing in Figure 4.12 and Figure 4.13. The results show that the 

prediction accuracy is higher (89.5%) in RandomRBFGeneratorEvent when a clustering 

algorithm is applied. However, prediction accuracy is low (56.7%) when classifier (HDWM) 

is applied. The evaluation results of SEADriftStream in Figure 4.14 and Figure 4.15 shows 

that the prediction accuracy is lower (68.75 %) when a clustering algorithm is applied. 

However, prediction accuracy is higher (81.89%) when classifier (HDWM) is applied.   
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Figure 4.12 RandomRBFGeneratorEvent Stream Prediction taken from Clusters.  

 

 

Figure 4.13 RandomRBFGeneratorEvent Stream Prediction taken from Classifier.  

 

 

Figure 4.14 SEADriftStream Prediction taken from Clusters. 
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Figure 4.15 SEADriftStream Prediction taken from Classifiers. 
 

4.13.2 Significant Findings 

It is evident from the experiment that a specific algorithm method works well on particular 

stream. It is extremely difficult for a learning algorithm to decide on which prediction 

method should be used. A prediction Method is required that maintains prediction accuracy 

on both these streams. 

4.14 Discussion  

The predictive performances of various algorithms are scrutinized, and their reactions to 

different types of drifts are graphically illustrated. Notably, the ensemble size, a critical factor 

in balancing performance in dynamic base classifiers, is examined, considering the trade-off 

between processing time and predictive accuracy. The impact of ensemble heterogeneity on 

predictive performance, specifically investigated whether HDWM's higher accuracy is 

attributed to its heterogeneity or active drift handling. These results highlighted the crucial 

role of heterogeneity, emphasizing the model switching mechanism's role in maintaining 

accuracy independently of manual base learner selection. The integration of DWM with DDM 

enabled the explicit drift detection to identify changes in the environment, allowing for 

adaptive measures like removing poor-performing classifiers or resetting weights when a drift 

is detected. The sensitivity analysis of hyperparameters explored the challenge of setting 

parameters in real-world problems, acknowledging that optimal values may vary over time. 

The study assessed the impact different parameters on prediction accuracy, ensemble size, 

and drift detections. It was analysed that larger 'period' boosted the prediction accuracy and 

reduces drift detections. 

The experiments used artificial data streams, where the position of concept drift is known. 

Real-world datasets are also employed, lacking known drift locations, adding unpredictability 

to the analysis. It has been observed that due to non-stationary data streams from NSEs, 
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traditional cross-validation techniques are unsuitable. Instead, the prequential method was 

used, ensuring each example is tested before being trained on. For statistical analysis of 

algorithm differences, non-parametric tests and post hoc tests identified specific algorithm 

pairs with significant differences. This approach guarantees a rigorous evaluation of 

algorithms in terms of both time efficiency and predictive performance. 

4.15 Summary 

This chapter addressed the gaps that were identified in Chapter 3, i.e. varying predictive 

performances of online classifier ensembles due to the diversity of base classifiers. It was 

found extremely difficult to choose the best-performing classifiers for a specific problem. 

More specifically, answered the (RQ2), i.e. obstacles in determining the type of machine 

learning algorithm that would be best to use in EVL conditions and overcoming the 

problems of existing dynamic ensembles that may undergo loss of diversity due to the 

exclusion of base learners. 

As a response to this question, a novel heterogeneous ensemble approach, HDWM was 

proposed, which is capable of intelligently switching between different types of base models 

in an ensemble. The new approach revealed the ability to reduce human dependency on 

redefining the best type of predictive models for a particular problem. The proposed ‘Seed’ 

mechanism makes use of different types of base classifiers in its ensemble to maintain its 

diversity. These seeds are never deleted and retain the previously learned concepts, which 

helps to deal with the recurring concept drifts. It also implements both an active and passive 

approach for handling concept drifts, the results showed that the new approach efficiently 

handled both gradual and sudden concept drifts. 

The results showed that WMA maintained the diversity but was unable to deal with the 

concept drifts due to its inability to create or delete base learners. DWM on the other hand is 

a dynamic ensemble but lacks diversity as it does not benefit from multiple types of base 

learners. HDWM overcomes these problems and deals with concept drift through the addition 

and removal of base learners. It achieves that by ensuring that seed learners of any type can 

repopulate the ensemble whenever they become beneficial. 

The HDWM was evaluated against WMA (due to its heterogeneity) and DWM (due to its 

dynamicity) as well as sensitivity to its parameters. Eight synthetic data streams were 

generated with concept drifts, and four real-world datasets ‘Sensors’, ‘Spam Email’, 

‘Electricity’ and ‘Forest Cover’ were used in the experiments. Apart from prequential 

evaluation, the periodic holdout approach and kappa statistics were applied as the evaluation 

matrices. Non-parametric tests were carried out to determine the statistically significant 

differences between the algorithms and if the null hypothesis was rejected, post-hoc tests were 

used to identify which pairs of algorithms differ from each other. 
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The results showed that HDWM performed significantly better than WMA and DWM, also, 

when recurring concept drifts were present. The predictive performance of HDWM showed 

an improvement over DWM in both drift and real-world streams. It can be concluded that 

HDWM is independent of deciding which type of base classifier should be used. In another 

experiment, HDWM was compared with CluStream clustering on SEADriftStream and 

RandomRBFGeneratorEvents. The interesting results showed that the prediction accuracy 

of HDWM was found lower than the CluStream when applied to RandomRBF 

GeneratorEvents. On the other hand, HDWM outperformed CluStream on SEADriftStream.   

It was evident from the experiment that a specific algorithm works well on data streams. 

Therefore, it is extremely difficult for a learning algorithm to decide on which prediction 

method should be applied. Furthermore, HDWM has been designed as a supervised 

learning algorithm, which means it assumes the availability of labelled data. It can be 

concluded that under the EVL conditions, it is more challenging to determine which type of 

machine learning algorithm would be best to use due to the small amount of initial labelled 

data. The next Chapter 5 focuses on developing an online SSL for ILNSE which is capable 

of learning from both labelled and unlabelled data.  



97 

Chapter 5 Predictor for Streaming 
Data with Scarce Labels 

5.1 Introduction  

The aim of this chapter is to investigate and answer the (RQ1) which was raised in Chapter 1, 

i.e. the scarcity of true class labels and its impact on prediction accuracy in non-stationary 

environments, especially when learning algorithms lack direct access to true class labels 

immediately following concept drifts. The new developed HDWM is a supervised learning 

classifier which is highly dependent on true class labels. The results showed that the HDWM 

automatically identifies the types of predictive models best suited to the situation encountered 

after different types of drifts, such as gradual, sudden and recurring.  

Extreme Verification Latency (EVL) and Non-Stationary Environments (NSEs) have recently 

gained significant attention in the data stream mining community due to an enormous growth 

streaming data which is evolving and unlabelled. Therefore, extracting worthwhile knowledge 

is challenging from real-time data streams. The term, Initially Labelled Non-Stationary 

Environment (ILNSE) is used in the literature that simultaneously deals with EVL and NSE. 

Learning under Initially Labelled Non-Stationary Environment (ILNSE) is challenging task 

because the learning algorithms have no access to the true class labels directly after the 

concept drift and manual labelling of these data streams is not practical due to time 

consumption and need for domain expertise. The existing approaches require more than one 

technique such as CGC [31], self-learning [41] [42] micro-clustering [43]. However, from the 

literature it is not clear on what conditions one approach is better than the other and what 

causes other approaches to fail.    

However, learning becomes more challenging when a small set of initially labelled data is 

followed by data which consists of only unlabelled data. To deal with label scarcity problem 

usually more than one technique is applied, for instance the authors of some approaches 

[22] applied clustering and ensemble learning to deal with label scarcity and drift handling. 

A series of online surveys incorporate the latest developments in the field of Online Semi-

Supervised Learning (OSSL) methods which is closely related to label scarcity issue in 

online machine learning. However, the existing approaches focus on offline learning for 

static data and make two basic assumptions, 1) the availability of large training dataset; and 

(2) training and test data is stationary.  

A data stream environment has different requirements from the traditional batch learning 

setting [46]. Further requirements for the OSSL scenario have been identified and can be 

derived as follows.  

• Requirement 1 Process a labelled example at a time and inspect it only once (at most). 
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• Requirement 2 Use a limited amount of time and memory.  

• Requirement 3 Process unlabelled example in small batches and predict pseudo-

labels. 

• Requirement 4 Available to predict at any time. 

Figure 5.1 shows the typical use of an online SSL data stream classification algorithm, and 

how the requirements fit in a repeating cycle. 

 

Figure 5.1 The Data Stream Online Semi-Supervised Learning Cycle. 
 

1. The supervised learning algorithm is passed the next available labelled example from the 
stream (Requirement 1). 

2. The algorithm processes the labelled example, updates its data structures. It does so 
without exceeding the memory and time bounds set on it (Req. 2). 

3. The unsupervised learning algorithm is passed the next available unseen example from 
the stream (Req. 2 and Req. 3). 

4. The unsupervised learning algorithm is ready to accept the next example. On request, it 
can predict the pseudo-labels (class of unseen examples) (Req. 4). 

5. The supervised learning algorithm is ready to accept the pseudo-labelled example and 
update the model. On request, it can predict the class of unseen examples (Req. 4) 

 

5.2 Overview of PSDSL 

This research directly responds to ILNSE challenge in proposing a novel algorithm “Predictor 

for Streaming Data with Scarce Labels” (PSDSL), which is capable of intelligently selects the 

best pseudo-labelling strategy based on the given problem domain. PSDSL is implemented in 

MOA [46] which is an open-source framework for data stream mining. The PSDSL performs 

the following tasks on the initial labelled data. 

1. Decide on the best classifier from a pool of Heterogeneous classifiers. 
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2. Decide on the pseudo-labelling strategy, i.e. Cluster guided or self-learning using 
classifiers. 

3. Build offline micro-clusters and apply them online on-demand only in the case of drift 
detection. 

4. Perform hyperparameter tuning to determine the best value of ‘k’. 

Figure 5.2 depicts the visual abstract of PSDSL algorithm. HDWM classifier is trained on a 

small amount of labelled data from the data streams, at this stage the best learning parameters 

are identified during the hyperparameter tuning phase. When unlabelled data arrives, 

clusters are generated to predicts the pseudo labels which retrain the HDWM classifier and 

finally predicts the class labels in the unseen environment.   

 

Figure 5.2 Visual abstract for the predictor for streaming data with scarce labels 

(PSDSL), HDWM is trained on small amount of labelled data, performs 

hyperparameter tuning and pseudo labels are then predicted to re-train HDWM for 

final predictions. 

 

The data streams are continuous; therefore, the data has been divided into several batches B= 

{B1, B2 . . . Bn}. The first batch is completely labelled, followed by labelled instances XL = (x1 . 

. . xL) for which class labels YL = (y1 . . . yL) ⊂ Y are available and for unlabelled instances XU = 

(xL+1 . . . xU) the class labels are unavailable.  The unlabelled data stream generates and updates 

the clustering on real-time data streams. To handle the Virtual drifts that occur due to changes 

in the distribution of input data i.e. Pt (x) ≠ Pt+1 (x), PSDSL establishes a mapping between 

current and previous clusters (Ct ⟶ Ct+1) by assigning the current centroid the label which is 

the same label of the ‘k’ nearest past centroid. 
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5.3 Pseudo-labelling process of PSDSL algorithm 

As shown in Figure 5.3,  In step 1, a set of heterogeneous classifiers are trained on a small 

number of labelled data examples, and ground truth clusters are formed. This information of 

ground truth clusters is passed to the switching of pseudo-labelling states (step 3) and 

hyperparameter tuning (step 2) which are explained in Section 5.4 and 5.5 respectively.  In 

step 4 overlapping of the clusters is determined, if confidence levels of cluster labels fall below 

a user-provided threshold, envelope-clusters are formed to resolve the conflict in labelling. 

The envelope-clusters are explained in Section 5.6. Finally, in step 5, the pseudo-labels are 

fed back to update the classifiers for predictions. 

 

Figure 5.3 Illustrative Pseudo-labelling process of PSDSL algorithm, key steps 

include training of heterogeneous classifiers and generating clusters by using 

limited amount of labelled data. 

5.4 Switching of Pseudo-Labelling States 

PSDSL can switch between the three learning states for pseudo-labelling, 1) Cluster guided 2) 

Self-learning and 3) micro-clustering. The switching mechanism of PSDSL is illustrated in 

Figure 5.4. In a situation where pseudo-labelling is not improving the predictive performance 

on initially labelled data, PSDSL switches off the pseudo-labelling state. For this, Ensemble 

‘GT (Ground Truth)’ is trained on the complete set of initial labelled data, while Ensemble ‘PL 

(Pseudo-Labelling)’ is trained only on 80 % of the training data. Ensemble ‘PL’ predicts the 

pseudo-labels for the remaining 20% and trains itself on these pseudo-labels. If the prediction 
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accuracy of Ensemble ‘PL’ improves over ‘GT’, the self-learning state is enabled, otherwise it 

is suspended. The cluster guided state is enabled when the mean values of F1-P and F1-R 

[124] is higher than a user provided threshold ‘ρ’. 

 
Figure 5.4 Switching of Pseudo-Labelling States between self-learning and CGC 

based on the prediction accuracies from ground truth and pseudo-labelling 

ensemble classifiers and comparing it with the average precision and recall of the 

clusters. 

 

The names F1-P and F1-R of evaluation metrics are given as the same names mentioned in 

MOA [46]. The F1-measure is the harmonic mean of precision and recall. F1-P calculates the 

total F1-score for each found cluster instead of for all ground truth clusters.  While the F1-R 

is calculated by maximising F1 for each ground truth class. Figure 5.5 showing a GUI for 

Semi-Supervised Learner (SSLearner) developed in MOA to experiment with switching 

strategies. 
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Figure 5.5 (left) Prediction methods (right) pseudo-labelling methods. 

 

The supported pseudo-labelling method are "No Pre-labelling", "Self-Learning", 

"Clustering", and “Active Switching". The available prediction methods are “Base Classifier” 

and "Switching of Clusters and Classifiers". Figure 5.6 shows the graphical interface which 

enables the visualisation of different states taken by PSDSL for pseudo-labelling. 

 

Figure 5.6 Switching of pseudo-labelling strategy, 0=No pseudo-labelling, 

1=self-learning, 2 = CGC. 

 

Visualisation of pseudo-labelling strategy 



103 

5.5 Cluster Guided Classification in PSDSL  
 

To utilise the information associated with unlabelled instances, CGC make use of clusters for 

predicting the pseudo-labels, which further update the classification models. In case of 

gradual movement of these clusters, the concept drifts are detected. For this purpose, PSDSL 

relies on CGC for tracking the changing concepts. Figure 5.7 shows concept v1 (t) and v2 (t+1) 

as a function of time ‘t’ and ‘x’ are the input attributes, and ‘c’ are the classes. The steps used 

in this approach are given below.  

1) In concept v1, at time (t), the labelled instances generate {C1…Cn} clusters representing 

{c1…cn} classes in the initial labelled data. 

2) When unlabelled data arrives at time (t+1) and data distribution changes, the concept 

v1 changes to v2 and the clusters receive labels from the nearest clusters. 

3) More new data arrives at time (t+2) for which class labels are missing (shown in white 

circles) and pseudo-labels are required. 

4) At time (t+3), the unlabelled instances ‘x’ receive pseudo-labels from the nearest clusters 

‘C’ using the Euclidean distances between ‘C’ and ‘x’. 

 

Time (t) (t +1) (t + 2) (t + 3) 

    

  Concept   Gradual Drift  New unlabelled   Label Propagation 
 𝐯𝟏(𝐭) 𝐯𝟐(𝐭+𝟏) { 𝐜𝟏, 𝐜𝟐 = ? ? } 𝐜𝟏  ⟹ 𝐝𝟏 < 𝐝𝟐 

                                    𝐂(𝐭+𝟏) ← 𝐂𝟐 ⟹ 𝐝𝟐 < 𝐝𝟏                                                     

Figure 5.7 Cluster Guided Classification in PSDSL showing representation of 

different concepts at time ‘t’ due to gradual drifts and the process of label 

propagation from nearest clusters. 

5.6 Envelope-Clustering New Approach 

Micro-clustering state applies on-demand when overlaps between clusters are detected. 

When clusters overlap, the nearest labelling approach undergoes common issues such as 

losing the correct labels. Envelope-clusters detects and resolves the labels assigned to the 

clusters. Current micro-clusters receive their labels from the previously labelled clusters and 

vote for the class labels from ‘k’ nearest neighbours.  
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Figure 5.8 Cluster overlapping in 1Csurr dataset [26] showing one class 

surrounding the other and resulting in two outcomes. 1) C1 transfers its label 

to ‘C2’ or 2) C1’ gets re-labelled upon intersection with C2. 

As shown in Figure 5.8, one group of clusters is stationary i.e. C2, and C1 is crossing it. 

There are two possible outcomes 1) Triangle cluster ‘C1’ transfers its label to ‘C2’ upon 

intersection with C2 as the circle cluster and converts the Circle cluster to Triangle; or, 

outcome 2) whereby the Triangle cluster ‘C1’ gets re-labelled upon intersection with C2, 

thus turning the Triangle cluster circle. The conflicted clusters receive labels from the 

corresponding envelope-clusters. Section 5.6.1 and Section 5.6.2 describes conflict 

detection and resolution steps in detail respectively. 

5.6.1 Proposed Conflict Detection Method 

The confidence level for the cluster labelling on the votes from k-nearest neighbours is 

calculated as in Equation 5.1. When the confidence level reaches below a user-provided 

threshold ‘α’ it reports the drift; otherwise, it transfers the labels to the corresponding clusters. 

Confidence Level =
Votes (Max(λ) − Min(λ )

∑N
 

(5.1) 

Where, λ are the class votes, Min and Max are the minimum and maximum number of votes 

per class and ‘N’ are total votes. Figure 5.9 shows a plot for the 1Csurr dataset [125] as an 

example; circle and triangle clusters are successfully labelled from previous clusters (unfilled 

circle and triangles) with high confidence levels.  

The figure shows 6 conflicts (diamond) at threshold α = 0.5 and 3-nearest neighbours. For 

λ= [1,2] i.e. ‘1’ vote for ‘class 0’ and ‘2’ votes for class ‘1’, the confidence level is = (2-1)/3 = 
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0.3 < 0.5 threshold. When there were no conflicts, λ= [3, 0] the confidence ratio = (3-0)/3 

= 1.0 > 0.5 resulted in successful label transfer shown in filled circle and triangle clusters. 

 

Figure 5.9 Conflict detection in micro-cluster using class votes from 3-

nearest neighbours using threshold α = 0.5. The diamond shape 

representing conflicts in cluster labelling due to low confidence value. 

 

5.6.2 Conflict Resolution 

PSDSL generates envelope-clusters by transforming the micro-clusters into micro instances. 

Envelope-clusters are generated using centroid-based clustering, such as K-Means.  When no 

cluster overlaps are detected, the concept of Envelope-Clustering applies online micro-

clustering to calculate and store the summary statistics of the data stream; thus, applying it 

offline to generate macro-clusters when overlaps are detected, increases the processing speed 

of micro-clustering. Figure 5.10 shows that the labels to the ‘red’ diamonds, which are 

conflicted micro-instances are assigned using the nearest envelope clusters. These nearest 

clusters are determined by calculating Euclidean distances among each conflicted micro-

instances and the envelope clusters.  
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Figure 5.10 Envelope-Clustering for conflict resolution. The filled circle 

and triangle represent recent micro-instances, and the opaque circle and 

triangles are previous micro-instances. 

 

5.7 Hyperparameter Tuning 

This step is an essential automated hyperparameter tuning approach used in PSDSL that 

determines the number of centroids ‘k’ to be used in clustering using the few initial labelled 

instances. The cluster evaluation uses extrinsic methods to assign a score to the clustering 

when the ground truth is available. It applies the mean values of (F1-P), (F1-R) and purity (P) 

[126] to determine the optimum value of ‘k’. The Purity is a measure of the quality of clusters 

and determines the extent to which clusters contain a single class.  

5.8  PSDSL Pseudo code 

The pseudocode for PSDSL is depicted in Algorithm 5.1. In EVL, initially available labelled 

examples are of significant use in hyperparameter tuning to determine the optimal values for 

‘k’ (number of centroids). This parameter tuning approach is described in Algorithm 5.2. 

These labelled examples also play an important role in automatically deciding the best 

pseudo-labelling approaches, such as self-learning or CGC.  
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Algorithm 5.1 PSDSL (τ, S, Ɛ, Ф, µ, θ, ρ, Kmax)  

Input  S: {xi; yi} ; i = 1, ..., n: Stream of examples 
 

  τ: Initial set of labelled examples  
  Ɛ: Set of Heterogeneous Base Classifiers {1…m}  

  µ: Micro-clustering algorithm such as CluStream  
  Ф: Clustering algorithm like K-Means  
  θ: Pool Size  
  P: purity threshold, default is 0.95  
  Kmax : Maximum number of centroids  

1 pool ← ∅  

2 Kbest, Ф Purity, µ Purity ← TuneParameter (τ, Ф, µ, Kmax)     // (Algorithm 5.2) 

3 SwitchingLearningStates (ФPurity, µPurity)                           // (Algorithm 5.3) 

4 for i = 1 to n                                                          // loop over instances 

5          C micro ← Clustering (µ, xi)    

6  if (xi is labelled) then                                    // receive initial labelled data 

7   C   ← GTClustering (Ф, τ)                         // ground truth cluster 

8   Ɛ ← buildClassifier (τ)                               // build initial classifier                                                                                          

9  else                                                                // unlabelled instances arrive 

10   if (self-Learning = true) then  

11      τ’ ← getVoteforinstance (Ɛ best, xi)     // predict labels 

12      Ɛ ← TrainClassifier (τ’)                                                                                                  

13   else   

14     pool ← pool ⋃ {xi}     

15     if (i mod θ = 0) then                         // periodic execution 

16     drift ← false;  

17     µpoints ← DetectClusterDrift (C, C micro)         // (Algorithm 5.4) 

18     if (drift = true) then                       

19      CEnvelope   ← Clustering (Ф, C, µpoints, 
kbest)   

 

20      LabelCentroids (C, CEnvelope)  

21      CEnvelope ← {CEnvelope}⋃ { C }   

22      C t+1 ← LabelCentroids (CEnvelope
 , C micro )  

23     else  

24      C t+1 ← Clustering (Ф, C, pool, kbest)  

25      LabelCentroids (C, C t+1)  

26      C t+1 ← {C t+1} ⋃ {C}                  // merge centroids 

27     end if  
28     τ’ ← Labeldata (pool, C t+1)  

29     Ɛ ← TrainClassifier (τ’)                                           

30     pool ← ∅  

31    end if  
32   end if  
33  end if  
34 end for  

 

The PSDSL algorithm maintains a set of ‘m’ base classifiers and clusters. Inputs to the 

algorithm are ‘n’ training examples in which τ instances are labelled, followed by complete 

unlabelled examples. A list of all the parameters used in the algorithms is available in Table 
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5.2. As shown in Algorithm 5.1, both labelled and unlabelled instances incrementally create 

the micro-clusters (line 5). When labelled instances arrive (line 6) a clustering algorithm is 

executed to generate C t and divide the data into clusters and associates each cluster with one 

of the classes (line 7) and trains the initial classifier Ɛ. 

Upon arrival of unlabelled instances (line 9) it determines the learning state described in 

Algorithm 5.3, if the self-learning state is active, it applies prequential evaluation to predict 

the pseudo-labels by using the best classifier in the ensemble and re-training the ensemble on 

these predicted pseudo-labels (line 10-12). In a condition when self-learning state is inactive, 

it performs CGC (line 14-32).  The unlabelled examples are stored in a pool or batch of size θ 

(line 14) the value of which is set by the user and periodically performs the tasks listed in lines 

(16 - 30). The pool data is periodically analysed for potential drifts due to cluster overlaps in 

micro-clusters (line 17). This process returns labelled micro-cluster instances and reports the 

state of drifts as described in Algorithm 5.4.  

If drift is detected, envelope-clusters are formed using micro-cluster instances such that each 

cluster represents a class in the data (line 19).  Envelope-clusters then transfer their labels to 

the nearest conflicted micro-clusters (lines 20-22).  If no drift is detected, the clustering 

algorithm Ф obtains C t+1 on the pool data (line 24) by applying the best values of ‘k’ obtained 

in Algorithm 5.2. Each new centroid receives its label from the nearest centroids using the 

Euclidean distances between Ct and Ct+1 (line 25). Finally, a set of heterogeneous base 

classifiers is trained using the pseudo-labelled instances (line 29). The source code for the 

algorithms is available in APPENDIX III. 

5.8.1 Algorithm: Hyperparameter Tuning  

As outlined in Algorithm 5.2, there are three input parameters, a set of labelled instances, a 

clustering algorithm, and Kmax which is the maximum number of centroids (k) provided by 

the user.  Initially, the ground truth centroids are generated using the labelled instances (line 

2) such that {c = k} where ‘c’ is the number of classes.  Lines 3 and 4 generate and evaluate 

purities µPurit for micro-clusters. Line 5 begins the loop to determine the best value of ‘k’ by 

iterating in the range from ‘k=2’ to Kmax. In line 6, new clusters are generated after eliminating 

the ground truth labels from the labelled data. A user-provided clustering algorithm is applied 

while passing the incremented values of ‘k’. In line 7, the ground truth clustering and current 

clustering are evaluated, and the corresponding F1-P, F1-R, and P are stored in sets of ‘Fprp’ 

and ‘Purities’ lines 8 and 9 respectively. 

5.8.2 Algorithm: Switching Learning States 

The switching algorithm takes µPurity and ФPurity inputs, and the parameter ρ is the switching 

threshold set by the user. Algorithm 5.3 outlines the switching algorithm; The ensemble ‘ƐGT’ 

(Ground Truth) is trained on initial labelled data (line 5), this training set splits in the ratio of 

80% and 20% (line 6).  Another ensemble ƐPL (Pseudo Label) ‘trains on 80% of this training 

examples, then ƐPL predicts the pseudo-labels for the remaining 20% and retrains itself on the 
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predicted pseudo-labels (line 7,8). As the ground truth labels of initial training set are known, 

the predictive performance of both ƐGT and ƐPL is compared, if the overall prediction accuracy 

of ƐPL becomes higher than the ƐGT, the self-learning state becomes active, otherwise the 

pseudo-labelling is suspended. 

5.8.3 Algorithm: Detect Cluster Drift 

The algorithm to detect cluster drift is available in Algorithm 5.4 the current micro-clusters 

Ct+1 are associated with previous clusters Ct by measuring similarity between ‘k’ nearest 

centroids q t i; i = {1, ..., k} using Euclidean distance, i.e. Dist (qt, q t+1) (line 7).  The ‘k’ nearest 

clusters votes for the class labels to the current clusters (line 12).  To calculate the conflict 

ratio, min-max values of the votes are applied to the formula (line 15).  If the ratio reaches 

above the user-provided drift threshold, current micro-clusters are assigned the label of the 

majority class vote. 

Algorithm 5.2 PSDSL Auto tuning Parameter ‘k’ (τ, Ф, µ, Kmax) 

Input:  τ : initial set of labelled examples 
             Ф: Clustering Algorithm 
             µ: Micro-clustering algorithm 
             Kmax : Maximum number of Centroids 

Output: K, Ф Purity , µ Purity 

1 i ← 0 

2 C   ← GTClustering (Ф, τ)   

3 C µ ← Clustering (µ, τ)   
4 µ Purity ← evaluateClustering (C, C µ)  
5 for k = 2 to Kmax    

6  C t + 1 ← Clustering (Ф, τ, k)  

7  {F1P, F1R, P} ← evaluateClustering (C, C t + 1)  

8  Fprp[i] ← (F1P+F1R + P)/3 
9  Purities[i] = P; 

10  i++; 
11 end for 
12 k ← argmax (Fprp) + 2 
13 Ф Purity ← max (Purities) 

Algorithm 5.3 SwitchingLearningStates (ФPurity, µPurity, ρ)  

Input:  τ : initial set of labelled examples 
              {ƐGT }m

1 : Set of Classifiers train on true class labels 
              {ƐPL }m

1 : Classifiers train on pseudo-labels 
              µ : Micro-clustering algorithm, ρ: purity threshold 
Output: none 
1 Self-learning ←false   
2 CGC ←false   
3 split_pos ← trainSize * 0.8 
4 for i = 1 to size| τ |  
5  ƐGT ← train (τ i) 
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6  if (i < split_pos) then ƐPL ← train (τ i) else  
7   τ' i ← predict (ƐPL , τ i) 
8   ƐPS ← train (τ’ i) 
9  end if 

10 end for 
11 C micro ← Clustering (µ , τ)   
12 µ ACC% ← evaluate (Cmicro , C GT )  
13 if (µ ACC% > ρ then CGC ←true else self-learning ←true  end if 
14 if ACC (ƐPS ) < Acc(ƐGT ) then self-learning ←false end if 

 

Algorithm 5.4 DetectClusterDrift (knn, C, Cmicro) 

Input: C: past clusters,                 Cmicro : Current micro-clusters 
              α : Drift Threshold,           knn : num of nearest neighbours, 

 

              c : No. of classes 
Output: Drift state, labelled micro-clusters  

1 Labelledcluster ← ∅  

2 conflict ← false  

3 λ [c]  
4 [q, q t+1 ]← getcentroids[C, C micro ]  

5 for  (i = 0 to |C|)  
6  for  (j = 0 to | C micro |)  
7   distances[ i ][ j ]  ← dist (q i ,q t+1 

j) 
8  dist ←  sort(distances[ i ])  

9  for ( j = 0 to | dist |)  
10     if (binarySearch (distj , knn) then 
11           classID ← Cj                        // ‘k’ nearest distances 
12           λ [ classID++] ← 1    // add vote to class                 
13  end for  
14  maxpair[ ] = minMax(λ);  
15  ratio ← (maxpair[0] - maxpair[1])/sum(maxpair) 
16  if (ratio > α) then   
17      C micro  ← label(C micro , argmax(λ)) // Set id of cluster to max class vote. 
18   CLabelled ← { CLabelled } ⋃ { C micro }    // Add to labelled clusters  
19  else  
20       conflict ← true  

21  end if   
22 end for  

5.9 Complexity of PSDSL 

PSDSL is a single pass algorithm which splits the data stream into batches of predefined 

size such that each batch contains n examples.  These batches are sequentially processed, 

requiring less computational time and space because only the information regarding the 

centroids and data points of the current batch is stored in the memory.  The complexity of 

PSDSL depends on the choice of learners.  PSDSL intelligently switches learning strategies 

and applies an HDWM classifier for self-learning or K-Means and CluStream for CGC and 

micro-clustering respectively. Under EVL, when labelled data arrives, PSDSL executes 

hyperparameter tuning and switch learning strategy only once.  
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Hyperparameter tuning begins with formation of ground truth clusters which is dominated 

by the complexity of sorting, which takes O (n · log n) time.  Next, it iterates on different values 

of Kmax to generate clusters, this phase takes O (n · k · i · Kmax) time, where i is the number of 

iterations.  It takes O (n · k) space because only the information of distances and centroids are 

stored in the memory.  

State switching (Algorithm 5.3) trains and evaluates HDWM ensemble classifier ‘Ɛ’, online 

micro-clusters ‘µ’ and offline clusters Ф.  The overall time complexity for classifiers for ‘τ’ 

number of labelled training examples is O (τ · Ɛ) and for clustering is O (τ µ + τ Ф).  The time 

complexity of online ensemble classifiers heavily depends on the choice of base classifiers. 

HDWM applies NB [38], HT [39] and K-Nearest KNN [40] base classifiers. Based on the 

worst time complexity of these base classifiers, the total time complexity of HDWM is O (τ 

· d) + O (d · v · c).  The space complexity for storing the likelihood of each feature with 

respect to classes is O (l · d · v · c). Where ‘d’ is dimensionality of the attributes, ‘v’ values 

per attribute, ‘c’ is number of classes and ‘l’ is the current number of leaves. 

When unlabelled examples arrive, additional time and space is required for predicting the 

pseudo-labels for unseen examples.  PSDSL selects a best performing base classifier ‘Ɛbest’ 

and assigns it for pseudo-labelling in small batches, this phase takes O(n) time for 

predictions.  For clustering the nth batch using i number of iterations it takes O (n · k · i) 

time and O (n · k) space to store the centroid and data points. Micro-clustering takes O (q · 

n · i · NInit) for the online phase, where q is the number of micro-clusters and NInit is the 

initial number of examples.  For merging two micro-clusters it takes O (q · n) and offline 

phase takes O (q · n · k · i) time.  

The time complexity of drift detection (Algorithm 5.4) depends on the time required to 

compute the distances from previous centroids to the current centroids. The drifts are 

detected at a regular interval ‘θ’.  In the worst case, when all the batches contain drift, the 

time complexity to compute distances is O (log n) using binary search.  Once the drifts are 

detected, transforming the micro-clusters into micro-instances and generation of envelope-

clusters requires O (1) and O (n · k · i) time respectively. 

Therefore, the total time complexity of PSDSL in the worst scenario is O (n · k · i) + O (q · n 

· NInit) + O (q · n) + O (q · n · k · i) which approximates to O (q · n · k · i ) ≈ O (N) as n is much 

larger than ‘q’, ‘k’ and ‘i'.  The value of parameter k is constant, which has already been tuned 

using Algorithm 5.2. PSDSL requires fewer iterations for convergence because the initial 

centroids are trained on initial labelled data from the streams and the new centroids obtain 

their labels from the nearest centroids. COMPOSE on the other hand is of order O (n(d+1)/2) 

i.e. exponential in dimensionality [79]. SCARGC has the worst time complexity O (n · k · i). 

5.10 GUI for online Semi-Supervise Learner 

The purpose of developing the GUI for SSL is to visualize the results of both classification and 

clustering and analyse the results and compare results for different configurations. 

Furthermore, for qualitative analysis of the clustering and classification models.  

https://doi.org/10.48550/arXiv.2011.14917
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Figure 5.11 GUI for online SSL for data streams in MOA. 

 

The clustering results as shown in the right part of the GUI as shown in Figure 5.11 includes 

online evaluation of clusters such as F1, Precision, Recall, purity etc. The GUI also provides 

option to pause and resume the stream at any time, adjust the speed of visualization, choose 

the attributes to be displayed and visualize both the labelled and unlabelled data points in 

respective windows.   

The development process includes the extension and implementation of new classes in 

MOA.  The classes SSLMainTask is responsible to execute and maintain the SSL learning 

task. Similarly, the SSLearner class controls the features and functionality of classifiers and 

clusters and controlling the scarcity ratio of the training examples. The SSLVisualizer is 

responsible for presenting and timely updating examples, the clustering and micro 

clustering and evaluation results on the screen. 

The pre-labelling accuracy, micro and macro clustering and ground truth clusters along 

with switching of learning strategies are visually displayed. The classification results are 

shown in the left part of the GUI which includes online evaluation of classifiers such as the 

current and mean prediction accuracies, class label scarcity, time and memory details. 

5.11 SSL Prequential and Periodic Holdout Tasks  

Two online SSL learning tasks has been proposed, i.e. SSL Prequential and SSLHoldout. The 

Holdout evaluation provides more accurate measurements on more recent data, as it has a 

forgetting mechanism. There is an option to include this mechanism in Prequential evaluation 

by using sliding window or fading factors that weigh the instances using a decay factor. 

Algorithm 5.5 outlines overall stages of SSL periodic holdout task. 

Black Dots = Scarce Labels Cluster visualization 
Scarcity Ratio 

Prediction Evaluations 

Clustering Evaluations 
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Algorithm 5.5 SSLHoldout Evaluation ({x ,  y }  
1

n , ntest , mbound , α, ) 
 

Input: {x ,  y }  
1

n  :  ntrain : Stream of examples and class label  

           ntest  : Holdout examples as a test set  
           mbound: the maximum memory allocation  
           α: Percentage of initial labelled examples  

Output: none  
1 While evaluation is required  do         
2  for  i = 1 to ntrain  do                                               // iterate on labelled examples  
3   prob ← random%100  

4   if (prob >= α)  then         
5    x i  ← {x i , y i }                   // remove the class label from the example  

6          Train and update the unsupervised model on {x i } , ensuring mbound is valid  
7   end if  
8  λ = Classify (xi )  // predict pseudo-label using supervised model  
9  i f  y i  i s  a v a i l a b l e  then         
10       Train and update the supervised model on {x i , y i }   
11  else  
12       Train and update the supervised model on pseudo-labels {x i ,  λ}   
13  e n d  i f   
14  Evaluate pseudo-labelling accuracy (y i ,  λ)   
15  for  i = 1 to ntest do 
16   Get the next example from the stream 
17   Test the model and update model accuracy    
18  end for 
19 end while  

 

In the proposed SSLHoldout evaluation, the data stream is divided into two mutually 

exclusive subsets. Initially, the class labels of training examples are randomly eliminated 

(line 3-5), and an unsupervised model is trained (line 6). Next, the pseudo-labels ‘λ’ are 

predicted using a supervised model (line 8). In case, if the arriving example is labelled, the 

supervised model is trained on true class labels, otherwise pseudo-labels are used for 

training and updating.  A set of predefined size of examples are used in training phase before 

an evaluation is performed on the test set. Similarly, in the proposed SSLPrequential the 

error of the model is computed from the sequence of instances. For each instance in the 

stream, the predictive model makes a prediction, and then incrementally update the model. 

A specified ratio of the true class labels of examples are removed and the evaluation of both 

clusters and classifiers are performed along with the visualisation of examples and clusters. 

The source code for SSL periodic held out task is available in APPENDIX IV. 

5.12 Evaluation of PSDSL 

This section empirically evaluates PSDSL algorithm against existing standalone EVL 

approaches namely SCARGC [31], LEVELIW [74], COMPOSE [22], and MClassification [34] 

on benchmarks NSE datasets [31] as well as MOA data streams and real-world datasets. 

These are the most relevant approaches dealing with EVL and NSEs. The APT algorithm [76] 

was not included in the analyses, as its steep computational complexity was prohibitive on 

running some of the larger datasets. A comparative analysis among these algorithms has been 

presented in Section 2.3 .  
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To verify statistically significant differences between algorithms, the Friedman test was 

applied, which is a suitable non-parametric test for multiple algorithms on multiple datasets 

[49]. The Friedman test was applied with α=0.05 to test the null hypothesis that there is “no 

statistical difference between the algorithms”. The Nemenyi post-hoc test [50] has been 

applied to identify which pairs of algorithms differ from each other. In EVL few initial ground 

truth labels are available; therefore, internal evaluations were applied to the clusters i.e. 

Purity, Precision and Recall [124]. 

5.12.1 Experimental Setup 

The evaluation procedure used are Kappa statistics and prequential testing. Prequential 

testing is a facility of the MOA [46] in which each instance is used to test the model before it 

is used for training, and the accuracy is updated incrementally. Prequential accuracy estimate 

is appropriate when all classes are approximately balanced [53]. Kappa statistics is a more 

sensitive measure for quantifying the predictive performance of streaming classifiers since it 

cannot be ascertained whether the classes were balanced.  

The PSDSL was compared with existing EVL approaches, static and benchmark setting.  To 

determine how PSDSL performs with and without pseudo-labelling the ‘Static’ approach was 

used in which PSDSL does not apply pseudo-labelling.  Further, to analyse the consequences 

of unlabelled examples in the data stream and their impact on predictive performance, 95% 

of the class labels were removed from each dataset and PSDSL was compared in the 

‘benchmark’ setting in which all the training examples are labelled. The MOA commands to 

execute these experiments are available in APPENDIX II.   

All the experiments are evaluated in terms of time consumption and predictive performance.  

Processing time is measured in seconds and is based on the CPU time used for training and 

testing.  All the experiments were performed on machines with Core i7 @ 3.4 GHz, 4 GB of 

RAM. The experiments performed on non-stationary datasets [125] using MOA-generated 

streams [46] and real-world datasets. The details of parameters used in the experiments for 

these existing EVL approaches are provided in Table 5.1. 

Table 5.1 Algorithms and parameters used in the experiments. 

Algorithm  Description 

Static 
The PSDSL classifier is not updated after it is trained with the 
first examples in the data streams. i.e. no pseudo-labelling is 
applied. 

SCARGC Applied KNN base classifier and applying the parameters 
suggested by Souza et al. [31] 

Benchmark  PSDSL classifier is applied on 100% labelled examples. 

COMPOSE  Gaussian mixture models (GMM) as core supports extraction, 
applied the parameters suggested by Dyer et al [22] 

MClassification r = 0.1 and |T| = 150 and where |T | represents the size of the 
initial labelled set and r is the maximum radius of MC [34] 

LEVELIW importance weighted least squares probabilistic base classifier 
using the default parameters suggested by Umer et al [74] 
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5.12.2 PSDSL Learning Parameters 

The parameter used in Evaluate EVL Prequential and PSDSL are shown in Table 5.2 and 

Table 5.3. 
 

Table 5.2 Learning parameters used in Evaluate EVL Prequential. 

Param Command Description Default 

-l SSLearner 
Semi-Supervised learner to 
train  

SSLearner  

-s stream Stream to learn from RandomTreeGenerator 

-k normalise Normalize data stream 
Do not Normalize 
Stream 

-e evaluatorOption 
Classification performance 
evaluation method 

Window Classification 
Performance Evaluator 

-n noiselevel 
Set Noise Level to data 
stream  

false 

-r trainsize Size of labelled data 50 

-i instanceLimit 
Maximum number of 
instances to test/train 

1000 

-f sampleFrequency 
How many instances between 
Samples of the learning 
performance 

100 

 

Table 5.3 Learning parameters used in PSDSL.  

Parm. Command Description Default 

-l learner Set the classifiers (HDWM) 

HoeffdingTree -l MC 
kNN 
HoeffdingTree -l 
NBAdaptive 
NaiveBayes 

-q clusturer Clustering algorithm Clustream 

-h horizon timeWindowOption 1000 

-k maxNumKernels 
Maximum number of micro 
kernels to use 

100 

-x prelableing 
Switch “No Pre-labelling" or 
"Use Pre-labelling" 

Use Pre-labelling 

-p maxcluster Number of Max Clusters 15 

-k knn Number of nearest neighbours 3 

- α threshold 

When the confidence level 
reaches below ‘α’ it reports the 
drift and generates envelope 
clusters 

0.1 

-u PurityThreshold 
Threshold for switching pre-
labelling strategies i.e. self-
learning, micro or CGC. 

0.95 
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5.12.3 Non-Stationary datasets 

Non-stationary datasets used in the experiments were provided by the authors of SCARGC 

[31] and are available to the machine learning community [125]. These datasets have been 

randomised and made available for further research [54]. They provide datasets with 

incremental changes over time. Here, Unimodal Gaussian datasets represent two bi-

dimensional Gaussian clusters rotating around a common axis.  The distance between the 

Gaussian components changes over time.  Class overlap exists in these datasets. The datasets 

UG-2C-2D, UG-2C-3D, and MG-2C2D were originally proposed by Dyer et al [22]. 

5.12.4 MOA Data Streams 

The artificial data streams used in the experiments are generated through the MOA 

workbench [46]; the number of instances is 100,000 and the batch size is 1000 in all the 

streams.  The MOA commands to generate these streams are available in APPENDIX II.     

5.12.5 Real-World Dataset 

Keystroke dataset [135] task is to predict one of four users based on their typing patterns.  

The dataset contains keystroke records obtained from the users in 8 different sessions who 

typed a fixed password. The description of the datasets used in the experiments is provided 

in Table 5.4 and Table 5.5.  
 

Table 5.4 Description of Benchmark datasets. 

Datasets 
# of  

Instances 
# of  

Feature 
# of  

Classes 
Drift  

Interval  
Class 

 Overlap 
1CDT 16,000 2 2 400 No 

1CHT 16,000 2 2 400 No 

1CSurr 55,283 2 2 600 yes 

2CDT 16,000 2 2 400 yes 

2CHT 16,000 2 2 400 yes 

4CE1CF 173,000 2 4 750 No 

4CR 144,000 2 4 400 No 

4CRE-V1 125,000 2 4 1,000 yes 

4CRE-V2 183,000 2 4 1,000 yes 

5CVT 24,000 2 5 1,000 yes 

FG_2C_2D 200,000 2 2 2,000 No 

GEARS_2C_2D 200,000 2 2 2,000 No 

MG_2C_2D 200,000 2 2 2,000 yes 

UG_2C_2D 100,000 2 2 1,000 yes 

UG_2C_3D 200,000 3 2 2,000 yes 

UG_2C_5D 200,000 5 2 2,000 yes 

C=Class, D=Diagonal, V=Vertical, H=Horizontal, T=Transaction, R=Rotating, E=Expanding U= 

Unimodal, G= Multimodal, G= Gaussian 
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The batch size for the MOA Stream is 300 and for keystroke is 150. The information about 

drifts and class overlap is not available for the real-world datasets. In Section 5.13 and 5.14, 

the predictive capabilities of PSDSL were tested on MOA data streams, benchmark non-

stationary datasets and real-world datasets. 

 

Table 5.5 Description of MOA streams. 

MOA Stream Instances Feature Classes Drifts 

SEA  

100K 

3 2 2 

RandomTree 10 2 2 

LED 24 10 1 

Wave 21 3 1 

Hyperplane 10 2 3 

RRBF  2 5 2 

Keystroke [135] 1600 10 4 NA 

5.13 Comparative Analysis of PSDSL on Benchmark Datasets 

Predictive accuracies of PSDSL, COMPOSE, LEVELIW, SCARGC and MClassification (MC) 

were evaluated on benchmark non-stationary datasets [125] that have also been used in the 

original SCARGC publication.  Table 5.6 shows the Friedman statistic X2
r is 18.93 (df =5, n = 

15).  The p-value = .0019 shows significant difference in the algorithms at (p < .05).  The 

number in the brackets represents the ranks, the lower the rank and the higher the predictive 

performance. 

 

Table 5.6 Average accuracies on benchmark datasets. 

Datasets Static 
COMPOSE 

(GMM) 
LEVELIW 

SCARGC 

(1-NN) 
MC PSDSL 

1CDT 99.0(6) 99.8(3) 99.9(1) 99.7(5) 99.8(2) 99.6(5) 

1CHT 94.5(6) 99.3(3) 99.5(1) 99.2(4.5) 99.3(2) 99.0(5) 

1CSurr 65.6(6) 89.7(4) 91.3(3) 94.3(2) 85.1(5) 94.5(1) 

2CDT 55.0(6) 95.9(1) 58.3(5) 90.9(3) 95.2(2) 90.7(4) 

2CHT 54.5(5) 89.6(1) 52.1(6) 85.0(4) 87.8(2) 85.8(3) 

4CE1CF 94.7(3) 93.9(6) 97.7(1) 94.0(5) 94.3(4) 94.7(2) 

4CR 25.2(6) 99.9(2.5) 99.9(1) 99.9(5) 99.9(2.5) 99.9(4) 

4CRE-V2 26.2(5) 92.3(1) 24.1(6) 91.9(2.5) 91.5(4) 91.8(3) 

5CVT 48.1(4) 45.1(5) 33.1(6) 90.1(1) 88.4(2) 84.9(3) 

FG_2C_2D 81.3(4) 95.5(2) 95.7(1) 95.1(3) 62.4(6) 64.9(5) 

GEARS 94.9(5) 95.8(4) 97.7(1) 95.9(3) 94.7(6) 95.9(2) 

MG_2C_2D 51.6(6) 93.2(1) 85.4(3) 92.7(2) 80.5(4) 64.5(5) 

UG_2C_2D 45.8(6) 95.7(1) 74.3(5) 95.5(2.5) 95.2(4) 95.5(2) 

UG_2C_3D 64.1(6) 95.2(1) 64.6(5) 94.7(3) 94.7(4) 94.8(2) 

UG_2C_5D 69.2(6) 92.1(1) 80.1(5) 90.9(4) 91.2(2) 91.0(3) 

Keystroke 68.7(6) 87.2(4) 90.5(2) 87.7(3) 90.6(1) 85.3(5) 

Average 64.93(5.3) 91.2(2.5) 77.8(3.2) 93.6(3.1) 90.7(3.3) 89.6(3.3) 
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Figure 5.12 shows a critical difference diagram on ranked accuracies for non-stationary 

datasets.  For 6 algorithms and 16 datasets, the Critical Difference (CD) for the Nemenyi [50] 

at (α=0.05) is (CD=1.82).  The solid bar shows no significant differences between COMPOSE, 

LEVELIW, SCARGC, MClassification and PSDSL, however these performed significantly 

better than ‘Static’. 

 

Figure 5.12 Critical Difference diagram for Non-Stationary Dataset’s accuracies 

 

Table 5.7 presents the evaluation time in seconds; the results show that PSDSL achieved 

similar accuracies in less average computation time (8.01 seconds) on non-stationary 

datasets.  

 

Table 5.7  Evaluation time in seconds (Non-Stationary Datasets). 

Datasets 
COMPOSE 
(GMM) 

LEVELIW 
SCARGC 
(1-NN) 

MC PSDSL 

1CDT 4.2 15.0 1.5 64.5 1.2 

1CHT 4.0 15.3 1.2 62.6 0.4 

1CSurr 7.3 43.8 4.2 220.9 3.8 

2CDT 2.9 15.7 1.0 62.8 0.7 

2CHT 3.5 15.8 1.6 60.7 0.9 

4CE1CF 44.1 137.8 15.1 775.9 10.7 

4CR 55.9 148.3 12.7 608.0 7.0 

4CRE-V2 34.8 147.8 15.2 641.6 10.9 

FG_2C_2D 16.0 185.7 8.2 870.2 6.2 

GEARS_2C_2D 14.4 186.4 17.5 497.7 10.0 

MG_2C_2D 15.4 190.8 18.0 740.5 10.6 

UG_2C_2D 16.9 72.7 9.1 362.8 6.0 

UG_2C_3D 15.6 176.5 19.4 881.7 16.0 

UG_2C_5D 15.9 176.8 21.2 977.3 27.2 

Average 17.9 109.2 10.4 487.5 8.0 
 

Thus, LEVELIW is found to be the second-lowest performing algorithm in terms of 

computational complexity after MClassification and performs significantly worse than all 

other algorithms except SCARGC and PSDSL. In another experiment, Naïve Bayes [38] 

classifier is applied as a base classifier, Table 5.8 shows an average 7.18 % improvements in 

the prediction accuracies when pre-labelling was applied.  
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Table 5.8 Predictive Accuracies (%) PSDSL applied using Naïve Bayes Classifier. 

Datasets 
Without 
 Pre-labelling 

Pre-labelling Gain 

UG_2C_2D 52.516 68.357 +15.841 

UG_2C_3D 62.821 68.286 +5.465 

1CSurr 63.943 73.329 +9.386 

4CR 19.771 34.076 +14.305 

4CRE-V2 24.080 32.892 +8.812 

Stagger 52.808 52.925 +0.117 

RandomTree 62.783 62.873 +0.090 

LED 44.387 48.655 +4.268 

Hyperplane 61.813 70.045 +8.232 

SEA_Mixed 82.408 84.972 +2.564 

RandomRBF 25.666 39.25 +13.584 

CovType 63.19 70.50 +7.30 

Sensor 14.878 18.263 +3.385 

Average 48.54 55.72 7.18 

 

5.14 Analysis of MOA Data Streams 

Previous sets of experiments are performed on offline datasets, a comprehensive analysis was 

made on MOA data streams.  As can be seen from Table V the average prediction accuracy of 

SCARGC is highest (93.64%) in all the benchmark datasets, therefore it has been 

implemented it in the MOA to compare it with our approach.  A recent comparative analysis 

in the literature [81] reports no statistical significance at α = 0.05 for classification accuracy 

among COMPOSE, LEVELIW, MClassification and SCARGC). LEVELIW performs rather 

poorly on benchmark datasets with significant between-class overlap. MClassification and 

LEVELIW are found to be computationally inefficient.  

To analyse SCARGC and PSDSL, Prequential Accuracies, Kappa Statistics and Evaluation 

time were used and the ranks for each algorithm were calculated.  It is noted that SCARGC 

and PSDSL were compared with the ‘Static’ and benchmarked approaches, which are 

described in Table 5.2.  The first batch i.e. 300 instances were kept labelled and the class labels 

of the remaining data stream were removed.   

5.14.1 Prequential Accuracies 

In EVL these accuracies could not be evaluated due to the scarcity of true class labels; as true 

labels become available, the accuracy is calculated and presented for comparison.  

 

Table 5.9 presents the average accuracy (in %) achieved by the methods over the 12 MOA 

streams. The best results were highlighted in a comparison between the proposed method 

PSDSL and SCARGC, benchmark, and Static.  
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Table 5.9 Predictive Accuracies (%) PSDSL (MOA Streams). 

MOA Stream Static Benchmark SCARGC PSDSL 

SEA (Sudden Drift) 69.9(3) 77.1(2) 67.9(4) 78.0(1) 

LED (Sudden Drift) 27.8(3) 63.6(1) 22.3(4) 41.7(2) 

Wave (Sudden) 75.6(2) 89.2(1) 60.4(4) 75.3(3) 

RRBF (Gradual Drift) 26.8(4) 98.3(1) 97.9(3) 98.0(2) 

HP (Incremental) 53.7(3) 82.8(1) 50.5(4) 54.5(2) 

RandomTree (Recurring) 63.1(3) 63.7(2) 56.0(4) 71.3(1) 

SEA (No Drift) 77.1(2) 76.9(3) 68.6(4) 86.5(1) 

LED (No Drift) 45.1(3) 64.1(2) 39.2(4) 74.0(1) 

Hyperplane (No Drift) 83.1(3) 83.3(2) 61.2(4) 89.8(1) 

RandomTree (No Drift) 60.3(3) 64.1(2) 54.8(4) 65.6(1) 

RRBF (No Drift) 13.7(4) 94.5(1) 50.5(3) 54.5(2) 

Wave (No Drift) 76.4(2) 75.3(3) 54.3(4) 83.1(1) 

Average (Rank) 56.0(2.9) 77.7(1.7) 57.0(3.8) 72.7(1.5) 

The overall results show that PSDSL performed better than all other approaches. The 

Friedman statistic X2
r is 24.05 (df =3, n = 11), the p-value = .00002 shows a significant 

difference in the algorithms at (p < .05). The number in brackets represents the rank. To 

determine which algorithm(s) performed differently, Figure 5.13 is the critical difference 

diagram on ranked accuracies for MOA streams.  The connected solid lines represent groups 

of algorithms that are like each other, and any two algorithms are significantly different if the 

difference between their average ranks is at least CD [49]. For 4 algorithms and 12 streams, 

the CD for the Nemenyi [50] at α=0.05 is 1.41. The results show two groups of algorithms, i.e. 

PSDSL - Benchmark and SCARGC-Statics. Significant differences are found between PSDSL 

and SCARGC, while the performance of PSDSL is closer to the benchmark, while no 

significant difference was found between SCARGC and Static. 

 

 

Figure 5.13 Critical Difference diagram for MOA Streams Accuracies, 

comparison of all classifiers against each other with the Nemenyi test. 

Groups of classifiers that are not significantly different (at p = 0.05) are 

connected. 
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5.14.2 Kappa Statistics 

The Kappa evaluation measure is widely used in data stream mining, as it can handle both 

multi-class and imbalanced class problems.  The larger the Kappa value, the more generalised 

and better the classifier. The kappa statistics show similar results compared with average 

accuracy, in which PSDSL performs significantly better than other algorithms. Table 5.10 

provides the Kappa statistics for the experiments.   

Table 5.10 Average kappa statistics on MOA streams 

MOA Stream Static Benchmark SCARGC PSDSL 

SEA (Sudden Drift) 42.3(3) 52.3(2) 35.6(4) 55.6(1) 

LED (Sudden Drift) 19.8(3) 59.5(1) 13.4(4) 34.6(2) 

Wave (Sudden) 33.3(2) 75.4(1) 9.3(4) 32.5(3) 

RRBF (Gradual Drift) 8.3(4) 97.9(1) 97.4(3) 97.5(2) 

HP(Incremental) 7.6(3) 65.6(1) 0.6(4) 9.0(2) 

RandomTree (Recurring) 25.2(3) 25.5(2) 9.8(4) 41.4(1) 

SEA (No Drift) 52.9(2) 52.8(3) 37.0(4) 70.0(1) 

LED (No Drift) 39.0(3) 60.1(2) 32.5(4) 71.1(1) 

Hyperplane (No Drift) 66.3(3) 66.7(2) 22.3(4) 79.6(1) 

RandomTree (No Drift) 22.7(3) 60.1(1) 9.7(4) 29.1(2) 

RRBF (No Drift) 1.5(3) 88.9(1) 0.6(4) 9.0(2) 

Wave (No Drift) 64.6(2) 63.0(3) 31.6(4) 74.7(1) 

Average (Rank) 32.0(2.8) 64.0(1.6) 25.0(3.9) 50.4(1.5) 

5.14.3 Evaluation Time 

Table 5.11 presents the Evaluation time in Seconds for Static, Benchmark, SCARGC and 

PSDSL on MOA Streams. 

Table 5.11  Evaluation time in seconds (MOA streams). 

MOA Stream Static Benchmark SCARGC PSDSL 

SEA (Sudden Drift) 7.5 9.8 120.9 35.89 
LED (Sudden Drift) 182.3 55.37 164.9 70.04 
Wave (Sudden) 43.81 46.56 109 116.8 
RRBF (Gradual Drift) 11.93 10.5 146.2 27.9 
HP(Incremental) 29.1 27.18 122.1 50.62 
RandomTree (Recurring) 9.56 24.48 136.8 49.45 
SEA (No Drift) 6.9 7.3 95.14 36.71 
LED (No Drift) 156.75 66.2 164.7 69.20 
Hyperplane (No Drift) 20.14 20.54 93.34 49.93 
RRBF (No Drift) 4.26 11.87 72.09 3.63 
RandomTree (No Drift) 18.89 55.07 100.98 72.17 
Wave (No Drift) 37.4 40.76 115.2 118.2 

Average 44.05 31.30 120.11 58.38 

 

The results show that PSDSL achieved better average accuracies (72.7%) in less average 

computation time (58.38 seconds) than SCARGC Accuracy = 57.0% in 120.11 seconds, but 

not as far as Benchmark and Static because these do not apply pseudo-labelling. 
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5.15 Analysis on Real-world Problem 

A keystroke dataset [134][135] applied in the research is a collection of data that records 

information about keystrokes, such as the time and duration of each keystroke, the keys that 

were pressed, and the order in which they were pressed. Keystroke datasets can be used for a 

variety of purposes, including: 

1. Biometric identification: Keystroke dynamics, or the way a person types on a 

keyboard, can be used as a biometric identifier, similar to a fingerprint or a retinal 

scan. Keystroke datasets can be used to train machine learning models to recognize 

the unique typing patterns of individuals. 

 

2. Behavioural analysis: Keystroke datasets can also be used to analyse user behaviour, 

such as how quickly or accurately they type, which keys they tend to use most 

frequently, and whether they make frequent mistakes. 

 

3. Cyber security: Keystroke datasets can be used to detect fraudulent activity, such as 

when someone attempts to impersonate another person by typing in their login 

credentials.  

The task of this dataset is to predict one of four users based on their typing patterns. The 

dataset contains keystroke records obtained from 51 subjects who typed a 10-character 

password (.tie5Roanl). Each subject typed 400 repetitions of the password over 8 sessions of 

50 repetitions each (spread over different days). Each record in the dataset contains 

information about the time and duration of each keystroke, the key that was pressed, and the 

order in which the keys were pressed.  

5.15.1 Features Exploratory Analysis 

Feature exploratory analysis is an important step in predictive analysis which helps 

understanding the characteristics of the different features or variables in a dataset. The 

keystroke dataset contains data from four users, identified as "S1," "S2," "S3," and "S4," and 

includes a total of 1600 records, with 400 records for each user. The actual keystroke dataset 

[135] includes a total of 31 features, such as key down, key, up, hold time, and latency, 

which can be used to train machine learning models to recognize the unique typing patterns 

of each user. A total 10 features (fight time) are applied (i.e. one feature for each character 

in the password) to compare the predictive performance with the benchmarks algorithms. 

This reduced dataset is available by the authors of the ATISLabs [134]. The Flight time is 

the time difference between the key press and when it is released.  

A correlation heat map [137] is a graphical representation of the correlation matrix, which 

shows the pairwise correlation coefficients between different variables in a dataset. Figure 

5.14 showing correlation heat map of keystroke dataset, the features { . t R a n i } are highly 

correlated (dark blue on the heat map) with respect to the target class, while the features { 

a , n } and { l , n } are having medium positive correlation within the features. 
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Figure 5.14 Correlation heat map of keystroke dataset. 

5.15.2 Clustering Analysis 

In clustering the movement of centroids refers to the movement of the central point or 

average of a set of data points. It is often used in clustering algorithms to track how the 

cluster centres move as new data points are added or removed from the dataset. In case of 

keystroke dataset, the location of centroids can be useful for understanding how the 

distribution of data is changing over time. This can be due to changes in the environment 

or other factors that affect the data. Figure 5.15 showing movement of centroids in 

keystroke dataset at different timestamps.   

     
Figure 5.15 Movement of clusters in keystroke dataset, time step 300 (left) and 

time step 600 (right). 

It is evident from the figures that the centroids are non-stationary and moving, this is because 

the position of the centroids depends on the data points that are assigned to the cluster, and 

as new data points are added or removed, the position of the centroids may shift. In keystroke 

dynamics, this change gradual change in the position of centroids is due to gradual change in 
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the typing speed of the users, as they learn to type passwords faster and more accurate over 

time.  The next section demonstrates the experiments and significant findings of PSDSL 

applied on the keystroke datasets.    

5.15.3 Experimental Setup 

Considering the task of predicting 1 user out of 4, the PSDSL and SCARGC algorithms are 

evaluated under Static (no pseudo-labelling) and Benchmark scenarios (complete labelled).  

As each user types the password 50 time per session, the classifiers are trained on first 150 

examples and incrementally evaluated on data from remaining 7 sessions. 

 All the experiments are evaluated in terms of time consumption and predictive performance.  

Processing time is measured in seconds and is based on the CPU time used for training and 

testing.  All the experiments were performed on machines with Core i7 @ 3.4 GHz, 4 GB of 

RAM. The details of parameters used in the experiments for these existing EVL approaches 

are provided in Table 5.12. 

Table 5.12 Algorithms and parameters used in the experiments. 

Algorithm  Description 

Static The classifier is not updated after it is trained with the first 
examples in the data streams. i.e. no pseudo-labelling is applied. 

SCARGC 
Applied KNN base classifier and applying the parameters 
suggested by Souza et al. [31] 

Benchmark  
Both PSDSL and SCARGC classifier are evaluated on 100% 
labelled examples. 

PSDSL HDWM Classifier, envelop clustering, nearest neighbours =3, 
purity threshold = 0.95, Pool Size = 150 

 

5.16 Significant Findings 

As the PSDSL does not apply a CGC approach on MOA streams and switches to a self-

learning state, this improvement is due to the switching mechanism of heterogeneous base 

classifiers. As shown in Figure 5.16, the PSDSL achieved the highest predictive performance 

as compared to the SCARGC (81.67%) and Static (49%) is the accuracy when no EVL is 

handled by using pseudo labels. The prediction time as shown in Figure 5.17 are lower than 

the Benchmark and Static but slightly higher than the SCARGC.  
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Figure 5.16 Prediction accuracies keystroke dataset, comparing PSDSL, SCARGC, Static 
and Benchmark. 

 
Figure 5.17 Comparison of prediction time PSDSL, SCARGC, Static and Benchmark. 

 

In SCARGC algorithm the value of ‘k’ which is the initial number of clusters and it value is 

manually chosen, Figure 5.18 is showing the predictive accuracies of SCARGC on keystroke 

dataset by applying different values of this parameter ‘k’. In this experiment ‘k=4, 6, 8 and 11 

have been applied, the results shows that the predictive accuracies have changed significantly 

(41.1% to 81.6%).  
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Figure 5.18 Predictive performance of SCARGC by applying different values of ‘k’. 
 

Figure 5.19 shows the results of experiment performed on keystroke dataset [137]. The 

PSDSL detects and resolves the cluster labelling issue arises in the micro-clusters in a 

situation when there is a dispute in micro-cluster labelling.  

 

 

Figure 5.19 Visualisation of envelope, macro and micro-clusters in 
Keystroke dataset [137].  

 

To overcome these issues, PSDSL transforms the centroids’ information of micro-clusters 

into micro-instances, these instances generate clusters using a centroid based clustering 
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algorithm such as K-Means to generate cluster called envelope clusters. Finally, the nearest 

envelope clusters assist the conflicted micro-clusters in assigning their labels. The 

visualisation shows envelope clusters in the right pan, and the micro and macro clusters and 

shown in the right pan. A total 55 thousand examples were trained out of which only 150 

initial examples were labelled followed by complete unlabelled examples which are shown 

in the right pan. The envelope clusters increased the prediction accuracy.  

Figure 5.20 shows the predictive accuracy plots for MOA Streams in which no drift is 

induced. The results show that PSDSL performed significantly better than SCARGC on all 

the MOA Streams when there are no concept drifts. 

  

  

  

Figure 5.20 Predictive accuracy plots for MOA Streams (No drift). 

Figure 5.21 shows the predictive accuracy plots for MOA Streams in which artificial drift is 

induced.  The results show that in EVL, when the CGC fails, restoring from the concept drift 

is challenging due to unavailability of true class labels.  In SEA (Abrupt) and RandomTree 
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(Recurring Drift) streams, all the algorithms restored learning after the sudden drifts.  

However, the graphs show that, before the first and after the last drift the PSDSL predictive 

performance is higher than the competing algorithms. This demonstrates that under EVL 

conditions, PSDSL adapted to the abrupt as well as recurring drifts better than other 

algorithms. On LED which is a multi-class problem, and Hyperplane which contains 

incremental drifts, none of the approaches adapted to the drifts in these two streams. 

Overall, PSDSL performed better than other approaches on drift induced MOA streams. 

  

  

  

Figure 5.21 Predictive Accuracy Plots for MOA Streams (Artificial drift 

induced), red vertical lines representing the actual location of abrupt drifts. 

 

SCARGC performed best in non-stationary datasets, however its predictive performance did 

not improve when applied to MOA data streams. To further investigate the cause(s) of this 

failure, a randomisation analysis was made and is presented in Section 5.16.1. 
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5.16.1 Analysis of Randomisation 

This experiment analyses the sequence of training data and its influence on prediction 

accuracies for CGC algorithms.  In data streams, continuous data arrives at high speed and 

there is practically no control over the sequence of training data presented to the learning 

algorithms.  Randomisation is thus different to noise, as it is not a random displacement of 

examples, but a random order in which data instances are presented to the learning 

algorithm. In case of noise, the data needed to be cleaned before PSDSL deals with drifts. 

In this section, (RQ4) is addressed, which is “are existing ILNSE approaches always 

successful when applied to different problems and why does this approach sometimes fail?”. 

The benchmark non-stationary datasets [31] [125] are randomised by shuffling the order 

of examples in the datasets.  

Figure 5.22 shows a plot of Four Class Rotating (4CR) [125] dataset. The plot ‘4CR original 

dataset’ on the left shows initial 1000 examples, and on the right ‘4CR randomised’ are 

initial 1000 instances after shuffling 144k instances in the dataset. The centroids in the 

dataset are gradually rotating, therefore the examples which are located above the 1000 

appeared in the first batch and resulted in a noise effect. The change in the order of examples 

resulted in the loss of cluster boundaries.  This is the scenario in real-time data streams, i.e. 

no control over the order of examples. 

4CR Original Dataset 4CR Randomised 

 

Figure 5.22 Plot for initial 1000 instances of 4CR dataset versus randomised 4CR dataset. 

 

The results in Table 5.13 show the prediction accuracies achieved by the SCARGC and PSDSL 

algorithm on original and randomised datasets. The results show that SCARGC had a 

significant drop in average prediction accuracy by 35.3% on randomised datasets, whereas 

PSDSL only dropped by 20.9%. 
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Table 5.13 Predictive accuracy (in %) on original and randomised benchmark datasets. 

Datasets 
SCARGC 
Original 

SCARGC 
Randomised 

PSDSL 
Original 

PSDSL 
Randomised 

1CDT 99.8 88.3 99.6 99.2 

1CHT 99.3 88.4 99.1 98.2 

1CSurr 94.4 59.4 94.5 66.7 

2CDT 90.9 59.9 90.7 60.3 

2CHT 85.0 59.7 85.8 60.1 

4CE1CF 94.1 92.9 94.7 95.31 

4CR 99.9 24.9 99.9 25.1 

4CRE-V2 91.9 24.3 91.8 25.0 

5CVT 90.1 38.9 84.9 66.9 

FG_2C_2D 95.2 43.2 64.9 74.3 

GEARS 95.9 95.4 95.9 95.6 

MG_2C_2D 92.7 50.1 64.5 59.6 

UG_2C_2D 95.6 53.4 95.6 58.2 

UG_2C_3D 94.8 51.0 94.8 70.5 

UG_2C_5D 91.0 51.1 91.0 79.8 

Average 94.0 58.7 89.8 68.9 

5.16.2 Analysis of Switching Mechanism in PSDSL 

To address (RQ4), what strategy should be adopted if the CGC or self-learning approaches 

fail? PSDSL is made capable of intelligently switching learning states ‘CGC with K-Means, 

micro-clusters, or self-learning. For this set of experiments, the first batch of the data stream 

is 100% labelled, followed by 5% labelled instances in each batch of size 1000.  

As shown in Table 5.16 the switching mode in PSDSL is dependent on {F1-P, F1-R and purity} 

of K-Means and micro-clusters. Whichever is higher, it adapts the learning mode accordingly. 

For values lower than threshold ‘ρ’ such as in randomised datasets or MOA Streams, it 

switches to self-learning. Further, it monitors the performance of pseudo-labelling. In the 

case that pseudo-labelling does not improve the predictive performance on initial labelled 

data, PSDSL suspends the pseudo-labelling. 

Table 5.14 shows that overall, 7.2% prediction accuracy of classifier (NB) has been improved 

by applying self-learning. Table 5.15 shows improvement (23.9%) when active switching of 

classifier (NB) and clusters (K-Means) was applied. 

As shown in Table 5.16 the switching mode in PSDSL is dependent on {F1-P, F1-R and purity} 

of K-Means and micro-clusters. Whichever is higher, it adapts the learning mode accordingly. 

For values lower than threshold ‘ρ’ such as in randomised datasets or MOA Streams, it 

switches to self-learning. Further, it monitors the performance of pseudo-labelling. In the 

case that pseudo-labelling does not improve the predictive performance on initial labelled 

data, PSDSL suspends the pseudo-labelling. 
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Table 5.14 Prediction accuracies (%) by applying self-learning.  

Datasets No Pre-labelling Pre-labelling Gain/Loss 
UG_2C_2D 52.51 68.35 +15.84 
UG_2C_3D 62.82 68.28 +5.46 
1CSurr 63.94 73.32 +9.38 
4CR 19.77 34.07 +14.30 
4CRE-V2 24.08 32.89 +8.81 
STAGGER 52.80 52.92 +0.11 
RandomTree 62.78 62.87 +0.09 
LED 44.38 48.65 +4.26 
Hyperplane 61.81 70.04 +8.23 
SEA_Mixed 82.40 84.97 +2.56 
RandomRBF 25.66 39.25 +13.58 
Sensor 14.87 18.26 +3.38 
Covtype 63.19 70.50 +7.30 

Average (%) 48.5 55.7 7.2 

 

Table 5.15 Prediction accuracies (%) self by applying active switching of classifiers 
and clusters as prediction method. 

Datasets No Pre-labelling Pre-labelling Gain/Loss 
UG_2C_2D 52.51 94.20 +41.69 
UG_2C_3D 62.82 92.66 +29.84 
1CSurr 63.94 85.97 +22.02 
4CR 19.77 95.76 +75.99 
4CRE-V2 24.08 84.76 +60.68 
STAGGER 52.80 55.20 +2.39 
RandomTree 62.78 66.10 +3.32 
LED 44.38 48.67 +4.29 
Hyperplane 61.81 68.94 +7.12 
SEA_Mixed 82.40 82.59 +0.18 
RandomRBF 25.66 74.764 +49.09 
Sensor 14.87 22.12 +7.24 
Covtype 63.19 69.47 +6.28 
Average (%) 45.5 72.4 23.9 

 

Table 5.16 PSDSL purity and switching mode. 

Non-Stationary  
Datasets 

µACC% Ф Purity µ Purity LM 

1CDT 100 0.97 ↑ 0.91 C 

1CHT 100 0.94 0.95↑ M 

1CSurr 100 0.97 0.98↑ M 

2CDT 100 1.00 ↑ 0.98 C 

2CHT 100 0.97 ↑ 0.92 C 

4CE1CF 100 0.89 ↑ 0.86 C 

4CR 100 1.00 1.00 C 

4CRE-V2 100 1.00 ↑ 0.97 C 

5CVT 100 0.90 0.96↑ M 

FG_2C_2D 100 0.92 ↑ 0.90 C 

GEARS_2C_2D 100 0.95 ↑ 0.92 C 
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Non-Stationary  
Datasets 

µACC% Ф Purity µ Purity LM 

MG_2C_2D 100 1.00 1.00 C 
 UG_2C_2D 100 1.00 1.00 C 
UG_2C_3D 100 1.00 1.00 C 
UG_2C_5D 100 1.00 1.00 C 
MG_2C_2D 100 1.00 1.00 C 
SEA (Sudden Drift) 86.6  0.75 0.76 S 
LED (Sudden Drift) 47.1  0.00 0.35 S 
Wave (Sudden) 85.3  0.00 0.64 S 
RRBF (Gradual Drift) 100 1.00 1.00 C 
Hyperplane (Incremental) 76.2  0.67 0.56 S 

RandomTree (Recurring) 79.1 1.00 ↑ 0.62 S 

SEA (No Drift) 86.3  0.70 0.80 S 
LED (No Drift) 47.1  0.00 0.35 S 

Hyperplane ((No Drift) 79.2 1.00 ↑ 0.58 S 

RandomTree (No Drift) 92.4 0.99 ↑ 0.54 S 

Wave (No Drift) 76.7  0.00 0.60 S 
KEYSTROKE 99.3 0.34 0.93↑ M 

labelling -Means purities, µACC%= pseudo-= KPurityclustering purities, Ф -micro = CluStreamPurityµ
Accuracy for µ, LM= Learning modes {C = CGC using K-Means, M = micro-clustering, S= Self-
learning} 

 

As shown in Figure 5.23, a GUI has been developed for visually outputs the current state of 

the switching mode in PSDSL.  

 

Figure 5.23 GUI for switching learning states. 
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Figure 5.24 Switching states of Non-Stationary Datasets, 1=No pre-labelling, 2= 

pre-labelling using clusters and 3= pre-labelling using classifiers as self-learning. 

 

Figure 5.24 showing switching states for non-stationary datasets. It is evident from the plots 

that the PDSL, switches the learning strategies based on conditions and on different times 

steps the pseudo-labelling was terminated as resumed afterwards because it was not 

beneficial at that specific period of time. 

5.16.3 Analysis of Pseudo-labelling without Switching  

This experiment determines the sensitivity analysis of switching mechanism. The effect of 

pseudo-labelling and without pseudo-labelling has been analysed on different 

characteristics of datasets, which includes numerical, categorical, and mixed attributes and 

normalized data has been shown in Table 5.17. 

It is evident from the results that in some data streams the pseudo-labelling reduced the 

overall prediction accuracies, therefore a mechanism has been added to intelligently 

determine and stop the pre-labelling strategy if it is not beneficial. 
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Table 5.17 PSDSL Analysis of Pseudo-labelling without Switching. 

Datasets Types of attributes 
No pseudo-

labelling 
(1) 

Pseudo-
labelling 

(2) 

Gain/Loss 

(2) – (1) 

 UG_2C_2D 

N, Norm 

 

93.985 95.653 1.668 

UG_2C_3D 92.957 93.678 0.721 

1CSurr 87.518 92.093 4.575 

4CR 97.015 99.870 2.855 

4CRE-V2 86.038 89.857 3.819 

Stagger C 76.708 72.450 -4.258 

RandomTree C and N 70.5 67.858 -2.642 

LED C 44.979 36.445 -8.534 

Hyperplane N 64.286 71.007 6.721 

SEA_Mixed C 81.835 79.956 -1.879 

RandomRBF N 21.23 80.167 58.937 

Sensor N 15.095 22.788 7.693 

Covtype C and N, Norm 69.206 71.930 2.724 

N = Numerical, C= Categorical, Norm = Normalised 

 

5.17 Hyperparameter Tuning 

This section presents the analysis carried out to address (RQ3): Does this approach depend 

on parameters that require manual tuning by the users before inducing the training models? 

As shown in Table 5.18,  

Table 5.18 PSDSL auto-tuned ‘k’ and learning mode. 

Non-Stationary 
Datasets 

No. of 
Classes 

in datasets 

SCARGC 
Manual 

‘k’ 

PSDSL 
Auto-tune 

‘k’ 

SCARGC 
ACC% 

PSDSL 
ACC% 

1CDT 2 = 2 2 99.75 99.67 
1CHT 2 = 2 2 99.25 99.09 
1CSurr 2 ≠ 4 4 94.35 94.51 
2CDT 2 = 2 2 90.92 90.74 
2CHT 2 = 2 2 85.02 85.82 
4CE1CF 4 ≠ 5 5 94.08 94.09 
4CR 4 = 4 4 99.95 99.97 
4CRE-V2 4 = 4 4 91.9 91.88 
5CVT 4 ≠ 5 5 90.15 84.99 
FG_2C_2D 5 ≠ 4 ≠ 2 95.16 64.94 
GEARS_2C_2D 2 = 2 2 95.89 95.93 
MG_2C_2D 2 ≠ 4 ≠ 2 92.71 64.52 
UG_2C_2D 2 = 2 2 95.56 95.57 
UG_2C_3D 2 = 2 2 94.77 94.80 
UG_2C_5D 2 = 2 2 90.98 91.05 
KEYSTROKE 4 ≠ 12 *4 87.72 85.33 
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SCARGC applies k=4 for (1CSurr) which is a binary class problem; similarly, SCARGC applies 

k=4 for (FG_2C_2D) (MG_2C_2D) which contains 5 and 2 classes in the datasets 

respectively.  Furthermore, the real-world dataset ‘keystroke’ contains 4-classes, but SCARGC 

applies k=12 (number of centroids).  In SCARGC these values need to be manually chosen by 

the user to achieve the best results. Contrary to this, PSDSL automatically tuned the best 

values for the ‘k’.  As evident in the Table, in most of the datasets, PSDSL predicted similar 

values for ‘k’ as SCARGC.  However, the difference is that the parameter ‘k’ was sent manually 

in SCARGC, while PSDSL automatically adapts and parameter ‘k’ to optimise the 

classification results over time. 

5.18 Parameter Sensitivity Analysis 

The influence of the PSDSL parameters pool size (θ) and number of labelled examples |T| 

is analysed against the prediction accuracy. Figure 5.25 shows the prediction accuracy in % 

on different values of θ from 300 to 1500 and |T | from 50 to 1000.  As it is clear from the 

plot, increasing the pool size increases the prediction accuracy; however, |T| has no 

significant effect on the accuracy. 

 

Figure 5.25 Prediction accuracy for 4CRE-V2 dataset changing values of 

pool size θ and size of initial labelled data ‘T’. 
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5.19 Development of online SSL framework for data streams 

An online SSL framework is developed in MOA which will enable the DSM researchers to 

implement online SSL for DSM, mainly in the areas of EVL and NSE. The option was to 

visually monitor the real-time prediction results and evaluations for both clustering and 

classification algorithms. The clustering results appears in the right part of the GUI and the 

classification results appears in the left part of the GUI. The clustering evaluations includes 

an online evaluation of clusters such as F1, Precision, Recall, purity etc. Figure 5.26 shows 

SSLHoldout evaluation in which two mutually exclusive subsets are created for training and 

testing. Figure 5.27 shows the SSL Learner developed in MOA. The option is added to apply 

an ensemble of classifiers and clusters, with an option to define the drift handling method. 

 

 

Figure 5.26 GUI for SSL Periodic Holdout Evaluation Task developed in MOA. 

 

The evaluation of classifiers includes average prediction accuracies, class label scarcity, time 

and memory consumption etc. In the SSL framework, the pseudo-labelling accuracy, micro-

macro clustering and the ground truth clusters along with switching of learning strategies 

are visually displayed. PSDSL was evaluated on non-stationary datasets, synthetic data-
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streams, and real-world datasets. The approach has shown promising results on 

randomised datasets as well as on synthetic data-streams, as compared with state-of-the-

art approaches. This is the first large-scale study on an adaptive extreme verification 

approach that supports automatic parameter tuning and intelligent switching of pseudo-

labelling strategy, thus reducing the dependency of machine learning on human input. To 

measure and analyse the performance of the clustering and classification models two SSL 

learning tasks, i.e. SSLPrequential and Holdout have been developed. 

 

 

Figure 5.27 A developed Semi-Supervised Diversity Ensemble (SSLearner). 

 

Initially, both the supervised and unsupervised models are trained on labelled examples 

after randomly eliminating the true class labels from a certain ratio from the training set. 

An option is created to predict the pseudo-labels using supervised models for unlabelled 

examples, and the supervised models are re-trained on these new labels. The accuracies of 

pseudo-labelling, ratio of scarcity and the evaluation of both supervised and unsupervised 

models are updated incrementally. Similarly, the error of the model is computed for the 

sequence of each example in the SSL Prequential task. 
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5.20 Critical Evaluation of Research and Scientific Contributions 

This section provides a critical evaluation of the entire research journey and outcomes, which 

involves an assessment of the research process, and evaluating the answers to the research 

questions about the robustness and alignment with the intended contributions. Evaluates the 

methodology, data analysis, and interpretation to provide a comprehensive understanding of 

how the research outcomes contribute to advancing knowledge in the data stream mining 

domain. 

5.20.1 Evaluation of Research Questions  

The research addresses several key questions, providing insights and contributions to 

knowledge. In (RQ1), the focus is on methods enabling data stream mining algorithms to 

learn efficiently from limited labelled data under non-stationary conditions. Various 

approaches, such as cluster-guided classification, self-learning using classifiers, and micro-

clustering, are explored, each presenting its challenges and trade-offs. (RQ2) delves into the 

impact of ensemble diversity on predictive performance in non-stationary environments. The 

lack of evidence in the literature regarding the suitability of prediction models post-concept 

drift prompts a critical examination of the types of models applicable at different times. (RQ3) 

revolves around methodologies for automatic hyperparameter discovery and adjustment, 

specifically addressing the dependency on parameters tuned by human analysts in existing 

ILNSE approaches. Finally, (RQ4) considers the success of existing approaches across diverse 

problems and proposes an active switching mechanism when an EVL approach fails. 

Additionally, strategies for preventing incorrect propagation of class labels during concept 

drifts are suggested. 

5.20.2 Evaluation of Scientific Contributions  

This research makes noteworthy contributions to the field. Through empirical evaluation, 

PSDSL exhibits higher prediction accuracy compared to existing approaches like SCARGC, 

COMPOSE, LEVELIW, and MClassification. The published work established the groundwork 

for addressing extreme verification latency in non-stationary environments. Additionally, the 

implementation of DDM and EDDM, the drift detection methods utilized in the HDWM 

algorithm has been published. These methods have been applied for change detection in the 

marine ecosystem. The heterogeneity of online ensembles in non-stationary environments, 

culminating in the development of the heterogeneous algorithm (HDWM) has also been 

published. 

5.21 Discussion 

As outlined in the methodology, PSDSL underwent a comparative analysis with established 

EVL approaches, evaluated without pseudo-labelling and benchmark settings, where 95% 

of class labels are removed. The evaluation used Kappa statistics and prequential testing, 

with the latter assessing accuracy incrementally, suitable for balanced classes. Kappa 

statistics provided a sensitive measure in streaming classifiers, regardless of class balance 
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certainty. The nearest labelling approach faced challenges when clusters overlap. Envelope-

clusters addressed this issue by detecting and resolving labels assigned to clusters. 

The GUI for OSSL aimed to visualize and qualitatively analysing both clustering and 

classification models for a comprehensive evaluation. Requirements for OSSL were 

identified as, include processing one labelled example at a time, using limited time and 

memory, handling unlabelled examples in small batches with pseudo-label predictions, and 

being available for prediction at any time. 

PSDSL's improved performance on MOA streams, particularly in self-learning states 

without the CGC approach and outperformed SCARGC which showed varying predictive 

accuracies on the ‘keystroke’ dataset with different values of the parameter 'k'. PSDSL 

addressed this issue by applying automated hypermeter tuning and resolved cluster 

labelling issues that were raised in micro-clusters when conflicting labels occurred. 

5.22  Summary 

This chapter suggested a novel approach that deals with the scarcity of class labels under 

NSEs. i.e. ILNSE. To address RQ1, a new algorithm PSDSL was made capable of intelligently 

selecting the best pseudo-labelling strategy based on the given problem domain. it could 

switch on the pseudo-labelling strategy, i.e. cluster-guided, self-learning or micro-clustering, 

and select whichever approach is beneficial, based on the characteristics of the data stream.  

To address RQ2, PSDSL was made capable of automatically choosing the best classifier from 

a pool of heterogeneous classifiers by applying the strategy from the HDWM classifier hence 

preserving the diversity of the ensemble classifier. 

The PSDSL algorithm also introduced automated parameter tuning that aimed to address 

RQ3 for reducing the dependency of machine learning on human’ input. PSDSL addressed 

the RQ4 i.e. what strategy should be adopted if one of the EVL approaches fails? by 

proposing a new concept of Envelope-Clustering which aims at resolving the conflict in 

assigning the class labels to the clusters in case of cluster overlaps.  

Predictive performances of PSDSL were compared against existing EVL approaches namely 

SCARGC, LEVELIW, COMPOSE, and MClassification. Finally, to determine significant 

differences between algorithms the chapter presented experiments on non-stationary 

benchmark datasets, MOA data streams and real-world datasets. The results showed that 

PSDSL performed significantly better than SCARGC on most real-time data streams, 

including randomised data instances.  Thus, the prediction performance of pseudo-labelling 

has been evaluated by automatically switching between self-labelling and cluster labelling 

based on the characteristics of the training instances.  It was also discovered that SCARGC or 

COMPOSE performed well for certain datasets in which centroids are moving with a constant 

velocity.  However, when SCARGC was evaluated after shuffling the training instances of the 

same datasets by changing the training orders, its predictive performance was significantly 

reduced.   
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Finally, it was found that, for SCARGC to achieve the best results in different datasets, the 

values of ‘k’ needed to be manually chosen, whereas, in contrast, PSDSL achieved similar 

predictive accuracies without the need for manual selection of the value of the parameter ‘k’.  

This novel approach proposed in this research further paves the way for reducing the 

dependency of machine learning on human input which essentially liberates the process from 

this hard constraint, as a critical bottleneck, to enable mass-scale deployment of dynamically 

adaptive labelling of data instances in various emerging data streams. 
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Chapter 6 Conclusions and Future 
Work 

This research mainly focused on improving the DSM algorithms which assume the availability 

of labelled data, immediately or after some delay (verification latency), to update the accuracy 

of the classifier and at the same time predict under the condition of NSEs. In many real-world 

applications of online data stream mining, the data originates from different sources such as 

sensor devices, social media, business/financial transactions, etc. The data evolves over time, 

and therefore extracting worthwhile knowledge is hard to achieve in such NSEs. The 

underlying probability distributions of the data stream change over time, resulting in concept 

drifts. 

Due to the streaming nature of the data and scarcity of class label, the problem was identified 

as online SSL. The literature is referring to this problem as ILNSE. The ILNSE addresses both 

EVL and NSEs simultaneously, for example, autonomous robots are initially trained on 

labelled data, and later they are asked to predict the class labels on unseen data. They are also 

sent to explore an unknown environment without the supervision of humans. The robots need 

to learn under NSEs and do so under the scarcity of true class labels (EVL). Another 

application in banking is credit card fraud detection. The actual class labels (fraud or non-

fraud) of the transactions are not available to update the online prediction models until the 

user receives and reviews the monthly statement. Furthermore, the transactions of the credit 

cards contain concept drifts due to the customers' patterns of spending, which change 

seasonally and/or during holidays. 

6.1 Summary of Findings 

It was analysed that in data streams the instances arrive in a sequential order which is directly 

fed into the online learning models, thus storing, and referring to the previous data is not 

practical due to time limitations.  The output of an adaptive classifier at every time step 

depends on instances the classifier has been trained on to-date.  Hence, performance depends 

on the order of instances in the dataset.  Existing benchmarks for non-stationary datasets are 

designed to evaluate CGC on EVL, by inducing gradual shifting to the clusters.  CGC showed 

promising results due to the high purity of clusters; however, when the order of these datasets 

is randomised the CGC performance drops considerably. This supported the fact that the 

existing CGC approaches succeed only under certain conditions. 

The results for all the non-stationary datasets provided by the authors of SCARGC were 

verified with our implementation. Furthermore, the visualisation of clusters and real-time 

evaluation of prediction results at predefined regular intervals were displayed using a 

graphical interface. Finally, PSDSL was empirically evaluated against standalone 

approaches namely COMPOSE, LEVELIW, SCARGC and MClassification on benchmarks 
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NSE datasets [31] MOA data streams and real-world datasets. It was concluded that the 

existing approaches such as SCARGC or COMPOSE perform well for certain datasets in 

which centroids are moving with a constant velocity.   

However, when SCARGC was evaluated after shuffling the training instances of the same 

datasets by changing the training orders, its predictive performance was significantly 

reduced. The results showed that PSDSL performed significantly better than SCARGC on 

most real-time data streams, including randomised data instances.  Thus, the prediction 

performance of pseudo-labelling has been evaluated by automatically switching between 

self-labelling and clusters labelling based on the characteristics of the training instances. 

The PSDSL algorithm performed better than SCARGC for some non-stationary datasets 

when these were randomised.  PSDSL was evaluated on artificially induced MOA streams 

and real-world data streams and the results showed significantly enhanced performance 

over SCARGC for most of the MOA streams. The sequence of training data has been 

analysed the sequence of training data and its influence on prediction accuracies on 15 

benchmark non-stationary datasets. The results showed that SCARGC had a significant 

drop in average prediction accuracy by 35.3% on randomised datasets, whereas PSDSL 

performed significantly better than existing approaches.  

Most work in DSM is concerned with updating the learning system so that it can quickly 

recover from concept drift, while little work has been dedicated to investigating what type 

of predictive model is most suitable at any given time. It was aimed to investigate the 

benefits of online model selection for predictive modelling in NSEs. To analyse the influence 

of diversity on predictive performance (RQ2), ‘Static vs. Dynamic’ and ‘Heterogeneous vs. 

Homogeneous’ classifiers were comprehensively studied. 

6.1.1 Reasons for the Failure of Existing EVL Approaches 

The existing EVL approaches such as CGC rely on the assumption that the data follows a 

normal or Gaussian distribution.  This supports the clustering process by helping to generate 

distinct clusters.  This assumption also makes CGC a more effective choice in class labels 

imputation for missing class labels. However, the normal (Gaussian) EVL approaches cannot 

hold for randomised datasets or for real-world data streams, as most such streams are 

unstructured and contain noise.  

The choice of pseudo-labels in cluster labelling could be problematic because the pseudo-

labels are predicted using the same learning model on which it was trained, and the same 

models are used to predictions. Furthermore, due to NSEs these labels could make the models 

less reliable over time due to concept drifts. In CGC, the labels from the nearest clusters are 

transferred, however, the algorithm does not implement a confidence measure approach to 

assure the quality and correctness of labels assigned to the clusters. 
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It was also analysed that EVL deals with unlabelled data more effectively when clustering is 

applied, however under NSEs when the clusters overlap, the results showed that existing 

micro-clustering is more beneficial. Micro-clustering approach is a computationally 

expensive task for data streams mining. 

The key feature i.e. diversity of learning models has recently gained attention by the DSM 

research community. Even though ensembles have been developed to handle NSEs, the 

literature did not contain any deep study of why and how the diversity of ensembles can be 

helpful in EVL conditions. • it is difficult to determine which type of machine learning 

model would be best to use. There is no evidence in the literature that suggests why, and which 

type of prediction models are beneficial or which models should not be used right after the 

concept drift. 

Existing ILNSE approaches were found to be heavily dependent on the parameters ‘k’ which 

needs to be tuned before building the training models (RQ3). Most of the existing CGC 

approaches require prior knowledge of the number of classes to generate the corresponding 

centroids. However, in most of the real-world streams, the prior knowledge of the number of 

classes is not available. The SCARGC and COMPOSE were evaluated with different arbitrary 

values of ‘k’ and pool size θ, which negatively changed the prediction results. 

6.1.2 Key Findings from Comparative Analysis 

SCARGC, COMPOSE, MClassification and LEVELIW addressing the ILNSE, but these are 

highly dependent on the parameters defined by the users as well as the problems these are 

applied to i.e. characteristic of data streams. In the new approach, PSDSL automatically 

decides the use of the best classifier from a pool of heterogeneous classifiers, it can switch on 

the pseudo-labelling strategy, i.e. cluster guided, self-learning or micro-clustering, and selects 

whichever approach is beneficial, based on the characteristics of the data stream.   

To investigate the diversity of online classifier (RQ2) under ILNSE conditions, DWM[10] 

and WMA [11] algorithms were investigated for the ‘dynamicity’ and ‘heterogeneity’ factors 

of the online ensembles, which includes determining the reasons and mechanism for 

exclusion and inclusion the base learners from an ensemble. It was concluded that under 

the EVL conditions it is difficult to determine which type of machine learning algorithm 

would be best to use due to small amount of initial labelled data. There is no evidence found 

in the literature that suggests why and which type of prediction models are beneficial right 

after the concept drift. Most work under NSEs is concerned with updating the prediction 

models for adapting the concept drift, while little work has been dedicated to investigating 

the diversity of the online ensembles.  

PSDSL has been evaluated on ‘keystroke dynamics’ dataset which is a collection of data that 

records the timing and pattern of keystrokes made by an individual while typing on a 

keyboard. The results shows that PSDSL successfully guided the cluster labelling process 

file:///C:/Users/fstahl/Desktop/Chapter%207%20Conclusion.docx%23RQ3
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after the concept drift in the absence of true class labels. PSDSL and SCARGC when 

evaluated on 10% of the labelled examples, PSDSL achieved higher prediction accuracy 

(85.3%) then SCARGC (81.6%). Without handling ILNSE approach, the predictive accuracy 

on this dataset is 49.0%. Furthermore, the predictive accuracy of SCARGC was found highly 

fluctuated in the range of (41.1% to 81.6%) based on the parameter ‘k’ (number of clusters), 

apart from that, the PSDSL automatically fine-tuned the best values of ‘k.’ for generating 

the centroids to guide the pre-labelling process. 

6.1.3 How PSDSL and HDWM resolve the identified issues? 

PSDSL applies HDWM classifier for self-learning, it is an online ensemble classifier that 

implements both an active and passive approach to simultaneously deal with gradual and 

abrupt concept drifts. HDWM is made heterogeneous to maintain different types to base 

classifiers and preserving the diversity. PSDSL and HDWM filled the gaps in the literature in 

the following ways.   

• This research introduced a novel approach called Envelope-Clustering which is a 

centroid-based clustering approach for micro-clustering applied to resolve the conflict 

during the cluster labelling. Issues were identified in existing approaches in the cluster 

labelling phase when nearest neighbour algorithm is applied. It was identified that 

when one group of clusters crossing other groups (gradual drifts), the clusters may 

receive wrong labels. Either the moving clusters receive the labels of the stationary 

clusters, or the moving cluster transfers its label to the stationary clusters. 

• The proposed switching mechanism of PSDSL automatically switches the pseudo-

labelling strategy and the algorithm adapts to the learning mode accordingly. In the 

case that pseudo-labelling does not improve the predictive performance on initial 

labelled data, PSDSL suspends the pseudo-labelling. 

• To address (RQ3), PSDSL was made capable to automatically tune the best values for 

the parameter, (number of clusters ‘k)’.  It was found that, for SCARGC to achieve the 

best results in different datasets, the values of ‘k’ needed to be manually chosen, 

whereas, in contrast, PSDSL achieved similar predictive accuracies without the need 

for manual selection of the value of the parameter ‘k’.  The novel approach proposed in 

this research further paves the way for reducing the dependency of machine learning 

on human input. 

• HDWM automatically identifies which types of predictive models best suited to the 

situation encountered after concept drifts. HDWM’s seeding mechanism and dynamic 

inclusion of new base learners benefiting the use of both forgetting and retaining the 

models and therefore adaptive to both sudden and gradual drifts. 

• HDWM was designed in such a way that it made use of “seed” learners of different types 

to maintain ensemble diversity. This overcomes the problems of existing dynamic 

file:///C:/Users/fstahl/Desktop/Chapter%207%20Conclusion.docx%23RQ3
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ensembles that may undergo loss of diversity due to the exclusion of base learners. The 

algorithm was evaluated on artificial and real-world data streams against existing well-

known approaches such as a heterogeneous WMA and a homogeneous DWM. The 

results showed that HDWM performed significantly better than WMA in under NSEs. 

Also, when recurring concept drifts were present, the predictive performance of 

HDWM showed an improvement over DWM. 

• The seeding mechanism and dynamic inclusion of new base learners in the HDWM 

algorithms benefiting the use of both forgetting and retaining the models. HDWM 

achieved similar prediction accuracies as compared to the WMA and DWM but using a 

smaller size of ensemble and reduced CPU time. The algorithm also provided the 

independence of selecting the optimal base classifier in its ensemble depending on the 

problem.  

• The development of HDWM algorithms revealed the ability to reduce human dependency 

on redefining the best type of predictive models for a particular problem. The algorithm 

exhibited responsive adaptation; dealing appropriately with changing environments in a 

shorter period to increase the reliability and predictive accuracy of the model. It was also 

found that heterogeneity was a key enabler for the improved accuracy achieved by 

HDWM. HDWM improved the predictive accuracy in the presence of different types of 

drifts, such as Gradual, Sudden and Recurring. It has been a key challenge in data stream 

mining, as some algorithms heavily rely on forgetting mechanisms while others retain 

previous learning.  

6.2 Recommendations for Future Work 

Future work in the realm of ILNSE involves the exploration of the integration of active 

learning techniques tailored for non-stationary environments. Design algorithms that 

intelligently select which instances to label, considering the evolving nature of the data 

distribution. The developed pseudo-labelling approach in PSDSL selects all the unlabelled 

examples in the pool and assigns predicted labels to them. It is also worth investigating 

transfer learning techniques that facilitate knowledge transfer between different stages of 

non-stationary data. Develop models capable of leveraging information gained from initial 

labels to accelerate learning on emerging patterns.  

It is also recommended to consider applying transfer learning for ensemble diversity, which 

involves leveraging knowledge gained from pre-trained models to enhance the diversity of 

individual models within an ensemble. By incorporating insights from different sources or 

stages of learning, transfer learning aims to create a more varied set of base models within the 

ensemble. This diversity contributes to the ensemble's ability to capture and leverage a 

broader range of patterns and information, enhancing its overall effectiveness in handling 

complex tasks and adapting to different data distributions. 
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It is beneficial to investigate the HDWM performance on more diverse problems and in the 

presence of large number of attributes. Furthermore, investigate to reduce its dependency on 

human predefined parameters such as β, which is the weight to penalise the leaner models on 

each wrong prediction and the parameter ρ which is the period between base learner removal, 

creation and updating the weight. 

The predictive performance of PSDSL is highly dependent on pool size ‘θ’ which may 

significantly affect the predictive performance. A larger value of θ’ may result in a higher 

processing time required in the formation of clusters. On the other hand, a lower value of θ 

may result in losing the important clustering information. Sliding window is a widely accepted 

model for DSM because it has ability the to emphasise on more recent data. One of the 

approaches for determining the pool/window size is to obtain it from the user.  

However, the user must have prior knowledge about the time location of concept drifts within 

the data streams, which is practically not possible due to unpredictable evolving nature of data 

streams. By applying a fixed window size, the performance of the predictive model is degraded 

due to concept drifts. Based on these conditions, it is useful to investigate on variable size 

sliding window for observing recent concept changes and the window size can be determined 

dynamically based on the amounts of concept drifts that occur within the data streams. 

The conflict detection mechanism and assigning the class labels to the cluster in a case of 

overlaps of the centroids, particularly when one clusters is passing through another cluster, 

such as in 1Csurr dataset. It is beneficial to track the direction and velocity of the clusters and 

store it in the summary statistics. This information could be useful in assigning more accurate 

class labels to the clusters after the overlaps.   

Another research direction is to apply PSDSL in robotics is in the context of autonomous 

driving. In this case, the robot or vehicle makes decisions based on a stream of sensor data, 

such as camera images and radar data. However, verifying the correctness of these decisions 

can be difficult and time-consuming, particularly when it comes to situations that are rare or 

unexpected. For example, consider the case where a self-driving car encounters a situation 

where the road is blocked by a fallen tree. The vehicle must decide whether to stop or attempt 

to navigate around the obstacle. However, verifying the correctness of this decision may 

require human review, as it can be difficult to determine the best course of action based solely 

on sensor data. PSDSL’s ability to adapt learn from past data and improve the accuracy of the 

robot's decision-making process. For example, a model could be trained to recognize different 

types of obstacles and make decisions based on this information.  

Feature engineering is an important aspect of DSM that involves identifying and extracting 

relevant features from the data to build accurate predictive models. This aspect must be 

explored in the future because the feature engineering helps to reduce the dimensionality of 

the data, identify the most important features, improve model accuracy, reduce 

computational complexity, improve interpretability, and increase the robustness of the 
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predictive models to noise and outliers. Overall, feature engineering is essential in data stream 

mining to build more accurate and robust predictive models. It is also worth to investigate 

learning on imbalanced data, which refers to the situation where the classes of interest are not 

evenly represented in the data, leading to biased models that may not accurately represent 

the minority class. Techniques such as oversampling, under sampling, and cost-sensitive 

learning can be used to address imbalanced data. 

Finally, the research identified potential future directions for research in hyperparameter 

tuning for data stream mining. This includes exploring adaptive and online hyperparameter 

tuning strategies, developing benchmark datasets that capture realistic streaming scenarios, 

and investigating the integration of domain knowledge into the tuning process. 
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APPENDIX I. DataStream Generation Commands 

Massive Online Analysis (MOA) commands to generate drift streams and running 
prequential evaluation task on data stream and real-world datasets.  
 

System.out.println("SEA Drift"); 

DoTask.main("EvaluatePrequential -l (drift.HDWM) -s (ConceptDriftStream -s 
(generators.SEAGenerator -f 4) -d (ConceptDriftStream -s (generators.SEAGenerator -f 3) -
d (generators.SEAGenerator -f 2) -p 50000 -w 1) -p 25000 -w 1) -i 100000 -f 1000".split(" 
")); 

System.out.println("STAGGER Drift"); 

DoTask.main("EvaluatePeriodicHeldOutTest -l (drift.HDWM -p 1) -s (ArffFileStream -f 
C:\\test\\Dataset\\Drifts\\stagger.arff) -n 100 -i 120 -f 1".split(" ")); 

System.out.println("RTREE Recurring Drift"); 

DoTask.main("EvaluatePrequential -l (drift.HDWM) -s (RecurrentConceptDriftStream -x 
10000 -s (generators.RandomTreeGenerator -o 0) -d (generators.RandomTreeGenerator -u 
0) -p 25000 -w 1) -i 100000 -f 1000".split(" ")); 

System.out.println("LED"); 

DoTask.main("EvaluatePrequential -l drift.HDWM -s (ConceptDriftStream -s 
generators.LEDGenerator -d (generators.LEDGeneratorDrift -d 7) -p 50000) -i 100000 -f 
1000".split(" ")); 

System.out.println("Wave Drift"); 

DoTask.main("EvaluatePrequential -l drift.HDWM -s (ConceptDriftStream -s 
generators.WaveformGenerator -d (generators.WaveformGeneratorDrift -d 20) -p 50000 -w 
1) -i 100000 -f 1000".split(" ")); 

System.out.println("Hyperplane Incremental Drift"); 

DoTask.main("EvaluatePrequential -l (drift.HDWM) -s (generators.HyperplaneGenerator -
k 10 -t 0.01) -i 100000 -f 1000".split(" ")); 

System.out.println("SEA Mixed Drift"); 

DoTask.main("EvaluatePrequential -l (drift.HDWM) -s (ConceptDriftStream -s 
(generators.SEAGenerator -f 2) -d (ConceptDriftStream -s (generators.SEAGenerator -f 3) -
d (generators.SEAGenerator -f 4) -p 50000 -w 1) -p 25000 -w 10000) -i 100000 -f 
1000".split(" ")); 

System.out.println("RandomRBF"); 

DoTask.main("EvaluatePrequential -l (drift.HDWM) -s 
(clustering.RandomRBFGeneratorEvents -n) -i 100000 -f 1000".split(" ")); 
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Real-world Experiments 

System.out.println("Electric"); 

DoTask.main("EvaluatePrequential -l (drift.HDWM) -s (ArffFileStream -f 
C:\\test\\Dataset\\Drifts\\elec.arff) -f 500".split(" ")); 

System.out.println("Spam email"); 

DoTask.main("EvaluatePrequential -l (drift.HDWM) -s (ArffFileStream -f 
C:\\test\\Dataset\\Drifts\\spam_data.arff) -i 5000 -f 100".split(" ")); 

System.out.println("Sensor"); 

DoTask.main("EvaluatePrequential -l (drift.HDWM) -s (ArffFileStream -f 
C:\\test\\Dataset\\Drifts\\sensor.arff) -i 100000 -f 1000".split(" ")); 

System.out.println("covtypeNorm.arff"); 

DoTask.main("EvaluatePrequential -l (drift.HDWM -p 5) -s (ArffFileStream -f 
C:\\test\\Dataset\\Drifts\\covtypeNorm.arff) -i 100000 -f 1000".split(" "));  
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APPENDIX II. Non-Stationary Dataset 

MOA commands to Execute EVL prequential evaluation task on non-stationary datasets, 
real-time data streams and real-world datasets.  

1CSurr: EvaluateEVLPrequential -l (moa.labelscarcity.PSDSL -q (clustream.Clustream -h 
100 -k 49)) -s (ArffFileStream -f C:\\1CSurr.arff) -r 50 -i 55000 -f 300 
 

1CDT:  EvaluateEVLPrequential -l (moa.labelscarcity.PSDSL -q (clustream.Clustream -h 
200 -k 49)) -s (ArffFileStream -f C:\\1CDT.arff) -i 16000 -f 300. 
 
1CHT:  EvaluateEVLPrequential -l (moa.labelscarcity.PSDSL -q (clustream.Clustream -h 
300 -k 49)) -s (ArffFileStream -f C:\\1CHT.arff) -i 16000 -f 300. 
 
2CDT:  EvaluateEVLPrequential -l (moa.labelscarcity.PSDSL -q (clustream.Clustream -h 
100 -k 49)) -s (ArffFileStream -f C:\\2CDT.arff) -i 16000 -f 300. 
 
2CHT:  EvaluateEVLPrequential -l (moa.labelscarcity.PSDSL -q (clustream.Clustream -h 
100 -k 49)) -s (ArffFileStream -f C:\\2CHT.arff) -i 16000 -f 300. 
 
4CE1CF:  EvaluateEVLPrequential -l (moa.labelscarcity.PSDSL -q (clustream.Clustream -h 
100 -k 49)) -s (ArffFileStream -f C:\\4CE1CF.arff) -i 173000 -f 300. 
 
4CR: EvaluateEVLPrequential -l (moa.labelscarcity.PSDSL -q (clustream.Clustream -h 100 
-k 49)) -s (ArffFileStream -f C:\\4CR.arff) -i 144400 -f 300. 
 
4CRE-V1: EvaluateEVLPrequential -l (moa.labelscarcity.PSDSL -q (clustream.Clustream -
h 100)) -s (ArffFileStream -f C:\\4CRE-V1.arff) -i 125000 -f 300. 
 
4CRE-V2: EvaluateEVLPrequential -l (moa.labelscarcity.PSDSL -q (clustream.Clustream -
h 100 -k 49)) -s (ArffFileStream -f C:\\4CRE-V2.arff) -i 183000 -f 300. 
 
5CVT: EvaluateEVLPrequential -l (moa.labelscarcity.PSDSL -q (clustream.Clustream -h 
100 -k 49)) -s (ArffFileStream -f C:\\5CVT.arff) -i 24000 -f 300. 
 
FG_2C_2D: EvaluateEVLPrequential -l (moa.labelscarcity.PSDSL -q 
(clustream.Clustream -h 100 -k 49)) -s (ArffFileStream -f C:\\FG_2C_2D.arff) -i 100000 -f 
300. 
 
GEARS_2C_2D: EvaluateEVLPrequential -l (moa.labelscarcity.PSDSL -q 
(clustream.Clustream -h 100 -k 49)) -s (ArffFileStream -f C:\\GEARS_2C_2D.arff) -i 
200000 -f 300. 
 
MG_2C_2D: EvaluateEVLPrequential -l (moa.labelscarcity.PSDSL -q 
(clustream.Clustream -h 100 -k 49)) -s (ArffFileStream -f C:\\MG_2C_2D.arff) -i 200000 -f 
300. 
 
UG_2C_2D: EvaluateEVLPrequential -l (moa.labelscarcity.PSDSL -q 
(clustream.Clustream -h 100 -k 49)) -s (ArffFileStream -f C:\\UG_2C_2D.arff) -i 200000 -f 
300. 
 
UG_2C_3D: EvaluateEVLPrequential -l (moa.labelscarcity.PSDSL -q 
(clustream.Clustream -h 100 -k 49)) -s (ArffFileStream -f C:\\UG_2C_3D.arff) -i 200000 -f 
300. 
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UG_2C_5D: EvaluateEVLPrequential -l (moa.labelscarcity.PSDSL -q 
(clustream.Clustream -h 100 -k 49)) -s (ArffFileStream -f C:\\UG_2C_5D.arff) -i 200000 -f 
300. 
 
MOA Data Streams 
 

SEA_Sudden: EvaluateEVLPrequential -l moa.labelscarcity.PSDSL -s (ArffFileStream -f 
C:\\SEA_Sudden.arff) -r 1000 -i 2000 -f 1000 
 
LED_sudden: EvaluateEVLPrequential -l moa.labelscarcity.PSDSL -s (ArffFileStream -f 
C:\\LED_sudden.arff) -r 1000 -i 2000 -f 1000 
 
RBF_Gradual: EvaluateEVLPrequential -l moa.labelscarcity.PSDSL -s (ArffFileStream -f 
C:\\RBF_Gradual.arff) -r 1000 -i 2000 -f 1000 
 
HyperIncremental: EvaluateEVLPrequential -l moa.labelscarcity.PSDSL -s 
(ArffFileStream -f C:\\HyperIncremental.arff) -r 1000 -i 2000 -f 1000 
 
Random Trees Recurring Drift: EvaluateEVLPrequential -l moa.labelscarcity.PSDSL -s 
(ArffFileStream -f (C:\\Random Trees Recurring Drift.arff)) -r 1000 -i 2000 -f 1000 
 
SEA_NoDrift: EvaluateEVLPrequential -l moa.labelscarcity.PSDSL -s (ArffFileStream -f 
C:\\SEA_NoDrift.arff) -r 1000 -i 2000 -f 1000 
 
LED_NoDrift: EvaluateEVLPrequential -l moa.labelscarcity.PSDSL -s (ArffFileStream -f 
C:\\LED_NoDrift.arff) -r 1000 -i 2000 -f 1000 
 
Hyperplane_NoDrift: EvaluateEVLPrequential -l moa.labelscarcity.PSDSL -s 
(ArffFileStream -f C:\\Hyper_NoDrift.arff) -r 1000 -i 2000 -f 1000 
 
RBF_NoDrift: EvaluateEVLPrequential -l moa.labelscarcity.PSDSL -s (ArffFileStream -f 
C:\\RBF_NoDrift.arff) -r 1000 -i 2000 -f 1000 
 
Wave_NoDrift: EvaluateEVLPrequential -l moa.labelscarcity.PSDSL -s (ArffFileStream -f 
C:\\Wave_NoDrift.arff) -r 1000 -i 2000 -f 1000 
 
 
Real-world Dataset 

Keystroke: EvaluateEVLPrequential -l (moa.labelscarcity.PSDSL -q (clustream.Clustream 
-h 100 - k 149)) -s (ArffFileStream -f C:\\keystroke.arff) -e 
(WindowClassificationPerformanceEvaluator -w 150) -r 150 -i 55000 -f 150 
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APPENDIX III. Source code for Train Algorithms 

Algorithm 1: Source code to train classifier and clusters on input labelled examples, 

predict the pseudo-codes for unlabelled examples and re-train the classifier. Output is 

trained HDWM classifier. 

/** 
Author: Mobin M. Idrees 
*/ 
public void trainOnInstanceImpl(Instance inst) { 
    this.epochs++; 
    double[] Pr_cluster = new double[num_classes]; 
    DataPoint point0 = new DataPoint(epochs); 
    while(poolData.size() >= batch_size)  
         poolData.removeFirst();          
    while(labeledData.size() >= batch_size)  
         labeledData.removeFirst();      
    if(epochs <= trainSize) // Labeled examples arrive  
         { 
         labeledData.add(point0); 
         Train(HDWM,point0) 
         } 
    else { // unlabeled examples arrive 
       if(prelabelingstate == 0) { 
         Pr_cluster = knnClassification(labeledData,inst); 
         Instance labelinst= InstancePreLabeling(Pr_cluster,inst);    
         DataPoint labelpoint = new DataPoint(labelinst, epochs); 
         poolData.add(labelpoint); 
         } 
   else { 
       DataPoint labelpoint = new DataPoint(epochs); 
       poolData.add(labelpoint); 
     } 
   } 
     if (epochs == trainSize)    // Build centroid using labeled data 
         Centroids = findCentroids(labeledData); //Algorithm 5 
     if (testepochs % batch_size  == 0 && epochs > trainSize)  {  
       Clustering tempCentroids = Kmean(poolData); 
       Clustering intermed= findLabelForCentroids(Centroids, tempCentroids); 
//Algorithm 6          
      Centroids = (Clustering) intermed.copy();            
      FindLabels(poolData,intermed,Centroids); //Algorithm 3       
   }   
   Train(HDWM,poolData);  
} 
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Algorithm 2:  Predictor for Streaming Data with Scarce Labels (PSDSL). 

/** 
Author: Mobin M. Idrees 
*/ 
public void trainOnInstanceImpl(Instance inst) { 
 this.epochs++; 
 Initialize(inst); 
 if(this.epochs <= trainSize) 
  DetermineSelfLearningState(inst); 
 if (epochs == batch_size)  
  this.bestseed = bestseed(); 
 if (epochs == trainSize)   { 
  FindBestK(inst);    
  double acc_micro_count = 0; 
  double acc_micro = 0; 
  MicroLabeling(labeledData,Centroids);  
  Clustering kmean = findCentroids(labeledData); 
  kmean = MobinKmean(kmean,labeledData,this.K); 
  MicroLabeling(labeledData,kmean); 
  for(int i = 0; i < labeledData.size(); i++ ) {    
   double[] Pr_micro = 
getClusterWeightedVote(Centroids,labeledData.get(i)); 
   if(Utils.maxIndex(Pr_micro) == labeledData.get(i).classValue() ) 
    acc_micro_count++; 
  acc_micro = ((double)acc_micro_count/trainSize);  
  } 
  if(acc_micro > PurityThreshold.getValue()){ 
   if((this.microPurity+this.microFP) > 
(this.kMEAN_Purity+this.kMEAN_FP)){ 
    MicroLabeling(labeledData,Centroids);  
    System.out.printf(" micro "); 
    microLearning = true; 
   } 
   else 
   { 
    System.out.printf(" CGC "); 
    CGC = true; 
    if(num_classes == this.K) { 
     Centroids = findCentroids(labeledData); 
    } 
    else 
    { 
     Clustering tempClustering = 
findCentroids(labeledData); 
     Centroids = 
MobinKmean(tempClustering,labeledData,this.K); 
     MicroLabeling(labeledData,Centroids);  
    } 
   } 
   prelableing.setChosenIndex(1);  
   foundClustering.clear(); 
   foundClustering.add(Centroids);  
  } 
  else 
  { 
   System.out.printf(" SELF "); 
   double preAccCLA = 
this.prelabelearner[this.bestseed].evaluator.getFractionCorrectlyClassified()*100; 
   double seedAccCLA = 
this.seedlearner[this.bestseed].evaluator.getFractionCorrectlyClassified()*100; 
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 if(preAccCLA > seedAccCLA) {   
    prelableing.setChosenIndex(1); 
    selfLearning = true; 
   }  
   else { 
    prelableing.setChosenIndex(0);  // do not apply prelabeling 
    selfLearning = false; 
   } 
  } 
 } 
 if (testepochs % batch_size  == 0 && epochs > trainSize)  { 
  if( microLearning == true || CGC == true)  { 
   microlearning(inst);   
   labeledData.clear(); 
   labeledData.addAll(poolData);    
   correctlabelAssigned = 0; 
   if(prelableing.getChosenIndex() == 1)    
    for(int i = 0; i < labeledData.size(); i++ ) { 
    
 labeledData.get(i).setClassValue(newLabeledData[i]); 
     // train classifiers  
    

 this.seedlearner[this.bestseed].trainOnInstance(labeledData.get(i)); 
     if(labeledData.get(i).classValue() == 
labeledData.get(i).getTrueLabel() ) 
      correctlabelAssigned++; 
     correctlabelAssignedRatio = 
((double)correctlabelAssigned/batch_size)*100;  
    } 
   foundClustering.clear(); 
   foundClustering.add(Centroids); 
  } 
  poolData.clear(); 
 } 
} 

 

Algorithm 3:  Heterogeneous Dynamic Weighted Majority (HDWM) classifier. 

public void trainOnInstanceImpl(Instance inst) { 
    this.epochs++; 
        double[] Pr = new double[inst.numClasses()]; 
        bestLearnerIndex = 0; 
        double maxWeight = 0.0; 
        double weakestExpertWeight = 1.0; 
        int weakestExpertIndex = -1; 
        boolean prediction = false;  
        boolean driftstate = false ; 
        // Loop over seeds 
       for (int i = 0; i < this.experts.size(); i++) { 
           boolean deleted = false; 
               double[] pr = this.experts.get(i).getVotesForInstance(inst); 
               int yHat = Utils.maxIndex(pr); 
               if(this.epochs % this.periodOption.getValue() == 0) 
               { 
                   if ((yHat != (int) inst.classValue()))   
                      this.weights.set(i, this.weights.get(i) * this.betaOption.getValue()); 
              }      
                    // delete learner's that has weight below theta and that does not belong 
to seed experts 
             if (weights.get(i) < this.thetaOption.getValue() && i > bagSize 
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        experts.remove(i); 
                           weights.remove(i); 
                  ddm.remove(i); 
                           deleted = true; 
                   } 
  
                // do not take prediction and do not add weight if the learner is deleted 
                  if(!deleted){ 
                     Pr[yHat] += this.weights.get(i); 
                     maxWeight = Math.max(maxWeight, this.weights.get(i)); 
                    if (this.weights.get(i) < weakestExpertWeight && i > bagSize) { 
                        weakestExpertIndex = i; 
                        weakestExpertWeight = weights.get(i); 
                    } 
                     if ((yHat != (int) inst.classValue()))  
                        prediction = false;                             
                     else       
                     prediction = true; 
                          this.ddm.get(i).input(prediction ? 0.0 : 1.0); 
                     if (this.ddm.get(i).getChange() ) { 
                     // numberOfDrifts++; 
                      driftstate = true; 
                      } 
                     if (this.ddm.get(i).getWarningZone()  )  
                        for (int j = 0; j < experts.size(); j++) 
                             this.experts.get(j).trainOnInstance(inst); 
             } // deleted 
        } 
        //Active Drift  
    if (driftstate ==true && this.epochs % this.periodOption.getValue() == 0)  
  {  // 
        removeWeakestLearner(weakestExpertIndex); 
  int index = getIndexOfMin(weights); 
        this.weights.set(index, 0.5); 
  }      
        if (this.epochs % this.periodOption.getValue() == 0) {      
            //Global Prediction  
            int yHat = Utils.maxIndex(Pr);       
          if (yHat != (int) inst.classValue())  
              prediction = false;                             
           else       
           prediction = true;    
          driftDetectionGlobal.input(prediction ? 0.0 : 1.0); 
          if (driftDetectionGlobal.getChange() )  
               numberOfDrifts++; 
          if (driftDetectionGlobal.getWarningZone() )  
           numberOfWarning++; 
         scaleWeights(maxWeight); 
         if (yHat != (int) inst.classValue()) {                       
                if (experts.size() >= this.maxexpertsOption.getValue() && experts.size() > 
bagSize) { 
                   removeWeakestLearner(weakestExpertIndex); 
                } 
                // add new learner when Global wrong prediction is detected 
                addLearner(); 
            } 
          } 
        for (Classifier expert : this.experts) { 
            expert.trainOnInstance(inst); 
        }  
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Algorithm 4: Source code to predict class label for a test example. Inputs is test example 

data Point, Output is predictions for each class. 

/** 
 Author: Mobin M. Idrees 
*/ 
 
public double[] getVotesForInstance(Instance inst) {     
         double[] Pr_cluster = new double[num_classes]; 
            if (this.trainingWeightSeenByModel > 0.0)  
                Pr_cluster = knnClassification(labeledData,inst); 
            testepochs++; 
            return Pr_cluster;          
 } 

 

 

Algorithm 5: Source code to determine class labels for unlabelled examples stored in a 

pool. Inputs is unlabelled data Point, previous and current centroids. Output is labelled 

data points. 

/** 

 Author: Mobin M. Idrees 

*/ 

 

private void FindLabels(points, Clustering intermed, Clustering centroids) { 

   double[] Pr_cluster; 

   labeledData.clear(); 

   for (int i = 0; i < points.size(); i++) {      

          Pr_cluster = getknnClassification(points.get(i));  

          Instance inst= InstancePreLabeling(Pr_cluster,points.get(i));    

          labeledData.add((DataPoint) inst); 

    }        

} 

 

Algorithm 6: Source code to determine nearest cluster by using K-Nearest Neighbour 

algorithm. Inputs is unlabeled dataPoint. Output is nearest centroids for the data point. 

/** 
Author: Mobin M. Idrees 
*/ 
private double[] getknnClassification(DataPoint dataPoint) { 
  double[] Pr_cluster = new double[num_classes]; 
  SphereCluster Kernel = null; 
  SphereCluster closestKernel = null; 
  for ( int i = 0; i < foundClustering.size(); i++ ) {  
      Clustering c = foundClustering.get(i) 
      double minDistance = Double.MAX_VALUE; 
      for ( int j = 0; j < c.size(); j++ ) { 
         Kernel = (SphereCluster) c.get(j); 
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         double distance =  Kernel.getCenterDistance(dataPoint); 
         if (distance < minDistance  ) { 
            minDistance = distance; 
            closestKernel=Kernel; 
         }  
      } 
  } 
 if(closestKernel != null) { 
     double yHat_cluster = closestKernel.getId(); 
     if(yHat_cluster != -1)  
        Pr_cluster[(int) yHat_cluster] += 1; 
 } 
 return Pr_cluster; 
} 

 

Algorithm 7: Source code to generate ground truth clusters by using initial labelled data. 

Inputs are labelled data. Output is ground truth centroids.  

/** 
 Author: Mobin M. Idrees 
 
public Clustering findCentroids(points){ 
   HashMap<Integer, Integer> labelMap = classValues(points); 
   num_classes = labelMap.size(); 
   num_Attributes = points.get(0).dataset().numAttributes()-1; 
   Attribute classLabel = points.get(0).dataset().classAttribute(); 
   num_classes = labelMap.size(); 
   sorted_points = new ArrayList[num_classes]; 
   oldcenters = new ArrayList[num_classes]; 
   for (int i = 0; i < num_classes; i++) { 
        sorted_points[i] = new ArrayList<Instance>(); 
        oldcenters[i] = new ArrayList<Double>(); 
   } 
   for (Instance point : points) { 
       int clusterid = (int)point.classValue(); 
       sorted_points[labelMap.get(clusterid)].add((Instance)point); 
   } 
   clusters = new AutoExpandVector<Cluster>(); 
   for (int i = 0; i < num_classes; i++) { 
       if(!sorted_points[i].isEmpty()) { 
           oldcenters[i].addAll(getCentroids(sorted_points[i]))  ; 
           SphereCluster s = new SphereCluster(); 
           double[] cent  = new double[oldcenters[i].size()]; 
           for (int j = 0; j < oldcenters[i].size(); j++)  
               cent[j] = oldcenters[i].get(j).doubleValue(); 
           s.setCenter(cent); 
           s.setId(sorted_points[i].get(0).classValue()); 
           s.setGroundTruth(sorted_points[i].get(0).classValue()); 
           clusters.add(s); 
      }  
   } 
return new Clustering(this.clusters); 
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Algorithm 8: Source code to determine label for current centroid. Inputs are previous 

and current centroids. Output labelled centroids.  

/** 
Author: Mobin M. Idrees 
*/ 
 
private Clustering findLabelForCentroids(Clustering gtCentroids, Clustering 
tempCurrentCentroids) {   
    AutoExpandVector<Cluster> interm = new AutoExpandVector<Cluster>() ; 
    double[] cent  = new double[this.num_Attributes]; 
    double[] gtLabels  = new double[tempCurrentCentroids.size()]; 
    for(int i =0; i < tempCurrentCentroids.size(); i++ ) {   
        int closestCluster = 0; 
         double minDistance = Double.MAX_VALUE;  
         double distances; 
         int bestPoint = 0; 
        for (int j=0; j< tempCurrentCentroids.size(); j++){ 
             distances = distance(gtCentroids.get(i).getCenter(), 
tempCurrentCentroids.get(j).getCenter()); 
            if (distances  < minDistance) { 
                   minDistance = distances ; 
                   bestPoint = j; 
             } 
         } 
         gtLabels[i] = bestPoint;            
         double[] c = gtCentroids.get(i).getCenter(); 
         double[] t = tempCurrentCentroids.get(bestPoint).getCenter(); 
         for (int j=0; j< cent.length; j++){ 
           ArrayList<Double> temp_points = (ArrayList<Double>) new ArrayList(); 
           temp_points.add(c[j]); 
           temp_points.add(t[j]); 
           cent[j] = median(temp_points); 
         } 
           interm.add((Cluster) new SphereCluster(cent,0).copy()); 
           interm.get(i).setGroundTruth(bestPoint); 
           interm.get(i).setId(bestPoint); 
           tempCurrentCentroids.get(i).setGroundTruth(bestPoint); 
           tempCurrentCentroids.get(i).setId(bestPoint);   
     }  // end iterate macro       
    return new Clustering (interm);       
} 
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APPENDIX IV. Source code for SSL Periodic Holdout Test 

Algorithm 1: Source code for evaluating label scarcity classifier on a stream by periodically 

testing on a holdout set. 

/** 
 Author: Mobin M. Idrees 
*/ 
public class EvaluateSSLPeriodicHeldOut extends SSLMainTask { 
 // Training Begin 
    while (instancesProcessed < this.trainSizeOption.getValue()) { 
               //batch or chunk loop 
        while (instancesProcessed < instancesTarget && stream.hasMoreInstances() == true) 
{ 
            InduceLabelScarcity(scarsetrainInst,instancesProcessed); 
            SSLearner.trainOnInstance((Example) scarsetrainInst); 
            if (monitor.resultVisualRequested()) 
                  visualizer.drawpoints(scarsetrainInst,instancesProcessed); 
              // End of batch or chunk loop 
            pointarray0=SSLearner.getCluster(); 
            gtClustering0 = SSLearner.gtClustering0(pointarray0); 
            macro0 = SSLearner.gtmacro0(gtClustering0); 
            evalClustering0 = macro0; 
            evaluateClustering(evalClustering0, gtClustering0, pointarray0); 
            visualizer.drawClusterings(SSLearner); 
        } 
 // Testing Begin 
      double[] prediction = SSLearner.getVotesForInstance(testInst); 
      evaluator.addResult(testInst, prediction); 
     } 

 
Algorithm 2: Source code for inducing label scarcity on a stream, input is labelled 

example from data stream and time step. Output is unlabelled example 

protected void InduceLabelScarcity(Instance inst, long epochs) { 
Instance inst = inst.getData(); 
prob = Math.random()%100;    
if ( prob >= (double) this.m_dUlRate.getValue()/100){ 
       inst.setScarceLabel(false); 
else {  
       inst.setScarceLabel(true); 
       unLabeledCount++; 
} 


