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Abstract: 29 

Plants sustain human life. Understanding geographic patterns of the diversity of species used by 30 

people is thus essential for the sustainable management of plant resources. Here, we investigate 31 

the global distribution of 35,687 utilised plant species spanning ten use categories (e.g., food, 32 

medicine, material). Our findings indicate general concordance between utilised and total plant 33 

diversity, supporting the potential for simultaneously conserving species diversity and its 34 

contributions to people. While Indigenous lands across Mesoamerica, the Horn of Africa, and 35 

about:blank


Southern Asia harbor a disproportionate diversity of utilised plants, the incidence of protected 36 

areas is negatively correlated with utilised species richness. Finding mechanisms to preserve 37 

areas containing concentrations of utilised plants and traditional knowledge must become a 38 

priority for the implementation of the Kunming-Montreal Global Biodiversity Framework. 39 

 40 

 41 

One Sentence Summary: 42 

Plants and their contributions to people are insufficiently protected globally, pointing to the need 43 

to preserve biocultural hotspots. 44 

 45 

 46 

Main Text: 47 

Biodiversity provides essential goods and services sustaining human life and well-being 48 

(e.g., food, medicines, materials, fuel) (1, 2). The balance between humanity’s needs and the 49 

protection of the natural environment is nevertheless fragile, as increased consumption of 50 

resources, global trade, land and sea use change, and socio-economic inequalities are having a 51 

dramatic influence on biodiversity (3, 4). To minimise biodiversity loss, conservation biologists 52 

have focused on identifying and prioritising regions of high species richness, endemism, and threat 53 

(5). The “biodiversity hotspot” concept (6) assumes that species diversity is spatially congruent 54 

with the contributions that it provides to people and therefore, protecting areas with the largest 55 

concentrations of threatened species will also protect humanity indirectly (5). Moreover, as 56 

biodiversity is most concentrated where human cultural diversity is highest, it is assumed that high 57 

biocultural diversity is associated with high concentrations of species used by humans (7). Yet, 58 

these assumptions lack empirical support, leading to growing calls for better integration of human-59 

nature interactions into conservation planning and implementation (3, 8–10), as highlighted by the 60 

recently adopted Kunming-Montreal Global Biodiversity Framework (GBF) and the 2022 61 

assessment report on the sustainable use of wild species of the Intergovernmental Science-Policy 62 

Platform on Biodiversity and Ecosystem Services (IPBES) (2). 63 

Plants are essential structuring components of ecosystems and human livelihoods (9, 11). 64 

Although the geography of terrestrial plant diversity has been extensively investigated globally (6, 65 

12, 13), our understanding of the distribution of ecosystem services and societal benefits provided 66 

by plants is incipient, despite the importance of this information for decision-makers and local 67 

stakeholders in supporting the sustainable development agenda (14, 15). Recent modelling efforts 68 

have been dedicated to the global distribution of nature’s contributions to people, including water 69 

quality, crop pollination and carbon stocks (16, 17). However, the extent to which these 70 

contributions relate to species diversity remains largely unknown, hampering progress towards a 71 

more sustainable management of biodiversity. Assessing the global diversity and distribution of 72 

plant species used by people is thus critical to better understand, manage and preserve both the 73 

intrinsic and instrumental values of biodiversity (18). 74 

The global distribution of utilised plant species richness and endemism 75 

Most plant species can potentially be useful to people, but only a fraction of plant diversity 76 

is currently known to be used. Here we consider utilised plants as vascular terrestrial species for 77 



which material and non-material benefits to humans have been reported and made publicly 78 

accessible (19, 20). By extracting information from twelve databases containing plant uses (Table 79 

S1; (21)), we identified 35,687 utilised species and assembled >11 million georeferenced 80 

occurrence records to map their global distribution (i.e., native and introduced ranges) (Figs. S1-81 

2; (19)). We built species distribution models for each utilised species and stacked the resulting 82 

maps to assess the global distribution of their potential richness (Figs. S3-6; (19)). We find the 83 

highest concentrations of utilised plant species in the tropics (Fig. 1), but several temperate areas 84 

also contain high native (e.g., China, the Himalayas; Fig. S7) and introduced richness (e.g., 85 

Western Europe, Eastern USA; Fig. 1). Despite large discrepancies in the sampling of species 86 

geographic records (Fig. S1; (22)), these results match our estimates using coarser but more 87 

complete independent distribution data from the World Checklist of Vascular Plants (WCVP (23); 88 

Fig. S8), which provides additional support for our predictions. 89 

Distribution patterns in species richness do not systematically match those of other 90 

biodiversity indices considered important for conservation such as rarity or threat (5, 6). Therefore, 91 

we also estimated the distribution of utilised plant species richness weighted by each species’ range 92 

size (i.e., weighted endemism) to identify areas with high concentrations of rare and potentially 93 

irreplaceable species. We find that many areas with high richness of utilised plant species also 94 

exhibit high endemism (e.g., Mesoamerica, Gulf of Guinea, Southern Africa, the Himalayas, 95 

South-East Asia; Fig. 1, Fig. S8). Other areas also to emerge as exceptional centers of endemic 96 

utilised plant species include California, Macaronesia, Madagascar, the Eastern Mediterranean, 97 

the Western Ghats, Sri Lanka, Eastern Australia, and the Pacific islands. Conversely, 98 

concentrations of endemic utilised species are relatively low across temperate areas. This confirms 99 

that the high species richness observed in some temperate regions is due to a high concentration 100 

of well-surveyed, widely distributed, and often introduced plant species of economic importance 101 

(22, 24). Overall, the distribution of utilised plant endemicity mirrors patterns observed across all 102 

vascular plants, with higher endemism in areas with insularity and high topographic and 103 

environmental heterogeneity (25, 26). 104 

The latitudinal distribution of utilised plant species and their different uses 105 

To refine our understanding of the geographic patterns underpinning the diversity of 106 

utilised plant species, we disaggregated plant use reports into ten use categories, adapted from the 107 

Economic Botany Data Collection Standards: human food (including beverages and additives), 108 

vertebrate food (forage and fodder), invertebrate food (e.g., plants feeding honey bees or 109 

silkworms), materials (e.g., wood, fiber), fuels (e.g., charcoal, alcohol), social uses (e.g., narcotics, 110 

ritual, religious uses), poisons (for both vertebrates and invertebrates), medicines (for both human 111 

and veterinary use), environmental uses (e.g., intercrops, windbreaks, ornamentals), and gene 112 

sources (e.g., crop wild relatives) (19, 21). We find that latitudinal variation of utilised plant 113 

species richness is broadly consistent for all ten use categories, with higher values in the tropics 114 

gradually declining towards high latitudes (Fig. 2, Figs. S9-10). Therefore, areas with high 115 

concentrations of utilised plant species also contain large numbers of species for each use type. 116 

Despite the overall similarity in latitudinal patterns among use categories, there are striking 117 

differences amongst temperate regions that are proportionally richer in plant species associated 118 

with vertebrate food, social uses and poisons, compared to species-rich tropical environments that 119 

contain proportionally more species associated with the most essential uses for human subsistence 120 

(i.e., human food, material, and medicine). Concentrations of species used as gene sources are 121 

exceptionally high around the equator and thus diverge from domestication centers originally 122 



proposed by Vavilov (27). This is due to our consideration of a larger set of both domesticated 123 

species and wild relatives of potential interest for contemporary breeding programmes (15). 124 

Utilised plant weighted endemism also follows a latitudinal gradient with larger relative 125 

concentrations of species at higher latitudes and consistent latitudinal variation among uses (Figs. 126 

S11-13). 127 

Spatial concordance between utilised plant species, total plant species and human cultures 128 

Although quantitative evidence is scarce, areas of high plant diversity are expected to 129 

contain more beneficial species to human populations (5). Our global analyses at (sub-)country 130 

resolution indicate that utilised plant species richness is strongly positively associated with total 131 

plant species richness (t-value=20.703, P<0.001; Fig. S14-15; Table S2), and that this relationship 132 

holds for all categories of uses and for endemism (Fig. S15; Table S3). It also highlights that large 133 

proportions of the flora of relatively low diversity regions have documented uses (e.g., 134 

Scandinavia, Canada, Sahel), while smaller proportions of utilised species are reported across 135 

megadiverse regions (e.g., Madagascar, Brazil, tropical Andes; Fig. S14). Future investigation will 136 

be required to identify whether this pattern is due to sampling gaps in our database or in the wider 137 

literature for these regions, or because the areas have reached a maximum capacity of utilised plant 138 

species richness. Overall, our findings substantiates the combined importance of preserving 139 

hotspots of plant diversity, which not only contain many unique species but also a considerable 140 

diversity of potential services for humanity (1). Nevertheless, while the spatial concordance 141 

between total plant diversity and utilised plant diversity is evident at a global scale, it is now crucial 142 

to assess whether this pattern holds at smaller scale, where political decisions are taken and 143 

management strategies implemented (28, 29). 144 

Biodiversity and cultural diversity have been shown to be highly intertwined spatially, 145 

giving rise to the notion of biocultural diversity (7, 30). Our data suggest that cultural diversity not 146 

only correlates with total plant richness, but also covaries with utilised plant species richness (t-147 

value=5.743, P<0.001; Fig. S14-15; Table S2) and inconsistently with endemism indices (Fig. 148 

S15; Table S3). This finding supports previous hypotheses that geographic similarities between 149 

biodiversity and cultural diversity could be due to increased competition or reduced necessity for 150 

collaboration among human populations when biological resources (including plants) are widely 151 

available, ultimately causing social separation and generating greater linguistic diversity (7, 30, 152 

31). However, other historical, evolutionary, and environmental factors may also be involved, and 153 

the identity and directionality of causal links for these correlations remain elusive and deserve 154 

future investigation (7, 30). 155 

Indigenous Peoples and protected areas: preserving plant diversity and its contributions to 156 

people 157 

Indigenous Peoples are particularly dependent on wild species for subsistence and well-158 

being, in addition to being critical custodians of both plant diversity and traditional knowledge 159 

(32). Surprisingly, at a large spatial scale, we find that the lands over which the estimated >370 160 

million Indigenous Peoples of the world exert traditional rights do not contain higher 161 

concentrations of plant species with globally documented uses compared to neighbouring non-162 

Indigenous regions (Fig. 3, Fig. S17). This finding may reflect the fact that many Indigenous 163 

Peoples have been dispossessed of their lands throughout history (33), including biologically 164 

diverse areas, and that the largest remaining Indigenous territories are located in remote areas of 165 

low primary productivity (e.g., Greenland, Siberia, the Tibetan plateau, the Sahara, Sahel, Central 166 



Australia) (34). Exceptions include Indigenous lands located in multiple biocultural hotspots that 167 

harbor higher utilised plant species richness/endemism than surrounding non-Indigenous regions: 168 

Central America, the Horn of Africa, South and South-East Asia. While Indigenous areas 169 

containing exceptionally high utilised plant diversity should be considered priorities for the joint 170 

conservation of nature and traditional knowledge (34, 35), Indigenous lands containing fewer 171 

species should not be overlooked given local populations may be particularly vulnerable to 172 

changing environmental conditions and species losses (36). Fostering the engagement of 173 

Indigenous, local and scientific knowledge systems will be essential for enhancing ethics and 174 

actions towards protection at multiple scales (37). 175 

Protected areas are at the forefront of global actions to preserve biodiversity and drive 176 

sustainable development (38). However, despite currently covering ca. 17% of the Earth’s 177 

terrestrial surface, the protected area network contributes to the conservation of a small fraction of 178 

plant diversity and ecosystem services (16). Spatial correlations between the proportion of land 179 

that is protected, and utilised plant species richness and endemism indicate that regions with large 180 

protected area networks do not contain higher numbers or more unique utilised plant species than 181 

their non-protected counterparts (Fig. 3, Fig. S17). Indeed, although protected areas in Europe, the 182 

Mediterranean, West Africa and the Horn of Africa contain more and more unique utilised plant 183 

species than non-protected neighbouring regions, several regions exhibit higher relative richness 184 

and endemism of utilised plant species outside of protected areas (e.g., Americas, Southern Africa, 185 

Southeast Asia, Australia). Our results point to the urgent need of considering plant diversity and 186 

its contributions to people in future area-based conservation planning (10, 29, 39), especially under 187 

the ambitious Target 4 of the GBF, which aims to conserve biodiversity across 30% of global land 188 

areas by 2030 (40). The latter also acknowledges the importance of “recognizing and respecting 189 

the rights of Indigenous Peoples and local communities” and “ensuring that any sustainable use 190 

[…] is fully consistent with conservation outcomes”. In this context, it is essential to strike an 191 

appropriate balance between strictly protected areas that limit access to humans, and protected 192 

areas that accommodate the sustainable use of natural resources by local populations while 193 

preserving of their well-being and cultural heritage (41, 42). 194 

Halting the overexploitation of species and ensuring their sustainable use has also been 195 

highlighted as a key priority by the GBF, notably in Target 5. The sustainable management of a 196 

few animal and plant species has proved to be an efficient tool for conservation (43, 44). However, 197 

the sustainability of species use remains unknown across most plant diversity. Out of 2,800 utilised 198 

plant species previously assessed by the International Union for Conservation of Nature (IUCN), 199 

over one in three is considered to be at risk of global extinction (43). More than one in ten plant 200 

species with a documented human food use in our study is also considered globally threatened 201 

(45). While our findings show that utilised plant diversity remains largely under-protected in the 202 

wild, most species (and their genetic diversity) additionally lack representation in ex-situ 203 

collections such as seed banks and botanical gardens (46). Documenting and understanding the 204 

diversity and distribution of plant species used by humans is thus crucial to implement 205 

conservation strategies and develop plant-based solutions to address global societal challenges 206 

such as hunger, diseases, and climate change (47–49). Our study aims to pave the way for efforts 207 

towards reconciling human needs and biodiversity protection for a more sustainable future. 208 

  209 

 210 



References and Notes: 211 

1.  N. Myers, A Wealth Of Wild Species: Storehouse For Human Welfare (Routledge, 2019). 212 

2.  IPBES, Thematic Assessment Report on the Sustainable Use of Wild Species of the Intergovernmental 213 

Science-Policy Platform on Biodiversity and Ecosystem Services. Fromentin, J. M., Emery, M. R., 214 

Donaldson, J., Danner, M. C., Hallosserie, A., and Kieling, D. (eds.). IPBES secretariat, Bonn, Germany. 215 

(2022), (available at https://doi.org/10.5281/zenodo.6448567). 216 

3.  S. Díaz, J. Settele, E. S. Brondízio, H. T. Ngo, J. Agard, A. Arneth, P. Balvanera, K. A. Brauman, S. H. M. 217 

Butchart, K. M. A. Chan, L. A. Garibaldi, K. Ichii, J. Liu, S. M. Subramanian, G. F. Midgley, P. Miloslavich, 218 

Z. Molnár, D. Obura, A. Pfaff, S. Polasky, A. Purvis, J. Razzaque, B. Reyers, R. R. Chowdhury, Y.-J. Shin, I. 219 

Visseren-Hamakers, K. J. Willis, C. N. Zayas, Pervasive human-driven decline of life on Earth points to the 220 

need for transformative change. Science. 366 (2019), doi:10.1126/science.aax3100. 221 

4.  WWF, Living Planet Report 2022 - Building a nature-positive society. (2022). 222 

5.  R. A. Mittermeier, W. R. Turner, F. W. Larsen, T. M. Brooks, C. Gascon, "Global Biodiversity Conservation: 223 

The Critical Role of Hotspots" in Biodiversity Hotspots, F. E. Zachos, J. C. Habel, Eds. (Springer Berlin 224 

Heidelberg, Berlin, Heidelberg, 2011), pp. 3–22. 225 

6.  N. Myers, R. A. Mittermeier, C. G. Mittermeier, G. A. B. da Fonseca, J. Kent, Biodiversity hotspots for 226 

conservation priorities. Nature. 403, 853–858 (2000). 227 

7.  L. Maffi, Linguistic, cultural, and biological diversity. Annu. Rev. Anthropol. 34, 599–617 (2005). 228 

8.  D. Leclère, M. Obersteiner, M. Barrett, S. H. M. Butchart, A. Chaudhary, A. De Palma, F. A. J. DeClerck, M. 229 

Di Marco, J. C. Doelman, M. Dürauer, R. Freeman, M. Harfoot, T. Hasegawa, S. Hellweg, J. P. Hilbers, S. L. 230 

L. Hill, F. Humpenöder, N. Jennings, T. Krisztin, G. M. Mace, H. Ohashi, A. Popp, A. Purvis, A. M. 231 

Schipper, A. Tabeau, H. Valin, H. van Meijl, W.-J. van Zeist, P. Visconti, R. Alkemade, R. Almond, G. 232 

Bunting, N. D. Burgess, S. E. Cornell, F. Di Fulvio, S. Ferrier, S. Fritz, S. Fujimori, M. Grooten, T. Harwood, 233 

P. Havlík, M. Herrero, A. J. Hoskins, M. Jung, T. Kram, H. Lotze-Campen, T. Matsui, C. Meyer, D. Nel, T. 234 

Newbold, G. Schmidt-Traub, E. Stehfest, B. B. N. Strassburg, D. P. van Vuuren, C. Ware, J. E. M. Watson, 235 

W. Wu, L. Young, Bending the curve of terrestrial biodiversity needs an integrated strategy. Nature. 585, 236 

551–556 (2020). 237 

9.  V. Reyes-García, R. Cámara-Leret, B. S. Halpern, C. O’Hara, D. Renard, N. Zafra-Calvo, S. Díaz, Biocultural 238 

vulnerability exposes threats of culturally important species. Proc. Natl. Acad. Sci. 120, e2217303120 (2023). 239 

10.  S. Díaz, N. Zafra-Calvo, A. Purvis, P. H. Verburg, D. Obura, P. Leadley, R. Chaplin-Kramer, L. D. Meester, 240 

E. Dulloo, B. Martín-López, M. R. Shaw, P. Visconti, W. Broadgate, M. W. Bruford, N. D. Burgess, J. 241 

Cavender-Bares, F. DeClerck, J. M. Fernández-Palacios, L. A. Garibaldi, S. L. L. Hill, F. Isbell, C. K. 242 

Khoury, C. B. Krug, J. Liu, M. Maron, P. J. K. McGowan, H. M. Pereira, V. Reyes-García, J. Rocha, C. 243 

Rondinini, L. Shannon, Y.-J. Shin, P. V. R. Snelgrove, E. M. Spehn, B. Strassburg, S. M. Subramanian, J. J. 244 

Tewksbury, J. E. M. Watson, A. E. Zanne, Set ambitious goals for biodiversity and sustainability. Science. 245 

370, 411–413 (2020). 246 

11.  A. Antonelli, C. Fry, R. J. Smith, M. S. J. Simmonds, P. J. Kersey, H. W. Pritchard, M. S. Abbo, C. Acedo, J. 247 

Adams, A. M. Ainsworth, B. Allkin, W. Annecke, S. P. Bachman, K. Bacon, S. Bárrios, C. Barstow, A. 248 

Battison, E. Bell, K. Bensusan, M. I. Bidartondo, R. J. Blackhall-Miles, J. S. Borrell, F. Q. Brearley, E. 249 

Breman, R. F. A. Brewer, J. Brodie, R. Cámara-Leret, R. Campostrini Forzza, P. Cannon, M. Carine, J. 250 

Carretero, T. R. Cavagnaro, M.-E. Cazar, T. Chapman, M. Cheek, C. Clubbe, C. Cockel, J. Collemare, A. 251 

Cooper, A. I. Copeland, M. Corcoran, C. Couch, C. Cowell, P. Crous, M. da Silva, G. Dalle, D. Das, J. C. 252 

David, L. Davies, N. Davies, M. N. De Canha, E. J. de Lirio, S. Demissew, M. Diazgranados, J. Dickie, T. 253 

Dines, B. Douglas, G. Dröge, M. E. Dulloo, R. Fang, A. Farlow, K. Farrar, M. F. Fay, J. Felix, F. Forest, L. L. 254 

Forrest, T. Fulcher, Y. Gafforov, L. M. Gardiner, G. Gâteblé, E. Gaya, B. Geslin, S. C. Gonçalves, C. J. N. 255 

Gore, R. Govaerts, B. Gowda, O. M. Grace, A. Grall, D. Haelewaters, J. M. Halley, M. A. Hamilton, A. 256 

Hazra, T. Heller, P. M. Hollingsworth, N. Holstein, M.-J. R. Howes, M. Hughes, D. Hunter, N. Hutchinson, 257 

K. Hyde, J. Iganci, M. Jones, L. J. Kelly, P. Kirk, H. Koch, I. Grisai-Greilhuber, N. Lall, M. K. Langat, D. J. 258 

Leaman, T. C. Leão, M. A. Lee, I. J. Leitch, C. Leon, E. Lettice, G. P. Lewis, L. Li, H. Lindon, J. S. Liu, U. 259 

Liu, T. Llewellyn, B. Looney, J. C. Lovett, L. Luczaj, E. Lulekal, S. Maggassouba, V. Malécot, C. Martin, O. 260 

R. Masera, E. Mattana, N. Maxted, C. Mba, K. J. McGinn, C. Metheringham, S. Miles, J. Miller, W. Milliken, 261 

J. Moat, P. G. P. Moore, M. P. Morim, G. M. Mueller, H. Muminjanov, R. Negrão, E. Nic Lughadha, N. 262 

Nicholson, T. Niskanen, R. Nono Womdim, A. Noorani, M. Obreza, K. O’Donnell, R. O’Hanlon, J.-M. 263 

Onana, I. Ondo, S. Padulosi, A. Paton, T. Pearce, O. A. Pérez Escobar, A. Pieroni, S. Pironon, T. A. K. 264 

Prescott, Y. D. Qi, H. Qin, C. L. Quave, L. Rajaovelona, H. Razanajatovo, P. B. Reich, E. Rianawati, T. C. G. 265 

Rich, S. L. Richards, M. C. Rivers, A. Ross, F. Rumsey, M. Ryan, P. Ryan, S. Sagala, M. D. Sanchez, S. 266 



Sharrock, K. K. Shrestha, J. Sim, A. Sirakaya, H. Sjöman, E. C. Smidt, D. Smith, P. Smith, S. R. Smith, A. 267 

Sofo, N. Spence, A. Stanworth, K. Stara, P. C. Stevenson, P. Stroh, L. M. Suz, B. B. Tambam, E. C. Tatsis, I. 268 

Taylor, B. Thiers, I. Thormann, V. Vaglica, C. Vásquez-Londoño, J. Victor, J. Viruel, B. E. Walker, K. 269 

Walker, A. Walsh, M. Way, J. Wilbraham, P. Wilkin, T. Wilkinson, C. Williams, D. Winterton, K. M. Wong, 270 

N. Woodfield-Pascoe, J. Woodman, L. Wyatt, R. Wynberg, B. G. Zhang, “State of the World’s Plants and 271 

Fungi 2020” (Royal Botanic Gardens, Kew, 2020), , doi:10.34885/172. 272 

12.  L. Cai, H. Kreft, A. Taylor, P. Denelle, J. Schrader, F. Essl, M. van Kleunen, J. Pergl, P. Pyšek, A. Stein, M. 273 

Winter, J. F. Barcelona, N. Fuentes, Inderjit, D. N. Karger, J. Kartesz, A. Kuprijanov, M. Nishino, D. 274 

Nickrent, A. Nowak, A. Patzelt, P. B. Pelser, P. Singh, J. J. Wieringa, P. Weigelt, Global models and 275 

predictions of plant diversity based on advanced machine learning techniques. New Phytol. (2022), 276 

doi:10.1111/nph.18533. 277 

13.  W. Barthlott, W. Lauer, A. Placke, Global Distribution of Species Diversity in Vascular Plants: Towards a 278 

World Map of Phytodiversity (Globale Verteilung der Artenvielfalt Höherer Pflanzen: Vorarbeiten zu einer 279 

Weltkarte der Phytodiversität). Erdkunde. 50, 317–327 (1996). 280 

14.  J. T. Rieb, R. Chaplin-Kramer, G. C. Daily, P. R. Armsworth, K. Böhning-Gaese, A. Bonn, G. S. Cumming, 281 

F. Eigenbrod, V. Grimm, B. M. Jackson, A. Marques, S. K. Pattanayak, H. M. Pereira, G. D. Peterson, T. H. 282 

Ricketts, B. E. Robinson, M. Schröter, L. A. Schulte, R. Seppelt, M. G. Turner, E. M. Bennett, When, Where, 283 

and How Nature Matters for Ecosystem Services: Challenges for the Next Generation of Ecosystem Service 284 

Models. BioScience. 67, 820–833 (2017). 285 

15.  S. Pironon, J. S. Borrell, I. Ondo, R. Douglas, C. Phillips, C. K. Khoury, M. B. Kantar, N. Fumia, M. Soto 286 

Gomez, J. Viruel, R. Govaerts, F. Forest, A. Antonelli, Toward Unifying Global Hotspots of Wild and 287 

Domesticated Biodiversity. Plants. 9, 1128 (2020). 288 

16.  M. Jung, A. Arnell, X. de Lamo, S. García-Rangel, M. Lewis, J. Mark, C. Merow, L. Miles, I. Ondo, S. 289 

Pironon, C. Ravilious, M. Rivers, D. Schepaschenko, O. Tallowin, A. van Soesbergen, R. Govaerts, B. L. 290 

Boyle, B. J. Enquist, X. Feng, R. Gallagher, B. Maitner, S. Meiri, M. Mulligan, G. Ofer, U. Roll, J. O. 291 

Hanson, W. Jetz, M. Di Marco, J. McGowan, D. S. Rinnan, J. D. Sachs, M. Lesiv, V. M. Adams, S. C. 292 

Andrew, J. R. Burger, L. Hannah, P. A. Marquet, J. K. McCarthy, N. Morueta-Holme, E. A. Newman, D. S. 293 

Park, P. R. Roehrdanz, J.-C. Svenning, C. Violle, J. J. Wieringa, G. Wynne, S. Fritz, B. B. N. Strassburg, M. 294 

Obersteiner, V. Kapos, N. Burgess, G. Schmidt-Traub, P. Visconti, Areas of global importance for conserving 295 

terrestrial biodiversity, carbon and water. Nat. Ecol. Evol., 1–11 (2021). 296 

17.  R. Chaplin-Kramer, R. A. Neugarten, R. P. Sharp, P. M. Collins, S. Polasky, D. Hole, R. Schuster, M. 297 

Strimas-Mackey, M. Mulligan, C. Brandon, S. Diaz, E. Fluet-Chouinard, L. J. Gorenflo, J. A. Johnson, C. M. 298 

Kennedy, P. W. Keys, K. Longley-Wood, P. B. McIntyre, M. Noon, U. Pascual, C. Reidy Liermann, P. R. 299 

Roehrdanz, G. Schmidt-Traub, M. R. Shaw, M. Spalding, W. R. Turner, A. van Soesbergen, R. A. Watson, 300 

Mapping the planet’s critical natural assets. Nat. Ecol. Evol. 7, 51–61 (2023). 301 

18.  K. M. A. Chan, P. Balvanera, K. Benessaiah, M. Chapman, S. Díaz, E. Gómez-Baggethun, R. Gould, N. 302 

Hannahs, K. Jax, S. Klain, G. W. Luck, B. Martín-López, B. Muraca, B. Norton, K. Ott, U. Pascual, T. 303 

Satterfield, M. Tadaki, J. Taggart, N. Turner, Why protect nature? Rethinking values and the environment. 304 

Proc. Natl. Acad. Sci. 113, 1462–1465 (2016). 305 

19.  Materials and methods are available as supplementary materials at the Science website. 306 

20.  F. E. M. Cook, Economic botany data collection standard (Royal Botanic Gardens, Kew, 1.publ., 1995). 307 

21.  M. Diazgranados, B. Allkin, N. Black, R. Cámara-Leret, C. Canteiro, J. Carretero, R. Eastwood, S. 308 

Hargreaves, A. Hudson, W. Milliken, M. Nesbitt, I. Ondo, K. Patmore, S. Pironon, R. Turner, T. Ulian, World 309 

Checklist of Useful Plant Species. Produced by Royal Botanic Gardens, Kew. (2020), (available at 310 

https://knb.ecoinformatics.org/view/doi:10.5063/F1CV4G34). 311 

22.  C. Meyer, P. Weigelt, H. Kreft, Multidimensional biases, gaps and uncertainties in global plant occurrence 312 

information. Ecol. Lett. 19, 992–1006 (2016). 313 

23.  R. Govaerts, E. Nic Lughadha, N. Black, R. Turner, A. Paton, The World Checklist of Vascular Plants, a 314 

continuously updated resource for exploring global plant diversity. Sci. Data. 8, 215 (2021). 315 

24.  M. van Kleunen, X. Xu, Q. Yang, N. Maurel, Z. Zhang, W. Dawson, F. Essl, H. Kreft, J. Pergl, P. Pyšek, P. 316 

Weigelt, D. Moser, B. Lenzner, T. S. Fristoe, Economic use of plants is key to their naturalization success. 317 

Nat. Commun. 11, 3201 (2020). 318 

25.  G. Kier, H. Kreft, T. M. Lee, W. Jetz, P. L. Ibisch, C. Nowicki, J. Mutke, W. Barthlott, A global assessment 319 

of endemism and species richness across island and mainland regions. Proc. Natl. Acad. Sci. 106, 9322–9327 320 

(2009). 321 



26.  P. H. Raven, R. E. Gereau, P. B. Phillipson, C. Chatelain, C. N. Jenkins, C. U. Ulloa, The distribution of 322 

biodiversity richness in the tropics. Sci. Adv. 6, eabc6228 (2020). 323 

27.  N. I. Vavilov, M. I. Vavylov, N. Í. Vavílov, V. F. Dorofeev, Origin and Geography of Cultivated Plants 324 

(Cambridge University Press, 1992). 325 

28.  N. Bystriakova, C. Tovar, A. Monro, J. Moat, P. Hendrigo, J. Carretero, G. Torres-Morales, M. Diazgranados, 326 

Colombia’s bioregions as a source of useful plants. PLOS ONE. 16, e0256457 (2021). 327 

29.  S. J. E. Velazco, N. A. Bedrij, J. L. Rojas, H. A. Keller, B. R. Ribeiro, P. De Marco, Quantifying the role of 328 

protected areas for safeguarding the uses of biodiversity. Biol. Conserv. 268, 109525 (2022). 329 

30.  L. J. Gorenflo, S. Romaine, R. A. Mittermeier, K. Walker-Painemilla, Co-occurrence of linguistic and 330 

biological diversity in biodiversity hotspots and high biodiversity wilderness areas. Proc. Natl. Acad. Sci. 109, 331 

8032–8037 (2012). 332 

31.  R. Mace, M. Pagel, A latitudinal gradient in the density of human languages in North America. Proc. R. Soc. 333 

Lond. B Biol. Sci. 261, 117–121 (1997). 334 

32.  N. J. Turner, A. Cuerrier, L. Joseph, Well grounded: Indigenous Peoples’ knowledge, ethnobiology and 335 

sustainability. People Nat. 4, 627–651 (2022). 336 

33.  K. S. Coates, A Global History of Indigenous Peoples (Palgrave Macmillan UK, London, 2004; 337 

http://link.springer.com/10.1057/9780230509078). 338 

34.  S. T. Garnett, N. D. Burgess, J. E. Fa, Á. Fernández-Llamazares, Z. Molnár, C. J. Robinson, J. E. M. Watson, 339 

K. K. Zander, B. Austin, E. S. Brondizio, N. F. Collier, T. Duncan, E. Ellis, H. Geyle, M. V. Jackson, H. 340 

Jonas, P. Malmer, B. McGowan, A. Sivongxay, I. Leiper, A spatial overview of the global importance of 341 

Indigenous lands for conservation. Nat. Sustain. 1, 369–374 (2018). 342 

35.  R. Cámara-Leret, M. A. Fortuna, J. Bascompte, Indigenous knowledge networks in the face of global change. 343 

Proc. Natl. Acad. Sci., 201821843 (2019). 344 

36.  D. K. Bardsley, N. D. Wiseman, Climate change vulnerability and social development for remote indigenous 345 

communities of South Australia. Glob. Environ. Change. 22, 713–723 (2012). 346 

37.  M. Tengö, R. Hill, P. Malmer, C. M. Raymond, M. Spierenburg, F. Danielsen, T. Elmqvist, C. Folke, 347 

Weaving knowledge systems in IPBES, CBD and beyond—lessons learned for sustainability. Curr. Opin. 348 

Environ. Sustain. 26–27, 17–25 (2017). 349 

38.  J. E. M. Watson, N. Dudley, D. B. Segan, M. Hockings, The performance and potential of protected areas. 350 

Nature. 515, 67–73 (2014). 351 

39.  G. G. Gurney, E. S. Darling, G. N. Ahmadia, V. N. Agostini, N. C. Ban, J. Blythe, J. Claudet, G. Epstein, 352 

Estradivari, A. Himes-Cornell, H. D. Jonas, D. Armitage, S. J. Campbell, C. Cox, W. R. Friedman, D. Gill, P. 353 

Lestari, S. Mangubhai, E. McLeod, N. A. Muthiga, J. Naggea, R. Ranaivoson, A. Wenger, I. Yulianto, S. D. 354 

Jupiter, Biodiversity needs every tool in the box: use OECMs. Nature. 595, 646–649 (2021). 355 

40.  E. Dinerstein, C. Vynne, E. Sala, A. R. Joshi, S. Fernando, T. E. Lovejoy, J. Mayorga, D. Olson, G. P. Asner, 356 

J. E. M. Baillie, N. D. Burgess, K. Burkart, R. F. Noss, Y. P. Zhang, A. Baccini, T. Birch, N. Hahn, L. N. 357 

Joppa, E. Wikramanayake, A Global Deal For Nature: Guiding principles, milestones, and targets. Sci. Adv. 5, 358 

eaaw2869 (2019). 359 

41.  C. Sandbrook, J. A. Fisher, G. Holmes, R. Luque-Lora, A. Keane, The global conservation movement is 360 

diverse but not divided. Nat. Sustain. 2, 316–323 (2019). 361 

42.  E. R. Cetas, M. Yasué, A systematic review of motivational values and conservation success in and around 362 

protected areas. Conserv. Biol. 31, 203–212 (2017). 363 

43.  S. M. E. Marsh, M. Hoffmann, N. D. Burgess, T. M. Brooks, D. W. S. Challender, P. J. Cremona, C. Hilton-364 

Taylor, F. L. de Micheaux, G. Lichtenstein, D. Roe, M. Böhm, Prevalence of sustainable and unsustainable 365 

use of wild species inferred from the IUCN Red List of Threatened Species. Conserv. Biol. 36, e13844 (2022). 366 

44.  L. McRae, R. Freeman, J. Geldmann, G. B. Moss, L. Kjær-Hansen, N. D. Burgess, A global indicator of 367 

utilized wildlife populations: Regional trends and the impact of management. One Earth. 5, 422–433 (2022). 368 

45.  T. Ulian, M. Diazgranados, S. Pironon, S. Padulosi, U. Liu, L. Davies, M.-J. R. Howes, J. S. Borrell, I. Ondo, 369 

O. A. Pérez‐Escobar, S. Sharrock, P. Ryan, D. Hunter, M. A. Lee, C. Barstow, Ł. Łuczaj, A. Pieroni, R. 370 

Cámara‐Leret, A. Noorani, C. Mba, R. N. Womdim, H. Muminjanov, A. Antonelli, H. W. Pritchard, E. 371 

Mattana, Unlocking plant resources to support food security and promote sustainable agriculture. PLANTS 372 

PEOPLE PLANET. 2, 421–445 (2020). 373 

46.  C. K. Khoury, D. Amariles, J. S. Soto, M. V. Diaz, S. Sotelo, C. C. Sosa, J. Ramírez-Villegas, H. A. 374 

Achicanoy, J. Velásquez-Tibatá, L. Guarino, B. León, C. Navarro-Racines, N. P. Castañeda-Álvarez, H. 375 

Dempewolf, J. H. Wiersema, A. Jarvis, Comprehensiveness of conservation of useful wild plants: An 376 

operational indicator for biodiversity and sustainable development targets. Ecol. Indic. 98, 420–429 (2019). 377 



47.  A. Di Sacco, K. A. Hardwick, D. Blakesley, P. H. S. Brancalion, E. Breman, L. Cecilio Rebola, S. Chomba, 378 

K. Dixon, S. Elliott, G. Ruyonga, K. Shaw, P. Smith, R. J. Smith, A. Antonelli, Ten golden rules for 379 

reforestation to optimize carbon sequestration, biodiversity recovery and livelihood benefits. Glob. Change 380 

Biol. 27, 1328–1348 (2021). 381 

48.  A. Cantwell-Jones, J. Ball, D. Collar, M. Diazgranados, R. Douglas, F. Forest, J. Hawkins, M.-J. R. Howes, T. 382 

Ulian, B. Vaitla, S. Pironon, Global plant diversity as a reservoir of micronutrients for humanity. Nat. Plants. 383 

8, 225–232 (2022). 384 

49.  I. Raskin, D. M. Ribnicky, S. Komarnytsky, N. Ilic, A. Poulev, N. Borisjuk, A. Brinker, D. A. Moreno, C. 385 

Ripoll, N. Yakoby, J. M. O’Neal, T. Cornwell, I. Pastor, B. Fridlender, Plants and human health in the twenty-386 

first century. Trends Biotechnol. 20, 522–531 (2002). 387 

50.     S. Pironon, I. Ondo, M. Diazgranados, R. Allkin, A. C. Baquero, R. Cámara-Leret, C. Canteiro, Z. Dennehy-388 

Carr, R. Govaerts, S. Hargreaves, A. J. Hudson, R. Lemmens, W. Milliken, M. Nesbitt, K. Patmore, G. 389 

Schmelze, R. M. Turner, T. R. van Andel, T. Ulian, A. Antonelli, K. J. Willis, The global distribution of 390 

plants used by humans datasets: list of utilised species, occurrence data and model outputs at 10 arc-minutes 391 

spatial resolution [Data set]. Zenodo. https://doi.org/10.5281/zenodo.8176317 (2023). 392 

51.     I. Ondo, (2023). IanOndo/UsefulPlants: UsefulPlants (v1.0.0). Zenodo. 393 

https://doi.org/10.5281/zenodo.8180352 (2023). 394 

52.  J. D. Tuxill, G. P. Nabhan, M. Hathaway, People, Plants, and Protected Areas: A Guide to in Situ 395 

Management (Earthscan, 2001). 396 

53.  R. T. J. Cappers, R. Neef, R. M. Bekker, Digital atlas of economic plants (Barkhuis [u.a.], Eelde, 2009). 397 

54.  H. Dempewolf, R. J. Eastwood, L. Guarino, C. K. Khoury, J. V. Müller, J. Toll, Adapting Agriculture to 398 

Climate Change: A Global Initiative to Collect, Conserve, and Use Crop Wild Relatives. Agroecol. Sustain. 399 

Food Syst. 38, 369–377 (2014). 400 

55.  R. Allkin, K. Patmore, N. Black, A. Booker, C. Canteiro, E. Dauncey, S. Edwards, F. Forest, P. Giovannini, 401 

M.-J. R. Howes, A. Hudson, J. Irving, C. Leon, W. Milliken, E. Nic Lughadha, U. Schippmann, M. S. J. 402 

Simmonds, Medicinal Plants: current resource and future potential. Chapter 4 in: State of the World’s Plants 403 

(ed. Willis, K.), Royal Botanic Gardens, Kew. Pp.22-29. (2017). 404 

56.  A. Paton, R. Allkin, I. Belyaeva, E. Dauncey, R. Govaerts, S. Edwards, J. Irving, C. Leon, E. Nic Lughadha, 405 

Plant Name Resources: building bridges with users. pp 207-216 In: Botanists of the twenty-first century: 406 

roles, challenges and opportunities. UNESCO 286p., illus. ISBN 978-92-3-100120-8. PMID: 29058848. 407 

(2016). 408 

57.  P. C. M. Jansen, R. H. M. J. Lemmens, L. P. A. Oyen, J. S. Siemonsma, F. M. Stavast, J. L. C. H. van 409 

Valkenburg, Plant resources of South-East Asia. Basic list of species and commodity grouping. Final version. 410 

Pudoc Wagening. (1991) (available at https://agris.fao.org/agris-search/search.do?recordID=NL2012077776). 411 

58.  R. Cámara–Leret, Z. Dennehy, Indigenous Knowledge of New Guinea’s Useful Plants: A Review1. Econ. 412 

Bot. 73, 405–415 (2019). 413 

59.  R. Cámara-Leret, Z. Dennehy, Information gaps in indigenous and local knowledge for science-policy 414 

assessments. Nat. Sustain. 2, 736–741 (2019). 415 

60.  H. M. Burkill, The useful plants of West Tropical Africa. Vol. 2 (Royal Botanic Gardens, Kew, 2. ed., 1994). 416 

61.  W. Milliken, Plants for malaria, plants for fever: medicinal species in Latin America, a bibliographic survey 417 

(Royal Botanic Gardens, Kew, London, 1997). 418 

62.  T. Ulian, M. Sacandé, A. Hudson, E. Mattana, Conservation of indigenous plants to support community 419 

livelihoods: the MGU – Useful Plants Project. J. Environ. Plan. Manag. 60, 668–683 (2017). 420 

63.  O. M. Grace, J. C. Lovett, C. J. N. Gore, J. Moat, I. Ondo, S. Pironon, M. K. Langat, O. A. Pérez‐Escobar, A. 421 

Ross, M. S. Abbo, K. K. Shrestha, B. Gowda, K. Farrar, J. Adams, R. Cámara‐Leret, M. Diazgranados, T. 422 

Ulian, S. Sagala, E. Rianawati, A. Hazra, O. R. Masera, A. Antonelli, P. Wilkin, Plant Power: Opportunities 423 

and challenges for meeting sustainable energy needs from the plant and fungal kingdoms. PLANTS PEOPLE 424 

PLANET. 2, 446–462 (2020). 425 

64.  X. Feng, D. S. Park, C. Walker, A. T. Peterson, C. Merow, M. Papeş, A checklist for maximizing 426 

reproducibility of ecological niche models. Nat. Ecol. Evol. 3, 1382–1395 (2019). 427 

65.  D. Zurell, J. Franklin, C. König, P. J. Bouchet, C. F. Dormann, J. Elith, G. Fandos, X. Feng, G. Guillera‐428 

Arroita, A. Guisan, J. J. Lahoz‐Monfort, P. J. Leitão, D. S. Park, A. T. Peterson, G. Rapacciuolo, D. R. 429 

Schmatz, B. Schröder, J. M. Serra‐Diaz, W. Thuiller, K. L. Yates, N. E. Zimmermann, C. Merow, A standard 430 

protocol for reporting species distribution models. Ecography. 43, 1261–1277 (2020). 431 

66.  G. Dauby, R. Zaiss, A. Blach-Overgaard, L. Catarino, T. Damen, V. Deblauwe, S. Dessein, J. Dransfield, V. 432 

Droissart, M. C. Duarte, H. Engledow, G. Fadeur, R. Figueira, R. E. Gereau, O. J. Hardy, D. J. Harris, J. de 433 



Heij, S. Janssens, Y. Klomberg, A. C. Ley, B. A. Mackinder, P. Meerts, J. L. van de Poel, B. Sonké, M. S. M. 434 

Sosef, T. Stévart, P. Stoffelen, J.-C. Svenning, P. Sepulchre, X. van der Burgt, J. J. Wieringa, T. L. P. 435 

Couvreur, RAINBIO: a mega-database of tropical African vascular plants distributions. PhytoKeys, 1–18 436 

(2016). 437 

67.  BioTIME: A database of biodiversity time series for the Anthropocene - Dornelas - 2018 - Global Ecology 438 

and Biogeography - Wiley Online Library, (available at 439 

https://onlinelibrary.wiley.com/doi/full/10.1111/geb.12729). 440 

68.  C. H. Graham, J. Elith, R. J. Hijmans, A. Guisan, A. Townsend Peterson, B. A. Loiselle, The Nceas Predicting 441 

Species Distributions Working Group, The influence of spatial errors in species occurrence data used in 442 

distribution models: Spatial error in occurrence data for predictive modelling. J. Appl. Ecol. 45, 239–247 443 

(2007). 444 

69.  R. K. Brummitt, World Geographical Scheme for Recording Plant Distributions, Edition 2. Biodiversity 445 

Information Standards (TDWG) (2001; http://www.tdwg.org/standards/109). 446 

70.  S. Kumar, K. B. Moore, The Evolution of Global Positioning System (GPS) Technology. J. Sci. Educ. 447 

Technol. 11, 59–80 (2002). 448 

71.  A. Zizka, D. Silvestro, T. Andermann, J. Azevedo, C. D. Ritter, D. Edler, H. Farooq, A. Herdean, M. Ariza, 449 

R. Scharn, S. Svantesson, N. Wengström, V. Zizka, A. Antonelli, CoordinateCleaner: Standardized cleaning 450 

of occurrence records from biological collection databases. Methods Ecol. Evol. 10, 744–751 (2019). 451 

72.  R. A. Boria, L. E. Olson, S. M. Goodman, R. P. Anderson, Spatial filtering to reduce sampling bias can 452 

improve the performance of ecological niche models. Ecol. Model. 275, 73–77 (2014). 453 

73.  D. N. Karger, O. Conrad, J. Böhner, T. Kawohl, H. Kreft, R. W. Soria-Auza, N. E. Zimmermann, H. P. 454 

Linder, M. Kessler, Climatologies at high resolution for the earth’s land surface areas. Sci. Data. 4, 170122 455 

(2017). 456 

74.  J. J. Danielson, D. B. Gesch, “Global multi-resolution terrain elevation data 2010 (GMTED2010)” (Open-File 457 

Report 2011-1073, 2011). 458 

75.  M. Neteler, M. H. Bowman, M. Landa, M. Metz, GRASS GIS: A multi-purpose open source GIS. Environ. 459 

Model. Softw. 31, 124–130 (2012). 460 

76.  T. Hengl, J. Mendes de Jesus, G. B. M. Heuvelink, M. Ruiperez Gonzalez, M. Kilibarda, A. Blagotić, W. 461 

Shangguan, M. N. Wright, X. Geng, B. Bauer-Marschallinger, M. A. Guevara, R. Vargas, R. A. MacMillan, 462 

N. H. Batjes, J. G. B. Leenaars, E. Ribeiro, I. Wheeler, S. Mantel, B. Kempen, SoilGrids250m: Global gridded 463 

soil information based on machine learning. PLOS ONE. 12, e0169748 (2017). 464 

77.  P. R. Long, D. Benz, A. C. Martin, P. W. A. Holland, M. Macias-Fauria, A. W. R. Seddon, R. Hagemann, T. 465 

K. Frost, A. Simpson, D. J. Power, M. A. Slaymaker, K. J. Willis, LEFT-A web-based tool for the remote 466 

measurement and estimation of ecological value across global landscapes. Methods Ecol. Evol. 9, 571–579 467 

(2018). 468 

78.  Wildlife Conservation Society-WCS; Center For International Earth Science Information Network-CIESIN-469 

Columbia University, Last of the Wild Project, Version 2, 2005 (LWP-2): Global Human Footprint Dataset 470 

(Geographic) (2005), , doi:10.7927/H4M61H5F. 471 

79.  E. Dinerstein, D. Olson, A. Joshi, C. Vynne, N. D. Burgess, E. Wikramanayake, N. Hahn, S. Palminteri, P. 472 

Hedao, R. Noss, M. Hansen, H. Locke, E. C. Ellis, B. Jones, C. V. Barber, R. Hayes, C. Kormos, V. Martin, 473 

E. Crist, W. Sechrest, L. Price, J. E. M. Baillie, D. Weeden, K. Suckling, C. Davis, N. Sizer, R. Moore, D. 474 

Thau, T. Birch, P. Potapov, S. Turubanova, A. Tyukavina, N. de Souza, L. Pintea, J. C. Brito, O. A. 475 

Llewellyn, A. G. Miller, A. Patzelt, S. A. Ghazanfar, J. Timberlake, H. Klöser, Y. Shennan-Farpón, R. Kindt, 476 

J.-P. B. Lillesø, P. van Breugel, L. Graudal, M. Voge, K. F. Al-Shammari, M. Saleem, An Ecoregion-Based 477 

Approach to Protecting Half the Terrestrial Realm. BioScience. 67, 534–545 (2017). 478 

80.  A. Guisan, W. Thuiller, Predicting species distribution: offering more than simple habitat models. Ecol. Lett. 479 

8, 993–1009 (2005). 480 

81.  J. Elith, C. H. Graham, R. P. Anderson, M. Dudík, S. Ferrier, A. Guisan, R. J. Hijmans, F. Huettmann, J. R. 481 

Leathwick, A. Lehmann, J. Li, L. G. Lohmann, B. A. Loiselle, G. Manion, C. Moritz, M. Nakamura, Y. 482 

Nakazawa, J. McC. M. Overton, A. Townsend Peterson, S. J. Phillips, K. Richardson, R. Scachetti-Pereira, R. 483 

E. Schapire, J. Soberón, S. Williams, M. S. Wisz, N. E. Zimmermann, Novel methods improve prediction of 484 

species’ distributions from occurrence data. Ecography. 29, 129–151 (2006). 485 

82.  Y. Fourcade, A. G. Besnard, J. Secondi, Paintings predict the distribution of species, or the challenge of 486 

selecting environmental predictors and evaluation statistics. Glob. Ecol. Biogeogr. 27, 245–256 (2018). 487 

83.  A. F. Zuur, E. N. Ieno, C. S. Elphick, A protocol for data exploration to avoid common statistical problems: 488 

Data exploration. Methods Ecol. Evol. 1, 3–14 (2010). 489 



84.  T. L. Root, J. T. Price, K. R. Hall, S. H. Schneider, C. Rosenzweig, J. A. Pounds, Fingerprints of global 490 

warming on wild animals and plants. Nature. 421, 57–60 (2003). 491 

85.  A. D. Syphard, J. Franklin, Differences in spatial predictions among species distribution modeling methods 492 

vary with species traits and environmental predictors. Ecography. 32, 907–918 (2009). 493 

86.  B. Gallardo, A. Zieritz, D. C. Aldridge, The Importance of the Human Footprint in Shaping the Global 494 

Distribution of Terrestrial, Freshwater and Marine Invaders. PLOS ONE. 10, e0125801 (2015). 495 

87.  G. R. Guerin, A. N. Andersen, M. Rossetto, S. van Leeuwen, M. Byrne, B. Sparrow, M. Rodrigo, A. J. Lowe, 496 

When macroecological transitions are a fiction of sampling: comparing herbarium records to plot-based 497 

species inventory data. Ecography (2018), doi:10.1111/ecog.03607. 498 

88.  S. Ferrier, A. Guisan, Spatial modelling of biodiversity at the community level. J. Appl. Ecol. 43, 393–404 499 

(2006). 500 

89.  J. Elith, J. R. Leathwick, Species Distribution Models: Ecological Explanation and Prediction Across Space 501 

and Time. Annu. Rev. Ecol. Evol. Syst. 40, 677–697 (2009). 502 

90.  J. Elith, S. J. Phillips, T. Hastie, M. Dudík, Y. E. Chee, C. J. Yates, A statistical explanation of MaxEnt for 503 

ecologists: Statistical explanation of MaxEnt. Divers. Distrib. 17, 43–57 (2011). 504 

91.  A. S. J. Van Proosdij, M. S. M. Sosef, J. J. Wieringa, N. Raes, Minimum required number of specimen 505 

records to develop accurate species distribution models. Ecography. 39 (2015), pp. 542–552. 506 

92.  C. Merow, M. J. Smith, T. C. Edwards, A. Guisan, S. M. McMahon, S. Normand, W. Thuiller, R. O. Wüest, 507 

N. E. Zimmermann, J. Elith, What do we gain from simplicity versus complexity in species distribution 508 

models? Ecography. 37, 1267–1281 (2014). 509 

93.  V. Bahn, B. J. McGill, Can niche-based distribution models outperform spatial interpolation? Glob. Ecol. 510 

Biogeogr. 16, 733–742 (2007). 511 

94.  J. C. Cooper, J. Soberón, Creating individual accessible area hypotheses improves stacked species distribution 512 

model performance. Glob. Ecol. Biogeogr. 27, 156–165 (2018). 513 

95.  M. A. Burgman, J. C. Fox, Bias in species range estimates from minimum convex polygons: implications for 514 

conservation and options for improved planning. Anim. Conserv. Forum. 6, 19–28 (2003). 515 

96.  M. C. Rivers, S. P. Bachman, T. R. Meagher, E. Nic Lughadha, N. A. Brummitt, Subpopulations, locations 516 

and fragmentation: applying IUCN red list criteria to herbarium specimen data. Biodivers. Conserv. 19, 2071–517 

2085 (2010). 518 

97.  C. Meyer, H. Kreft, R. Guralnick, W. Jetz, Global priorities for an effective information basis of biodiversity 519 

distributions. Nat. Commun. 6 (2015), doi:10.1038/ncomms9221. 520 

98.  C. Merow, M. J. Smith, J. A. Silander, A practical guide to MaxEnt for modeling species’ distributions: what 521 

it does, and why inputs and settings matter. Ecography. 36, 1058–1069 (2013). 522 

99.  M. M. Syfert, M. J. Smith, D. A. Coomes, The Effects of Sampling Bias and Model Complexity on the 523 

Predictive Performance of MaxEnt Species Distribution Models. PLoS ONE. 8, e55158 (2013). 524 

100.  S. J. Phillips, R. P. Anderson, M. Dudík, R. E. Schapire, M. E. Blair, Opening the black box: an open-source 525 

release of Maxent. Ecography. 40, 887–893 (2017). 526 

101.  G. Y. Lu, D. W. Wong, An adaptive inverse-distance weighting spatial interpolation technique. Comput. 527 

Geosci. 34, 1044–1055 (2008). 528 

102.  A. Radosavljevic, R. P. Anderson, Making better Maxent models of species distributions: complexity, 529 

overfitting and evaluation. J. Biogeogr. 41, 629–643 (2014). 530 

103.  D. L. Warren, S. N. Seifert, Ecological niche modeling in Maxent: the importance of model complexity and 531 

the performance of model selection criteria. Ecol. Appl. 21, 335–342 (2011). 532 

104.  N. S. Morales, I. C. Fernández, V. Baca-González, MaxEnt’s parameter configuration and small samples: are 533 

we paying attention to recommendations? A systematic review. PeerJ. 5, e3093 (2017). 534 

105.  K. P. Burnham, D. R. Anderson, Multimodel Inference: Understanding AIC and BIC in Model Selection. 535 

Sociol. Methods Res. 33, 261–304 (2004). 536 

106.  S. J. Phillips, R. P. Anderson, R. E. Schapire, Maximum entropy modeling of species geographic 537 

distributions. Ecol. Model. 190, 231–259 (2006). 538 

107.  O. Allouche, A. Tsoar, R. Kadmon, Assessing the accuracy of species distribution models: prevalence, kappa 539 

and the true skill statistic (TSS): Assessing the accuracy of distribution models. J. Appl. Ecol. 43, 1223–1232 540 

(2006). 541 

108.  M. Shcheglovitova, R. P. Anderson, Estimating optimal complexity for ecological niche models: A jackknife 542 

approach for species with small sample sizes. Ecol. Model. 269, 9–17 (2013). 543 

109.  T. Hastie, R. Tibshirani, J. Friedman, The elements of statistical learning (2nd), ed. (2009). 544 



110.  J. M. Calabrese, G. Certain, C. Kraan, C. F. Dormann, Stacking species distribution models and adjusting bias 545 

by linking them to macroecological models: Stacking species distribution models. Glob. Ecol. Biogeogr. 23, 546 

99–112 (2014). 547 

111.  C. D. L. Orme, R. G. Davies, M. Burgess, F. Eigenbrod, N. Pickup, V. A. Olson, A. J. Webster, T.-S. Ding, P. 548 

C. Rasmussen, R. S. Ridgely, A. J. Stattersfield, P. M. Bennett, T. M. Blackburn, K. J. Gaston, I. P. F. Owens, 549 

Global hotspots of species richness are not congruent with endemism or threat. Nature. 436, 1016–1019 550 

(2005). 551 

112.  C. Slatyer, D. Rosauer, F. Lemckert, An assessment of endemism and species richness patterns in the 552 

Australian Anura. J. Biogeogr. 34, 583–596 (2007). 553 

113.  M. D. Crisp, S. Laffan, H. P. Linder, A. Monro, Endemism in the Australian flora: Endemism in the 554 

Australian flora. J. Biogeogr. 28, 183–198 (2001). 555 

114.  N. Brummitt, A. C. Araújo, T. Harris, Areas of plant diversity—What do we know? PLANTS PEOPLE 556 

PLANET. 3, 33–44 (2021). 557 

115.  K. J. Gaston, Global patterns in biodiversity. Nature. 405, 220–227 (2000). 558 

116.  M. Yasuhara, C.-L. Wei, M. Kucera, M. J. Costello, D. P. Tittensor, W. Kiessling, T. C. Bonebrake, C. R. 559 

Tabor, R. Feng, A. Baselga, K. Kretschmer, B. Kusumoto, Y. Kubota, Past and future decline of tropical 560 

pelagic biodiversity. Proc. Natl. Acad. Sci. 117, 12891–12896 (2020). 561 

117.  J. Loh, D. Harmon, A global index of biocultural diversity. Ecol. Indic. 5, 231–241 (2005). 562 

118.  B. F. Grimes, J. E. Grimes, Ethnologue: Languages of the world, 14th edition (SIL International, 2000). 563 

119.  D. B. Barrett, G. T. Kurian, T. M. Johnson, Eds., World Christian encyclopedia: a comparative survey of 564 

churches and religions in the modern world (Oxford University Press, Oxford ; New York, 2nd ed., 2001). 565 

120.  International Labour Organisation, C169 - Indigenous and Tribal Peoples Convention (1989), (available at 566 

http://www.ilo.org/dyn/normlex/en/f?p=NORMLEXPUB:12100:0::NO::P12100_ILO_COD E:C169). 567 

121.  UNEP-WCMC and IUCN, Protected planet: The world database on protected areas (WDPA) [Online], March 568 

2020, Cambridge, UK: UNEP-WCMC and IUCN. Available at: www.protectedplanet.net (2020). 569 

 570 

 571 

Acknowledgments: 572 

We thank nine anonymous reviewers for comments on a previous version of the manuscript. We 573 

are grateful to Jeff Eden for providing illustrations for the figures, Neville Ash, James Borrell, 574 

Eleanor Hammond-Hunt, Nicola Kuhn, Buntaro Kusumoto, Rhian Smith, Marybel Soto Gomez, 575 

Carolina Tovar, and Paul Wilkin for comments on analyses and text, Nicholas Black for assistance 576 

with data from RBG Kew’s World Checklist of Vascular Plants, Charlotte Phillips for help with 577 

cleaning occurrence records, and Abigail Barker for help in coordinating the project at RBG Kew. 578 

We thank Gilles Dauby and Thomas Couvreur for providing unpublished data from the Rainbio 579 

database, Nora Castañeda-Álvarez and Matija Obreza for extracting occurrence records from 580 

GENESYS, Dora A. L. Canhos and Sidnei De Souza for obtaining records from the SpeciesLink 581 

database, and Stephen Garnett, Ian Leiper, Osgur McDermott-Long and Neil Burgess for help with 582 

Indigenous land data. 583 

 584 

Funding: 585 

This research was funded by Royal Botanic Gardens, Kew. 586 

SP and IO are supported by the Calleva Foundation. 587 

MGU and Wiet Pot Family Foundation have funded part of the data compilation work within the 588 

framework of the Useful Plants Project. 589 



AA is supported by the Swedish Research Council (2019-05191) and the Swedish Foundation for 590 

Strategic Environmental Research MISTRA (Project BioPath). 591 

RCL is supported by the Swiss National Science Foundation Starting Grant (INDIGENOMICS: 592 

TMSGI3_211659). 593 

 594 

Author contributions: 595 

Original conception: SP, IO, MD, TU, KJW 596 

Study design: SP, IO, MD, TU, AA, KJW 597 

Data acquisition: SP, IO, MD, RA, ACB, RC-L, CC, ZD-C, RG, SH, AJH, RL, WM, MN, KP, 598 

GS, RMT, TRA, TU, KJW 599 

Species name reconciliation: IO, MD, RMT 600 

Analyses: IO, SP with help from ACB 601 

Data visualization: IO in close collaboration with SP 602 

Data interpretation: SP, IO, AA, KJW 603 

Writing – original draft: SP, IO 604 

Writing – review & editing: SP, IO, MD, RA, ACB, RC-L, CC, ZD-C, RG, SH, AJH, RL, WM, 605 

MN, KP, GS, RMT, TRA, TU, AA, KJW 606 

 607 

Competing interests: 608 

Authors declare that they have no competing interests. 609 

 610 

Data and materials availability: 611 

Occurrence records, environmental layers, lists of names and uses of the 35,687 modelled utilised 612 

plant species, and outputs from species distribution models are available on Zenodo and Github 613 

(50, 51) alongside the R package UsefulPlants, which gathers codes, functions, tutorials, and 614 

documentation allowing to reproduce analyses of the paper. 615 

 616 

Supplementary Materials: 617 

Materials and Methods 618 

Figs. S1 to S17 619 

Table S1 to S3 620 

References (50-119) 621 

 622 

Figure legends: 623 



Figure 1. Global species richness and endemism of plants with known uses by humans. (A) 624 

Utilised plant species richness corresponds to the sum of species occurrence probabilities predicted 625 

in each ten arc-minutes (~20 km) pixel found across their native and introduced ranges. (B) 626 

Utilised plant species endemism corresponds to the sum of species occurrence probabilities 627 

predicted in each pixel weighted by the inverse of their range size, calculated as the sum of the 628 

predicted probabilities within their study region (i.e., weighted endemism). High values are thus 629 

associated with areas containing high concentrations of species with small geographic ranges. 630 

 631 

Figure 2. Latitudinal distribution of utilised plant species richness across t 632 

en categories of plant uses. The black curve on the left represents the latitudinal distribution of 633 

all utilised plant species richness. The dendrogram on the top orders the ten use categories 634 

according to the (dis-)similarity of their species richness latitudinal profiles. Black curves 635 

underneath the dendrogram correspond to the species richness latitudinal profile for each use 636 

category. The heatmap describes the latitudinal variation in the deviation of utilised plant species 637 

richness for the ten plant use categories from total utilised plant species richness. Colors indicate 638 

higher (green) or lower (purple) proportions in utilised plant species richness of a given use relative 639 

to the total utilised plant species richness pattern. The bar chart underneath the heatmap shows the 640 

number of species considered in each use category. 641 

 642 

Figure 3. Spatial correlations between utilised plant species richness and proportions of both 643 

Indigenous lands and terrestrial protected areas. Pearson’s correlation coefficients were 644 

computed across all values contained in 71 cells (~3,550km)-wide windows built around each 645 

pixel. Pixel color indicates regions where utilised plant species richness is positively (green) or 646 

negatively (pink) correlated with the proportion of Indigenous lands and terrestrial protected areas. 647 

Regions crossed in beige indicate pixels containing more than 50% of Indigenous lands and 648 

protected areas. All Indigenous lands and protected areas are thus not represented on the maps, 649 

although they are all accounted for in the analyses. Frequencies of Pearson’s correlation 650 

coefficients found across the world are given in histograms. The median correlation across the 651 

world is indicated by the black vertical line, while zero correlation is indicated by the red dashed 652 

line. One-sample Wilcoxon signed rank tests were performed to assess whether median 653 

correlations are significantly different from zero. 654 

 655 
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Materials and Methods 26 

List of plant species used by humans 27 

Analyses in this paper are based upon the “World Checklist of Useful Plant Species” (21).  We use the term “utilised 28 

plant” to refer to vascular terrestrial plant species for which material and non-material benefits to humans have been 29 

documented and made publicly accessible. Uses may represent direct (e.g., food, medicine, material) or indirect 30 

benefits (e.g., contributions to environmental services such as water, soil or air quality protection). Utilised plants may 31 

be wild, introduced, cultivated or weeds. Their uses may have been reported at different time periods (from prehistory 32 

to contemporary times), scales (from local to global, by individuals or societies), and economic levels (from local 33 

personal use to commercial enterprise). Although commonly referred to as “useful” plants in the literature, we used 34 

the term “utilised” here to avoid relying on the subjective concept of “usefulness” and rather focus on the simple fact 35 

of a plant being known to be used. In fact, it is likely that all plants have an effective or potential use, but utilised 36 

plants are those for which the use by humans is documented in the scientific literature. This definition, derived from 37 

(52, 53), was employed in the 2020 State of the World’s Plants and Fungi report (11, 21). 38 

The checklist was compiled using 12 available datasets, of which five have a global coverage: Crop Wild 39 

Relatives ((54), https://www.cwrdiversity.org), Royal Botanic Gardens (RBG), Kew’s Economic Botany Collection 40 

(http://apps.kew.org/ecbot/search), Germplasm Resources Information Network (GRIN) from the United States 41 

Department of Agriculture (USDA; https://www.ars-grin.gov), Medicinal Plant Names Services version 8.2 42 

(http://www.kew.org/mpns (55, 56)), and Palms of the World Online (http://www.palmweb.org); two cover primarily 43 

South-East Asia: Plant Resources of South-East Asia (PROSEA (57)) and the indigenous knowledge of New Guinea’s 44 

useful plants (58, 59); three span primarily Africa: Plant Resources for Tropical Africa (PROTA; 45 

https://www.prota4u.org/database), Useful Plants of West Tropical Africa (UPWTA; (60)) and Survey of Economic 46 

Plants for Arid and Semi-Arid Lands (http://apps.kew.org/sepasalweb/sepaweb); one has an American coverage: 47 

Plants for Malaria, Plants for Fever: medicinal species in Latin America (61); and one project (Project MGU – the 48 

Useful Plants Project (UPP; (62)) covers plants from both the Americas and Africa. A more comprehensive description 49 

of the data sources is provided in Table S1 and (21). We acknowledge that these 12 datasets do not constitute a 50 

complete list of all plant species used by humans across the world and knowledge gaps remain; nevertheless, this 51 

selection of such a range of large-scale databases covering different continents, disciplines, and taxonomic groups 52 

constitutes the most comprehensive source of utilised plant data. Because potential gaps, biases and uncertainties 53 

inevitably remain in plant use data, and those have not been assessed previously at global scale contrary to plant 54 

distribution data (e.g., (22)), we then adopted a cautious approach by mainly focusing our analyses on regional to 55 

continental differences and latitudinal gradients, and by avoiding over-interpretation. Our study thus emphasises the 56 

need for additional collection and collaboration efforts to document and understand the sampling distribution of plant 57 

use data at multiple spatial and temporal scales. 58 

Describing plant uses requires a standardisation of use categories and terminologies. Our study used an adapted 59 

version of level 1 of the Economic Botany data standards (20) with the ten following plant use categories: 60 

1. FOOD: Food for humans only, including beverages and food additives (45). 61 

2. ANIMAL FOOD: Forage and fodder for vertebrate animals only. 62 

3. INVERTEBRATE FOOD: Plants consumed by invertebrates used by humans, such as bees, silkworms, lac 63 

insects and edible grubs. 64 

4. MEDICINES: Both human and veterinary. 65 

5. POISONS: Plants which are poisonous to both vertebrates and invertebrates, both accidentally and 66 

intentionally, e.g., for hunting and fishing, molluscicides, herbicides, and insecticides. 67 

6. MATERIALS: Woods, fibers, cork, cane, tannins, latex, resins, gums, waxes, oils, lipids, etc. and their 68 

derived products. 69 

7. FUELS: charcoal, petroleum substitutes, fuel alcohols, etc. Given the importance of energy plants for people 70 

(61), those were distinguished from MATERIALS. 71 

8. ENVIRONMENTAL USES: Examples include intercrops and nurse crops, ornamentals, barrier hedges, 72 

shade plants, windbreaks, soil improvers, plants for revegetation and erosion control, wastewater purifiers, 73 

indicators of the presence of metals, pollution, or underground water. 74 

9. SOCIAL USES: Plants used for social purposes, which cannot be defined as food or medicine, for instance, 75 

masticatories, smoking materials, narcotics, hallucinogens and psychoactive drugs, and plants with ritual or 76 

religious significance. 77 

10. GENE SOURCES: Wild relatives of major crops which may possess traits associated with biotic or abiotic 78 

resistance and may be valuable for breeding programs. 79 
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While original sources of data provide information about the identity of species uses, they do not consistently inform 80 

us about the parts of the plants that are used, the intensity of use, the identity and origin of the users, or the time at 81 

which the use has been observed; therefore, questions associated with this information have not been addressed in this 82 

study and will require further data collection at a smaller scale. 83 

We standardised plant nomenclature and taxonomic following the World Checklist of Vascular Plants (WCVP) 84 

(23), which contains data for >1,400,000 scientific names found in the literature and >360,000 accepted names from 85 

>450 vascular plant families. To verify and correct species names, RBG Kew’s semi-automated taxonomic names-86 

reconciliation procedure was used (http://data1.kew.org/reconciliation/) to match names of each species of each source 87 

dataset against RBG Kew’s taxonomic backbone on 26/11/2019. The backbone is built on the taxonomy from the 88 

WCVP employing names drawn from the International Plant Names Index (http://www.ipni.org). Once synonyms and 89 

non-accepted names were removed from the concatenated species lists, a total of 39,957 unique utilised plant species 90 

was retrieved (21). 91 

Species distribution modelling 92 

Our modelling framework follows standards and best practices recently highlighted in the literature (64, 65), by 93 

pursuing the five following steps: 1. gathering and processing occurrence and environmental data, 2. selecting the 94 

modelling technique, 3. fitting models, 4. evaluating models, and 5. projecting species distribution. 95 

1.a. Utilised plant occurrence data 96 

We compiled occurrence records for each utilised plant species from the following seven databases:  (i) Global 97 

Biodiversity Information Facility (GBIF, https://www.gbif.org; accessed on January-March 2020) using the function 98 

get_gbifid from the R package taxize for species name matching and then the function occ_download from the R 99 

package rgbif for downloading records; (ii) Botanical information and Ecology Network (BIEN version 4.1, 100 

https://bien.nceas.ucsb.edu/bien; accessed on January 2020) using the function BIEN_occurrence_species from the R 101 

package BIEN; (iii) RAINBIO, which provides direct access to wild and native species occurrence records from Sub-102 

Saharan Africa, but from which we also obtained introduced and cultivated records directly from the authors (66); (iv) 103 

speciesLink, which provides occurrences for species found in Brazil (spLink, http://www.splink.org.br/); (v) BioTIME 104 

that provides local species assemblage data globally (67); (vi) Genesys from the global portal to information about 105 

Plant Genetic Resources for Food and Agriculture (PGRFA), discarding records from markets and stores 106 

(https://www.genesys-pgr.org); and (vii) the Crop Wild Relatives global occurrence database accessed via GBIF 107 

(http://www.cwrdiversity.org). 108 

Because georeferencing errors, imprecisions and biases are common in occurrence databases and can 109 

significantly impact species distribution modelling (68), we first discarded possibly erroneous points found outside of 110 

each species’ known geographic range according to the WCVP. Known ranges correspond to both species’ native and 111 

introduced areas at the level-2 (regional or sub-continental scale) of the World Geographical Scheme for Recording 112 

Plant Distribution (WGSRPD) developed by the International Working Group on Taxonomic Databases for Plant 113 

Sciences (69). Here we used level-2 because level-1 (continental scale) was too coarse, and levels-3 and 4 114 

(national/sub-national scales) were less reliable given a few countries have not been assessed by the WCVP and 115 

probabilities of assigning false presences and absences are significantly higher at local scale. We then used metadata 116 

information kept from primary data sources to only retain (i) records collected from 1945 onwards (70), and remove 117 

those with (ii) latitude or longitude coordinates out of their ranges ([−90, 90] and [−180, 180] respectively); (iii) 118 

coordinates uncertainty above 20 km; (iv) no decimal (i.e. rounded coordinates); (v) a count of individuals set to zero; 119 

(vi) both coordinates set to zero; (vii) coordinates equal to each other (i.e. latitude equals longitude); (viii) coordinates 120 

located within a buffer distance of ten kilometers around the centroids of countries, provinces, capitals, and botanical 121 

institutions, and (ix) within a buffer distance of 1km around the GBIF headquarters. We used the cc_* functions from 122 

the R package CoordinateCleaner (71) to clean the data according to the nine points given above. To limit spatial 123 

autocorrelation and avoid redundant information (72), we finally kept only one record per ten arc-minutes (~20 km) 124 

grid cell for each species. 125 

After cleaning, we did not retrieve any occurrence point for 4,270 utilised plant species. We thus performed 126 

analyses for 35,687 species (89% of the original list), of which 6,461 (18%) have reported uses for human food, 4,087 127 

(11%) for animal food, 971 (3%) for invertebrate food, 23,842 (67%) for medicines, 2,816 (8%) for poisons, 12,418 128 

(35%) for materials, 2,348 (7%) for fuels, 8,314 (23%) for environmental uses, 2,385 (7%) for social uses, and 4,713 129 
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(13%) for gene sources (considering that species can have more than one use). The final occurrence dataset contained 130 

>11 million records (Fig. S2). 131 

1.b. Environmental data 132 

We assembled an original set of 28 environmental variables. We used the 19 bioclimatic variables (temperature and 133 

precipitation averages over the 1979–2013 period) provided by the Climatologies at High resolution for the Earth’s 134 

land Surface Areas (CHELSA v.1.2). CHELSA has recently shown to outperform other climate data products for 135 

predicting species distribution (73). We collected four terrain variables calculated from a Digital Elevation Model 136 

(DEM) provided by the Global Multi-resolution Terrain Elevation Database (GMTED) (74): terrain roughness (R) 137 

and Topographic Ruggedness Index (TRI), two measures of local terrain heterogeneity as the maximum difference 138 

and the square root of averaged differences in elevation found within 3-by-3 cell size windows around each grid cell, 139 

calculated using the focal function from the R package raster; Topographic Wetness Index (TWI), calculated with the 140 

GRASS GIS (version 7.6.0) (75) r.topidx module, that combines local land slope and the upslope area converging to 141 

a grid cell to describe hydrological processes contributing to soil wetness spatial patterns; and the land slope, 142 

calculated with the function Slope from the Spatial Analyst toolbox of ARC/INFO GIS ESRI (version 10.5). We used 143 

three soil related variables (averages across a range of 0-1m depth) obtained from the International Soil Reference and 144 

Information Centre (ISRIC; http://www.data.isric.org): soil organic carbon stock (SOC), soil pH, and soil water 145 

capacity (76). We also considered the Enhanced Vegetation Index (EVI) derived from MODIS time-series data 146 

spanning the 2000–2013 period, extracted from the LEFT tool (77), and the Human Footprint Index representing the 147 

anthropogenic impacts on the environment for the 1995–2004 period based on human population pressure, land use 148 

and infrastructure, and access, and produced by the Wildlife Conservation Society (WCS) and the Columbia 149 

University Center for International Earth Science Information Network (CIESIN) (78). The 28 variables were 150 

available for time slices that do not always match with each other’s and occurrence data; however, we believe that 151 

considering a wide set of climatic, vegetation, edaphic, topographic, and human-related variables would better help 152 

unravel the distribution of utilised plants for the broad period going from mid-20th to early 21st century. For 153 

homogeneity and to match our occurrence records, all layers were resampled at a ten arc-min resolution and masked 154 

non-terrestrial lands based on the revised map of Terrestrial Ecoregions of the World (79), using the Resample and 155 

ExtractbyMask modules from the geoprocessing toolboxes Data management and Spatial Analyst of ArcGIS. 156 

From this pool of 28 variables, we then made a sub-selection intending to: (i) capture most of the variation 157 

in environmental conditions across the world; (ii) limit multi-collinearity, and (iii) make the most sense ecologically 158 

(80–82). We performed a Principal Component Analysis (PCA) using the function dudi.pca from the R package ade4 159 

to assess how much of the variance is explained by the variables and correlations among them. Then, we carried out 160 

a stepwise selection and a pairwise correlation analysis to exclude (multi-)collinear variables. The former consists in 161 

iteratively computing the Variance Inflation Factor (VIF) (83) of each variable and excluding one variable at a time if 162 

its VIF value exceeds a threshold of ten, until all remaining variables have VIF values below ten. The latter consists 163 

in excluding variables with the highest VIF values out of pairs of highly correlated variables (i.e., Pearson’s correlation 164 

coefficient r > 0.7). VIF analyses were conducted using functions vifstep and vifcor from the R package usdm. Based 165 

on the combination of these analyses and criteria, we finally selected nine predictors: precipitation seasonality, mean 166 

temperature of the coldest quarter, precipitation of the driest quarter, terrain roughness (R), Topographic Wetness 167 

Index (TWI), Enhanced Vegetation Index (EVI), Soil Organic Carbon stock (SOC), mean soil pH and the human 168 

footprint index. This diverse set of variables is well known to influence plant species distribution (84–86). 169 

2. Algorithm selection 170 

Occurrence records alone are unreliable to retrieve species richness patterns and macroecological transitions due to 171 

the numerous geographic and taxonomic biases that they contain (22, 87). However, they have been shown to perform 172 

better when modelled along environmental gradients (87). To retrieve species composition and richness across space, 173 

we therefore decided to use a “stacked-species distribution” approach, which consists in stacking modelled species 174 

distribution maps (88). Species Distribution Models (SDMs) are probabilistic models relating species occurrence to 175 

environmental variables to project their distribution across space and/or time through an estimate of environmental 176 

similarity (89). Many species distribution modelling techniques are available, but we decided to use MaxEnt version 177 

3.4.1. as it is a commonly used model that (i) relies on presence-only data and (ii) has shown to be one of the methods 178 

performing best in many different ecological contexts (81, 90). Because SDMs are sensitive to sample size (91), 179 

simpler models are usually recommended when very few occurrence points are available for each species (92). 180 
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Geographic models (GMs) can provide a suitable alternative to SDMs since they do not rely on an environmental 181 

niche approach but rather consider the spatial structure of occurrence locations. They can recover endogenous spatial 182 

determinants such as dispersal limitation, which are particularly important factors shaping the distribution of small 183 

range species (93). Therefore, we decided to fit a GM for species having less than ten occurrence records. The 184 

minimum number of ten points to fit SDMs may prevent from overfitting, which often occurs when the number of 185 

explanatory variables (nine in our case) exceeds the number of predictors (low degree of freedom). Because GMs 186 

cannot be used for extremely low sample size (e.g., for very rare species), we simply rasterised occurrences for species 187 

having less than three points using the function fasterize from the R package fasterize. 188 

3. Model fitting 189 

MaxEnt contrasts environmental conditions where species have been observed with conditions available or accessible 190 

in their surroundings (i.e., background region). Background selection is such a critical step of the modelling process 191 

(64) that we decided to individualise it for each species, as recommended in (94). We built an alpha-hull around 192 

occurrence points, which is a generalization of the convex-hull particularly useful for estimating species ranges whose 193 

habitat is irregularly shaped (95). Alpha-hulls were buffered using the “1/10th maximum” method to better account for 194 

spatially structured populations (96). We then selected the biomes (79) that intersect with the alpha-hull. To avoid 195 

extreme cases where a small alpha-hull intersects with biomes spreading over vast territories and provides an oversized 196 

background, we implemented two conditions: (i) the number of occurrence points lying inside each intersected biome 197 

must be higher or equal to ten, and (ii) the proportion of the biomes’ area covered by the alpha-hull must be higher or 198 

equal to ten percent. If the conditions are not met for a particular biome, we then selected the ecoregion (79). Since 199 

the alpha-hull algorithm was set up to exclude up to 5% of the records (i.e., geographic outliers), we also searched for 200 

the ecoregion polygons occupied by these points and merged them back to the background. Thus, the background 201 

region extends to the boundaries of the biomes or ecoregions where species were found and where other populations 202 

could potentially occur. 203 

Occurrence records are highly unevenly distributed in space and biased towards developed countries and 204 

sampling priorities of major botanical institutions (22, 97). As this uneven geographic coverage may significantly 205 

impact species distribution modelling, we accounted for this bias by (i) generating a biased prior map giving a non-206 

uniform weighting to background points (90, 98, 99), and (ii) integrating this map into the model building through the 207 

MaxEnt argument biasfile. This bias map representing the effort in sampling utilised plants was generated in two 208 

steps: (i) we used the rasterize function of the raster package in R to count the total number of utilised plant occurrence 209 

records found in each ten arc-min grid cell (based on the original dataset, before removing points occurring in the 210 

same cells), and (ii) we used the kde2d function from the R package MASS to interpolate these counts using a two-211 

dimensional kernel density estimator with a two degrees bandwidth value (Fig. S1). 212 

We ran MaxEnt models for 28,235 (79%) utilised plant species using the biasfile, a maximum number of 500 213 

iterations and 50,000 samples from the background area. We specified an automatic selection of response shapes 214 

(hereafter called feature classes) and allowed MaxEnt to fit linear, quadratic, product (interaction) and hinge 215 

(threshold-like response) feature classes to the data. We used the complementary log-log output (cloglog), which is a 216 

more appropriate estimate of species probability of presence that avoids assumptions about species prevalence (100). 217 

We fitted GMs for 5,464 (15%) utilised plant species using the Inverse Weighting Distance (IDW) method 218 

(101). IDW is a spatial interpolation model that computes the probability of occurrence as a weighted average of 219 

neighboring occurrences, with weights inversely proportional to the distance between locations. Distance-based GMs 220 

thus assume that species are more likely to occur close to known locations than further away (93). Since IDW requires 221 

absence data, we generated pseudo-absences to achieve a minimum prevalence of ten percent (i.e., 1:10 ratio between 222 

the number of cells occupied by species records and the number of non-occupied cells in the study ecoregion). IDW 223 

also requires a local neighborhood that we defined as the seven nearest locations using the function geoIDW from the 224 

R package dismo. Occurrence records were directly rasterised for the remaining 1,988 species (6%) that had less than 225 

three cleaned occurrence points. 226 

4. Model evaluation 227 

We used a species-specific tuning of the MaxEnt β regularization coefficient (hereafter called β multiplier) to assess 228 

the performance of our SDMs, as recommended in the literature (98, 102). MaxEnt uses the β multiplier to prevent 229 

the model from overfitting, notably by penalizing the use of overly complex feature classes. We use the masked 230 

geographically structured approach (102) to explore a range of β multipliers based on (103, 104): 1(default), 2, 6, 10. 231 



This method is a variant of the k-fold cross-validation that provides a better ability to detect overfitting and more 232 

realistic estimates of model performance than other cross-validation approaches (102). We spatially segregated the 233 

occurrence records into k=3 geographical bins with approximately the same number of points in each bin using a 234 

customised algorithm using the kmeans function from the R package stats. Models were then trained iteratively using 235 

k-1 (= 2) bins and tested on the third. At each iteration, we calculated for each β multipliers: (i) the corrected Akaike 236 

Information criterion (AICc) (103, 105) using the function ic from the R package rmaxent, (ii) the tenth percentile of 237 

the training omission rate (OR10) and (iii) the Area Under the Curve of the receiver operating characteristic on the 238 

testing dataset (AUC) as exported automatically from MaxEnt (106), and (iv) the maximum of the True Skill Statistics 239 

(TSS) (107) using the functions prediction and performance of the R package ROCR. We averaged these values over 240 

the iterations and ranked as best model the one with the regularization multiplier giving the lowest AICc. When the 241 

difference between the AICc values of the top models was not substantial (i.e., ΔAICc < 2), we ranked them 242 

successively by the lowest OR10test, highest TSStest and highest AUCtest (where the subscript test indicates that the 243 

metric is calculated on the testing dataset). We therefore ranked the models according to their capacity to minimise 244 

overfitting before accounting for their discriminatory ability, as recommended in the literature (102, 108). 245 

GMs’ predictions were assessed using the leave-one-out (LOO) method, a form of k-fold cross-validation 246 

suitable when sample size is small (109). LOO consists in iteratively training the model using n-1 data points (where 247 

n is the total number of points) and testing on the withheld point. The AUC was computed and averaged across the 248 

iterations. 249 

5. Projection of species distribution, richness, and endemism 250 

Individual SDMs performed well according to AUC (mean AUC: 0.809 ± 0.121; Fig. S3), OR10 (mean OR10: 0.239 251 

± 0.137; Fig. S4), and TSS (mean TSS: 0.618 ± 0.160; Fig. S5) values, which indicate good discriminatory ability of 252 

the models and minimised overfitting. GMs indicate fair overall performance (mean AUC: 0.741 ± 0.177; Fig. S6). 253 

We therefore projected the probability of occurrence of each species from our SDMs and GMs onto the geographical 254 

area used for model training (background region) based on species biomes and/or ecoregions and known total range 255 

(i.e., native and introduced) or native range only according to the WCVP. Probabilities of one were assigned to the 256 

pixels occupied by the 1,988 (6%) utilised plant species represented by less than three records.  257 

To retrieve species richness across space, we used a “Stacked-Species Distribution Models” (S-SDMs) approach, 258 

which consists in stacking individual species distribution maps obtained from SDMs (88). We summed species 259 

occurrence probabilities instead of using thresholded (binary) maps, as this has been shown to provide better estimates 260 

of species richness (110). We repeated this process considering species native and introduced ranges, and native ranges 261 

only to retrieve two global maps of species richness. Areas containing a large proportion of species with restricted 262 

ranges are potentially highly irreplaceable and do not match areas with high species richness, so they represent major 263 

targets for conservation (5, 6, 111). For this reason, we also estimated endemism as the sum of each species’ 264 

occurrence probabilities weighted by the inverse of their range size calculated as the sum of the predicted probabilities 265 

within their study region (112, 113). Finally, given that the location of the different uses of the 35,687 species remains 266 

largely unknown, we stress that our study does not intend to map the uses of plants but rather the distribution of species 267 

documented to be used somewhere in the world. Therefore, our results rather refer to a potential usage of the species 268 

occurring in different regions of the world rather than their actual use in those regions. Similarly, temporal variation 269 

in plant uses has not been quantified at such large taxonomic and spatial scales. Our results thus report a rather static 270 

view of the global distribution of plants used by humans. 271 

Although we used extensive information and accounted for sampling biases in our modelling framework, SDM 272 

predictions can still suffer from data incompleteness and uncertainty (22). For this reason, we also mapped utilised 273 

plant species richness and weighted endemism using independent data from the WCVP at the level-3 of the WGSRPD 274 

(69). Level-3 provides plant species distribution data at a country scale for most of the world, except in a few large 275 

countries for which information is available at a sub-country scale. While species richness is simply the count of 276 

species found in each level-3 region, weighted endemism weighs each species by the total area of level-3 regions that 277 

it occupies. To account for differences in surface area between regions, we estimated a scaling exponent that describes 278 

the species-area relationship (SAR) between the counts of species (weighted or not) and the level-3 region areas (z-279 

values range between 0.101 (social uses) and 0.141 (all uses)). Then, we used this exponent to rescale species counts 280 

for a standard area of 10,000 square kilometers as in (114). We executed this procedure for all utilised plant species 281 

together and for each individual use category. 282 

Analyses 283 



We investigated the variation of utilised plant species richness and weighted endemism across latitude, a well-known 284 

biogeographical gradient (115). To achieve this, we fitted Generalised Additive Models (GAM) between latitude and 285 

species richness/weighted endemism values across all pixels of our global maps following the approach from (116). 286 

Model fitting was performed using the function bam from the R package mgcv with our predicted estimates of species 287 

richness and weighted endemism per grid cell as response variable and a penalised cubic regression spline on the 288 

latitude of the grid cells as smooth term. Then, we predicted utilised plant species richness/endemism for each unique 289 

latitude value and divided each prediction by the total sum of the predictions to obtain a relative measure of utilised 290 

plant species richness/endemism along the latitudinal gradient. To better visualise differences among plant use 291 

categories, we considered species richness and endemism across all utilised plants grouped together as a baseline and 292 

then represented the deviation of the latitudinal patterns of each use category from this baseline. We used the function 293 

hclust from the stats package to assess (dis-)similarities and clustering among latitudinal profiles of each use by 294 

building dendrograms. 295 

We assessed potential associations between distribution patterns in the diversity of all plant species, utilised 296 

plant species, and human cultures. To our knowledge, no continuous map is available for both overall plant richness 297 

and cultural diversity, thus we worked at a country scale. Estimates of human cultural diversity were compiled by 298 

(117) for 256 countries. Estimates of total vascular plant species richness/endemism and utilised plant species 299 

richness/endemism were compiled from the WCVP (23). Level-3 geographic data were aggregated at a country scale 300 

for each individual species using a global map of countries provided by the Database of Global Administrative Areas 301 

(GADM; http://www.gadm.org) version 3.6, before computing area-corrected richness and weighted endemism 302 

indices as described previously (Figs. S15-16). Due to geographic mismatches between certain botanical regions and 303 

countries, and the absence of cultural diversity data for certain territories, we only kept 163 countries for analyses. 304 

Cultural diversity is a composite index made of three estimates: total number of languages, religions, and ethnic groups 305 

per country (117–119). The cultural diversity index uses SAR to account for variable country sizes and ranges from 0 306 

to 1, with values close to 0 indicating the least diverse countries and values close to 1 the most diverse ones. We 307 

assessed relationships between human cultural diversity, total plant, and utilised plant species richness/endemism 308 

using Generalised Least Squares (GLS) models with the gls function of the R package nlme. Unlike Ordinary Least 309 

Squares (OLS) models, GLSs allow to accommodate for potential spatial (auto-)correlation in the data. We used the 310 

latitude and longitude coordinates of the centroids of each country as spatial covariates, and tested three different 311 

correlation functions: exponential, gaussian and spherical. We fitted our GLS models using the restricted maximum 312 

likelihood method (REML) and selected the correlation structure with the lowest AIC. Analyses were repeated for all 313 

utilised plants together and for each individual use category separately. 314 

 We assessed spatial associations between utilised plant species richness, endemism, Indigenous lands, and 315 

protected areas at a finer resolution given the availability of raster maps for all variables. Indigenous lands represent 316 

areas managed and/or controlled by Indigenous Peoples (as defined by the International Labour Organization (120)). 317 

The global map was built based on 127 source documents and provides a percentage of each 50 km grid cell covered 318 

by Indigenous lands across the world (34). The completeness of this data cannot be guaranteed; it represents known 319 

Indigenous land areas based on publicly available geospatial data only. We used the World Database on Protected 320 

Areas (WDPA) (121) to extract the percentage of all protected areas contained in each 50 km cell of the Indigenous 321 

land grid. The WDPA is the most comprehensive global database of marine and terrestrial protected areas, comprising 322 

both spatial data with associated attribute data. It includes protected areas that meet definitions set by the International 323 

Union for Conservation of Nature (IUCN) and the Convention on Biological Diversity (CBD). Protected area coverage 324 

was calculated using ArcGIS and ESRI’s Modelbuilder. Utilised plant species richness and endemism maps obtained 325 

from SDMs were aggregated to the same 50 km resolution using the Resample tool from the Data Management 326 

toolbox in ArcGIS. Spatial correlations between utilised plant species richness/endemism and both Indigenous lands 327 

and protected areas were assessed by computing Pearson’s correlation coefficients across all values contained in 71 328 

cells (~3,550km)-wide windows built around each pixel. This resulted in global maps indicating the strength and 329 

direction of regional correlations between the different variables. The size of the moving window was selected so that 330 

all pixels of the world map have a correlation value (i.e., all windows contain at least one Indigenous land and one 331 

protected area) and our analysis provides a broad estimate of the geographical variation of the correlations at large 332 

spatial scale. For this analysis we used the focal and cor functions from the raster and stats R packages, respectively. 333 

All analyses and data processing were based on the R statistical software version 3.6.1, ArcGIS version 10.5 and 334 

GRASS GIS version 7.6.0. 335 

  336 
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 337 

Figure S1. Sampling intensity in occurrence records for all utilised plant species. Red indicates high sampling 338 

density, whereas green indicates low sampling density based on counting the number of occurrence records available 339 

for all utilised plant species in each 400 km2 grid cell and a kernel density probability approach providing a unitless 340 

relative index of density. 341 

 342 



 343 

Figure S2. Number of occurrence records used for modelling the distribution of each utilised plant species.  344 
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 346 

Figure S3. AUC evaluation scores of utilised plant species distribution models. Boxes represent upper and lower 347 

extremes, upper and lower quartiles, medians and outliers of AUC indices for all utilised plant species distribution 348 

models. Evaluation scores are given for MaxEnt models calibrated with more than ten occurrence records. 349 
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 351 

Figure S4. OR10 evaluation scores of utilised plant species distribution models. Boxes represent upper and lower 352 

extremes, upper and lower quartiles, medians and outliers of OR10 indices for all utilised plant species distribution 353 

models. Evaluation scores are given for MaxEnt models calibrated with more than ten occurrence records. 354 
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 356 

Figure S5. TSS evaluation scores of utilised plant species distribution models. Boxes represent upper and lower 357 

extremes, upper and lower quartiles, medians and outliers of TSS indices for all utilised plant species distribution 358 

models. Evaluation scores are given for MaxEnt models calibrated with more than ten occurrence records. 359 
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 361 

Figure S6. AUC evaluation scores of utilised plant species distribution models. Boxes represent upper and lower 362 

extremes, upper and lower quartiles, medians and outliers of AUC indices for all utilised plant species distribution 363 

models. Evaluation scores are given for geographic models (Inverse Distance Weighting) calibrated with less than ten 364 

occurrence records. 365 
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 367 

Figure S7. Global species richness of plants with known uses by humans. Utilised plant species richness 368 

corresponds to the sum of species occurrence probabilities predicted in each ten arc-minutes (~20 km) pixel found 369 

across their native ranges.  370 



 371 

Figure S8. Global distribution of utilised plant species richness (A) and weighted endemism (B) at the level-3 372 

(sub-national) of the World Geographical Scheme for Recording Plant Distribution (WGSRPD). Utilised plant 373 

species richness corresponds to the count of species found in each region. Utilised plant species endemism corresponds 374 

to the number of species present in each region weighted by the inverse of their range size calculated as the total area 375 

covered by the level-3 regions it occupies (i.e., weighted endemism). Geographic distribution for each species was 376 

retrieved from the World Checklist of Vascular Plants at the level-3 of the WGSRPD. To account for differences in 377 

surface area between regions, we estimated a scaling exponent that describes the species-area relationship (SAR) 378 

between the counts of species (weighted or not) and the level-3 region areas. We used this exponent to rescale species 379 

counts for a standard area of 10,000 square kilometers.  380 

 381 
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Figure S9. Global distribution of utilised plant species richness across ten categories of uses. Utilised plant 383 

species richness corresponds to the sum of each species occurrence probabilities predicted in each pixel by our 384 

“stacked-species distribution modelling” approach. 385 
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Figure S10. Global distribution of utilised plant species richness at the level-3 (sub-national) of the World 387 

Geographical Scheme for Recording Plant Distribution (WGSRPD) across ten categories of uses. Utilised plant 388 

species richness corresponds to the count of species found in each region. Geographic distribution for each species 389 

was retrieved from the World Checklist of Vascular Plants at the level-3 of the WGSRPD. To account for differences 390 

in surface area between regions, we estimated a scaling exponent that describes the species-area relationship (SAR) 391 

between the counts of species and the level-3 region areas. We used this exponent to rescale species counts for a 392 

standard area of 10,000 square kilometers.  393 
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 395 

Figure S11. Latitudinal distribution of utilised plant species endemism across ten categories of uses. The black 396 

curve on the left represents the latitudinal distribution of all utilised plant species endemism. The dendrogram on the 397 

top orders the ten use categories according to the (dis-)similarity of their species endemism latitudinal profiles. Black 398 

curves underneath the dendrogram correspond to the species endemism latitudinal profile for each use category. The 399 

heatmap describes the latitudinal variation in the deviation of utilised plant species endemism for the ten plant use 400 

categories from total utilised plant species endemism. Colors indicate higher (green) or lower (purple) proportions in 401 

utilised plant species endemism of a given use relative to the total utilised plant species endemism pattern. The bar 402 

chart underneath the heatmap shows the number of species considered in each use category. 403 

  404 



 405 



Figure S12. Global distribution of utilised plant species endemism across ten categories of uses. Utilised plant 406 

species endemism corresponds to the sum of each species occurrence probabilities predicted in each pixel weighted 407 

by the inverse of their range size calculated as the sum of the predicted probabilities within their study region (i.e., 408 

weighted endemism). 409 
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Figure S13. Global distribution of utilised plant species endemism at the level-3 (sub-national) of the World 412 

Geographical Scheme for Recording Plant Distribution (WGSRPD) across ten categories of uses. Utilised plant 413 

species endemism corresponds to the number of species present in each region weighted by the inverse of their range 414 

size calculated as the total area covered by the level-3 regions it occupies (i.e., weighted endemism). Geographic 415 

distribution for each species was retrieved from the World Checklist of Vascular Plants at the level-3 of the WGSRPD. 416 

To account for differences in surface area between regions, we estimated a scaling exponent that describes the species-417 

area relationship (SAR) between the counts of species and the level-3 region areas. We used this exponent to rescale 418 

species counts for a standard area of 10,000 square kilometers.  419 

 420 
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 422 

Figure S14. Relationships between utilised plant species richness and total plant species richness (A), and 423 

human cultural diversity (B) across 163 countries/territories. Geographic distribution for each species was derived 424 

from the World Checklist of Vascular Plants at the level-3 of the WGSRPD. To account for differences in surface area 425 

between regions, we estimated a scaling exponent that describes the species-area relationship (SAR) between the 426 

counts of species and the region areas. We used this exponent to rescale species counts for a standard area of 10,000 427 

square kilometers. 428 



 429 



Figure S15. Global distribution of utilised plant species richness at a country/territory scale across ten 430 

categories of uses. Utilised plant species richness corresponds to the count of species found in each region. 431 

Geographic distribution for each species was derived from the World Checklist of Vascular Plants at the level-3 of 432 

the WGSRPD. To account for differences in surface area between regions, we estimated a scaling exponent that 433 

describes the species-area relationship (SAR) between the counts of species and the region areas. We used this 434 

exponent to rescale species counts for a standard area of 10,000 square kilometers. 435 
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Figure S16. Global distribution of utilised plant species endemism at a country/territory scale across ten 438 

categories of uses. Utilised plant species endemism corresponds to the number of species present in each region 439 

weighted by the inverse of their range size calculated as the total area covered by the regions it occupies (i.e., weighted 440 

endemism). Geographic distribution for each species was retrieved from the World Checklist of Vascular Plants at the 441 

level-3 of the WGSRPD. To account for differences in surface area between regions, we estimated a scaling exponent 442 

that describes the species-area relationship (SAR) between the counts of species and the region areas. We used this 443 

exponent to rescale species counts for a standard area of 10,000 square kilometers. 444 
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 447 

Figure S17. Spatial correlations between utilised plant species endemism and proportions of both Indigenous 448 

lands and terrestrial protected areas. Pearson’s correlation coefficients were computed across all values contained 449 

in 71 cells (~3,550km)-wide windows built around each pixel. Pixel color indicates regions where utilised plant 450 

species endemism is positively (green) or negatively (pink) correlated with the proportion of Indigenous lands and 451 

terrestrial protected areas. Regions crossed in beige indicate pixels containing more than 50% of Indigenous lands and 452 



protected areas. All Indigenous lands and protected areas are thus not represented on the maps, although they are all 453 

accounted for in the analyses. Frequencies of Pearson’s correlation coefficients found across the world are given in 454 

histograms. The median correlation across the world is indicated by the black vertical line, while zero correlation is 455 

indicated by the red dashed line. One-sample Wilcoxon signed rank tests were performed to assess whether median 456 

correlations are significantly different from zero. 457 
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 459 

Table S1. Data sources of the World Checklist of Useful Plant Species. 460 



 461 
Table S2. Generalised Least Squares (GLS) summary statistics for the relationships between utilised plant 462 

species richness and total plant species richness, and human cultural diversity across 163 countries/territories. 463 

GLS models account for potential spatial (auto-)correlation in the data. Latitudinal and longitudinal coordinates of the 464 

centroids of each country were used as spatial covariates, and three different correlation functions were tested: 465 

exponential, gaussian and spherical. GLS models were fitted using the restricted maximum likelihood method (REML) 466 

and the correlation structure with the lowest AIC was selected. Analyses were repeated for all utilised plant species 467 

together and for each individual use category separately. Human cultural diversity is a composite index made of three 468 

estimates: total number of languages, religions, and ethnic groups per country. Total vascular plant species richness 469 

and utilised plant species richness were compiled from the World Checklist of Vascular Plants. 470 
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 473 

Table S3. Generalised Least Squares (GLS) summary statistics for the relationships between utilised plant 474 

species endemism and total plant species endemism, and human cultural diversity across 163 475 

countries/territories. GLS models account for potential spatial (auto-)correlation in the data. Latitudinal and 476 

longitudinal coordinates of the centroids of each country were used as spatial covariates, and three different correlation 477 

functions were tested: exponential, gaussian and spherical. GLS models were fitted using the restricted maximum 478 

likelihood method (REML) and the correlation structure with the lowest AIC was selected. Analyses were repeated 479 

for all utilised plant species together and for each individual use category separately. Human cultural diversity is a 480 

composite index made of three estimates: total number of languages, religions, and ethnic groups per country. Total 481 

vascular plant species endemism and utilised plant species endemism were compiled from the World Checklist of 482 

Vascular Plants. 483 
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