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Abstract
Progress in high-resolution numerical weather prediction (NWP) for urban
areas will require new modelling approaches and extensive evaluation. Here, we
exploit land surface temperature (LST) data from Landsat-8 to assess 100 m reso-
lution NWP for London (UK) on four cloud-free days. The LST observations are
directional radiometric temperatures with non-negligible uncertainties. We con-
sider the challenges of informative comparison between the Landsat LST and
the NWP scheme’s internal characterisation of the complete surface tempera-
ture. The LST spatial coverage allows large-scale observation–model differences
to be explored. In one case, obvious spatial artifacts in the NWP surface tem-
perature are observed relative to the Landsat LST. These are found to be related
to the NWP’s initial method of downscaling of soil moisture using soil proper-
ties. Updated model runs have higher spatial correlation between model and
Landsat LST. In cases where meteorological conditions favour the formation of
horizontal convective rolls, warmer air temperatures associated with updraughts
in the mixed layer extend inappropriately to the urban surface. This manifests
as warm stripes in the model surface temperature that are not present in the
Landsat LST. NWP–Landsat LST differences are larger in more built-up areas
on days nearer summer solstice. This is largely attributed to urban thermal
anisotropy, as Landsat preferentially views warmer urban surfaces, whereas the
model LST represents all surfaces. We evaluate two approaches to quantify this
sampling effect, but further work is needed to fully constrain it and facilitate
more informative model evaluation.
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1 INTRODUCTION

High-resolution weather and climate modelling is of
interest for day-to-day operations of cities and plan-
ning for future city conditions (Baklanov et al., 2018).
Developing operational products for urban applications
and services requires the development and evalua-
tion of next-generation numerical weather prediction
(NWP) models, with grid-cell resolutions of the order
of 100 m being explored (e.g., Boutle et al., 2016; Lean
et al., 2019). These scales pose new challenges as
greater heterogeneity and complexity of urban form
and properties are resolved, but they offer the poten-
tial to provide neighbourhood-scale information in
support of a wide range of integrated urban services
(World Meteorological Organization [WMO], 2019).
To deliver the higher resolutions required in urban
areas, sub-kilometre-scale models are being devel-
oped (Joe et al., 2018) to nest within kilometre-scale
models.

The verification of models in urban areas remains a
challenge given the lack of routine observations located
appropriately (Grimmond & Ward, 2021). Any WMO
observation sites (WMO, 2018a) in urban areas are likely to
be located within the urban canopy layer, rather than the
inertial sublayer or constant flux layer (Tang et al., 2021).
Standard WMO site observations, such as those located in
urban parks, represent grassed areas rather than the mix of
buildings and vegetation that occur in different neighbour-
hoods. Citizen science weather stations—for example,
Netatmo (Chapman et al., 2017; Fenner et al., 2021) and
WOW (Kirk et al., 2021)—and WMO (2018b) recom-
mended urban sites may better represent the mix of land
covers in their source areas (Coney et al., 2022; Cornes
et al., 2019; Muller et al., 2015; Vesala et al., 2008). If urban
canopy layer observations are used for model evaluation,
appropriate downscaling of variables from the inertial
sublayer to within the urban canopy layer is required (e.g.,
Blunn et al., 2022; Tang et al., 2021; Theeuwes et al., 2019;
Wang, 2014).

Eddy covariance (e.g., Hertwig et al., 2020; Masson
et al., 2002) and large-aperture scintillometry (Saunders
et al., 2024) sensors allow measurements of fluxes in the
inertial sublayer, but with restricted horizontal spatial cov-
erage (Grimmond & Ward, 2021; Ward et al., 2014) relative
to a city. Ground-based remote-sensing techniques, such
as automatic lidars and ceilometers and Doppler wind
lidars, allow vertical profiles to be evaluated, but they
remain limited in their horizontal coverage. Dense deploy-
ment of such sensors is generally limited to campaigns
lasting months to years—for example, in the urbisphere
in Berlin (Fenner et al., 2022) or in PANAME in Paris
(Kotthaus et al., 2023).

Infrared imagers on satellites provide routine wide-
area coverage during clear-sky conditions. There is a
trade-off between return period and spatial resolution. A
single Landsat satellite (with thermal resolution ∼100 m)
returns every 16 days at best (Malakar et al., 2018;
Parastatidis et al., 2017), but more frequent ∼1 km resolu-
tion observations have been used in urban areas (e.g., order
1 km; Leroyer et al., 2011).

Our objective here is to assess the use of high-
resolution (100 m scale) thermal remote sensing from
Landsat in evaluation of hectometre-scale NWP in urban
areas. In the study we use the Met Office research model
with a 100 m resolution (Lean et al., 2019), hereafter
UM100 (Section 2). The Met Office routinely runs the
so-called London Model, with an order 300 m resolution,
nested within the UK variable-resolution (UKV) Uni-
fied Model (UM; Boutle et al., 2016). Here, UM100 runs
are nested within a 300 m model (similar to the London
Model) to explore and to help develop next-generation
modelling on hectometre scales. The UM100 requires
land cover plan-area fraction from which to determine the
urban form and model parameters (e.g., albedo, emissiv-
ity). Given the crucial role of land cover information for
both modelling and remote sensing, we also use a refer-
ence dataset to characterise the study area (Section 2.2).
Consideration is given to the retrieval of land surface tem-
perature (LST) from Landsat-8 (Section 3.2) and the impli-
cations of thermal anisotropy in urban areas (Section 3.3).
An initial analysis of the model–observation differences
on one day reveals some model improvements that could
be addressed (Section 4.1), enabling revised UM100 runs
for further, more detailed evaluation (Sections 4.1–4.5).
This establishes the basic utility of thermal remote sensing
in the evaluation of surface energy balance behaviour of
hectometre-scale urban NWP models. Priorities for further
work on methodologies for model–satellite comparisons
are given in the concluding comments (Section 5).

2 NWP METHODS AND STUDY
AREA

2.1 UM100 model runs

The UK Met Office’s non-hydrostatic UM has a
semi-implicit semi-Lagrangian numerical scheme for the
deep-atmosphere dynamics (Davies et al., 2005; Wood
et al., 2014). In this study, UM version 12.0 is run in
research mode with one-way nesting to the highest res-
olution of 100 m (Lean et al., 2019), hereafter UM100
(Table 1). Four clear-sky days (Supporting Information
Table S1) are analysed using 30 hr model runs, with the
first 6 hr from 1800 UTC treated as spin-up (Table 1).
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HALL et al. 1773

T A B L E 1 Model grid resolutions and nesting. Figure 1 shows the areal extent of the three inner model domains.

Model
Horizontal
grid length

Number of
grid points

Vertical
levels

Time
step

Lateral boundary
updated

Model start
time (UTC)

Run
length (hr)

Global 17 km 1,536× 1,152 70 12 min n/a 1800 30

UKV 1.5 km 950× 1,025 70 1 min 60 min 1800 30

UM300 300 m 430× 430 140 12 s 15 min 1800 30

UM100 100 m 800× 800 140 3 s 15 min 1800 30

Note: Model start times are on the day before the case studies, allowing 6 hr spin-up.

F I G U R E 1 Model domains
extent for the UKV (outer map
extent), UM300 (red), and the
UM100 (blue) with building plus
paved plan area fraction (colour
bar) for the United Kingdom
(Fuller et al., 1994) and Europe
(Hollmann et al., 2013). Table 1
provides more details.

The Global Atmosphere and Land configuration 6.1
(Walters et al., 2017) is used for the outer global model
(midlatitudes resolution 17 km; Table 1) to provide the
boundary conditions for the UKV model (1.5 km resolu-
tion over the United Kingdom) (Tang et al., 2021). The
UKV in turn provides the boundary conditions for the
300 m resolution model (UM300) (Boutle et al., 2016),
from which the UM100 obtains its boundary conditions
(Figure 1). The regional models use Regional Atmosphere
and Land 3 (RAL3), which is the regional dynamics and
physics scheme science configuration. Relative to the
RAL2 baseline (Bush et al., 2022), the most significant
evolution in RAL3 is the unification of the tropical and
midlatitude configurations, with associated cloud and
microphysics parametrisation updates (Bush et al., 2024;
Field et al., 2023; Van Weverberg et al., 2021a, 2021b).

The UM100 80× 80 km2 domain has a 10–20 km buffer
around Greater London (Section 2.2) to give the turbulent
flow time to adjust to the higher resolution model grid
(i.e., spin-up; Blunn, 2021; Lean et al., 2019). The subgrid

turbulence is parametrised using a “scale aware” blending
scheme (Boutle et al., 2014). The local three-dimensional
Smagorinsky–Lilly turbulence scheme (Halliwell, 2007;
Lilly, 1962; Smagorinsky, 1963) and the non-local
one-dimensional planetary boundary layer (BL) scheme
(Lock et al., 2000) are weighted, such that the local scheme
is preferred with decreasing horizontal grid length.

The Joint UK Land Environment Simulator (JULES)
version 6.1 land surface model (Best et al., 2011; Clark
et al., 2011) urban option MORUSES (Bohnenstengel
et al., 2011; Porson et al., 2010a, 2010b) is used. MORUSES
has improved timing and amplitude of the sensible heat
flux in central London (Bohnenstengel & Hendry, 2016;
Hertwig et al., 2020; Warren et al., 2018), with respect to
the Best (2005) urban option used by Lean et al. (2019).
Anthropogenic heat flux is assumed to vary monthly but
with no diurnal or daily variations (Hertwig et al., 2020).
The values are derived from monthly mean energy con-
sumption for 1995–2003 (DUKES, 2003). The flux is
assumed to vary with built (or impervious) fraction
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1774 HALL et al.

F I G U R E 2 Greater London (Figure 1 shows location in the United Kingdom) land cover fractions at 100 m resolution from two
sources (Table 2), with higher fractions having darker shading. The mean fraction 𝜇 is given in each case. Note UM100 bare soil fractions for
London Heathrow Airport (LHR, circled) compared with VL2010 paved.

between 16.7 and 26.2 W⋅m−2 (for 100% impervious grid
cell) for different months of the year.

2.2 Study area

Greater London (Figure 2), covering 1,569 km2, experi-
ences a humid warm temperate climate (Cfb) (Kottek
et al., 2006). To characterise the UM100 model domain
(Figure 1), each grid cell is assigned the relevant land
cover fraction for the different JULES tile types (Table 2).
Operationally, the Met Office uses the so-called Institute
of Terrestrial Ecology (ITE; now Centre for Ecology and
Hydrology) surface classes derived from Landsat-5 The-
matic Mapper data (Fuller et al., 1994). For MORUSES
(Section 2.1), the “urban” ITE class is split into canyon and
roof using empirical relations (Bohnenstengel et al., 2011),
and other JULES tiles (vegetated, bare soil). A number
of issues arise from use of the ITE dataset: it is outdated
(Bunce et al., 1990) relative to the continually changing

urban landscape; it has coarse resolution (25 m) relative
to the sizes of buildings, roads, and trees; and the Bohnen-
stengel et al. (2011) relations are applied at a very different
resolution (100 m) from their development (1 km).

To explore this further, the UM100 surface
cover is compared with a more recent, higher res-
olution dataset, hereafter referred to as VL2010
(Lindberg & Grimmond, 2011a, 2011b; Lindberg
et al., 2018). Based on 1 m observations aggregated to 4 m,
VL2010 has five land cover classes. Here, all trees and
shrubs are collapsed into one class (Table 2). To compare
the datasets (UM100, VL2010) the projections are first
made consistent. This involves reprojecting the ITE data
onto the rotated pole grid of the UM and making the
necessary datum correction.

Comparison of the land cover datasets (Figure 2) indi-
cates the UM100 canyon fraction is overestimated and
the roof fraction is underestimated, particularly outside
the city centre. The UM100 trees-plus-shrubs fraction is
underestimated for the Greater London area. Bare soil
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HALL et al. 1775

T A B L E 2 Surface cover fractions are used to weight the
JULES calculated variables for each tile within a UM100 grid cell.
The surface cover is compared with a reference dataset
(VL2010)—Lindberg and Grimmond (2011a) and Lindberg et al.
(2018) provide details—which combines classes as indicated.

JULES tile-UM100 VL2010

Broadleaf trees Trees and shrubs

Needleleaf trees

Shrubs

C3 grass Grass

C4 grass

Inland water Water

Bare soil Bare soil

Canyon Paved surface

Roof Buildings or roofs

is generally overestimated, and is particularly unrealis-
tic over Heathrow Airport (LHR, circled in Figure 2).
As these land cover fractions are the basis for assigning
model parameters (Bohnenstengel et al., 2011; Hertwig
et al., 2021), they impact the UM100 modelled surface
temperature (Section 2.3).

2.3 UM100 surface temperature

The UM100 surface temperatures are derived from the
JULES surface energy balance fluxes (Best et al., 2011) for
each tile (Table 2) with the canyon and roof tiles using the
MORUSES option (Best et al., 2011; Porson et al., 2010a).
Tile emissivities 𝜀s,t have temporally and spatially fixed val-
ues except for the canyon tile, which varies with canyon
geometry using fixed material values for wall and road.
The grid-cell surface emissivity 𝜀s is a function of the tile
surface fractions ft:

𝜀s =
∑

t
ft𝜀s,t. (1)

The surface emissivity in the UM100 is compared
with the 100 m resolution Advanced Spaceborne Ther-
mal Emission and Reflection Radiometer (ASTER) Global
Emissivity Dataset (ASTER GEDv3; Hulley et al., 2015)
used in the Landsat LST retrieval (Section 3.2) on the
UM grid (Supporting Information Figure S2). The mean
UM100 emissivity (0.964) is lower than ASTER GED
(mean of 0.972). The Landsat LST sensitivity to this differ-
ence is∼0.4–0.6 K for the four days studied. Unrealistically
low emissivity values (∼0.90) for LHR come from the high
bare-soil fractions assigned (Figure 2).

The grid-cell value surface temperature TS is a function
of the tile surface fractions and the tile surface tempera-
tures TS,t:

TS =
∑

t
ftTS,t. (2)

The hourly model temperatures are linearly interpo-
lated in time to the Landsat overpass time (∼1100 UTC,
Supporting Information Table S1) to give “UM100 LST”.
The Landsat and UM100 LST are compared within the
VL2010 domain (Figure 2) with a common mask. The
UM100 minus Landsat LST difference is designatedΔLST.
In Figures 5 and 6 (Section 4.1), maps of ΔLST are pre-
sented with the mean ΔLST subtracted (zero-mean differ-
ences) to highlight spatial patterns of variability.

3 LANDSAT METHODS

3.1 Landsat-8 observations

Landsat-8, launched in 2013, is in a sun-synchronous,
near-polar orbit with a 16-day repeat cycle (USGS, 2021a).
The London overpass time is around 1100 UTC for the
dates relevant to this study (Supporting Information
Table S1). Landsat-8 carries two sensors: the Opera-
tional Land Imager with nine spectral bands in the vis-
ible to shortwave infrared wavelengths; and a thermal
infrared sensor (TIRS) with two spectral bands in the
atmospheric window (10.6–11.2 μm and 11.5–12.5 μm)
(USGS, 2021a).

The Landsat Collection 2 Level-1 data products
(USGS, 2021b) including the operational land imager
data (nominal resolution 30 m) are used to assess cloud
cover and to estimate surface albedo. To identify candi-
date clear-sky days, the Landsat total cloud cover fraction
cloud mask derived from the quality assurance band
(USGS, 2021b) is initially used, followed by assessment of
the morning cloud optical depth estimated from hourly
UKV profiles of liquid and ice water mass fractions. Four
study dates are selected (Supporting Information Table S1)
because of their near-zero (<4%) total cloud cover in the
Landsat image and very low total cloud optical depths
(<0.05) from 0900 UTC until the observation time across
the UM100 domain.

The Landsat data are transformed from the WGS84
coordinate reference system to the British National Grid,
then reprojected and interpolated to the rotated pole
UM100 grid. Supporting Information Figure S3 shows
a false-colour visible image, cloud mask, and band 10
(TIRS) brightness temperature on one of the study dates
(July 15, 2018) after transforming the Landsat data to the
UM100 grid.
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1776 HALL et al.

T A B L E 3 Comparison of three retrieval methods using Landsat-8 thermal infrared sensor (TIRS) data to obtain land surface
temperature.

This study
FORTH
(Parastatidis et al., 2017)

NASA JPL
(Cook et al., 2014)

Atmospheric profiles ERA5 (0.25◦ × 0.25◦)
(Hersbach et al., 2020)

NCEP–NCAR (2.5◦ × 2.5◦) (Kalnay
et al., 1996)

GEOS-5 FP-IT (0.625◦ × 0.5◦)
(Lucchesi, 2013)

RTM RTTOV-13
(Saunders et al., 2020)

MODTRAN4
(Berk et al., 1999)

MODTRAN4 (Berk et al., 1999)

Algorithm Equation (3) Jimenez-Munoz et al. (2009, 2014) RIT–JPL (Cook et al., 2014)

Abbreviations: ERA5, European Centre for Medium-Range Weather Forecasts Reanalysis v5; FORTH, Foundation for Research and Technology Hellas;
GEOS-5 FP-IT, Goddard Earth Observing System Model Version 5, Forward Processing for Instrument Teams; JPL, Jet Propulsion Laboratory; NASA, National
Aeronautics and Space Administration; NCEP–NCAR, National Centers for Environmental Prediction–National Center for Atmospheric Research; RIT,
Rochester Institute of Technology; RTM, radiative transfer model.

3.2 LST retrieval and assessment

Here, we apply a single-channel radiative-transfer-based
algorithm to retrieve LST from Landsat-8 TIRS data
(Table 3, Figure 3). Band 10 (10.6–11.2 μm) is used as it
has the lower calibration uncertainty of the two ther-
mal bands (USGS, 2019a). Its nominal resolution is 100 m
(USGS, 2021a), and a “real” resolution of around 115 m has
been estimated (USGS, 2019b).

The radiative transfer model (RTM) RTTOV (Saunders
et al., 2020) is used to calculate the downwelling and
upwelling radiance and the atmospheric transmittance for
calculating the blackbody radiance from the land surface
B𝜆(TLST) using

B𝜆(TLST) =
LTOA(𝜆) −

∑
i B𝜆(Ti)Δt − (1 − 𝜀)ts

∑
i

B
𝜆(Ti)Δt

ti−0.5ti+0.5

𝜀ts
,

(3)
where LTOA is the top-of-atmosphere radiance observed
by Landsat, B𝜆(Ti) is the blackbody radiance from level
i, ti is the level i to space transmittance, ts is the sur-
face to space transmittance, and 𝜀 is the surface emissivity
obtained from ASTER GEDv3 (Hulley et al., 2015). The
mean of ASTER band 13 (10.25–10.95 μm) and band 14
(10.95–11.65 μm) emissivity is used as the Landsat band 10
emissivity. Atmospheric profiles of temperature, water
vapour, carbon dioxide, and ozone from the European
Centre for Medium-Range Weather Forecasts (ECMWF)
Reanalysis v5 (ERA5; Hersbach et al., 2020) interpolated to
the Landsat observation times and locations are provided
as input to RTTOV (Table 3). The land surface blackbody
radiance is converted to LST using a look-up table with
0.01 K precision, used to obtain the LST by interpolating
between the radiance values closest to B𝜆(TLST).

To verify the retrieved LSTs and gauge their uncer-
tainty, we compare the retrieved LST with two Landsat
LST products based on different algorithms (Table 3) that
also use ASTER GEDv3 emissivities. MODTRAN4 (Berk

F I G U R E 3 Summary of Landsat land surface temperature
(TLST) retrieval algorithm with inputs/outputs (blue parallelograms)
and processes (orange rectangles) indicated, where L↑ and L↓
respectively refer to the upwelling and downwelling long-wave
radiance and t is atmospheric transmittance. Abbreviations:
ASTER, Advanced Spaceborne Thermal Emission and Reflection
Radiometer; ERA5, European Centre for Medium-Range Weather
Forecasts Reanalysis v5.

et al., 1999) is used in both the Foundation for Research
and Technology Hellas (FORTH) and Jet Propulsion
Laboratory (JPL) algorithms but with different inputs
(Table 3). FORTH uses over 4,000 simulations with
different atmospheric profile inputs (Jimenez-Munoz
et al., 2009, 2014), allowing single-equation operational
global-scale LST. JPL (Cook et al., 2014) uses Goddard

 1477870x, 2024, 760, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/qj.4669 by T
est, W

iley O
nline L

ibrary on [22/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



HALL et al. 1777

F I G U R E 4 Land surface temperature (LST) products (Table 3) for (a–c) July 15, 2018, and (d–f) October 10, 2018, retrieved using (a, d)
this study and the differences (b, e) Foundation for Research and Technology Hellas (FORTH) minus this study and (c, f) Jet Propulsion
Laboratory (JPL) minus this study. Panels (b), (c), (e), and (f) are zero meaned; that is, the mean difference 𝜇 is subtracted before plotting.
The mean difference 𝜇 and standard deviation 𝜎 values are given in each case. Statistics are calculated after applying a common spatial mask
to each dataset.

Earth Observing System Model Version 5, Forward
Processing for Instrument Teams (GEOS-5 FP-IT) reanal-
ysis data (Lucchesi, 2013) and L2 top-of-atmosphere
reflectance data.

The mean difference 𝜇 is removed to highlight spa-
tial patterns of variability of the three retrievals (Figure 4).
The size of the mean LST differences (−1.6 to +0.4 K)
and their standard deviations (𝜎, 0.2–0.6 K) are of the
order expected given the radiometric uncertainty from
Landsat-8 (Gerace & Montanaro, 2017). Differences are
indicative of the uncertainty arising from the different
retrieval methods, with the median uncertainty in LST
from the surface emissivity uncertainty being ∼0.3 K.
Other uncertainty arises from different atmospheric pro-
file data used (Table 3). Visible discontinuities in the
JPL-retrieved LST differences occur due to changes in
the JPL retrieval input profiles at the grid-cell bound-
aries at 51.5◦N (Figure 4c) and 0◦ longitude (Figure 4f).
The total uncertainty (∼1 K) is an order of magnitude
less than the observed spatial and temporal variability.
The Pearson correlation coefficient calculated between
the three datasets is above 0.97 on both days (Supporting
Information Table S2), again indicating uncertainty in
the observed LST is much smaller than the spatial
variability.

From comparison of the three Landsat LST retrievals,
we conclude that model-observation differences

(Section 4.1) greater than the observed ∼1 K differences
between retrievals (Figure 4) can be attributed to the NWP
model (e.g., physics, ancillaries) and sampling effects
(thermal anisotropy, Section 3.3), rather than observation
errors.

3.3 Comparison of Landsat
with UM100 LST

The viewing zenith angle of Landsat varies from 0◦ (nadir)
to ±8.6◦. This near-nadir view results in near-horizontal
facets being relatively heavily weighted in the sensor
field of view. As vertical facets (i.e., walls) make up a
large fraction of the total surface area in cities, the “com-
plete” surface temperature should account for them
in both observations and models (Voogt, 2000; Wang
et al., 2022). However, neither satellite views nor urban
land surface models do this, and they differ in their facet
weightings and definitions. In late morning under clear
skies, near-horizontal buildings’ facets (e.g., roofs) can be
significantly warmer than walls that have been shaded
within urban canyons (Morrison et al., 2021). This qual-
itative understanding of the sampling or definitional
difference due to thermal anisotropy predicts that Land-
sat will be warmer than the model LST on sunny days in
more urbanised areas.
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1778 HALL et al.

There are two logical approaches to minimise this
definitional difference: extract a nadir-view LST from
the model or obtain a complete surface temperature
Tc from Landsat. The former approach is challeng-
ing, as the canyon tile combines paved surfaces (e.g.,
roads) and walls requiring the horizontal (paved+ roofs)
and vertical (walls) facet temperatures to be separated
before combining with appropriate vegetated surface val-
ues. Here, we consider the latter approach, estimat-
ing Tc from the Landsat LST Tr based on geomet-
ric and meteorological information (Yang et al., 2020)
(Section 4.3).

We also compare LST retrieved from the moderate
resolution imaging spectroradiometer (MODIS) on one
day (July 15, 2018) also to the UM100 (Section 4.4). The
MOD11A1 Version 6.1 Level-3 1 km resolution gridded
LST product (Wan et al., 2021) is obtained using a gener-
alised split-window LST algorithm (Wan & Dozier, 1996).
As with the Landsat data, the MODIS LST data are trans-
formed from their native (sinusoidal) projection to the
British National Grid, then transformed to the UM100
grid. On this study day, MODIS observed London with an
oblique view of ∼52◦ at 1200 UTC, resulting in a greater
weighting of vertical facets and therefore an LST more
representative of Tc (Jiang et al., 2018). However, the
MODIS spatial resolution (1 km) is much coarser than
Landsat (∼100 m).

4 RESULTS AND DISCUSSION

Comparison of the UM100 and Landsat LST identified
issues related to surface ancillary data (treatment of soil
moisture, leaf area index, and spatial mismatch of surface
mapping due to incorrect co-ordinate reference systems).
Here, we present UM100 runs illustrating the soil moisture
issue only. All runs shown here used RAL3 (Section 2.1)
after leaf area index and spatial mismatch issues were

addressed, having been highlighted in earlier (RAL2) runs
and comparisons. In the “initial” runs shown here, soil
moisture issues remain, and in the “final” runs the soil
moisture treatment is updated.

4.1 Spatial assessment of UM100 LST

Initial model run results for July 15, 2018, show an over-
all model cold bias with mean difference in LST of 6.4 K
(Figure 5). There is a clear lack of spatial agreement
between the observed and modelled LST: the high UM100
LSTs above 315 K in the southeast of the domain do not
have a corresponding analogue in the observations, and
the standard deviation of the differences is high, at 3.4 K.
The high UM100 LSTs are associated with a “blocky” LST
pattern that also extends more subtly south and northeast
of Greater London (Supporting Information Figure S4d)
and correlates with low model soil moisture (Support-
ing Information Figure S4a). Throughout the UM100
domain, low and high soil moisture patterns correlate
with high and low LST respectively (Supporting Informa-
tion Figure S4). As these LST patterns are not found in
Landsat, we conclude that the soil moisture patterns are
unrealistic.

In the initial model run, UM100 soil moisture (Sup-
porting Information Figure S4a) is calculated by down-
scaling the global model soil moisture stress using 100 m
resolution soil ancillaries (critical point and wilting point).
The 100 m critical point and wilting point fields contain
sharp gradients, with regions of low critical point and
wilting point correlating with regions of low UM100 soil
moisture. To ameliorate the issue, final model runs use the
global critical point and wilting point linearly interpolated
to the 100 m grid, resulting in a smoother soil moisture
field without regions containing low values (Supporting
Information Figure S4b).

The final model runs (Figure 6) show that the south-
east hotspot in July 2018 is largely removed (cf. Figure 5).

F I G U R E 5 Land surface temperature (LST) on July 15, 2018, from (a) Landsat and (b) UM100 (initial run), and (c) (UM100−Landsat)
zero-mean (mean subtracted) difference, with mean difference 𝜇 and standard deviation 𝜎 calculated for the common area in each dataset.
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HALL et al. 1779

F I G U R E 6 Land surface temperature (LST) on four days from (a, d, g, j) Landsat and (b, e, h, k) UM100 (final runs), and (c, f, i, l) their
zero-mean (mean subtracted) difference, with mean difference 𝜇 and standard deviation 𝜎 calculated for the common area in each dataset.

This results in a spatial distribution of UM100 LST closer
to the observations, with reduced standard deviations of
the differences from 3.4 K to 3.0 K. However, the mean
difference increases from −6.4 K to −6.8 K. This can be
attributed to an average soil moisture increase in the
new model runs (Supporting Information Figure S4c).
The October (𝜇=−2.6 K) and November (𝜇=−0.1 K)
cases have a relatively small overall model–Landsat
bias, whereas a strong cold bias is present in the April
(𝜇=−6.3 K) and July (𝜇=−6.8 K) cases. The exact cause
of this seasonal variation is not explored here, but it

is partly associated with April and July being closer to
the Northern Hemisphere summer solstice, when there
is more short-wave radiation. In such circumstances,
larger energy fluxes and temperature gradients develop
between the land surface, atmosphere, and soil, with
the potential for greater errors. The standard devia-
tions of the differences are also much smaller in the
October (0.9 K) and November (0.9 K) cases compared
with the April (2.0 K) and July (3.0 K) cases. Although
each day has different spatial patterns in the differ-
ences, larger positive values tend to occur in the more
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1780 HALL et al.

F I G U R E 7 Variation of median (line) and interquartile
range (shading) ΔLST (equal to UM100 minus Landsat) with built
(paved+ building) fraction on four days (key). Built fractions are
from the VL2010 dataset (Table 2), with grid cells with a water
fraction greater than 0.25 removed from this analysis.

vegetated areas, particularly on the outskirts of Greater
London compared with the more densely built-up interior
(Section 4.3). The diagonal stripes visible (Figure 6) in the
UM100 LST but not Landsat in April 2020 are discussed
in Section 4.5.

4.2 Comparison to air temperature

As a general assessment of the final runs, we use 1.5 m
air temperature observations (Met Office, 2012) from
five sites (Heathrow Airport, Kew Gardens, St James
Park, Kenley Airfield, Northolt) across Greater London.
We find a model air temperature cold bias of −0.6 to
−4.1 K across the four case study days. This is consis-
tent in terms of sign with the model–Landsat LST cold
bias; however, across dates and sites there is consider-
able scatter in these air–surface bias results (Support-
ing Information Figure S5). This reflects the different
processes controlling the LST (cf. air temperature) bias,
which likely includes critical impacts from model–Landsat
LST definitional differences (Section 3.3). The relative
model–Landsat LST cold bias is explored further in
Sections 4.3 and 4.4.

4.3 Relation of LST differences to land
cover

4.3.1 Built fraction

To better understand the controls on the spatial distribu-
tion of model–observation differences (ΔLST), differences
are analysed against the built-area (paved+ building)
fractions from VL2010 (Figure 2). The dependencies are
shown for the four days in Figure 7. The UM100 LST
becomes increasingly cold relative to Landsat with greater
built fraction (lower vegetated fraction) on all four days.
This trend is much stronger on the two days (July 15, 2018
and April 22, 2020) with the larger mean ΔLST. This indi-
cates that there is a larger temperature contrast between
built and highly vegetated areas, such as parks, in the
Landsat imagery relative to UM100 on these two days.
This tendency for larger LST differences with increasing
built fraction may be attributed to the sensor field of view
or sampling effect of Landsat described in Section 3.3. To
mitigate this effect, we estimate the complete surface tem-
perature Tc from the Landsat LST Tr, adding to Tr the
adjustment from Yang et al. (2020).

The Yang et al. (2020) adjustment comprises a model
based on three-dimensional simulations of urban surface
facet temperatures for different surface geometries and
properties, meteorological conditions, and solar angles.
In their study area (Hong Kong), daytime differences
between Tc and Tr reach up to 10 K, varying with geomet-
ric characteristics such as plan area fraction of buildings
𝜆P (Supporting Information Figure S1) and wall facet area
to building footprint area fraction F, and meteorologi-
cal conditions (viz., solar irradiance, wind speed). Yang
et al. (2020) report greater differences between Tc and Tr
in more built-up areas (i.e., larger both 𝜆P and F) and with
higher solar irradiance.

We calculate the Yang et al. (2020) adjustment (Tc −Tr)
for London. The magnitude and sign of the adjustment
varies between days (Figure 8a), because of differences
in mean LST, solar irradiance, and solar geometry. The
adjustment becomes cooler at higher built fractions. After
applying this correction, the differences betweenΔLST on
each day (Figure 8b) are greatly reduced and the overall
trend with built fraction for July 15, 2018, and April 22,
2020, reduces and changes sign. However, a model cold
bias of 3–7 K (median) for each day remains.

Our use of the Yang et al. (2020) empirical method
to estimate Tc from the Landsat LST Tr entails several
caveats: impacts of vegetation on temperature are not
accounted for in this model; their parameter ranges do not
cover all our cases (e.g., low winter sun angles at London
latitudes); the material types and canopy geometries con-
sidered in Hong Kong are likely to be different to London,
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HALL et al. 1781

F I G U R E 8 As Figure 7,
but using the complete
temperature Tc derived using
the Yang et al. (2020) empirical
adjustment added to the
Landsat LST Tr. (a) The values
of the adjustment. (b) UM100
LST (TUM100) minus Tc (shown
with the same vertical scale as
Figure 7).

which will affect the relation between Tc and Tr. More
work is needed to obtain locally applicable parameters for
the London area.

4.3.2 Dominant land cover

To explore the role of model land cover type we analyse
ΔLST (TUM100 −Tr) for the grid cells with one “dominant”
surface type with a fraction >0.5 (Figure 9). On July
15, 2018, and April 22, 2020, there are consistently larger
ΔLST (Figure 7) and larger median ΔLST for all four
VL2010 built and vegetated classes (Figure 9). There are
small differences up to 0.4 K on all four days between
the median ΔLST for the two built classes (vertical
red and gold lines, Figure 9). This implies that the
model–observation bias is relatively insensitive to whether
a surface is predominantly roof or paved. The differences
in median ΔLST are larger between the two vegetated
classes between days (0.4–3.0 K), with the July 2018 case
having a median ΔLST of −4.1 K for trees and shrubs but
−7.1 to−7.7 K for grass, roof, and paved classes (Figure 9b).
The median ΔLST is smallest for trees and shrubs on all
days, except when the differences are very small (<0.2 K)
for all classes on November 17, 2017 (Figure 9d). The areas
with trees and shrubs as the dominant class also tend to
have the lowest Landsat and model LST (Figure 6).

However, the definitional difference between
the Landsat LST and the model analogue compli-
cates the interpretation of these results. If we take
ΔLST=TUM100 −Tc (Supporting Information Figure S6),
the differences between the medianΔLST for the two built
classes increase to 3.5–3.9 K. The median ΔLST becomes

much smaller for roofs on all days except November 17,
2017 (Supporting Information Figure S6c), with much
smaller changes for the other three classes. This is because
the areas where roofs dominate occur mainly in central
London (Figure 9a), where larger differences between Tc
and Tr are expected linked to their larger 𝜆P and F values.

4.4 Assessment of UM100 LST
with MODIS

Comparison of the MODIS LST with the updated model
run on July 15, 2018 (Figure 10) at 1200 UTC has both
a much smaller mean difference (−0.7 K cf. −6.8 K for
UM100–Landsat) and smaller standard deviation (2.6 K cf.
3.0 K). This smaller mean difference is largely explained
by MODIS’s oblique view angle of ∼52◦ and the rela-
tion between the satellite and solar azimuth angles. Sim-
ulations of thermal anisotropy in central London on
August 27, 2017 (Morrison et al., 2023), relative to a nadir
view, show the highest LST is obtained when the satellite
and solar azimuth angles align, whereas the lowest LST is
obtained when these angles are 180◦ apart, as the satellite
will view more shaded facets. This effect increases as the
satellite view angle increases away from nadir. On July 15,
2018 (Figure 10), the MODIS view azimuth angle of −67◦
is 116◦ from the solar azimuth angle 𝜑s of +177◦. As this
sun–sensor azimuth angle difference exceeds 90◦, when
combined with its oblique view angle, MODIS preferen-
tially views shaded (cf. sunlit) facets, resulting in a signifi-
cantly lower LST than Landsat’s near-nadir (<5◦) view.

Jiang et al. (2018) found, based on a single satellite view
angle, the closest match to the complete urban surface
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1782 HALL et al.

F I G U R E 9 Analysis of ΔLST (UM100 minus Landsat) for UM100 grid cells with one dominant land cover type (>0.5, based on
VL2010): (a) spatial pattern of dominant class (colour bar); (b–e) normalised distribution of ΔLST by land cover type (key: bare soil not
shown) with median (vertical lines), (b, e) 0.5 K and (c, d) 0.25 K bins for (b) July 15, 2018, (c) October 10, 2018, (d) November 17, 2017, and
(e) April 22, 2020. See also Supporting Information Figure S6.

temperature is obtained with a satellite azimuth angle of
𝜑s ± 90◦ and zenith angle of 45–60◦. This suggests that
the MODIS LST is more representative of the complete
surface temperature than Landsat in this case. Given the
MODIS–solar azimuth difference, a small cold bias relative
to the complete surface temperature is expected instead of
the warm bias for Landsat.

Despite the similar mean LST, there are clear dif-
ferences in the spatial distribution between MODIS and
UM100. The spatial distribution of the differences appears
similar to the corresponding UM100–Landsat differences
(Figure 6f). The relative model warm bias to the east of the
domain is still present, and there is a noticeable∼5 K warm
bias in central London.
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HALL et al. 1783

F I G U R E 10 Comparison for July 15, 2018, at 1200 UTC of land surface temperature (LST) from (a) MODIS and (b) UM100, and (c)
their zero-mean difference (UM100 minus MODIS), with the mean difference 𝜇 and standard deviation 𝜎 calculated for the common area of
the two datasets.

F I G U R E 11 UM100 model output for April 22, 2020, at the Landsat observation time (1058 UTC): (a) model domain surface
temperature with ∼11 km line showing where the following vertical cross-sections are located; (b) air temperature (dashed line indicates
boundary layer height zi); (c) U, (d) V , and (e) W wind components. Horizontal ticks in (b)–(e) are spaced 1 km apart.

4.5 Horizontal convective rolls

On April 22, 2020, diagonal stripes are evident in the
UM100 but not the Landsat LST (Figure 6), suggest-
ing that the model is unrealistic in this regard. The

stripes are caused by horizontal convective rolls (HCRs)
being resolved in the UM100 (Figure 11). HCRs are
counter-rotating horizontal turbulent vortices within the
convective BL (AMS, 2022; Etling & Brown, 1993; Khanna
& Brasseur, 1998; LeMone, 1973; Weckwerth et al., 1999;
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1784 HALL et al.

Young et al., 2002). HCRs span the depth of the
BL (zi, defined here by the height a moist parcel
rising adiabatically becomes negatively buoyant), which
is ∼600 m for the UM100 (Figure 11b) north–south
cross-section in the centre of the domain (Figure 11a). The
UM100 HCRs have narrow (∼0.5zi, warm, positive vertical
velocity) updraughts and broad (∼1.5zi, cool, negative ver-
tical velocity) downdraughts (Figure 11b,e) parallel to the
eastnortheast (246◦) mean BL flow. When the updraughts
reach the capping inversion, they spread perpendicular
to the mean flow (Figure 11c,d), before descending. The
updraughts extend throughout the BL down to the sur-
face, causing the high LST stripes. We argue the UM100
having HCRs is correct, but the LST stripes should not
be present in the UM100. The latter is supported by the
Landsat LST.

There is evidence HCRs are more likely to occur
in urban than rural areas due to their high surface
roughness (Miao & Chen, 2008). With increasing BL
wind shear, convective updraughts have a greater ten-
dency to align with the flow, and for −zi/L< 15–20,
HCRs form (Salesky et al., 2017). The Obukhov length L
(Garratt, 1992),

L =
−u3

∗T𝜌cp

𝜅gQH
, (4)

is a measure of atmospheric stability. The variables are the
friction velocity u∗, air temperature T, density of the air
𝜌, specific heat capacity of air at constant pressure cp, and
the sensible heat flux QH; in addition, 𝜅 is the von Kármán
constant (0.4) and g is the acceleration due to gravity.
These variables are determined at the surface interface
with the first level of the model, which is assumed to be at a
height equivalent to the roughness length+ displacement
length+ 2 m. For the UM100 we calculate zi/L to be
−4.2 in the region plotted in Figure 11. This value
is consistent with there being well-developed HCRs in
the UM100.

The UM100 LST stripes are ∼300 m wide and have
∼2◦C temperature anomalies (Figure 11a), so it is expected
that they would be detected by the ∼115 m resolu-
tion Landsat LST. We therefore conclude that the LST
anomalies associated with HCRs in the UM100 are likely
unphysical (despite the correct presence of HCRs). Surface
layer turbulence is smaller scale than HCR turbulence
in the mixed layer, and therefore becomes increasingly
less well resolved towards the surface in the UM100
(Figure 11e). High air temperatures associated with the
HCR updraughts are extended too far towards the surface
by the one-dimensional BL scheme (Boutle et al., 2014;
Lock et al., 2000) (Figure 11b), warming the surface. It
is likely that this BL turbulence “grey zone” (Honnert

et al., 2020; Wyngaard, 2004) issue would be observed
in other O(100 m) horizontal grid length NWP models
that use one-dimensional BL schemes to parametrise
near-surface turbulence.

It is possible that there are <100 m LST anomalies
that are not resolved by the UM100 or Landsat. Airborne
and tower-based thermal infrared sensors have observed
∼2 and 0.5–1◦C grassland LST anomalies, associated
with surface layer streak turbulence (Derksen, 1974;
Garai et al., 2013; Schols et al., 1985). For a convective
BL with conditions suitable for HCRs (−zi/L= 11), over
a grassy field, Garai et al. (2013) estimated LST patterns
associated with surface layer streaks to have a stream-
wise length of 149 m and spanwise width of 69 m. They
found that near-surface air temperature is highly cor-
related with LST and demonstrated that LST patterns
move at the wind speed in the upper surface layer. Order
10 m resolution is required for satellite remote sensing to
detect LST patterns associated with surface layer streaks.
Whether such patterns occur in urban areas is a research
question, since urban surface roughness modifies the
near-surface turbulence structure (cf. smoother surfaces
of the aforementioned studies) (Blunn et al., 2022), and
thermal inertia is higher for urban than for vegetated
surfaces, meaning that LSTs might respond too slowly
to the transient surface-layer turbulence temperature
anomalies.

5 CONCLUSIONS

With the next generation of NWP models moving to higher
resolutions (O(100 m)), new methods to evaluate these
models are being explored. In this study we investigate the
use of high-resolution thermal imagery from Landsat-8 to
assess model performance across Greater London. We con-
clude that currently there are important benefits to using
this data:

• Extensive spatial coverage allows large-scale evaluation
of observation–model differences not possible using
small area extent observations.

• The high spatial resolution (∼115 m) means that indi-
vidual neighbourhoods and land cover variability are
well resolved, enabling their representation in hecto-
metric grid length NWP to be evaluated at commensu-
rate scale.

• Spatial patterns visible in the UM100 model data that
are not apparent in the Landsat imagery can be iden-
tified, allowing model configuration updates and areas
for future model development to be identified. These
include, in particular:
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HALL et al. 1785

i. LST patterns related to the prescription of soil prop-
erties and their use in downscaling soil moisture are
found on one study day (July 15, 2018). As the NWP
model resolution is much higher than before, the con-
sequences not previously considered become apparent.
Modifying model configurations, allowed the spatial
pattern to be more realistic, but with a larger mean
difference.

ii. Erroneous∼300 m wide stripes identified in the UM100
on one day studied (April 22, 2020) are not evident in
the Landsat imagery.

We note certain limitations of using the satellite LST
data:

• Single-view satellites sample the surface temperature
from a particular angle. For near-nadir field of view
observations, near-horizontal facets (e.g., roofs, roads)
are heavily weighted while vertical facets are not
observed. Ideally, urban canopy modelling would repre-
sent the “complete surface” temperature but of the wide
variety of approaches taken (e.g., Grimmond et al., 2009,
2011; Lipson et al., 2023), few model all the facets
fully because of the computational time being imprac-
tical for NWP. Other object resolving models do exist,
which can address the surface more fully, but these are
computationally orders of magnitude more demanding
and/or have limitations of the processes resolved (e.g.,
radiative transfer only). Hence, there are two defini-
tional differences to be understood: the sampling of the
real-world measurement’s field of view and the NWP
model simplification of the urban surface. Notably,
when a model takes a tile approach the real-world
interactions between facets complicates the compar-
ison further as most model grid cells have multiple
tile types rather than individual facets (e.g., roofs).
While this does not prevent important insights from
this comparison, going forward it is critical to reduce
definitional uncertainties in model-observation com-
parison, while improving model skill, to provide a
stronger constraint on target behaviour for the model
in cities.

• In urban model evaluation, other variables such as
surface air temperature and humidity are typically of
interest; however, these variables cannot be retrieved
from satellite data. Hence, the greatest model bene-
fits may result from combining satellite LST data with
other observation sources (e.g., surface energy balance
observations).

• Cloud-free conditions are required for satellite LST
retrieval, limiting the availability of satellite based LST
data for model evaluation.

To address the first of these limitations, and thereby to
maximise the value of incorporating urban satellite LST
in NWP, both data assimilation developments and model
parametrisations are required. Where a model has the nec-
essary internal variables, the preferred approach in data
assimilation is to modify the model variables given the
constraining observation using an observation operator,
which quantifies the observations expected given a model
state (e.g., Warren et al., 2018). In the absence of an obser-
vation operator, the alternative approach is to attempt to
infer from the observed temperature and geometric infor-
mation the modelled LST. Two preliminary studies provide
evidence that this may be helpful. Morrison et al. (2023)
demonstrate that, with detailed analysis, the difference
between the satellite LST and other representations of tem-
perature can be assessed using three-dimensional radiative
transfer modelling, detailed high-resolution surface
infrared temperature observations, and very detailed
digital models. This approach could provide the basis for
an observation operator but is computationally expen-
sive. The Yang et al. (2020) methodology for adjusting the
satellite temperature for its geometry is much simpler to
deploy, but the empirical parameters currently only exist
for one low-latitude city with its specific urban morphol-
ogy. We have demonstrated the importance of accounting
for satellite view angles when using satellite-derived LST
data for urban model evaluation. An area needing further
research is the development of a fast observation operator
that maps between different definitions of temperature
given satellite–solar geometry and statistics of the urban
landscape.

NWP requires both the model parameters (e.g., albedo,
emissivity, land cover, morphology) and the model physics
to be correct for successful model performance. This study
has provided clear suggestions where model improvement
will be beneficial. These relate not just to the model physics
but also to the model parameters used. Improved model
parameters that are representative of current surface cover,
derived using data that resolve the heterogeneous mix
of urban surface features appropriately, are essential for
assessing the model physics. Improvement of many model
parameters (e.g., surface cover data) can also be achieved
using other remote sensing data products (e.g., ESA World-
Cover) at resolutions appropriate for next-generation NWP
and climate modelling.
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