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Non-technical Summary.—Understanding food chains in ancient ecosystems is one of the goals of paleoecology. Dir-
ect evidence for these interactions is rare and includes fossils with stomach contents and bite/tooth marks.We document a
rare occurrence of a bite mark to the neck vertebra of a juvenile fossil specimen of a giant pterosaur from the Cretaceous of
Alberta, Canada, 76 million years ago. Based on the size and shape of the tooth mark, and comparison with modern ani-
mals, we suggest that a crocodylian bit the pterosaur, but we were unable to determine whether this was active predation
or scavenging. Feeding traces on giant pterosaurs are rare, so this provides novel details on how they fit into this ancient
ecosystem.

Abstract.—Identifying feeding interactions in the fossil record remains a key challenge for paleoecologists. We report
the rare occurrence of a conical, perforative bite mark in a cervical vertebra of an azhdarchid pterosaur, which we iden-
tified as a juvenile individual ofCryodrakon boreasHone, Habib, and Therrien, 2019 from the Campanian Dinosaur Park
Formation in Alberta, Canada. Based on comparative analysis of the dentition and ecomorphology of potential trace
makers in the Dinosaur Park Formation, as well as the morphology of the trace, the most likely candidate is a crocodilian,
although whether it was made as a result of scavenging or predatory behavior is unknown. Feeding interactions involving
pterosaurs are rare globally, whereas crocodilian bite marks are not uncommon in Cretaceous terrestrial ecosystems.
Given the opportunistic feeding style and known range of food items for both extant and extinct crocodilians, pterosaurs
can be counted as a rare, but not surprising, component of at least some Cretaceous crocodilian diets.

Introduction

Pterosaurs, a highly diverse and cosmopolitan clade of flying
archosaurs, are nevertheless frequently underrepresented in
many Cretaceous terrestrial ecosystems, in which taphonomic
biases against small and/or delicate bones limit the probability
of their preservation (e.g., Brown et al., 2013, 2022b). In western
Canada, the Campanian Dinosaur Park Formation at Dinosaur
Provincial Park (Alberta) is considered a model system for the
study of Late Cretaceous terrestrial vertebrates, in particular
their evolution, turnover, paleobiology, and paleoecology (Cur-
rie and Koppelhus, 2005). Because of the exceptional abun-
dance of bones in Dinosaur Provincial Park, a significant
number of interactions relating to feeding behavior and possible
agonistic encounters have been reported, most frequently
between theropods and ornithischian dinosaurs (Jacobsen,
1998; Jacobsen and Bromley, 2009; Hone et al., 2018a;
Brown et al., 2021), but also between species of theropods

(Tanke and Currie, 1998; Jacobsen, 2001; Bell and Currie,
2010; Hone and Tanke, 2015; Brown et al., 2022a; Therrien
et al., 2023), and in one case, between a small theropod and
an azhdarchid pterosaur (Currie and Jacobsen, 1995). Mamma-
lian gnawing-like behavior has also been described on a range of
dinosaur, champsosaur, and mammalian bones (Longrich and
Ryan, 2010). Such evidence comes typically from bite-marked
bone but also rarely, embedded teeth.

Isolated pterosaur bones are nevertheless extremely rare in
the Dinosaur Park Formation, and so far, only a single associated
skeleton has been found (TMP 1992.083.0001–0007) (Russell,
1972; Currie and Russell, 1982; Currie and Padian, 1983; Currie
and Jacobsen, 1995; Godfrey and Currie, 2005). Hone et al.
(2019) erected the name Cryodrakon boreas Hone, Habib, and
Therrien, 2019 to encompass TMP 1992.083.0001–0007
along with all isolated azhdarchid material from Dinosaur Pro-
vincial Park. Although rare, azhdarchids are ubiquitous to
many Late Cretaceous terrestrial ecosystems, but how they fit
within local food webs is poorly understood. With an estimated
wingspan equivalent to some of the largest azhdarchids (e.g.,
Quetzalcoatlus Lawson, 1975; 10 m, Lawson, 1975),Cryodrakon*Corresponding author.
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Hone, Habib, and Therrien, 2019 and other large-bodied azh-
darchids were probably substantial terrestrial foragers (e.g., Wit-
ton and Naish, 2008) although alternative hypotheses also exist.
Bite marks, embedded teeth, and stomach contents indicate that
azhdarchid pterosaurs were fed upon by velociraptorine thero-
pods (Currie and Jacobsen, 1995; Hone et al., 2012) and croco-
dylomorphs (Vremir et al., 2013).

Here we describe a small azhdarchid cervical vertebra
recovered from the Dinosaur Park Formation with a perforation
that we identify as a bite mark.We discuss the likely origin of the
bite mark and its maker as crocodilian, which evidences a novel
trophic interaction and provides new paleoecological informa-
tion on the role of azhdarchid pterosaurs in Late Cretaceous
food webs.

Geological setting

TMP 2023.012.0237 was found isolated (i.e., disarticulated) but
in situ during systematic excavations in 2023 of a multitaxic
bonebed (Bonebed 10, aka the ‘Cathedral Bonebed’), within
the Dinosaur Park Formation at Dinosaur Provincial Park,
Alberta, Canada. Bonebed 10 occurs ∼22 m above the contact
with the underlying Oldman Formation, placing the bonebed
in the lower part of the Dinosaur Park Formation within the
Cranwellia rumseyensis-Translucentipolis plicatilis Palyno-
morph Biozone (Braman, 2018) and the Corythosaurus-
Centrosaurus apertus Dinosaur Assemblage Biozone (Ryan
and Evans, 2005; Mallon et al., 2013). Bonebed 10 is bracketed
by the well-constrained, radiometrically dated bentonites of the
Jackson Coulee Bentonite (76.354 ± 0.057Ma), 20.75 m below,
and the Plateau Tuff (75.639 ± 0.025 Ma), 14 m above, provid-
ing an approximate age of the Bonebed 10 assemblage (Eberth
et al., 2023). The Dinosaur Park Formation in the area of
Bonebed 10 consists of stacked sandstones and mudstones inter-
preted as rivers, oxbow lakes, and overbank deposits that formed
on a vegetated alluvial floodplain close to the Western Interior
Seaway, which lay to the east of present-day Dinosaur Provincial
Park (Eberth, 2005), with Bonebed 10 itself interpreted as a
channel-base lag deposit (Wood et al., 1988). For more detailed
analysis of the depositional setting and taphonomy of Bonebed
10, see Wood et al. (1988). Excavation (as opposed to surface
collection and/or screen washing) of Bonebed 10 in the 2022
and 2023 field seasons has so far produced a rich assemblage
of disarticulated remains, both macrovertebrate and microverte-
brate, primarily from the Reptilia (Ornithischia, Theropoda, Tes-
tudines, Choristodira, Crocodilia, with one specimen each from
Pterosauria and Squamata) along with Actinopterygii, the
guitarfish Myledaphus bipartitus Cope, 1876a, Amphibia
(Caudata), and one specimen from Mammalia.

Materials and methods

Minimal preparation of the specimen was required and consisted
of removing a small amount of matrix from the bone surface
using a small pin-vice with an insect pin. No adhesives or con-
solidants were applied. Photographs were taken with a Canon
EOS 6D digital SLR camera using a 180 mm [1:3.5] macrolens.
Photographs were modified (i.e., removing backgrounds) using

Adobe Photoshop (v. 23.0.6) and figures were created using
Adobe Illustrator (v. 23.0.6). Ammonium chloride powder coat-
ing was used, following the ‘dry method’ sensu Parsley et al.
(2018), to enhance the surface texture while homogenizing
bone color for photography. Measurements were taken using
digital calipers to 0.1 mm. The specimen was micro- com-
puted tomography (CT) scanned using a Bruker SkyScan
1173 at the University of Calgary Foothills Campus on 22
November 2023. The specimen was scanned under 130 kV
using a 0.25 mm brass filer, at a distance of 143.25 mm for a
resulting image resolution of 39.11 μm. Images were converted
to .tiff files and compiled and visualised using 3D Slicer v. 5.6.0
(https://www.slicer.org/).

Repository and institutional abbreviation.—The specimen
examined in this study is deposited at the Royal Tyrrell
Museum of Palaeontology (TMP), Drumheller, Alberta, Canada.

Description

TMP 2023.012.0237 consists of the anterior portion (two-thirds
to three-fifths) of an elongate pterosaur cervical vertebra
(Figs. 1, 2.1). The preserved (i.e., incomplete) length of the spe-
cimen is 58.2 mm. The estimated total (i.e., complete) length of
the vertebra is ∼94 mm (Fig. 2.1). The transverse width of the
vertebra (at the estimated midpoint) is 12.7 mm. Given these
proportions, the vertebra has a length to width ratio of ∼7.4,
but could be slightly larger.

As with other pterosaur material from the Dinosaur Park
Formation (Russell, 1972; Currie and Russell, 1982; Godfrey
and Currie, 2005; Hone et al., 2019), the specimen is character-
ized by exceedingly thin bone that is completely infilled with
well-cemented matrix (both the medullary cavity of the bone
and the neural canal), forming a natural internal mold (i.e., endo-
cast; Fig. 1). It is likely that this infill, an iron-rich, highly
cemented, medium-grained sandstone in this case, as much as
the bone itself, is responsible for the preservation the specimen.
The specimen is preserved in three dimensions, with the only
discernible crushing or compaction restricted to the right dorsal
aspect near the midpoint, as well as the perforative bite mark (see
below). In many areas, the thin cortical bone flaked away, and
the matrix infill preserved natural molds of the internal bone sur-
face, including the medullary cavity of the bone and the neural
canal.

The bone shows a moderate degree of abrasion with nearly
all extremities showing wear that compromises the bone cortex
(Fig. 1). These areas where the cortical bone is abraded away
include the apex of the anterior neural spine, both prezygopo-
physes, the ventral rim of the articular facet of the centrum,
and the lateral ridge along the centrum. Posteriorly, the element
is truncated sharply just past the estimated midpoint of the ver-
tebra. Because TMP 2023.012.0237 was found in situ during the
excavations of Bonebed 10, this truncation evidently occurred
prior to the time of deposition. The sharp truncation reveals
the internal natural mold and shows a distinction between the
infill of the circular neural canal and that within the larger
bone medullary cavity (Fig. 1.6, 1.12, 1.18). These two internal
molds are separated by an exceedingly thin bony tube (< 0.1 mm
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thick), the remnant of the bonewall of the neural canal. The mid-
point of the centrum is cylindrical (transverse diameter
12.7 mm), although slight crushing to the dorsal right margin,
and missing bone cortex on the dorsal left margin make the
exact shape of the dorsal margin uncertain. There is no neural
spine along the midpart of the vertebra (Fig. 1.3, 1.4, 1.9,
1.10, 1.15, 1.16). Along the cylindrical midshaft of the vertebra,

the cortical bone is ∼0.6 mm thick. Anteriorly, the cylindrical
cross-sectional shape of the vertebra is lost because the element
flares laterally to form the prezygopophyses, and develops a
slight midline keel dorsally, which, further anteriorly, develops
into the thin, short neural spine. The ventral margin remains
smoothly convex throughout. Both prezygopopheses are incom-
plete, with the left more complete than the right. The anterior

Figure 1. TMP 2023.012.0237 in dorsal (1, 7, 13), ventral (2, 8, 14), right lateral (3, 9, 15), left lateral (4, 10, 16), anterior (5, 11, 17), and posterior (6, 12, 18) views.
Upper images (1–6) show bone surface color, middle images (7–12) are ammonium chloride powder-coated, lower images (13–18) are schematic line drawings. For
the line drawings (13–18), light and medium gray indicates bone surface, hatches indicate broken bone surface, light stipples indicate matrix infill creating natural
internal mold, and dark stipples indicate matrix infill with no specific form. apf, accessory pneumatic foramen; lpf, lateral pneumatic foramen; nc, neural canal; ns,
neural spine; tr, trace (i.e., feeding trace/tooth mark).
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margin is characterized by a large, concave articular facet of the
vertebral condyle, which is wider (16.2 mm) than tall (7.6 mm)
(Fig. 1.5, 1.11, 1.17). In anterior view, the condyle facet is ovoid
dorsally, but shows paired ventrolateral invaginations and a
round ventromedial expansion forming a subtle hypapophysis.
The anterior condyle facet is bounded laterally by the prezygo-
pophyeses, the surfaces of which are both abraded away. The
condyle facet and prezygopophyeses are separated by a shallow,
narrow groove that extends posteriorly to the transverse foramen
(vertebrocostal canal), which is complete on the left but trun-
cated on the right side. Dorsal to the condyle facet, the neural
arch is triangular in anterior view and set back from the anterior
extreme of the element. The nearly circular neural canal is posi-
tioned centrally within the neural arch and is bounded laterally
by two small, circular lateral pneumatic foramina. The ventral
margins of the foramina are approximately level with the ventral
margin of the neural canal. A single accessory pneumatic
foramen occurs just dorsal to the neural canal. The accessory
pneumatic foramen is wider than tall, and all three pneumatic
foramina are approximately equal in transverse diameter. At
the anteriormost extreme of the neural arch, the slight dorsal
midline ridge develops into a short, thin, low neural spine.
The dorsal margin of the neural spine is abraded, but its height
likely did not extend far beyond the preserved margin.

Trace.—The smooth, slightly convex surface of the ventral
margin of the centrum is interrupted by a prominent circular
puncture (Figs. 1.2, 1.3, 1.8, 1.9, 1.14, 1.15, 2.2). The
puncture is located on the right side, just off of the ventral
midline (3.6 mm from ventral midline to center of puncture)
and near the anterior extreme for the element (7.9 mm from
anterior margin to center of puncture). The puncture is nearly
circular with an anteroposterior diameter of 4.4 mm at the
external (ventral) surface of the bone and a transverse
diameter of 4.3 mm. The depth is 3.7 mm. The posterior and
posteromedial rims of the puncture show sharp, jagged breaks.
In contrast, the lateral and anterior margins are formed by two
fragments of cortical bone, which are broken from the ventral
surface of the vertebra and their medial and posterior edges,
respectively, pushed dorsally into the center of the puncture
(Fig. 2.2–2.4). As a result, these fragments form sloped
margins along the anterior and lateral walls of the puncture.
The margins of the puncture show no evidence of remodeled
bone or healing. The cementation of the deflected and
infolded fragment of compact bone to the internal infill, and
the matrix that was removed from the puncture and exterior
surface of this fragment, confirm that the puncture occurred
prior to burial, and was not caused by recent action such as a
preparatory tool mark.

Three dimensionally, the puncture is best described as con-
ical in form. The puncture does not occur on a raised surface of
the bone, those areas subject to abrasion above, but is located in

a shallow longitudinal groove formed between the base of the
prezygopophysis and the midline swelling, occurring ventral
to the condyle facet (Fig. 2.3, 2.4).

Other than the single conical puncture described above,
there are no other marks (i.e., scratches, pits, or punctures) on
any other part of the element.

Discussion

TMP 2023.012.0237 can be assigned to Azhdarchidae based on
a series of anatomical features, including a low centrum, a neural
spine that is greatly reduced and restricted to anterior and poster-
ior segments (i.e., bifid), prominent pneumatic foramina lateral
to the neural canal, and anteroposterior elongation of the cervical
vertebra (e.g., Kellner, 2003; Naish and Witton, 2017). Further-
more, the specimen shows lateral pneumatic foramina (in anterior
view) that are positioned ventrally, so that their ventral margins
are approximately level with the ventral floor of the neural
canal. This was identified as a diagnostic feature of the azhdarchid
Cryodrakon boreas from the Dinosaur Park Formation (Hone
et al., 2019). The specimen also shows an accessory pneumatic
foramen located dorsal to the neural canal, which is a feature
shared with other cervical vertebrae of Cryodrakon boreas.

Although some authors have suggested that there might be
multiple azhdarchid species preserved in the Dinosaur Park For-
mation (Fowler and Sullivan, 2011; Vremir et al., 2013), the
most recent review of the Dinosaur Park Formation pterosaur
material suggests that all of this material is assignable to one
taxon, Cryodrakon boreas (see Hone et al., 2019). The holotype
of Cryodrakon boreas (TMP 1992.083.0001–0007) is from the
lower Dinosaur Park Formation (Quarry no. 207, 2 m above the
Oldman contact), ∼20 m lower than TMP 2023.012.0237, but
within the same palynomorph and dinosaur assemblage zones.
Taken together, TMP 2023.012.0237 is here referred to Cryo-
drakon boreas.

The small size of TMP 2023.012.0237 is likely indicative
of its juvenile status. Fusion between the neural arch and the cen-
trum, which is commonly used as an indicator of relative age in
other archosaurs (Brochu, 1996), is completed at a very early age
in azhdarchids for which both juveniles and adults are known
(Averianov, 2010). Therefore, the complete closure of the suture
between these elements in TMP 2023.012.0237 cannot be inter-
preted as evidence of its relative maturity (Hone et al., 2019).
TMP 2023.012.0237 is only slightly larger and nearly identical
in morphology to TMP 1996.012.0369, a small but nearly
complete azhdarchid cervical vertebra referred to Cryodrakon
boreas (Table 1). At 80.8 mm long (incorrectly reported as
10.6 mm by Hone et al., 2019) and 10.3 wide at the midpoint,
TMP 1996.012.0369 is slightly smaller (∼81%) than TMP
2023.012.0237. The neural canal of TMP 2023.012.0237 is
both absolutely and relatively larger than that of TMP
1996.012.0369. The lateral pneumatic foramina are also larger,

Figure 2. Ammonium chloride coated images (1, 2), CT-scan slice (3), and digital render (4) of TMP 2023.012.0237: (1) entire element in ventral view (anterior at
right), with gray area approximating the missing portion; (2) detail of anterior end with tooth mark; (3, 4) outputs of CT-scan data: (3) two-dimensional slice through
the tooth mark at plane indicated in 2.3; (4) solid three-dimensional render of the element. Solid vertical lines in (1, 2) show plane of slice in (3). Dashed lines in (3)
show missing extent of bone surface at the point of the trace.
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and placed slightly more medially, although both show the ven-
tral alignment characteristic of Cryodrakon boreas. Other than
these subtle differences, the two vertebrae have nearly identical
morphology and likely represent both the same taxon and elem-
ent. Based on the elongate shape and severely reduced midpoint
of the neural spine, TMP 1996.012.0369 was identified by Hone
et al. (2019) as a fifth cervical vertebra (CV). The small size of
TMP 1996.012.0369 was regarded by Hone et al. (2019) to be
due to it being an immature individual, specifically a juvenile
with an estimated wingspan of ∼2 m. Given the near identical
morphology and size, TMP 2023.012.0237 is here further iden-
tified as a fifth cervical from a juvenile individual ofCryodrakon
boreas with an estimated wingspan of ∼2 m.

It is worth noting that in addition to TMP 2023.012.0237,
Bonebed 10 was also the site that yielded one of the first pterosaur
bones discovered from the Dinosaur Park Formation (at the
time referred to as the Oldman Formation) in 1979—TMP
1979.014.0247, a partial distal tibia from a small-bodied animal
(Currie and Padian, 1983),more recently identified as a distal meta-
carpal IV (Averianov, 2010). This previous specimen was recov-
ered at the northern extreme of the Bonebed 10 outcrop, ∼101 m
north-northwest of the excavated area of Bonebed 10 that yielded
TMP 2023.012.0237. Although both specimens are from small-
bodied animals, wing spans estimates of just over 1 m for TMP
1979.014.0247 (Currie and Russell, 1982; Currie and Padian,
1983) and ∼2 m for 2023.012.0237, given the distance between
the specimens, and the large abundance of fossil bones, we con-
sider it unlikely that they are from the same individual.

Trace.—Potential makers of the bite mark in TMP
2023.012.0237 in the Dinosaur Park Formation (i.e.,
carnivores with teeth that are circular in cross section, and
large enough to match the mark) are limited to champsosaurs,
crocodilians, and potentially the canines of mammals. All
known theropod carnivores from the Dinosaur Park Formation
have teeth that are laterally compressed and blade-like (i.e.,
Dromaeosauridae, Troodontidae), or D-shaped to oval in cross
section (i.e., Tyrannosauridae) (Currie et al., 1990; Sankey
et al., 2002; Jacobsen, 2003). Theropod dinosaurs with teeth
round in cross section (e.g., spinosaurids) are unknown from
the Upper Cretaceous of Alberta, therefore we consider a
theropod trace maker unlikely in this case.

The champsosaur Champsosaurus Cope, 1876b (Choristo-
dera) is a common component in the Dinosaur Park
fauna, including the Bonebed 10 assemblage where TMP
2023.012.0237 was collected. Champsosaurus is represented
by at least two species in the Dinosaur Park Formation, includ-
ing Champsosaurus natator Parks, 1933 and Champsosaurus
lindoei Gao and Fox, 1998 (Gao and Brinkman, 2005). Both
species are characterized by a narrow longirostrine snout and
small conical teeth similar to those of extant Gavialis Oppel,
1811 and Tomistoma Müller, 1846. Ecomorphology of the
snout and preliminary biomechanical studies suggest that
Champsosauruswas a small-prey specialist probably best suited
for taking fish (Katsura, 2004; James, 2010; Piras et al., 2014;
Drumheller and Wilberg, 2020). Although the largest in situ
Champsosaurus teeth from the Dinosaur Park Formation (e.g.,
TMP 1988.116.0048, 1995.002.0027, 1996.142.0009) do
approach (or meet) the diameter of the tooth mark in TMP

2023.012.0237, they are more slender and not a match for the
depth of the puncture. Champsosauridae is not considered to
be the most likely trace maker based on their presumed feeding
preferences, slender teeth, and relatively low bite force (com-
pared to more platyrostrine forms). However, we cannot rule
them out entirely because pterosaur bones are thin-walled and
can be subject to damage from weaker bites.

A diverse mammal fauna is known from the Dinosaur Park
Formation, with the largest, and best mammalian candidate for
the trace being a stagodontid, e.g., Eodelphis Matthew, 1916
(Fox, 2005). Complete canines of Eodephis have yet to be docu-
mented (Fox and Naylor, 2006; Scott and Fox, 2015), but based
on the closely related, larger, Maastrichtian taxon, Didelphodon
vorax Marsh, 1889 (Wilson et al., 2016), the upper and lower
canine teeth of Eodephis would likely have been conical and
prominent. Given that the canines of large D. vorax specimens
exceed the size of the trace seen in TMP 2023.012.0237
(Wilson et al., 2016) it is possible, though currently not testable,
that the canines of the smaller-bodied Eodephis were more
size-appropriate for this trace. Additionally, Scott and Fox
(2015) also documented the possible occurrence of Didelpho-
donMarsh, 1889 in the Dinosaur Park Formation. Didelphodon
would have had a powerful bite (∼218 Newtons) capable of pier-
cing bone, might have been durophagous, and could potentially
have taken prey larger than itself (Wilson et al., 2016). A similar
durophagous diet has also been suggested for Eodelphis
(Brannick and Wilson, 2020). The circular puncture of TMP
2023.012.0237 is broadly consistent with puncture marks attrib-
uted to mammal bites in fossil contexts (Boessenecker and
Perry, 2011), as well as known canine punctures documented
in extant taphonomic contexts (Parkinson et al., 2015; Brugal
and Fourvel, 2024). As a result, a mammalian trace maker is pos-
sible, and cannot be excluded; however, given the little relevant
published material from the Dinosaur Park Formation (i.e., no
canines of Eodelphis) limited comprehensive comparison to
the trace seen on TMP 2023.012.0237 can be made.

Crocodilians from the Dinosaur Park Formation include the
basal alligatoroid Leidyosuchus canadensis Lambe, 1907, as
well as the globidontid Albertochampsa langstoni Erickson,
1972 and a ‘Stangerochampsa’-like taxon (Wu, 2005). Each
of these taxa had sharp, conical, piercing teeth in at least some
parts of the jaw (Wu, 2005), generally in the anterior portion
of the tooth row. Given the variation in tooth size and shape
with the jaws of these animals, as well as the range of body
size exhibited by each species through its ontogeny, it is not pos-
sible to distinguish between these taxa from perforative bite
marks alone. Nevertheless, all Dinosaur Park crocodilians had
platyrostral skulls that were better suited to crushing and pier-
cing bone than longirostrine choristoderes (Piras et al., 2014;
Drumheller and Wilberg, 2020). Furthermore, both extant and
extinct crocodilians are known to take flighted prey including
birds, bats, and insects (Platt et al., 2006; Wallace and Leslie,
2008; Shirley et al., 2017), and, among Cretaceous forms, pter-
osaurs (Vremir et al., 2013). The range of sizes and tooth morph-
ologies (i.e., acuteness) seen in both in situ and isolated
crocodilian teeth from the Dinosaur Park Formation (e.g.,
TMP 1988.116.0002, 1990.036.0439, 1992.036.0412,
1998.093.0180, 1999.055.0351, 2006.012.0223), broadly over-
lap the conical puncture seen in TMP 2023.012.0237. The
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puncture mark in TMP 2023.012.0237 is consistent with the cir-
cular punctures made by modern crocodilians as well as
unequivocal feeding traces of extinct crocodylomorphs (e.g.,
Njau and Blumenschine, 2006; Boyd et al., 2013; Drumheller
and Brochu, 2016; White et al., 2022).

Based on the above indicators, we therefore consider a
crocodilian to be the most likely candidate for the bite mark
in TMP 2023.012.0237, although we cannot exclude Champ-
sosaurus or a stagodonid mammal, e.g., Eodelphis. The lack
of additional tooth traces, either adjacent to the documented
trace or on the opposing surface, is somewhat surprising.
One would expect that given the multiple teeth in the tooth
row, a bite with sufficient force to penetrate one side of the
bone would leave notable traces either from neighboring or
opposing teeth. One potential explanation for this, for oppos-
ing teeth, is that the neck might not have been the only portion
of the animal bitten at that time, with another part of the body
between the dorsal surface of the neck and the opposing tooth
row. Similarly, a combination of differential tooth height (i.e.,
heterodonty), missing teeth, and the thin silhouette of the
element could explain the lack of marks from neighboring
teeth.

Bite-marked or tooth-marked bone and, more rarely, pre-
served abdominal contents show that pterosaurs were eaten by
a wide range of animals including large and small theropod
dinosaurs (Currie and Jacobsen, 1995; Buffetaut et al., 2004;
Hone et al., 2012), crocodylomorphs (Vremir et al., 2013),
sharks (Hone et al., 2018b; Mull and Bennett, 2023) and other
fishes (Frey and Tischlinger, 2012; Mull and Bennett, 2023),
and other unidentified vertebrates (Kellner et al., 2010) in Meso-
zoic terrestrial and marine ecosystems. Feeding interactions
involving bitten or ingested azhdarchid pterosaurs have been
documented previously. In addition to TMP 2023.012.0237
described here, the Dinosaur Park Formation has also yielded
an azhdarchid tibia with a broken tooth of the velociraptorine
Saurornitholestes Sues, 1978 still embedded within the shaft
and multiple tooth traces preserved on the bone surface (Currie
and Jacobsen, 1995). A partial azhdarchid long bone was found
in the abdominal cavity of Velociraptor Osborn, 1924 from the
Djadokhta Formation of Mongolia (Hone et al., 2012). Finally,
Vremir et al. (2013) described conical tooth marks in the cer-
vical vertebrae of the holotype of Eurazhdarcho langendorfen-
sis Vremir et al., 2013 from the Sebeş Formation in Romania,
which they attributed to a small crocodylomorph. Collectively,
these findings indicate that azhdarchids and other pterosaurs
were potential food items for a broad range of carnivores in
the Cretaceous.

Ecological interpretations that can be made on a single bite
mark are obviously limited. Although lack of healing or remod-
eled bone indicates that the bite was not a failed predation
attempt, it is also unclear whether the mark is a result of a suc-
cessful predation event (perimortem) or scavenging (post-
mortem). It is also worth noting that modern species of
crocodilians are both active predators and opportunistic scaven-
gers, with carrion making up an important component of their
diets (Pérez-Higareda et al., 1989; Pooley, 1989; Webb and
Manolis, 1989; Njau and Blumenschine, 2006; Fish et al.,
2007). The alligatoroids from the Dinosaur Park Formation
might have had a similar feeding ecology to modern crocodi-
lians. Therefore, any assertions on the lifestyle of extinct
forms must be viewed cautiously. Although direct evidence
for feeding on azhdarchids is rare, at least one other instance
is also attributed to a crocodylomorph (Vremir et al., 2013). If
these feeding traces do represent predation, they likely indicate
the taking of an azhdarchid while the pterosaur was near the
water interface, perhaps drinking or hunting for aquatic prey.

The ecology of Azhdarchidae has seen various interpreta-
tions, from terrestrial carrion feeder (Lawson, 1975), to aquatic
invertebrate prober (Langston, 1981; Lehman, 2021), ariel skim-
mer and piscivore (Nessov, 1984; Kellner and Langston, 1996;
Prieto, 1998), and terrestrial or wading forager that preyed on
aquatic and terrestrial vertebrates and invertebrates (Chatterjee
and Templin, 2004; Witton, 2007; Witton and Naish, 2008).
Although azhdarchids were likely more terrestrial than most
other pterosaurs, their feeding strategy might still have relied
heavily on aquatic prey, which also put them at risk from aquatic
predators such as crocodyliforms. If additional specimens show-
ing similar interactions are found, it could indicate a more com-
mon ecological interaction between these animals.
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