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Abstract 
 
Proteins are essential molecules with a diverse range of functions. Current experimental 

methods such as X-ray crystallography and Nuclear Magnetic Resonance are costly and 

time consuming. Additionally, the gap between sequence and structure stands at 1/500th, as 

sequences of proteins are easier to deduce then the overall tertiary structure. As a result, in 

silico methods of structure prediction can assist in bridging this gap. Identifying the role of 

proteins in silico starts with the amino acid sequence, the blue print for all proteins. In turn, 

amino acid sequence is pivotal for determining the three-dimensional structure, which is vital 

for the protein to function adequately. Once the structure of a protein is known, ligands which 

interact with the protein can be deduced by investigating ligand-binding interactions and 

ultimately function can be determined. However, in silico methods for function prediction are 

not without problems which are (1) can function be predicted from structure and (2) can 

prediction of ligands and ligand-binding site residues provide insight into a protein’s function. 

Finally, there is a need to validate prediction results to assess the state-of-the-art and 

separate the known from the unknown.   

 

FunFOLD3 developed by the McGuffin group, is a template-based method for protein-ligand 

prediction and works on the premise that proteins with similar folds are likely to bind the 

same ligands. FunFOLDQ, also developed by the McGuffin group provides insight into 

protein function by prediction of Gene Ontology (GO) terms. Two experimental competition 

methods will be used to objectively measure the results from FunFOLD3 and FunFOLDQ, 

the biennial Critical Assessment of Techniques for Protein Structure Prediction (CASP) and 

Critical Assessment of protein Function Annotation (CAFA), respectively. The ninth CASP 

competition in 2010 saw the introduction of ligand-binding site prediction, with this category 

subsequently becoming a function prediction  category in the 10th CASP competition in 2012. 

The 11th, 12th and 13th CASP competitions in 2014, 2016 and 2018, respectively provided an 
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extensive source and range of proteins in the prediction of ligands and ligand-binding site 

residues. The third CAFA competition benchmarked FunFOLDQ in the prediction of GO 

terms. The 3D structure models obtained from CASP and GO terms predicted from CAFA 

will assist with the benchmarking of FunFOLD3 and FunFOLDQ to determine what 

improvements needed be made (i.e. identifying the problem) and will also provide an 

objective measure of the predictions.  If closely aligned 3D structure models can be 

obtained, then FunFOLD3 could be used in the determination of novel or poorly annotated 

proteins.   

 

In order to objectively measure the binding site quality of FunFOLD3, two scoring metrics will 

be used; Matthew’s Correlation Coefficient (MCC) and Binding Distance Test (BDT) score 

developed by the McGuffin group. Matthew’s Correlation Coefficient is a special case of 

Pearson Correlation Coefficient and provides a value between -1 to 1, with -1 being a total 

negative correlation, 0 is no correlation and 1 is a total positive correlation based on the 

observed and predicted ligand-binding site residues. Scores of 0.40 to 0.69 are strong 

positive relationships and 0.70 and higher are strong positive relationships. The downside of 

MCC is that it does not take into consideration the overall 3D structure of the protein model. 

Therefore, BDT will also be utilised as this score, which is also scored from -1 to 1, to take 

into consideration the 3D structure. Both MCC and BDT are only possible to produce when 

there is an observed (actual) structure available with bound ligands to compare against the 

predicted structure and hence why MCC and BDT are objective measures of ligand-binding 

site prediction. The average MCC and BDT score from CASP11 was 0.42 and 0.51, 

respectively. CASP12 saw the prediction of ligands for low annotation level proteins with no 

known ligands, demonstrating the potential use of FunFOLD3 in novel protein prediction. 

The average MCC and BDT score from CASP13 was 0.47 and 0.53. CAFA3 showed 

FunFOLDQ can be used in the prediction of GO terms, however further refinements are 

needed to increase specificity of the term predictions.  The development  option this thesis 
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has explored is the use of docking (preferred orientation of interacting partners) with 

AutoDock Vina to improve the accuracy of ligand-binding residues by FunFOLD3, as the 

problem with TBM methods can be that predicted ligand(s) from a similar template will be 

forced to fit within the ligand-binding pocket. However, with docking, the aim of this method 

is to predict the preferred orientation of the ligand within the ligand-binding space. Utilisation 

of docking has also added to the novelty of this research, as different grid box calculations 

around the ligand-binding space was explored, with varying degrees of success with each 

grid box calculation. Examples of two CASP targets which had improvements in MCC and 

BDT score following docking were CASP11 target T0783 (2-C-methyl-D-erythritol 4-

phosphate cytidylyltransferase) the MCC and BDT scores by FunFOLD3 were 0.17 and 

0.21, respectively. Following docking the MCC and BDT scores increased to 0.63 and 0.45, 

respectively. CASP13 target T1016 (alpha-ribazole-5'-P phosphatase) had MCC and BDT 

scores of 0.556 and 0.646 by FunFOLD3, respectively. Following docking the MCC and BDT 

increased to 0.85 and 0.91, respectively.  

 

Lastly, CASP_Commons, a community-wide experiment to find the consensus structures,  

explored the role of FunFOLD3 with predicting ligands and ligand-binding sites for the novel 

protein and proteins domains of  SARS-CoV-2. The protein domains were non-structural 

proteins 2, 4 and 6, open reading frames 3a, 6, 7b, 8 and 10, membrane protein and papain-

like protease. FunFOLD3 predicted ligands for ten of the protein domains, of which there 

were a total of 32 targets due to domains being split into smaller residues and subsequent 

rounds of 3D modelling improvement.  

 

Increased understanding of protein structures can provide further insight into a protein’s 

function, particularly if ligands are bound and identified, an example in this thesis is the 

prediction of chlorophyll A for non-structural protein 4 (nsp4). Chlorophyll A, like 

haemoglobin is a porphyrin ring and templates related to nsp4 show a role in blood clotting. 
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Therefore, whilst chlorophyll A might not be the exact ligand, similarities between 

haemoglobin and chlorophyll A can clearly be determined and assist in understanding the 

role of nsp4 in the pathology of COVID-19.  Identification of GO terms can provide more 

detailed understanding into the function or functions of proteins and, in proteins with limited 

annotation information this can assist with comprehending their role. 

 
This thesis has focused on improving and developing a function prediction method, 

FunFOLD3, to better understand the role and function of proteins. The new method of 

FunFOLD3 which utilises docking will be integrated into the McGuffin group prediction 

servers and will be benchmarked in subsequent CASP competitions, to critically assess  the 

performance of the developed method.  
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1.1 Protein structure  

 

Proteins are essential molecules involved in a wide variety of essential intra- and inter-

cellular activities. The particular activities include, but are not limited to; maintaining cellular 

defences; enzymatic catalysis; metabolism and catabolism; maintenance of the structural 

integrity of cells and signalling within and between cells (Du et al., 2016). A protein can be 

identified on each level of its structure and every protein will contain at least a primary, 

secondary and tertiary structure with only multimeric proteins (e.g. haemoglobin) having a 

quaternary structure (Sanvictores & Farci, 2020). Examples of the four different levels of 

protein structure is shown in Figure 1.1 below.  

 

 

Figure 1.1. Levels of protein structure  
The four different levels of protein structure are depicted above. Briefly, primary structure is the amino acid sequence. 
Secondary structure is the local conformation. Tertiary structure is the 3D structure and quaternary structure is the combination 
of independently formed tertiary structures. Figure taken from Patel & Shah, 2013.  
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Protein structure is hierarchical and polypeptide chains fold locally to form α-helices and β-

strands which then combine to form tertiary structures with these tertiary structures having 

the potential to form complexes or quaternary structures (Moutevelis & Woolfson, 2009). A 

protein can be simply thought of a building block, starting with the amino acid sequence, and 

then order in assembly, however this masks the potential complexity of protein structures 

and there are a large number (order of thousands) of possible ways to fold protein chains 

into stable tertiary and quaternary structures (Blundell & Johnson, 1993; Alexandrov & Gō, 

1994; Chothia, 1992).  

 

As previously mentioned, amino acids are the building blocks of proteins and is always a 

linear sequence and relates to how a protein is named, starting from the amino-terminal (-

NH2) end to the carboxyl-terminal also referred to as carboxylic acid functional group (-

COOH) (Alberts et al., 2002). Of the 300+ amino acids, only 20 of them serve as building 

blocks of proteins (Wu, 2009) and chains of amino acids assemble via amide bonds known 

as peptide linkages. The unique properties of each amino acid is due to the difference in the 

side-chain group or R-group (Alberts et al., 2002) and the uniqueness of different proteins is 

determined by which amino acids it contains, how these amino acids are arranged in a 

chain, and further complex interactions the chain makes with itself and finally the 

environment (Alberts et al., 2002). The 20 amino acids needed to make all the proteins in the 

human body are all L-isomer, alpha-amino acids and all of them, except for glycine, contain 

a chiral alpha carbon and are R-absolute configuration except for glycine and cysteine (S-

absolute configuration, because of the sulphur-containing R-group) (Alberts et al.,  2002). A 

list of the 20 standard amino acids and their abbreviations is given below in Table 1.1.  
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Table 1.1 List of the 20 standard amino acids, their abbreviations and type 
Table adapted from Rovira et al., 2008  

Amino acid 3 letter 1 letter Type 

Alanine Ala A Nonpolar, neutral 

Arginine Arg R Polar, basic 

Asparagine Asn N Polar, neutral 

Aspartic acid Asp D Polar,acidic 

Cysteine Cys C Polar, neutral 

Glutamic acid Glu E Polar, acidic 

Glutamine Gln Q Polar, neutral 

Glycine Gly G Nonpolar, neutral 

Histidine His H Polar, basic 

Isoleucine Ile I Nonpolar, neutral 

Leucine Leu L Nonpolar, neutral 

Lysine Lys K Polar. basic 

Methionine Met M Nonpolar, neutral 

Phenylalanine Phe F Nonpolar, neutral 

Proline Pro P Nonpolar, neutral 

Serine Ser S Polar, neutral 

Threonine Thr T Polar, neutral 

Tryptophan Trp W Nonpolar, neutral 

Tyrosine Tyr Y Nonpolar, neutral 

Valine Val V Nonpolar, neutral 
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1.1.1 Primary structure 

 
As mentioned in Section 1.1, amino acids are the building blocks of proteins. In cells, DNA 

contains the code to synthesise proteins and the nucleotide sequence of a protein-encoding 

gene is transcribed into mRNA, which synthesises the sequence of amino acids to form a 

protein (Sanvictores & Farci, 2020). The gene corresponding to the protein is unique to that 

protein and defines the overall 3D structure and function of the protein (Alberts et al., 2002). 

Crucial insight into the sequence-structure relationships of proteins was made by Anfinsen 

who showed that all the information about the native structure of a protein is encoded in its 

amino acid sequence (Anfinsen, 1973).  

 

Amino acids are linked together by joining the amino group of one amino acid with the 

carboxyl group of the adjacent amino acids through peptide bonds (Sanvictores & Farci, 

2020). This linkage forms the polypeptide chain and polypeptides of more than 50 amino 

acids are known as proteins (Engelking, 2015). The characteristics of the amino acids e.g. 

acidic, basic, polar uncharged or non-polar will determine specific characteristics of the 

protein such as solubility in water or lipids and optimal physiological conditions for protein 

function (Sanvictores & Farci, 2020).   

 

Insulin was the first protein to have the primary structure determined by Frederick Sanger in 

1951 using hydrolytes and chromatography (Sanger & Tuppy, 1951). Current methods for 

determining the primary structure are Edman degradation, tandem mass spectrometry and 

DNA sequencing (Deutzmann, 2004).  
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The importance of the amino acid sequence in overall protein function is shown by the 

following disease examples: 

 

1. Huntingdon’s disease 

Huntingdon’s disease is a neurodegenerative disorder caused by a DNA trinucleotide repeat 

expansion of equal to or greater than 40 CAG repeats within the gene Huntingtin (Nopoulos, 

2016) 

 

2. Sickle cell anaemia  

Sickle cell anaemia is caused by mutations in the HBB gene which encodes the 

haemoglobin subunit beta and is the result of a substitution of glutamic acid to valine amino 

acid and results in the sickle shape of red blood cells as opposed to the normal biconcave 

disk of healthy red blood cells (Cai et al., 2018). 

 

3. Cystic fibrosis  

Cystic fibrosis is caused by a mutation on the CFTR (cystic fibrosis transmembrane 

regulator) gene on chromosome 7 (Sanvictores & Farci, 2020). Although there are more than 

1,000 mutations for the CFTR gene the most common is deletion of Phe508 (Cutting, 2015). 

These mutations within CFTR gene alter the protein structure and thereby impairing chloride 

ion transport (Sanvictores & Farci, 2020).  

 

1.1.2 Secondary structure 

 
Secondary protein structure is the backbone of a protein and is subdivided into three 

categories: α-helix, ß-sheets and coil (Patel & Shah, 2013). With α-helix and ß-strand being 

the most common types of structure and was first suggested in 1951 by Linus Pauling and 

colleagues who referred to these structures as 5.1-residue helix and 3.7-residue helix, based 

on the number of amino acids residues per turn (Pauling, Corey & Branson, 1951). α-helix is 
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considered the default state for secondary structure (Patel & Shah, 2013) and interactions 

via hydrogen bonding occurring between a carbonyl oxygen atom of a peptide linkage and 

the hydrogen atom of an amino group of another peptide linkage further along the protein 

backbone account for the formation of this structure (Stoker, 2016). In comparison, ß-sheets 

are formed when several ß-strands self-assemble and are stabilised by interstrand hydrogen 

bonding (Boyle, 2018). ß-sheets can have parallel, antiparallel, or mixed arrangements of 

the individual strands, however antiparallel is the most natural sheets in proteins (Boyle, 

2018). The third class of secondary structure; coil or loop refers to less regular folds and is 

more unstructured (Pirovano & Heringa, 2010). 

 

Prediction of secondary structure from protein sequence plays a crucial role in establishing 

the 3D structure as the secondary structure comes together to form the tertiary structure 

(Atasever et al., 2019). This has importance in understanding the function of proteins and 

also drug design (Atasever et al., 2019). Secondary structure is important for better 

understanding of the tertiary structure and more importantly knowledge of secondary 

structure helps in the prediction of tertiary structure, with structure discovery without 

sequence similarity in the datasets (Patel & Shah, 2013). Furthermore, accurate secondary 

structure information is at the core of most ab initio methods for the prediction of protein 

structure (Bradley et al., 2003).  

 

Experimentally, secondary structure can be solved with several spectroscopic methods such 

as circular dichroism (CD), Raman and infrared (IR) (Pelton & McLean, 2000). Nuclear 

magnetic resonance chemical shifts may also be used to determine the positions of 

secondary structure within the primary sequence of a protein (Pelton & McLean, 2000).  

 

Modern algorithms can outline about 80% of the secondary structure based on the primary 

sequence and these methods include, but are not limited to, PORTER (Pollastri & 
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McLysaght, 2005), PSIPRED (Buchan & Jones, 2019), SSpro (Magnan & Baldi, 2014) and 

JPred4 (Drozdetskiy et al., 2015).  

 

1.1.3 Tertiary structure  

 
Tertiary structure refers to the overall 3D arrangement of a polypeptide and is generally 

stabilised by outside polar hydrophilic hydrogen and ionic bond interactions in addition to, 

internal hydrophobic interactions between nonpolar amino acid side chains (Engelking, 

2015). Based upon the tertiary structure, proteins can be divided into either globular or 

fibrous types. Fibrous proteins (e.g. α-keratin) have elongated rope-like structures which are 

strong and hydrophobic. On the other hand, globular proteins are more spherical and 

hydrophilic (Engelking, 2015). The process for tertiary structure folding begins while the 

protein is being moulded to its primary polypeptide sequence and is guided by chaperones 

(Engelking, 2015). The role of chaperones will be discussed later in Section 1.1.5.  

 
Myoglobin was the first protein to have its tertiary structure solved in 1958 by Kendrew and 

colleagues using X-ray analysis (Kendrew et al., 1958). Current experimental methods to 

determine tertiary structure are X-ray crystallography, nuclear magnetic resonance (NMR), 

cryogenic electron microscopy (cryo-EM) and dual polarisation interferometry (see Section 

1.2).  

1.1.4 Quaternary structure  

 
Quaternary structures are formed from independently folded tertiary structures which 

associate together to form complexes (Moutevelis & Woolfson, 2009). Each subunit has its 

own primary, secondary and tertiary structure with the subunits held together by hydrogen 

bonds and van der Waals forces between the non-polar side chains (Ouellette & Rawn, 

2015). The subunits must be arranged specifically for the entire protein to function properly. 

If alterations occur, this could have marked effects on the biological activity (Ouellette & 
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Rawn, 2015). The nomenclature for the subunits are monomer for one unit, dimer for two 

units, trimer for three units and so forth (Alberts et al., 2002).   

 

Examples of proteins having quaternary structure are alcohol dehydrogenase, aldolase, 

fumarase, haemoglobin and insulin (Ouellette & Rawn, 2015).  

 
Quaternary structure is usually determined by X-ray crystallography, but when 

crystallographic data are difficult to gather, electron microscopy can be used (Skipper, 

2005).  

 
Macromolecular complexes are of special interest in structural biology as direct protein-

protein interactions, as well as indirect ones are essential for performance of several cellular 

processes (Bertoni et al., 2017). The importance of protein-protein interactions is discussed 

in Section 1.5.   

 

One of the first approaches to model interactions de novo was macromolecular docking 

(predicting the preferred orientation of two macromolecules) with docking approaches being 

generally more accurate when no significant conformational changes are required for 

interface formation (Bertoni et al., 2017). If some experimental details of the interactions are 

available (e.g. EM density maps, crosslinking SAXS or NMR data, co-evolution analysis) 

then hybrid modelling tools such as ROSETTA3 (Leaver-Fay et al., 2011) or HADDOCK (de 

Vries, van Dijk and Bonvin, 2010) can be used.  

 

1.1.5 Protein folding  

 
In order for a protein to assume its correct 3D structure, which is essential for function, the 

protein needs to fold. Proteins fold into their native state when they emerge from the 

ribosome (Englander & Mayne, 2014) and the folding process often starts when protein 

translation is not yet completed i.e. the protein N-terminus begins to fold whilst the C-
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terminus is still being synthesised (Rocco et al., 2008). Protein folding is determined by 

different bonds between one chain and another (Alberts et al., 2002). These non-covalent 

bonds are hydrogen bonds, ionic bond and van der Waals forces. Another central force is 

hydrophobic molecules, which are forced together in an aqueous environment. Thus, an 

important factor in the folding of proteins is the distribution of nonpolar (hydrophobic) and 

polar (hydrophilic) amino acids (Alberts et al., 2002). 

 

In 1962, Christian Anfinsen and Edgar Haber postulated that the native structure of a protein 

is the thermodynamically stable structure, or in other words, the final folded structure 

adopted by a polypeptide chain is generally the one in which the free energy is minimised 

(Alberts et al., 2002) and depends on the amino acid sequence and the conditions of 

solution (Haber & Anfinsen, 1962). Additionally, the native structure does not depend on 

whether the protein was synthesised using ribosomes, with the help of chaperone 

molecules, or if the protein was refolded as an isolated molecule in a test tube, with the 

exception of insulin (the biologically active form is kinetically trapped) (Haber & Anfinsen, 

1962). A protein can be denatured following application of certain solvents that disrupt the 

noncovalent interactions involved with forming the folded chain, this converts the protein to a 

flexible polypeptide chain that has lost its natural shape. When the solvent is removed, the 

protein refolds to its original confirmation (Alberts et al., 2002).  

 

Although a protein can fold to its native structure without assistance, protein folding, 

unfolding and homeostasis is assisted by molecular chaperones (Saibil, 2013). Chaperones 

are found in all cellular compartments and have little specificity but provide essential 

assistance to the highly specific protein folding process and members of structurally 

unrelated chaperones are known as heat-shock proteins (HSPs) (Hartl, Bracher and Hayer-

Hartl, 2011). These chaperones are usually classified according to their molecular weight 

(e.g. HSP40) and the chaperones involved in de novo protein folding and refolding are 
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HSP70, HSP90 and HSP60 (Hartl, Bracher and Hayer-Hartl, 2011). These HSPs typically 

recognise hydrophobic amino-acid side chains which can become exposed by non-native 

proteins and may functionally cooperate with ATP-independent chaperones (HSPs are ATP 

and cofactor-binding dependent) to buffer aggregation (Hartl, Bracher and Hayer-Hartl, 

2011). Therefore, chaperone binding to hydrophobic regions transiently blocks aggregation 

(Hartl, Bracher and Hayer-Hartl, 2011).  

 

Partially folded or misfolded proteins cause problems as they tend to aggregate in a 

concentration-dependent manner and expose hydrophobic amino acid residues on a protein, 

which would normally be buried in the native state (Hartl, Bracher and Hayer-Hartl, 2011). A 

number of diseases can result from protein misfolding events and this ultimately leads to the 

malfunction of the cellular machinery (Welch, 2004). In the example shown below in Figure 

1.2, amyloid fibrils have occurred due to unfolded proteins and this is a common feature of 

neurodegenerative conditions such as Alzheimer’s disease and Parkinson’s disease 

(Dobson, 2003).    
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Figure 1.2. Competing reactions of protein folding and aggregation  
Schematic of the funnel-shaped free-energy surface that proteins explore as they move towards the native state (shown in 
green in the energy section). The schematic also shows the importance of chaperones in accelerating the favourable downhill 
path i.e. lower energy. Amorphous aggregates are formed when several molecules fold simultaneously in the same 
compartment and the free-energy surface of folding may overlap with that of intermolecular aggregation. Figure taken from 
Hartl, Bracher and Hayer-Hartl, 2011.  
 

Correct folding of proteins is critical for the biological activities of proteins. Most proteins, 

such as receptors, fulfil their biological activity only when correctly and completely folded 

(Rocco et al., 2008). Thereby, highlighting the importance of structure for function. Due to 

the importance of structure to function and the vital role folding plays in the overall 3D 

structure, the “protein folding problem” aims to answer the question of how a protein’s amino 

acid sequence dictates its 3D structure and consists of three problems: (1) what is the 

folding code? (2) what is the folding mechanism? (3) can structural biologists predict the 

native structure of a protein from its amino acid sequence? (Dill et al., 2008). With regards to 

protein function, the additional problems are (1) can function be predicted from structure and 

(2) can prediction of ligands and ligand-binding residues provide insight into a protein’s 

function of which the thesis will aim to address. The In silico methods to predict structure will 
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be discussed in Section 1.2.2 and in silico methods to predict ligands is discussed in Section 

1.7.1  

 

1.2  Protein structure determination  

 
As mentioned previously in Section 1.1.3, myoglobin was the first protein to have its 3D 

structure solved experimentally and over the past six decades structural biologists have 

experimentally determined the structures of 180,000 proteins in the Protein Data Bank 

(AlQuraishi, 2021).  Protein structure comparison is essential in almost every aspect of 

modern structural biology, ranging from experimental protein structure determination to in 

silico-based protein folding and structure prediction. 

 

The Protein Data Bank (PDB) is the single global repository of experimentally (see Section 

1.2.1 for a description of the experimental methods) determined 3D structures of biological 

macromolecules and their complexes (Xu & Zhang, 2010; Burley et al., 2017). In 2000, there 

were <80,000 protein structures in the PDB (Berman et al., 2003) and in 2015 there were 

more than 90,000 structures, with more than 75% of these having a protein-ligand complex 

(Burley et al., 2017). In May 2017, the PDB archive housed ~130,000 entries (Salentin et al., 

2015) and at the time of writing, January 2021 PDB housed 173,110 with 105 structures 

released annually (Berman et al., 2000).  

 

GenBank is a comprehensive public database of nucleotide sequences and supporting 

bibliographic and biological annotation (Burley et al., 2017). In comparison to the PDB, 

GenBank contains available nucleotide sequences for almost 260,000 formally described 

species (as of 2013) (Benson et al., 2013) and release 194, produced in February 2013, 

contained more than 162 million sequences (Benson et al., 2013). As of December 2020, 

GenBank contained 221 million sequences (Sayers et al., 2019). It has been cited that 

experimental protein structures are currently available for less than 1/500th of the proteins 
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with known sequences, thus highlighting the knowledge gap and the need to reduce this gap 

(GenBank release notes, 2017). Hence why there has been a need to solve the problem of 

predicting protein structures by in silico methods to help reduce this knowledge gap and 

reduce the time and/or resources spent on addressing this problem. The requirement to use 

in silico methods to solve protein structure is of particular importance with disordered proteins 

where disordered regions can prevent structure determination entirely by affecting solubility 

and/or crystalisability (Moult et al., 2016). Additionally, there has been an explosion in the 

number of protein sequences from genome projects making it essential to have automated 

methods of prediction (Esnouf et al., 2006).  

 

1.2.1 Experimental methods for protein structure determination  

 
Various experimental techniques can be used to determine protein structure, these are X-ray 

crystallography, nuclear magnetic resonance (NMR), small-angle X-ray scattering and cryo-

electron microscopy (Du et al., 2016).        

 
The underlying principle of X-ray crystallography is that the crystalline atoms cause a beam 

of X-rays to diffract into many specific directions and by measuring the angles and intensities 

of these diffracted beams, a 3D image can be produced, detailing the density of electrons 

within the crystal (Ryu, 2017). From this image, the mean positions of the atoms in the 

crystal can be determined, as well as chemical bonds and their disorder, for example (Ryu, 

2017). The advantages of X-ray crystallography include; provides a two-dimensional view 

that gives an indication of the three-dimensional protein structure, relatively cheap and 

simple compared to other techniques, useful for large structures and is not limited by size or 

atomic weight and can yield high atomic resolution (Brünger, 1997). Disadvantages are the 

protein must be crystallisable, with membrane proteins and large molecules difficult to 

crystallise due to their large molecular weight and poor solubility. An organised single crystal 

must be obtained to produce the desired diffraction and is a non-dynamic method due to 

preparation of samples and crystallisation so only a static three-dimensional analysis is 
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produced (Brünger, 1997).   

 

Since the 1970s, NMR has been used to study the interplay between biomolecular structure, 

dynamics and function (Mittermaier & Kay, 2006). Protein dynamics also has a role in ligand-

binding, as this involved the entry of molecules into areas that would normally be occluded 

(Mittermaier & Kay, 2006). Specifically, saturation transfer difference NMR spectroscopy has 

been used to characterise binding in tightly bound ligand-receptor complexes (Meyer & 

Peters, 2003). When a protein becomes saturated, ligands that are in exchange between a 

bound and the free form become saturated when bound to the protein, by exchange that 

saturation is carried into solution where it is detected (Meyer & Peters, 2003). By subtraction 

of this spectrum from a spectrum without protein irradiation an NMR spectrum is obtained in 

which the signals are form molecules that bind to the protein (Meyer & Peters, 2003). A clear 

advantage being that resonance signals from nonbinders so not show up in the difference 

spectrum (Meyer & Peters, 2003). Additionally, NMR methods have the advantage of 

characterising the protein-ligand dynamics over a wide range of timescales, from 

picoseconds to seconds (Mittermaier & Kay, 2006) and can detect and reveal protein-ligand 

interactions with a large range of affinities (10-9 – 10-3  M) (Cala, Guilliere and Krimm, 2013). 

NMR allows internal motions to be probed with exquisite time and spatial resolution. 

Methodological advancements in NMR have extended the ability to characterise protein 

dynamics and will shed new light on the mechanisms by which these molecules function 

(Mittermaier & Kay, 2006). The disadvantages of protein-observed methods are the 

experimental time and the need for highly stable and soluble protein (Cala et al., 2013). 

Additionally, these methods are limited to proteins with low molecular masses (<30 kDa) to 

avoid great effort with regard to both labelling strategies and resonance assignment (Cala et 

al., 2013).  
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For high resolution X-ray crystallography, a homogenous crystal is needed and this results in 

a reaction needing to be synchronised across the entire crystal (Henzler-Wildman & Kern, 

2007). The requirement for a homogenous crystal is relieved when using both cryo-electron 

microscopy and small-angle X-ray scattering (Henzler-Wildman & Kern, 2007). Small-angle 

X-ray scattering is a technique where the elastic scattering of X-rays by a sample is recorded 

at very low angles (typically 0.1-10o measured from the beam axes) (Londoño et al., 2018). 

This angular range contains information regarding the structure of scatterer entities, like 

nanoparticles and micro- and macromolecules (Londoño et al., 2018). The advantages of 

small-angle X-ray scattering is a larger volume of sample can be illuminated when compared 

to other methods used such as transmission electron microscopy, a fact that leads to the 

estimation of more precisely average values and disadvantages are despite the small-angle 

X-ray scatter pattern being obtained from over all particles orientated in all directions, the 

structural features are determined in an indirect way, an issue that could lead to ambiguous 

results and incorrect interpretations (Londoño et al., 2018). Additionally, both small-angle X-

ray scattering and cryo-electron microscopy does not characterises the timescales of 

interconversion (Henzler-Wildman & Kern, 2007). In comparison, cryo-electron microscopy 

involves proteins, or other specimens being prepared by plunge-freezing thin aqueous films 

into a liquid cryogen (Tivol et al., 2008). Using an electron microscope the structure, of a 

protein, for example, is visualized (Tivol et al,, 2008). Advantages of cryo-electron 

microscopy include; small samples can be used to determine structure and a wide range of 

samples can be characterised which are over 500 kDa (Wang et al., 2015). Disadvantages 

include time-constraints, cost and fully hydrated specimens can be electron-beam sensitive 

(Wang, 2015).    
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1.2.2 Computational methods for protein structure prediction  

 

Predicting 3D structure from its amino acid sequence is an important unsolved problem in 

both biophysics and computational biology (Deng, Jia and Zhang, 2018) and the goal is to 

determine the shape (or fold) that an amino acid will adopt (Rangwala & Karypis, 2010).   

The number of proteins depositing into UniProt and PDB is growing at an exponential rate, 

particularly in the last two decades, the reason for this is that it is easier to obtain protein 

sequences than to predict protein structure (Deng, Jia and Zhang, 2018). This has been 

aided by the development of advanced DNA sequencing technology, which has enabled the 

sequences of proteins to be rapidly accumulated (Deng, Jia and Zhang, 2018). 

Computational methods for prediction of protein structure from its amino acid sequence has 

become increasingly popular (Deng, Jia and Zhang, 2018). In 1973 (Anfinsen, 1973), 

Anfinsen demonstrated that all the information a protein needs to fold properly is encoded in 

the amino acid sequence (referred to as Anfinsen’s dogma) (Deng, Jia and Zhang, 2018), 

therefore this makes the determination of a protein’s structure possible from a computational 

perspective.  

 

The problem is divided based on will the sequence adopt a new fold or bear resemblance to 

an existing template (fold). Fold recognition is easy when the sequence has a high degree of 

sequence similarity to a sequence with a known structure. The second part of the problem is 

building the protein structure from scratch and are usually referred to as ab initio methods 

(Rangwala & Karypis, 2010).  Computational methods for protein structure prediction are 

categorised as either template-based modelling (TBM) or template-free modelling based on 

the above problems and will be discussed in Section 1.2.2.1 and 1.2.2.2, respectively. Table 

1.2 on the next page is a list of some of publicly available methods for protein structure 

prediction.  
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Table 1.2 A list of some of the publicly available methods for tertiary protein structure prediction  
Table adapted from (Farhadi, 2018). TBM = template-based modelling, HMM-HMM =  Hidden Markov Model-Hidden Markov 
Model. BLAST= Basic Local Alignment. PDB=Protein Databank   
 

Method URL Summary 

HHpred 
(Zimmermann et 

al., 2018) 

https://toolkit.tuebingen.mpg.de/tools/hhpred 
Homology detection and 
structure comparison by 
HMM-HMM comparison 

IMP 
(Webb et al., 2018) 

https://integrativemodeling.org 

TBM method following 
four stages 1) gathering 
input data 2) converting 

input data into a model 3) 
scoring function 4) 
alternative model 

configurations 

IntFOLD 
(McGuffin et al., 

2019) 
http://www.reading.ac.uk/bioinf/IntFOLD/ 

Unified TBM resource for 
automated prediction with 

built-in estimates of 
model accuracy  

 
I-TASSER 

(Yang & Zhang, 
2015) 

https://zhanggroup.org/I-TASSER/ 

TBM approach with 
multiple threading 

approaches using a 
hierarchical approach to 

protein structure 
prediction 

 
ModPipe 

(Sánchez & Sali, 
1998) 

https://salilab.org/modpipe/ 
Automated software TBM 
pipeline using template 

structures and sequence-
structure alignments 

MODELLER 
(Webb & Sali, 

2016) 

http://salilab.org/modeller/ 
 

TBM method for 
homology or comparative 

modelling using spatial 
restraints. Additional 
tasks include de novo 

modelling of loops 

Phyre2 
(Kelley et al., 2015) 

http://www.sbg.bio.ic.ac.uk/~phyre2 
TBM webserver with a 
suite of tools and uses 

advanced remote 
homology detection 

Robetta 
(Kim, Chivian and 

Baker, 2004) 

http://robetta.bakerlab.org 
Automated webserver 

using TBM comparative 
modelling 

 
ROSETTA 

(Rohl et al., 2004) 
https://www.rosettacommons.org 

De novo fragment 
insertion method for 

protein structure 
prediction 

SWISS-MODEL 
(Guex & Peitsch, 

1997) 

http://swissmodel.expasy.org 
 

Fully automated 
homology modelling 
server which utilises 
BLAST and HHblits 

ModWeb 
(Sánchez & Sali, 

1998) 
https://modbase.compbio.ucsf.edu/modweb/ 

Automated TBM web 
server utilising templates 

from PDB or SWISS-
PROT protein sequences 

Chunk-TASSER 
(Zhou & Skolnick, 

2007) 

http://cssb.biology.gatech.edu/skolnick/webservice/chunk-
TASSER/index.html 

Ab initio method using 
supersecondary structure 

chunks as well as 
threading templates 

LOMETS 
(Zheng, Zhang, et 

al., 2019) 

https://zhanggroup.org/LOMETS/ 
TBM method integrating 
multiple deep learning-

based threading methods 
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The fundamental steps in protein structure prediction are conformation initialisation (using 

either Template-free or Template-based methods), conformational search, structure 

selection, all-atom structure reconstruction and structure refinement (Deng, Jia and Zhang, 

2018). Figure 1.3 below is a flowchart of protein structure prediction.  

 
Figure 1.3. The general flowchart of protein structure prediction  
The specific details of protein structure determination methods can vary significantly, however there are fundamental steps 
which are consistent across all methods. Figure taken from (Deng, Jia and Zhang, 2018)  
 
 

1.2.2.1 Template-based modelling  

 
Template-based structure prediction methods consist of homology modelling (sequence 

comparison) sometimes referred to as comparative modelling and threading methods (fold-

recognition) (Deng, Jia and Zhang, 2018). The basis of homology modelling is that similar 

sequences from the same evolutionary family often adopt similar protein structures (Deng, 

Jia and Zhang, 2018). Homology modelling has clear advantages in that when a single 

structure within a family of homologous proteins has been determined experimentally there 

is potential to model all proteins within that family (Rangwala & Karypis, 2010) 

 

The most accurate way of predicting protein structure is by taking its homologous structure 

(i.e. known structure) in PDB and utilising this as a template. When there is no structure with 

sequence similarity to the investigated protein, threading or fold recognition is used to 

identify templates (Deng, Jia and Zhang, 2018). Homology modelling usually requires the 

protein target and the template to share sequence identity of >25% and if not, protein 
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threading can overcome this limitation (Deng, Jia and Zhang, 2018). Fold recognition 

identifies remote sequence homology via sequence comparison to detect structural similarity 

(Zhou & Zhou, 2005).  

 

Examples of template-based modelling methods are SWISS-MODEL(Guex & Peitsch, 

1997), Modeller (Webb & Sali, 2016) and IntFOLD (McGuffin et al., 2019). The prediction 

process for SWISS-MODEL consists of template recognition, target-template alignment, 

model building and model evaluation (Guex & Peitsch, 1997). SWISS-MODEL utilises 

BLAST and HHblits for template recognition and target-template alignment. The structure of 

the protein in question is then built by copying the atomic co-ordinates from the template 

according to target-template alignment (Guex & Peitsch, 1997). Modeller (Webb & Sali, 

2016) implements structure modelling by satisfaction of spatial restraints which are derived 

from target-template alignment and experimental data (e.g. NMR spectroscopy) and other 

sources such as stereochemistry (Webb & Sali, 2016). IntFOLD is a server with six 

component methods and the tertiary structure prediction component, IntFOLD-TS works 

using iterative multi-template modelling using the target-template alignments from 14 

alternative methods (McGuffin et al., 2019). Further information about IntFOLD is provided in 

Section 1.7.3.  

 

It is important to note, that historically most of the successful protein structure modelling 

methods are template-based (Deng, Jia and Zhang, 2018) 

 
 

1.2.2.2  Template-free modelling  

 

Template-free modelling, is divided into two categories de novo modelling (structure-based) 

and ab initio modelling (modelling from first principles) (Rangwala & Karypis, 2010). Both 

modelling methods aim to predict protein structure without relying on having a previously 
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solved structure (Deng, Jia and Zhang, 2018). One of the strengths of template-free 

methods is the structure prediction of hard target proteins of which no satisfactory template 

can be found (Deng, Jia and Zhang, 2018) and a weakness is success is better on small 

proteins below 100 residues (Xu & Zhang, 2012). Ab initio protein folding has difficulties in 

force field design and conformational search, of which requires extensive computing 

demand. There is a lack of decent force fields to accurately describe the atomic interactions 

which can assist in guiding protein folding simulations (Xu and Zhang, 2012). Rosetta is a 

template-free modelling protein structure prediction method in which short fragments of 

known proteins are assembled by a Monte Carlo (repeated random sampling) strategy to 

yield native-like protein conformations (Rohl et al., 2004). One of the ways template-free 

methods have increased the efficiency of conformational search is to reduce the level of 

protein structure representation (Xu & Zhang, 2012). In I-TASSER, each residue is specified 

by two units of C atom and side-chain center of mass (Zhang, 2007). These reductions of 

structure representation can dramatically reduce the total number of conformations needed 

for searching (Xu & Zhang, 2012).   

 

Despite TBM methods historically outperforming free modelling methods, AlphaFOLD which 

was developed by DeepMind, a machine learning method predicted protein structure with 

near-experimental accuracy and outperformed other Critical Assessment of protein Structure 

Prediction (CASP) 13 entrants (AlQuraishi, 2021) placing first in the free modelling category, 

for reference the Zhang group placed first in the TBM category (AlQuraishi, 2019). In 

CASP13, the median accuracy was 6.6Å and in CASP14, AlphaFOLD2 had improved 

accuracy to 1.5Å and this is comparable to the accuracy of experimental methods 

(AlQuraishi, 2021). The relevance of CASP is discussed in Section 1.8.1. 
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1.3 Proteins and their interacting partners: a biomedical perspective on protein-ligand 

interactions 

 
Proteins perform their biological functions through direct physical interaction with other 

molecules, such as proteins, peptides, nucleic acids, membrane, substrates and small 

molecule ligands e.g. metals (Du et al., 2016). The molecule that is bound to a protein, no 

matter whether it is a small ion or macromolecule is referred to as a ligand for that protein 

and comes from the Latin ligare, meaning “to bind” (Alberts et al., 2002). Thus, a ligand can 

be both endogenous and exogenous. The resulting endogenous protein-ligand complex is 

important for a variety of intracellular processes. Upon binding of a ligand, a conformational 

change occurs in the protein which in turn starts the initiation of cellular functions. These 

functions include, but are not limited to, immune defense with the binding of antibodies to 

antigens, which exhibit precise ligand-binding specificity (Lodish et al., 2000) and catalysts of 

chemical reactions by enzymes is dependent upon the specificity of ligands (enzyme 

substrate) (Lodish et al., 2000). Hence, studying protein-ligand interactions is an important 

step in the functional elucidation of proteins involved in these cellular processes 

(Marienhagen et al., 2008).    

 

Several protein classes have functional implications as drug targets, these include enzymes 

along with transportation and signalling proteins, which are further subdivided into 

transportation molecules, ion channels and receptors (Roche et al., 2011, 2012, 2013).       

 

A key example of an enzyme is Cytochrome P450, which has an essential role in the electron 

transfer chain, and is therefore ubiquitous in all kingdoms of life. Cytochrome P450s 

biological function is to support the oxidative, peroxidative and reduction metabolism of both 

endogenous and xenobiotic substrates (e.g. steroids, fatty acids and environmental 

pollutants) (Danielson, 2002). Additionally, it is the single most important enzyme for Phase I 

drug metabolism where the critical role is drug interactions and interindividual variability in 
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drug metabolism (Danielson, 2002). Cytochrome P450 is a haem protein and is part of a 

subfamily of related but equally distinct proteins (Rang et al., 2015). Cytochrome P450s are 

organised on the basis of similarities in protein sequence, individual CYP450s within a family 

are defined as having ≤40% sequence similarity compared with another CYP450s in any 

other family (Gonzalez & Gelboin, 1992). Families are further divided into subfamilies, with all 

CYP450s within a subfamily are >55% similar in sequence (Gonzalez & Gelboin, 1992). 

Figure 1.5A shows Cytochrome P450 bound to the drug N-Benzylformamide; with a detailed 

view of the ligand-binding site shown in Figure 1.6A. The subfamily of enzymes which makes 

up this family, are distinct from each other in terms of ligand specificity (Rang et al., 2015). 

For example, CYP1A1 (PDB ID 418v) is responsible for the metabolism of theophylline 

(Rang et al., 2015), a drug used to provide symptomatic relief from the asthma as it is a 

phosphodiesterase inhibitor; whereas, CYP2C9 (PDB ID 4ph9) is responsible for the 

metabolism of ibuprofen a cyclooxygenase inhibitor (Rang et al., 2015). CYP2C9 bound to 

ibuprofen can be seen in Figure 1.5B, while Figure 1.6B highlights the protein-ligand 

interaction focused on the binding site. It is worth noting that, whilst the CYP450 subfamily 

show ligand specificity, they are not molecule specific and are in fact quite promiscuous. For 

example, CYP1A1 binds the following compounds; β-napthoflavone (aryl hydrocarbon 

agonist), cisplatin (DNA replication inhibitor), dopamine hydrochloride (agonist based on 

endogenous dopamine), 17 β-estradiol (endogenous steroid hormone), and quinidine 

sulphate (inhibitor of voltage-gated sodium channel), to name but a few (Rang et al., 2015) 

refer to Figure 1.4 which illustrates the diverse ligand structures. Thus, showing the diversity 

in the substrates encompassing a broad array of molecular shapes, volumes, geometrics and 

chemical properties that CYP450s are able to oxidise with exceptional regio- and 

stereospecificity (Gay, Roberts and Halpert, 2010).  
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Figure 1.4. Diversity of ligand substrates for CYP1A1  
Figure 1.4 above shows the diverse ligand structures which are metabolised by CYP1A1. (A) β-napthoflavone (B) cisplatin      
(C) dopamine hydrochloride (D) 17 β-estradiol and (E) quinine sulphate   
 

Crystal structures of CYP450 have captured these enzymes in a variety of conformations, 

highlighting the ability of CYP450s to adapt their structures to accommodate a wide variety of 

substrates (Gay, Roberts and Halpert, 2010). For example, CYP2B4 has shown to have the 

largest degree of structural flexibility of any of the CYP450s to be crystallised. CYP2B4 has 

been observed in the similar closed, compact conformation when bound to four different 

molecules but has also been crystallised in three distinct open conformations when bound to 

large compounds or in the absence of a ligand (Gay, Roberts and Halpert, 2010).  However, 

not all CYP450s share this flexibility in conformation like CYP2B4. CYP2A6 has been 

crystallised in the presence of seven different ligands of various sizes and shapes (Gay, 

Roberts and Halpert, 2010) and despite the difference in compounds when bound to an 

active site, CYP2A6 remains in a single closed conformation with little rearrangement of side 

chains (Gay, Roberts and Halpert, 2010).  

 

In addition to the pharmacological effects of drugs, cytochrome P450 is also responsible for 

toxicological effects of drugs. For example, the primary enzyme responsible for paracetamol 

A B 

C D E 
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metabolism is CYP2E1, a Cytochrome P450, which is one of the enzymes involved in the 

metabolism of xenobiotics in humans. Metabolism via this enzyme forms a toxic alkylating 

metabolite, known as N-acetyl-p-benzoquinione imine (NAPQI). At therapeutic doses, NAPQI 

is detoxified via a conjugation reaction with glutathione. However, at doses exceeding 

therapeutic levels, the glutathione conjugation pathway becomes saturated and NAPQI 

conjugates with thiol groups on proteins and nucleic acids causing hepatotoxicity; a typical 

feature of paracetamol poisoning (Cameron et al., 2014). 

 

 

The most promiscuous enzyme in the family is CYP3A4, which is involved in the metabolism 

of more than half of all drugs (Table 1.3) (Westerink et al., 2008). This is attributed to its very 

large and flexible active site, which can undergo conformational changes upon binding of 

substrates (Rydberg & Olsen, 2012).     

 

It is worth mentioning, that whilst CYP enzymes are mentioned as examples, these enzymes 

won’t be part of the analysis, as the predictions for CASP and CAFA are randomly assigned 

and typically relate to proteins where the structures are unknown but are soon to be released 

and/or proteins where the functional annotation is yet to be determined. 
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Figure 1.5. Examples of protein-ligand interactions 
Proteins are shown in cartoon form, with the surface highlighted and coloured in cyan, binding site residues are shown as sticks 
and coloured blue, and ligands shown as sticks or spheres and coloured by element; (A) The Human cytochrome P450 1A1 
protein (PDI ID 4i8v) bound to the drug N-Benzylformamide; (B) Cyclooxygenase-2 (PDB ID 4ph9) from Mus musculus bound 
to the drug Ibuprofen; (C) The Plasmodium vivax TRAP protein (PDB ID 4hqo, T0686)  bound to magnesium and; (D) The 
aminopeptidase N family protein Q5QTY1 (PDB ID 4fgm, T0726) from Idiomarina loihiensis bound to zinc. 
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Figure 1.6. Examples of protein-ligand interactions, focusing on the ligand-binding site 
Proteins are shown in cartoon form, with the surface highlighted and coloured in cyan, binding site residues are shown as sticks 
and coloured blue, and ligands shown as sticks or spheres and coloured by element; (A) The Human cytochrome P450 1A1 
protein (PDI ID 4i8v) bound to the drug N-Benzylformamide; (B) Cyclooxygenase-2 (PDB ID 4ph9) from Mus musculus bound 
to the drug Ibuprofen; (C) The Plasmodium vivax TRAP protein (PDB ID 4hqo, T0686) bound to magnesium and; (D) The 
aminopeptidase N family protein Q5QTY1 (PDB ID 4fgm, T0726) from Idiomarina loihiensis bound to zinc. 
 
 
 
 
Table 1.3. Promiscuity of CYP450 enzymes 
Examples of ligands acting on the CYP450 enzymes. Ligands listed in red are inhibitors and ligands in green are  
inducers of the CYP450 enzyme system. Table adapted from Rydberg & Olsen, 2012 
  
 
 

 
 
 
 
 
 
 
 
 

 

 

 

CYP3A4 CY2C9/8 CYP2D6 CYP2C19 
Aprepitant Fluconazole Isoniazid Fluconazole 

Clarithromycin Ibuprofen Ketoconazole Ketoconazole 
Erythromycin Indomethacin Methadone Isoniazid 

Isoniazid Ketoconazole Nicardipine Omeprazole 
Itraconazole Sulfamethoxazole  Carbamazepine 

Ketoconazole Trimethoprim  Phenytoin 
Metronidazole Carbamazepine  Rifampin 
Valproic Acid Phenobarbital   

Carbamazepine Phenytoin   
Dexamethasone Rifampin   
Phenobarbital    

Phenytoin    
Rifampin    
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As well as being promiscuous, proteins can also “moonlight”, meaning the same protein can 

perform different functions when placed in a different organism or a different location within 

the same organism. For instance, the same protein can have a different function when it is 

outside of the cell, expressed in a different cell type, moves into an organelle, interacts with 

other proteins to form a multi-protein complex or interacts with another protein to form a 

heterodimer (Figure 1.7) (Haidar & Jeha, 2011). “Moonlighting” is only applicable to a subset 

of multifunctional proteins in which two or more different functions are performed by one 

polypeptide chain (Jeffery, 2005). Proteins with the same function in multiple locations are 

not referred to as “moonlighting” proteins (Jeffery, 2005).  

 
 

 
 
Figure 1.7. Examples of protein moonlighting 
A protein can have one function in the cytosol of one cell but have a different function outside the cell, when expressed in a 
different cell type, moves into an organelle, interacts with other proteins to form a multi-protein complex or interacts with 
another protein to form a heterodimer. Taken from Jeffery, 2005 
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An example of a “moonlighting” protein is albaflavenone synthase (CYP170A1), a haem-

dependent monooxygenase that catalyses the final two steps in the biosynthesis of antibiotic 

bacterium, steptomyces coelicolou (Nelson et al., 1996) and binds to haem iron in two 

orientations (Zhao et al., 2009). As a monooxygenase, albaflavenone catalyses the 

conversion of the terpenoid epi-isozizaene to an epimeric mixture of ablaflavenols, which are 

then oxidised to the sesquiterpene antibiotic albaflavenone with haem being the cofactor 

(Zhao et al., 2009). Additionally, albaflavenone synthase has a second, completely distinct 

catalytic activity corresponding to the synthesis of farnesene isomers (acyclic sesquiterpene 

farnesene) from farnesyl diphosphate i.e. an intrinsic terpene synthase (Zhao et al., 2009).  

This activity was independent of protein redox partners (flavodoxin and flavodoxin 

reductase) and NAPDH, thereby suggesting an intrinsic terpene synthase activity which is 

distinct from the monooxygenase activity which produces albaflavenone (Zhao et al., 2009).    

Assessment of the primary sequence and X-ray structure as well as enzymatic data   

revealed the α-helical domain; indicating the presence of a novel terpene synthase, which is 

moonlighting in the structure of albaflavenone and is illustrated in Figure 1.8 (Zhao et al., 

2009).  
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Figure 1.8. Structure of albaflavenone monooxygenase highlighting the haem ligand-binding site and the moonlighting 
terpene synthase active site 
Albaflavenone monooxygenase (PDB ID 3dbg) is shown in cartoon form and coloured cyan, with the haem ligand-binding site 
residues shown as sticks and coloured green, and the moonlighting active site for terpene synthase shown as sticks and 
coloured red. Image adapted from Zhao et al., 2009 

 
 

In addition, there are critical proteins involved in transportation, such as the 

sodium/potassium pump, which is responsible for transporting three intracellular sodium ions 

in exchange for two extracellular potassium ions (Zhao et al., 2009). The effect of this 

exchange has important implications for the transport of amino acids, sugars, bile acids, 

neurotransmitters and ions (Glitsch, 2001). As well as sodium pumps there are voltage- 

gated sodium channels, which are responsible for action potentials in cardiac myocytes, 

skeletal muscle and neurons (Glitsch, 2001). Key ligands, such as lidocaine, block the 

initiation and propagation of action potentials by this ion channel and is used as local 

anaesthetics (Kwong & Carr, 2015). 

 

Receptor proteins are also of primary interest in biomedical research due to their roles in 

intercellular signalling, for example, ligand-gated ion channels, G-protein-coupled receptors 

(GPCRs), kinase- linked receptors and nuclear receptors (Rang et al., 2015). By far, the 

largest family of receptors is G-protein-coupled receptors. These receptors bind a diverse 

range of substrates such as hormones and slow transmitters (e.g. muscarinic acetylcholine 
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receptors) (Rang et al., 2015). Incorrect signal activation of GPCRs particularly in the Wnt 

signalling pathway, is implicated in a number of cancers, including breast cancer (Rang et 

al., 2015) as GPCRs act as primary receptors for Wnt signals (Ng et al., 2019). The Wnt 

signalling pathway is an evolutionarily conserved signal transduction pathway that regulates 

a wide range of cellular functions and controls multiple aspects of development, including cell 

proliferation and apoptosis (Clevers, Loh and Nusse, 2014). Inappropriate activation of the 

Wnt pathway is a major factor in human oncogenesis (Polakis, 2000).  

 

Each of the proteins mentioned above vary in terms of structure, function and target 

specificity and their subsequent cellular effects. However, there is one common denominator; 

each of the proteins needs to bind a substrate to enable their functionality. A substrate can 

also be referred to as a ligand. From a pharmacology perspective; a ligand is a small 

molecule, frequently although not always, a drug (Koval et al., 2014). 

 
It is important to note that drug binding does not always lead to receptor activation. Binding 

can also result in either an inhibitory effect or no effect. Hence, binding and activation are two 

distinct steps in receptor response (Rang et al., 2015). In general, there are three main types 

of interactions between a receptor and a ligand; agonistic, antagonistic and inverse agonistic 

(Rang et al., 2015).  

 
An agonist, quite simply occupies the binding site on a receptor and activates the receptor; 

leading to a response or effect. Agonists can be divided further, into full agonists (producing 

an optimal response) or partial agonist (suboptimal response) (Rang et al., 2015). 

Antagonists are usually competitive in nature, whereby they compete for the receptor-binding 

site with an agonist, but upon binding no response occurs. Thus competition for the binding 

site ensues, as usually the receptor protein can only bind one ligand at a time (Rang et al., 

2015). An inverse agonist binds to a receptor, in the same way as an agonist; however, it 

induces a conformational change within the receptor that decreases the affinity of the 
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receptor for a cofactor (Rang et al., 2015). Inverse agonists often show preference for binding 

to the resting state of a receptor (Kwong & Carr, 2015). 

 

1.4 The physiology of protein-ligand interactions 

 
Protein-ligand interactions are essential for biochemical functionality and are implicated in 

all biochemical roles in all kingdoms of life. Protein-ligand interactions are key to the 

pharmacological effects of drugs or the response to endogenous ligands, such as 

neurotransmitters. Without a direct interaction between a protein and its ligand, there can be 

no observed effect. This interaction is based on ligand specificity; the interacting protein will 

only recognise ligands of a precise type based on ligand affinity and specificity (Rang et al., 

2015). It could be assumed that closely related ligands would either be ignored or produce a 

weak interaction. However, the molecular similarity principle, and subsequently named 

bioisosteres, show chemical substituents with similar physical or chemical properties, will 

produce a broadly similar biological property to another chemical compound. Key examples 

of this are morphine, diamorphine and codeine that bind to µ- ∂- and/or κ- opioid receptors. 

All these analogues are a phenanthrene derivative with two planar rings and two aliphatic 

ring structures, which occupy a plane at approximate right angles to the rest of the 

molecule. This structural similarity means all the analogues behave in the same way (Rang 

et al., 2015). In chemoinformatics, the process of searching for compounds that are 

structurally diverse and share biological activity is called scaffold hopping and is often 

exploited in patent-breaking (Rang et al., 2015).  

 

More often, investigating how ligand agonists exert their effect is undertaken through the use 

of drugs, which can be targeted against the receptor protein, with the effect of this response 

termed antagonistic or inversely agonistic. A prime example of this would be naloxone, 

used in the treatment of opiate overdose. Naloxone acts as a μ, δ, κ-opioid protein receptor 

competitive antagonist (Willett, 2014), with the greatest potency of the µ receptor, naturally 
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occurring ligands are ß-Endorphin, enkephalins and dynorphin A, respectively (Pasternak 

and Pan, 2013). Morphine is a pure agonist, particularly at the µ receptor and the opposing 

effects of naloxone to morphine is used in emergency situations to reverse the effects of 

opiates (Feng et al., 2012). 

 

A more recent example, which is still under pharmacological development, is ghrelin. Ghrelin 

is an endogenous peptide hormone, which plays an important role in the regulation of 

appetite, food intake and alcohol dependence (Koval et al., 2014) by binding to a specific 

signalling G protein-coupled receptor (GPCR). Understanding the signalling pathways of 

ghrelin, as a result of investigating its ligand-binding properties and thus its potential effects, 

has led to several pharmaceutical companies investigating potential drug targets. For 

example, specific antagonist or inverse agonist properties to be used as anti-obesity 

medication (Cameron et al., 2014).  

 

The ability of ligands to bind to proteins and disrupt normal cellular pathways, has been 

utilised in the treatment of cancer. For example, the vinca alkaloid drug, vincristine, is used in 

the treatment of leukaemias, malignant lymphomas, multiple myeloma, solid tumours, 

paediatric solid tumours and idiopathic thrombocytopenic purpura. Vincristine exerts its 

pharmacological effects by binding to the protein tubulin. This inhibits the assembly of 

microtubule structures and prevents mitosis in the metaphase (Routledge et al., 1998). 

Whilst this inhibition targets rapidly dividing cells, such as cancer cells, it also affects other 

rapidly dividing healthy cells. 

 

The examples above have focused on the ligand-binding ability, but what happens with 

defective proteins that cannot bind ligands? X-linked lymphoproliferative (XLP) syndrome or 

Duncan disease, is a rare immunodeficiency disorder, which only affects males (Rowinsky & 
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Donehower, 1991). Sufferers exhibit abnormalities in the functions of T and natural killer (NK) 

cells, leading to premature death. The condition is caused by a mutation in the serum 

amyloid P component (SAP) protein (Li et al., 2003). Li et al., 2003 showed that SAP 

mutations found in XLP patients are defective in binding to the endogenous ligand (signalling 

lymphocyte activating molecule, or SLAM), which is vital for T cell activation. As a result of the 

failure to activate T cells, patients develop infectious mononucleosis or B cell lymphoma (Li et 

al., 2003). 

Illustrated in Figures 1.5 and 1.6 are four examples of protein-ligand interactions for diverse 

types of ligands, which are important in health and disease. This includes Cytochrome P450 

bound to the drug N-Benzylformamide, which targets asthma (Figures 1.5A and 1.6A); 

Cyclooxygenase-2 from Mus musculus is responsible for the metabolism of ibuprofen 

(Figures 1.5B and 1.6B); the Plasmodium vivax thrombospondin related adhesion protein 

(TRAP) protein bound to magnesium, is involved in phosphate ester hydrolysis (Figures 1.5C 

and 1.6C); and the aminopeptidase N family protein Q5QTY1 from Idiomarina loihiensis 

bound to zinc (a co-factor), (Figures 1.5D and 1.6D), can be used as a biomarker to detect 

kidney damage. These four diverse examples along with the examples discussed in this 

section highlight the central role protein-ligand interactions can play in health and disease. 

 
Proteins can interact with a broad range of molecules which are broadly referred to as 

ligands, such as small ions (e.g. Zn2+), small molecules (e.g. adenosine triphosphate) and 

macromolecules (e.g. proteins) to perform their respective functions and the role of these 

ligands may vary markedly from being a substrate, inhibitor or activator. Whilst some 

interactions are unspecific and transient (e.g. water molecules and other solutes in the cell), 

others are very specific and essential for the function of the protein. This is of paramount 

importance in the characterisation of a new protein as information about ligands often 

provides crucial hints about its function (Li et al., 2003). However, experimental 

determination of the structure of protein ligands with medium to low binding affinities are 
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often lost during the purification procedure (Gallo Cassarino et al., 2014).  

 

1.4.1 Protein-ligand binding models  

 

Three different models exist to explain protein-ligand interaction exist; “lock-and-key” (Figure 

1.9A), “induced fit” (Figure 1.9B) and “conformational selection” (Figure 1.9C) (Du et al., 

2016). With respect to the “lock-and-key” model, it is assumed that both the protein and the 

ligand are rigid and their respective binding interfaces are perfectly matched. The obvious 

limitation of this model is only a correctly sized ligand (the key) can fit within the binding pocket 

of the protein (lock) and does not explain when a protein and ligand bind when initial shapes 

do not match (Du et al., 2016). The “induced fit” model overcomes this limitation, and 

assumes that the binding site of a protein is flexible and the interacting ligand induces a 

conformational change within the binding site of the protein. A limitation of the induced fit 

model is this only takes into account the conformational changes after ligand binding (Du et 

al., 2016). The conformational model, aimed to overcome the limitations of both lock-and-key 

and induced fit by postulating that the native state of a protein does not exist as a rigid 

conformation, but instead as a vast ensemble of conformational states that coexist in 

equilibrium. The ligand can bind selectively to the most suitable conformational state. Thus, 

the unbound protein can have the same conformation as that of the ligand-bound state (Du et 

al., 2016).  
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Figure 1.9. Schematic illustrations of the three protein-ligand binding models 
(a) Lock-and-key (b) Induced fit and (c) Conformational selection. Figure taken from Du et al., 2016 

 

 

1.4.2 Binding-site definition 

 
 
An important consideration in defining ligand-binding, is the definition of a binding-site, 

particularly a definition which goes further than simply a region on a protein that binds a 

molecule with affinity and specificity. The tenth Community Wide Experiment on the Critical 

Assessment of Techniques for Protein Structure Prediction (CASP10) provided a more 

objective definition - all protein residues in the target structure having at least one (non-

hydrogen) atom within a certain distance (dij) to a biologically relevant ligand atom (Gallo 

Cassarino et al., 2014): 

Equation 1.1. Binding-site definition for the CASP10 FN category(10th Community Wide Experiment on the Critical 
Assessment of techniques for protein structure prediction, 2012) 
https://predictioncenter.org/casp10/index.cgi?page=format#FN 
The equation below shows a binding-site is defined, where, dij is the distance between a residue atom i and a ligand atom, j, ri 
and rj are the Van der Waals radii of the involved atoms, while c is a tolerance distance of 0.5 Å (Gallo Cassarino et al., 2014). 

 
di.j  ri + rj + c 
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1.5 Protein-protein interactions   

 

Thus far, the focus has been protein-ligand interactions and whilst the biochemistry of these 

interactions are crucial, especially in drug development, and will form the focus of this thesis, 

protein-protein interactions are also significant both physiologically and biochemically. In 

general, protein interactions cover a full range of interactions, from rigid to dynamic, weak to 

strong, obligate and non-obligate (Nooren & Thornton, 2003) Figure 1.10 shows examples of 

these interactions. In obligate protein-protein interactions, the protomers are not found as 

stable structures on their own in vivo. Non-obligate interactions are those whose protomers 

exist independently (Bera & Ray, 2009). Additionally, protein complexes can also be 

categorised as permanent and transient according to lifetime in vivo (Bera & Ray, 2009).  

Permanent interactions are stable and exist in complexed form, whereas a transient 

interaction associates and dissociates in vivo (Nooren & Thornton, 2003). Enzyme-inhibitor 

and antigen-antibody are composed of proteins that are required to bind tightly and 

permanently and are examples of naturally occurring protein complexes (La et al., 2013). 

Individual subunits or monomers of these complexes are individually unstable and hence 

non-functional.  In comparison, the heterotrimeric G protein dissociates into Gα and Gßγ  

subunits upon guanosine triphosphate (GTP) binding, in comparison when bound to 

guanosine diphosphate (GDP) a stable trimer is formed, thus showing strong transient 

associations require a molecular trigger to shift the oligomeric equilibrium (Nooren & 

Thornton, 2003). In general, proteins involved in signaling pathways have a mechanism for 

dissociation after binding and thereby assist in regulating protein activity at specific times and 

are transient (La et al., 2013). 
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Figure 1.10. Kinetics and affinities of protein-protein interactions 
The dissociation constant (KD) is inversely correlated to the binding affinity. Protein-protein interactions can exist as permanent 
or transient interactions. Figure taken from (Xing et al., 2016)  

Both direct and indirect protein-protein interactions are essential for performing and 

regulating cellular activities e.g. signal transduction, cell-cycle, morphological differentiation, 

cell motility, transcription and translation (Bertoni et al., 2017) and can occur between 

identical or non-identical chains i.e. homo- or hetero-oligomers (Nooren & Thornton, 2003).. 

Understanding the type of interactions has significant implications for understanding the 

nature and function of protein-protein interactions (La et al., 2013). The structure and affinity 

of a protein-protein interaction is related to its biological function, physiological environment 

and control mechanism and may have evolved to optimise functional efficacy (Nooren & 

Thornton, 2003).  

 

As with protein-ligand interactions (see Section 1.4), most proteins are very specific in their 

choice of binding partner with different surface properties. However, some can be 

multispecific with multiple (competing) binding partners on coinciding or overlapping interface 



Chapter 1. Introduction   

 
 

Page 43 of 645 

(Nooren & Thornton, 2003). The prediction of small ligands is considered easier than 

discovering protein-protein interaction modulators as proteins which bind small molecules 

generally contain a well-defined ligand-binding site that small molecules interact with (Santos 

et al., 2017). Designing a small molecule to bind to a protein-protein interface has the 

following problems: 

1. Protein-protein interactions occur on the interface of a specific domain where either 

two identical proteins or different proteins are in contact (Lu et al., 2020) and the 

interface area of the interaction usually reaches 1500-3000Å (Jones & Thornton, 

1996), whereas for a receptor-ligand contact are is small at 300-1000Å and is 

hydrophobic (Pagadala, Syed and Tuszynski, 2017).  

2. Protein-protein interface tends to be flat and contains few grooves or pockets making 

it difficult for small molecules to bind (Buchwald, 2010b; Lipinski et al., 1997). 

3. Amino acid residues involved in protein-protein interactions are either continuous or 

discontinuous resulting in high-affinity protein binding. Thus, making it harder for 

smaller molecules to inhibit such an interaction (Ivanov, Khuri and Fu, 2013).  

4. Protein-protein interactions lack endogenous small molecule ligands for reference to 

act as a starting point (Ivanov, Khuri and Fu, 2013).  

5. Traditional small molecule drugs have a molecule weight of 200-500 Da and in 

comparison drugs acting on protein-protein interactions have higher molecular 

weights of >400 Da (Buchwald, 2010a). Thus, making it difficult to apply Lipinski’s 

rule of five (<5 hydrogen bond donors, <10 hydrogen bond acceptors, <500 Da 

molecular mass and a octanol-water partition coefficient (log P) that does not exceed 

5) (Lipinski et al., 1997) 

 

Despite the above challenges, identification of hot spots which is 600Å and usually located 

near the protein-protein interface are able to assist in understanding protein-protein 
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interactions and can identify ligands. Hot spots (Shangary & Wang, 2009) are identified 

through a point mutation experiment where amino acid residues in protein-protein 

interactions are mutated to alanine and the change of the binding-free energy is measured to 

determine the residues that contributes significantly to the binding-free energy (Lu et al., 

2020). Experimentally, dual polarisation interferometry is a capable of capturing the 

conformational changes of proteins and thereby assist in understanding the behaviour of 

proteins in terms of structure and function (Cross et al., 2003).  

 

The function of proteins is multi-faceted; their role is not just limited to receptors, and the 

interesting of protein-protein interactions in vivo, has led to proteins being harnessed as 

biologic drugs in the treatment of cancer and autoimmune disease. The use of proteins as 

drugs is leading to more personalised treatment of diseases and in some cases has 

transformed treatment. 

 
A prime example, of the latter is trastuzumab (Herceptin®), a monoclonal antibody which is 

used to treat human epidermal growth factor receptor 2 (HER2) positive breast cancer and is 

a therapeutic IgG. Human epidermal growth factor receptor 2 is a member of the erb 

epidermal growth factor receptor tyrosine kinase family and is found to be overexpressed in 

20-30% of human breast cancers (Harries & Smith, 2002).  When HER2 is overexpressed 

multiple HER2 heterodimers are formed and cell signalling is enhanced which activates 

multiple signalling pathways to stimulate cellular migration and cell proliferation, resulting in 

malignant growth (Harries & Smith, 2002; Wolf-Yadlin et al., 2006). Trastuzumab binds to 

subdomain IV of the HER2 N-terminal extracellular domain and induces apoptosis in breast 

cancer cells via antibody-dependent cellular cytotoxicity (ADCC) (Rubin & Yarden, 2001).  

 
 

Trastuzumab, like all humanised monoclonal antibodies and some chimeric monoclonal 

antibodies are based on the immunoglobulin G family of antibodies, in particular IgG1 
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subclass. There are five main classes of immunoglobulins these are IgM, IgG, IgA, IgD and 

IgE isotypes with the IgG being split into four subclasses, IgG1, IgG2, IgG3 and IgG4, each 

with its own biologic properties and IgA can similarly be split into IgA1 and IgA2 (Schroeder & 

Cavacini, 2010).  

 

The IgG1 is preferred for humanised monoclonal antibodies because, this type of 

immunoglobulin has the longest half-life  of all immunoglobulin isotypes, exhibits more 

pronounced effector functions compared with other subclasses of this type and classes of 

immunoglobulins and it is the most extensively studied class of immunoglobulins (Schroeder 

& Cavacini, 2010). As a result of studying the effects of immunoglobins, several antibody 

biotherapeutics have been developed aided by homology modelling (Schwede et al., 2009). 

In 2007, of the 21 antibodies on the market, it was estimated that 11 were as a result of 

computational design of humanised constructs via homology modelling with Herceptin being 

one of the examples (Schwede et al., 2009).  

 

The utilisation of immunoglobulins to produce therapeutic monoclonal antibodies shows the 

importance of understanding in vivo interactions and the impact it can have on drug 

development. This is not just limited to protein-protein interactions but can also be relevant to 

protein-ligand interactions. 

 

1.6 Investigating protein-ligand interactions in silico 

 

Prediction of ligand-binding sites from protein structure has many applications, mainly being 

elucidation of protein function (Dorokhov et al., 2016). This can be further expanded to 

protein-ligand docking to new compound screening and drug design (Krivák & Hoksza, 

2018). 
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As mentioned previously, in Section 1.2.2  in silico methods are used to address the problem 

with the knowledge gap on structures, bioinformatic approaches that utilise information from 

existing protein-ligand complexes are becoming increasingly important, because ligands that 

bind to a protein are pivotal to understanding protein function. In these approaches, an 

assumption is made that similar binding sites are likely to bind similar ligands (Wass et al., 

2010). This rests on the premise that a known ligand of one protein can be transposed to a 

similar binding site in another protein, that was previously known to bind the ligand (Konc & 

Janežič, 2014). In order for these methods of predictions to be successful, the 3D structure 

of the protein; more specifically the protein-binding site needs to be determined. There are 

two general approaches for doing this; standard sequence alignments (sequence-based) or 

sequence to structure alignments (structure-based) (Konc & Janežič, 2014). 

 

Investigating ligand interactions is quite varied and mainly stems from the way the protein 

structure is predicted and there exists roughly two ways to do this; structure-based and 

sequence-based (Dukka, 2013). Selection of homologous sequences is a critical step in both 

sequence-based and structure-based approaches for the prediction of a protein functional 

site. It has been shown that certain degree of sequence divergence is required in multiple 

sequence alignment (MSA) for the identification of functional sites (Konc & Janežič, 2014) as 

homologous proteins do not always share the same function but can be derived from a 

common ancestral protein (Nemoto & Toh, 2012). The most effective methods in the 

prediction of functional regions of a protein are detection of conserved residue clusters (e.g. 

ConSurf (Glaser et al., 2003) )  in the tertiary structure. In these methods the homologous 

amino acid sequence of prediction target are collected and a MSA of the sequence is 

constructed (Nemoto & Toh, 2012). Then, the conserved residues are identified among all 

the sites in the MSA and these are assigned to corresponding residues on the tertiary 

structure. The cluster of conserved residues on the structure are predicted as the functional 

regions (Nemoto & Toh, 2012).  
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Sequence comparison is used to infer homology and collect evidence about membership in a 

given family. The key requirement is to properly choose similarity measures and related cut-

off values in order to avoid false positives and false negatives. If two sequences diverge, it 

becomes impossible to find annotated homologs. This is termed ‘global sequence alignment’ 

and relies on the evolutionarily related segments of two proteins, which could consist of 

binding sites and domains (Krivák & Hoksza, 2018). The first global sequence alignment 

method was developed by Needleman and Wunsch in 1970 (Altschul et al., 1990) and 

consists of three phases; initialisation (assign values for the first column), fill (aka induction 

and the entire matrix is filled with scores) and trace-back (recover alignment from the matrix). 

Since the development of the Needleman and Wunsch algorithm, sequence conservation 

has been used to predict ligand-binding sites (Needleman & Wunsch, 1970; Berezin et al., 

2004). The main strength of sequence-based approaches for prediction of binding sites is 

that methods that utilise this approach have the ability to determine ligand-binding motif in 

proteins that may not have the same overall fold (Fischer et al., 2008). Homology-based 

methods require related proteins with significant identity to the query protein to be available 

in the PDB because the conservation of biochemical function drops rapidly for proteins 

sharing <35-40% sequence identity (Dukka, 2013). Therefore, a limitation of this approach is 

that methods do not work for remote homologs (<30% pairwise identity). For sequence-

based methods, the homologous sequence of the target sequence is required, and a multiple 

sequence alignment (MSA) is constructed. Then, using the specific approach, conserved 

residues are identified among all the sites in the MSA.  

 

The situation is not as clear when it comes to “moonlighting” proteins and it has been 

postulated (Dukka, 2013) that mass spectrometry protein-expression profiles are likely to 

become a key method to identify more “moonlighting” proteins. It is known that sequence 

information alone cannot provide a distinction about the multiple functions of proteins (Jeffery, 

2005). The Critical Assessment of Function Annotation 3 (CAFA3) experiment provided a set 
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of 40 “moonlighting” proteins, for which one or more functions are yet undocumented. In 

previous years, it has been shown that the best methods to predict protein function rely on 

homologous proteins (Piovesan et al., 2015). An approach to try and address the problem of 

predicting protein function without sequence similarity is GAS (Guilty by Association on 

STRING). The principle of GAS is that if a protein physically interacts (association) with other 

proteins it should share a similar function (quality) (Piovesan et al., 2015). 

 

Structure-based methods require a  knowledge of the 3D dimensional structures of related 

proteins, which can be used as templates (Piovesan et al., 2015). Currently, there are two 

principle  experimental methods for solving structures; x-ray crystallography and nuclear 

magnetic resonance (NMR) with the former being the preferred process for obtaining high 

resolution data (Danishuddin & Khan, 2015). Based on the analysis  of existing protein-ligand 

binding sites/complexes it is quite apparent that homologous protein with similar global 

topology will bind similar ligands and there will be conserved residues (Danishuddin & Khan, 

2015). As a result, there are methods utilising both geometric match and energy scores, in 

addition to evolutionary information, in order to identify binding sites (Dukka, 2013). In 

general, these methods are broadly classified into geometry based approaches and energetic 

based approaches. Geometry-based approaches identify binding residues by searching for 

pockets or cavities in a protein structure whereas, energetic-based approaches identify 

binding residues by using various interaction energies (Dukka, 2013). Whilst sequence-based 

and structure-based methods have different approaches, in reality most successful methods 

are based on a combination of approaches (Dukka, 2013). 

 

Based on the large number of solved protein structures in databases like PDB, it is possible 

to develop methods based on structure alignment of proteins. Methods in this area can be 

classified, broadly as global structure alignment and local structure alignment based methods 

(Krivák & Hoksza, 2018). Global structure alignment based approaches are based on the 
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observation that there is a tendency of certain protein folds to bind substrates at a similar 

location. This observation suggests distantly homologous proteins can have common binding 

sites and, if that is the case, then it should be possible to identify ligand-binding sites for 

structures requiring prediction (Dukka, 2013). In comparison, local alignment approaches are 

suited to detect locally conserved patterns of functional groups, which often appear in ligand-

binding sites and have relevant involvement in ligand binding (Dukka, 2013). COFACTOR is 

a method which covers both global and local structure alignment based approaches (Dukka, 

2013). This method utilises the amino acid sequence and then generates a 3D structure 

model for the protein in question using the I-TASSER method (Roy & Zhang, 2012). 

Subsequently, information based on the global structure similarity to the query protein is 

obtained using the TM-align structure alignment program, to identify template proteins with 

bound ligands in PDB (Dukka, 2013). 

 

In contrast, sequence-based methods exploit sequence conservation or the tendency of 

functionally or structurally important sites to accept fewer mutations relative to the rest of the 

protein (Dukka, 2013). ConSurf is an example of a method which provides visualisation of 

sequence conservation values on the surface of a protein structure (Capra et al., 2009). 

 

The natural step, after determination of protein structure, is the prediction of ligand-binding 

sites and an important consideration when investigating protein-ligand interactions is whether 

the ligand is biologically relevant. The most direct way to investigate the biological relevance 

of a ligand is by manual verification (Capra et al., 2009). Verification can primarily consist of 

reading literature, however given the growth of proteins this can be time consuming. 

Additionally, novel proteins may not have adequate amounts of literature available to deduce 

the biologically relevant ligands. As a result, there has been a need to develop automatic 

procedures to select biologically relevant ligands based on proteins available in PDB (Yang 
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et al., 2012), such as; FireDB (Lopez et al., 2007), LigASite (LIGand Attachment SITE) 

(Dessailly et al., 2007), Binding MOAD (Mother of All Databases) (Benson et al., 2007), 

PDBbind (Wang et al., 2004), BindingDB (Liu et al., 2007) and BioLiP (Yang et al., 2012), 

which are each described in further detail and a summary is shown in Table 1.4. For the 

Critical Assessment of protein Structure Prediction (CASP) competitions, biologically relevant 

ligands were defined using information from the literature, Swiss-Prot ligand annotations 

(Yang et al., 2012), sequence conservation of functionally important residues and information 

from homologous structures (Magrane & UniProt Consortium, 2011). 

 

Table 1.4. Availability of methods to predict biologically relevant ligands 
Table 1.4 below is a summary of the resources available to predict biologically-relevant ligands  
 

Method Year of first 
publication 

Summary   

PDBbind 
(Wang et al., 2004) 

2004 

Ligand-binding affinity 
database for protein-ligand 
complexes with known 3D 

structures  

FireDB 
(Lopez et al., 2007) 

2007 
Selects ligands based on a 
mapping between inorganic 
ligands and GO annotations 

Binding MOAD 
(Benson et al., 2007) 

2007 

Ligand-binding affinity 
database that selects ligands 

based on a combination of 
automated procedure and 

manual validation  

BindingDB 
(Liu et al., 2007) 

2007 
Experimentally determined 
binding affinities of protein-

ligand complexes 

LigASite 
(Dessailly et al., 2007) 

2008 

Consists exclusively of 
biologically relevant binding 
sites for each protein with 

and least one apo- and one 
holo- structures 

BioLiP 
(Yang et al., 2012) 

2012 

Semi-manual curated 
database of biologically 
relevant protein-ligand 

interactions 
 
 

FireDB is a database for functional information on proteins with known structures and is 

orientated towards small molecule ligands. Therefore, interactions with proteins, DNA and 

RNA are not considered and large ligands where the number of ligand atoms is 2/3 or greater 

than the number of protein atoms are also rejected (Gallo Cassarino et al., 2014). Ligands 
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are selected based on a mapping between inorganic ligands and Gene Ontology (GO) 

annotations. Nevertheless, FireDB does have limitations; as inorganic ligands which are 

biologically relevant can be missed off if there is no GO annotation or no mapping for the 

ligand (Lopez et al., 2007). 

 

LigASite consists exclusively of biologically relevant binding sites in proteins for which at 

least one apo- and one holo- structure are available. Apo is the structure of a protein with 

unbound ligand(s) and holo is the structure of the protein bound to its ligand(s) (Yang et al., 

2012). There is a clear advantage of having both the apo- and holo- structures available and 

that is the recognition that the structure may change upon binding of its ligand. Additionally, 

LigASite is used for benchmarking but does have strict requirements (Seeliger and de Groot, 

2010). Ligands are selected if they have >10 heavy atoms on the basis that biologically 

irrelevant molecules in PDB files are generally very small (Yang et al., 2012) and have >70 

inter-atomic contacts with the protein atoms. As a result this may miss metal ion biological 

ligands (Dessailly et al., 2007). 

 

Binding MOAD selects ligands based on a combination of automated procedure and manual 

validation. Each structure is hand curated by reading the crystallography paper, which 

presents the structure in literature and is used to validate ligands and acquire binding 

affinities (Benson et al., 2007). Binding MOAD contains all appropriate protein-ligand 

complexes such as; protein-ligand, protein-cofactor and protein-ligand cofactor. The 

database is also able to present complexes when no binding data is available (Benson et al., 

2007). However, as with LigASite, Binding MOAD excludes metal ions and additionally small 

DNA/RNA molecules (Benson et al., 2007). In comparison, PDBind has less strict 

requirements than Binding MOAD, such as the inclusion of DNA/RNA molecules and 

peptides although if there is no binding data reported in the literature then the complex is 
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excluded from the databases (Yang et al., 2012). 

 

BindingDB collects binding data directly from the literature, focusing mainly on proteins that 

are drug- targets or candidate drug-targets and the structure needs to be present in the PDB. 

This restriction allows BindingDB to complement, rather than overlap other binding 

databases (Liu et al., 2007). As with PDBind, if the information is not available on the ligand 

in literature, then it is excluded from the database. 

 

Most of the existing databases miss biologically relevant ligand-protein interactions, which 

are important for protein function annotations. Therefore, there was a need for a 

comprehensive database of biologically relevant ligand-protein interactions collected from the 

PDB. BioLiP contains both computational and manual examinations to have a precise 

assessment of ligand entries into the database (Yang et al., 2012). Each entry in the BioLiP 

database contains a comprehensive list of annotations on ligand- binding residues, ligand-

binding affinity, catalytic site residues, Enzyme Commission (EC) numbers, GO terms and 

cross-links to other popular databases. In order to annotate the function of uncharacterised 

proteins; a new algorithm called COACH was used to predict ligand-binding sites from either 

protein sequence or 3D structure. A ligand is deemed biologically relevant using the BioLiP 

database if it interacts with the protein and plays a biological role; consisting of inhibitor, 

activator and substrate analog (Yang et al., 2012). Due to the use of several unique aspects, 

for example a four-step hierarchical procedure to automatically verify the biological relevance 

of a ligand, comprehensive function annotation and a new reliable algorithm COACH to 

predict ligand-binding sites; BioLiP will be used in order to assist with the prediction of 

biologically relevant ligands and ultimately protein function by FunFOLD3. 

 



Chapter 1. Introduction   

 
 

Page 53 of 645 

1.6.1 BioLiP: database for biologically relevant ligand-protein interactions 

 

The biological function of a protein may have several different meanings; a protein can 

function as a catalyst in chemical reactions, as a transporter for materials across a cell, 

receiving and sending chemical signals, responding to stimuli and providing structural 

support (Roche et al., 2012). Most of these functions are determined by interactions with 

other proteins or small molecules. Therefore, interfaces/interactions between proteins and/or 

small molecules are critical to understanding function (Liu et al., 2018). The role of a ligand 

can be in the initiation of a process following binding of the ligand molecule to a protein 

molecule or conversely block the initiation of activity by occupying the binding-pocket (Alberts 

et al., 2002). Typically, ligands can be thought of as a signalling molecule and will bind to a 

specific site on a protein or other molecule (Du et al., 2016). As a result, a ligand will be an 

extracellular signalling molecule, so a small hydrophobic molecule that can enter a cell and 

bind to proteins within a cell or a water-soluble, polar molecule that binds to proteins outside 

the cell (Alberts et al., 2002).  

 

When predicting ligands, a key question is whether ligands are biologically relevant.  

Ligands associated with PDB entries are not always biologically relevant and can be ‘ligands’ 

left over from crystallisation conditions or additives for solving protein structures (Liu et al., 

2018). In order to reduce the prediction of non-biologically relevant ligands, FunFOLD3 

utilises BioLiP – a semi manually curated database for biologically relevant protein 

interactions (Yang et al., 2012). Establishing the interactions between a protein and its ligand 

aids in the understanding the function of proteins. As FunFOLD3 uses templates from PDB it 

is important to determine the biological relevance, if any, of predicted ligands. 

 
 
Each entry in BioLiP contains a comprehensive list of annotations on; ligand-binding residues 

in the database, ligand-binding affinity, catalytic site residues, EC numbers, GO terms and 

cross-links to other popular databases. To assist with annotation of the function of 
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uncharacterised proteins, another algorithm COACH is used to predict ligand-binding sites 

from either protein sequence or 3D structure. COACH is a consensus-based approach for 

ligand-binding site prediction that combines the results from five methods; COFACTOR, 

FINDISTE, ConCAVITY, TMSITE and SSITE (Yang et al., 2012). SSITE is used to identify 

the ligand-binding information based on the sequence profile-to-profile search of the target 

against BioLiP library where the hits of the highest E-value is returned. All five methods are 

used to generate the binding prediction and the consensus hits from multiple searches are 

selected (Yang et al., 2012).  

The BioLiP database consists of three steps (Yang et al., 2012): 
 
Step 1: For each entry available in the PDB, the 3D structure is downloaded and the 

modified residues are translated to standard residues based on the record ‘MODRES’ in the 

PDB structure file 

 
Step 2: Ligands, defined as small molecules are extracted from the PDB file. Three types of 

ligand molecules are collected in the BioLiP database: the molecules from the HETATM 

record (excluding water and modified resides), small DNA/RNA and peptides with <30 

residues. Metal ions are considered as potential biologically relevant ligands paradoxically, 

whilst some are first listed as possible artifacts, others can be deemed as biologically 

relevant ligands (Yang et al., 2012). 

Step 3: Each ligand molecule is submitted to a composite automated and manual procedure 

to decide biological relevance. If the ligand is seemed biologically relevant it is deposited into 

the BioLiP database. Additional information on ligand-binding affinity, catalytic site resides, 

EC numbers, GO terms and crosslinks to PDB, UniPort, PDBsum, PDBe and PubMed 

databases are also collected and deposited into BioLiP (Yang et al., 2012). 

 

The definition of a biologically relevant ligand is if the ligand in question interacts with the 

protein and plays certain a biological role, such as co-factor, inhibitor, activator or substrate. 
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The validation of a biologically relevant ligand consists of both manual and automated 

procedure to eliminate possible false positives, such as crystallisation additives (Yang et al., 

2012). 

Figure 1.11 outlines the four step automated filtering process for BioLiP. The first step, is if 

the candidate ligand is in the artifact list and appears >15 times in the same structure file, then 

it is likely to be a crystallisation additive and is considered as biologically irrelevant (Yang et 

al., 2012). During the second step, the contacts between the receptor and ligand atoms are 

computed. For a receptor residue, if the closet atomic distance between the residue and the 

ligand is within certain distance cutoff, then the residue is defined as a ligand-binding 

residue. The cut off is set at 0.5 plus the sum of the Van der Waal’s radius of the two atoms. 

If the number of binding site residues is less than two or all the binding site residues are 

consecutive, it is deemed biologically irrelevant because most biologically relevant ligands 

are usually tethered by multiple residues, which are further apart in the sequence space 

(Yang et al., 2012). Step three, if the ligand is not present in the artifact list, then it is 

considered as biologically relevant and kept for manual verifications (Yang et al., 2012). Step 

four, review of literature e.g. PubMed abstracts to filter out biologically irrelevant ligands. 

Automatically regarding ligands as artifacts if they fit this criteria will miss some ligands (false 

negatives) that are biologically relevant (Yang et al., 2012). Step five, involves manually 

verification across the literature and other databases (Yang et al., 2012). 
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Figure 1.11. Flowchart for the biological relevance assessment of ligand molecules. Figure taken from Yang et al., 2012 

 

The most convenient and well-known computational method for function prediction is based 

on the detection of significant sequence similarity to gene products of known gene function 

(Yang et al., 2012) and has been shown that computational prediction methods also play a 

key role in the prediction of cancer-gene function, as traditional experimental approaches are 

laborious and expensive (Hu et al., 2007). Basic local alignment search tool (BLAST), is a 

rapid sequence alignment algorithm for homology searching of sequence libraries and works 

on the assumption that proteins with a similar sequence probably have similar biological 

properties. However, there is an important restriction with this simplistic approach – only 

functions tied directly to sequence, such as enzymatic activity, can be predicted accurately 

(Hu et al., 2007). Position Specific Iterative-BLAST (PSI-BLAST) further improved the speed 

and sensitivity of the BLAST algorithm (Hu et al., 2007). 
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It could be assumed the use of in silico methods removes the need for in vivo methods for 

investigating protein interactions. However, in silico methods can be used before in vivo 

methods to provide initial confirmation of interactions. Guarienti et al., 2015 used 

computational analysis methods to predict if recombinant human erythropoietin could interact 

with zebra fish erythropoietin receptors in vivo. The computational analysis enabled the 

investigation into the functional similarity between human and zebra fish erythropoietin 

receptors. This showed recombinant human erythropoietin could recognise and bind to zebra 

fish erythropoietin receptors in the same way it binds to human erythropoietin receptors. 

When recombinant human erythropoietin was used in vivo, results showed the zebra fish 

could be utilised as an animal model to study safety and efficacy of biologics. Thus, 

supporting the use of computational methods in protein interactions. 

 

1.6.2 Experimental models of protein-ligand binding affinity 

 
 
Various experimental techniques can be used to investigate protein-ligand binding, with X-

ray crystallography, nuclear magnetic resonance (NMR), small-angle X-ray scattering and 

cryo-electron microscopy also used in the determination of 3D protein structure and 

mentioned previously in Section 1.2.1. Crystal structures of protein-ligand complexes provide 

a detailed view of their spatial arrangement and interactions (Schlichting, 2005). Protein 

complexes with reactive short-lived ligands e.g. chemical or binding reactions are determined 

using X-ray diffraction techniques such as Laue method (Du et al., 2016).  

 

In the Laue method, a stationary single crystal is bathed in a beam of “white” radiation and 

using general wave optical principles a 3D lattice concept are used to deduce three 

equations which must be simultaneously satisfied to explain that X-rays are scattered 
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selectively in certain well-defined directions (Smallman & Ngan, 2014). A transmission 

photograph or a back reflection photograph is taken and the Laue path is able to indicate the 

symmetry of the crystal (Smallman & Ngan, 2014). Advantages of Laue include a ‘niche of 

excellence’ in the study of cyclic, ultra-fast, light-triggered reactions (Bourgeois & Royant, 

2005) and speed of data collection that may be achieved while maintaining an adequate 

signal-to-noise ratio (Ren et al., 1999). A disadvantage is the Laue method is best suited for 

visualisation of intermediate states that cannot be cleanly trapped by cryocooling (Ren et al., 

1999).    

 

All provide atomic-resolution or near-atomic-resolution structures of the unbound proteins 

and the protein-ligand complexes, which can be used to study the changes in structure and 

and/or dynamics between the free and bound forms as well as relevant binding events (Du et 

al., 2016). 

 
 
1.7 FunFOLD webserver 

 
FunFOLD is a template-based method for protein-ligand binding prediction (Roche et al., 2011, 

2013)  and uses an automatic approach for cluster identification and residue selection (Roche 

et al., 2015). The main requirement for FunFOLD is a 3D model, amino acid sequence and a 

list of templates as inputs (Roche et al., 2011) FunFOLD3 will provide: 

1. A list of ligand-binding site residues in the target sequence that are most likely to bind 
a ligand 

 
2. A list of putative binding ligand(s) 

 
3. 3D models of the likely protein-ligand interactions 

 
4. List of likely GO terms and EC identifiers  

 
 
A flow diagram of the FunFOLD2 prediction server pipeline (pre-dates FunFOLD3) is 

illustrated in Figure 1.12 below with a simplified flowchart in Figure 1.12A and a detailed 

overview in Figure 1.12B: 
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A 

 

B 

 
Figure 1.12. Flow diagram of the FunFOLD2 prediction server pipeline. 
(A) A number of alternative models are built for the target sequence using the IntFOLD2-TS protocol. (B) The FunFOLD2 
pipeline then uses ModFOLDclust2 to determine the top models for each target. (C) The FunFOLD algorithm is 
subsequently used to predict ligand-binding site residues for the top models. (D) The quality is assessed for the resultant 
FunFOLD predictions, using our ligand-binding site quality assessment tool, FunFOLDQA (E) The predicted MCC and BDT 
scores [according to FunFOLDQA] are provided, along with the propensity of which ligand type the binding site is most likely 
to contain, along with ligand functional propensity. (F) Final prediction. Figure taken from Roche, et al., 2011 

 

Briefly, the FunFOLD method for predicting ligand-binding site residues is based on the 

concept that, target proteins (e.g. CASP targets), may contain similar binding sites as those 

identified in templates from the PDB, which have the same fold (Roche et al., 2013). The 

FunFOLD server predicts protein-ligand binding sites from a single sequence via 3D 

structures built using the IntFOLD server (Roche et al., 2013). FunFOLD uses the predicted  

3D model of the target protein under analysis and using structural superpositions of this 

model and related templates with bound ligands in order to identify putative contacting 

residues (Roche, Tetchner and McGuffin, 2011). This is based upon the concept that ligand 

containing templates from the PDB with the same folds as the target protein may contain 

similar binding sites. For further information on the prediction of ligand-binding sites by 

FunFOLD refer to Section 1.7.2.  
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1.7.1. FunFOLDQA 

 

Quality assessment gained attention to become an integral part of tertiary structure 

prediction (McGuffin et al., 2019) and it was later proposed that similar metrics should 

become an integral part of the ligand binding site residue predictions. Several QA tools exist 

and the Cheng group have numerous QA tools such as MUTLICOM, APOLLO, 

QMEAN,QMEANolust, ProQ, Kalman & Ben-Tal and DISCERN (McGuffin & Roche, 2011).  

 

FunFOLDQA feature scores are derived from data generated by running the FunFOLD 

method. It is worth mentioning that similar data are also produced by the majority of the top 

structure based binding site residue prediction methods (Roche et al., 2012). Following 

identification of ligands from FunFOLD, ligands are then assigned to clusters using an 

agglomerative hierarchical clustering algorithm that identifies each continuous mass of 

contacting ligands, thereby indicating a putative binding pocket (Roche et al., 2012). Ligands 

are considered part of the cluster if any of their atoms are in contact with the continuous 

mass (Roche et al., 2012). Once each continuous mass of contacting ligands was identified, 

the cluster with the largest number of ligands was selected as the location of the most likely 

binding pocket (Roche et al., 2012). Determination of which residues are most likely to be the 

predicted ligand-binding site relies on a residue voting procedure. For a residue to be 

included in a prediction it must have at least one contact with two or more ligands and at 

least 25% of the ligands in the cluster (Roche et al., 2012).  

 

1.7.2 FunFOLD3 for the prediction of ligand-binding sites  

 

The FunFOLD algorithm utilises the TMalign method to superpose all identified templates 

containing biologically relevant ligands with the predicted 3D structure from IntFOLD2-TS 

(Roche et al., 2015).  TM-align is an algorithm for structural alignment between two protein 
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structures (Zhang & Skolnick, 2005). TM-align works by firstly generating optimised 

residue-to-residue alignment based on structural similarity using a heurtistic dynamic 

programming iteration (dividing the full sequence into a series of smaller sequences and 

uses the solutions to the smaller problems to find an optimal solution to the full sequence) 

(Needleman & Wunsch, 1970; Zhang & Skolnick, 2005). TM-align will provide an optimal 

superposition of the two structures (for the purpose of this thesis, it will be the observed and 

predicted structures), built on the detected alignment (Zhang and Skolnick, 2005). 

Additionally, a TM-score is used to scale the structural similarity. TM-score has a scale of 0-

1, with 1 indicating a perfect match between the two structures. Scores <0.2 correspond to 

randomly chosen unrelated proteins and scores >0.5 assume two proteins generally have 

the same fold (Xu & Zhang, 2010).  

 

This method is a similar concept to methods developed by the Lee group (Roche et al., 

2013) and Sternberg group (Oh et al., 2009). However, the FunFOLD algorithm uses a 

novel automated method for ligand clustering and identification of binding residues (Wass 

et al., 2010). This method consists of protein-ligand binding site and quality assessment 

protocols for the prediction of protein function (the “FN” category in CASP, see link in 

equation 1) from sequence via structure (Roche et al., 2011). 

 

The input to the FunFOLD3 server is a 3D model of the protein under analysis and a list of 

template PDB IDs (Roche et al, 2013). Once the 3D model has been inputted into the 

server, the TMalign method is used to superimpose the template structures of the 3D protein 

model. Template-model superpositions with a TM-score ≥0.4 are retained (Roche et al., 

2011). This is because, TM-scores from 0.4 to 0.6 have previously been shown to mark the 

transition from unrelated to significantly related folds (Zhang & Skolnick, 2005). Then 

superpositions are combined and reoriented using a PyMOL script to determine putative 
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ligands (Xu & Zhang, 2010). The next step is ligands are assigned to clusters using 

agglomerative hierarchical clustering. To determine the ligand binding site residues in the 

selected binding pocket, a novel residue-voting algorithm is used. Residues are determined 

to be in contact with a ligand cluster, if the residue is in contact with the ligand cluster 

(Roche et al., 2013). Ligands are considered to be part of a cluster if the Van der Waals 

radius is ≤0.5 Å. The most probable ligand-binding site is the site with the largest ligand 

cluster (Konc & Janežič, 2014). 

 

In 2005, TMalign was developed as an algorithm to identify the best structural alignment 

between protein pairs combining the TM-score rotation matrix and dynamic programming 

(Zhang & Skolnick, 2005). TM-score overcomes the problems associated with the root-mean-

square deviation (RMSD). Root-mean-square deviation compares the protein 

structures/models with a specified equivalence between pairs of residues. This is the most 

commonly used metric in the category, which compares protein structure/models with a 

specified equivalence between pairs of residues (Matthews, 1975). With RMSD the problem 

arises from weighting the distances between all residues equally. As a result of a small 

number of local structural deviations could result in a high RMSD, even when the global 

topologies of the compared structures are similar (Matthews, 1975). TM-score overcomes 

this problem by exploiting a variation of Levitt-Gerstein weight factor, which weighs the 

residue pairs at smaller distances relatively stronger than these at larger distances (Zhang & 

Skolnick, 2005). The second type of structure comparison compares a pair of structures 

where the alignment between equivalent residues is not a priori given. TMalign extends the 

approaches of Levitt & Gerstein and Kihara & Skelnick with the TM-score rotation matrix 

speeding up the process of identifying the best structure alignments (Zhang & Skolnick, 

2005). The TMalign method will also be used to compare the protein models from CASP and 

the predicted protein models from FunFOLD3 (see Chapter 3). 

The latest version of the FunFOLD webserver is FunFOLD3, which incorporates the 
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FunFOLDQA algorithm (McGuffin & Roche, 2010). This algorithm evaluates the quality of 

FunFOLD predictions by producing a set of quality assessment scores. These output scores 

include five sequence- and structure-based features and output from predicted Binding-site 

Distance Test (BDT) (Roche et al., 2013) and Matthews Correlation Coefficient (MCC) 

scores, (McGuffin & Roche, 2010) which are used for the assessment of ligand-binding site 

residue predictions compared with crystal structures. The FunFOLDQA method combines 

four binding site-dependent protein scores and one structural dependent feature score, using 

a neural network, trained on either the MCC or BDT metrics to produce local ligand-binding 

site predictions. The five feature scores are called:(1) BDTalign, (2) Identity, (3) Rescaled 

BLOSUM62, (4) Equivalent Residue Ligand Distance and (5) Model Quality. BDTalign 

establishes the distance between residues that are equivalent between the model binding 

site and the template-binding site. Identity score compares binding site residues between the 

model- and template-binding site, which are equivalent in 3D space according to their amino 

acid sequence. Rescaled BLOSUM62 score is similar to the Identity score, but it scores 

equivalent residues between model and template binding site, using the BLOSUM62 (Eddy, 

2004) scoring matrix. BLOSUM (BLOcks SUbstitution Matrix) is a substitution matrix of 2,000 

blocks of aligned sequence segments and characterises more than 500 groups of related 

proteins (Henikoff & Henikoff, 1992). The sequences in each block were sorted into closely 

related clusters and the frequencies of substitutions between these clusters within a family 

used to calculate the probability of a meaning substitution. A scoring matrix is required to 

evaluate the two amino acid residue-pairs in an alignment and is scored according to a 

match or mismatch, if they occur at the same position. Matches are given a positive score, 

e.g. +1 and mismatches are given a negative score e.g. -1. Amino acids are grouped 

according to the chemistry of the side chain (Pertsemlidis & Fondon, 2001). The cut-off 

values associated with BLOSUM denote the percentage of sequence identity that defines the 

cluster (e.g. BLOSUM45, BLOSUM62 and BLOSUM80) (Pertsemlidis & Fondon, 2001). 

Thus, BLOSUM62 would have within each block, the amino acid sequences would be at 
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least 62% identical when the two proteins were aligned (Pertsemlidis & Fondon, 2001) and 

will interchange with each other and contains the general evolutionary information among the 

protein families (He et al., 2006). Lower cut-off values allow more diverse sequences into the 

group and are therefore appropriate for examining more distant relationships (Pertsemlidis & 

Fondon, 2001). BLOSUM62 is consistent with strong evolutionary pressure to conserve 

protein function and hence is utilised by FunFOLD3 (O’Connor, 2021). The Equivalent 

Residue Ligand Distance score, scores the equivalent residues between the model and the 

template in relation to their distance from the bound ligand. The Model Quality score is the 

global quality score for the starting model, calculated using ModFOLDclust2 (McGuffin & 

Roche, 2010; Roche et al., 2011).     

 
Finally, the FunFOLD3 method outputs a putative ligand binding site, putative ligand binding 

site residues, putative ligands that may bind to the target protein, along with predicted EC 

numbers and GO (Gene Ontology Consortium, 2015) terms for each target protein (McGuffin 

& Roche, 2011; Roche et al., 2011).  Several other methods for the prediction of ligand-

binding sites exist and are shown in Table 1.5. Methods have traditionally been categorised 

based on their main algorithmic strategy into geometric, energetic, conservation-based, 

template-based and machine learning/knowledge based (Krivák & Hoksza, 2018). Each 

method has additional functionality e.g. suggesting possible binding ligands (e.g. FunFOLD3 

and GalaxySite), others predict druggability of predicted pockets (Fpocket, DrugSite).  

 

 

 

 

 

 

 

Table 1.5. Availability of existing tools for ligand binding site prediction from protein structure introduced since 2009 
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Geometric methods, the ligand-binding site is presumed to be located within the largest pocket on the protein surface 
(Tsujikawa et al., 2016). Energetic methods are based on the concept that a ligand binds the site where the interaction energy 
with the protein is minimal (Tsujikawa et al., 2016). Template-based methods search for the most similar proteins in a 
database(s) that have been labelled with ligand-binding sites using structure alignment algorithm and then to transfer the 
known ligand-binding site from the most similar proteins onto the query protein (Zhao et al., 2020). Consensus methods utilise 
a multi-strategy approach which combines different methods to potentially perform better than a single-strategy methods (Xie & 
Hwang, 2012). Protein-ligand docking, involves molecular modeling to predict ligand-protein binding conformations (Zhang et 
al., 2020). Conservation methods make assumptions that residues located in protein-ligand binding site are usually more 
important more highly conserved than those located in other parts during evolution (Dai et al., 2011).  
Machine learning encompasses both traditional and deep learning prediction methods. Traditional methods focus on machine 
learning algorithms to carry out both ligand-binding site predictions but also for the binding affinity research (Zhao et al., 2020).  
Deep learning simulates the learning mechanism of the human brain but still uses algorithms to determine ligand-binding sites 
(Zhao et al., 2020).  Table adapted from Krivák & Hoksza, 2018 

Method Year of first 
publication 

Type 

SiteMap  
(Halgren, 2009) 

2009 Geometric 

Fpocket  
(Le Guilloux et al., 2009) 

2009 Geometric 

SiteHound 
(Ghersi & Sanchez, 2009) 

2009 Energetic 

ConCavity 
(Capra et al., 2009) 

2009 Conservation 

3DLigandSite 
(Wass et al., 2010) 

2010 Template 

POCASA 
(Yu et al., 2010) 

2010 Geometric 

DoGSite 
(Volkamer et al., 2010) 

2010 Consensus 

FunFOLD 
(Roche et al., 2011) 

2011 Template 

MetaPocket 
(Zhang et al., 2011) 

2011 Consensus 

MSPocket  
(Zhu & Pisabarro, 2011) 

2011 Geometric 

FTSite  
(Ngan et al., 2012) 

2012 Energetic 

LISE  
(Xie & Hwang, 2012) 

2012 Knowledge/conservation 

COFACTOR  
(Roy et al., 2012) 

2012 Template 

COACH  
(Yang et al, 2013) 

2013 Template 

G-LoSA  
(Lee & Im, 2013) 

2013 Template 

eFindSite  
(Brylinski & Feinstein, 2013) 

2013 Template 

GalaxySite  
(Heo et al., 2014) 

2014 Template/Docking 

LIBRA  
(Hung et al., 2015) 

2015 Template 

P2RANK  
(Krivák & Hoksza, 2018) 

2015 Machine learning 

bSiteFinder  
(Gao et al., 2016) 

2016 Template 

ISMBLabLIG  
(Jian et al., 2016) 

2016 Machine learning 

DeepSite  
(Jiménez et al., 2017) 

2017 Machine learning 
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1.7.3  IntFOLD server 

 
As mentioned previously, FunFOLD3 is part of the IntFOLD server, which comprises of five 

novel methods: IntFOLD-TS, for tertiary structure prediction, ModFOLD, for model quality 

assessment, DISOclust, for disorder prediction, FunFOLD3, for function prediction by ligand 

and ligand-binding site prediction and DomFOLD, for prediction of a number of domains and 

their possible boundaries within a protein sequence (Roche et al., 2011; Roche et al., 2013). 

The IntFOLD server was designed by the McGuffin group and has been operational since 

January 2010 and the guiding principles behind the server development were (i) to provide a 

simple unified resource that makes prediction software accessible to all and (ii) to produce 

integrated output for predictions that can be easily interpreted (Roche et al., 2011).  

 

Figure 1.13 on the next page demonstrates how the methods within the original IntFOLD server 

are interdependent, with the output from initial tertiary structure prediction algorithm 

becoming the input for subsequent methods. 
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Figure 1.13. Diagram of the software stack implemented for the IntFOLD server 
The figure highlights the interdependency of all the different IntFOLD algorithms and highlighting the importance of 
ModFOLDclust2 as the key algorithm in the pipeline. The models ranked by ModFOLDclust2 are used to produce a resulting 
output for 3D structure prediction (TS), domain prediction (DP), binding site residue prediction function prediction (FN), 
disorder prediction (DR) and model quality assessment (QA). Figure adapted from McGuffin & Roche, 2011 

 
The top ranked IntFOLD model and related templates with bound ligands have model-to-

template superpositions performed. This aids the identification of putative contacting 

residues and identifies templates used for model generation that contain biologically relevant 

ligands, in order to produce ligand binding site residue predictions (Roche et al., 2011). A 

prototype version was developed during the CASP9 prediction season and incremental 

improvements to the server have been made since, which has enhanced performance and 

reliability (Roche et al., 2011). 
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1.8 Assessing the performance of the FunFOLD3 webserver 

 
There are several community wide prediction experiments such as; Critical Assessment of 

techniques for protein Structure Prediction (CASP) (Liu et al., 2018), the Continuous 

Automated Model EvaluatiOn (CAMEO) project (López et al., 2009) and the Critical 

Assessment of Function Annotation (CAFA) (Radivojac et al., 2013). CAMEO, used to have a 

ligand-binding section which evaluated FunFOLD predictions called CAMEO-LB. However, this was 

discontinued in April 2016, and a beta version of CAMEO, CAMEO-3D will include ligand-binding 

predictions once again.  Each of these projects have been essential for the independent 

benchmarking of the performance of the FunFOLD3 webserver. The focus of this thesis will 

be about CASP and CAFA competitions and further details are provided in Section 1.8.1 and 

Section 1.8.2, respectively.  

1.8.1 Critical Assessment of protein structure prediction  

 
The Critical Assessment of techniques for protein Structure Prediction was launched in 1994 

and is a community-wide experiment for tertiary protein structure prediction taking place 

biennially (Moult et al., 1995).  The only way to objectively assess the usefulness of 

prediction methods, is to ensure predictions are made without any knowledge of the answers 

(Moult et al., 1995). The procedure for CASP consists of three parts: (1) the collection of 

targets for prediction from the experimental community, (2) the collection of predictions from 

the modelling research groups and (3) the assessment (and discussion) of the results (Moult 

et al., 1995).  

CASP appreciated the difficulty of predictions depended on the extent of the relationship of 

the target protein to already known structures and predictions were therefore divided into 

three types (Moult et al., 1995): 

1. Comparative modelling  

2. Threading or fold identification  

3. Ab initio predictions  
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CASP provides structural biologists an opportunity to objectively measure their structure 

prediction methods independently, as the protein targets are double-blinded and will have 

experimental structures released imminently or are solved but not released publicly by either 

X-ray crystallography or NMR spectroscopy and will be available on Protein Data Bank 

(Moult et al., 1995). This blinding enables benchmarking to be utilised with the purpose of 

benchmarking to compare predicted structures to experimental structures so ultimately the 

data can be as robust as it can be and also be trusted. 

 

CASP aimed to show that objective testing of structure prediction methods is both practical 

and necessary (Moult et al., 1995). Since inception of CASP1 where 27 groups took part to 

the recent CAP14 in which over 200 groups participated shows the increasing importance of 

understand structure and function prediction to the community.  

 

As CASP provided an objective measure of not only structure but also protein function by 

prediction of ligands and ligand-binding residues, it was deemed as an invaluable method to 

objectively measure FunFOLD3 and identify specific strengths and weaknesses and 

ultimately highlight where the opportunities are for further development of this method.  

1.8.2 Critical Assessment of Function Annotation 

 
The CAFA challenge is a worldwide effort aimed at analysing and evaluating protein function 

prediction methods (Radivojac et al., 2013). This has begun to provide an objective overview 

of the state-of-the-art in the field of automatic protein function prediction (AFP). The 

experiment consists of two tracks (i) the eukaryotic track and (ii) the prokaryotic track. In 

each track, a set of targets is provided by the organisers. 
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The CAFA experiment is also responsible for defining new criteria for evaluation, which are 

(Radivojac et al., 2013): 

 
1.5.1.1 Validation data set used for the blind set 

1.5.1.2 Definition of function space through GO terms 

1.5.1.3 Scoring metrics for comparing different methods 
 
 
 
 
In comparison to CASP, CAFA’s main objective is to gather all AFP researchers to fairly 

assess and compare the latest computational methods using a centralised and independent 

assessment (Piovesan et al., 2015).  

 

Protein function can be described in multiple ways, in CAFA the focus is on classification 

schemes provided by the GO consortium (Kahanda et al., 2015). The CAFA experiment 

involves a set of proteins lacking experimentally validated functional annotation being 

released to participants. Proteins are then annotated by the participants with the annotations 

submitted to assessors (Radivojac et al., 2013). The evaluation of protein function prediction 

is assessed using the maximum F-measure (Fmax) and considers predictions across the full 

spectrum from high to low sensitivity. A perfect predictor would be characterised with Fmax = 

1 (Radivojac et al., 2013). The approach is not without its limitations however, mainly the 

penalisation of specific predictions (Radivojac et al., 2013).  

 

There have been changes to CAFA since its inception; CAFA1 had participants make 

computational predictions using their own AFP method on protein targets missing previous 

annotations. The computational predictions were compared against annotations to assess 

the accuracy of each AFP method. The second CAFA challenge; CAFA2 had the exact same 

concept, except the protein targets consist of both annotated and unannotated proteins. The 

addition of annotated proteins makes CAFA2 a more realistic representation of function 

prediction problems, as it better models the accumulation of annotations over time (Radivojac 



Chapter 1. Introduction   

 
 

Page 71 of 645 

et al., 2013). Whereas, CAFA3 introduced predictions of macromolecular binding sites in a 

protein (DNA and RNA) and metal binding sites. Unlike CASP, CAFA allows researchers to 

assess three different methods, however only one model, typically the best algorithm can be 

officially evaluated. 

 

1.9 Outline of thesis and rationale of study 

 
Chapter 3 of the thesis will analyse FunFOLD3 in the CASP11, CASP12 and CASP13 

double-blinded experiment which aims to objectively establish the performance of FunFOLD3 

in function prediction with Chapter 4 focusing on IntFOLD4 in CASP12 and Chapter 5 reports 

the performance of FunFOLDQ in CAFA3. Chapter 6 will explore the use of docking to refine 

the ligand-binding site using AutoDock Vina. Assessing the performance of FunFOLD3 and 

FunFOLDQ in two different competitions aids in providing a more complete picture of the 

server’s performance. When FunFOLD3 is utilised in CASP competitions, it mainly informs 

the user that the protein has a biologically relevant ligand and the 3D structure of the protein, 

however, while GO terms are predicted as part of the FunFOLD3 output, they do not form 

part of the analysis for the CASP assessors. In CAFA, the prediction of GO terms enables 

the user to uniquely and precisely define the features of genes and gene products in a 

species independent manner (Kahanda et al., 2015). Therefore, when CASP and CAFA 

results are analysed in combination for the same protein, ligand-binding sites can be 

identified but also the function of the protein, allowing for the elucidation of any impact on 

disease. Chapter 7 will be applying FunFOLD3 in the 2020-2021 COVID-19 global pandemic 

and gaining valuable insights into potential ligand-binding residues.  

 
Translocator Protein kDa (TSPO) is an example of a protein in literature where knowledge 

solely about a ligand can assist in further information into the role of a protein and also 

highlights a potential role for FunFOLD3, in that FunFOLD3 can be utilised to identify ligands 

and ligand-binding site residues and understanding the role of these ligands can assist in 
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providing insight into the function of a protein. TSPO, is a ubiquitous mitochondrial protein 

containing separate drug and cholesterol binding domains and was previously known as the 

peripheral-type benzodiazepine receptor because it was identified as a binding site for the 

benzodiazepine, diazepam. (Pinoli et al., 2015). On PDB, a number of ligands can be 

identified for TSPO and these range from protoporphyrin IX, formic acid, 1-Oleoyl-R-glycerol 

to tetraethylene glycol (Papadopoulos et al., 2017). TSPO along with the binding of its ligands 

is illustrated in Figure 1.14. Due to the diversity of ligands, which bind to TSPO, it would be 

reasonable to assume there is a diverse role of TSPO, especially if the ligands are 

biologically relevant. For example, the function of TSPO in haeme biosynthesis is quite 

obvious due to protoporphyrin IX ligand. Seven GO annotations are associated with TSPO, 

illustrating the diverse range of functions and is illustrated in Table 1.6.  

 

 
 
Figure 1.14. Structure of TSPO bound to ligands 
Translocator protein 18kDa 2.4 Å (PDB ID 5duo) is shown in cartoon form with the surface highlighted and coloured cyan, 
with the proroporphyrin IX ligand shown as sphere and coloured red, the formic acid ligand shown as sphere and coloured 
blue and 1-Oleoyl-R-glycerol shown as sphere and coloured yellow 
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Table 1.6. GO identifiers and GO term name associated with TSPO 
Seven annotations have been identified for TSPO illustrating the diversity of functions 
 

GO identifier GO term name 

GO: 0006783 Haeme biosynthetic process 

GO: 0006820 Anion transport 

GO: 0006915 Apoptotic process 

GO: 0008202 Steroid metabolic process 

GO: 0008283 Cell proliferation 

GO: 0015485 Cholesterol binding 

GO: 0032374 Regulation of cholesterol transport 

 

As can be seen from Table 1.6, the GO terms provide further information into the function 

of TSPO and demonstrates diversity across a range of biological processes and molecular 

function. The ancestor charts for GO: 0006783 and GO: 0008283 as shown in Figure 1.15A 

show the function of TSPO in haeme biosynthetic process is well understood as shown by 

the number of “branches”, however the exact role of TSPO in cell proliferation (Figure 

1.15B) remains to be fully understood and this is supported by the limited data in literature 

(Berman, Henrick and Nakamura, 2003). 
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A 
 

 

B 

 
Figure 1.15. Hierarchical mapping of Gene Ontology (GO) term haeme biosynthetic process (A) and cell proliferation (B) 
for TSPO 
(A) Mapping illustrates that haeme biosynthetic process belongs to the biological process ontology and is a chemical 
reactions and pathway resulting in the formation of haem, any compound of iron complexed in a porphyrin (tetrapyrrole) ring, 
rom less complex precursors. (B) Mapping for cell proliferation, showing limited understanding of the role of cell proliferation 
for TSPO. Figure taken from Papadopoulos et al., 2017 
 

Two Examples of other naturally occurring ligands which are important for protein function 

are the Toll-like receptors (TLR), which are a family of eleven protein recognition receptors 

that recognise and respond to conserved components of microbes and play a critical role in 

both innate and adaptive immunity (Yu, Wang and Chen, 2010) and nuclear receptors (NRs) 

which are hormone-sensing transcription factors that translate dietary or endocrine signals 
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into changes in gene expression.  Endogenous ligands of TLR include proteins and peptides 

(e.g. fibrogen and surfactant protein A), polysaccharides and proteoglycan (e.g. biglycan and 

heparan sulphate), nucleic acids (e.g. DNA and RNA) and phospholipids (e.g. OxPAPC) all 

of which are extracellular matrix degradation products and binding of these ligands to the 

receptor regulates the inflammation process by activation of the immune cells (Yu, Wang and 

Chen, 2010). This in turn leads to the production of cytokines and chemokines and 

inflammatory responses. The function of TLR, is dependent on the protein’s ability to 

recognise endogenous stimulators and essential in the function of regulating non-infectious 

inflammation (Yu, Wang and Chen, 2010). Nuclear receptors are a superfamily which 

controls processes such as development, inflammation, toxicology, reproduction and 

metabolism (Mangelsdorf et al., 1995). Endogenous ligands, when bound to NRs elicits a 

conformational change and this conformational change alters the cellular location of the NRs 

and/or their interaction with cofactors (Mangelsdorf et al., 1995). This in turn translates into 

changes in gene expression and explains why NRs are called ligand-activated and the 

endogenous ligands are bile acids, phospholipids, steroid hormones, thyroid hormones, 

retinoids and vitamin D (Mangelsdorf et al., 1995). 

 

As previously eluded, identifying ligand-binding residues can aid the overall understanding of 

the role and function of a protein by using them to subsequently predict the types of ligands 

which they bind and for enzymes, the types of reactions that are catalysed (Dutta et al., 

2017). Accurate modelling of protein-ligand interactions is an important step to understanding 

many biologically process. Additionally, the knowledge of residues involved in protein-ligand 

interactions is not just limited to understanding the function of proteins but can have 

applications in drug discovery (Fischer et al., 2008). 
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1.10 Problem statement and aims of thesis  

 

FunFOLD3 is an integral part of the IntFOLD server and uses the top predicted tertiary 

structure, scored by ModFOLD, to predict the function of proteins by identifying likely 

associated ligands and ligand-binding site residues. One of the goals of structure prediction 

is to provide insights into biological functions. However, it is difficult to quantify and 

benchmark the utility of protein structure prediction for functional inference (Skolnick & 

Brylinski, 2009). Thus, the aim of this thesis is to address the need to integrate functional 

data into structure prediction pipelines in order to infer the functions of individual proteins, in 

order to answer the question and address the problem of how do we know the structure has 

biological relevance? In addition, the thesis has explored why should structural biologists 

care about in silico protein structure prediction and why develop these methods further, in 

light of experimental methods to predict protein structure and ultimately function being costly. 

However, it is imperative that structure-function predictions are properly evaluated. The 

thesis will do this by independent accuracy benchmarks and will help to improve 

developments in the field of protein function prediction as a whole. Once results of these 

competitions are released then successive improvements and development can be made to 

FunFOLD3 to enhance predictions of protein function prediction. 

 

1.10.1 Objectives  

 

The research objectives of this thesis can be summarised as follows:  

 Objectively measure the performance and accuracy of FunFOLD3 for the prediction 

of ligands and ligand-binding site residues in the double-blinded structure and 

function experiment of CASP11, CASP12 and CASP13 competitions and will be 

explored in Chapters 3 and Chapter 4. FunFOLD3 is the method which this thesis is 

developing.  
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 Objectively measure the performance and accuracy of FunFOLDQ for the prediction 

of GO terms in the double-blinded CAFA3 competition and is explored in Chapter 5. 

Ultimately, the focus on two different methods to predict protein function will 

determine if there is a gold standard when it comes to protein function prediction e.g. 

ligands and ligand-binding site residue prediction or GO term prediction.  

 Following on from the analysis in Chapters 3 and 4, determine if docking utilising 

AutoDock Vina can improve the ligand-binding site predictions by FunFOLD3 and 

results are presented in Chapter 6. The utilisation of TBM and docking, has been 

explored previously in literature. However, the novel aspect of the research will be 

inclusion of four different grid box calculations around the ligand space in order to 

determine an optimum cut-off when integrating docking into FunFOLD3 function 

prediction.  

 CASP Commons will provide the framework in order to go into the unknown and 

provided a unique opportunity for FunFOLD3 to be used for the prediction of function 

and/or ligands for the SARS-CoV-2 virus and this could potentially help determine the role 

of proteins in the novel SARS-CoV-2 virus and therefore gain valuable insight into the role 

of FunFOLD3 in the prediction of novel proteins. Results from CASP Commons are 

presented in Chapter 7 
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As mentioned previously in Chapter 1, FunFOLD3 is a template-based method for protein-

ligand binding site prediction (Roche and McGuffin, 2016). FunFOLD3 is the methodology 

which will be utilised in Chapter 3 for the analysis of protein targets from CASP11, CASP12 

and CASP13 and also in Chapter 6 to aid in the functional elucidation of SARS-CoV-2. The 

FunFOLDQ element of FunFOLD3, which will be the prediction of GO terms, is used in 

Chapter 5.     

 

Instructions for installing and running the FunFOLD3 method have been described 

previously (Roche and McGuffin, 2016). A downloadable version of the FunFOLD3 method 

is available as an executable JAR file, which can be run locally. The dependencies and 

system requirements are described below and the executable and example input and output 

data can be downloaded from http://www.reading.ac.uk/bioinf/downloads/ (Roche and 

McGuffin, 2016).  

 

The system requirements are as follows: 

1. A linux-based operating system such as Ubuntu 

2. A recent version of Java (www.java.com/getjava/) 

3. A recent version of PyMOL (www.pymol.org) 

4. The TM-align program (Zhang and Skolnick, 2005) 

(http://zhanglab.ccmb.med.umich.edu/TM-align/).  

5. wget and ImageMagick installed system wide. 

6. The CIF chemical components database file (Feng et al., 2004) should be downloaded 

from here: ftp://ftp.wwpdb.org/pub/pdb/data/monomers/components.cif  

7. The BioLip databases(Yang, Roy and Zhang, 2012) containing ligand and receptor PDB 

files are also required. The databases need to be downloaded in two sections: firstly all 

annotations prior to 6/3/2013 can be downloaded from here for the receptor database:  
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http://zhanglab.ccmb.med.umich.edu/BioLiP/download/receptor_2013-03-6.tar.bz2  and from 

here for the ligand database: 

http://zhanglab.ccmb.med.umich.edu/BioLiP/download/ligand_2013-03-6.tar.bz2. The text 

file of the BioLip annotations can be downloaded from here: 

http://zhanglab.ccmb.med.umich.edu/BioLiP/download/BioLiP.tar.bz2. To update the 

databases to include annotations after 2013-03-6 it is recommended to download and use 

this perl script which will update the databases: 

http://zhanglab.ccmb.med.umich.edu/BioLiP/download/download_all_sets.pl. The BioLip text 

file: http://zhanglab.ccmb.med.umich.edu/BioLiP/download/BioLiP.tar.bz2 and all the weekly 

update text files should be concatenated to form a large text file containing all of the 

annotations. Additionally, a shell script is available as downloadBioLipdata.sh, which can be 

downloaded from here: http://www.reading.ac.uk/bioinf/downloads/, in a compressed 

directory: downloadBioLip_CIF.tar.gz. To run the shell script simply edit the file paths for the 

location of the BioLip databases and the executable directory. 

8. Set system environment to English, as utilising other languages may cause problems with 

the FunFOLD calculations.  

9. To run the program you can simply edit the shell script (FunFOLD3.sh)  

10. For example, if the path of your model was “/home/dani/bin/FunFOLD3/MUProt_TS3”, your 

list of templates was 

“/home/dani/bin/FunFOLD3/T0470_PARENTNew.dat” (all templates should be listed on a 

single line separated by a space), your FASTA sequence file was 

“/home/dani/bin/FunFOLD3/T0470.fasta”, your output directory was 

“/home/dani/bin/FunFOLD3/” and your target was called 

T0470: 

$JAVA_HOME/java -jar FunFOLD3.jar /home/dani/bin/FunFOLD3/MUProt_TS3 T0470 

/home/dani/bin/FunFOLD3/ /home/dani/bin/FunFOLD3/T0470_PARENTNew.dat 
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/home/dani/bin/FunFOLD3/T0470.fasta $BIOLIP_TXT $BIOLIP_LIGAND $BIOLIP_RECEPTOR 

$CIF 

Or, using the shell script provided: 

./FunFOLD3.sh /home/dani/bin/FunFOLD3/MUProt_TS3 T0470 /home/dani/bin/FunFOLD3/ 

/home/dani/bin/FunFOLD3/T0470_PARENTNew.dat /home/dani/bin/ 

FunFOLD3/T0470.fasta 

11. The user requires a model generated for their target protein, this can be achieved using 

a homology modeling method either in-house or via a web server such as IntFOLD (see 

Chapter 4). Additionally, the user needs a list of structurally similar templates. Again this list 

of templates can be generated from the list of templates used to generate the target protein 

model (e.g. IntFOLD). The program utilises the templates that have the same fold and 

contain biologically relevant ligands in the prediction process. Furthermore, it is important to 

download and install the BioLip databases (Yang, Roy and Zhang, 2012) and CIF chemical 

components library file (Feng et al., 2004). Additionally, it is important that the full paths for 

all input files are used, the output directory should also end with a "/" and must contain the 

input model, template list, and FASTA sequence file. A shell script is available called 

downloadBioLipdata.sh, which can be used to download and update the BioLip and CIF 

libraries. The shell script and the required perl script can be found on the downloads page, in 

a compressed directory: downloadBioLip_CIF.tar.gz. To run the shell script simply edit the 

file paths for the location of the BioLip databases and the executable directory. 

13. A number of output files are produced in the output directory (e.g. 

“/home/dani/bin/FunFOLD3/”) and a log of the prediction process is output to screen as 

standard output. A description of the output files are as follows: 

(a) The final ligand binding site prediction file “T0470_FN.txt” is supplied, conforming to 

CASP FN format. This file contains a list of predicted binding site residues, ligands, along 

with associated EC and GO terms. 
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(b) A PDB file “T0470_lig.pdb”, which contains superpositions of all templates, having the 

same fold and containing biologically relevant ligands, onto the 3D protein model. 

(c) A reduced version of the PDB file “T0470_lig2.pdb”, which contains only the target model 

with all possible ligands. 

(d) Another reduced version of the PDB file “T0470_lig3.pdb”, which contains only the target 

model with the predicted centroid ligand. 

(e) A graphical representation of the protein–ligand interaction prediction 

“T0470_binding_site.png” is automatically generated using PyMOL. 

(f) Finally, the PyMOL script “pymol.script” that was used to generate the image file is also 

output. 

8. An example of output produced by FunFOLD3 for target T0470 can be found in the 

compressed directory: “T0470_Results.tar.gz” along with an example of the required input: 

“T0470_Input.tar.gz”. These example directories can be found on the downloads page: 

http://www.reading.ac.uk/bioinf/downloads/ 
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3.1 Introduction  

 
The Critical Assessment of techniques for protein Structure Prediction uses blind testing of 

modelling methods to assess the state-of-the-art capabilities in the field (Radivojac et al., 

2013). Contributors are provided with amino acid sequences of unknown structures and are 

asked to deposit structure models (Moult et al., 2016). The deposited models are then 

compared with newly determined experimental structures (Moult et al., 2016). In the first 

CASP experiment in 1994, the primary concern was establishing what then-current methods 

could or could not deliver and (Moult et al., 2016) three categories were used to define 

predictions and assess modelling performance, with a fourth being added in CASP2. 

Currently six categories are used (Moult et al., 1997):  

 

1. Models based on homologous templates (template based modelling (TBM), the most 

useful form of modelling) 

2. Models produced without detectable homologous templates (free modelling; FM) 

3.  Refinement 

4. Predicting the accuracy of a model 

5. Predicting three dimensional contacts within structures (an area which has 

dramatically improved since CASP11)  

6. Exploiting predicted contacts and sparse experimental structure data to build 

improved models (Moult et al., 2016)  

 

The gold standard for evaluating models is comparison of their coordinates with those of the 

corresponding experimental structure. The determination of an experimental structure is 

whether a specific biological question is answered. Consequently, the key question becomes 

not if the model is accurate as an experimental structure, but whether the structure is 

accurate enough to answer a biological question (Moult et al., 2016).    
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3.1.1 History of function prediction at CASP 

At the time of the inception of CASP, a majority of the progress in structure prediction over 

the years was knowledge based (Moult et al., 2016). Meaning, the more successful methods 

made direct use of experimentally determined structures. CASP2 had four categories to 

reflect how extensively reliant structure prediction was based on other structures (Moult et 

al., 1997): 

 

1. Comparative or homology modelling is a prime example of utilising knowledge-based 

prediction, when the sequence of a target structure is clearly related to that of one or 

more structures it is right to presume that the structure will also be similar? (Moult et 

al., 1997) 

2. Threading or fold identification – structures deposited into the PDB can have fold(s) 

that have been seen before despite not demonstrating obvious sequence homology 

between related structures. At the stage of CASP2, this method was suggested to be 

of growing importance. Two main questions needed to be asked (1) how successful 

are the different methods at identifying fold relationships (2) when successful, what is 

the quality of the models produced. At CASP2 inception, techniques included 

advanced sequence comparison methods e.g. Hidden Markov models (Moult et al., 

1997) 

3. Ab initio prediction methods that do not directly rely on knowledge on complete 

similar structures, encompass a wide range of techniques. At the time, the best 

method for doing this was to use secondary structure prediction tools, then attempt to 

assemble three-dimensional folds from predicted secondary structure (Moult et al., 

1997)  

4. Docking – when the structure of two molecules is compared, is it possible to produce 

a detailed model of the complex between them? This is of paramount importance in 

drug design (Moult et al., 1997) 
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CASP3 saw a growth in predictions with 4,000 received, four times as much as those 

received in CASP2, demonstrating the rapid increase in protein prediction in a short space of 

time (Moult et al., 1997). CASP3 showed an impression of further improvement in 

comparative modelling areas and improvement in both comparative modelling and fold 

recognition categories (Moult, Hubbard and Fidelis, 1999). Several predictors produced 

reasonably accurate models of proteins up to 60 residues; at that stage it was encouraging. 

By CASP11, there was successful prediction of proteins up to 256 residues with the 

generation of accurate three-dimensional models for targets without templates (Moult, 

Hubbard and Fidelis, 1999). This was a result of much more accurate prediction of contacts 

between protein residues. Until CASP11, predictions in this area were disappointing with 

80% false positives (Moult et al., 2016). 

 

3.1.2 Progress  

CASP1 established how effective the then current methods were at predicting protein 

structures. CASP2 and future CASP experiments focus on the measurement of progress. 

There was apparent progress between CASP1 and CASP2 in particular with comparative 

modelling and side chain accuracy. Areas for improvement were incorrect alignments and 

ineffective refinement methods. However, it was hard to assess progress in threading.   

 

In CASP3 the assessors made changes to allow structures, which did not fit into rigid frames 

of prediction categories to be scored favourably (Moult, Hubbard and Fidelis, 1999). Targets 

should not be divided firstly into comparison modelling, fold recognition and ab initio 

prediction, but all relevant categories would be carried out for all predictors for all targets, 

and then targets would be assigned into these three categories a posteriori. In CASP3 fold 

recognition methods did not achieve a high level of accuracy, due to either differences in 

methods or capturing different details (Zemla et al., 1999). For example: 
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(1) Correct protein fold but poorly aligned target sequence;  

(2) Large part of correct structure in a different protein fold but wrongly predicted the 

structure of conserved and functionally important regions in the rest of the target 

sequence; or  

(3) Correctly predict the functionally important but otherwise small part of the target 

sequence and failed the rest of the sequence  

 

CASP3 aimed to ascertain homogeneity between different predictions of fold recognition and 

comparative modelling. CASP3 also showed progress in ab initio prediction on small targets 

with greater success with α structures (Zemla et al., 1999). Another consideration for 

CASP3, was the introduction of the Critical Assessment of Fully Automatic Structure 

Prediction methods (CAFASP) and was used in parallel to CASP3, but is independent to 

CASP, whilst utilising CASP target distribution and prediction collection infrastructure (Zemla 

et al., 1999). The goal of CAFASP, was to assess the state of the art in the fully automatic 

methods of structure prediction, whereas CASP allows any combination of computational 

and human methods (Moult et al., 2001).  

 

In CASP4 there was the inclusion of large-scale benchmarking of prediction methods; EVA 

and LiveBench. LiveBench focused on the area of fold recognition and EVA focused on 

secondary structure predictions. CASP4 identified the needs for recognising correct 

architecture, even in cases where the topology is incorrect. As with previous years, there 

was an increase in participation with 163 groups taking part (including CAFASP) (Moult et 

al., 2001). CASP4 showed an element of stability in numerical evaluation of predictions, 

specifically in fold recognition. The global distance test (GDT) introduced in CASP3 was 

found to be useful (Moult et al., 2001). This ensured stability in contact prediction evaluation, 

which has previously been a controversial area. However, the problems of numerical 

evaluation had not been completely addressed. The need for additional numerical criteria 
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would assist with automatic evaluation, especially for new fold predictions, where only some 

fragments of the structure were modelled successfully. For the first time, contact predictions 

were approaching a useful level of accuracy; however new fold models were still not 

accurate enough to be useful for assigning function. In fold recognition, the detection of 

correct folds and the quality of alignments were of particular interest (Sippl et al., 2001). The 

superimposition of predicted models and the target domains could assist in evaluation, by 

indicating the number of equivalent residues between target and prediction domains and 

determining whether a correct fold had been recognised. Furthermore, the fraction of 

correctly aligned residues was used to determine the quality of the alignment (Sippl et al., 

2001).  

 

As with previous CASP experiments, CASP5 saw an increase in the number of participants 

with 216 groups taking part. CASP4 introduced GDT and CASP5 built upon that 

implementing GDT_TS to establish a universal numerical evaluation for model structures, 

which had remained an area for improvement in all previous CASP experiments (Sippl et al., 

2001). Whilst GDT_TS acts as a consensus to evaluating model structures, further 

development is still required as GDT_TS can be modified by visual inspection (Moult et al., 

2003). The New Fold (formally ab initio) category saw continuous progress from CASP1 

through to CASP4, but in CASP5 there was little evidence of further improvement (Moult et 

al., 2003). In respect to fold recognition, CASP5 showed progress due to the emergence of 

metaservers which were developed as a direct result of the LiveBench experiment.  

 

Results from the best metaservers were competitive with the best human servers and 

interestingly; some of the best human performances were obtained by starting from 

metaserver output (Moult et al., 2003). A further advancement in CASP5 was the prediction 

of loop regions in unknown proteins where a structure for a related sequence was available. 
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The loops were modelled by the New Fold methods with the remaining regions being closely 

guided by the template (Moult et al., 2003). 

 

The sixth CASP competition, which also marked a decade of structural prediction by CASP, 

saw a revision in how extensively models could be based on knowledge of other structures, 

this consisted of three categories (i) comparative or homology modelling (ii) fold recognition– 

targets were assigned to this category if the target structure was found to be similar to one or 

more already in the PDB and did not meet the criteria for comparative modelling and (iii) 

New Fold Methods (Moult et al., 2003). Progress over a decade of CASP experiments 

depended on the category prediction and the least amount of progress came in comparative 

modelling from high sequence identity templates (Moult et al., 2005). There was steady but 

modest progress in difficult comparative modelling and homologous fold recognition, with 

respect to the extent of sequence dependent superposition between model and target, and 

in alignment accuracy (Moult et al., 2005). Scores in this area had roughly doubled from 

CASP1 to CASP6. The most dramatic advances were made in the New Fold or Template-

Free Modelling category (Moult et al., 2005).     

 

The seventh CASP competition saw the merging of comparative modelling and fold 

recognition and the introduction of a new category; high-accuracy modelling. The category 

consisted of template-based models, where problems of alignment and template coverage 

were expected to be small enough that the accuracy of resulting models should be 

competitive with experimental structures (Moult et al., 2005). A finer measure of main chain 

accuracy was also implemented, GDT_HA, which had thresholds of 0.5, 1, 2 and 4Å, as 

opposed to 1,2, 4 and 8Å utilised in GDT_TS (Moult et al., 2007). Assessment of this 

category looked at detailed features such as, side chain accuracy and accuracy of regions 

most relevant to function (Moult et al., 2007). More importantly, CASP7 saw a larger 

emphasis on function prediction, which was included in CASP6, however lack of 
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experimental data meant initial evaluation was complicated (Moult et al., 2007) The reason 

for  including function prediction for another CASP experiment, illustrates an increased 

emphasis beyond relatively simple structure accuracy to a more practical and applied area, 

which can have an impact (Moult et al., 2007). Of the 63,717 models deposited; 1,930 were 

function predictions. Function prediction was difficult to determine, as there was no agreed 

definition prediction of function. Therefore, it was decided that EC and GO categories were 

to be used as definitions of function within the prediction category. Both were scored for 

evaluation purposes and ranged from 0 and 1, the definition is shown below (López et al., 

2007). Gene Ontology scores are calculated by each annotated term being compared 

directly with the most similar predicted term in the target predictions (López et al., 2007). The 

pairing between the annotated term and the most similar predicted term is referred to as the 

computable pair (López et al., 2007). Common ancestor depth was calculated for all 

computable pairs in a target (López et al., 2007). The prediction score for each target 

prediction was obtained by summing the common ancestor depths of all computable pairs 

(López et al., 2007). The final score is normalised by dividing the maximum possible score 

for the given target i.e. the sum of the annotated term depths (López et al., 2007).  

 

 
 
 
 
Equation 3.1. Calculation of GO Score  
The equation below illustrates how a GO Score is derived. A score between 0 and 1 is obtained 

 

 

Equation 3.2. Calculation of EC Score   
The equation below illustrates how an EC Score is derived. A score between 0 and 1 will be obtained  
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Despite the inclusion of GO and EC scores, there was still a need for a specific binding site 

measure that could be used in the assessment and so the focus on the ligand-binding 

residues was established. Binding site residues were defined as all relevant residues in 

contact with biologically relevant ligands. Two atoms were considered to be in contact if they 

were within a distance of 0.5Å, plus the sum of Van der Waal’s distance (López et al., 2007).  

 

One of the main focuses for CASP8 was the evaluation of template-based models and 

several groups were identified whom performed well in the subset of human and server 

targets (283 IBT_LT, 489 DBAKER, 71 Zhang, 426 Zhang-Server, 57 TASSER, 434 fams-

ace2, 196 ZicoFullSTP, 46 SAM-T08-human, 299 Zico, 453 MULTICOM, 371 GeneSilico, 

138 ZicoFullSTPFullData, 379 McGuffin, 282 3DShot1) (López et al., 2007). At the time of 

publication for CASP8, 426 Zhang-Server was the only group officially registered as a server 

and performed the best in comparison to other groups (Cozzetto et al., 2009). Following on 

from the introduction of function prediction category (FN) in CASP6, it became quite obvious 

that using EC numbers and GO terms wouldn’t fall within scope and would not remain 

suitable in assessing predictions (Cozzetto et al., 2009). The main problem was the 

availability of new GO terms being associated with targets, with newer GO terms being 

identified with targets after the end of the CASP competition (López, Ezkurdia and Tress, 

2009). Instead, binding site predictions were measured using MCC, which had advantages 

in that it takes into consideration the imbalance between the binding site residues (positives) 

and non-binding residues (negatives) (López, Ezkurdia and Tress, 2009). Furthermore, the 

MCC score provided a statistical score for the comparison of predicted ligand binding sites to 

observed ligand binding site residues. Residues were assigned to one of the following; true 

positives, false positives, true negatives and false negatives. This provides a score of 

between -1 and 1, with 1 being a perfect prediction, whereas 0 was a random prediction. The 

main disadvantage of the MCC score was that it is a purely a statistical measure and does 

not consider the overall tertiary structure of the protein (López, Ezkurdia and Tress, 2009). 
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Matthews Correlation Co-efficient was first used in CASP8 to measure binding site prediction 

success (López, Ezkurdia and Tress, 2009) and is a dichotomous form of the Pearson 

correlation co-efficient (Powers, 2020). Due to the relationship between MCC and Pearson 

correlation co-efficient MCC values can be thought of in the same way (Powers, 2020). 

Therefore, a score of one is perfectly positive, 0.8 is strongly positive and 0.5 is moderately 

positive. Conversely, -1 is perfect negative, -0.8 is strongly negative, -0.5 is moderately 

negative and -0.2 is weakly negative (Ratnasari et al., 2016). The calculation for MCC is 

given below (Matthews, 1975): 

Equation 3.3. Matthews correlation coefficient  
The equation below illustrates the calculation of the MCC, where TP is the number of true positives, TN is the number of true 
negatives, FP is the number of false positives and FN is the number of false negatives  

 

In the ninth CASP experiment, ligand-binding site prediction was explored further with more 

methods taking part than in the previous CASP experiment; 33 methods as opposed to 23 in 

the previous year (López, Ezkurdia and Tress, 2009). The prediction of ligand binding in 

CASP differs from typical ligand binding studies, such as docking or virtual screening. In 

these studies, the chemical identity of the ligand is given and the correct geometric 

orientation of the molecule in the receptor protein has to be determined. In the CASP 

experiment, the chemical identity of the ligand is unknown at the time of prediction and only 

the interacting residues are predicted. Thus the evaluation of ligand binding site predictions 

consisted of three steps; (i) identification of biologically relevant ligands in the target 

structure (ii) definition of binding site residues (iii) assessment of the prediction performance 

(Schmidt et al., 2011). A major factor in function prediction is determining what a “biologically 

relevant” ligand is. While 73% of the target structures in CASP9 had various ligands present, 

most were not considered biologically relevant due to originating from solvent, crystallisation, 

precipitant or buffers (Schmidt et al., 2011). Determining whether a ligand had biological 

relevance was based on type and location of the ligand, literature information and UniProt 

annotations (Schmidt et al., 2011). As with CASP8, in CASP9 the Zhang group (FN096 
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Zhang and FN339 I-TASSER-FUNCTION) performed the best as demonstrated in terms of 

MCC (Schmidt et al., 2011).      

As mentioned previously, the main disadvantage of using the MCC score is that there was 

no consideration of the tertiary structure of the protein. In order to address this, the McGuffin 

group developed a new scoring metric, the BDT score (Roche, Tetchner and McGuffin, 

2010). The BDT score takes into consideration the distance in 3D space that a predicted 

binding site residue is from the observed binding site residue. The BDT has a score ranging 

from 0 to 1 (1 being a prefect prediction and 0 a random prediction). The higher the score, 

means the closer the predicted site is from the observed site. The calculation for BDT is 

given below: 

Equation 3.4. Binding distance test score  
Where Sij is the S-score between a predicted residue i and an observed residue j, Sij is the Euclidean distance between the C-
alpha coordinates of residues i and j and d0 is a distance threshold (values between 1 and 3 Å are recommended. The 
maximum Sij score, max(Sij ), is then determined for each predicted residue. The final BDT score is the sum of the maximum 
Sij scores normalised by the greater value of the number of predicted residues (Np) and the number of observed residues (No):  

 

The BDT score has been used in CASP experiments since CASP9 (Schmidt et al., 2011) 

and the utilisation of BDT in CASP9 by the McGuffin group was mentioned in the official 

function assessment publication(Schmidt et al., 2011). The BDT score was applied to 

predictions and a few deviations in group ranking from the MCC-based prediction 

assessment were observed for the top groups (Figure 3.1), supporting BDT as a viable 

option for including in measures of binding site prediction performance.  
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Figure 3.1. Comparison between the overall prediction performances evaluated using the Mathews Correlation 
Coefficient (MCC, in orange) and the Binding site Distance Test (BDT, in cyan).  
Overall prediction performance is shown in mean Z Scores over all targets. Z scores are used to show the energy separation 
between the native fold of a protein from the ensemble of misfolded structures. Figure taken from Schmidt et al., 2011 

 

As with previous CASP competitions, CASP10 saw a year on year increase in the number of 

participants taking part, with 17 groups participating in the function prediction category and 

13 targets were included as part of the prediction category (Gallo Cassarino, Bordoli and 

Schwede, 2014). There were difficulties in analysing accuracy for different ligand types or 

overall structure difficulty; therefore the FN category was dropped from CASP and 

subsequently assessed as part of the CAMEO project using different metrics (Gallo 

Cassarino, Bordoli and Schwede, 2014). The prediction format in CASP, does not include a 

confidence score, so residues are classified in a binary way; thus either binding or not 

binding to any ligand. This is not to be confused with MCC score, as mentioned previously 

and focuses solely on the evaluation of the quality of the binding site predictions (Gallo 

Cassarino, Bordoli and Schwede, 2014). Since the use of BDT in CASP9, BDT was also 

used to assess the accuracy of predictions in CASP10 (Gallo Cassarino, Bordoli and 
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Schwede, 2014). More servers participated in CASP10, compared to CASP9 with six groups 

instead of two and performance was indistinguishable from human predictors (Gallo 

Cassarino, Bordoli and Schwede, 2014). In order to better understand the usefulness of the 

methods in practice, the performance of the methods was compared with ligands identified 

using DELTA-BLAST (Gallo Cassarino, Bordoli and Schwede, 2014). The average MCC was 

0.339 for DELTA-BLAST, compared to the average predictor group score of 0.62 for the 

CASP competition and only two methods performed worse than the baseline. This 

demonstrated that the methods assessed in CASP10 gave advantages on the ligand binding 

site prediction compared to a naïve homology search approach (Gallo Cassarino, Bordoli 

and Schwede, 2014). 

 

The Critical Assessment of techniques for protein Structure Prediction 11, like all other 

CASP experiments, aimed to obtain an in-depth and objective assessment of current abilities 

and inabilities in the area of protein structure prediction. However, CASP11 had two major 

new initiatives (Gallo Cassarino, Bordoli and Schwede, 2014): 

 

1. Assessment of models in terms of how well they address relevant biological 

questions 

2. Collaboration with Critical Assessment of Protein Interactions (CAPRI) to assess 

modelling of oligomeric relationships and of interdomain relationships 

 

Additionally, CASP11 assessment addressed the following questions (The Protein Prediction 

Center, 2014) 

1. How good are methods in identifying the most reliable predicted contacts (using RL 

analysis) 

2. How accurate are the methods in predicting contact with the highest reliability (RL) 

3. How accurate are all submitted contact predictions, including those predicted with 

lower reliability (FL) 
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A pilot scheme assessment category was introduced in CASP11; biological relevance and 

this aimed to assess models on the basis on how well they provide answers to biological 

questions. The onus being on the target providers to answer questions on why they are 

determining certain structures, and the ability of models to provide answers to those 

questions (Monastyrskyy et al., 2016). Retrospective analysis of CASP11, CASP12 and 

CASP13 will be discussed later in this Chapter.  

 

3.1.3 Aim 

The aim of this Chapter is to objectively assess the performance of FunFOLD3 across three 

different CASP experiments; CASP11, CASP12 and CASP13. Critical Assessment of protein 

Structure Prediction provides a unique opportunity to compare known with unknown, as 

CASP is a double-blinded experiments, with observed structures either soon to be 

determined or not yet publicly available, this will act as a benchmark and will provide specific 

details of what needs to be improved by FunFOLD3 in the prediction of ligands and ligand-

binding site residues. Results from this Chapter will guide the refinement and  development 

of FunFOLD3.  

 

3.2 Methods and Materials  

 
The methodology has been described previously in Chapter 2.  
 
FunFOLD3 is the server implementation of the refinement methods of FunFOLD and 

FunFOLD2. The FunFOLD standalone method takes as its input a 3D model of the protein, 

which is being analysed, and a list of PDB IDs, which can be obtained from the templates 

and used to build a 3D protein model by IntFOLD. The prototype version of FunFOLD was 

first developed during CASP9 and FunFOLD3 will be used in the retrospective analysis of 

CASP11 and CASP12.    
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The FunFOLD3 method was assessed using information about templates and models for 

each target obtained from the CASP11, CASP12 and CASP13 server predictions. The 39 

targets/domains with associated PDB IDs were analysed for biologically relevant ligands in 

CASP11, 61 targets/domains analysed for CASP12 and 183 targets/domains were analysed 

for CASP13. All associated 3D models were downloaded from the CASP website 

(http://predictioncenter.org/download_area/).   

 

Upon prediction of ligands(s) by FunFOLD3 using available data on the target from PDB the 

accuracy of the ligand(s) prediction was determined. In CASP12, the predicted GO terms 

were compared against available data about a target’s function from UniProtKB. As this 

generally related to proteins with minimal annotations and no available data on PDB, further 

assessment will be performed using protein-ligand docking experiments (models the 

interaction between a ligand and the protein in order to determine the best orientation of a 

ligand in the ligand-binding space). Additionally, each predicted ligand-binding site residue 

was compared against the actual ligand-binding site residues. Incorrect predictions were 

deemed as either under- or overprediction.  

 

Following the prediction of ligand-binding site residues and biologically relevant ligands, the 

next stage is to provide an objective measure of the ligand-binding site residues. The 

predicted and observed ligand-binding residues are compared against each other to output 

MCC and BDT scores. The MCC and BDT scores are used to rank the FunFOLD3 

predictions and the MCC score can be used to compare against all of the other function 

prediction groups participating in CASP11, CASP12 and CASP13. Furthermore, MCC and 

BDT scores can assess performance across previous CASP experiments. Explanations of 

BDT and MCC were provided previously in this Chapter and Chapter 1.  
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Amino acid sequences for the prediction of tertiary structure are provided by the CASP 

organisers and are double-blinded, so neither the predictors nor assessors are aware of the 

structure at the time of prediction. Amino acid sequences for the CASP11, CASP12 and 

CASP13 targets, which were deemed to have biologically relevant ligands, and subsequently 

included in the analysis in this Chapter are presented in Table 3.1. The input for FunFOLD3 

was the top-ranking 3D model from ReFOLD, a list of templates (PDB IDs) and the amino 

acid sequence for the target protein in question. All these inputs were processed by the 

FunFOLD3 algorithm. The output consisted of several files including, but not limited to, the 

predicted ligand-binding site residues and functional prediction with associated ligands.  In 

order to objectively analyse the predictions all associated observed 3D models were 

downloaded from the CASP website.
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Table 3.1. Amino acid sequences for CASP11, CASP12 and CASP13  
The table below shows the amino acid sequences for which a functional prediction was made by FunFOLD3  

CASP 11 
target ID 

Amino acid sequence 

T0783 
 

 
SMHPQAVAAVLPAGGCGERMGVPTPKQFCPILERPLISYTLQALERVCWIKDIVVAVTGENMEVMKSIIQKYQHKRISLVEAGVTRHRSIFNGLKALAEDQINSKLSKPEVVIIHDAVRPFVEEGVLLKVV
TAAKEHGAAGAIRPLVSTVVSPSADGCLDYSLERARHRASEMPQAFLFDVIYEAYQQCSDYDLEFGTECLQLALKYCCTKAKLVEGSPDLWKVTYKRDLYAAESIIKERISQEICVVMDTEEDNKHVG
HLLEEVLKSELNHVKVTSEALGHAGRHLQQIILDQCYNFVCVNVTTSDFQETQKLLSMLEESSLCILYPVVVVSVHFLDFKLVPPSQKMENLMQIREFAKEVKERNILLYGLLISYPQDDQKLQESLRQG

AIIIASLIKERNSGLIGQLLIA 
 

T0786 
 

 
MDTQQLYFLNDIGKQKPESIRNRSAACPFCDRENLTDILATEGSIIWLKNKFPTLKDTFQTVLIETDNCEDHIATYTEEHMRSLIRFSIKHWLNLQKNEEFTSVILYKNHGPFSGGSLHHAHMQIIGMKYV

NYLDNVEQDNFQGVIVQKNEHIELNISDRPIIGFTEFNIIIEDIGCIDELANYIQQTVRYILTDFHKGCSSYNLFFYYLNEKIICKVVPRFVVSPLYVGYKIPQVSTKIEDVKIQLAAYFTKQNDAIIHKKIE 
 

 
T0798 

 

YDYLFKVVLIGDSGVGKSNLLSRFTRNEFNLESKSTIGVEFATRSIQVDGKTIKAQIWDTAGQERYRAITSAYYRGAVGALLVYDIAKHLTYENVERWLKELRDHADSNIVIMLVGNKSDLRHLRAVPTD
EARAFAEKNNLSFIETSALDSTNVEEAFKNILTEIYRIVSQKQIADCAAHDESPGNNVVDISVPPTTD 

 
T0807 

 

 
MVKKTVRFGEQAAVPAIGLGTWYMGEHAAQRQQEVAALRAGIDHGLTVIDTAEMYADGGAEEVVGQAIRGLRDRVVLVSKVYPWHAGKAAMHRACENSLRRLQTDYLDMYLLHWRGDIPLQETVE
AMEKLVAEGKIRRWGVSNLDIEDMQALWRTADGEHCATNQVLYHLASRGIEYDLLPWCQQHSLPVMAYCPLAQAGRLRDGLFQHSDIINMANARGITVAQLLLAWVIRHPGVLAIPKAASIEHVVQNA

AALDIVLSGEELAQLDRLYPPPQRKNRLDMV 
 

 
T0813 

 

 
MAQQFQTIALIGIGLIGSSIARDIREKQLAGTIVVTTRSEATLKRAGELGLGDRYTLSAAEAVEGADLVVVSVPVGASGAVAAEIAAHLKPGAIVTDVGSTKGSVIAQMAPHLPKDVHFVPGHPIAGTEHS
GPDAGFAGLFRGRWCILTPPAGTDEEAVARLRLFWETLGSMVDEMDPKHHDKVLAIVSHLPHIIAYNIVGTADDLETVTESEVIKYSASGFRDFTRLAASDPTMWRDVCLHNKDAILEMLARFSEDLAS

LQRAIRWGDGDKLFDLFTRTRAIRRSIVQAGQDTAMPDFGRHAMDQK 
 

 
T0819 

 

 
MSAFSRFTPLIQSLPASVPFVGPEALERQHGRKIAARIGANESGFGPAPSVLLAIRQAAGDTWKYADPENHDLKQALARHLGTSPANIAIGEGIDGLLGQIVRLVVEAGAPVVTSLGGYPTFNYHVAGH
GGRLVTVPYADDREDLEGLLAAVGRENAPLVYLANPDNPMGSWWPAERVVAFAQALPETTLLVLDEAYCETAPRDALPPIESLIDKPNVIRARTFSKAYGLAGARIGYTLSTPGTAQAFDKIRNHFGM

SRIGVAAAIAALADQDYLKEVTLKIANSRQRIGRIAADSGLAPLPSATNFVAVDCGKDASYARAIVDRLMSDHGIFIRMPGVAPLNRCIRISTAPDAEMDLLAAALPEVIRSLAAT 
 

 
T0845 

 

 
MNKLYTTLLIACLAAGFTACNDDDCEDLHLGNLAHYPNVLKGTFPTESQVLELGETLEITPELLNPEGATYSWLVNGKEYSTEPTFSYKIDNPCRADLSCIIKNKYGKVEMSTSFSSNHN 

FSKGFFYVADGTFNFYDTEKKTAYQDCYASLNAGKTLGIGNYDSANIIHSNGKFYLLVGTSTSNRDHFYIVDAKTLYYENSAVVGANLSGLTILNEQYGLVTGDGIRRIDLKSLNNVRIKNERLLCFYNSII
YNGKVLSNDTYKDESKVKYYDVNELIAAKEGEAPAVTELDIIQKQKINFVLAKDGNVYTLESADNGCNIVKIKNDFTLEKVFANFQPAKGPYHSSPTIGMVASETENIIYLVSTDGAIYKYILGDSDSLKAP

FIAAESGVSITAPLQLNQQSGELYVTYTEERKDESKIVVYSKDGKVLHTVDCGESVPSQILFNN 
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T0854 

 

 
MAVSSNGGAIKAVIYDCDGVMFDSFEANLAFYQRIMEMMGRPRLSRDNEEQMRILHTYANREVLAHFFPSPGDWEEAVRCAGAIDYRELVPLMIMEEGFREALDTLKGRVGLGVCTNRSTSMDMVL

RLFSLDSYFSIVMTASRVTNPKPHPEPLLKVLEHFGIGPREALFVGDSEVDRLSAEAAGVPFVAYKAPLPAAYRMEHHREIIDLLG 
 

T0849 
 

 
MNEPIILRYFPVLGRAQALRHALADAELAFRDLRIPLEQWSQHKDSDAGGPYGSLPTLRWHGVEVAETIAIASFLARSLGHYEGRDNGEIARLEAVVSLCYTEVSLQIAQLLWLDLFNPGVDLAAAVPL

QFGRLVARLTRLEAHTPEAGWFGGERPVMADYFAAEAIEALRYLLGREHDDALRTRLPHLCALARRMAQRPALAQAWSTRPQTFTAHPDEAAMLERLRALPLAATIGASME 
 

CASP 12  
target ID 

Amino acid sequence 

T0868 MGASSGSNISASNGSSSPTTIVASNPVDLNAFDRLNVVDPAVGKFRPGEAGAAAELENYLGGTLQRAPQGSSVDFVFSSGPNNGKTVDFMLTPDTVAQAAKINQFFDKNLNNFMNTLSDH 
AAAADFVPLASRFLSEANKTLLVKAIGNLPQKLQAKIILIK 

 
T0872 

 

 
VTVDDLVEGIAFSITHDSENPNIVYLKSLMPSSYQVCWQHPQGRSQEREVTLQMPFEGKYEVTFGVQTRGGIVYGNPATFTIDSFCADFVN 

 
 

T0892 
 

SPSINVALKAAFPSPPYLVELLETAASDNTTIYYSLLDRIAKGHFAEATTDKALYEKFLEVLRDDGHMDPEALSAFKLALSLRTATPRVEAHYQYYTATVEPSLSGTQEGCDQWFLIDGEQYCSPTLDTS
HGKVKGEDQLRTLPFDRKFGVGSRDVILYADITSKSFAPFHEVAMDLAKKGKASYRVRYRRSP 

 
T0899 

 

 
MKQIIALCIYTSALMLVTGCSPESPGLMVQQDPIPETPVEIPQYEMPAQQEFKWITEDGGQSQLDFNPQVDILFVTDNSESMKSAQENLVRNLDRFTNGINKNAMIDYQIGVISTWDSSERFSATKKDK
YGIGELRHIKDGKSQNYNKRFVTKKEKHLLASTLDLGVAPYAQGGPEDEEFFAPLTAALEKSGRGGVNEGFFREDAQLVVVFLTDADEFKQSRITAEQMARTLLDFKKGKANKLAVYGALVKASDSD

QYKDWALRIHPKYNEQCFDMTQKTPKNNGTCTGFGPEKLEELIVRANEDKGAPDAIKSKYIVGIVNKNFGEDLARIGSDITKKTLAKEIFLTQRPRATADGSLQ 
IRVRYGTPEQLNAGRGQVIPNKANGGWTYDPENNSVLLPGDIEYKYQDKARFAVDLIPLTLAQ 

 

 
T0901 

 

 
MKKDFQLLVVAAASSLLMACAQNVSFDLPETQDNFGQSITYNNKVDILWIVDNSTSMLKHQQRLSEQVPDLVSKLNTLKMDYHMAVVTTSMGGTSPDGGKFIGSPKYVTSKTPDLVNSLKNRMIVGE
AGSNLERGLESMENALSANYLANEGKGFFRNDALLVVIALSDEDDFSKSSSSAGITYYTNLLDGIKEPWVDGSRSWVFNFIGVLSLTSQCKTFNDFASAGLSYMGLADTSGGVKESICSTNLSSAVGNI

RSRIYQILTDFKLSKVPLEESITVSINGVSIPRDTTNGWDYLAASNVIRFYGTAVPAADASIKVDFKPKDAN 
 

 
T0905 

 

 
MKKTVASKALMMASAVALVAGCSKGTGSYSLLNDAEDYKQQAVFIPKQIDILWVIDNSGSMKTSQDNLAANFQSFISRFQQYNYDFHMAVTTTEAWEKQFNSASEKARIKDGAVLQTNPK 
IETHSGVFIMDKNTANLGDVFSTNAKQGTLGNGDERAFSSFKEALLEPQNAGFRRSEAFLAVIIVSDEEDFSSSSAAFNESYNNANLHTVQSYVDFLDGYVGSRNYSVSTITVPDDACKT 

SLSTDGFARKISTRLPELATLTAGVKGSLCSNFGSTLELISDSIIQLSSVFKLNREPQEDTIVITVNGVSVPNDAVNGWTYDASNLTITFHGSSVPAADANITIDFYPKSIKL 
 

 
T0907 

 

 
MGHHHHHHSSGVDLGTENLYFQSVNSITAQVIPQSQIVMSGDTYKANIVLSSVDTTQRPDVFVNGKLLSPENMGLFTATAGAPGTYPVKGYIEMMGNDGVKIRRDFESEYFVTEPMASVA 

PTMMNVLYAGIDNPINIAVPGVAQQNVSATINNGTLTRRGNLWIARPTKVGSEAIISVTAQSGGRTIQMAKTTLRVRALPDPLPYIEYKDVQGNTKRFKGGRLGKREILAAGGIKAALDD 
DLLEVNYTVVKFQLVFYDSMGNSIPEVSDGASFSERQKRQIQNLGKGKRFYVTEVIARGPDGIERKIPAIEVIVN 

 

 
T0909 

 

 
LLPGQSPDEAFARNSVVFLVPGAEYNWKNVVIRKPVWIYGERCHGEDFRPRAIIHIMGDLDNPMDVRIQDLTFIGGDSPDRLVPFSAVLTNQMALWCIDPRITIRGCSFYNFGGAAIYLE 

RSERDTGFRFGRGQVMITDCRFRGCRIGIANGGSVEYGLASQNNFSDCQICFNVVGGNWTRSGNVASNCRCMYLHTQGMWYEGAAGNFNPAHGSFTSNTLNHCDYGGNLWPTEFQLPDRVINLA
GFYFDNAAARLPNFSGNSQWYGDMKLINFLPDSTFVINGGALYGGPGDTGVIAVATALAAKVFVIGCQGNAGQQIVNVPAANIIPEVGTRKDDATQ 
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T0911 
 

 
MVSGFAMPKIWRKLAMDIPVNAAKPGRRRYLTLVMIFITVVICYVDRANLAVASAHIQEEFGITKAEMGYVFSAFAWLYTLCQIPGGWFLDRVGSRVTYFIAIFGWSVATLFQGFATGLM 
SLIGLRAITGIFEAPAFPTNNRMVTSWFPEHERASAVGFYTSGQFVGLAFLTPLLIWIQEMLSWHWVFIVTGGIGIIWSLIWFKVYQPPRLTKGISKAELDYIRDGGGLVDGDAPVKKEA 

RQPLTAKDWKLVFHRKLIGVYLGQFAVASTLWFFLTWFPNYLTQEKGITALKAGFMTTVPFLAAFVGVLLSGWVADLLVRKGFSLGFARKTPIICGLLISTCIMGANYTNDPMMIMCLMA 
LAFFGNGFASITWSLVSSLAPMRLIGLTGGVFNFAGGLGGITVPLVVGYLAQGYGFAPALVYISAVALIGALSYILLVGDVKRVG 

 

 
T0912 

 

 
MGSSHHHHHHSSGPQQGLRHLLSAGEIWISPQGNDLNDGTRPSPKATLTSALRQAREWRRTDDERVRGGITICMEGGTYALYEPVFIRPEDSGTEDSPTVIRPVADEKVVLSGGIRIGGWKKQGKL
WVADVPMFNGRPLDFRQLWVNGKKAVRARDVEDFEKMNRICSVDEKNEILYVPAVAIRRLVDGKGALKAKYAEMVLHQMWCVANLRIRSVELAGDSAAIRFHQPESRIQFEHPWPRPMVTTDGHN
SAFYLTNARELLDVAGEWYHDIDARKVYYYPREGEKLQDAGTEVIVPAIETLIQVKGTFDRPVSHIRFEKITFSHTTWMRPSEKGHVPLQAGMYLTDGYRIDPKMERDYLNHPLDNQGWLGRPAAAVS
VAAANQIDFERCRFDHLGSTGLDYEEAVQGGVVRGCLFRDIAGNGLVVGSFSPAAHETHLPYDPTDLREVCAHQQISNCYFTEVGNEDWGCLAILAGYVKDINIEHNEICEVPYSGISLGWGWTQTV

NCMRNNRVHANLIHHYAKHMYDVAGVYTLGSQPKSYVTENCVHSIYKPGYVHDPNHWFYLYTDEGSSFITVRDNWTEGEKYLQNANGPGNVWEN 
NGPQVDTVIRERAGLEAEYRDLKK 

 

T0916 
 

 
SRNMKEKLEDMESVLKDLTEEKRKDVLNSLAKCLGKEDIRQDLEQRVSEVLISRELHMEDSDKPLLSSLFNAAGVLVEARAKAILDFLDALLELSEEQQFVAEALEKGTLPLLKDQVKSVMEQNWDEL

ASSPPDMDYDPEARILCALYVVVSILLELAEGPTSVSS 
 

 
T0919 

 

 
SRSVTVVGHSSFCTSDVVMSSTELNRLLGTDIYNFARGGASDVEVAMMSQEAITRQYAPVGGSSIPASGSVALTPTEVGIFWNGATGKCIIFGGIDGTFSTTLVNAGTGETQLVFTRDSA 

GSAVSSVSTTATFAMRPYTRFNTNTIPAGRRRKHSSLHRDDIYIVWGGRNSTDYTRYVSELHTMVANMHTQRRRFVICPEFPYDTETTGTTGATNLAALNNNLKADFPDNYCQISGGVDL 
LQNFKSKYNPAYAGDVTDIANGITPRSLREDNLHPSETTLQPNGLYIGAKVNADFIAQFIKSKGWG 

 

CASP 13 
target ID 

Amino acid sequence 

T0949 

 
MAAKKGMTTVLVSAVICAGVIIGALQWEKAVALPNPSGQVINGVHHYTIDEFNYYYKPDRMTWHVGEKVELTIDNRSQSAPPIAHQFSIGRTLVSRDNGFPKSQAIAVGWKDNFFDGVPITSGGQTGP

VPAFSVSLNGGQKYTFSFVVPNKPGKWEYGCFLQTGQHFMNGMHGILDILPAQGS 
 

T0953s2 
 

MAVQGPWVGSSYVAETGQNWASLAANELRVTERPFWISSFIGRSKEEIWEWTGENHSFNKDWLIGELRNRGGTPVVINIRAHQVSYTPGAPLFEFPGDLPNAYITLNIYADIYGRGGTGGVAYLGGN
PGGDCIHNWIGNRLRINNQGWICGGGGGGGGFRVGHTEAGGGGGRPLGAGGVSSLNLNGDNATLGAPGRGYQLGNDYAGNGGDVGNPGSASSAEMGGGAAGRAVVGTSPQWINVGNIAGSL 

 

T0954 
 

SPSSQGQHKHKYHFQKTFTVSQAGNCRIMAYCDALSCLVISQPSPQASFLPGFGVKMLSTANMKSSQYIPMHGKQIRGLAFSSYLRGLLLSASLDNTIKLTSLETNTVVQTYNAGRPVWSCCWCLDE
ANYIYAGLANGSILVYDVRNTSSHVQELVAQKARCPLVSLSYMPRAASAAFPYGGVLAGTLEDASFWEQKMDFSHWPHVLPLEPGGCIDFQTENSSRHCLVTYRPDKNHTTIRSVLMEMSYRLDDT

GNPICSCQPVHTFFGGPTCKLLTKNAIFQSPENDGNILVCTGDEAANSALLWDAASGSLLQDLQTDQPVLDICPFEVNRNSYLATLTEKMVHIYKWE 
 

T0955 
 

SQETRKKCTEMKKKFKNCEVRCDESNHCVEVRCSDTKYTLC 
 

T0957s2 SNAMINVNSTAKDIEGLESYLANGYVEANSFNDPEDDALECLSNLLVKDSRGGLSFCKKILNSNNIDGVFIKGSALNFLLLSEQWSYAFEYLTSNADNITLAELEKALFYFYCAKNETDPYPVPEGLFKKL
MKRYEELKNDPDAKFYHLHETYDDFSKAYPLNN 

T0958 MNKKSKQQEKLYNFIIAKSFQQPVGSTFTYGELRKKYNVVCSTNDQREVGRRFAYWIKYTPGLPFKIVGTKNGSLLYQKIGINPCNNSTPSKGGDC 

 
 

T0961 

MKNFYQDGPQLSNTFRSDEALQKILKSLLPADAQKVALPHLEHLGERAVTDMLTWAQEAESQPPVHVPFDPWGRRIDDIKTSHGWKALEKVAAEEGIVATAYDRRFGAASRVYQMALLYLYSPSSAI
FSCPLAMTDGAARALELYADADLKARVLPHLLSRDPKTFWTAGQWMTERTGGSDVSGTSTDAHPFTGTSEFGATHSLHGTKWFTSATTSQMALTLARPDGAAPGSRGLSLFFLELRNDKGELNHIQ
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IHRLKDKLGTKALPTAELSLQGTPARMIGGVGEGVKRIASVLNITRIYNSICAVGHIRRALDLAQDYSGKRQAFGKLLKDHPLHKSTLDSLEADFRKCIAFSFFVANLLGQEEVGEASASEKILLRVLTPIL
KLYTAKKSIHISSEVVEMFGGAGYVEDTGIPRLLRDAQVFSIWEGTTNVLSLDMLRAFEKDQAGQILEQFLVLNEAGSEELVRLQKLLTLSGEQKEQHAREIAFLIGNAVARIAMKKYSL 

 
 

T0965 
 

MGSSHHHHHHSSGLVPRGSHMEGKKILVTGGTGQVARPVAEALAERNEVWCLGRFGTPGVEKELNDRGITTFHWDMDDPGAAAYEGLPDDFTHVLHSAVRRGEDGDVNAAVEVNSVACGRLMT
HCRGAEAFLFVSTGALYKRQTLDHAYTEDDPVDGVADWLPAYPVGKIAAEGAVRAFAQVLNLPTTIARLNIAYGPGGYGGVPMLYFKRMLAGEPIPVPKEGQNWCSLLHTDDLVAHVPRLWEAAATP

ATLVNWGGDEAVGITDCVRYLEELTGVRARLVPSEVTRETYRFDPTRRREITGPCRVPWREGVRRTLQALHPEHLPSESRHSAV 

T0970  
KRSGFLTLGYRGSYVARIMVCGRIALAKEVFGDTLNESRDEKYTSRFYLKFTYLEQAFDRLSEAGFHMVACNSSGTAAFYRDDKIWSSYTEYIFFRP 

 
T0972 

 

 
MVVDNTQKTSNAIFSTTTKVKEKNTSADEFQATLNEVKNKEEKEDKKTNSSKFTNEDIDLGAVREDFRSYAWQKMREDQYKKNEETLLNKLFTTIDAGNATNNTKA 

 
 

 
 

T0973 
 
 

PQAADIVIADAQATPVNHTFVPIGPDPKDATIYWWEDQSQASPAGYWRLSMQLVRPAPAKAGQNTNQRMIRVRVSTFEPILEVAVTATYSGIAPSPTVSYVPKAFTEFVLPERATLDNRKDIRKMHALA
LTTSEAIAMIESLQFVY 

 
 

T0974s1 
 

 
 

MSYDYSSLLGKITEKCGTQYNFAIAMGLSERTVSLKLNDKVTWKDDEILKAVHVLELNPQDIPKYFFNAKVH 
 

T0975 

 
LEDAQESKALVNMPGPSSESLGKDDKPISLQNWKRGLDILSPMERFHLKYLYVTDLATQNWCELQTAYGKELPGFLAPEKAAVLDTGASIHLARELELHDLVTVPVTTKEDAWAIKFLNILLLIPTLQSE
GHIREFPVFGEGEGVLLVGVIDELHYTAKGELELAELKTRRRPMLPLEAQKKKDCFQVSLYKYIFDAMVQGKVTPASLIHHTKLCLEKPLGPSVLRHAQQGGFSVKSLGDLMELVFLSLTLSDLPVIDIL

KIEYIHQETATVLGTEIVAFKEKEVRAKVQHYMAYWMGHREPQGVDVEEAWKCRTCTYADICEWRKGSGVLSSTLAPQVKKAK 
 

T0980s1 
 

SLKPFTYPFPETRFLHAGPNVYKFKIRYGKSIRGEEIENKEVITQELEDSVRVVLGNLDNLQPFATEHFIVFPYKSKWERVSHLKFKHGEIILIPYPFVFTLYVEMKWFHE 
 

T0980s2 VNNMVTGYISIDAMKKFLGELHDFIPGTSGYLAYHVQNEINMSAIKNKLKRK 

T0983 

 
MFGPEHAEVYEAAYRGRGKSWHDEAADVADRIRAARPDAARLLDVGCGTGAHLETFATRFPHVEGLELAPAMLALARHRLPGVRLHAGDMRTFDLGVTFDAVTCLFTAVNFLGTVAEMRAAVAAM

SAHLAPGGVLVLEPWWFPERFIDGYVGGDLVREEGRTVARVSRSTRQGRVTRMEERWLVGDAAGIREFSQVGLLTMFTREEYDAAFAAAGCESAYVEGWLTGRGLFVATRTGGHATPTMV 
 

T0985 

 
MAHHHHHHVGTGSNDDDDKSPMKLKQDVISIYQKISLFESGQLNITKLASGAYYLDDELTLITDPVNSGARFPYAVNGMTIWAYASGYISINHSSYYILPPNLEGKEPFLDFFGIEQDGNNTYPVSLLGV
SERNDEIENKRYTVFSKNIAYYITVTKNFLYAVTVYISKDFKIYFNTVAHNLTGETKQITLSSFFNMLFKYDSGESIETKWFKKVSYENNMFIYDAPEDIDRHTRIENYGVVKRHLHTKPKNIQNTTSRIDYV
GKRYRSVRNALSIRSLKFEKAPLVTNFTDTAINADLINYEVKAYDTIISSYRIETCHDKDTLNKMMASDLTDKEIKKVYEGLSNTQSYDFDNFGISFKGVNDNRVDDKVLNQFLKLVNYQIHFSSLSSNSG
TVFLGVRDVMQQLESSLIWDRKNVRSKILEVLSFIDPSGLPPRQYALPPKEGNPRMDLRPFIDQGLWIISTLHTYLAYTEDYDILNEVCGYYERIEPNSAKKSKVENSVLEHLIRVTNYLVSNIDPSTYGL
KALYGDWNDALDGLGLIEGSSGYGNGVSVMATLQLYENLERMIEILKLVDPQNEHINTYEVVRHNLSLGINKYAVVIKQDEKRVLHGWGHDRSYFVGSFNDPDGHSRNSLTSNAFYIISDMIKNTPEM

KPHLLHAFHNLDSKYGLKTFDPAMQDFHGFGRIINLPPGTAENAATYVHATLFGVLALYMLGEGDFANEQVLKVLPITKKEMSTSPFIMPNSYVHNEELNMDGESMSDWYTGSANTLLKTLIRGLFGLE
VKFDHLRLRPSKAFFSKEATLMVSIGNKLTRIVYKNNNNGNRTFKLNGKVIEAKLDTLSGLLYIDINKSILEHQNVIHIQD 
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T0986s2 
MKELFEVIFEGVNTSRLFFLLKEIESKSDRIFDFNFSEDFFSSNVNVFSELLIDSFLGFNGDLYFGVSMEGFSVKDGLKLPVVLLRVLKYEGGVDVGLCFYMNDFNSAGKVMLEFQKYMNGISADFGFE

NFYGGLEPASDQETRFFTNNRLGPLL 
 

T0992 
 

HGEDKPGPHGGHIQMPGAFHTEITVDKDQSVHVYLLDMNFANPTIKDSSVAVTAKNKKSEIKYTCSVMGNDHYHCIPNGKVPAKTNLIVQATREKAVGNEAVYKLPLPAFKESKKESKKEDHSHHH 
 

T0993s1 

 
MEQSVANLVDMRDVSFTRGNRCIFDNISLTVPRGKITAIMGPSGIGKTTLLRLIGGQIAPDHGEILFDGENIPAMSRSRLYTVRKRMSMLFQSGALFTDMNVFDNVAYPLREHTQLPAPLLHSTVMMKL
EAVGLRGAAKLMPSELSGGMARRAALARAIALEPDLIMFDEPFVGQDPITMGVLVKLISELNSALGVTCVVVSHDVPEVLSIADHAWILADKKIVAHGSAQALQANPDPRVRQFLDGIADGPVPFRYPA

GDYHADLLPGS 
 

T0994 

 
MLSSFLMLSIISSLLTICVIFLVRMLYIKYTQNIMSHKIWLLVLVSTLIPLIPFYKISNFTFSKDMMNRNVSDTTSSVSHMLDGQQSSVTKDLAINVNQFETSNITYMILLIWVFGSLLCLFYMIKAFRQIDVIKS
SSLESSYLNERLKVCQSKMQFYKKHITISYSSNIDNPMVFGLVKSQIVLPTVVVETMNDKEIEYIILHELSHVKSHDLIFNQLYVVFKMIFWFNPALYISKTMMDNDCEKVCDRNVLKILNRHEHIRYGESIL
KCSILKSQHINNVAAQYLLGFNSNIKERVKYIALYDSMPKPNRNKRIVAYIVCSISLLIQAPLLSAHVQQDKYETNVSYKKLNQLAPYFKGFDGSFVLYNEREQAYSIYNEPESKQRYSPNSTYKIYLALMA
FDQNLLSLNHTEQQWDKHQYPFKEWNQDQNLNSSMKYSVNWYYENLNKHLRQDEVKSYLDLIEYGNEEISGNENYWNESSLKISAIEQVNLLKNMKQHNMHFDNKAIEKVENSMTLKQKDTYKYV

GKTGTGIVNHKEANGWFVGYVETKDNTYYFATHLKGEDNANGEKAQQISERILKEMELI 
 

T0995 

 
MTSIYPKFRAAAVQAAPIYLNLEASVEKSCELIDEAASNGAKLVAFPEAFLPGYPWFAFIGHPEYTRKFYHELYKNAVEIPSLAIQKISEAAKRNETYVCISCSEKDGGSLYLAQLWFNPNGDLIGKHRKM
RASVAERLIWGDGSGSMMPVFQTEIGNLGGLMCWEHQVPLDLMAMNAQNEQVHVASWPGYFDDEISSRYYAIATQTFVLMTSSIYTEEMKEMICLTQEQRDYFETFKSGHTCIYGPDGEPISDMVP

AETEGIAYAEIDVERVIDYKYYIDPAGHYSNQSLSMNFNQQPTPVVKHLNHQKNEVFTYEDIQYQHGILEEKV 
 

T0997 

 
AGQDYSSAEVLPDDTEMEQTIPETNTADKTTAEETEPAALEDTTTLMESAAVLKNYDHLDPKRMINSKALAEAVLYFDKNQSRIKNKKYMSLIDFGKRSTQARFFIINMSTGEVTAIHTAHGKGSDANH

GYAEKFSNNSGSNASSLGYYLAAETYYGKHGLSLKLDGLSSTNSKARARAVVIHGASYVKESSVIQGRSWGCPAVANHLRDKVIGMLKGGSLIYAFAK 
 

T1001 

 
SISTRIGEYRSAQSKEDLIQKYLNQLPGSLCVFFKFLPSVRSFVATHASGIPGSDIQGVGVQLESNDMKELSSQMAIGLLPPRFTEMLVEAFHFSPPKALPLYAHNALEGVFVYSGQLPAEEVARMNEE

FTLLSLCYSHF 
 

T1003 

 
LQDGKSKIVQKAAPEVQEDVKAFKTGNYVFSYDQFFRDKIMEKKQDHTYRVFKTVNRWADAYPFAQHFSEASVASKDVSVWCSNDYLGMSRHPQVLQATQETLQRHGVGAGGTRNISGTSKFHVE
LEQELAELHQKDSALLFSSCFVANDSTLFTLAKILPGCEIYSDAGNHASMIQGIRNSGAAKFVFRHNDPDHLKKLLEKSNPKIPKIVAFETVHSMDGAICPLEELCDVSHQYGALTFVDEVHAVGLYGSR
GAGIGERDGIMHKIDIISGTLGKAFGCVGGYIASTRDLVDMVRSYAAGFIFTTSLPPMVLSGALESVRLLKGEEGQALRRAHQRNVKHMRQLLMDRGLPVIPCPSHIIPIRVGNAALNSKLCDLLLSKHGI

YVQAINYPTVPRGEELLRLAPSPHHSPQMMEDFVEKLLLAWTAVGLPLQDVSVAACNFCRRPVHFELMSEWERSYFGNMGPQYVTTYA 
 

T1008 

 
TDELLERLRQLFEELHERGTEIVVEVHINGERDEIRVRNISKEELKKLLERIREKIEREGSSEVEVNVHSGGQTWTFNEK 

 
 

T1009 

 
TYFAPNSTGLRIQHGFETILIQPFGYDGFRVRAWPFRPPSGNEISFIYDPPIEGYEDTAHGMSYDTATTGTEPRTLRNGNIILRTTGWGGTTAGYRLSFYRVNDDGSETLLTNEYAPLKSLNPRYYYWP
GPGAEFSAEFSFSATPDEQIYGTGTQQDHMINKKGSVIDMVNFNSYIPTPVFMSNKGYAFIWNMPAEGRMEFGTLRTRFTAASTTLVDYVIVAAQPGDYDTLQQRISALTGRAPAPPDFSLGYIQSKL
RYENQTEVELLAQNFHDRNIPVSMIVIDYQSWAHQGDWALDPRLWPNVAQMSARVKNLTGAEMMASLWPSVADDSVNYAALQANGLLSATRDGPGTTDSWNGSYIRNYDSTNPSARKFLWSMLK
KNYYDKGIKNFWIDQADGGALGEAYENNGQSTYIESIPFTLPNVNYAAGTQLSVGKLYPWAHQQAIEEGFRNATDTKEGSACDHVSLSRSGYIGSQRFCSMIWSGDTTSVWDTLAVQVASGLSAAAT
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GWGWWTVDAGGFEVDSTVWWSGNIDTPEYRELYVRWLAWTTFLPFMRTHGSRTCYFQDAYTCANEPWSYGASNTPIIVSYIHLRYQLGAYLKSIFNQFHLTGRSIMRPLYMDFEKTDPKISQLVSS
NSNYTTQQYMFGPRLLVSPVTLPNVTEWPVYLPQTGQNNTKPWTYWWTNETYAGGQVVKVPAPLQHIPVFHLGSREELLSGNVF 

 

T1011 
 

 
DYKDDDDGAPKETRGYGGDAPFCTRLNHSYTGMWAPERSAEARGNLTRPPGSGEDCGSVSVAFPITMLLTGFVGNALAMLLVSRSYRRRESKRKKSFLLCIGWLALTDLVGQLLTTPVVIVVYLSK

QRWEHIDPSGRLCTFFGLTMTVFGLSSLFIASAMAVERALAIRAPHWYASHMKTRATRAVLLGVWLAVLAFALLPVLGVGQYTVQWPGTWCFISTGRGGNGTSSSHNWGNLFFASAFAFLGLLALTV
TFSCNLATIKALVSRGSNIFEMLRIDEGLRLKIYKDTEGYYTIGIGHLLTKSPSLNAAKSELDKAIGRNTNGVITKDEAEKLFNQDVDATVRGILRNAKLKPVYDSLDAVRRAALINMVFQMGETGVAGFTN
SLRMLQQKRWDEAAVNLAKSRWYNQTPNRAKRVITTFRTGTWDAYGSWGRITTETAIQLMAIMCVLSVCWSPLLIMMLKMIFNQTSVEHCKTHTEKQKECNFFLIAVRLASLNQILDPWVYLLLRKILG

RPLEVLFQGPHHHHHHHHHH 
 

T1012 

 
MTEYKPTVRLATRDDVPRAVRTLAAAFADYPATRHTVDPDRHIERVTELQELFLTRVGLDIGKVWVADDGAAVAVWTTPESVEAGAVFAEIGPRMAELSGSRLAAQQQMEGLLAPHRPKEPAWFLA

TVGVSPDHQGKGLGSAVVLPGVEAAERAGVPAFLETSAPRNLPFYERLGFTVTADVEVPEGPRTWCMTRKPGA 
 

T1013 

 
DMADEPLNGSHTWLSIPFDLNGSVVSTNTSNQTEPYYDLTSNAVLTFIYFVVCIIGLCGNTLVIYVILRYAKMKTITNIYILNLAIANELFMLGLPFLAMQVALEHWPFGKAICRVVMTVDGINQFTSIFCLTV
MSIDRYLAVVHPIKSAKWRRPRTAKMITMAVWGVSLLVILPIMIYAGLRSNQWGRSSCTINWPGESGAWYTGFIIYTFILGFLVPLTIICLCYLFIIIKVKSASTDYWQNWTFGGGIVNAVNGSGGNYSVN
WSNTGNFVVGKGWTTGSPFRTINYNAGVWAPNGNGYLTLYGWTRSPLIEYYVVDSWGTYRPTGTYKGTVKSDGGTYDIYTTTRYNAPSIDGDDTTFTQYWSVRQSKRPTGSNATITFTNHVNAWK
SHGMNLGSNWAYQVMATEGYQSSGSSNVTVWSSKRKKSEKKVTRMVSIVVAVFIFCWLPFYIFNVSSVSMAISPTPALKGMFDFVVVLTYANSCANPILYAFLDDNFKKSFQNVLCLVKVSGTDDGE

RSDSKQDKSRLNETTETQRT 
 

T1014 

 
SLAPVDIEGLLRQVAELMSPRAHEKGIEIAWAVSSPLPTILADEGRLRQILLNFAGNAVKFTEAGGVLLTASAIDGGRVRFSVADTGPGVAPDARARIFEAFVQTDVTHATQLGGAGLGLAIVSRLSAAM
GGAVGVGGELGQGAEFWFEAPFATAAAPLRAAPLEGRNVAIASPNAIVRAATARQIEAAGGRAYAAVDIASALAGAPADAVLLIDAALSGPRGALKPPAGRRSVVLLTPEQRDRIDRLKAAGFSGYLIK

PLRAASLVAQVLQAVTA 
 

T1016 

 
MRLWLIRHGETQANIDGLYSGHAPTPLTARGIEQAQNLHTLLHGVSFDLVLCSELERAQHTARLVLSDRQLPVQIIPELNEMFFGDWEMRHHRDLMQEDAENYSAWCNDWQHAIPTNGEGFQAFSQ

RVERFIARLSEFQHYQNILVVSHQGVLSLLIARLIGMPAEAMWHFRVDQGCWSAIDINQKFATLRVLNSRAIGVENA 
 

T1017s1 
 

LLLNDKQYNELCEAAEGRNLGAVFSYSEPEEPPPLNFSFEERKKIFLWVLTRLLKEGRIKLAKHGKFLEGSVDEQVERFRQAFPKTEEEMEDGIWFFDESCPGGAVWVLED 
 

T1018 

 
MITSSLPLTDLHRHLDGNIRTQTILELGQKFGVKLPANTLQTLTPYVQIVEAEPSLVAFLSKLDWGVAVLGDLDACRRVAYENVEDALNARIDYAELRFSPYYMAMKHSLPVTGVVEAVVDGVRAGVRD
FGIQANLIGIMSRTFGTDACQQELDAILSQKNHIVAVDLAGDELGQPGDRFIQHFKQVRDAGLHVTVHAGEAAGPESMWQAIRDLGATRIGHGVKAIHDPKLMDYLAQHRIGIESCLTSNLQTSTVDSL

ATHPLKRFLEHGILACINTDDPAVEGIELPYEYEVAAPQAGLSQEQIRQAQLNGLELAFLSDSEKKALLAKAALRG 
 

T1023s3 

 
MAGGEAGVTLGQPHLSRQDLTTLDVTKLTPLSHEVISRQATINIGTIGHVAHGKSTVVKAISGVHTVRFKNELERNITIKLGYANAKIYKLDDPSCPRPECYRSCGSSTPDEFPTDIPGTKGNFKLVRHVS
FVDCPGHDILMATMLNGAAVMDAALLLIAGNESCPQPQTSEHLAAIEIMKLKHILILQNKIDLVKESQAKEQYEQILAFVQGTVAEGAPIIPISAQLKYNIEVVCEYIVKKIPVPPRDFTSEPRLIVIRSFDVNK
PGCEVDDLKGGVAGGSILKGVLKVGQEIEVRPGIVSKDSEGKLMCKPIFSKIVSLFAEHNDLQYAAPGGLIGVGTKIDPTLCRADRMVGQVLGAVGALPEIFTELEISYFLLRRLLGVRTEGDKKAAKVQ

KLSKNEVLMVNIGSLSTGGRVSAVKADLGKIVLTNPVCTEVGEKIALSRRVEKHWRLIGWGQIRRGVTIKPTVDDD 
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3.3 Results and Discussion   

3.3.1 Summary of results from CASP11, CASP12 and CASP13  

 
The main findings of the Chapter are outlined below: 

 Good structural homology as shown by TM-align scores did not always equate to 

high MCC and BDT scores, thereby suggesting that overall tertiary structure is not 

the only or key determination in ligand and ligand-binding site predictions (see Figure 

3.2, 3.3 and 3.4).  

 The above led to an additional question around modelling of binding sites, in 

particular with respect to the modelling of flexible loops (see Figure 3.23), where the 

correct ligand is in the incorrect location, what can be done to improve this? Can 

protein-ligand docking be the answer? 

 In some examples (see Figure 3.29) FunFOLD3 over-predicted the ligand-binding 

site due to inclusion of solvents used in the crystallisation process being included in 

the ligand-binding residues. Once again, this raised the question of whether protein-

ligand docking can improve these predictions by focusing on the orientation of the 

ligand in the ligand-binding space and excluding the solvents.  

 Results from CASP has shown that FunFOLD3 can predict a variety of ligands from 

small metal ions (e.g. calcium and magnesium), to enzymatic cofactors (e.g. 

nicotinamide adenine dinucleotide) across a variety of proteins (e.g. enzymes to viral 

proteins). This includes well annotated proteins to poorly annotated proteins, thus 

showing the diversity of FunFOLD3 in ligand and ligand-binding site prediction.  

 The lowest MCC and BDT score was  -0.05 and 0.035, respectively. Albeit not for the 

same CASP11 target (see Table 3.3). The highest MCC and BDT score was 1 

(CASP13 target T0974s:temperate bacteriophage). Demonstrating the diversity of 

scores and also the potential for FunFOLD3 to predict MCC and BDT scores at the 

higher end of the scale.   
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Figure 3.2. Comparison between BDT, MCC and TM-score for CASP11 targets 
As can be seen from the figure, the higher TM-scores are associated with higher BDT and MCC scores. Except 
T0813, which has a higher TM-scores than T0854 but this has not correlated with a higher BDT or MCC score 

 

 
Figure 3.3. Comparison between BDT, MCC and TM-score for CASP12 targets 
As can be seen from the figure, higher TM-scores were not necessarily associated with higher MCC or BDT 
scores, indeed the converse is true for T0916 NAD ligand when compared to the observed GLC ligand at the two 
different locations. T0909 has not been shown as there was no consensus between the predicted and observed 
ligands  
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Figure 3.4. Comparison between BDT, MCC and TM-score for CASP13 targets 
As can be seen from the figure, higher TM-scores were not necessarily associated with higher MCC or BDT 
scores. However, there was a general trend with higher TM-scores associated with better MCC and BDT scores.  
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3.3.2  Analysis of CASP11 Functional Prediction  

 
Targets obtained from CASP11 with associated PDB IDs were analysed. In the first step 

targets were analysed using the BioLiP database to ascertain if they contained biologically 

relevant ligands. Next, the targets deemed to contain biologically relevant ligands were 

further investigated to identify the ligand site residues, this was done using The Van der 

Waal radius of the contacting atom of a residue and the containing ligand atom plus 0.5 Å.  

 

A total of 39 CASP11 targets/domains were associated with PDB IDs (experimental 

structures that have been released into PDB). Analysis using the FunFOLD3 server yielded 

a total of nine proteins containing biologically relevant ligands and binding site residues. 

These were: T0783 (PDB ID 4cvh), T0786 (PDB ID 4qvu), T0798 (PDB ID 4ojk), T0807 

(PDB ID 4wgh), T0813 (PDB ID 4wji), T0814 (PDB ID 4r7f), T0819 (PDB ID 4wbt), T0845 

(PDB ID 4r5o) and T0849 (PDB ID 4w66), where the CASP11 target ID is given outside 

parenthesis and PDB IDs within parenthesis. Protein-ligand interactions were predicted for 

all the nine FN targets, with a mean MCC score of 0.391 and a mean BDT score of 0.431. 

Each of the predictions will be discussed in detail. 

 

FunFOLD3 predicted the binding site residues for nine CASP11 targets. The corresponding 

observed binding site residues are also provided, along with under and over- predictions. 

Correct residues are highlighted in red as illustrated in Table 3.2.  The top-three scoring  

predictions (Figure 3.5, 3.9 and 3.12) and a low scoring prediction (Figure 3.14) will be 

depicted in the Chapter with remaining predictions shown in Appendix  2.  An overview of the 

MCC and BDT scores for all the targets is shown in Table 3.3.
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Table 3.2. Predicted and observed ligand-binding site residues for CASP11 targets 
Correct ligand binding site residues are depicted in red and bold and presented in ascending CASP11 target ID  

CASP 11 
target ID  

Predicted ligand-binding site 
residue 

Observed ligand-binding site 
residue 

Under-predictions Over-predictions 

T0783 
(PDB ID 4cvh) 

 
CTP ligand: 

12,13,14,15,16,17,18,19,26,27,83,84,
85,86,89,116,117,118,223 

 
C ligand: 

12,13,14,15,19,27,83,84,85,86,89,11
6,117,223 

 
C5P ligand: 

12,13,14,15,19,26,27,83,84,89,117, 
118,223 

 
CU ligand: 226,229 

MG ligand: 85,86,87,194,195,197 
CL ligand: 88,92 

 
87,88,92,194, 195,197 

 

12,13,14,15,16,17,18,19,26,27,82, 
83,84,89,116,117,118, 223,226,229 

T0786 
(PDB ID 
4qvu) 

 
AMP ligand: 

28,29,33,35,50,51,52,109,115,116, 
117,118,122,124 

 
FE ligand: 

138,208,212 
 

ZN ligand(01): 
27,29,30,67,69,120 

 
ZN ligand(02): 

152,154 

ZN ligand: 152,177,180 177,180* 154* 

T0798 
(PDB ID 

4ojk) 

13,14,15,16,17,18,19,29,30,31,33,35,
36, 61,62, 117,118,120,121,147, 

148,149 

12,14,15,16,17,18,19,29,30,31,32,34,117, 
118,120,121,147,148,149 

12,32,34 13,33,35,36,61,62 

 
T0807 

(PDB ID 4wgh) 

20,21,22,23,50,54,55,113,143,165, 
193,194,195,196,197,198,199,200, 
201,207,224,240,241,242,244,248, 

251 

20,21,22,50,55,80,142,143,165,193,194, 
195,196,198,199,201,224,240,241,242,243

,244,245,248,251,252 

80,142,243, 245,252 23,54,113,197,200, 207 
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T0813 

(PDB ID 
4wji) 

NAI ligand: 
11,15,16,38,72,73,74,75,77,98,100, 

123,124,127,128,131,132,235 
 

NAD ligand: 
11,12,13,14,15,16,37,38,72,73,74,75,

98,100,123,127,128,131,132,235 
 

NAP ligand: 
11,12,14,15,16,36,37,38,39,42,55,72,

73,74,75,98,100,127,128,131,132, 
235 

MG ligand:13,42,46,133 13,46,133 NAP ligand: 
11,12,14,15,16,37,38,39,72,73,74, 
75,98,100,123,127,128,131,132, 

235 
 

NAD ligand: 
11,12,14,15,16,37,38,72,73,74,75,9

8,100,123,127,128,131,132,235 
 

NAI ligand: 
11,15,16,38,72,73,74,75,77,98,100, 

123,124,127,128,131,132,235 
 

 
T0819 

(PDB ID 4wbt) 
93,94,95,119,167,194,197,223,225,2

26,234, 347 
93,94,95,119,161,167,194,196,197,223,22

5,226,234 
196, 161 347 

 
T0845 

(PDB ID 4r5o) 
 

130,163,165,177,209,210,263,396, 
442,443 

58,228,237,273,275, 377,379,433 
58,228,237,273,275,377, 

379,433 
130,163,165,177, 209,210,263,396, 

442,443 

 
T0854 

(PDB ID 4rn3) 
 

16,18,19,173 16,18,173,177 177 19 

T0849 
(PDB ID 4w66)  

9,10,14,15,54,55,56,67,68,108,113,2
26, 230 

168,171,179,182,183,190,194,197 

 
168,171,179, 182,183,190, 

194,197 
 

9,10,14,15,54,55,56,67,68,108,113,
226, 230 

* the under- and over-predictions are compared against ZN ligand(02) only 
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Table 3.3. MCC and BDT scores for CASP11 targets  
A list of CASP11 targets  with associated MCC and BDT scores. The results are listed from ascending to descending order by 
MCC and BDT score. For CASP11 target T0783 MCC and BDT scores are compared to the Magnesium observed ligand   
 
 

CASP11 target MCC Score BDT Score 

T0819 0.877 0.853 

T0807 0.771 0.849 

T0854 0.7451 0.845 

T0798 0.753 0.797 

T0786 ZN(1):-0.014 
ZN(2):0.40 

ZN(1):0.0139 
ZN(2):0.38 

T0783 CTP: 0.17 
C:0.20 

CTP:0.21 
C:0.27 

T0813 
NAD:0.086 
NAI:-0.029 
NAP:0.079 

NAD:0.19 
NAI:0.11 
NAP:0.2 

T0849 -0.05 0.0375 

T0845 -0.02 0.035 
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Figure 3.2 in Section 3.3.1 relates the MCC and BDT scores to the TM-score. As can be 

seen from the figure, the targets with the highest MCC and BDT score were also associated 

with the highest TM-scores.  

 
 
 
A        B   

 
 
 
Figure 3.5. Comparison of FunFOLD3 ligand binding site predictions for CASP 11 target T0819 (PDB ID 4wbt).  
(A) Predicted ligand binding site residues shown as sticks with correctly predicted binding site residues in blue and incorrect 
predictions in red, the pyridoxal-5’-phosphate (PLP) ligand is shown as a sphere and coloured yellow. BDT score of 0.853 and 
MCC score of 0.877. (B) The observed ligand binding site for T0819 (PDB ID 4wbt), with binding site residues shown as sticks 
and coloured in blue and the ligand PLP coloured yellow  
 
 

The CASP11 target with the highest BDT (0.853) and MCC (0.877) score is histidinol-

phosphate aminotransferase (HisC) from Sinorhizobium meliloti (CASP ID T0819 and PDB 

ID 4wbt).  There were two underpredictions (TYR 161 and ALA 196) and one overprediction 

(ARG 347). An underprediction is a ligand binding site residue that was missed in the 

prediction whereas, an overprediction is a ligand binding site residue that was predicted to 

be in contact with a ligand but was not found to be in contact in the observed structure.  

 

Histidinol-phosphate aminotransferase is a pyridoxal 5’-phosphate-dependent (PLP) 

enzyme, that catalyses the reversible transamination reaction between histidinol phosphate 

(His-P) and 2-oxoglutarate (O-Glu). Figure 3.5B illustrates the observed binding site for PLP, 

which is located at the bottom of deep cavities formed at interfaces between the two 
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domains of each subunit (Sedgwick, 2015) as better illustrated in Figure 3.6 which is the 

structure from PDB and shows all the chains (A, B and C) from the protein and the binding of 

PLP to each of these chains.   

 

Figure 3.6. Histidinol-phosphate aminotransferase from Sinorhizobium meliloti (PDB ID 4wbt) bound to PLP. 
Proteins are shown in cartoon form and coloured in cyan and ligands shown as spheres and coloured yellow 

 

When PLP binds to HisC (from Corynebacterium glutamicum) it is lined by conserved 

residues such as GLY 97, SER 98, ALA 199, TYR 200, THR 225, LYS 228 and ARG 236 

(Marienhagen et al., 2008). The active site is made up of residues located on the central β-

strands of the β-sheet and loops; this is supported by Figure 3.6. The incorrect predictions 

were also located on these parts of the protein; ALA 196 is located on a loop and both TYR 

161 and ARG 347 are on β-sheets. Figure 3.7 shows the view behind the PLP ligand to 

illustrate the underprediction for ALA 196.  
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Figure 3.7. Reversed view of CASP11 target T0819 (PDB ID 4wbt)  
Illustrating the underprediction GLY 19. Correctly predicted binding site residues shown as sticks and coloured in blue and 
incorrect predictions in red, the pyridoxal-5’-phosphate (PLP) ligand is shown as a sphere and coloured yellow 

 

The reason why the BDT and MCC score were closer to a perfect prediction, than a random 

prediction is because there were a limited number of incorrect predictions; only three. In 

addition, one of the incorrect predictions (ALA 196), is close to the binding site and 

conserved residues.  A further reason is the high level of molecular similarity between the 

predicted structure and the observed structure with a TM-score of 0.913 (normalised by the 

average length of two chains). A TM-score of <0.5 and <1.00, suggests high structural 

similarity. Figure 3.8, illustrates the TMalign superpostion of the observed structure (blue) 

and predicted model (red). The main difference between the two structures appears to be 

the flexible loop, which is present in the predicted protein model but not the observed protein 

model.  
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This high level of structural similarity meant large majorities of ligand binding site residues 

were correctly predicted. The observed protein model had 367 residues, whereas the 

predicted protein model has 373 residues.  

 

Figure 3.8. Comparison of TMalign (Zhang & Skolnick, 2005) structures for CASP11 target T0819 (PDB ID 4wbt).  
The structure in blue is the observed structure for T0819 and the structure in red is the predicted structure from IntFOLD3 
(McGuffin et al., 2015) 
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A      B 

 
Figure 3.9. Comparison of FunFOLD3 ligand binding site predictions for CASP 11 target T0807 (PDB ID 4wgh). 
(A) Predicted ligand binding site residues shown as sticks with correctly predicted binding site residues in blue and incorrect 
predictions in red, the nicotinamide-adenine-dinucleotide (NAP) ligand is shown as a sphere and coloured yellow. BDT score of 
0.849 and MCC score of 0.771. (B) The observed ligand binding site residues shown as sticks for T0807 (PDB ID 4wgh), with 
binding site residues coloured in blue and the ligand NAP coloured yellow  

 
 
The second best predicted CASP11 target is aldo/keto reductase from Klebsiella 

pneumoniae (CASP 11 ID T0807 and PDB ID 4wgh).  There were five underpredictions; 

(LYS 80, SER 142, ALA 243, ALA 245, ASN 252) and six overpredictions (TYR 23, MET 54, 

HIS 113, ALA 197, GLY 200, PHE 207).  

 

Aldo/keto reductases (AKRs) are NAD(P)(H)-dependent oxidoreducatases that comprise a 

multigene superfamily (Marienhagen et al., 2008). Aldo/keto reductases are capable of 

catalysing the reduction of aldehydes or carbonyl groups present in a variety of biochemicals 

(Hur et al., 2009).  Additionally, AKRs may play a role in the modification or detoxification of 

various biologically active compounds (Hur et al., 2009). The ligand nicotinamide adenine 

dinucleaotide phosphate (NAP), is responsible for enzymatic reduction reactions of the AKR 

family (Hur et al., 2009). 

 

Despite the higher number of incorrect predictions compared to CASP 11 target T0819; 11 

predictions as opposed to three, the BDT and MCC score are still closer towards a perfect 
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prediction (0.849 and 0.771, respectively). Thereby, showing that the number of incorrect 

predictions has an impact on the MCC/BDT score, but does not necessarily correlate with a 

much lower score. The main reason for the incorrect predictions could be due to extension of 

the ligand-binding site by the inclusion of other ligands that are closely bound to NAP. 

Selenomethionine (MSE) is located in residue MET 54, which was one of the overpredictions 

and is next to residue TYR 55 for NAP and this could be a reason as to why residues around 

MSE could have been predicted as a ligand-binding site. As part of the FunFOLD3 algorithm 

ligands are considered part of the cluster if any of their atoms were in contact with the 

continuous mass – as MSE is close to NAP it could be that FunFOLD3 picked up residues 

related to MSE and this lead to overpredictions. Figure 3.10 below shows the amino acid 

MSE and the ligand NAP bound to aldo/keto reductase and illustrates how the close the 

binding site for NAP overlap is to the crystal structure of MSE. Selenomethionine is a 

modified amino acid that is used in single-wavelength anomalous diffraction (SAD) and 

multi-wavelength anomalous dispersion (MAD) X-ray crystallography to help determine the 

structure (Mayr & Nidetzky, 2002).  
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Figure 3.10 Comparison of the ligand binding site for NAP and MSE for CASP 11 target T0807 (PDB ID 4wgh). 
Predicted ligand binding site residues shown as sticks with correctly predicted binding site residues in blue and incorrect 
predictions in red, the NAP ligand is coloured yellow and MSE is coloured red, as it is an overprediction. The protein model is 
coloured cyan, as the structure has been obtained from PDB  

 

A TM-score of 0.875 was obtained, showing a high level of molecular similarity between the 

observed and predicted molecular structures. Despite the lower structural similarity between 

the two protein molecules, the number of residues was closely matched with 283 residues 

for the observed protein and 284 residues for the predicted protein. An explanation for the 

lower TM-score for these models compared to T0819, despite having a closer number of 

residues could be due to the folding of the protein molecule. The flexible loop on the 

predicted model appears to be longer and extends further than the flexible loop on the 

observed protein. As with CASP11 target T0819, this high level of structural similarity 

resulted in BDT and MCC scores, which were more aligned with a perfect prediction. The 

TMalign superposition of observed and predicted structures is shown in Figure 3.11. 
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Figure 3.11. Comparison of TMalign (Zhang & Skolnick, 2005) structures for CASP11 target T0807 (PDB ID 4wgh). 
The structure in blue is the observed structure for T0807 and the structure in red is the predicted structure from IntFOLD3 
(McGuffin et al., 2015) 
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Figure 3.12. Comparison of FunFOLD3 ligand binding site predictions for CASP11 target T0854 (PDB ID 4rn3). 
(A) Predicted ligand binding site residues shown as sticks with correctly predicted binding site residues in blue and incorrect 
predictions in red, the magnesium (MG) ligand is shown as a sphere and coloured yellow. BDT score of 0.845 and MCC score 
of 0.7451. (B) The observed ligand binding site residues shown as sticks for T0854 (PDB ID 4rn3), with binding site residues 
coloured in blue and the ligand MG coloured yellow  

 
 
The third best predicted CASP11 target is HAD-superfamily hydrolase, subfamily IA, variant 

1 from Geobacter sulfurreducens (CASP 11 T0854 and PDB ID 4rn3).  There were two 

incorrect predictions; with one underprediction (GLY 19) and one overprediction (ASP 177).  

The underprediction GLY 19 was located on a flexible loop of the protein.  

 

HAD-superfamily hydrolase, as the name suggests, belongs to a large superfamily of 

hydrolases with a wide variety of substrate specificity. The superfamily consists of epoxide 

hydrolases and different types of phosphatases (Hendrickson, 1999).  The FunFOLD3 server 

identified the ligand as magnesium and this was supported by the observed binding site. All 

HAD phosphoaspartyl transferases use magnesium as an obligatory cofactor. Magnesium 

aids in the correct positioning of the substrate phosphoryl group relative to the ASP 

nucleophile. Additionally, magnesium provides charge neutralisation of the transition state 

(Koonin & Tatusov, 1994).  

 

A TM-score of 0.748 was obtained, showing a high level of molecular similarity between the 

observed and predicted molecular structures. The number of residues was also closely 

A B 
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matched, with the observed structure having 210 residues and the predicted structure having 

212 residues. As with CASP11 target T0807, despite the similar number of residues the 

variances in folding of the protein has resulted in a lower TM-score as compared with 

CASP11 target T0819. One of the big differences is with the flexible loop of the predicted 

model, which has not bonded with the α helix. Additionally, there are differences in the 

alignment of some of the α helices of the predicted and observed protein model, which could 

have resulted in a lower TM-score, despite the high number of residues.   

 

Figure 3.13. Comparison of TMalign (Zhang & Skolnick, 2005) structures for CASP11 target T0854 (PDB ID 4rn3). 
The structure in blue is the observed structure for T0854 and the structure in red is the predicted structure from IntFOLD3 
(McGuffin et al., 2015) 
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A       B 

 
Figure 3.14. Comparison of FunFOLD3 ligand binding site predictions for CASP 11 target T0849 (PDB ID 4w66). 
(A) Predicted ligand binding site residues shown as sticks with correctly predicted binding site residues in blue and incorrect 
predictions red, the glutathione (GSH) ligand is shown as a sphere and coloured yellow. BDT score of 0.0375 and MCC score 
of -0.05. (B) The observed ligand binding site residues shown as sticks for T0849 (PDB ID 4w66), with binding site residues 
coloured in blue and the ligand GSH coloured yellow  

 
 
The eighth predicted CASP11 target is Glutathione S-transferase domain protein from 

Haliangium ochraceum (CASP 11 T0849 and PDB ID 4w66). There were no correct 

predictions with this protein. 

 

Glutathione S-transferase (GSTs), are a family of cytosolic enzymes, which are involved in 

the detoxification of exogenous and endogenous species. The protein is also prone to 

polymorphisms which can have an impact of the drug metabolism (Xie, Bonner and Jensen, 

2000). 

   

The FunFOLD3 server has correctly identified the glutathione ligand, however the 

predictions have failed to identify any of the correct ligand binding site residues. This may be 

due, in part to the large size of the ligand or could be as a result of the amino acid MSE 

being in close proximity to the GSH ligand and causing the extension of the ligand binding 

site in some parts of the protein.  
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A TM-score of 0.721 was obtained, which as with T0813 is quite surprising, given the low 

BDT and MCC score, which was obtained (0.0375 and 0.05, respectively). The number of 

residues for the observed protein was 236 and for the predicted protein was 240. This 

suggests, that the reason for the low score is to do with the ligand binding site and not poor 

structural similarity.  

 

Figure 3.15. Comparison of TMalign (Zhang & Skolnick, 2005) superposition for CASP11 target T0849 (PDB ID 4w66). 
The structure in blue is the observed structure for T0849 and the structure in red is the predicted structure from IntFOLD3 
(McGuffin et al., 2015) 

 
 
 
Another consideration in the analysis of the CASP11 targets is the ligands that are bound to 

the protein. The following compares the ligands identified using the FunFOLD3 webserver 

and those identified using the PDB ID with the associated CASP11 protein as shown in 

Table 3.4. Comparison of ligands predicted by CASP11 targets T0783, T0786 and T0819 

and the ligands associated with the PDB entry are shown in Figure 3.16.   
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Table 3.4 below, shows the comparison between the ligands predicted by FunFOLD3 and 

the associated ligands as per the PDB entry.  

Table 3.4. Comparison of ligands predicted using FunFOLD3 and ligands identified on Protein DataBank 

 
CASP 11 target ID FunFOLD3 ligand PDB ligand 

T0783 
(PDB ID 4cvh) 

 
Cytidine-5’-triphosphate, , 

cytidine-5’-monophosphate, 
copper ion 

 

Ethylene glycol (EDO),    
chloride ion, magnesium ion 

T0786 
(PDB ID 4qvu) 

Zinc, Iron, adenosine 
monophosphate 

 
Tetraethylene glycol (PG4), 

zinc, sodium 
 

T0798 
(PDB ID 4ojk) 

 
Guanosine-5’-diphosphate 

(GDP) 
 

Guanosine-5’-diphosphate 
(GDP) 

 

 
T0807 

(PDB ID 4wgh) 
2’-monophosphoadenosine 5’-

diphosphoribose (NAP) 

 
2’-monophosphoadenosine 5’-

diphosphoribose (NAP), 
acetate (ACT) 

 
T0813 

(PDB ID 4wji) 

1,4-dihydronicotinamide 
adenine dinucleotide (NAI), 2’-

monophosphoadenosine 5’-
diphosphoribose (NAP), 

nicotinamide adenine 
dinucleotide (NAD)  

Magnesium ion, chloride ion, 
tyrosine (TYR), 2’-

monophosphoadenosine 5’-
diphosphoribose (NAP) 

 
T0819 

(PDB ID 4wbt) 
Vitamin B6 Phosphate (PLP) 

 
Polyethylene glycol (PE4), 

vitamin B6 Phosphate (PLP), 
triethylene glycol (PGE), 

di(hydroxyethyl)ether (PEG), 
glycerol (GOL) 

 
 

T0845 
(PDB ID 4r5o) Calcium ion, chloride ion 

 
Calcium ion, chloride ion, 
polyethylene glycol (7PE), 

acetate (ACT) 
 

 
T0854 

(PDB ID 4rn3) 
 

Magnesium ion Ethylene glycol (EDO), 
Magnesium ion 

 
T0849 

(PDB ID 4w66) 
 

Glutathione Glutathione 
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Figure 3.16. Comparison of predicted ligands by FunFOLD3 and ligands as per the PDB entry for CASP11 targets T0783 
(PDB ID 4cvh), T0786 (PDB ID 4qvu) and T0819 (PDB ID 4wbt) 
(A) CASP11 target T0783 predicted ligand cytidine-5’-triphosphate (B) CASP11 target T0783 predicted ligand cytidine-5’-
monophophate (C) Ethylene glycol ligand associated with PDB ID 4cvh (D) CASP11 target T0786 predicted adenosine 
monophosphate ligand (E) Tetraethylene glycol ligand associated with PDB IS 4qvu (F) CASP11 target T0819 Predicted 
vitamin B6 phosphate ligand (G) Polyethylene glycol (H) Triethylene glycol and (I) Di(hydroxyethyl)ether ligands associated with 
PDB ID 4wbt. Images obtained from (Burley et al., 2017)  

A B
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3.3.3 Analysis of CASP12 Functional Prediction 

 

As with CASP11, targets obtained from CASP12 were analysed. Ligand-binding site 

residues predictions are reported on regardless of if there is an associated PDB ID. It is 

likely all CASP12 targets will have a PDB ID associated in the foreseeable future by the 

CASP12 organisers and will be analysed as and when the PDB IDs become available.  

 

The same rationale as per CASP11, was applied in CASP12 with biologically relevant 

ligands being ascertained as per BioLiP database and the ligand binding residues 

determined. In a change from CASP11, where all ligands were identified – this will also be 

part of CASP12 analysis – there is an additional focus on identification of the middle/centroid 

ligand of the protein.  

 

A total of 61 CASP12 targets were released for analysis with some targets were in complex 

with other targets. Analysis using the FunFOLD3 server yielded a total of twelve proteins 

containing biologically relevant ligands and binding site residues. These were T0868 (PDB 

ID 5j4a), T0872  (PDB ID 5jmb), T0892 (PDB ID 5nv4), T0899, T0901, T0905,  T0907, 

T0909 (PDB ID 5g5n), T0911, T0912 (PDB 5mqp), T0916 and T0919. CASP12 target IDs 

are given outside parenthesis and PDB IDs, where applicable within parenthesis. Protein-

ligand interactions were predicted for all of the twelve FN targets. Once all of the predicted 

CASP targets have PDB IDs associated then a mean MCC score and BDT score will be 

calculated. Each of the predictions will be discussed in detail.     

 

FunFOLD3 predicted the binding site residues for twelve CASP12 targets. The 

corresponding observed binding site residues are also provided, along with under and over- 

predictions. Correct residues are highlighted in red as illustrated in Table 3.5. For further 

results, please refer to Appendix 2.  A comparison of the MCC, BDT and TM-scores for the 
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targets are shown in Figure 3.3 and a summary of the MCC and BDT scores for each of the 

CASP12 targets is shown in Table 3.6
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Table 3.5. Predicted and observed ligand-binding site residues for CASP12 targets  
Correct ligand binding site residues are depicted in red and bold and presented in ascending CASP12 target ID. For  CASP12 targets where there is no ligand predicted in the experimental structure 
the observed ligand-binding site residue column is blank  

CASP12 
target 

Predicted ligand-binding site 
residue 

Observed ligand-binding  site 
residue 

Under-predictions Over-predictions 

T0868 
(PDB ID 5j4a) 

39,40,44,45,46,98 No biologically relevant ligands N/A N/A 

T0872 
(PDB ID 5jmb) 

6,7,68 No biologically relevant ligands N/A N/A 

T0899 79,178,214,215 No PDB ID released N/A N/A 
T0901 54,57,130,131,169,170 No PDB ID released N/A N/A 
T0905 58,239,240,241 No PDB ID released N/A N/A 
T0907 82,83,84,85,112 No PDB ID released N/A N/A 
T0909 

(PDB ID 5g5n) 
146,147,169,170,190,207,208, 232 CL ligand(1): 

289 
 

CL ligand(2): 
359,360 

 
CL ligand(3): 

85,87,126 
 

CL ligand(4): 
44,46,187,218,252 

 
CL ligand(5): 

211,218,223,241,242,243,252,286 
 

CL ligand(1): 
289 

 
CL ligand(2): 

359,360 
 

CL ligand(3): 
85,87,126 

 
CL ligand(4): 

44,46,187,218,252 
 

CL ligand(5): 
211,218,223,241,242,243,252,286 

 

46,147,169,170,190,207,208, 
232 

T0911 
(PDB ID 6e9n) 

44,160,164,165,393 68,123,126,358,371,374,375,377, 
378  

68,123,126,358,371,374,375,377, 
378 

44,160,164,165,393 

T0912 
(PDB ID 
5mqp) 

MAV ligand: 
334,340,423,426,468,469,470 

 
FRU: 

207,208,209,490 

155,262,264,268 155,262,264,268 207,208,334,340,423,426, 
468,469,470,471,474,490 

T0913 100,149,153,156,171,206,266, 
267,318,358,359,364 

64,65,66,67,209,210,273,274, 
320,321,363,368,371 

64,65,66,67,209,210,273,274,320, 
321,363,368,371 

100,149,153,156,171,206, 
266,267,318,358,359,364 

T0916 
(PDB ID 5tj4) 

14,15,16,17,18,51,59,60,62,63, 
64,68,107* 

GLC ligand(1) 
62,63,65,66,153,154,155,340,344 

 
 

N/A N/A 
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GLC ligand(2): 
12,14,15,63,111,153,155,156,230 

T0919  39,203,204,207,271,272,273 Structure cancelled by organisers N/A N/A 
*compared against GLC ligand(2) 
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Table 3.6. MCC and BDT scores for CASP12 targets  
A list of CASP12 targets  with associated MCC and BDT scores. The results are listed from ascending to descending order by 
CASP12 target ID. For CASP12 target T0916 MCC and BDT scores are compared to the GLC observed ligand, NAD(1) would 
be compared against GLC(1) observed ligand and so forth   

 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

CASP12 target ID MCC score BDT score 
T0911 -0.0167 0.0265 
T0912 MAV: -0.00892 

FRU: -0.00672 
MAV:0.0213 
FRU: 0.0295 

T0913 -0.0367 0.091 
T0916 NAD(1): 0.162 

NAD(2): 0.263 
NAD(1):0.263 
NAD(2):0.37 
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A           B  

  
C 

 
Figure 3.17. Comparison of FunFOLD3 ligand-binding site predictions for CASP12 target T0912 (PDB ID 5mqp)  
(A) Predicted ligand binding site residues shown as sticks with incorrect predictions in red and the predicted fructose (FRU) 
ligand shown as sphere and coloured yellow. MCC score of -0.00672 and BDT score of 0.0295 was achieved (B) Predicted 
ligand binding site residues shown as sticks with incorrect predictions in red and the predicted alpha-D-mannopyranuronic acid 
(MAV) ligand shown as sphere and coloured yellow. MCC score of -0.00892 and BDT score of 0.0213 was achieved (C) The 
observed ligand binding site residues shown as sticks for T0912 (PDB ID 5mqp), with binding site residues coloured in blue. 
The calcium ligand has not been illustrated as it is not part of the sequence as shown in PyMOL 

 
The ninth predicted CASP12 target is glycoside hydrolase (CASP T0912 and PDB ID 5mqp) 

as can be seen from Figure 3.17, there were no correct predictions for this target and 

FunFOLD3 had predicted two ligands (fructose and MAV) whereas, as illustrated in Figure 

3.17C only one ligand is associated with glycoside hydrolase as confirmed with PDB (Laver, 

Lenz and Dulhunty, 2001). 
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Glycoside hydrolase are a group of enzymes responsible for the hydrolysis of glycosidic 

bonds in carbohydrates (Yang, Roy and Zhang, 2013). One of the predicted ligands as per 

FunFOLD3 was fructose and a rationale for why FunFOLD3 predicted this ligand could be 

confusion with other hydrolase such as fructan 1-exohydrolase and thiocyanate hydrolase, 

which may have some structural homology to glycoside hydrolase (Czjzek & Michel, 2017). 

 

It is somewhat surprising, that with an enzyme such as glycoside hydrolase, only one ligand 

is observed and it would be a metal ion at that. A literature search on the role of calcium has 

identified that this metal ion has a catalytic role in GH97 inverting glycoside hydrolase (Yang, 

Roy and Zhang, 2013). Several glycoside hydrolases require the participation of a metal ion 

for catalysis, and in particular a divalent metal ion such as zinc or calcium (Okuyama et al., 

2014) and is potentially the case with this protein. In hydrolase enzymes, such as Bt GH97a 

(inverting α-glucoside hydrolase) and Bt GH97b (retaining α-glucoside hydrolase) both have 

one calcium ion in the active site, which plays an important role in the catalysis of both 

enzymes. Without further information on the role of this protein, it is difficult to say the exact 

function of the calcium ion.  

  

A TM-score of 0.633 was obtained with 624 residues for the observed protein and 599 for 

the predicted protein, as Figure 3.18 shows, the structural similarity is contained within some 

of the molecule. The actual protein contains numerous β sheets in a portion of the protein 

and the predicted protein model has failed to form these β sheets in the correct region.  
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Figure 3.18. Comparison of TM-align (Zhang & Skolnick, 2005) structures for CASP12 target T0912 (PDB ID 5mqp) 
The structure in blue is the observed structure for T0912 and the structure in red is the predicted structure from IntFOLD4. A 
TM-score of 0.633 was achieved. The score was normalised for the observed structure as it is the reference molecule.  
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A           B  

 
Figure 3.19. FunFOLD3 ligand-binding predictions for CASP12 target T0913  
(A) Predicted ligand binding site residues shown as sticks with correctly predicted binding site residues in blue and under- and 
over predictions in red, the predicted ligand phosphate citruline shown as sphere and coloured red. (B) The observed ligand 
binding site residues shown as sticks for T0913 with binding site residues coloured in blue no ligand was identified on PDB  
 
The tenth predicted CASP12 target is F4ZCI1 and the information obtained from UniProtKB 

identifies this target as protein 2-nitroimidazole nitrohydrolase. The annotation level on 

UniProtKB is three out of a possible level five annotation, meaning protein inferred from 

homology indicating that the existence of this protein is probable because clear othologs 

exist in closely related species (UniProt Consortium, 2019). This evidence is supported by 

the ability of IntFOLD4 to predict a structure, as the ability to predict a structure relies on 

evidence from known proteins.  

 

As can be seen from Figure 3.19, a ligand in the form of citrulline was predicted. Citrulline or 

L-Citrulline is a ubiquitous, naturally occurring nonessential amino acid and about 80% of 

citrulline is converted in the kidney to arginine (ARG) (Okuyama et al., 2014). A literature 

search of l-citrulline identified a therapeutic role of l-citrulline in improving erectile hardness 

in patients with mild erectile dysfunction (Kaore, Shilpa N. Kaore, 2014). Therefore the 

identified ligand could be biologically relevant. Based on this information, it is possible to 

gain more insights into the protein, a literature search identified argininosuccinate synthase 

as an enzyme that catalases the synthesis of argininosuccinate from citrulline and aspartate 

(Cormio et al., 2011). Argininosuccinate synthase has the following EC number associated 
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6.3.4.5 indicating the enzyme belongs to the group related to other carbon-nitrogen ligases 

and specifically the argininosuccina synthase family. As this target is an enzyme, FunFOLD3 

had predicted EC terms which were; 2.1.4.1 (glycine amindino transferase), 3.5.3.6 (arginine 

deiminase) and 3.5.3.18 (dimethylargininase). Although the EC numbers do not match 

exactly there is a similarity with enzyme argininosuccinate synthase, such as acting on 

carbon-nitrogen bonds (EC 3.5.).  

 

Figure 3.20 below, shows the TMalign superposition of  predicted structure and the observed 

structure. The TM-score was 0.81367 showing good structural homology.  

 
Figure 3.20. Comparison of TM-align (Zhang & Skolnick, 2005) structures for CASP12 target T0913  
The structure in blue is the observed structure for T0913 and the structure in red is the predicted structure from IntFOLD4. A 
TM-score of 0.81367 was achieved. The score was normalised for the observed structure as it is the reference molecule.  
 

 
 
 
 
 
  



Chapter 3. Anaylsis of CASP11, CASP12 and CASP13  

 
 

Page 136 of 645 

A           B  

  
 
 

C 

 
 
Figure 3.21. Comparison of FunFOLD3 ligand-binding site predications for CASP12 target T0916 (PDB ID 5tj4) 
(A) Predicted ligand binding site residues shown as sticks and coloured red and the predicted ligand NAD shown as sphere 
and coloured yellow. An MCC and BDT score of 0.263 and 0.370, respectively was achieved, compared to GLC(2) (B) and (C) 
The observed ligand binding site residues shown as sticks with binding site residues coloured in blue the alpha-D-
glucopyranose (GLC) ligand is shown as sphere. As a result of CASP13 organisers not releasing an observed structure, this is 
the structure as per the PDB entry for target. Given the location of the ligand in the observed structure it had to be shown in two 
different images for ease .  
 

 
The eleventh predicted CASP12 target is Gasdermin B C-terminal domain (T0916 and PDB 

ID 5tj4) as can be seen from Figure 3.21A predicted ligand-binding site residues were 

obtained. The PDB entry classifies the protein as ligand binding protein.  Additionally, the 

GLC ligand was predicted in two different locations within the observed structure. The 
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observed structure consists of 10 chains, hence why only a portion of the observed structure 

has been illustrated.  

 

The GLC ligand is not identified in the PDB entry, only sodium is predicted and this could be 

due to the use of sodium containing solvents in the crystallisation of the protein structure 

(Chao, Kulakova and Herzberg, 2017). In comparison NAD was predicted for the T0916 

target and due to similarities in the ligand-binding site with one of the GLC ligands, an MCC 

and BDT score was obtained which was 0.263 and 0.370, respectively.   

 

The CASP12 organisers cancelled the observed structure, so the prediction was based off 

the PDB file. The structure was cancelled as an apparent template (5b5r) appeared before 

the server deadline and was re-released as TBM target T0948. Of note, this template was 

not identified by FunFOLD3 to contain ligands nor was it one of the templates that was 

predicted in terms of structure similarity.  

 
Gasdermin B is involved in pyroptosis, an inflammatory form of programmed cell death, 

which is critical for amplifying protective immunity during infection (Haines, Pendleton and 

Eichler, 2011). The exact mechanism of pyroptosis did not become clear until 2015 when 

researchers identified cleavage of a protein within this family (Gasdermin D) generates a 

31kDa N-terminal fragment and a 22kDa C-terminal fragment. The role of the N-terminal has 

been identified alone induced pyroptosis when expressed ectopically (Jorgensen and Miao, 

2015). Hergueta-Redondo and colleagues (Hergueta-Redondo et al., 2014) identified 

gasdermin-b as a promoter in the invasion and metastasis in breast cancer cells. At this 

stage, it was known that all the four human proteins of this family (Gasdermin A, Gasdermin 

B, Gasdermin C and Gasdermin D) contain several conserved sequences in the N- and C-

terminal regions, but to date no functional domains or motifs had been described (Shi et al., 

2015). Since the publication of this study in 2014, no further studies have been published 
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into the function of Gasdermin B.  Table 3.7, below shows the GO terms predicted for 

CASP12 target T0916 (PDB ID 5tj4). 

Table 3.7. Predicted GO terms for CASP12 target T0916 (PDB ID 5tj4) 
The predicted GO terms for CASP12 target T0916 (PDB ID 5tj4) and their associated term domains and function are shown 
below. Biological process is coloured red and molecular function coloured green  
 

GO term GO term domain Function 

GO:0000166 Molecular function nucleotide binding 

GO:0008106 Molecular function alcohol dehydrogenase (NADP+) 
activity 

GO:0004022 Molecular function alcohol dehydrogenase (NAD) activity 

GO:0016491 Molecular function oxidoreductase activity 

GO:0046872 Molecular function metal ion binding 

GO:0008912 Molecular function acetaldehyde reductase activity 

GO:0008198 Molecular function ferrous iron binding 

GO:0055114 Biological process oxidation-reduction process 

GO:0005975 Biological process carbohydrate metabolic process 

GO:0006004 Biological process fucose metabolic process 

GO:0019317 Biological process fucose catabolic process 

GO:0019301 Biological process rhamnose catabolic process 

GO: 0042355 Biological process L-fucose catabolic process 

GO:0042846 Biological process glycol catabolic process 

GO:0051143 Biological process propanediol metabolic process 

 

The GO terms listed above do not currently provide any additional insight into what has 

already been published, the GO terms mainly support the prediction of the ligands as per 

FunFOLD3, unsurprisingly.  
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A 
 

 
 
 
 
B 

 
Figure 3.22. Comparison of TM-align (Zhang & Skolnick, 2005) structures for CASP12 target T0916 (PDB ID 5tj4) 
(A) The structure in blue is the observed structure from PDB and the structure in red is the predicted structure from IntFOLD4. 
A TM-score of 0.14930 was achieved. The score was normalised for the PDB entry as it is the reference molecule and shows 
poor structure homology potentially. This superposition is of the aligned regions only whereas (B) is for all the domains of the 
observed structure compared to the domain released by the CASP organisers  
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Table 3.8 below shows the comparison between ligands predicted by FunFOLD3 and 

ligands associated with the targets as per the PDB entry.  

 

Table 3.8. Comparison of ligands predicted using FunFOLD3 and ligands identified on Protein Databank  
*ligand has been identified by FunFOLD3 following analysis on observed structure and is not a ligand on PDB (Quinten and 
Kuhn, 2012)  
 

CASP 12 target FunFOLD3 ligand PDB ligand 

T0868 
(PDB ID 5j4a) 

 
BCG 

No ligands 

T0872 
(PDB ID 5jmb) 

 

Calcium ion No ligands 

T0899 Magnesium ion N/A  
 

T0901 Magnesium ion N/A 
T0905 GLY N/A 

T0907 
 

Calcium ion N/A 

T0909 
(PDB ID 5g5n) 

Carbonate ion (CO3) Methyl mercury ion (MMC), 
glycerol (GOL) and chloride 

ion 
T0911 

(PDB ID 6e9n) 
Dibromotyrosine (DBY) Gluconic acid* 

T0912 
(PDB ID 5mqp) 

Fructose (FRU) and alpha-
D-mannopyranuronic acid 

(MAV) 

Calcium ion 

T0913 
 

Citrulline (CIR)  N/A  

T0916 
(PDB ID 5tj4) 

Nicotinamide-adenine-
dinucleotide (NAD) 

Maltose (MAL) and sodium 

ion 

T0919 Beta-d-glucose (BGC) N/A 
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3.3.4 Analysis of CASP13 Functional Prediction  

 

As with previous CASP competitions, targets with biologically relevant and predicted ligand-

binding site residues will be analysed. Following on from the analysis in CASP12, there will 

be additional focus on the middle/centroid ligand of the protein.  

 

A total of 183 CASP13 targets were released for analysis, this consisted of 90 regular 

targets; 13 hetero-multimer targets; 31 refinement targets and 49 assisted modelling 

prediction targets. Analysis using the FunFOLD3 server identified 34 targets containing 

biologically relevant ligands and binding site residues. These were T0949, T0953s2 (PDB ID 

6f45), T0954 (PDB ID 6cvz), T0955 (PDB ID 5w9f), T0957s2 (PDB ID 6cp8), T0958 (PDB ID 

6btc), T0965 (PDB ID 6d2v), T0961, T0970 (PDB ID 6g57), T0972, T0973, T0974s1, T0975, 

T0980s1 (PDB ID 6gnx), T0980s2 (PDB ID 6gnx), T0983, T0985, T0986s2 (PDB ID 6d7y), 

T0992 (PDB ID 6xbd), T0993s1, T0994, T0995, T0997, T1001, T1003 (PDB ID 6hrh), T1008 

(PDB ID 6msp), T1009 (PDB ID 6dru), T1012, T1013, T1014 (PDB ID 6qrj), T1016 (PDB 

6e4b), T1017s1, T1018 (PDB ID 6n91) and T1023s2. CASP13 target IDs are given outside 

parenthesis and PDB IDs, where applicable within parenthesis. Protein-ligand interactions 

were predicted for all 34 of the FN targets.  

 

For the predicted CASP targets which have PDB IDs associated and have an actual 

structure released by CASP organisers will have a MCC score and BDT score will be 

calculated. Predictions without an associated PDB ID and/or actual structure cannot be 

objectively assessed, however the results will still be included as part of the analysis to 

demonstrate the results from FunFOLD3 server.  

 

Corresponding observed binding site residues are also provided, along with under and over- 

predictions. Correct residues are highlighted in red as illustrated in Table 3.9. Three top 
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scoring predictions are presented (T0974s1, T0961 and T0983), along with two lower 

scoring predictions (T0953s2 and T1003). For the remaining CASP13 predictions, please 

refer to Appendix 2.
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Table 3.9. Predicted and observed ligand-binding site residues for CASP13 targets  
Correct ligand binding site residues are depicted in red and bold and presented in ascending CASP13 target ID. For  CASP13 targets where there is no ligand predicted in the experimental structure 
the observed ligand-binding site residue column is blank 
 

CASP13 
target 

Predicted ligand-binding site residue Observed ligand-binding site residue Under-
predictions 

Over-predictions 

T0949 CU ligand: 
85,159,161,171 

 
OXY ligand: 
95,98,99,160 

No structure released   

T0953s2 
(PDB ID 6f45) 

119,120,121,122,124,125,126,127,155,156,
157,158,159,164,165,166,167,168,169,170,

174,195,198 

54,164 54 119,120,121,122,124,125,126
,127,155,156,157,158,159, 

165,166,167,168,169,170,174
,195,198 

T0954 
(PDB ID 6cvz) 

 
LYS ligand: 

77,119,273,274,275 
 

DT ligand: 
116,161  

 

123,124,129,130,131 
 

123,124,129,130, 
131 

 

 
LYS ligand: 

77,119,273,274,275 
 

DT ligand: 
116,161 

 
T0955 

(PDB ID 5w9f) 
ZN ligand: 

27 
 

RG and RA ligand: 
39 

No biologically relevant ligands found   

T0957s2 
(PDB ID 6cp8) 

LEU ligand: 
116,164 

 
ALA ligand: 

102 
 

SF4 ligand: 
40 

No biologically relevant ligands found   

T0958 
(PDB ID 6btc) 

DC ligand: 
47,48,51,73,74,75 

No biologically relevant ligands found   
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SAH ligand: 
32,36,38 

T0961 
(PDB ID 6sd8) 

171, 172, 173, 174, 178, 179, 180, 209, 210, 
211, 212, 260, 324, 326, 327, 331, 334, 336, 
402, 405, 406, 409, 428, 429, 431, 434, 437 

171,173,174,178,179,180,210,211,212,260,268, 
324,326,327,331,334,402,403,405,406,409,424, 

428,431,433,434,437* 
 

268,403,424,433 172,209,336,429 

T0965 
(PDB ID 6d2v) 

30, 32, 33, 34, 35, 53, 54, 56, 58, 75, 76, 77, 
97, 98, 99, 101, 103, 134, 135, 136, 165, 

192, 193, 194, 195, 201, 204, 219, 220, 221, 
226,264,286, 291 

CL ligand(1): 
81,144 

 
CL ligand(2): 

39,41,42 
 
 

NDP 
10,12,13,14,15,33,34,35,54,55,56,57,77,78,79,81, 

114,115,116,145,149,172,173,174,175* 

10,12,13,14,15, 
57,78,79,81, 

114,115,116,145,14
9,172,173,174,175 

30,32,53,58, 75, 76,97,98 99, 
101,103,134,135,136,165, 
192,193,194,195 201,204, 
219,220,221,226,264,286, 

291 

T0970 
(PDB ID 6g57) 

0FX ligand: 
53,88,89 

 
ZN ligand: 
21,49,79 

No biologically relevant ligands found 
 

  

T0972 DC ligand: 
1,82,83,85,86,87 

 
HEM ligand: 

17,18,19,20,21,22,23,24,25,30,59,60,92,95 

Structure cancelled by organisers   

T0973 
(PDB ID 6yfn) 

RA ligand(1): 
29,48,50,51,52,73,77103 

 
RA ligand(2): 

57,71 

 
No structure released 

  

T0974s1 
(PDB ID 6tri) 

31 31   

T0975 DU ligand: 
78,81,83,84,170,171 

 
DT ligand: 
174,175 

 
SF4 ligand: 

62,64,311,312,313,316,322 

No structure released   
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T0980s1 
(PDB ID 6gnx) 

PRO ligand: 
68,69 

 
 

SER ligand: 
13,72,73,75,76,78,79,81,83 

 

No biologically relevant ligands found*   

T0980s2 
(PDB ID 6gnx) 

SAH ligand: 
1,8,36,37,38,39,40,41 

 

No biologically relevant ligands found*   

T0983 
(PDB ID 6uk5) 

SAH ligand: 
2,14,17,21,46,47,48,52,67,68,69,72,88,89, 
90,105,106,107,108,111,141,147,150,178, 

228 
 

SAM ligand: 
2,10,21,46,47,48,52,66,67,68,69,72,88,89,90,91,10

5,106,108,111,112* 
 

10,66,91,112 14,17,107,141,147,150,178, 
228 

T0985 BGC ligand(1): 
386,401,402,437,450,532,534,685,695, 700, 

702,745,746,764,765 
 

BGC ligand(2): 
208,210 

No structure released   

T0986s2 
(PDB ID 6d7y) 

57,60,61,62,64 No biologically relevant ligands found*   

T0992 
 

15,16,17 No structure released   

T0993s1 
(PDB ID 6xbd) 

18,21,23,43,44,45,46,47,48,49 
 

No biologically relevant ligands found*   

T0994 CAZ ligand: 
390,391,423,426,439,478,528,529,530, 531, 

533,538 
 

HIS ligand: 
446,450 

 

Structure cancelled by organisers   

T0995 48,54,130,137,164,189,192 
 

No structure released   

T0997 179,180,184,188,199, 200,201,202 No structure released   
T1001 32,34,45,60,61,63, 74,79,80,81,82,83,84, 

85,87,88,92,97,113 
No structure released   

T1003 
(PDB ID 6hrh) 

113,144,145,146,149,172,244,246, 247,275, 
278, 284, 306, 308, 474 
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257,258,259,262,285,287,328,332,357,359,360, 
388,391,419,420,421 

 
T1008 

(PDB ID 6msp) 
FMN ligand(1): 

27,34 
 

FMN ligand(2): 
36,69 

No biologically relevant ligands found*   

T1009 
(PDB ID 6dru) 

GLC ligand(1): 
682,684 

 
GLC ligand(2): 

257,286,325,393,395,396,470,484,487,520, 
557 

MAN ligand(1): 
84,100,108,110,113,114,115,116 

 
MAN ligand(2): 

261,300,303 
 

MAN ligand(3): 
493,523,525 

 
MAN ligand(4): 

564,565,568 
 

BMA ligand(1): 
260,301 

 
BMA ligand(2): 

565,566 
 

GAL ligand: 
411 

 
XYS ligand: 

257,285,286,325,393,395,470,484,487,520,557 
 

BGC ligand(1): 
286,357,396,404,406,409 

 
BGC ligand(2): 

527,534 
 

BGC ligand(3): 
257,520,559 

MAN ligand(1): 
84,100,108,110,113,

114,115,116 
 

MAN ligand(2): 
261,300,303 

 
MAN ligand(3): 

493,523,525 
 

MAN ligand(4): 
564,565,568 

 
BMA ligand(1): 

260,301 
 

BMA ligand(2): 
565,566 

 
GAL ligand: 

411 
 

BGC ligand(1): 
286,357, 

404,406,409 
 

BGC ligand(2): 
527,534 

 
BGC ligand(3): 

559 
 

XYS ligand: 

GLC ligand(1): 
682,684 

 
GLC ligand(2); 

396  
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285 
T1012 27,30,125,126,127,128,129,130,135,136, 

137,138,139,140,141,160,161,163,166,167, 
170,171,173 

 

Structure cancelled by organisers   

T1013 CLR ligand: 
449,453,462,468,471 

 
 

MPG ligand: 
50 

 
RET ligand: 

91,98,107,118,121,125,216,447,450,451,45
4,476,480 

 
LEU ligand: 
183,184,185 

No structure released   

T1014 
(PDB ID 6qrj) 

 
 

57,58,60,61,85,88,90,98,103,104,105,114, 
115,116,117,118,119,120,121,144,146 

MG: 
139,142 

 
ANP: 

139,142,143,167,172,180,185,186,187,199 200, 
201,202,228 

139,142,143,167, 
172,180,185,186, 

187,199 200, 
201,202,228 

 

57,58,60,61,85,88,90,98,103,
104,105,114, 

115,116,117,118,119,120,121
,144,146 

T1016 
(PDB ID 6e4b) 

7,8,14,19,20,21,57,81,84,149,150  
7,8,14,57,81,149,150 

 

 19,20,21,84 

T1017s1 30,31,32,33 No structure released   
T1018 

(PDB ID 6n91) 
14,56,59,98,170,197,278,279 PO4:* 

124,162 
 

SO4:* 
135,162 

 
ZN:* 

12,14,197.278 
 

12 56,59,98,170,279 

T1023s3 
 

LEU ligand: 
192,200,223,230,231 

Structure cancelled by organisers    
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GDP ligand: 

49,50,51,52,53,54,55,56,78,137,190,191,19
3,194,225,226,227 

 
RC ligand: 

68,262,278,322,324,338 
 

ZN ligand: 
109,110 

*no structure released by CASP13 organisers. Predictions are made against the PDB file  
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A comparison of the MCC, BDT and TM-scores for the targets are shown in Figure 3.4. As 

can be seen from the figure , the targets with the lowest TM-scores (T0953s2 and T1014) 

also has the lower MCC and BDT scores.  

 
 
 

Table 3.10 below lists the MCC and BDT scores for each of the CASP13 targets from 

ascending to descending order by MCC and BDT score. A total of 10 MCC and BDT scores 

could be obtained due to having the same ligands predicted or if not, similar ligand-binding 

site residues thereby inferring a degree of similarity.  

 
Table 3.10. MCC and BDT scores for CASP13 targets  
MCC and BDT scores for CASP13 targets from ascending to descending order of MCC and BDT score  

 
CASP13 target MCC Score BDT Score 

T0974s1 1.0 1.0 

T1009 0.91 0.94 

T0961 0.843 0.903 

T0983 0.715 0.715 

T1016 0.556 0.646 

T1018 
0.522 

0.48 

T0965 
0.12 0.35 

T0953s2 0.11 0.12 

T1003 -0.04 0.06 

T1014 -0.05 0.05 
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Figure 3.23. FunFOLD3 ligand-binding site predictions for CASP13 target T0953s2 (PDB ID 6f45)  
(A) Predicted ligand binding site residues shown as sticks with correctly predicted binding site residues in blue and incorrect 
predictions in red, the predicted ligand 3-O-acetyl-2-acetamido-2-deoxy-alpha-D-galactopyranuronic acid (DJB) shown as 
sphere and coloured yellow. BDT score of 0.11 and MCC score of 0.12 was achieved (B) The observed ligand binding site 
residues shown as sticks for T0953s2 with binding site residues coloured in blue and the correctly predicted ligand imidazole 
(IMD) shown as sphere and coloured yellow  
 
The second predicted CASP13 target and the first which had an observed structure for 

comparison was adhesion tip from organism Salmonella phage vB_SenMS16. As Figure 

3.23 shows, only one correct binding site was predicted. FunFOLD3 predicted DJB as the 

ligand, whereas the biologically relevant ligand identified in the observed structure was IMD 

and is at two locations within the structure. Adhesion tip is classified as a viral protein as part 

of the PDB entry. Cell adhesion is a central mechanism that drives the development of 

multicellular organisms and cells use adhesion to move, communicate and differentiate 

(Mateo et al., 2015). Adhesion tips are of particular importance in phages, as this is how they 

A 

B 
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recognise bacterial hosts to infect.  This has led to their exploitation as bio-tools for bacterial 

remediation and detection (Dunne et al., 2018).  

 

The observed ligand in the predicted ligand is imidazole and imidazole nucleus is found in 

several categories of therapeutic agents such as anti-microbials, anti-virals and anti-cancer 

agents (Shalmali, Ali and Bawa, 2018). In contrast, DJB was the predicted ligand by 

FunFOLD3 for the predicted structure and despite the differences in the predicted ligands, 

an MCC and BDT score 0.12 and 0.11 was achieved, respectively for this target based on 

the one correct prediction.  

 

  
A TM-score of 0.37895 was obtained and this is deemed as random structural similarity and 

this could explain the poor ligand-binding site prediction, as the overall structure was not 

predicted sufficiently  

 

 
 
Figure 3.24. Comparison of TMalign (Zhang & Skolnick, 2005) structures for CASP13 target T0953s2 (PDB ID 6f45)  
The structure in blue is the observed structure for 6f45 and the predicted structure for CASP13 target T0953s in red. A TM-
score of 0.37895 was achieved for protein structures. The score was normalised for PDB ID 6f45 as it is the reference molecule  
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A           B  

 
Figure 3.25. FunFOLD3 ligand-binding site predictions for CASP13 target T0961 (PDB ID 6sd8) 
(A) Predicted ligand binding site residues shown as sticks with correct predictions in blue and incorrect predictions in red, the 
predicted flavin-adenine dinucleotide (FAD) ligand shown as sphere. A BDT score of 0.903 and an MCC score of 0.843 was 
achieved (B) The observed ligand binding site residues shown as sticks with binding site residues coloured in blue the FAD 
ligand is shown as sphere. As a result of CASP13 organisers not releasing an observed structure, this is the structure as per 
the PDB entry for target 
 
 

The seventh predicted CASP13 target is Q6MJ59 and is classified as oxidoreductase as per 

the PDB entry. No observed structure was released by the CASP organisers therefore, no 

comparisons can be made between the predicted and observed structure. However, the 

PDB entry identifies FAD as a ligand which demonstrates that FunFOLD3 has potentially 

correctly identified the ligand. Furthermore, data from the CASP13 competition identifies 

FAD as a cofactor with and without a C10 length acyl-CoA thioester ligand bound (Lepore et 

al., 2019). Additionally, a single FAD molecule binds per monomer in a crevice located at the 

dimer interface. The C10-CoA ligand binds into a long narrow tunnel that runs deep into the 

protein beneath the bound FAD molecule which is similar to other ACAD structures (Lepore 

et al., 2019).   

 

 
Despite CASP organisers not releasing an observed structure, there is a PDB entry 

associated with the CASP target. In order to aid with analysis of the target, FunFOLD3 was 
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analysed against the PDB structure. A high BDT score of 0.903 and MCC score of 0.843 

was achieved for the target. 

 

The TM-score for the predicted structure is 0.96964 showing very good structural alignment 

between the predicted and PDB protein structure. The TM-align superpositon of observed 

and predicted structures is shown in Figure 2.26.  

 

 

 
Figure 3.26. Comparison of TMalign (Zhang & Skolnick, 2005) structures for PDB ID 6sd8 
The structure in blue is the observed structure for PDB ID 6sd8 and the predicted structure for CASP13 target T0961 in red. A 
TM-score of 0.96964 was achieved for protein structures. The score was normalised for PDB ID 6sd8 as it is the reference 
molecule 
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A            
 

 
 

B 
 
 
 

 
 
 
Figure 3.27. FunFOLD3 ligand-binding site predictions for CASP13 target T0974s1 (PDB ID 6tri) 
(A) Predicted ligand binding site residues shown as sticks with correct prediction in blue the predicted DNA ligand shown as 
double helix. A BDT score of 1.0 and an MCC score of 1.0 was achieved, respectively (B) The observed ligand binding site 
residues shown as sticks with binding site residues coloured in blue the sulphate (SO4) ligand is shown as sphere and 
coloured yellow. The actual structure is a dimer, whereas the predicted structure is a homodimer. As a result of CASP13 
organisers not releasing an observed structure, this is the structure as per the PDB entry for target. Only one chain in the 
observed structure was predicted, in line with the predicted structure and the section of the structure released by CASP13 
organisers  
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The twelfth predicted CASP13 is O48503/O48504 and the PDB entry classifies the target as 

a viral protein from organism Lactococcus phage TP901-1 and is a temperate 

bacteriophage. No observed structure was released by CASP13 organisers, therefore 

analysis is made using the structure and information from the PDB database. The PDB entry 

identifies SO4 as a ligand, whereas in comparison FunFOLD3 predicted DNA as a ligand.  

 

Literature information on temperature bacteriophages show that they can enter one of two 

life cycles following infection of a host; the lysogenic or lytic life cycles (Rasmussen et al., 

2020). The choice between the two life cycles is dependent upon regulation of promoters 

and their cognate regulatory proteins within the phage genome. The genetic switch is 

controlled by the CI repressor and the modulator of repression (MOR) antirepressor and 

their interactions with DNA (Rasmussen et al., 2020). Solved crystal structures of MOR in 

complex with the N-terminal of CI, reveals the structural basis of MOR inhibition of CI binding 

to the DNA operator sites (Rasmussen et al., 2020). This information potentially supports the 

prediction of DNA as a ligand by FunFOLD3. Despite the difference in predicted ligand in 

comparison to the observed ligand in the pdb file, a perfect BDT and MCC score was 

obtained of 1.0.  

 

The GO terms predicted by FunFOLD3 are given below in Table 3.11 and the predictions 

are around DNA binding or specific DNA functions. With respect to templates 1lmb 

(transcription/DNA), 1y9q (transcription regulator), 3clc (transcription regulator/DNA), 3jxb 

(transcription regulator) and 3kxa (structural genomics, unknown function). From the 

predicted templates it is clear why DNA has been predicted as a ligand.  

 

 

 

 

Table 3.11. Predicted GO terms for CASP13 target T0974s1 
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The GO terms for CASP13 target T0974s1 (PDB ID 6tri and their associated term domains and function are shown below. 
Bioloigcal process coloured red and molecular function coloured green  

 

GO term GO term domain Function 
GO:0006355 

 
Biological Process  Regulation of transcription, 

DNA-templated 
GO:0046872 

 
Molecular function Metal ion binding  

GO:0043565 
 

Molecular function Sequence-specific DNA 
binding 

GO:0003677 
 

Molecular function DNA binding 

GO:0003700 
 

Molecular function DNA-binding transcription 
factor activity  

 

Figure 3.28 below shows the TM-align superposition of the predicted model and observed 

structure from the PDB entry. A TM align score of  0.79965 was achieved, showing good 

structural homology.  

 

 
Figure 3.28. Comparison of TMalign (Zhang & Skolnick, 2005) structures for predicted T0974s1 and PDB ID 6tri 
The structure in blue is the observed structure for PDB ID 6tri and the predicted structure for CASP13 target T0974s1 is in red . 
A TM-score of 0.79965 was achieved for protein structures. The score was normalised for PDB ID 6tri target as it is the 
reference molecule 

 
 
A           B  
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Figure 3.29. FunFOLD3 ligand-binding site predictions for CASP13 target T0983 (PDB ID 6uk5) 
(A) Predicted ligand binding site residues shown as sticks with incorrect predictions in red and correct predictions in blue, the 
predicted s-adenosyl-l-homocysteine (SAH) ligand shown as sphere and coloured yellow. MCC and BDT score was 0.715 and 
0.715, respectively (B) The observed ligand binding site residues shown as sticks with binding site residues coloured in blue 
the s-adenosylmethionine (SAM) ligand is shown as sphere and coloured yellow. The actual structure is a dimer, whereas the 
predicted structure is a homodimer. As a result of CASP13 organisers not releasing an observed structure, this is the structure 
as per the PDB entry for target.  

 

The sixteenth predicted CASP13 target was Cals10, an amino pentose methyltransferase 

and is a dimer, however, CASP13 organisers released part of the dimer, chain A for 

predictions to be made. Additionally, the PDB  entry identifies SAM, pentaethylene glycol, 

(1PE), di(hydroxyethyl)ether (PEG) and acetate ion (ACT) as potential ligands. However, 

1PE, PEG and ACT were not part of the observed structure so are likely to be solvents used 

in the crystallography process and FunFOLD3 did not identify these ligands as biologically 

relevant.  

 

There is a difference in the predicted and observed ligand, despite a good MCC and BDT 

score. SAM is used by methyltransferase enzymes, such as this protein target, as a donor of 

a methyl group to a diverse range of substrates (Huang et al., 2020). The methyl group is 

directed bonded to the sulphur atom, which is therefore a sulphonium cation (Huang et al., 

2020). Upon donation of the methyl SAM is converted to S-adenosylhomocysteine (SAH), an 

electrically-neutral thioether that is toxic to the cell (Huang et al., 2020). Based on this 
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information, it is fair to assume that the ligands are identical and prediction is based upon the 

donated state of the enzyme.  

 

Figure 3.30 below is of the TM-align superposition of observed and predicted structures with 

the observed structure from the PDB entry for the target. A TM-align score of  0.93352 was 

achieved showing very good structural homology between the predicted and observed 

structure.  

 
 

Figure 3.30. Comparison of TMalign (Zhang & Skolnick, 2005) structures for predicted T0983 and PDB ID 6uk5 
The structure in blue is the observed structure for PDB ID 6uk5 and the predicted structure for CASP13 target T0983 is in red. 
A TM-score of 0.93352 was achieved for protein structures. The score was normalised for PDB ID 6uk5 target as it is the 
reference molecule 
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A       B 

 
Figure 3.31. FunFOLD3 ligand-binding site predictions for CASP13 target T1003 (PDB ID 6hrh) 
(A) Predicted ligand binding site residues shown as sticks with incorrect predictions in red the predicted pyridoxal-5’-phosphate 
(PLP) ligand shown as sphere and coloured yellow. MCC and BDT score was -0.04 and 0.06, respectively (B) The observed 
ligand binding site residues shown as sticks with binding site residues coloured in blue the PLP ligand is shown as sphere and 
coloured yellow.  

 
The twenty-fifth  predicted CASP 13 target is ALAS2, a human erythroid-specific 5’-

aminolevulinate synthase and is classified as an oxidoreductase as per the PDB ID entry. 

The protein is a dimer with two chains and the predicted structure released by the CASP 

organiser was part of the dimer. FunFOLD3 correctly identified the biologically relevant 

ligand, PLP. Despite the correctly predicted ligand the MCC and BDT scores were low, -0.04 

and 0.06, respectively. Additionally, the information as per the PDB entry suggests that the 

ligand is present in two locations in both chains A and B of the molecule. However, the 

predictions from FunFOLD3 on the predicted protein suggest that the ligands are in the 

same location and this was the same for the observed structure. Potentially suggesting that 

the structure is a homodimer, which is further supported in literature (Na et al., 2018).   

 

Available information in literature, identifies the role of ALAS in the biosynthesis of haem. 

Biosynthesis of haem is a complex process that involves multiple stages controlled by 

different enzymes. The first protein in this stage is a pyridoxal 5’-phosphate (PLP)-

dependent homodimeric enzyme, 5-aminolevulinate synthase (ALAS) (Na et al., 2018). In 

eukaryotic ALAS from S.cereivisae, one ALAS subnit contains covalently bound cofactor, 

PLP, whereas the second is PLP-free, (Brown et al., 2018) which is unlike the structures in 
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figure 96. Comparisons of the subunits reveals PLP-couples reordering of the active site and 

of additional regions to achieve the active conformation of the enzyme (Brown et al., 2018).  

 

As ALAS is a member of a large family of enzymes that employ PLP, other members of the 

family are also homodimers with PLP-binding pockets located at the dimer interface (Brown 

et al., 2018).  

 
Figure 3.32 below, shows the TM-align, superposition of observed and predicted structures, 

with the observed structure as released from CASP13 organisers. A TM-align score of  

0.91953 was achieved showing very good structural homology between the predicted and 

observed structure.  

 

 
Figure 3.32. Comparison of TMalign (Zhang & Skolnick, 2005) structures for predicted and observed structure for T1003 
(PDB ID 6hrh) 
The structure in blue is the observed structure for T1003 and the predicted structure is in red. A TM-score of 0.91953 was 
achieved for protein structures. The score was normalised for the observed structure T1003 as it is the reference molecule 
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Table 3.12  below, is a list of the CASP13 targets which have a ligand as predicted by 

FunFOLD3 and where necessary the ligands according to the PDB entry is also listed.  

 

Table 3.12. Comparison of ligands predicted using FunFOLD3 and ligands identified on the PDB 

 
CASP 13 target FunFOLD3 ligand PDB ligand 

T0949  
Oxygen and Copper 

N/A 

T0953s2  
(PDB ID 6f45) 

 

DJB MRD, MPD,IMD and MG 

T0954 
(PDB ID 6cvz) 

 

Lysine and DNA MG 
 

T0955 
(PDB ID 5w9f) 

 

ZN and RNA N/A 

T0957s2 
(PDB ID 6cp8) 

 

SF4 and ALA EPE and GOL 

T0958  
(PDB ID 6btc) 

 

SAH and DNA N/A 

T0961 
(PDB ID 6sd8) 

 

FAD FAD 

T0965 
(PDB ID 6d2v) 

 

NAD NDP, SCN and CL 

T0970 
(PDB ID 6g57) 

 

0FX N/A 

T0972 
 

HEM N/A 

T0973 
(PDB ID 6yfn) 

 

RNA N/A 

T0974s1 
(PDB ID 6tri) 

DNA SO4 

 
T0975 

DNA and SF4 N/A 

 
T0980s1  

(PDB ID 6gnx) 

PRO and SER N/A 

 
T0980s2 

(PDB ID 6gnx) 

SAH N/A 

 
T0983 

SAH SAM, 1PE, PEG and ACT 
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(PDB ID 6uk5) 
 

T0985 BGC N/A 

T0986s2 
(PDB ID 6d7y) 

DAL N/A 

 
T0992 

CA N/A 

 
T0993s1 

(PDB ID 6xbd) 

ADP PEF 

 
T0994 

 

CAZ and HIS N/A 

T0995 CDT N/A 

T0997 DGL N/A 

T1001 BLA N/A 

T1003 
(PDB ID 6hrh) 

PLP PLP 

 
T1008 

(PDB ID 6msp) 

FMN N/A 

 
T1009  

(PDB ID 6dru) 

GLC NAG, XYS and GOL 

 
T1012 

ACO N/A 

 
T1013 

CLR, MPG, RET and LEU N/A 

 
T1014 

(PDB ID 6qrj) 

ADP ANP and MG 

 
T1016 

(PDB ID 6e4b) 

PO4 1PE, GOL and CL 

 
T1017 

ZN N/A  

 
T1018  

(PDB ID 6n91)  

ZN DCF, CXS, SO4, PO4, 
GOL, ZN, EDO, FMT and 

NA 
 

T1023s3  
 

LEU, GDP, RNA and ZN N/A 
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3.4 Further discussion and summary of CASP11, CASP12 and CASP13 

 

In this chapter FunFOLD3 was used to predict the ligands and ligand-binding site residues 

for CASP11, CASP12 and CASP13. In CASP11, a total of nine targets had ligand-binding 

sites and ligands predicted. The MCC score ranged from 0.877 to -0.05 and BDT score 

ranged from 0.853 to 0.035 this gave an average of 0.417 for MCC and a BDT score of 0.51 

based on eight targets and the highest MCC and BDT achieved if multiple ligands were not 

predicted. The ninth target was excluded from the MCC and BDT score due to different 

predicted ligands and sharing no correct ligand-binding site residues between the observed 

and predicted proteins.   

 

In CASP12, predictions were more complicated to analyse due to either observed structures 

not being released by CASP12 organisers and/or no PDB ID released for the targets. 

Furthermore, predictions were somewhat poorer, with only one target; T0916 (PDB ID 5tj4) 

having correctly predicted some of the same residues as in the observed structures. This 

was despite differences in the predicted (NAD) and observed ligand (GLC). None of the 

predicted and observed ligands matched for the targets. There was an increase in the 

number of targets which were predicted and a total of 12 targets had predictions. 

 

CASP13 showed the biggest increased in predictions with a total of 34 targets, as with 

CASP12 some of the targets were harder to analyse due to not having an observed 

structure, however if there was a PDB ID associated then the file from the Protein Databank 

database could be used in the analysis. This CASP also saw a diverse range of ligands 

predicted from metal ions such as zinc to larger more complex molecules such as DNA/RNA 

molecules, highlighting the versatility of FunFOLD3 for the first time. Although, in the targets 

which predicted RNA/DNA (T0954, T0955, T0958, T0973, T0974s1, T0975, T1023s3) the 

observed structures did not have RNA/DNA. Only two targets; T0954 and T0974s1 had 
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ligands with MG and SO4, respectively. Out of the 34 targets only two target had a correct 

prediction; T0961 (PDB ID 6sd8)  and T1018 (PDB ID 6msp) with other targets arguably 

having the same ligand just in different states due to involvement in reactions (T0965, T0983 

and T1014). Therefore, the “state” in which proteins are predicted needs to be considered, 

before an reaction or after, as this can clearly impact on the ligands predicted. For CASP13 

the MCC score ranged from 1.0 to -0.05 and BDT score ranged from 1.0 to 0.05. Thus giving 

an average of  0.4686 and 0.5264 for MCC and BDT, respectively. This was based on ten 

targets with three targets having the same ligands (T0961, T1003 and T1018) and two 

targets having potentially the same ligands in a different state (T0983 and T1014). 

Interestingly, the target with the perfect score; T0974s1 did not have the same ligand with 

DNA being predicted and sulphate identified as the observed ligand.  

 

For eight out of the nine CASP11 targets at least one of the ligands compared to the ligands 

in the PDB entry were identified, the exception was T0783 where none of the predicted 

ligands matched those identified on PDB. For some CASP11 targets (T0798, T0845 and 

T0849), all the ligands were identified. However, it is worth considering whether all ligands in 

PDB are biologically relevant, considering that the basis for predicting ligands with 

FunFOLD3 is whether or not the ligands are biologically relevant. As seen in Table 2.4, there 

was a difference in the predictions of ligands by FunFOLD3 and those in PDB, for example 

CASP11 targets T0783, T0807, T0813, T0819 and T0845.  

 

For CASP11 target T0783, EDO is listed as a ligand and has the potential to be a ligand as it 

is an alcohol and widely used in antifreeze formulations. However, it is also used as a 

solvent so could potentially be an artifact and is not a biologically relevant ligand. The same 

can be of CASP11 target T0786 with PDB having PG4 as a ligand, T0807 with acetate 

ligand, T0819 with PE4, PGE, PEG and GOL and T0845 with 7PE and ACT. Glycerol (GOL) 

is quite interesting as with BioLiP, information in literature is used to filter out biologically 
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irrelevant ligands, therefore FunFOLD3 will only predict ligands which are biologically 

relevant due to the filtering process. If a ligand is in the artifact list, the simplest way is to 

treat it as biologically irrelevant and discard it (Yang, Roy and Zhang, 2013). However, there 

is a flaw with this method as it can mean some ligands are missed and will be false 

negatives and these ligands could be biologically relevant. Glycerol is one of the most 

frequently used crystallisation additives and it is therefore regarded as biologically irrelevant 

by many existing databases (Yang, Roy and Zhang, 2013). However, glycerol can have a 

biological role in some proteins. An example being glycerol binds to the protein enzyme diol 

dehydratase (PDB ID: 3auj) with a biological role as glycerol is bound to the substrate 

binding site in the (β/α)8 or TIM barrel of the diol dehydratase α subunit (Yamanishi et al., 

2012). This ultimately led to glycerol being added as a biologically relevant ligand (Yang, 

Roy and Zhang, 2013).  

 

In four of the highest scored predictions, the ligands were quite large. For example, for the 

CASP 11 T0819 prediction which has a BDT and MCC score of 0.853 and 0.877, 

respectively, the ligand was PLP, which has a molecular weight of 247 g/mol. For the 

CASP11 T0807 prediction, which has a BDT/MCC score of 0.849 and 0.771 respectively, 

the identified ligand was NAP which has a molecular weight of 743.9 g/mol. The prediction 

for CASP11 T0854, with a BDT and MCC score of 0.845 and 0.745 respectively, is the 

exception to this rule as the identified ligand is magnesium with a smaller molecular weight 

of 24.4 g/mol. Finally, the CASP11 T0798 prediction had a BDT/MCC score of 0.797 and 

0.753, respectively the ligand was GDP with a molecular weight of 443.2 g/mol.  

 

A finding with some of the CASP11 targets (T0807 and T0849) was extending the ligand-

binding residue sites to potentially incorporate MSE. Upon inspection of the structure files for 

both the predicted and observed CASP11 targets, the MSE residues are not present in the 

predicted files, residues are MET, and in comparison with the observed structure files MSE 
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residues have remained. Therefore, this only provides a possible explanation as to why the 

ligand binding site residues were over-extended (refer to Appendix 2: Predicted and 

observed structure files for CASP11 target T0807).  This is potentially a bug within the 

method and can be recoded so that MSE residues in the templates, which are actually METs 

and part of the sequence, are not accidentally included as ligands.   

 

Identification of the ligands that bind to a protein is important for understanding the function 

of the protein. For example, the CASP11 target protein T0849 has only one associated 

ligand, showing the protein has high specificity and selectivity. More importantly, the ligand 

that binds to this protein is glutathione; an important molecule for the phase II metabolism of 

xenobiotics (Ekici, Paetzel and Dalbey, 2008). On this basis, it is rational to assume that the 

protein is glutathione-S-transferase. These results suggest, that the FunFOLD3 server is 

better at predicting ligands, which have large molecular weights. An explanation could be 

that the ligand binding residues that cover a large part of the protein and are much more 

likely to be contained in a cluster. A universal finding, regardless of ligand size, is that there 

are usually a few key residues involved and more importantly, it is paramount to identify 

these key sites in order to fully understand function (The Protein Prediction Center, 2014) 

This pattern was not seen with CASP13. The prediction for T1009 had a MCC and BDT 

score of 0.91 and 0.94, respectively, the predicted ligand GLC has a molecular weight of 

180.16 g/mol and in comparison the result for T1014 had a MCC and BDT score of -0.05 

and 0.05, respectively and the predicted ligand ADP had a molecular weight of 427.20 g/mol. 

 

The average TM-align scored obtained for all nine CASP 11 targets was 0.76, suggesting 

that IntFOLD is able to select protein structures towards the high structural similarity based 

on the top model being used for predictions. However, the average MCC and BDT score of 

0.459 and 0.51, respectively, suggests that further refinement of the server is needed in 

order to better predict ligand-binding sites. Despite having highly similar structures to the 
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observed protein models, the ligands  contacting residues did not follow the same high level 

of prediction, this is because there is a difference between predicting the tertiary structure of 

a protein, compared to the active site which is very localised. A novice could assume that 

having highly similar structures of the predicted protein model to the observed model, would 

automatically translate to ligand residues also following the same high level of prediction. 

However, it is worth considering convergent evolution seen in serine proteases (Dukka, 

2013). Proteases play a variety of roles within all living cells and are typically grouped into 

four mechanistic classes: cysteine, serine proteases, metallo and aspartic proteases. The 

best known class is the serine protease class which uses the classical Ser/His/Asp catalytic 

triad mechanism. Clans are formed from the active site arrangement and members of the 

same clan use different active site architectures, indicating that the tertiary structure is not 

always related to the active site configuration (Ekici, Paetzel and Dalbey, 2008). This 

potentially allows for varying activity in different cellular environments. Subtilisin is an 

example of a protease which like chymotrypsin and trypsin utilises a Ser/His/Asp triad but 

has no sequence similarity to chymotrypsin-like proteases. Thus demonstrating, quite 

excellently convergent evolution; the folds of these proteases are completely different 

although they both converged in a similar Ser/His/Asp mechanism to carry out proteolysis 

(Ekici, Paetzel and Dalbey, 2008).  

 

An additional observation from CASP11 is the difference between the observed and 

predicted residue numbers. For CASP11 targets where there was no issues with ligand-

binding prediction based on the MCC and BDT score, the difference in residues appears to 

not be an issue. However, for some CASP11 targets such as T0813, the extra residues were 

THR308, THR309, THR310, THR311, LEU312, TYR313, LEU314 and LEU315, an 

observation is these residues are located in the flexible loop of the protein. The inability of 

IntFOLD3 to correctly fold this region and thus for FunFOLD3 to identify it as a ligand could 
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have led to the low MCC and BDT score (0.08 and 0.194, respectively) associated with this 

target.  

 

In comparison to previous years, the format of the CASP11 experiment, participation 

statistics and number of targets are very similar. Almost 60,000 models on 100 prediction 

targets were collected from 207 modelling groups which represented 100 research labs 

across the globe (Feller & Lewitzky, 2012). In a publication about the progress and new 

directions in CASP11(Moult et al., 2016), the authors state the most exciting result in 

CASP11 was the generation of an accurate three dimensional model of a large (256 residue) 

protein. The authors believe this was due to more accurate prediction of contacts between 

protein residues (Moult et al., 2016). This was CASP target T0806 (PDB ID 5caj). As this 

protein did not bind any ligands, it did not form part of the analysis.    

 

CASP12 saw an apparent change in ligand-binding site predictions compared to CASP11. In 

CASP11, all of the CASP targets with ligands had an associated PDB ID, that meant there 

was a clear method of analysing results. However, there was a shift in CASP12 where six of 

the twelve targets had an associated PDB ID. This did make analysis of the results quite 

limiting due to sparse data, as some proteins had limited annotations. This suggests there 

could potentially be a shift in elucidating the importance of ligand-binding site from the CASP 

organisers. By a way of example, in CASP11 the aim of ligand-binding site predictions could 

be seen as “bench-marking” as results could be confirmed with data available from PDB or 

BioLiP, allowing participating groups to assess the quality of predictions with relative ease.  

In CASP12 with six targets not having associated PDB IDs, at this stage, there is currently – 

without further investigation – there is no definite way of determining if this is correct. Rather 

than this being a hurdle, it means there is a window of opportunity to start investigating 

minimal/low annotation proteins. CASP12 targets T0899, T0901, T0905 and T0907 

illustrates this perfectly; there are no data on whether the predicted MG ligand is correct or 

indeed the ligand-binding residues. From a research perspective, this is intriguing as it 
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potentially means that new information has been gathered on this protein and could be a 

contribution to available data. Thus, it would need to be supported by the use of other 

computational methods such as protein-ligand docking experiments.  

 

As discussed previously, FunFOLD3 predicts ligands based on the concept that protein 

structure superposition of distantly related templates to a modelled protein can aid in 

identification of ligand binding sites (Moult et al., 2016). Output files following a FunFOLD3 

prediction include, but are not limited to, a FN file and ligand-binding residue locations in a 

PDB file. The FN prediction file provides information, where applicable on GO terms, EC 

numbers, ligand-binding residues and predicted ligands. For proteins with no PDB IDs, 

information on related proteins could prove useful in determining the protein’s function. This 

was of particular interest in CASP12 due to the lack of PDB IDs associated with targets and 

also with CASP13 for the same reason.  In order to determine further information on the low 

annotation proteins, a Pfam search was performed. Pfam is a database of protein families, 

where families are sets of protein regions that share a significant degree of sequence 

similarity, thereby suggesting homology (Roche, Tetchner and McGuffin, 2011). Pfam 

contains two types of families: high quality, manually curated Pfam-A families and 

automatically generated Pfam-B families . Members of the same family are expected to 

share a common evolutionary history and thus at least some functional aspect. However, 

Pfam does stress that homology is no guarantee of functional similarity and transfer of 

functional annotation based solely on family membership should always be undertaken with 

caution (Punta et al., 2012). On the other hand, additional data from Pfam, such as 

conservation of common domain architectures can increase confidence in a given functional 

hypothesis (Punta et al., 2012). Six CASP12 targets with little/no annotation had a Pfam 

search performed and no information was found for four of the targets;  T0899, T0901, 

T0905 and T0919. One of the targets; T0911 was identified as being part of a major 

facilitator family which ties in with the description provide by the CASP12 assessors (D-
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galactonate transport) and a GO term prediction related to transmembrane transporter 

(GO:0055085). CASP12 target T0916 was identified as gasdermin pore forming domain and 

is aligned with the CASP12 description of gasdermin. The Pfam entry for this protein states 

the precise function is unknown, however it is thought that this protein plays a role as a 

secretory or metabolic product involved in the secretory pathway and includes gasmerdin 

amongst non-syndromic hearing impairment protein 5 (DFNA5) and pejvakin. The 

information from Pfam ties in with the information from the GO term prediction by 

FunFOLD3, as three of the 15 predictions related to metabolic process (GO:0006004, 

GO:0005975, GO:0051143). The information from Pfam has not provided ay additional 

information which can aid in determining function of the poorly annotated proteins in the 

CASP12 competition but did slow a link between the results from Pfam and FunFOLD3 GO 

term prediction albeit, quite weak. As a result of Pfam not providing any further information 

into the function of proteins, it will no longer be used as part of an analysis or summary but 

has been mentioned in this section to illustrate findings and why no further reference is 

required.  

 

In contrast to CASP11, where only one target (CASP11 target T0783) had predicted ligands 

which did not match the PDB ligands. For the CASP12 predictions, all of the predicted 

ligands, were  not associated with the protein’s PDB entry.  This potentially suggests a flaw 

with the predictions or that not all the ligands associated with the proteins as per the PDB 

entry are biologically relevant.  

 

In CASP13, 75 proteins and protein complexes were suggested as modelling targets by 36 

structure determination groups from 14 countries.(Lepore et al., 2019) As previously alluded, 

some targets had their structures cancelled, this amounted to a total of eight. This was due 

to: lack of structure by the time of the assessment or release of relevant structural 

information before the end of the time of assessment, or release of relevant structural 
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information before the end of the target prediction session (Lepore et al., 2019). Of the 

remaining 67 entries, 58 were solved by X-ray crystallography, seven with cryo-EM and two 

by NMR,(Lepore et al., 2019) of which FunFOLD3 identified 34 as containing ligands. T0958 

(PDB ID 6btc) was called LP1413, as it was a little protein (96 amino acids) and annotated 

as containing DUF (domain of unknown function 1413) (Lepore et al., 2019). Whilst no 

enzymatic activities in the purified protein was found, it does bind single-stranded DNA with 

high affinity (Lepore et al., 2019) and this somewhat supports the prediction by FunFOLD3, 

despite both the observed structure and the PDB entry not supporting this prediction. 

Furthermore, the protein adopts a winged helix-turn-helix fold, so it would be wise to guess 

that it binds double- rather than single-stranded DNA binding as its function (Lepore et al., 

2019) and could be why FunFOLD3 predicted double-stranded DNA. T0961 correctly 

identified the observed ligand with the single FAD ligand binding per monomer in a crevice 

located in the dimer interface (Lepore et al., 2019). 

 

CASP13 brought a diverse range of ligand-binding site predictions and due to lack of PDB 

IDs being associated with the targets, this meant we had to use the predicted GO terms by 

FunFOLD3, in conjugation with the predicted ligand information contained within UniProtKB 

in order to provide insights into the potential function of the protein. An example of this is 

CASP13 target T0973 (PDB ID 6fyn), where the predicted ligand was RNA and the available 

information in literature supports this as the protein encapsulates ssRNA. Additionally, and 

unsurprisingly, RNA binding was a GO term that was predicted. Thus, using information 

potentially provided insight into the function of this target. Despite alignment across several 

different literature resources the PDB ID entry identified calcium as a ligand. The most 

interesting target in terms of prediction with no available PDB ID is T0975. FunFOLD3 

identified two DNA ligands and an iron/sulphur cluster. The UniProtKB entry and the ligands 

align perfectly with the function being ssDNA bidirectional exonuclease and FunFOLD3 

predicted DNA in two different locations, with the protein exhibiting both 5’-3’ and 3’-5’ 
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activities which could be why two different DNA locations were predicted. Additionally, the 

iron/sulphur cluster also has a key role in structural linking to create a cavity that encircles 

the ssDNA. Currently, as there is no PDB ID associated with this target and nor was an 

observed structure released it is difficult to confirm these findings. However, a target such as 

this would be an ideal opportunity to explore further with support from crystallisation 

experiments. Targets such as this, potentially highlight how in silico modelling is useful for 

determining the ligands and ultimately function of a protein before exploration and 

confirmation with more expensive crystallisation techniques.  

 

Another interesting observation was the prediction of ligands in different states due to 

involvement with reactions. For example, CASP13 targets T0965 (PDB ID 6d2v) and T0983 

(PDB ID 6uk5) have predicted the correct ligand predicted, however both are in the reduced 

state following a reaction. This highlights another consideration in protein-ligand prediction, 

the structure of a protein can change following a reaction and so can a ligand, although it will 

be the same ligand but in a different state and therefore will not be ruled out.  

 

Several CASP13 targets were discussed in a publication and has provided further insight 

and understanding into some of the CASP13 predictions. T0953 (PDB ID 6cvz) was 

predicted to have DNA as a ligand with magnesium being the observed ligand. Residues 

involved in DNA damage repair are not part of distinct residues which were identified (467-

477, 594-606, and 656-664) in the disordered loops in the top and bottom faces (Lepore et 

al., 2019). TRP-543 and ILE-639 bind RPA32 and the QKMDF consensus motif that 

mediates the interaction with proliferating cell nuclear antigen during DNA replication 

(Lepore et al., 2019). This could provide one explanation as to why DNA was predicted by 

FunFOLD3. 
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As with CASP12, a Pfam search was conducted on the eleven targets with no PDB ID 

associated and no/little annotation as per the UniProtKB entry, despite the mixed results 

obtained with the CASP12 targets. For target T0949 there were no significant matches but 

there were four insignificant matches. Two related to Cupredoxin_1 and two for DUF5060. 

Cupredoxin-like fold consists of beta-sandwich with seven strands in two beta-sheets in a 

Greek-key beta-barrel and contains copper bound within the structure. This has similarities 

with the predicted structure as it contains seven beta-sheets but also one alpha-helix and 

predicted copper in the structure. For DUF5060 no similarities were seen with the target (El-

Gebali et al., 2019). T0972 has two insignificant matches, one of which is DNA_pol_B_3 and 

is DNA polymerase family B viral insert (El-Gebali et al., 2019) showing similarity with the 

CASP13 target as DNA was predicted by FunFOLD3.  

 

T0985 had a significant match related to Glyco_hyfdro_36 which is the exact same protein 

which UniProtKB identifies the protein additionally several PDB entries are associated with 

the Pfam entry of which seven were identified by FunFOLD3 as templates containing 

biologically relevant ligands (1v7v, 1v7w, 2cqt, 3act, 3qde, 3qfy and 5h3z) (El-Gebali et al., 

2019). T0994 had eight matches, two of which were significant and six were insignificant. 

The significant matches were peptidase_M56 and described as a BlaR1 peptidase M56 and 

transpeptidase which is described as penicillin binding protein transpeptidase. The 

description of BlaR1 peptidase M56 is the production of beta-lactamase and penicillin-

binding protein 2a is regulated by a signal-transducing integral membrane protein and a 

transcriptional repressor. The signal transduced is a fusion protein with penicillin-binding and 

zinc metalloprotease domains. None of the associated PDB entries were templates that 

contained biologically relevant ligands (El-Gebali et al., 2019). In comparison, the penicillin 

binding protein transpeptidase domain has seven of the templates which FunFOLD3 

predicted with biologically relevant ligands associated (1ax1, 1xkz, 2iwb, 3q81, 3vma, 4jf4 

and 5e2f). The entry also states that the active site serine (residue 337) is conserved in all 
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members of this family (El-Gebali et al., 2019). Of note, this residues was not predicted as a 

ligand-binding residues by FunFOLD3.  

 

T0995 had one significant match, CN_hydrolase which is a carbon-nitrogen hydrolase and 

does appear to be quite different to the UniProtKB entry which identified the protein as 

cyanide dehydratase however, two of the templates identified as having ligands by 

FunFOLD3 (1ems and 1uf5) are also associated with the Pfam entry (El-Gebali et al., 2019).  

 

T0997 has a significant match with YkuD_2 which is a L,D-transpeptidase catalytic domain 

however no information is provided in the entry (El-Gebali et al., 2019). T1012 had a 

significant match with Acetyltransf_1 with a description of acetyltransferase (GNAT) family 

and information contained on the InterPro entry states that the n-acetyltransferases are 

enzymes that use acetyl coenzyme A (CoA) (El-Gebali et al., 2019) and this matches the 

ligand predicted by FunFOLD3 and the molecular function in the entry GO:0008080 (N-

acetyltransferase activity) matches one of the GO terms predicted by FunFOLD3.  

 

T1013 was classified as an unknown protein by CASP13 and on Pfam two significant 

matches were identified 7tm_1 and Glyco_hydro_11. The Pfam entry for 7tm_1 expands on 

the protein and that it is a seven transmembrane receptor (rhodopsin family) and contains 

amongst other G-protein-coupled receptors (GCPRs), members of the opsin family, which 

have been considered to be typical members of the rhodopsin superfamily (El-Gebali et al., 

2019). The GO terms associated with the InterPro entry are GO:0016021 (integral 

component of membrane), GO:0004930 (G protein-coupled receptor activity) and 

GO:0007186 (G protein-coupled receptor signalling pathway) all of which were predicted by 

FunFOLD3 (El-Gebali et al., 2019).  
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T1017s1 had a significant Pfam match with DUF596 and is described as a protein of 

unknown function and there is no further information available, (El-Gebali et al., 2019) which 

supports the information as per the UniProtKB entry. There were no matches were found for 

T0992 and T1001 so these targets have not been discussed.  

 

The average TM-score obtained for the CASP13 targets was 0.643 across 24 targets which 

had an observed structure from CASP13 or the structure from the PDB entry. This was lower 

than the TM-align score obtained for CASP11.  However, this score did not seem to impact 

the average MCC and BDT scores which were slightly higher than those obtained for 

CASP11. This is most likely aided by a perfect prediction for T0974s1, despite a different 

ligand being predicted.  

 

When comparing the observed and predicted structures using TM-align, there appears to be 

the greatest visible difference in the flexible loops of the predicted structure (e.g. CASP13 

target T0953s2 see Figure 3.23). Flexible loops are less ordered and ideally situated to form 

binding sites for other molecules. This is well demonstrated in folds on immunoglobulin 

antibodies (Rang et al., 2015), these loops fold around each of the antigen molecules and 

this is made easier by the flexibility of the loops (Alberts et al., 2002). When determining 

protein structure, it is important remember that a protein’s structure is not static but 

undergoes conformational changes to undergo ligand-binding and this is worth noting when 

a protein binds to a ligand it can undergo conformational changes (Alberts et al., 2002). Loop 

regions of proteins occur in inter-domain segments of otherwise well-folded where they can 

serve multiple functions: short loop sometimes feature as mere linkers or may also provide 

the required flexibility for the movement of the neighbouring domains (linker loops) (Feller & 

Lewitzky, 2012). Other loops serve as linker regions but also allow proteins to interact intra-

molecularly when undergoing shape changes (intramolecular docking loops). Short loops 

localised within a well-folded protein domain can also work together to form binding pockets 
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for proteins and a range of other biomolecules (binding pocket loops) (Feller & Lewitzky, 

2012). Hence, this provides a possible reason as to why the flexible portions of the predicted 

proteins contain additional residues and can be difficult to order with the rest of proteins 

(Feller & Lewitzky, 2012).  

 

CASP13 organisers concluded that accurate prediction of loops is still a challenging task 

(Lepore et al., 2019). Due to flexible loops often being involved in protein-protein 

interactions, their incorrect prediction can compromise the accuracy of the interacting 

surface and overall structure of the complex (Lepore et al., 2019).   

 

A  key question in protein modelling is whether a structure is accurate enough to answer a 

specific biological question. An example of this can be seen with the CASP11 target T0783 

(PDB ID 4cvh). This target had the lowest TM-score of 0.54529 within this CASP and despite 

the low structural similarity and potentially all the biologically relevant ligands were predicted. 

Thus, part of the biological question; “what are the biologically relevant ligands?”, was 

answered. This question becomes of paramount importance in drug development (Moult et 

al., 2016). 

 

The results across the three CASP experiments highlight the wide range of ligands that the 

FunFOLD3 server can predict; ranging from simple metal ions such as magnesium and 

sodium, to larger more complex molecules, such as glutathione. For the total 57 protein 

targets that had ligands predicted across the three CASP competitions, 15 (27%) of the 

targets had at least one metal ion predicted. Metalloproteins make up some 30% of proteins 

in known genomes (Hasnain, 2004). Metalloproteins are a special class of proteins that 

utilise the unique properties of metal atoms in conjugation with the macromolecular 

assembly to perform life-sustaining processes (Hasnain, 2004). Metals may play structural 

roles (e.g. zinc in zinc-finger domains) or enzymatic roles (e.g. zinc in carbonic anhydrase). 
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Metal coordination has been found to both stabilise and destabilise the folded states of their 

corresponding proteins in vitro (Palm-Espling, Niemiec and Wittung-Stafshede, 2012). 

Therefore, the ability of FunFOLD3 to predict metal ions should not be underestimated and 

can also provide insights to the function of a protein.  

 

In conclusion, the results from the CASP11, CASP12 and CASP13 analyses suggest the 

FunFOLD3 server is useful for predicting binding site residues. Additionally, the results also 

support the use of FunFOLD3 for determining ligands.  Based on the ligand prediction 

results, FunFOLD3 has potentially assisted in determining the relevance of ligands as per 

the PDB entry for proteins. If knowledge of protein-ligand binding was relied upon solely 

using PDB it could potentially lead to misunderstanding about the function of a protein, 

however that it not to say to completely rule out the information on PDB but to be cautious in 

relying on this information alone. Therefore, FunFOLD3 has potentially contributed to 

knowledge of proteins to the wider scientific community. However, further validation is 

necessary and this can be obtained from protein-docking and wet lab experiments. 

 

GO terms were also reported for CASP targets where no observed structure was available 

or where there were discrepancies between a predicted and observed ligand. This was 

helpful in order to provide understanding of the protein’s function, in particular when no 

observed structure was available. The benchmarking of GO terms will be explored in 

Chapter 5.  

 

This chapter has focused on functional predictions by FunFOLD3 across three CASP 

competitions (CASP11, CASP12 and CASP13). Chapter 4 will analyse predictions 

specifically from IntFOLD4. The FunFOLD3 component of IntFOLD4 outputs ligand-binding 

predictions and as with FunFOLD3, the purpose of the next chapter will be to objectively 
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compare the observed predictions against observed proteins and potentially provide insight 

into the strengths and weaknesses of the predictions.    
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4.1 Background to IntFOLD4  

 

As mentioned in Chapter 1, the IntFOLD server is a fully integrated pipeline incorporating the 

latest methods for tertiary structure prediction, domain boundary prediction, prediction of 

intrinsically disordered regions, prediction of protein-ligand interactions and the global and 

local quality assessment of predicted models of proteins (McGuffin et al., 2019).  

 

Tertiary structure prediction using IntFOLD-TS produces full atom models and are 

subsequently ranked using the ModFOLDclust model quality assessment method. Disorder 

prediction is performed by DISOclust and depends on the ModFOLDclust QMODEL output in 

order to identify the regions of high variability occurring in 3D models generated for the 

nFOLD stack. Domain prediction is performed using DomFOLD and utilises the PDP method 

in order to identify structural domains in the top model obtained from the IntFOLD-TS 

method. Function prediction using FunFOLD is the basis of this thesis and is utilised to 

produce ligand-binding site residue predictions. The FunFOLD algorithm works by 

performing model-to-template superpositions of the top ranked IntFOLD 3D model and 

related templates with bound ligands to identify putative contacting residues (Roche et al., 

2011).  

 

The methods within the IntFOLD server are interdependent, with output from one algorithm 

becoming the input for another (Roche et al., 2011). The outputs from IntFOLD have been 

tested in the community wide experiment on the critical assessment of methods for protein 

structure prediction (Roche et al., 2011).  

 

IntFOLD is not the only server in existence which is able to generate results using the above 

mentioned methods. Distill is a suite of servers for the prediction of protein structures and 

features include, secondary structure, relative solvent accessibility, contact density, 
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backbone structural motifs, residue contact maps at 6, 8 and 12 Ångstroms and course 

protein topology (Roche et al., 2011).  At the start of the development of the IntFOLD server 

was unique as it provided an integrated underlying methodology, unified graphical output 

and a single point for submission (Baú et al., 2006). Currently, other methods have also 

applied protein model quality assessment such as, MULTICOM (Cao, Wang and Cheng, 

2014)which encompasses four automated methods (MULTICOM-REFINE, MULTICOM-

CLUSTER, MULTICOM-NOVEL and MULTICOM-CONSTRUCT) and was developed during 

CASP10 (Roche et al., 2011). The foundation to all the methods in the server is ModFOLD, 

a model quality assessment tools, which us used to rank all models in terms of their global 

quality, as well as providing estimates of local quality as a distance in Ångstroms (Cao, 

Wang and Cheng, 2014).   

 

The only requirement for input is a protein sequence in single letter code. The results for 

each submission to the IntFOLD server is then formatted into a single table which 

summarises all the prediction data graphically through thumbnail images of plots and 

annotated 3D models. The sections consist of; top five 3D models, disorder prediction, 

domain boundary prediction, binding site prediction and full model and quality assessment 

results. Figure 4.1 is an example of the output for CASP13 target T0971
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Figure 4.1. IntFOLD results for CASP13 target T0971 
(A) Graphical output from the main results page showing (from top to bottom): 1. The table with the top 5 selected 3D models 
and scores (table truncated here to fit); 2. The prediction of natively unstructured/disordered regions; 3. The predicted structural 
domain boundaries; 4. The ligand binding site prediction; 5. The full model quality rankings for all generated models (table 
truncated here to fit). The arrows point to additional pages that are linked to when users click on images/buttons on the main 
page. (B) Clicking the button titled ‘View model in 3D and download’ leads to dynamically generated pages showing interactive 
views of the model, and structural superpositions of the model with relevant template/s, which can be manipulated in 3D using 
the JSmol/HTML5 framework (http://www.jmol.org/) and/or downloaded for local viewing. (C) Clicking the button titled ‘Refine 
model using ReFOLD’ submits the 3D model to the ReFOLD service for refinement guided by accurate quality estimates. (D) 
Clicking on the image of the ligand binding site prediction links to a dynamically generated page that provides numerous 
options for interactively viewing the likely protein–ligand interactions in 3D with JSmol. Figure taken from McGuffin et al., 2019 



Chapter 4. Anaylsis of IntFOLD4 from CASP12  

 
 

Page 183 of 645 

4.1.1 Analysis of biological and functional relevance of CASP12 predictions from IntFOLD4  

 
The CASP12 assessors performed a systematic assessment to compare the ensembles of 

predictions of a target protein from different modelling algorithms to quantify the utility of 

perditions for inferring or recognising function (Roche et al., 2011). The question which was 

addressed was: to what extent do the CASP predictions accurately provide function 

information – compared to experimental structures. Regions or sites for assessment were 

based on experimentalists motivation to solve structures and ultimately help define the term 

“protein function”. The defined regions/sites for assessment were separated into three 

categories of functional sites: (1) Holo sites: pockets based on observed ligand-binding in 

experimental structures (2) Apo sites: sites based on (a) critical residues provided by 

experimental authors or (b) known motifs relevant to ligand or substrate binding and/or (c) 

site finding algorithms and (3) critical patches: patches centered at the key residues provided 

by experimental authors, including functionally critical residues, loops and mutations (Liu et 

al., 2018)  

 

The assessors evaluated the physical features of the predicted structure sites and the 

degree to which they share similarity with experimental structure sites (Liu et al., 2018).   

 

Aim: The aim of this section is to analyse the FunFOLD3 predictions from the IntFOLD4 

server used in the CASP12 competition in each of the biologically relevant category and 

determine by critical analysis why the IntFOLD4 server was ranked highly in this category. 
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4.2 Materials & Methods  

4.2.1 Materials  

As with functional prediction in CASP11, CASP12 and CASP13, amino acid sequences for the prediction of biologically relevance were 

provided by the CASP12 organisers and are double-blinded, so neither the predictors nor assessors are aware of the structure at the time of 

prediction. Amino acid sequences failing into holo, apo or motif, key residues and mutation will form part of the analysis in this section and are 

presented in Table 4.1. The amino acid sequences below were deemed to be of significance and the targets were published by the CASP 

committee, hence why the CASP12 targets may differ from those presented in Chapter 3 (Liu et al., 2018).  

Table 4.1. Amino acid sequences for biologically relevant categories in CASP12  

CASP 12  
target ID 

Amino acid sequence 

T0860 VSYSDGHFLTKSGGVINFRKTRVTSITITILGNYGLRVVNGELQNTPLTFKGADFKSSTLKDELLIPLEGAVQLNTAPSTALCIFITTDHVYRELCMMQFLTDVDKTPFLVVLRSESKHETI
QYMHIVTVHPFLSLT 

 
T0861 

 

 
MGKIFEDNSLTIGHTPLVRLNRIGNGRILAKVESRNPSFSVKCRIGANMIWDAEKRGVLKPGVELVEPTSGNTGIALAYVAAARGYKLTLTMPETMSIERRKLLKALGANLVLTEGAKG
MKGAIQKAEEIVASNPEKYLLLQQFSNPANPEIHEKTTGPEIWEDTDGQVDVFIAGVGTGGTLTGVSRYIKGTKGKTDLISVAVEPTDSPVIAQALAGEEIKPGPHKIQGIGAGFIPANLD
LKLVDKVIGITNEEAISTARRLMEEEGILAGISSGAAVAAALKLQEDESFTNKNIVVILPSSGERYLSTALFADLFTEKELQQ 

 
T0863 

 

MSAETVNNYDYSDWYENAAPTKAPVEVIPPCDPTADEGLFHICIAAISLVVMLVLAILARRQKLSDNQRGLTGLLSPVNFLDHTQHKGLAVAVYGVLFCKLVGMVLSHHPLPFTKEVAN
KEFWMILALLYYPTLYYPLLACGTLHNKVGYVLGSLLSWTHFGILVWQKVDCPKTPQIYKYYALFGSLPQIACLAFLSFQYPLLLFKGLQNTETANASEDLSSSYYRDYVKKILKKKKPT
KISSSTSKPKLFDRLRDAVKSYIYTPEDVFRFPLKLAISVVVAFIALYQMALLLISGVLPTLHIVRRGVDENIAFLLAGFNIILSNDRQEVVRIVVYYLWCVEICYVSAVTLSCLVNLLMLMRS
MVLHRSNLKGLYRGDSLNVFNCHRSIRPSRPLVCWMGFTSYQAAFLCLGMAIQTLVFFICILFAVFLIIIPILWGTNLMLFHIIGNLWPFWLTLVLAALIQHVASRFLFIRKDGGTRDLNNR
GSLFLLSYILFLVNVMIGVVLGIWRVVITALFNIVHLGRLDISLLNRNVEAFDPGYRCYSHYLKIEVSQSHPVMKAFCGLLLQSSGQDGLSAQRIRDAEEGIQLVQQEKKQNKVSNAKRA
RAHWQLLYTLVNNPSLVGSRKHFQCQSSESFINGALSRTSKEGSKKDGSVKEPNKEAESAAASN 

 
T0864 

 

GHMASGPWKLTASKTHIMKSADVEKLADELHMPSLPEMMFGDNVLRIQHGSGFGIEFNATDALRCVNNYQGMLKVACAEEWQESRTEGEHSKEVIKPYDWTYTTDYKGTLLGESL
KLKVVPTTDHIDTEKLKAREQIKFFEEVLLFEDELHDHGVSSLSVKIRVMPSSFFLLLRFFLRIDGVLIRMNDTRLYHEADKTYMLREYTSRESKISSLMHVPPSLFTEPNEISQYLPIKEA
VCEKLIFPE 

 
T0873 

 

MGSSHHHHHHSQDPNSMKRLKDLREYLAVLEAHQDVREIDEPVDPHLEAGAAARWTYENRGPALMLNDLTGTGRFCRILAAPAGLSTIPGSPLARVALSLGLDVSATAHEIVDSLAA
ARTREPVAPVVVDSAPCQDNVLLGDDANLDRFPAPLLHEGDGGPYLNTWGTIIVSTPDGSFTNWAIARVMKIDGKRMTGTFIPTQHLGQIRKLWDNLGQPMPFAIVQGTEPGIPFVAS
MPLPDGIEEVGFLGAYFGEPLLVRAKTVDLLVPASAEIVIEGHVMPGRTAVEGPMGEYAGYQPRHTSMQPEYVVDAITYRDDPIWPISVAGEPVDETHTAWGLVTAAEALALLRAAKL
PVATAWMPFEAAAHWLIVCLTEDWRERMPGLSRDGICLRISQVLAATRIEAMMTRVFVLDDDVDPSDQTELAWAIATRVSPAHGRLVRHGMINPLAGCYSAEERRLGYGPKAVLNG
LLPPMAERSRRSSFRHTYPEPVRQRVIELLA 
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T0879 

 
SVYDPAATADTVNPGNKIIYLTFDDGPGKYTQGLLDVLDKYNVKATFFVTNTHPDYQNMIAEEAKRGHTVAIHSASHKYNQIYTSEQAFFDDLEQMNSIIKAQTGNDASIIRFPGGSSNT

VSKDYCPGIMTQLVNDVTARGLLYCDWNVSSGDANPKPISTEQVVQNVISGVQSHNVSVVLQHDIKEFSVNAVEQIIQWGQANGYTFLPLTTSSPMSHHRVN 

 
T0880-0 

 

FFTAAPLSYNTGNSTISLDYRSPQLRVSGGALALTSPVFVYQTPFNTPMRLRNGTYNEYADAHIQMVRFGTTVLFNIDVTGETNATGTQTWELQFDGTLGSCLTGRMQVMGGTGEE
LDVTPTFILPTSDKSVYKQGFMPIVCSENGEFKQSTYCSYALTYRLGNFYITLKSTTSGCKPIFQMSFMYESQIGIV 

 
T0880-1 

 

 
FFTAAPLSYNTGNSTISLDYRSPQLRVSGGALALTSPVFVYQTPFNTPMRLRNGTYNEYADAHIQMVRFGTTVLFNIDVTGETNATGTQTWELQFDGTLGSCLTGRMQVMGGTGEE
LDVTPTFILPTSDKSVYKQGFMPIVCSENGEFKQSTYCSYALTYRLGNFYITLKSTTSGCKPIFQMSFMYESQIGIV 

 
T0882 

 

 
SMTSRPKLRILNVSNKGDRVVECQLETHNRKMVTFKFDLDGDNPEEIATIMVNNDFILAIERESFVDQVREIIEKADEMLSEDVSVEPE 

 
T0889 

 

 
MARELEGKVAAVTGAASGIGLASAEAMLAAGARVVMVDRDEAALKALCNKHGDTVIPLVVDLLDPEDCATLLPRVLEKACQLDILHANAGTYVGGDLVDADTMAIDRMLNLNVNVVM
KNVHDVLPHMIERRTGDIIVTSSLAAHFPTPWEPVYASSKWAINCFVQTVRRQVFKHGIRVGSISPGPVVSALLADWPPEKLKEARDSGSLLEASDVAEVVMFMLTRPRGMTIRDVLM
LPTNFDL 

T0891 ENMAVQSPKKHVFDAVIKAYKDNSDEESYATVYIKDPKLTIENGKRIITATLKDSDFFDYLKVEDSKEPGVFHDVKVLSEDKRKHGTKVIQFEVGELGKRYNMQMHILIPTLGYDKEFKI
QFEVNMRTFV 

 
T0893 

 

 
LSQAQKMQAIGQLAGGVAHDFNNLLTAIQLRLDQLLHRHPVGDPSYEGLNEIRQTGVRAADLVRKLLAFSRKQTVQREVLDLGELISEFEVLLRRLLREDVKLITDYGRDLPQVRADK
SQLETAVMNLAVNARDAVRAAKGGGVVRIRTARLTRDEAIQLGFPAADGDTAFIEVSDDGPGIPPDVMGKIFDPFFTTKPVGEGTGLGLATVYGIVKQSDGWIHVHSRPNEGAAFRIF
LPVYEA 

T0894 
MVDNNYLSVSEKTELEIAKQTLKNSKNPAEREKAQQKYDALLEKDIASDKEVIAACGNGNAGSSACASARLKVIASKEGYEDGPYNSKYSQQYADAYGQIVNLLDITSVDVQNQQQV
KDAMVSYFMATLGVDQKTAQGYVETTQGLEIAAASMTPLFGQAVANKITALVDKANKYPSGIGFKINQPEHLAQLDGYSQKKGISGAHNADVFNKAVVDNGVKIISETPTGVRGITQV
QYEIPTKDAAGNTTGNYKGNGAKPFEKTIYDPKIFTDEKMLQLGQEAAAIGYSNAIKNGLQAYDAKAGGVTFRVYIDQKTGIVSNFHPK 

T0895 MNKYLFELPYERSEPGWTIRSYFDLMYNENRFLDAVENIVNKESYILDGIYCNFPDMNSYDESEHFEGVEFAVGYPPDEDDIVIVSEETCFEYVRLACEKYLQLHPEDTEKVNKLLSKI
PSAGHHHHHH 

T0896 

MNGDYMKASLVGVAAAVLMSVLAGSPVSAQVADASAQVVSKSQLIVGKRYYISVDTLNVRSSNSTTANNVIGKLSKNDVVEVYDVLNEATPLVQVKIIKSTTVSPYISSDFFVSKDYLS
ERELTLPTSRYFVVQNIATEKTRIYERCTATPGCAHKMVMETDMVVGRPEEGDGQDDNAYKTWVGHSRISEWVKFYQDGKAFYPRWYTPGQNIKDIPDPVTDSMSLYMGARKWLR
KNEQGKTSNYGAFGWYAAKLTPAGENGGVNYQWIHGTMGWGKDGSKPIEITRMKMINFFSNPGSHGCTRLENQAVAYMRHLLGPGTDIYRVYAREASREAAPFSRYRDSQRPLP
WEWMLLTNGAAQSNGLTADAATIRAQGISAVPGVNLIERGVYQVDRYPTVMPLNYSKSAASGLSGDRYEIDKNLKKGQGSNFRGYFLVDEGRFVSYSHPNYNATGGAIRVGGMAD
FMDSVPALLQAGAGNYYPPAIIK 

T0910 
GLDDVSNKAYEDAEAKAKYEAEAAFFANLKLSDFNIIDTLGVGGFGRVELVQLKSEESKTFAMKILKKRHIVDTRQQEHIRSEKQIMQGAHSDFIVRLYRTFKDSKYLYMLMEACLGGE
LWTILRDRGSFEDSTTRFYTACVVEAFAYLHSKGIIYRDLKPENLILDHRGYAKLVDFGFAKKIGFGKKTWTFCGTPEYVAPEIILNKGHDISADYWSLGILMYELLTGSPPFSGPDPMK
TYNIILRGIDMIEFPKKIAKNAANLIKKLCRDNPSERLGNLKNGVKDIQKHKWFEGFNWEGLRKGTLTPPIIPSVASPTDTSNFDSFPEDNDEPPPDDNSGWDIDF 

T0911 

MVSGFAMPKIWRKLAMDIPVNAAKPGRRRYLTLVMIFITVVICYVDRANLAVASAHIQEEFGITKAEMGYVFSAFAWLYTLCQIPGGWFLDRVGSRVTYFIAIFGWSVATLFQGFATGL
MSLIGLRAITGIFEAPAFPTNNRMVTSWFPEHERASAVGFYTSGQFVGLAFLTPLLIWIQEMLSWHWVFIVTGGIGIIWSLIWFKVYQPPRLTKGISKAELDYIRDGGGLVDGDAPVKKE
ARQPLTAKDWKLVFHRKLIGVYLGQFAVASTLWFFLTWFPNYLTQEKGITALKAGFMTTVPFLAAFVGVLLSGWVADLLVRKGFSLGFARKTPIICGLLISTCIMGANYTNDPMMIMCL
MALAFFGNGFASITWSLVSSLAPMRLIGLTGGVFNFAGGLGGITVPLVVGYLAQGYGFAPALVYISAVALIGALSYILLVGDVKRVG 

T0913 MHHHHHHMTTVDKRPSSRGYGDWRLSDIPQYKDGISTYEFVRATHEADYRTHQAEPVAGRTFGFNGIGRLTEVALHMPTKYTLHDQSSQYKESPSFFQGLMGVPDRGPVDLAAFQ
RETEELATAFENNGIKVHWVDYPEEPANPYGPLMGHVFLSWGSIWRGGSVISRFGFLPGMVGVSEYLAKWAWNTLNIPPLVAITEGAMEPGACNMIADEVLVTCLSASYDQRGTDQ
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LVAAISKTSGTEEFHNLQLRPAVEGFFNKATGACAHPDININAIDVGKLVVSPAALDWDARTWLYDNNFELIEADPDEQREFLAPCNVLLLEPGKVIAHADCHKTNQKIRDAGVEVIEVT
GTEIRKACGGIKCRVMQINREPGPTLADVRNRVWR 

T0914 
VENNYLSVSEKTELEIAKQKLKNSKDPAEREKAQQKYDALLEKDISSDKAVITACSNGQAASAACAGERLKVIAAKGGYETGHYNNQVSDMYPDAYGQIVNLLNITSVDAQNQQQVK
DAMVNYAMVQFGVDRATAQAYVETYDGMKVVAASMAPVIGAAAASKIEVLAGKQRLSNSFEVSSLPDANGKNHITAVKGDAKIPVDKIELYMRGKASGDLDSLQAEYNSLKDARISS
QKEFAKDPNNAKRMEVLEKQIHNIERSQDMARVLEQAGIVNTASNNSMIMDKLLDSAQGATSANRKTSVVVSGPNGNVRIYATWTILPDGTKRLSTVNTGTFK 

T0915 MINVNSTAKDIEGLESYLANGYVEADSFNDPEDDALECLSNLLVKDSRGGLSFCKKILKSNNIDGVFIKGSALNFLLLSEQWSYAFEYLTSNADNITLAELEKALFYFYCAKNETDPYPV
PEGLFKKLMKRYEELKNDPDAKFYHLHETYNDFSKAYPLNN 

T0917 

MHHHHHHMRMEFRHNLPSSDIIFGSGTLEKIGEETKKWGDKAILVTGKSNMKKLGFLADAIDYLESAGVETVHYGEIEPNPTTTVVDEGAEIVLEEGCDVVVALGGGSSMDAAKGIAM
VAGHSAEERDISVWDFAPEGDKETKPITEKTLPVIAATSTSGTGSHVTPYAVITNPETKGKPGFGNKHSFPKVSIVDIDILKEMPPRLTAITGYDVFSHVSENLTAKGDHPTADPLAIRAI
EYVTEYLLRAVEDGEDIKAREKMAVADTYAGLSNTISGTTLRHAMAHPISGYYPDISHGQALASISVPIMEHNIENGDEKTWERYSRIAVALDASKPVDNTRQAASKAVDGLKNLLRSL
DLDKPLSELGVEEEKIPEMTEGAFIYMGGGIEANPVDVSKEDVKEIFRKSL 

T0920-0 

KPVVGVILPFSSAFEDIAVEQQRAVELALAESGSAFEIVFKDGGADVDTAVQAFQDLVRSQENLAAVVSCSSWASSAIHPLAAEKDIFHVAIGSAALKRTEPGHTIRLTVGVQQEQEQL
AAYLTDFERIAVLAMDNNLGSSWIRMLEDRFPKQVVAAQEYNPQQMDIAAQLATIKARDSEALVLISAGEAATIAKQARQAGIKAQLVGTRPIQRAEVLAASAFTNGLVYTYPSYNQDH
PFMSAFTDRYGLEPGFFGVEAYDLCTTLSRALEQGRQTPKALFEWYAGNTFTGALGKVTFANDGDASYPYIFKKVTESGFRVAEFQFPMLLTQTAQELNAIFKDMDRSVAAAAEQLS
TTGLRGDRASAILETLFNENQYAYNCVTVDATGTIVNVAPKQYSSVIGEDISGQEQIIRLHETHQPVLSQAIKMVEGFVGIDLEHPVFDQDGGFIGSVSVLTQPDFFGSIISRKVHNFPVE
IFVLQRDGTTIYDVNAEEIGKNAFADPIYDAFPSLKRIARKMVSQAEGEGTYRFQDRHMEHAVAKQLLWTSIGLHGTNYRLALTYGAGEIED 

T0920-1 

KPVVGVILPFSSAFEDIAVEQQRAVELALAESGSAFEIVFKDGGADVDTAVQAFQDLVRSQENLAAVVSCSSWASSAIHPLAAEKDIFHVAIGSAALKRTEPGHTIRLTVGVQQEQEQL
AAYLTDFERIAVLAMDNNLGSSWIRMLEDRFPKQVVAAQEYNPQQMDIAAQLATIKARDSEALVLISAGEAATIAKQARQAGIKAQLVGTRPIQRAEVLAASAFTNGLVYTYPSYNQDH
PFMSAFTDRYGLEPGFFGVEAYDLCTTLSRALEQGRQTPKALFEWYAGNTFTGALGKVTFANDGDASYPYIFKKVTESGFRVAEFQFPMLLTQTAQELNAIFKDMDRSVAAAAEQLS
TTGLRGDRASAILETLFNENQYAYNCVTVDATGTIVNVAPKQYSSVIGEDISGQEQIIRLHETHQPVLSQAIKMVEGFVGIDLEHPVFDQDGGFIGSVSVLTQPDFFGSIISRKVHNFPVE
IFVLQRDGTTIYDVNAEEIGKNAFADPIYDAFPSLKRIARKMVSQAEGEGTYRFQDRHMEHAVAKQLLWTSIGLHGTNYRLALTYGAGEIED 

T0942 

MFRQLKKNLVATLIAAMTIGQVAPAFADSADTLPDMGTSAGSTLSIGQEMQMGDYYVRQLRGSAPLINDPLLTQYINSLGMRLVSHANSVKTPFHFFLINNDEINAFAFFGGNVVLHSA
LFRYSDNESQLASVMAHEISHVTQRHLARAMEDQQRSAPLTWVGALGSILLAMASPQAGMAALTGTLAGTRQGMISFTQQNEQEADRIGIQVLQRSGFDPQAMPTFLEKLLDQARY
SSRPPEILLTHPLPESRLADARNRANQMRPMVVQSSEDFYLAKARTLGMYNSGRNQLTSDLLDEWAKGNVRQQRAAQYGRALQAMEANKYDEARKTLQPLLAAEPGNAWYLDLA
TDIDLGQNKANEAINRLKNARDLRTNPVLQLNLANAYLQGGQPQEAANILNRYTFNNKDDSNGWDLLAQAEAALNNRDQELAARAEGYALAGRLDQAISLLSSASSQVKLGSLQQAR
YDARIDQLRQLQERFKPYTKM 

T0943-1 

SFADMMKHGLTEADVGITKFVSSHQGFSGILKERYSDFVVHEIGKDGRISHLNDLSIPVDEEDPSEDIFTVLTAEEKQRLEELQLFKNKETSVAIEVIEDTKEKRTIIHQAIKSLFPGLETK
TEDREGKKYIVAYHAAGKKALANPRKHSWPKSRGSYCHFVLYKENKDTMDAINVLSKYLRVKPNIFSYMGTKDKRAITVQEIAVLKITAQRLAHLNKCLMNFKLGNFSYQKNPLKLGEL
QGNHFTVVLRNITGTDDQVQQAMNSLKEIGFINYYGMQRFGTTAVPTYQVGRAILQNSWTEVMDLILKPRSGAEKGYLVKCREEWAKTKDPTAALRKLPVKRCVEGQLLRGLSKYG
MKNIVSAFGIIPRNNRLMYIHSYQSYVWNNMVSKRIEDYGLKPVPGDLVLKGATATYIEEDDVNNYSIHDVVMPLPGFDVIYPKHKIQEAYREMLTADNLDIDNMRHKIRDYSLSGAYR
KIIIRPQNVSWEVVAYDDPKIPLFNTDVDNLEGKTPPVFASEGKYRALKMDFSLPPSTYATMAIREVLKMDTSIKNQTQLNTTWLR 

T0943-2 

SFADMMKHGLTEADVGITKFVSSHQGFSGILKERYSDFVVHEIGKDGRISHLNDLSIPVDEEDPSEDIFTVLTAEEKQRLEELQLFKNKETSVAIEVIEDTKEKRTIIHQAIKSLFPGLETK
TEDREGKKYIVAYHAAGKKALANPRKHSWPKSRGSYCHFVLYKENKDTMDAINVLSKYLRVKPNIFSYMGTKDKRAITVQEIAVLKITAQRLAHLNKCLMNFKLGNFSYQKNPLKLGEL
QGNHFTVVLRNITGTDDQVQQAMNSLKEIGFINYYGMQRFGTTAVPTYQVGRAILQNSWTEVMDLILKPRSGAEKGYLVKCREEWAKTKDPTAALRKLPVKRCVEGQLLRGLSKYG
MKNIVSAFGIIPRNNRLMYIHSYQSYVWNNMVSKRIEDYGLKPVPGDLVLKGATATYIEEDDVNNYSIHDVVMPLPGFDVIYPKHKIQEAYREMLTADNLDIDNMRHKIRDYSLSGAYR
KIIIRPQNVSWEVVAYDDPKIPLFNTDVDNLEGKTPPVFASEGKYRALKMDFSLPPSTYATMAIREVLKMDTSIKNQTQLNTTWLR 

T0947 MIAILESEVPCVTKDLMKKLIFPLIALTLVSLQSFAGSKATDRSYKYCDDMTQIDKLLDRSRESVERIQREGLNIERIVVSKDKRQLYLVSGDTLLRTYTVAFGWNFIGHKQFEGDGKTPE
GIYSIDYKNPKSQFTKSLHVDYPNKADIAYAKSQGRSPGGDIMIHGLPSNPQKYERISKIHPYDWTLGCIAVTNKEIEEIYALVKERTLVEVCKISPTK 

T0948 SRNMKEKLEDMESVLKDLTEEKRKDVLNSLAKCLGKEDIRQDLEQRVSEVLISRELHMEDSDKPLLSSLFNAAGVLVEARAKAILDFLDALLELSEEQQFVAEALEKGTLPLLKDQVKS
VMEQNWDELASSPPDMDYDPEARILCALYVVVSILLELAEGPTSVSS 
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4.2.2 Methods  

 
The IntFOLD method uses a single-template local consensus fold recognition approach to 

predict protein tertiary structure from sequence (Liu et al., 2018). The original IntFOLD-TS 

method integrates ModFOLDclust2 into the core of its pipeline (McGuffin et al., 2015). The 

model quality assessment tool ranks models based on global quality scores. The generated 

models are assessed using the TM-score programs to generate structural alignment score 

as TM-score (Buenavista, Roche and McGuffin, 2012), GDT_TS (global distance test total 

score) scores (Xu and Zhang, 2010) and MaxSub scores (Zemla et al., 2001). These scores 

show how similar two protein structures are to one another e.g. the model and the 

experimentally determined native structure (Siew et al., 2000). 

 
As part of this methodology, the ligand-binding residues from the FunFOLD3 component of 

the IntFOLD server outputs will be analysed. Using the top-ranked IntFOLD model and the 

functional prediction by FunFOLD3, models with bound ligands the location of the binding 

site residues and putative interacting ligands will be compared against the actual binding site 

residues and the ligands as identified by CASP12 and using MCC and BDT scores it will be 

determined how accurately IntFOLD predicted the ligand binding site predictions in an 

objective manner.  

 

For targets in which no PDB ID has been provided by the CASP12 organisers, at the time of 

writing, the ligand-binding residues will be based on the supplementary data provided by the 

CASP organisers from the publication (Liu et al., 2018).  

 
 

IntFOLD is a freely available webserver and can be accessed at: 

http://www.reading.ac.uk/bioinf/IntFOLD/. The only requirement from the users is an amino 

acid sequence of the protein in question, as single letter codes (McGuffin et al., 2019).  

Users have the option to provide a name for their prediction and an email address, which is 

used to provide a notification of the link to the results when predictions are completed 
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(usually within 24 hours but can take up to 72 hours). Alternatively, if users prefer not to be 

notified via email,  the link can be bookmarked to view the results later. Outputs will be a 

graphical and are shown in Figure 4.1. The graphical output is a table which summaries 

results as a thumbnail (McGuffin et al., 2019). For functional prediction, downloadable 

coordinates and interactive 3D views of the protein-ligand interaction can be accessed via 

the FunFOLD results summary page (refer to Figure 4.1D) (McGuffin et al., 2019). All of the 

raw data files for the predictions are available to download via the results page (McGuffin et 

al., 2019).   
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Table 4.2. CASP12 targets falling into three biologically relevant categories  
Twenty-eight sites with nine known ligand-binding site (holo and coloured yellow), nine putative ligand-binding sites (apo and 
coloured blue) and 10 critical patches surrounding key residues, motifs or mutations (coloured purple). The number of 
functional centres are in column 2, The types of sites are noted in column 3 as well as ligand IDS were applicable. Table 
adapted from Buenavista, Roche and McGuffin, 2012 

CASP12 target ID 
# point 

 
Type 

T0861 

T0863 

T0873 

T0879 

T0889 

T0891 

T0893 

T0910 

T0911 

28 

8 

24 

7 

21 

11 

22 

27 

10 

Holo/LLP 

Holo/CLR 

Holo/FMN 

Holo/ZN/B 

Holo/SOR 

Holo/HEM 

Holo/ADP 

Holo/ANP 

Holo/GCO 

T0880-0 

T0880-1 

T0894 

T0895 

T0896 

T0913 

T0917 

T0942 

T0947 

14 

13 

19 

21 

23 

13 

73 

10 

25 

Apo 

Apo 

Apo 

Apo 

Apo 

Apo 

Apo 

Apo 

Apo 

T0860 
T0864 
T0882 
T0914 
T0915 

T0920-0 
T0920-1 
T0943-1 
T0943-2 
T0948 

17 
11 
11 
26 
14 
31 
14 
9 
10 

15-19 

Motif 
Key residues 
Key residues 
Key residues 
Key residues 
Key residues 
Key residues 

Motif 
Motif 

Mutation 
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4.3 Results  

4.3.1 Summary of results  

 
The main findings of the Chapter are given below: 
 

 Out of the three functional site categories; holo, apo and critical patches. IntFOLD4 

performed the best in the holo category based on the mean MCC and BDT scores. 

For comparison, the mean MCC and BDT scores for the holo category were 0.345 

and 0.39, respectively. The mean MCC and BDT scores for the apo category were 

0.14 and 0.094, respectively finally for the critical patches category the MCC and 

BDT scores were 0.17 and 0.11, respectively  

 The highest MCC and BDT scores was achieved for CASP12 protein target T0879 

(PDB ID 5jmu) a peptidoglycan N-acetylglucosamine deacetylase and was 0.571 and 

0.750, respectively  

 Of 28 categorised protein targets, six were classified as FM with the rest being TBM. 

IntFOLD4 made functional predictions for one of the FM target (T0863 PDB ID 

STRA6 receptor) with the remaining 18 predictions for TBM targets   

 
 
 
 
 
 
 
 
 
 



Chapter 4. Anaylsis of IntFOLD4 from CASP12  
 

Page 191 of 645 

 
Table 4.3. Predicted and observed ligand-binding site residues for holo CASP12 targets  
Correct ligand-binding site residues are depicted in red and bold and presented in ascending holo CASP12 target ID with associated PDB IDs in parenthesis, where applicable 

 
 
 
 

CASP 12 target ID  Predicted ligand-binding site residue Observed ligand-binding site residue Under-predictions Over-predictions 

T0861 
(PDB ID 5j5v) 

42, 69, 70, 72, 120, 147, 150, 154, 175, 176, 
177, 178, 179, 180, 181, 187, 

228, 229, 273,300, 301 

38, 40, 41, 42, 43, 45, 46, 71, 72, 73, 76, 143, 
149, 153, 175, 176, 177, 178, 179, 180, 181, 

182, 229, 230, 273, 300, 301, 306 

38, 40, 41, 43, 45, 46, 71, 73, 76, 
143, 149, 153, 182, 230, 306 

69, 70, 120, 147, 150, 154, 187, 228 

T0863 
(PDB ID 5syl) 

76, 77, 80,116,117, 120, 123, 157, 158, 159, 
220 

416, 419, 420, 423, 424, 516, 519, 520 416, 419, 420, 423, 424, 516, 519, 
520 

76, 77, 80,116,117, 120, 123, 157, 
158, 159, 220 

T0873 
(PDB ID 6da6) 

165, 166, 180, 183, 185, 199, 202, 203, 234, 
235, 236, 237, 244, 324, 332, 337, 402, 406 

165, 166, 180, 182, 183, 184, 185, 197, 199, 
202, 203, 204, 234, 235, 237, 244, 324, 326, 

333, 336, 337, 341, 402 

182, 184, 197, 204, 326, 333, 336, 
341 

236, 332, 406 

 
T0879 

(PDB ID 5jmu) 
 

24, 25, 73, 77 24, 25, 73, 77, 79, 114, 183 
 

79, 114, 183  N/A 

T0889 
(PDB ID 5jo9) 

14, 16, 17, 18, 19, 38, 39, 40, 60, 61, 62, 63, 
88, 89, 90, 91, 111, 138, 139, 140, 153, 157, 

183, 184, 185, 186, 188, 189, 190 

92, 140, 141, 142, 147, 149, 150, 153, 183, 
184, 185, 186, 188, 190,194, 240, 242 

92, 141, 142, 147, 149, 153, 194, 
240, 242 

14, 16, 17, 18, 19, 38, 39, 40, 60, 
61, 62, 63, 88, 89, 90, 91, 111, 138, 

139, 157, 189, 

T0891 
(PDB ID 4ymp) 

21, 28, 29, 32, 33, 57, 58, 105, 107, 109, 114, 
118, 120 

21, 24, 26, 28, 29, 33, 114, 116 24, 26, 29, 116 32, 57, 58, 105, 107, 109, 118, 120 

T0893 
(PDB ID 5ldj) 

 
62, 127, 131, 132, 135, 179, 181, 197, 199, 

201, 203, 204, 205, 207, 231, 233 
 

131, 132, 135, 176, 178, 179, 180, 181, 189, 
194, 195, 196, 197, 202, 203, 204, 205, 206, 

207, 208, 231, 233 

176, 178, 180, 189, 194, 195, 196, 
202, 208,  

62, 127, 199, 201 

T0910 31, 331 40, 41, 42, 43, 44, 45, 46 ,48 ,62, 64, 83, 96, 
112, 114, 115, 116, 119, 158, 160, 163, 

165,175, 176, 178, 179, 195, 323 

40, 41, 42, 43, 44, 45, 46 ,48, 62, 
64, 83, 96, 112, 114, 115, 116, 119, 
158, 160, 163, 165, 175, 176, 178, 

179, 195, 323 

31, 331 

T0911 
(PDB ID 6e9n) 

44, 160, 164, 165, 168, 271, 272, 301, 337, 
349, 353; 366, 393 

68, 123, 126, 358, 371, 374, 375, 377, 378 68, 123, 126, 358, 371, 374, 375, 
377, 378 

44, 160, 164, 165, 168, 271, 272, 
301, 337, 349, 353; 366, 393 



Chapter 4. Anaylsis of IntFOLD4 from CASP12  
 

Page 192 of 645 

 
 
Table 4.4. Predicted and observed ligand-binding site residues for apo CASP12 targets  
Correct ligand-binding site residues are depicted in red and bold and presented in ascending apo CASP12 target ID with associated PDB IDs in parenthesis, where applicable  
 

CASP 12 target 
ID 

Predicted ligand-binding site residue Observed ligand-binding site residue Under-predictions Over-predictions 

T0880-0 No ligands-binding site residues predicted 647,650,652,679,680,681,682 N/A N/A 
T0880-1 No ligands-binding site residues predicted  

53,56,58,83,85,86,87,88,89,90,91,173 
 
 

N/A N/A 

T0894 
(PDB ID 5hkq) 

No ligands-binding site residues predicted 188,189,193,199,201,202,203,204,205,261,
262,263,308,310,320,321,322,323 

N/A N/A 

 
T0895 

(PDB ID 5hkq 
 

No ligands-binding site residues predicted 46,47,48,49,50,51,52,52,63,70,71,72,73,74,
76,77,78,81,82,83 

N/A N/A 

T0896 206,261,262,263,264,265,266,274,299,301 131,144,145,146,147,148,149,150,151,153,
154,155,156,339,437,438,439,440,471,472,

473 

131,144,145,146,147,148,149,150
,151,153,154,155,156,339,437,43

8,439,440,471,472,473 

206,261,262,263,264,265,26
6,274,299,301 

T0913 100,149,153,156,171,206,266,267,318,358,3
59,364 

64,65,66,67,209,210,273,274,320,321,363,
368,371 

64,65,66,67,209,210,273,274,320,
321,363,368,371 

100,149,153,156,171,206,26
6,267,318,358,359,364 

T0917 48,50,106,107,108,157,158,161,163,166, 
168,198,201,202,206,213,217,282,297 

46,47,48,49,50,51,52,54,57,73,74,75,76,77,
78,79,80,81,82,84,85,88,104,105,106,107, 
108,109,111,136,157,158,160,161,163,166,
168,170,172,179,181,198,201,202,203,206,
209,210,213,217,273,276,277,278,279,282,
286,293,294,295,296,297,298,383,384,385,

386,387,388,391 

46,47,49,51,52,54,57,73,74,75,76,
77,78,79,80,81,82,84,85,88,104, 

105,109,111,136,160,170,172,179
,181,203,209,210,273,276,277, 

278,279,286,293,294,295,296,298
,383,384,385,386,387,388,391 

N/A 

T0942 
(PDB ID 5xi8) 

317,320,348,351,354  

53,56,58,83,85,86,87,88,89,90,91,173 
 
 

136,137,139,140,145,196,200,201
,204,246 

317,320,348,351,354 

T0947 No ligand-binding site residues predicted 188,189,193,199,201,202,203,204,205,261,
262,263,308,310,320,321,322,323 

N/A N/A 
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Table 4.5. Predicted and observed ligand-binding site residues for motif, key residues and mutated CASP12 targets 
Correct ligand-binding site residues are depicted in red and bold and presented in ascending motif, key residue and mutated CASP12 target ID with associated PDB IDs in parenthesis, where 
applicable 
 

CASP12 target 
ID 

Predicted ligand-binding site residue Observed ligand-binding  site 
residue 

Under-predictions Over-predictions 

T0860 
(PDB ID 5fjl) 

93 33,34,35,36,37,38,39,40,41,42,43,44,45, 
46,47,128 

33,34,35,36,37,38,39,40,41,42, 
43,44,45,46,47,128 

93 

T0864 
(PDB ID 5d9g) 

No ligand-binding site residues predicted 1,2,3,9,10,11,12,13,45,46,47 N/A N/A 

T0882 
(PDB ID 5g3g) 

34 45,47,54,59,62,63,68 45,47,54,59,62,63,68 34 

T0914 
(PDB ID 6cp8) 

48,49,50,51,55,56,58,59,60,62,63,64,65,66, 
67,68,69,70,71,72,73,109,112,113,115,116, 

117,119,126 

220,221,222,223,224,225,226,227,228, 
229,231,238,244,245,246,247,248,249,25

0,251,252,253,254,255,256,259 

220,221,222,223,224,225,226,227
,228,229,231,238,244,245,246, 

247,248,249,250,251,252,253,254 
255,256,259 

48,49,50,51,55,56,58,59,60,62,63,
64,65,66,67,68,69,70,71,72,73, 

109,112,113,115,116,117,119,126 

T0915 
(PDB ID 6cp8)  

64,65,66,67,70,100,103,107 13,14,17,18,23,35,39,53,56,57,60,63,68 13,14,17,18,23,35,39,53,56,57,60,
63,68 

64,65,66,67,70,100,103,107 

T0920-0 
(PDB ID 5ere) 

17,70,71,72, 93,94,95,138,142, 210,211,255 9,12,14,17,44,45,46,47,70,71,72,73,93,94
,95,96,109,110,115,134,135,136,138,161,

162,163,187,210,211,255 

9,12,14, 44,45,46,47,73,96, 
109,110,115,134,135,136, 

161,162,163,187 

142, 210 

T0920-1 
(PDB ID 5ere) 

No ligand-binding site residues predicted 380,382,390,406,409,428,429,430,431,43
2,437,454,456,439 

N/A N/A 

T0943-1 
(PDB ID 5kkp) 

No ligand-binding site residues predicted 98,99,101,106,107,108,109,110,111 N/A N/A 

T0943-2 
(PDB ID 5kkp) 

No ligand-binding site residues predicted 128,129,132,133,134,135 N/A N/A 

T0948-0 
(PDB ID 5kkp) 

No ligand-binding site residues predicted 47,48,49,50,51,52,53,54,55,56,69,70,74,7
5,76,77,78,81 

N/A N/A 

T0948-1 
(PDB ID 5kkp) 

No ligand-binding site residues predicted 29,46,56,57,58,59,60,61,62,63,64,65,66, 
67,68 

N/A N/A 

T0948-2 
(PDB ID 5tj4) 

No ligand-binding site residues predicted 46,47,48,49,50,51,52,53,54,55,56,57, 
60,70,74,75,76,77,78 

N/A N/A 

T0948-3  
(PDB ID 5tj4) 

No ligand-binding site residues predicted 29,46,50,56,57,58,59,60,61,62,63,64,65, 
66,67,68 

N/A N/A 
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A summary of the MCC and BDT scores achieved for the holo, apo and motif/key 

residues/mutations are provided in Tables 4.6, 4.7 and 4.8, respectively.   

 
Table 4.6. MCC and BDT scores for holo structure CASP12 targets  
A list of CASP12 targets with associated MCC and BDT scores. Results are listed from ascending to descending order by MCC 
and BDT score  

 
CASP12 target MCC Score BDT Score 

T0879 0.571 0.750 

T0873 0.673 0.648 

T0893 0.584 0.610 

T0861 0.497 0.543 

T0891 0.448 0.510 

T0889 0.29 0.36 

T0911 0.03 0.05 

T0863 0.014 0.002 

T0910 0.004 0.02 

 
Table 4.7. MCC and BDT scores for apo structure CASP12 targets 
A list of CASP12 targets with associated MCC and BDT scores. Results are listed from ascending to descending order by MCC 
and BDT score  

 
CASP12 target MCC Score BDT Score 

T0917 0.488 0.275 

T0913 0.03 0.09 

T0896 0.034 0.009 

T0942 0.0186 0.0039  
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Table 4.8. MCC and BDT scores for key, motifs and mutation structure CASP12 targets 
A list of CASP12 targets with associated MCC and BDT scores. Results are listed from ascending to descending order by MCC 
and BDT score  

CASP12 target MCC Score BDT Score 

T0920-0 0.57 0.37 

T0914 0.09 0.015 

T0915 0.013 0.06 

T0882 0.0035 0.008  

T0860 0.0031 0.0055 

 

 
Figure 4.2 on the next page shows the relation between the MCC and BDT scores to the 

TM-align score for the different CASP12 targets across the three categories for ligand 

presence within a structure. Only CASP12 targets with an observed structure have been 

depicted.   
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Figure 4.2. Comparison between BDT, MCC and TM-score for CASP12 targets using IntFOLD4  
(A) MCC. BDT and TM-scores for the holo targets (B) MCC, BDT and TM-scores for Apo targets and (C) key, motifs and 
mutatation targets. Only targets with an observed structure as released by CASP12 organsiers have been included  
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4.3.2 Holo structures: ligands present in crystal  

 

CASP12 identified nine targets which had a ligand present in crystal. These were T0861 

(PDB ID 5j5v), T0863 (PDB 5sy1), T0873 (PDB ID 6da6), T0879 (PDB ID 5jmu), T0889 

(PDB ID 5jo9), T0891 (PDB ID 4ymp), T0893 (PDB ID 5idj), T0910 and T0911 (PDB ID 

6e9n). CASP12 target IDs are given outside parenthesis and PDB IDs, where applicable 

within parenthesis.  

 
A      B  

 
Figure 4.3. Comparison of IntFOLD4 ligand binding site predictions for CASP12 target T0861 (PDB ID 5j5v) 
(A) Predicted ligand binding site residues shown as sticks with correctly predicted binding site residues in blue and incorrect 
predictions in red, the predicted ligand pyridoxal-5’-phosphate (PLP) is shown as sphere and coloured yellow. BDT score of 
0.543 and MCC score of 0.497, respectively (B) The observed ligand binding site for T0861 with binding site residues shown as 
sticks and coloured blue and the ligand (2S)-2-amino-6-[[3-hydroxy-2-methyl-5-(phosphonooxymethyl)pyridin-4-
yl]methylideneamino]hexanoic acid (LLP) shown as sphere and coloured yellow  
 
The first predicted CASP12 target with a ligand in the crystal structure is T0861 and the 

MCC and BDT score was 0.497 and 0.543, respectively. There were 14 under predictions 

and eight over predictions, with the IntFOLD4 server predicting 21 ligand binding residues 

and the observed structure containing 28 ligand binding residues (as shown in Figure 4.3). 

Of these 21 residues, 13 were correct predictions. Additionally, IntFOLD4 predicted PLP and 

protoporphyrin IX containing Fe (HEM) and the observed biologically relevant ligand is LLP.  
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Figure 4.4 below shows the TM-align superposition of the observed and predicted structure. 

A TM-score of 0.96346, showing very good structural homology, with the main difference 

being seen in the alpha helices which has been modelled in the predicted 3D model (red) 

but is not present in the observed 3D model (blue).  

 

 
Figure 4.4. Comparison of TM-align (Zhang and Skolnick, 2005) structures for predicted and observed structure for 
T0861 (PDB ID 5j5v) 
The structure in blue is the observed structure for T0861 and the predicted structure is in red. A TM-score  of 0.96346 was 
achieved for the protein structures. The score was normalised for the observed structure T0861 as it is the reference molecule 
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A         B 

  
 
Figure 4.5. Comparison of IntFOLD4 ligand binding site predictions for CASP12 target T0863 (PDB ID 5syl) 
(A) Predicted ligand binding site residues shown as sticks with under or incorrect predictions shown in red. The predicted 
ligands were  ASN, THR and LEU but are not shown in the figure. BDT and MCC score 0.002 and 0.014, respectively (B) The 
observed ligand binding site for T0863 with binding site residues shown as sticks and coloured blue, no ligand is shown as the 
ligand CLR is missing from the PDB file 

 
 
The next predicted CASP12 target is T0863 and scored quite poorly with regards to BDT 

and MCC with a score of 0.002 and 0.014, respectively. None of the residues were correctly 

predicted and IntFOLD4 predicted 11 residues with there being eight residues to predict. 

Furthermore, no correct biologically relevant ligands were predicted with IntFOLD4 

predicting ASN, THR and LEU as biologically relevant ligands but are indeed amino acids. 

The recognised biologically relevant ligand is cholesterol, however this was not in the PDB 

file as a HETATM and is therefore not shown in Figure 4.5B.  
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Figure 4.6 below shows the TM-align, superposition of the observed and predicted structure. 

A TM-score of 0.22810 was achieved showing poor structural homology and this could 

explain why a poor and MCC and BDT score was achieved.   

 

 
Figure 4.6. Comparison of TM-align (Zhang and Skolnick, 2005) structures for predicted and observed structure for 
T0863 (PDB ID 5syl) 
The structure in blue is the observed structure for T0863 and the predicted structure is in red. A TM-score of 0.22810 was 
achieved for the protein structures. The score was normalised for the observed structure T0861 as it is the reference molecule 
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A         B 

 
Figure 4.7. Comparison of IntFOLD4 ligand binding site predictions for CASP12 target T0873 (PDB ID 6da6) 
(A) Predicted ligand binding site residues shown as sticks with correctly predicted binding site residues in blue and incorrect 
predictions in red, the predicted ligand manganese  (MN) is shown as sphere and coloured yellow. BDT score of 0.648 and 
MCC score of 0.673, respectively (B) The observed ligand binding site for T0873 with binding site residues shown as sticks and 
coloured blue, the predicted ligand flavin mononucleotide  (FMN) is shown as sphere and coloured yellow. 
 

 
 
The third predicted CASP12 target with a ligand in the crystal structure is T0873 and the 

MCC and BDT score was 0.673 and 0.648, respectively. There were five under predictions 

and two over predictions, with the IntFOLD4 server predicting 18 ligand binding residues and 

the observed structure containing 24 ligand binding residues. Of these 24 residues, 15 were 

correct predictions and is shown in Figure 4.7A. Additionally, IntFOLD4 predicted MN and 

the observed biologically relevant ligand is FMN.  

 
 
 
Figure 4.8 below shows the TM-align, superposition of the observed and predicted structure. 

A TM-score of 0.91925 was achieved showing very good structural homology.  
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Figure 4.8. Comparison of TMalign (Zhang and Skolnick, 2005) structures for predicted and observed structure for T0873 
(PDB ID 6da6) 
The structure in blue is the observed structure for T0873 and the predicted structure is in red. A TM-score of 0.91925 was 
achieved for the protein structures. The score was normalised for the observed structure T0873 as it is the reference molecule 
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A         B 

  
Figure 4.9. Comparison of IntFOLD4 ligand binding site predictions for CASP12 target T0879 (PDB ID 5jmu) 
(A) Predicted ligand binding site residues shown as sticks with correctly predicted binding site residues in blue and incorrect 
predictions in red, the predicted ligand zinc (ZN) is shown as sphere and coloured yellow. BDT score of 0.750 and MCC score 
of 0.571, respectively (B) The observed ligand binding site for T0879 with binding site residues shown as sticks and coloured 
blue, the predicted ligand ZN is shown as sphere and coloured yellow. 

 
 
The fourth predicted CASP12 target with a ligand in the crystal structure is T0879 and the 

MCC and BDT score was 0.571 and 0.750, respectively. There were three under predictions 

and no over predictions, with the IntFOLD4 server predicting four ligand binding residues 

and the observed structure containing seven ligand binding residues (as shown in Figure 

4.9). Of these seven observed residues , four were correct predictions in effect, all the 

residues predicted by IntFOLD4 were correct predictions. Additionally, IntFOLD4 predicted 

the observed biologically relevant ligand ZN.  

 
 
 
 
Figure 4.10 below shows the TM-align, superposition of the observed and predicted 

structure. A TM-score of 0.81721 was achieved showing very good structural homology. The 

differences between the two structures appears to be modelling of an extra beta sheet in the 

predicted 3D model (red) and one alpha helix being missed off, which is in the observed 

structure (blue).   
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Figure 4.10. Comparison of TMalign (Zhang and Skolnick, 2005) structures for predicted and observed structure for 
T0879 (PDB ID 5jmu) 
The structure in blue is the observed structure for T0879 and the predicted structure is in red. A TM-score of 0.81721 was 
achieved for the protein structures. The score was normalised for the observed structure T0879 as it is the reference molecule 
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A         B 

 
Figure 4.11. Comparison of IntFOLD4 ligand binding site predictions for CASP12 target T0889 (PDB ID 5jo9) 
(A) Predicted ligand binding site residues shown as sticks with correctly predicted binding site residues in blue and incorrect 
predictions in red, the predicted ligand NADP (nicotinamide-adenine-dinucleotide phosphate) is shown as sphere and coloured 
yellow. BDT score of 0.36 and MCC score of 0.29, respectively (B) The observed ligand binding site for T0889 with binding site 
residues shown as sticks and coloured blue, the predicted ligand D-sorbitol (SOR) is shown as sphere and coloured yellow. 

 
The fifth predicted CASP12 target with a ligand in the crystal structure is T0889 and the 

MCC and BDT score was 0.29 and 0.36, respectively. There were nine under predictions 

and 20 over predictions, with the IntFOLD4 server predicting 29 ligand binding residues and 

the observed structure containing 21 ligand binding residues. Of these 29 residues predicted 

by IntFOLD4, eight were correct predictions and is shown in Figure 4.11A.   

 
 
 
Figure 4.12 below shows the TM-align superposition of the observed and predicted 

structures. A TM-score of 0.93428 was achieved, showing very good structural homology. 

The MCC and BDT score is due to the prediction of the ligand-binding pocket space, the 

observed ligand “sits” within the flexible loops of the observed ligands, whereas with the 

predicted protein model, the ligand appears to be within the beta sheet and alpha helices of 

the model. Additionally, the observed ligand SOR has a molecular weight of 182.17 and the 

predicted NADP ligand has a molecular weight of 743.40 and thus occupies a bigger ligand-

binding space.    
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Figure 4.12. Comparison of TMalign (Zhang and Skolnick, 2005) structures for predicted and observed structure for 
T0889 (PDB ID 5jo9) 
The structure in blue is the observed structure for T0889 and the predicted structure is in red. A TM-score of 0.93428 was 
achieved for the protein structures. The score was normalised for the observed structure T0889 as it is the reference molecule 
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A         B 

  
Figure 4.13. Comparison of IntFOLD4 ligand binding site predictions for CASP12 target T0891 (PDB ID 4ymp) 
(A) Predicted ligand binding site residues shown as sticks with correctly predicted binding site residues in blue and incorrect  
predictions in red, the predicted ligand protoporphyrin IX containing Fe (HEM) is shown as sphere and coloured yellow. BDT 
score of 0.510 and MCC score of 0.448, respectively (B) The observed ligand binding site for T0891 with binding site residues 
shown as sticks and coloured blue, the predicted ligand HEM is shown as sphere and coloured yellow. 
 
 

 

The sixth predicted CASP12 target with a ligand in the crystal structure is T0891 and the 

MCC and BDT score was 0.448 and 0.510, respectively. There were three under predictions 

and eight over predictions, with the IntFOLD4 server predicting 13 ligand binding residues 

and the observed structure containing 11 ligand binding residues. Of these 13 residues 

predicted by IntFOLD4, five were correct predictions from the observed CASP12 target. 

Additionally, IntFOLD4 predicted the same ligand as present in the observed target structure 

and is shown in Figure 4.13.    

 
Figure 4.14 below shows the TM-align superposition of the observed and predicted 

structures. A TM-score of 0.89491 was achieved, showing very good structural homology. 

The predicted model had the same number of beta sheets and alpha helices as the 

observed structure, the main difference between the structures appears to be the flexible 

loop in the predicted model (red) . 
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Figure 4.14. Comparison of TMalign (Zhang and Skolnick, 2005) structures for predicted and observed structure for 
T0891 (PDB ID 4ymp) 
The structure in blue is the observed structure for T0891 and the predicted structure is in red. A TM-score of 0.89491 was 
achieved for the protein structures. The score was normalised for the observed structure T0891 as it is the reference molecule 
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A          

 
B 

 
Figure 4.15. Comparison of IntFOLD4 ligand binding site predictions for CASP12 target T0893 (PDB ID 5ldj) 
(A) Predicted ligand binding site residues shown as sticks with correctly predicted binding site residues in blue and incorrect  
predictions in red, the predicted ligand adenosine-5’-phosphate (ADP) is shown as sphere and coloured yellow. BDT score of 
0.610 and MCC score of 0.584 respectively (B) The observed ligand binding site for T0893 with binding site residues shown as 
sticks and coloured blue, the predicted ligand ADP is shown as sphere and coloured yellow. 
 

The seventh predicted CASP12 target with a ligand in the crystal structure is T0893 and the 

MCC and BDT score was 0.584 and 0.610, respectively. There were nine under predictions 

and four over predictions, with the IntFOLD4 server predicting 16 ligand binding residues 

and the observed structure containing 22 ligand binding residues. Of these 16 residues 

predicted by IntFOLD4, 12 were correct predictions from the observed CASP12 target. 

Additionally, IntFOLD4 predicted the same ligand as present in the observed target 

structure. The predicted structure has been shown for the observed ligand binding site 

residues (Figure 4.15) as the observed ligand, ADP was not identified in the PDB file for the 
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crystal structure. The observed ligand binding residues were obtained from the 

supplementary data published by the CASP organisers (Liu et al., 2018).     

 

Figure 4.16 below shows the TM-align superposition of the observed and predicted 

structures. A TM-score of 0.64494 was achieved, showing good structural homology. The 

main difference between the two models can be seen by the rotation of the alpha helices in 

the bottom half of the model.  

 

 

Figure 4.16. Comparison of TMalign (Zhang and Skolnick, 2005) structures for predicted and observed structure for 
T0893 (PDB ID 5ldj) 
The structure in blue is the observed structure for T0893 and the predicted structure is in red. A TM-score of 0.64494 was 
achieved for the protein structures. The score was normalised for the observed structure T0893 as it is the reference molecule 
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A      B 

 
 
Figure 4.17. Comparison of IntFOLD4 ligand binding site predictions for CASP12 target T0910  
(A) Predicted ligand binding site residues shown as sticks with incorrect -predictions in red, the predicted ligand SBT shown as 
sphere and coloured yellow. The centroid ligands, BUD and BU3 are shown as sphere and coloured orange. A BDT score of 
0.02 and MCC score of 0.004 was obtained (B) The observed ligand binding site for T0910 with binding site residues shown as 
sticks and coloured blue no observed ligands are shown as the observed structure was not released by CASP12 organisers. 
The protein model is the one predicted by the IntFOLD4 server and is for illustrative purposes only   

 
 

The eighth predicted CASP12 target with a ligand in the crystal structure is T0910 and the 

MCC and BDT score was 0.004 and 0.02, respectively. For this particular CASP12 target, 

there were no correct predictions and IntFOLD4 predicted two residues, whereas there are 

27 observed ligand binding site residues. The ligands predicted by IntFOLD4 are 2-butanol 

(SBT). The centroid ligands are (2S,3S)-butane-2,3-diol (BUD) and (R,R)-2,3-butanediol 

(BU3). In comparison, the ligand present in the crystal structure is phosphoaminophosphonic 

acid-adenylate ester (ANP) and is shown above in Figure 4.17. As this CASP12 target has 

no associated PDB ID nor was an observed structure released by CASP12 organisers, the 

structure with its ligand is unable to be shown, observed ligand-binding residues were 

obtained from the supplementary data published by the CASP organisers (Liu et al., 2018). 
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A      B 

  
Figure 4.18. Comparison of IntFOLD4 ligand binding site predictions for CASP12 target T0911 (PDB ID 6e9n) 
(A) Predicted ligand binding site residues shown as sticks with incorrect predictions in red, the predicted ligand 78M shown as 
sphere and coloured yellow and located in the middle of the protein. The AFS ligand is shown as sphere and coloured yellow 
and shown at the top of the protein. A BDT score of 0.05 and MCC score of 0.03 was obtained (B) The observed ligand binding 
site for T0911 with binding site residues shown as sticks and coloured blue the observed ligand GCO is shown as sphere and 
coloured yellow.  
 
 

The ninth predicted CASP12 target with a ligand in the crystal structure is T0911 and the 

MCC and BDT score was 0.03 and 0.05, respectively.  As with CASP12 target T0910, there 

were no correct predictions and IntFOLD4 predicted 13 residues, whereas there are 10 

observed ligand binding site residues. The ligands predicted by IntFOLD4 are (2S)-

2,3,dihydroxypropyl(7Z)-pentadec-7-enoate (78M) and N-[1R)-1-phosphonoethyl]-L-

alaninamide (AFS). In comparison, the ligand present in the crystal structure is gluconic acid 

(GCO), and the observed ligand binding site residues are predicted in a distal location from 

the ligand as shown in Figure 4.18.  

 

Figure 4.19 below shows the TM-align superposition of the observed and predicted 

structures. A TM-score of 0.82921 was achieved, showing very good structural homology. 

The main difference between the two models was the disordered flexible loops which is seen 

in the predicted model (red).   
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Figure 4.19. Comparison of TMalign (Zhang and Skolnick, 2005) structures for predicted and observed structure for 
T0911 (PDB ID 6e9n) 
The structure in blue is the observed structure for T0911 and the predicted structure is in red. A TM-score of 0.82921 was 
achieved for the protein structures. The score was normalised for the observed structure T0911 as it is the reference molecule 

 
 
  



Chapter 4. Anaylsis of IntFOLD4 from CASP12  

 
 

Page 214 of 645 

4.3.3 Apo structures: critical residues, known motifs or site-finding residues  

 
CASP12 identified nine targets which came under the apo category, these were T0880-0, 

T0880-1, T0894 (PDB ID 5hkq), T0895 (PDB ID 5hkq), T0896, T0913, T0917, T0942 (PDB 

ID 5xi8) and T0947. IntFOLD4 predicted ligand-binding sites for the following targets; T0896, 

T0913, T0917 and T0942 (PDB ID 5xi8). CASP12 target IDs are given outside parenthesis 

and PDB IDs, where applicable within parenthesis.   

 
A         B 

  
Figure 4.20. Comparison of IntFOLD4 ligand binding site predictions for CASP12 target T0896  
(A) Predicted ligand binding site residues shown as sticks with incorrect -predictions in red, the predicted ligands d-glutamic 
acid (DGL) and (2S,3R,4S)-4-{[(3S,5R)-5-(dimethylcarbamoyl)pyrrolidin-3-yl]sulfanyl}-2-[(2S,3R)-3-hydroxy-1-oxobutan-2-yl]-3-
methyl-3,4-dihydro-2H-pyrrole-5-carboxylic acid (MXR) shown as spheres and coloured yellow. BDT score of 0.00978 and 
MCC score of 0.0344 (B) The observed ligand binding site for T0896 with binding site residues shown as sticks and coloured 
blue no observed ligands are shown as no PDB ID has been released.   
 
 
 

The first predicted IntFOLD4 apo predicted CASP12 target is T0896 and the MCC and BDT 

score was 0.00978 and 0.0344, respectively. There were no correct predictions and 

IntFOLD4 predicted 10 residues, whereas there are 23 observed ligand binding site residues 

as shown in Figure 3.20. One of the predicted ligands; DGL exists as a free ligand in 39 

entries on PDB (Liu et al., 2018). Examples of proteins which have DGL has a bound ligand 

include isomerase and hydrolase (Burley et al., 2017), as there is no PDB ID associated with 

the target, at the time of writing, classification of the protein and potential identification of 

ligands is unable to be completed at this stage. In comparison, the other predicted ligand 
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MXR (meropenem), is only present in one entry on PDB (3vyp), a transferase (Burley et al., 

2017).  Meropenem is a member of the carbapenem class of β-lactams and contains a 

bicyclic nucleus, a pyrroline ring and a β-lactam ring. Research has been conducted into the 

role of meropenem in transpeptidase enzymes to investigate other therapies for multidrug-

resistant and extensively drug-resistant strains of M.tuberculosis (Burley et al., 2017). 

 
 
 
Figure 4.21 below shows the TM-align superposition of the observed and predicted 

structures. A TM-score of 0.36086 was achieved, showing poor structural homology. The 

difference between the two models is a part of the predicted 3D model (red) which was not 

folded into the structure (partly shown).  

 

Figure 4.21. Comparison of TMalign (Zhang and Skolnick, 2005) structures for predicted and observed structure for 
T0896 
The structure in blue is the observed structure for T0896 and the predicted structure is in red. A TM-score of 0.36086 was 
achieved for the protein structures. The score was normalised for the observed structure T0896 as it is the reference molecule 
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A         B 

 
Figure 4.22. Comparison of IntFOLD4 ligand binding site predictions for CASP12 target T0913  
(A) Predicted ligand binding site residues shown as sticks with incorrect predictions in red, the predicted ligands arginine (ARG) 
and citrulline (CIR) shown as spheres and coloured yellow. BDT score of 0.09 and MCC score of 0.03 (B) The observed ligand 
binding site for T0913 with binding site residues shown as sticks and coloured blue no observed ligands are shown due to no 
PDB ID being released  

 
The second IntFOLD4 apo CASP12 target is T0913 and the MCC and BDT score was 0.03 

and 0.09, respectively. There were no correct predictions and IntFOLD4 predicted 12 

residues, whereas there are 13 observed ligand-binding sire residues. It can be debated if 

ARG is a biologically relevant ligand, as it is an essential amino acid (Li et al., 2013). 

However, the other predicted ligand CIR could potentially be a biologically relevant ligand, 

as it has been used in nutritional supplementation and for treating dietary shortage or 

imbalance. As with other CASP12 targets where no PDB ID has been associated, the 

observed ligand has not been shown in the predicted structure and is shown above in Figure 

4.22.  

 
Figure 4.23 below shows the TM-align superposition of the observed and predicted 

structures. A TM-score of 0.77492 was achieved, showing good structural homology, despite 

the poor folding of the predicted 3D model (red).  
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Figure 4.23. Comparison of TMalign(Zhang and Skolnick, 2005) structures for predicted and observed structure for 
T0913 
The structure in blue is the observed structure for T0913 and the predicted structure is in red. A TM-score of 0.77492 was 
achieved for the protein structures. The score was normalised for the observed structure T0913 as it is the reference molecule 
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A         B 

 
Figure 4.24. Comparison of IntFOLD4 ligand binding site predictions for CASP12 target T0917  
(A) Predicted ligand binding site residues shown as sticks with incorrect -predictions in red and correct predictions in blue the 
predicted ligands nicotinamide adenine dinucleotide (NAD) and 5,6-dihydroxy-NADP (NZQ) shown as spheres and coloured 
yellow. BDT score of 0.275 and MCC score of 0.488 (B) The observed ligand binding site for T0917 with binding site residues 
shown as sticks and coloured blue no observed ligands are shown due to no PDB ID being associated with the target  

 
The third predicted IntFOLD4 apo CASP12 target is T0917 and scored the best MCC and 

BDT score for the apo targets with 0.488 and 0.275, respectively, IntFOLD4 predicted 19 

residues whereas there are 73 observed residues. Of the 19 residues which were predicted 

by IntFOLD4 all were correct predictions. However, IntFOLD4 missed off 54 residue 

predictions and is shown above in Figure 4.24.  The biologically relevant ligands predicted 

by IntFOLD4 are NAD and NZQ. The ligand NAD, when present in the reduced; NADH is a 

ubiquitous cellular electron donor and has long been known to control the activity of several 

of several oxidoreductase enzymes (Burley et al., 2017). The other predicted ligand NZQ 

exists in two entries on PDB (1oj7 and 5yvm) (Anderson et al., 2017), as there is  no PDB ID 

associated with this target, at this stage without the CASP12 organisers releasing the PDB 

ID it is impossible to determine if target is one of the entries. 

 
 
Figure 4.25 below shows the TM-align superposition of the observed and predicted 

structures. A TM-score of 0.90785 was achieved, showing very good structural homology 

with the flexible loops of the predicted protein 3D model (red), not folding exactly as the 

observed model. 
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Figure 4.25. Comparison of TMalign (Zhang and Skolnick, 2005) structures for predicted and observed structure for 
T0917 
The structure in blue is the observed structure for T0917 and the predicted structure is in red. A TM-score of 0.90785 was 
achieved for the protein structures. The score was normalised for the observed structure T0917 as it is the reference molecule 
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A         B 

 
Figure 4.26. Comparison of IntFOLD4 ligand binding site predictions for CASP12 target T0942 (PDB ID 5xi8) 
(A) Predicted ligand binding site residues shown as sticks with incorrect predictions in red, the predicted ligands TYR, GLU, 
GLN and LEU have not been shown. A BDT score of 0.0039 and MCC score of 0.0186 (B) The observed ligand binding site for 
T0942 with binding site residues shown as sticks and coloured blue no observed ligands is shown as it wasn’t present in the 
crystal structure  
 
 

The final predicted apo CASP12 target is T0942 and scored a MCC and BDT score of 

0.0186 and 0.0039, respectively. IntFOLD4 predicted five residues whereas there were 10 

observed residues of which none were correct predictions. The ligands predicted by 

IntFOLD4 were TYR, GLU, GLN and LEU and have not been shown in Figure 4.26 as they 

might not be biologically relevant.  In comparison, the observed ligand was potentially zinc 

(Liu et al., 2018) and the PDB ID entry for this target identified MSE as a ligand, however 

previous experience in CASP competitions and available literature information has shown 

that MSE is not a biologically relevant ligand. Therefore, in this instance IntFOLD4 was 

unable to predict biologically relevant ligands. 

 
 
 
Figure 4.27 below shows the TM-align superposition of the observed and predicted 

structures. A TM-score of 0.52751 was achieved suggesting the predicted 3D model has 

generally the same fold as the observed model. As can be seen from the Figure below, the 

alpha helices of the predicted model (red) was not aligned with the observed model (blue).  
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Figure 4.27. Comparison of TMalign (Zhang and Skolnick, 2005) structures for predicted and observed structure for 
T0942 (PDB ID 5xi8) 
The structure in blue is the observed structure for T0942 and the predicted structure is in red. A TM-score of 0.52751 was 
achieved for the protein structures. The score was normalised for the observed structure T0942 as it is the reference molecule 
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4.3.4 Key, motifs and mutation structures: critical residues, known motifs or site-finding 
residues  

 
A         B 

  
Figure 4.28. Comparison of IntFOLD4 ligand binding site predictions for CASP12 target T0860 (PDB ID 5fjl) 
(A) Predicted ligand binding site residues shown as sticks with incorrect -predictions in red, the predicted ligand beta-d-glucose 
(BGC) is shown as sphere and coloured yellow. A BDT score of 0.0055 and MCC score of 0.0031 (B) The observed ligand 
binding site for T0860 with binding site residues shown as sticks and coloured blue no observed ligands are shown   

 
The first predicted CASP12 motif target is T0860 and scored a MCC and BDT score of 

0.0031 and 0.0055, respectively. IntFOLD4 predicted one residue (Figure 4.28A) whereas, 

there were 16 observed residues of which none were correct predictions. The ligand 

predicted by IntFOLD4 was BGC and exists in 821 entries on PDB (Burley et al., 2017) and 

is not a ligand associated with PDB ID 5fjl. The observed ligand as per the PDB entry and 

FunFOLD3 was chlorine. The chlorine ligand has not been shown in Figure 4.28B as it does 

not match the ligand-binding site residues obtained by the CASP12 organisers.    

 
Figure 4.29 below shows the TM-align superposition of the observed and predicted 

structures. A TM-score of 0.84792 was achieved showing very good structural homology.  
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Figure 4.29. Comparison of TMalign (Zhang and Skolnick, 2005) structures for predicted and observed structure for 
T0860 (PDB ID 5fjl) 
The structure in blue is the observed structure for T0860 and the predicted structure is in red. A TM-score of 0.84792 was 
achieved for the protein structures. The score was normalised for the observed structure T0860 as it is the reference molecule 
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A         B 

 
Figure 4.30. Comparison of IntFOLD4 ligand binding site predictions for CASP12 target T0882 (PDB ID 5g3g) 
(A) Predicted ligand binding site residues shown as sticks with incorrect predictions in red, the predicted ligand VAL has not 
been shown. A BDT score of 0.0076 and MCC score of 0.0035 (B) The observed ligand binding site for T0882 with binding site 
residues shown as sticks and coloured blue no observed ligands are shown   

 
The first predicted CASP12 target falling into the key residue category  and scored a MCC 

and BDT score of 0.0035 and 0.0076, respectively. IntFOLD4 predicted one residue as 

shown in Figure 3.30A whereas,  there were seven observed residues of which none was a 

correct prediction as shown in Figure 4.30B. The ligand predicted by IntFOLD4 was VAL. In 

comparison, the PDB entry for 5g3g identified the following as ligands; sodium ion (Na), 2-

methypentane-2,4-diol (MRD), copper ion (Cu) and 2-methyl-2,4-pentanediol (MPD) (Burley 

et al., 2017). As has been seen in previous PDB entries, not all ligands are biologically 

relevant. However, a literature search of thermostable multicopper oxidase The catalytic 

motif in these family of proteins which comprises of laccases, ferroxidases and ascorbate 

oxidase and ceruloplasmin, includes at least four copper atoms (Burley et al., 2017). 

Furthermore, data available from the literature has shown that MPD was used as part of a 

reservoir solution for crystallisation of the protein (Serrano-Posada et al., 2011). No 

observed structure was released by CASP12 organisers, therefore results are shown for the 

crystal structure from the PDB.  
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A 

 
B 

 
Figure 4.31. Comparison of IntFOLD4 ligand binding site predictions for CASP12 target T0914 (PDB ID 6cp8) 
(A) ) Predicted ligand binding site residues shown as sticks with correctly predicted binding site residues in blue and incorrect 
predictions in red. The predicted ligand bacteriochlorophyll A (BCL)  is shown as sphere and coloured yellow and the other 
predicted ligand spirilloxanthin (CRT) is shown as sphere and coloured orange. A BDT score of 0.015 and MCC score of 0.08  
(B) The observed ligand binding site for T0914 with binding site residues shown as sticks and coloured blue no observed 
ligands are shown   
 
 

The second predicted CASP12 target falling into the key residue category is T0914. 

Currently, the CASP12 organisers have not released the structure. Therefore, the predicted 

structure from IntFOLD4 has been used to show the observed ligand-binding site residues 

as shown in Figure 4.31. The MCC and BDT score based on the predicted structure is 0.09 

and 0.015, respectively. Furthermore, IntFOLD4 predicted 29 residues and there were 26 
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residues in the observed structure. As can be seen from Figure 4.31, the predictions appear 

to be on opposite side of the protein.  
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A      B 

   
Figure 4.32. Comparison of IntFOLD4 ligand binding site predictions for CASP12 target T0915 (PDB ID 6cp8) 
 
(A) Predicted ligand binding site residues shown as sticks with incorrect -predictions in red .The predicted ligand LEU has not 
been illustrated. A BDT score of 0.012 and MCC score of 0.06 (B) The observed ligand binding site for T0915 with binding site 
residues shown as sticks and coloured blue no observed ligands are shown   
 
 

The third predicted CASP12 target falling into the key residue category is T0915. As with 

T0914 there is no associated structure. Therefore, the predicted structure from IntFOLD4 

has been used to illustrate the observed ligand-binding site residues and is shown above in 

Figure 4.32. The predicted structure was used to calculate the MCC and BDT score of 0.013 

and 0.06, respectively. IntFOLD4 made eight residue predictions and there are 14 observed 

residues. The ligand predicted by IntFOLD4 was LEU. As with T0914, no structure has been 

released by CASP12 organisers and the predicted 3D model has been shown for the 

observed ligand-binding site residues.   
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A        
 

 
 
 
B 
 

 
Figure 4.33. Comparison of IntFOLD4 ligand binding site predictions for CASP12 target T0920-0 (PDB ID 5ere) 
(A) Predicted ligand binding site residues shown as sticks with correctly predicted binding site residues in blue and incorrect -
predictions in red. The predicted ligand nicotinic acid (NIO) is shown as sphere and coloured yellow. A BDT score of 0.37 and 
MCC score of 0.57 (B) The observed ligand binding site for T0920-0 with binding site residues shown as sticks and coloured 
blue no observed ligands are shown   

 
 
The final predicted CASP12 target in the key residue category is T0920-0  a MCC and BDT 

score of 0.57 and 0.37, respectively. IntFOLD4 predicted 12 residues of which ten of there 

were correct predictions and is shown above in Figure 4.33. In comparison, there were 31 
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observed residues. In this category, this prediction scored the highest MCC and BDT score. 

IntFOLD4 predicted NIO as a biologically relevant ligand. The ligands on the PDB entry are 

listed as cytosine, glycerol, calcium, ethylene glycol, alpha-ketoisocaproic acid and acetic 

acid. The PDB entry for this protein has no literature currently published, there is a 

publication awaiting to be published and is entitled a novel extracellular ligand receptor, 

suggesting there is more to be determined about the protein. 

 

Figure 4.34 below shows the TM-align superposition of the observed and predicted 

structures. A TM-score of 0.58477 was achieved, this score appears to be driven by the lack 

of folding of one of the dimers (not shown completely). 

 

Figure 4.34. Comparison of TMalign (Zhang and Skolnick, 2005) structures for predicted and observed structure for 
T0920-0 (PDB ID 5erel) 
The structure in blue is the observed structure for T0920-0 and the predicted structure is in red. A TM-score of 0.58477 was 
achieved for the protein structures. The score was normalised for the observed structure T0920-0 as it is the reference 
molecule 
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Table 4.9 below is a comparison of the ligands predicted by the FunFOLD3 component of 

IntFOLD4 in comparison to the ligands associated with the CASP13 targets, as per the PDB 

entry.  

 
 
Table 4.9. Comparison of ligands predicted using the FunFOLD3 component of IntFOLD4 and ligands identified in the 
crystal structure for holo CASP12 targets  
 
 

CASP 12 target IntFOLD4 ligand Observed ligand 

T0861 
(PDB ID 5j5v) 

 
PLP 

 
LLP 

 
T0863 

(PDB ID 5syl) 
 

 
ASN, THR, LEU 

 
CLR 

T0873 
(PDB ID 6da6) 

MN FMN 

T0879 
(PDB ID 5jmu) 

ZN ZN 

T0889 
(PDB ID 5j09) 

NADP SOR 

T0891 
(PDB ID 4ymp) 

HEM HEM 

T0893 ADP ADP 
T0910 SBT ANP 
T0911 AFS and 78M GCO 

 
 



Chapter 4. Anaylsis of IntFOLD4 from CASP12  

 
 

Page 231 of 645 

4.4 Retrospective analysis of IntFOLD4 for biological relevance in CASP12 

 
The results from IntFOLD4 were analysed as part of biological relevance which was a topic 

presented under the umbrella of functional assessment at the CASP 12 meeting (Forli et al., 

2016) There were three categories around biological relevance/function assessment and 

these were holo structures, apo structures and functional patches, which contained one or 

more key functional residues. The automated FunFOLD3 approach, as part of the IntFOLD4 

web server, scored an average MCC and BDT of 0.35 and 0.39, respectively for holo 

structures and predicted the correct ligand for three of the nine proteins. In this category, 

IntFOLD4 was ranked second in the strong server performance categories (Altman, 2016).  

For specific targets, IntFOLD4 was ranked onto of the top servers that predicted the best 

functional model for T0861 (MCC and BDT 0.497 and 0.543, respectively), the top scoring 

server for T0873 (MCC and BDT 0.673 and 0.648, respectively), T0889 (MCC and BDT 0.29 

and 0.36, respectively) and T0910 (MCC and BDT 0.004 and 0.002, respectively) and the 

second top scoring server for T0891 (MCC and BDT 0.448 and 0.510, respectively) and 

T0891 (MCC and BDT 0.448 and 0.510, respectively). IntFOLD4 did not appear in the 

rankings for T0911 and the rankings for T0863, T0879 and T0893 were not reported by the 

assessors (Altman, 2016). In comparison, for the apo structure predictions IntFOLD4 did not 

feature among the top ranked servers. However, IntFOLD4 did rank highly for CASP12 

target T0942 (MCC and BDT 0.0186 and 0.0039, respectively) but did not feature in the 

rankings for the top scoring MCC and BDT target T0917 which achieved a score of 0.488 

and 0.275, respectively.  

 

As can be seen from the results, there is a clear difference between the results obtained for 

holo structures compared to apo structures. FunFOLD3 (forming the ligand binding site 

prediction aspect of  IntFOLD4) was able to make predictions for all nine holo structure 

targets, whereas predictions could only be made for four of the nine apo structure targets. 

One of the reasons as to why there could be a difference  between predictions is the very 



Chapter 4. Anaylsis of IntFOLD4 from CASP12  

 
 

Page 232 of 645 

nature of the holo and apo structures. Holo structures are in the ligand bound state whereas 

apo structures are unbound ligand structures. The underlying premise for prediction of 

functional assessment using ligands by FunFOLD3 is having the ligand already present in 

the structure, as the predictions are based on proteins which have similar structure will bind 

similar ligands. Hence, predictions with an unbound ligand will be more difficult as the server 

is limited in its ability as the apo structure won’t have the ligand bound to it. It has been 

previously reported that there are differences in crystallisation conditions between holo and 

apo structures and the crystallisation conditions required for apo structures are not 

necessarily transferable to the protein/ligand (holo) complex (Liu et al., 2018).  

 

A particular problem is the conformational transitions of the receptor associated with ligand 

binding pose a severe challenge for the structure elucidation of holo complexes (Danley DE, 

2008). Hence, why servers which performed well in holo structure prediction did not perform 

well in apo structure prediction and the converse (Seeliger and de Groot, 2010). In order to 

obtain successful holo structure prediction from apo structure prediction a degree of 

flexibility is required within the protein model. One of the top scoring apo structure methods 

was Rosetta (Altman, 2016) and this differs from the IntFOLD4 server, in that the main focus 

of Rosetta is structure prediction with no focus on protein-ligand interactions and as apo 

structures have no ligand bound in its structure this will explain why the server performed 

highly in this structure category but came eighth in the holo structure category, whereas 

IntFOLD came second (Ovchinnikov et al., 2018). For the key patches category, IntFOLD4 

was not ranked as one of the top scoring servers. However, IntFOLD4 models did score 

highly for targets T0860 and T0920-1, interestingly there was no functional assessment 

prediction by FunFOLD3 associated, this may suggest that the best-ranked overall 

prediction may not have the best functional quality and could sometimes be significantly 

worse (Altman, 2016).   
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One of the conclusions from CASP12 for biological relevance, was that models with high 

structure quality have high functional quality (Altman, 2016) and when looking at the model 

quality and functional quality as determined by MCC and BDT. For IntFOLD4 in the holo 

structure category the average global assessment quality score for the top ranked models 

was 0.68 with the average MCC and BDT score being 0.35 and 0.39, respectively. For the 

apo structure category the average global assessment quality score was 0.50 and the 

average MCC and BDT was 0.14 and 0.09, respectively and finally the key motifs category 

the average global quality assessment score was 0.41 and the average MCC and BDT 

score was 0.13 and 0.09, respectively. Therefore, the results from IntFOLD4 server certainly 

support this conclusion and further work would need to be undertaken to determine if model 

quality is important for functional assessment or if functional assessment is important for 

model quality and a further consideration will be if the target is holo or apo structure.  

 

FunFOLD3 is residue-centric for the prediction of ligand binding sites, as opposed to pocket-

centric. Residue-centric prediction and evaluation will favour spatially precise prediction of 

one larger binding site over a few smaller ones and this has been demonstrated with targets 

in CASP11 in particular T0845 (Figure S.10). 

 

As mentioned previously, FunFOLD3 is a template-based modelling (TBM) method for the 

prediction of ligand-binding site residues. One of the problems with relying on this method, is 

the over-reliance on the ground truth as defined by known protein-ligand complexes from 

PDB. It is naïve to assume that in our datasets all possible binding sites are demarked by 

bound ligands. Locations labelled as negatives might have the particular ligand centered in a 

different PDB entry which is not something which can be captured, at this stage (Altman, 

2016). However, TBM are well known for being the most successful of currently available 

methods and often produce high confidence predictions supported by examples in template 

library. On the other hand, since this method and others are based on templates unable to 
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predict novel sites. In comparison, IntFOLD4 has a limited input with only requiring the 

amino acid sequence. Whereas, the standalone version of FunFOLD3 requires a 3D protein 

model, a list of templates and the primary sequence. This relatively limited input for 

IntFOLD4 could be both a positive or a negative and could potentially explain the differing 

results obtained with standalone FunFOLD3 compared with the FunFOLD3 component of 

IntFOLD4. The positive of IntFOLD4 requiring just the sequence to predict ligand-binding 

residues could be that the binding residues of proteins are closely bound with their tertiary 

structure, so it is possible to predict binding residues from amino acid sequences (Cui et al., 

2019) and these residues could be conserved among proteins therefore, it is possible to 

predict ligand-binding residues from sequence. The FunFOLD3 component of IntFOLD4 

predicted ligands for a total of 18 CASP 12 protein targets (refer to Tables 4.6, 4.7 and 4.8) 

out of a total of 28 protein targets (refer to Table 4.2). Six of the targets were classified as 

free-modelling (T0863, T0880-1, T0880-0, T0864, T0914, T0915) and the FunFOLD3 

component was able to make a prediction for one of the targets (T0863) but not the 

remaining five. In comparison, standalone FunFOLD3 predicted ligands and ligand-binding 

predictions for two of these protein targets (T0911 and (T0913). Standalone FunFOLD3 

made ligand and ligand-binding site predictions for three additional targets T0912, T0916 

and T0919, which were not included in the biologically relevant list from the CASP 

organisers and the reason for this is currently unknown.  On these specific datasets from 

CASP12, FunFOLD3 component of IntFOLD4 showed a clear strength in comparison to 

standalone FunFOLD3 and one of the reasons for this could be the use of templates to 

predict ligands. With TBM methods, ligands will be predicted if a template with a similar fold 

contains a biologically relevant ligand and the orientation of this ligand in the predicted 

protein model will depend on the orientation within the template.  Additionally, standalone 

FunFOLD3 has a quality assessment tool so this could lead to different but not necessarily 

stranger results. Despite the differences between the FunFOLD3 component of IntFOLD4 

and standalone FunFOLD3, it is worth mentioning that this is based on only one dataset and 
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not across different CASP protein targets. Furthermore, the highest MCC and BDT score 

was 0.571 and 0.750, respectively (refer to Table 4.6). In comparison, for FunFOLD3 the 

highest MCC and BDT was 1.0 albeit not for the same ligand and on a different dataset 

(refer to Figure 3.27). It is important to note, as with many computational methodologies, 

extensive testing and validation of these algorithms has been a common topic of literature 

review (Ghersi & Sanchez, 2011;Fischer, Mayer and Söding, 2008). Therefore, based on the 

number of datasets available for standalone FunFOLD3 and that early iterations of 

FunFOLD has been extensively benchmarked in both CASP8 and CASP9 datasets. With 

FunFOLD among the top 10 methods in CASP9 (Schmidt et al., 2011), it was deemed the 

best methodology out of the two to go ahead with development and refinement using 

docking. Further directions of this thesis could be development of IntFOLD4 utilising docking 

once more data from future CASP experiments is known.  

 

In summary, FunFOLD3 is user friendly it requires a fairly simple input being the amino acid 

and predictions of ligand-binding site are among the most accurate compared with other 

available methods, as shown by the results  of the CASP competitions .  

 

Chapters 3 and 4 have explored two methodologies for the prediction of function using 

ligands and ligand-binding site residues. In order to explore a “gold standard” for the 

prediction of function, benchmarking of GO terms will be explored in the next chapter. 

Additionally, computational docking is used widely for the study of protein-ligand interactions 

and/or for drug discovery or development (Punta et al., 2012). Single docking experiments 

are useful for exploring the function of a target (Forli et al., 2016) and could have great 

potential for investigating the interaction of T0899 with the magnesium ligand. Servers such 

as AutoDock already exist for this purpose and AutoLigand is a program for predicting 

optimal sites of ligand-binding on receptors (Forli et al., 2016). Furthermore, AutoDock might 

also be useful for a number of targets where there is a general consensus in binding site but 
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the ligand needs to be orientated in order to improve the prediction and will be analysed in 

Chapter 6.   
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5.1 introduction 

 
Whilst determining protein-ligand interactions and protein-binding affinity is significant, the 

general functionality of a protein is also important. This can be inferred from the ligands 

which are bound, but more precisely, using GO terms and, specifically for enzymes, this is 

done using EC numbers. 

 
 
The EC was launched in 1955, by the International Congress of Biochemistry to create a 

nomenclature for enzymes. The classification works numerically and each enzymatic function 

is described by a set of four numbers; referred to as EC numbers. Each of the four numbers 

represents specific description of the enzyme and its activity (Alborzi, Devignes and Ritchie, 

2017). The first digit represents the top-level or branch of the hierarchy and selects one of 

the six principle enzyme classes which are; oxidoreductase (EC 1), transferase (EC 2), 

hydrolase (EC 3), lyase (EC 4), isomerase (EC 5) and ligase (EC 6) (Punta & Ofran, 2008). 

The second digit defines a general enzyme class, specifically the chemical substrate type. 

The third digit, a more specific enzyme-substrate class (e.g. distinguishing methyl 

transferase from formyl transferase). The fourth digit, a particular enzyme substrate (Alborzi, 

Devignes and Ritchie, 2017) An example to demonstrate the classification is, 

carboxylesterase (3.1.1.1) and isochorismatase (3.3.2.1). Both these enzymes share the 

same basic activity of hydrolase however, the subsequent numbers show that the enzymes 

act on different types of bonds; 3.1- act on ester bonds and 3.3- act on an ether bond 

(Alborzi, Devignes and Ritchie, 2017). As a result of EC numbers being assigned according 

to the reaction a protein catalysed, it is possible for different proteins to be assigned the 

same EC number, even if they have no sequence similarity or if they belong to different 

structural families (Punta & Ofran, 2008). 

 

The GO project is a controlled vocabulary to describe the function of any gene product in any 

organism. GO terms are organised in a tree-like structure, starting from a more general “root” 
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to specific “leaves”, (Alborzi, Devignes and Ritchie, 2017) a method called semantic 

similarity, which measures the degree of relatedness between two entities. This method is 

based on similarity of their annotations and provides a repository of biological annotations of 

genes and proteins (Rubin & Yarden, 2001). GO is organised as three independent directed 

acyclic graphs (DAGs) based on three specific aspects of proteins; molecular function (the 

underlying activity of a gene product at the molecular level, such as binding or catalysis), 

biological process (operations or sets of molecule events with defined beginning and end, 

fundamental to functionality of integrated living cells, tissues, organs or organisms) and 

cellular component (parts of a cell or its extracellular environment) (Dutta, Basu and Kundu, 

2017). The nodes represent GO terms and the edge represent different hierarchical 

relationships. The two most important relations for GO terms are ‘is a’ and ‘part of’ (Dutta, 

Basu and Kundu, 2017). ‘Is a’ means term A is a subtype of term B, e.g., transcription is a 

type of nucleic acid metabolic; and ‘part of’ means term A is always part of term B e.g. 

transcription is always part of gene expression (Dutta, Basu and Kundu, 2017). 

 

GO is loosely hierarchical with ‘child’ terms showing more specificity than their ‘parent’ terms, 

but this hierarchy is not strict with ‘child’ terms having the potential to possess more than one 

parent term (QuickGO, 2017). Every term has a term name and a unique zero-added seven 

digit identifier (often referred to as term accession or term accession number), prefixed by 

GO:, e.g. GO:0006818. The numerical portion of the ID has no inherent meaning or relation 

to the position of the term in the ontologies (Gene Ontology Consortium, 2019). Instead, GO 

IDs are assigned to individual ontology editors or editing groups and can thus be used to 

trace who added the term (Gene Ontology Consortium, 2019). 

 

Using the GO annotation method, the large transmembrane protein complex, cytochrome c 

(GO:0004129) would be described by the molecular function term oxidoreductase activity, 

the biological process terms oxidative phosphorylation and induction of cell death and the 
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cellular component terms mitochondrial matrix and mitochondrial inner membrane (Gene 

Ontology Consortium, 2019). Figure 5.1 is the hierarchical mapping for cytochrome c, 

illustrating the biological process and molecular function. 

 

 
Figure 5.1. Hierarchical mapping of Gene Ontology (GO) categories enriched in cytochrome c oxidase activity 
Biological process is on the left and molecular function is on the right. The black lines illustrate “is a” and the blue lines 
illustrate “part of”. The top of the chart (biological process and molecular function) are less specific concepts and 
further down the chart are more specific concepts, finishing with the protein in question; cytochrome c. The colours in 
the boxes are slim colours and denote which organism the activity was identified in (see Appendix A for further 
information). Figure taken from Gene Ontology Consortium, 2017 
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The GO term annotations can be used to infer the functional relationship between two 

proteins. The semantic similarity between two interacting proteins can be estimated by 

combining the similarity scores of GO terms associated with the proteins (QuickGO, 2017). 

GO has become the standard for assessing the performance of function prediction methods 

(Dutta, Basu and Kundu, 2017) due to the semantic similarity utilised. Semantic similarities 

are used in protein-protein interaction predictions, interaction network predictions, biological 

pathway modelling and clustering of proteins (Punta & Ofran, 2008). 

In comparison to EC numbers, GO terms are used more widely in the prediction of proteins. 

This is supported by the number of methods (Dutta, Basu and Kundu, 2017) to predict GO 

terms compared with the fewer methods to utilise EC numbers (Gerlt et al., 2015; Gundersen 

et al., 2015; Koskinen et al., 2015; Piovesan, Giollo, Leonardi, et al., 2015; Sahraeian, Luo 

and Brenner, 2015; Yu, Zhu and Domeniconi, 2015). However, there are methods for 

predicting both GO and EC terms, including COACH (Jianyi Yang, Roy and Zhang, 2013) 

and FunFOLD3 (Roche & McGuffin, 2015). 

 
The Critical Assessment of Functional Annotation (CAFA) is a community challenge that 

seeks to bridge the gap between the expanding pool of molecular data and the limited 

resources available to understand protein function (Radivojac et al., 2013). The first two 

CAFA challenges (CAFA1 and CAFA2) and were carried out in 2010-2011 and 2013-2014, 

respectively. CAFA1 adopted a time-delay evaluation method, where protein sequences that 

lacked experimentally verified annotations, or targets were released for prediction (Radivojac 

et al., 2013). CAFA2 expanded on CAFA1 by the number of ontologies used for predictions, 

the number of target and benchmark proteins and the introduction of new assessment 

metrics. CAFA3, continued with all type of evaluation from CAFA1 and CAFA2, with the 

addition of experimental screens to identify genes associated with specific functions 

(Radivojac et al., 2013). 
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Aim: The aim of this chapter was to determine if there is a gold standard when it comes to 

protein function prediction. Thus, the question to answer is; does the prediction of ligand and 

ligand-binding residues provide insight into a protein’s function or is it the prediction of GO 

terms? Overall, this chapter aimed to analyse the results of FunFOLDQ in a blinded 

experiment focusing solely on the prediction of GO terms.  

 
5.2 Materials and Methods 

 

5.2.1 Materials  

 
CAFA organisers provided participants with 24 target files which were split into three 

categories (i) prokaryotic (ii) eukaryotic and (iii) moonlighting. An example of the target files 

for each of the three types is given below, with the entire target file for moonlighting proteins 

provided in the Appendix 3. Targets files are available for downloaded from the CAFA 

website (http://biofunctionprediction.org/cafa/).  

  

1. Prokaryotic 

>T833330000001 3MG1_ECOLI 
MERCGWVSQDPLYIAYHDNEWGVPETDSKKLFEMICLEGQQAGLSWITVLKKRENYRACF 
HQFDPVKVAAMQEEDVERLVQDAGIIRHRGKIQAIIGNARAYLQMEQNGEPFVDFVWSFV 
NHQPQVTQATTLSEIPTSTSASDALSKALKKRGFKFVGTTICYSFMQACGLVNDHVVGCC 
CYPGNKP 
 

2. Eukaryotic 

>T37020000001 14310_ARATH 
MENEREKQVYLAKLSEQTERYDEMVEAMKKVAQLDVELTVEERNLVSVGYKNVIGARRAS 
WRILSSIEQKEESKGNDENVKRLKNYRKRVEDELAKVCNDILSVIDKHLIPSSNAVESTV 
FFYKMKGDYYRYLAEFSSGAERKEAADQSLEAYKAAVAAAENGLAPTHPVRLGLALNFSV 
FYYEILNSPESACQLAKQAFDDAIAELDSLNEESYKDSTLIMQLLRDNLTLWTSDLNEEG 
DERTKGADEPQDEN 
 

3. Moonlighting 

>M96060000001 IPPK_HUMAN 
MEEGKMDENEWGYHGEGNKSLVVAHAQRCVVLRFLKFPPNRKKTSEEIFQHLQNIVDFGK 
NVMKEFLGENYVHYGEVVQLPLEFVKQLCLKIQSERPESRCDKDLDTLSGYAMCLPNLTR 
LQTYRFAEHRPILCVEIKPKCGFIPFSSDVTHEMKHKVCRYCMHQHLKVATGKWKQISKY 
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CPLDLYSGNKQRMHFALKSLLQEAQNNLKIFKNGELIYGCKDARSPVADWSELAHHLKPF 
FFPSNGLASGPHCTRAVIRELVHVITRVLLSGSDKGRAGTLSPGLGPQGPRVCEASPFSR 
SLRCQGKNTPERSGLPKGCLLYKTLQVQMLDLLDIEGLYPLYNRVERYLEEFPEERKTLQ 
IDGPYDEAFYQKLLDLSTEDDGTVAFALTKVQQYRVAMTAKDCSIMIALSPCLQDASSDQ 
RPVVPSSRSRFAFSVSVLDLDLKPYESIPHQYKLDGKIVNYYSKTVRAKDNAVMSTRFKE 
SEDCTLVL 
 
 

5.2.2 Methods  

 
The methodology has been described in Chapter 2.  
 
For the Critical Assessment of protein Function Annotation three different algorithms were 

investigated for gene ontology prediction. FunFOLDQ (Roche, Tetchner and McGuffin, 2011; 

Roche, Buenavista and McGuffin, 2012, 2013; Roche & McGuffin, 2016), HHblits (Remmert 

et al., 2012) and a combined approach. During the CAFA prediction season, the combined 

method was used.   

 

HHsearch and HHblits are two main programs which are part of the HH-suite package. Both 

programs can be used to help determine function however, HHblits (HMM-HMM-based 

lightning fast iterative sequence search) is a faster iteration. HHblits has a profile alignment 

prefilter which reduces the number of full HMM-HMM alignment to a few thousand, making it 

faster than PSI-BLAST, yet as sensitive as HHsearch (Remmert et al., 2012). Figure 5.2 

below outlines the algorithm for HHsearch and HHblits.  
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Figure 5.2. Flowchart of the HHsearch and HHblits algorithm   
(A) HMM-HMM alignment used by HHsearch. HMM-HMM alignment of query and target. The alignment is represented as red 
path through both HMMs. M=match, I=insert, D=delete, G=gap. Figure taken from Steinegger et al., 2019. This alignment is 
more sensitive than profile-profile comparison, profile-sequence comparison and sequence-sequence comparison (Söding, 
2005). (B) HHblits workflow. HHblits used iterative HMM-HMM alignment to search for homologous sequences in large 
sequence databases e.g. UniProt. The HHblits databse is a clustered version in which each set of full length alignable 
sequences is represented by an HMM. represented by an HMM. Sequences from matched HMMs with significant E-value are 
added to the query MSA, from which a new HMM is calculated for the next search iteration. A prefilter reduces the number of 
full HMM-HMM alignments  approximately 2500-fold Remmert et al., 2012. Figure taken from Remmert et al., 2012. 

 

 

The combined method, FunFOLDQ and HHblits  

 
The combined method is a combination of the FunFOLDQ algorithm and HHblits. 

FunFOLDQ is similar to FunFOLD3, but using starting models built from templates identified 

using HHsearch, which is a rapid homology modelling method. This combination of two 

orthogonal approaches amalgamates the sequence-based function prediction component 

from HHblits, along with the structure-based prediction component from FunFOLDQ. 

FunFOLDQ used a similar approach to FunFOLD3, however it made use of starting models 

built from templates identified using HHsearch. HHseach aligns a profile HMM against a 

database of target HMMs. The search first aligns the query HMM with each of the target 

HMMs using the Viterbi dynamic programming algorithm, which finds the alignment with the 

maximum score. The E-value for the target is calculated from the Viterbi score (Remmert et 

al., 2012). Target HMMs that reach sufficient significance to be reported are realigned using 

the maximum accuracy algorithm (Biegert & Söding, 2008). The algorithm maximises the 

expected number of correctly aligned pairs of residues and values near 0 produce, long 

A B 
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nearly global alignments and values above 0.3 result in shorted, local alignments 

(Steinegger et al., 2019).  

 

The FunFOLDQ/3 approach follows on from the original FunFOLD method, which was 

designed upon the basis that; proteins structural templates from the PDB containing 

biologically relevant ligands and having the same fold as determined by TM-align will likely 

bind the same ligands. Now, FunFOLD3 makes use of the BioLip database and the 

prediction of GO terms, as GO term predictions are included in the BioLip template 

information, in effect the GO term predictions are taken from the closest templates identified 

(Liu et al., 2018).   

 

HHblits is a HMM-HMM-based lightning fast iterative sequence search extending from 

HHSearch. HHSearch utilised profile-profile and HMM-HMM search (sequence profiles and 

profile hidden Markov models) to make it a sensitive class of sequence search methods. 

HHsearch scores a predicted secondary structure either against a predicted secondary 

structure or against a known secondary structure (Söding, 2005). HHblits has a profile-profile 

alignment pre-filter, which reduces the number of full HMM-HMM alignments from many 

millions to a few thousands, thereby making it faster than PSI-BLAST but still as sensitive as 

HHSearch (Roche & McGuffin, 2016). HHblits has been part of the HH-suite since 2001 and 

build high quality multiple sequence starting from a single query sequence or MSA, as 

mentioned previously it works iteratively, repeatedly constructing new query profiles by 

adding the results found in the previous round (Remmert et al., 2012).  

 

The combined method pipeline firstly executed HHblits against the UniProt database and the 

results were used to determine if the sequence was easy or hard to classify. A sequence 

was determined as easy to classify, if the sequence had 10 or more hits to sequence in 

UniProt database with an expected value less than 0.001. In comparison, a hard target had 
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less than 10 sequences, with hits having an expected value more than 0.001. The expected 

(E) value is a parameter that describes the number of hits that can be expected to see by 

chance when searching database of a particular size. The lower the E-value, or the closer it 

is to zero, the more significant the match. 

 

The annotation of GO terms was divided into two pipelines for easy and hard 

targets. The easy target pipeline used HMM-HMM based homology transfer, where the GO 

terms for the top 15 UniProt hits from HHblits were taken as the predicted GO terms. The 

probability was determined using the following equation:  

 
Equation 5.1.  Easy target pipeline predicted GO terms score   

                         

   

The hard target (<20% sequence identity) pipeline utilised structural-based homology 

transfer with FunFOLDQ, i.e., FunFOLD3 was used to predict ligand binding sites based on 

the models constructed from templates identified using the rapid HHsearch algorithm. The 

predicted GO terms were scored as below: 

 
Equation 5.2.  Hard target pipeline predicted GO terms score   

                        

 
For each of the targets, GO terms were predicted according to the following ontologies: 

MFO, BPO and CCO and in the case of human targets; human phenotype ontology (HPO). 

The evaluation was performed separately for each target. As part of the competition teams 

could choose to predict function using one or more of the above ontologies and did not have 

to predict using all of them. A positive prediction was defined as a prediction that was 

identified by the organisers.  

 

Receiver operator characteristics (ROC) curves were used to objectively measure the 

accuracy of the predictions compared to the actual function predictions as provided by the 
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CAFA assessors. The ROC curves provide a graphical representation for each method of 

the proportion of proteins with correctly identified function prediction against the proportion of 

proteins incorrectly identified as positive. An ideal curve should have a high sensitivity or a 

high true positive rate, which is denoted on the y-axis and the false positive rate as low as 

possible. The x axis is the false positive rate and therefore allows the association between 

sensitivity and specificity to be explored as the threshold between a positive and negative 

prediction (Remmert et al., 2012). If a protein had all function annotations correctly predicted 

and with 100% accuracy, both sensitivity and specificity would be equal to one, and the false 

positive rate equal to zero. In this instance, the ROC cure would have to pass through the 

top left hand corner of the plot. The curve would start at the origin; go vertically up the y-axis 

to a sensitivity of 1.0 and then horizontally across to a false positive rate of 1.0. The closer 

the curve to the bottom of the curve the worse the method is at predicting protein function 

accurately (Sedgwick, 2015). Area under the curve can also be calculated from ROC curves 

and the closer to 1.0 the better. In general an area of 1.0 represents a perfect method or a 

better predictive power and an area of 0.5 represents a random predicator/method.
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5.3 Results  

5.3.1 Summary of results  

 
The main findings in this chapter were: 

 Prediction of GO terms by FunFOLDQ is not without difficulty. GO terms were 

incorrect, if the predicted terms did not match the observed terms. The common 

reason for the difference were the predicted GO terms by FunFOLDQ being a parent 

term, instead of the actual child terms. Overall, FunFOLDQ did not predict GO terms 

with enough specificity to be considered a correct prediction.  

 The GO terms predicted by FunFOLDQ were often ancestors of the correct GO 

terms and this could lead to the possibility of a semi-automated process within 

FunFOLDQ, as opposed to being fully automated. However, fully automated 

methods are preferred by the McGuffin group.  

 Methods which perform well in CAFA are based on sequence (e.g. DeepGoPlus and 

GOLabeler), whereas FunFOLDQ is  based on structure, so could explain the 

limitations provided in the bullet points above.  

 Prediction of GO terms is a complex aspect, so ligand and ligand-binding site 

residues by FunFOLD3 was determined to be the best method to develop and refine 

and is explored in Chapter 6.  

5.3.2 Overall results  

 
The third CAFA experiment aimed to predict the GO terms of 121,914 protein sequences 

with domains. Each of the protein sequences had a hierarchical vocabulary split into three 

categories; biological process, molecular function and cellular component.  

 

FunFOLDQ predicted GO terms across 24 different organisms; a list of the organisms is 

given below in Table 5.1 and is also separated by eukaryotes and prokaryotes. For ease of 

reporting, no differentiation is given between different types of organisms, such as bacteria 
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(e.g. gram-positive or gram-negative would still come under bacteria) or fungus would cover 

fungi and mould. The only difference compared to previous years, was that E.coli was 

separated from the bacteria umbrella as this was done in the most recent CAFA competition, 

(Serrano-Posada et al., 2011) currently the organisers have provided no rationale for this. 

Some explanations, could be that there are more sequences for E.coli or it might be a model 

organism so is better understood and potentially easier.  

 

Table 5.1. Table to demonstrate the list of organisms in the eurkaryotes and prokaryotes  

 
Eukaryotes Prokaryotes 

Plants Fungus Bacteria 
African clawed frog Yeast E.coli 

Dog Sheep  
Puffer fish Brown spider  

Mouse Archaea  
Rat Roundworm  

Guinea pig Fruit fly  
Zebra fish Monkey  

Rabbit Chimpanzee  
Chicken Bovine  
Human   

 
Three methods were used as part of the CAFA3 challenge; the combined method, 

FunFOLDQ and HHblits. Receiver operator characteristic  (ROC) curves were used to 

assess the sensitivity and specificity of the GO term predictions based on the true positive 

and false positive rate. The ROC curves for the three methods are given in Appendix 4.  

Receiver operator characteristic curves were derived using the GO term predictions 

obtained via each of the individual methods used in the CAFA3 competition. Each predicted 

GO term assigned as true positive (TP) or false positive was included in the analysis and 

was ranked from 0.0 to 1.0 and sorted in descending order. The data was then used to 

produce a ROC curve, using the ROCR plug-in for the R statistical package (Jiang et al., 

2016). 
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The area under the curve (AUC) for FunFOLDQ, HHblits and combined method is 0.47, 0.45 

and 0.47, respectively. Predictions were defined as true positive (TP) if the GO term 

predicted by the server was an exact match for the protein and a false positive (FP) if the 

server predicted a GO term, which was not associated with the protein. Precision can be 

interpreted as the error rate and is  then defined as the number of TPs over the number of 

TPs+FPs, recall is synonymous with sensitivity and can also be referred to as true positive 

rate and is defined as the number of TPs over number of TPs+FNs (Sing et al., 2005). The 

equation for precision and recall is given below in Equation 5.3. The precision and recall 

results for each method are shown in Table 5.2.  

 
Equation 5.3. Precision and Recall equation  
The equation below illustrates how precision and recall are determined based on TP, FP and FN    

 

Table 5.2. Precision and recall for each of the three methods used in CAFA3  

Server Precision Recall 

FunFOLDQ 0.29 0.29 

Combined 0.29 0.29 

HHSearch  0.46 0.74 

 
 
In order to assess what may have worked well and what specifically requires further 

improvement with the prediction of GO terms by FunFOLDQ, the protein sequences are 

looked at in further detail. Table 5.3 is an example of a protein sequence annotation that 

went right (ACE_RAT) and Table 5.4 is an example of what went wrong (ACH1_CANAL) 

with the GO term prediction. Further examples of predictions by combined method is 

provided in Appendix 3.    
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Correctly predicted GO term annotation example  
 
Table 5.3. Correctly predicted GO terms annotation example ACE_RAT  
The table below is an example of GO prediction for CAFA target ACE_RAT, GO term predictions for molecular function and 
biological process are highlighted in black and bold to denote where exact GO term predictions were made. The GO term 
prediction for cellular component is bold to denote it is not an exact match but is an ancestor of the CAFA3 target. As per the 
UniProtKB entry this target had the highest annotation score (5)  
 

Annotation Score: Experimental evidence at protein level 
Existing information in UniProtKB  

Molecular Function GO:0008237 

Molecular Function GO:0008241 

Biological Process G0:0006508 

Cellular Component  GO:0005886 

FunFOLDQ predicted GO terms 

Molecular Function G0:0008237 (Exact match) Conf. =0.75 

Molecular Function G0:0008241 (Exact match) Conf. =0.75 

Biological Process G0:0006508 (Exact match) Conf. =0.75 

Cellular Component  GO:0016020 (Ancestor) Conf. =0 

 
The hierarchy chart on the next page in Figure 5.3, illustrates for the relationship between the 

cellular component GO terms 0005886 and 0016020, as can be seen from the Figure there is 

a relationship between both GO terms, where 0005886 could be deemed a child of 0016020, 

as 0016020 denotes a location but 005886 provides the specific location.  Despite the clear 

relationship between the GO terms, the prediction for 0016020 was deemed a false positive, 

as it was not an exact match. For comparison, in Table 5.4 the HHblits method and combined 

method predicted the following GO terms for ACE_RAT. 
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Table 5.4. GO terms predicted by HHblits and Combined method for ACE_RAT 
Predicted terms with their associated GO terms are given below. GO terms in red and bold had no match in UniProtKB, blue and 
bold are exact matches in UniProtKB, black and bold are exact matches as per CAFA3 and green and bold terms are ancestor 
terms  

HHblits predictions 

Molecular Function  GO:0003677 No annotation in UniProtKB Conf.=0.93 

Molecular Function GO:0003899 No annotation in UniProtKB Conf.=0.93 

Molecular Function GO:0004180 Exact match in UniProtKB               Conf.=0.93 

Molecular Function GO:0008237 Exact match in CAFA3               Conf.=0.93 

Molecular Function GO:0008241 Exact match in CAFA3               Conf.=0.93 

Molecular Function GO:0008270 No annotation in UniProtKB Conf.=0.93 

Molecular Function GO:0016740 No annotation in UniProtKB Conf.=0.93 

Molecular Function  GO:0016779 No annotation in UniProtKB Conf.=0.93 

Molecular Function GO:0016787 Exact match in UniProtKB                Conf.=0.93 

Molecular Function GO:0032549 No annotation in UniProtKB Conf.=0.93 

Biological Process GO:0006351 No annotation in UniProtKB Conf.=0.93 

Biological Process GO:0006508 Exact match in CAFA3                Conf.=0.93 

Cellular Component  GO:0005634 Exact match in CAFA3                Conf.=0.93 

Cellular Component GO:0016020 Ancestor                  Conf.=0.93 

Combined predictions  

Molecular Function GO: 0008237 Exact match in CAFA3                Conf.=0.75 

Molecular Function GO: 0008241 Exact match in CAFA3                Conf.=0.72 

Biological Process GO: 0006508 Exact match in CAFA3                Conf.=0.75 

Cellular Component  GO: 0016020 Ancestor                  Conf.=0.75 

 
 

As can be seen from the predictions, HHblits predicted more annotations; 14 compared to four 

predictions by FunFOLDQ and combined methods and half of these predictions were not part 

of the 140 annotations associated with the protein sequence on UniProtKB. The combined 

method predicted the exact same annotations as FunFOLDQ. 
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Figure 5.3. A GO hierarchical chart demonstrating the relationship between GO:0016020 and GO:0005886 as predicted 
by the three methods  
The chart clearly demonstrates that GO:0005886 is associated with a membrane (GO:0016020) but more importantly, is a plasma 
membrane as shown by the specific GO term related to this (GO:0005886). Figure created using QuickGO(Fischer, Mayer and 
Söding, 2008). An explanation of the GO slim colours is given in Appendix 3.  
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Incorrectly predicted GO term annotation example  
 
 
Table 5.5. Incorrectly predicted GO terms annotation example ACH1_CANAL 
The table below is an example of  GO prediction for CAFA target ACH1_CANAL , there were no correctly predicted GO terms 
for molecular function, biological process or cellular component. GO terms which were part of the UniProtKB entry but not 
annotated by CAFA are in blue and bold. GO term predictions which were not annotated in UniProtKB are in red and bold. GO 
term predictions which are an ancestor term are in green and bold. As per the UniProtKB entry this target had annotation score 
of 4 out of 5 which is still the highest annotation score with experimental evidence at protein level for the protein  
 
 

Annotation Score: Experimental evidence at protein level 
Existing information in UniProtKB  

Biological Process G0:0071469 

Cellular Component  GO:0005739 

FunFOLDQ predicted GO terms 

Molecular Function G0:0003824 Exact match in UniProtKB   Conf. =0.88 

Molecular Function GO:0008814 No annotation in UniProtKB  Conf.=0.80 

Molecular Function GO: 0008815 No annotation in UniPotoKB Conf.=0.65 

Molecular Function GO: 0016740 No annotation in UniProtKB Conf.=0.88 

Molecular Function GO: 0016829 No annotation in UniProtKB Conf.=0.88 

Biological Process GO: 0006084 Exact match in UniProtKB Conf.=0.61 

Cellular Component  GO: 0005737 Ancestor                             Conf-=0.88 

Cellular Component  GO: 0009346 No annotation in UniProtKB Conf.=0.64 

 

 

Table 5.5 above, shows the incorrect predicted GO terms for CAFA3 target ACH1_CANAL 

and the hierarchy chart below in Figure 5.4, illustrates for the relationship between the cellular 

component GO terms 0005739 and 0005737 as can be seen from the Figure there is a 

relationship between both GO terms, where 0005739 could be deemed a child of 0005737, 

as 0005737 denotes a location but 0005739 provides the specific organelle.  As with the 

previous example, despite the clear relationship between the GO terms, the prediction for 

GO:005737 was deemed a false positive, as it was not an exact match. In comparison 

HHsearch and Combined predicted the following GO terms: 
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Table 5.6. GO terms predicted by HHblits and Combined method for ACH1_CANAL 
Predicted terms with their associated GO terms are given below. GO terms in red and bold had no match in UniProtKB, blue and 
bold are exact matches in UniProtKB, and green and bold terms are ancestor terms  

 

HHblits predictions 

Molecular Function  GO:0003676 No annotation in UniProtKB Conf.=0.83 

Molecular Function GO:0003824 Exact match in UniProtKB     Conf.=0.83 

Molecular Function GO:0003986 Exact match in UniProtKB     Conf.=0.82 

Molecular Function GO:0016740 No annotation in UniProtKB Conf.=0.83 

Molecular Function GO:0016787 Exact match in UniProtKB     Conf.=0.83 

Biological Process GO:0006084 Exact match in UniProtKB                Conf.=0.58 

Combined predictions  

Molecular Function GO:0003824 Exact match in CAFA3                Conf.=0.88 

Molecular Function GO:0008814 No annotation in UniProtKB              Conf.=0.80 

Molecular Function GO:0008815 No annotation in UniProtKB              Conf.=0.65 

Molecular Function GO:0016740 No annotation in UniProtKB             Conf.=0.88 

Molecular Function  GO:0016829 No annotation in UniProtKB             Conf.=0.88 

Biological Process GO:0006084 Exact match in UniProtKB                Conf.=0.61 

Cellular Component  GO: 0005737 Ancestor                                           Conf.=0.88 

Cellular Component  GO:0009346 No annotation in UniProtKB             Conf.=0.64 

 

In this example, the Combined method predicted more annotations than HHblits as shown in 

Table 5.6 above. However, as with the previous example, despite HHblits predicting terms, 

which were correctly associated with the protein sequence as per UniProtKB, these were not 

part of the CAFA3 prediction annotation and were thus deemed negative. The Combined 

method predicted the exact same terms as the FunFOLDQ method and therefore the 

predictions made by FunFOLDQ have not been shown. The relationship between the 

predicted GO term 0005737 and the CAFA3 annotation GO:0005739 is shown below in Figure 

5.3.  
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Figure 5.4. A GO hierarchical chart demonstrating the relationship between GO:0005737 and GO:0005739 
The chart clearly demonstrates that GO:0005737 is cytoplasm but more importantly, is a mitochondrion in the cytoplasm as 
shown by the specific GO term related to this (GO:0005739). Figure created using QuickGO (QuickGO, 2017) 

 

The following GO predictions from FunFOLDQ were not included in the UniProtKB; 

GO:0008814, GO:0008815, GO:0016740, GO:0016829 and GO:0009346 and would 

therefore count as a negative prediction. Two FunFOLDQ predictions were part of UniProtKB 
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but were not included in the CAFA3 annotation; GO:0003824 and GO: 0006084. Hierarchical 

charts for the GO terms not included in the CAFA3 prediction are given below in Figure 5.5.  

              

  

Figure 5.5. A GO hierarchical chart for GO terms predicted by FUNFOLDQ and annotated in UniProtKB  
Figure created using QuickGO (QuickGO, 2017) 

 

Two protein sequences from CAFA3 have been presented to provide an example of how 

annotation worked for CAFA3. The first example, ACE_RAT has 140 associated annotations 

(QuickGO, 2017) and CAFA3 benchmarked 22 annotations of which FunFOLDQ correctly 

predicted three of these. The “incorrect” predictions are not incorrect, in as much that it is 

completely unrelated to the function of the protein sequence, as illustrated in Figure 5.4 and 
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is annotated on UniProtKB. As is demonstrated in this example, more than one function is 

associated with a protein and is termed a multiple sub-directed acyclic graph (DAG). It is worth 

considering whether these annotations should be considered false, when in fact they are true, 

but not specific enough to determine firm conclusions around function.  

 

The next example, ACH1_CANAL has 15 associated annotations (QuickGO, 2017) and 

CAFA3 benchmarked two annotations and FunFOLDQ did not correctly predict either of these. 

As with the previous example, FunFOLDQ predicted GO terms, which were annotated by 

UniProtKB but not benchmarked by CAFA3. The reason why these GO terms were not picked 

as annotations by CAFA3, could be due to the specificity, as already demonstrated in the 

previous example. GO:0003824 relates to catalytic activity but the specific activity performed 

by this protein is acetyl-CoA hydrolase activity, which would have GO:0003986 as the 

associated molecular function. However, it is worth noting that CAFA3 did not provide a 

benchmark for this target pertaining to molecular function. Once again, there was a DAG 

annotation from GO:0005737.  

 

As previously mentioned, there were five incorrect predictions for this protein sequence. 

GO:000815 is molecular function but specifically citrate (pro-3S)-lyase activity. The parent of 

this GO term is catalytic activity and is associated with GO:0003824, which is a correct 

annotation (Figure 5.6A). In this instance it appears FunFOLDQ has picked an incorrect 

homology whilst maintaining the parent function of the protein. Indeed, a similar result has 

occurred for GO:0008814, which has GO:0003824 as a parent but is specifically a citrate CoA-

transferase activity (Figure 5.6B). This pattern is repeated for GO:0016740 (Figure 5.6C), 

GO:0016829 (Figure 5.6D) 
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Figure 5.6. GO hieracrchial charts for false positive terms predicted by FunFOLDQ  
The GO tems predicted by FunFOLD are presented in a yellow box, despite being false positive predictions all share a correctly annotated GO term as per UniProtKB. Figure created using QuickGO 
(QuickGO, 2017) 
 
 

A B C D 
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5.4 Discussion  

 
FunFOLDQ was entered into the CAFA3 competition to determine performance in the 

prediction of GO terms, which could potentially provide insights into a protein’s function. 

Based on the ROC curves obtained for FunFOLDQ and the AUC show no better than 

random prediction and, on this basis, one may presume that the server performed poorly in 

the CAFA3 challenge. 

 

However, when the examples of annotations are looked at in detail, the GO terms selected 

by FunFOLDQ are not necessarily incorrect, as these annotations are included in the 

UniProtKB. As can be appreciated, the level of understanding of a protein can evolve from a 

basic understanding to very detailed with further evidence from experimental data. This does 

not make previous basic understanding of a protein necessarily incorrect, just incomplete. 

However, in the CAFA competition and predicted GO terms, which were not specific, right 

down to the exact molecular function, biological process or cellular component, were not 

included as part of the GO term benchmarking. Therefore, if we want to participate in future 

CAFA challenges, there needs to be more understanding of how CAFA includes annotations 

and thus further development of FunFOLDQ is needed to determine the relevance of these 

annotations. This could be explored by better determination between ancestor and child 

annotations, with more emphasis on child annotations, are these are more likely to be 

specific and could they match the benchmarking terms identified by CAFA. Furthermore, our 

results show that a GO term prediction is very black and white, so results are either right or 

wrong and there is no other way to objectively measure the results. This is very different to 

participation in CASP competitions where the utilisation of MCC and BDT scores enables 

credit to be given for predictions, which are close but not perfect. On this basis, GO term 

prediction as objectively measured in CAFA competitions is not necessarily the best method 

for elucidation of a protein’s function in all cases, hence our main focus on ligand-binding 

residues where credit can be given for residues in close proximity, accounting for structural 
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flexibility. This focus will better enable refinements to be made to FunFOLD3. 

 
 
The results produced by FunFOLDQ and the assessment by CAFA show there are different 

levels of benchmarks which can be applied. Initially, new protein sequences have no 

annotations and later GO terms can be associated within the different categories. 

Additionally, there could be limited knowledge related to a protein with just annotations 

related to one of three categories and further data around other categories adding to the 

knowledge, this is shown in Figure 5.7. By way of example, FunFOLDQ is predicting terms 

indicated by red circles, whereas CAFA3 is predicting terms in blue. The results from the 

participation in CAFA3 show that there is no leeway, results are either right or wrong and 

currently there is no other way to objectively measure GO terms. Due to this, it was decided 

to refine FunFOLD3 around the predicted ligand and this will be discussed in Chapter 6. 

Therefore, the results of this chapter will not be used in Chapter 6, as Chapter 6 will focus on 

the development of FunFOLD3, in terms of ligands and ligand-binding site residues, as 

opposed to the prediction of GO terms as presented in this chapter.  
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Figure 5.7. Types of benchmarking  
A schematic diagram presenting the evolution of knowledge in the understanding of proteins. The red circes represent the level 
of GO term prediction, predicted by FunFOLDQ, whereas the blue circles present the GO term prediction which would have 
been benchmarked by CAFA3. MF is molecular fucntion and BP is biological process   
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GoFDR is a method which scored highly in the CAFA2 experiment and is one of the few 

methods where a source code has been published (Krivák & Hoksza, 2018). The authors 

state the two key steps in GoFDR is the identification of GO term-specific FDRs from the 

query sequence and another is the raw score adjustment (Gong, Ning and Tian, 2016).   

 

GoFDR is a sequence alignment-based algorithm, so differs from FunFOLDQ in this 

instance and adopts the functionally discriminating residues (FDRs) that has been used 

previously by EFICAz for predicting protein function. The FDRs defined in GoFDR are 

determined through comparing sequence conservation within sequences with the GO term 

to those sequences without the GO term and are therefore specific to the target GO term 

(Gong, Ning and Tian, 2016). However, what makes GoFDR different is avoidance of 

construction of multiple sequence alignments (MSA) for the protein function annotations 

defined by GO consortium, as it was deemed not practical to prepare high quality MSA for 

each GO term. Instead, the researchers use query sequence-based MSA directly from PSI-

BLAST output, (Gong, Ning and Tian, 2016) GoFDR then identifies all GO terms associated 

with the sequences in the MSA and determines the FDRs for each GO term from which a 

specific a position specific scoring matrix (PSSM) is constructed.  

 

 The GoFDR algorithm consists of four steps: 

1) Preparation of a query sequence-based MSA  by database search  

2) Identification of FDRs for a given GO term and construction of the FDR-PSSM and 

involves mapping GO annotations to the sequences in the MSA and identifies all 

relevant GO terms to be predicted    

3) Scoring the query protein using the FDR-PSSM  

4) Raw score adjustment  
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In brief, the workflow of GoFDR takes the input of a query sequence-based MSA produced 

directly from BLAST or PSI-BLAST search. After mapping GO annotations to all homologous 

sequences in the MSA, GoFDR identifies all relevant GO terms to be predicted. For each 

GO term, GoFDR compares the sequence conservation in aligned sequences with the GO 

term (homo-functional) and the aligned sequences without the GO term (hetero-functional) 

to identify a number of FDRs for the for distinguishing the homo-functional sequences from 

the hetero-functional sequences (Gong, Ning and Tian, 2016). An exact match is required to 

infer function.  The workflow of GoFDR is outlined in Figure 5.8 below:  

 

Figure 5.8. Workflow of GoFDR  
GoFDR takes the input of a query sequence-based MSA produced directly from BLAST or PSI-BLAST search. After mapping 
GO annotations to all homologous sequences in the MSA, GoFDR identifies all relevant GO terms to be predicted. GoFDR 
builds a PSSM for the FDRs and then applies the PSSM to score the query sequence for its association with the target GO 
term. Finally, GoFDR converts the raw score of a prediction into a probability according to a pre-constructed score-to-
probability table from training sequences. Figure taken from Gong, Ning and Tian, 2016 
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There is a crucial stage in GoFDR, which could potentially explain why GoFDR are among 

one of the top-scoring groups and more pressing could explain the lack of specificity of GO 

terms that were predicted by FunFOLDQ. This is the conversion of all the prediction scores 

of a query sequence into probabilities. This is the probability for each GO term by 

considering the parent-child GO term relationship  i.e. the probability for a given GO term 

shouldn’t be less than that for any of its child terms and if such case was found, then the 

probability of that GO term would be replaced by the probability of its child term. By way of 

comparison, FunFOLDQ, utilises HHblits, (HMM-HMM-based lightning-fast iterative 

sequence search) (Gong, Ning and Tian, 2016) and at its core builds multiple sequence 

alignments, which is ideal for building the 3D structure of a query protein and the foundation 

for HHblits; HHsearch is used by many of the best protein structure prediction servers for 

template-based protein structure prediction (Remmert et al., 2012). It is worth pointing out, 

that the prediction of GO terms is based upon building an accurate a 3D structure as 

possible but to perform well in CAFA competitions more emphasis is needed on the 

prediction of GO terms. A future refinement of FunFOLDQ could be adding this stage, as it 

was a finding presented earlier in this chapter, that the GO terms were not specific enough 

and parent terms were being predicted, when there were associated child terms which were 

the correct predictions and more specific.  

 
In comparison to GoFDR, FunFOLDQ relies on the identification of distant templates, so a 

strong sequence signal is not needed, however GoFDR requires sequence identity and 

therefore may not work as well when few PSI-BLAST hits are available. Despite not being 

obvious with the analysis of CAFA3 results, FunFOLDQ is structure based and this is a 

strength as if no sequence match the GoFDR matches would fail.  

 

Overall, this chapter has shown that function prediction is difficult and no one method cannot 

be relied upon for solely evaluating function. Due to the mixture of results obtained with 
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FunFOLDQ and the lack of manoeuvring for correct results in the CAFA competition, it was 

deemed FunFOLD3 would be a suitable method to refine further and try and improve the 

prediction of function utilising docking and this will be explored further in Chapter 6.    
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Chapter 6: Refinement of FunFOLD3 ligand-binding 
predictions using AutoDock Vina 
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6.1 Introduction  

 
Experimental techniques to investigate thermodynamic profiles for a ligand-protein complex 

can be laborious, time consuming and expensive. Conversely, computational protein-ligand 

docking methods can quickly predict the most favourable structure of the complex and 

assess the binding affinity (Du et al., 2016).  

 

Molecular docking is a computational method that attempts to predict non-covalent binding 

in macromolecular complexes, which most frequently are receptor macromolecules and a 

smaller molecule, such as a ligand, and usually starts with the unbound macromolecule 

structure (QuickGO, 2017). Molecular docking is widely used, relatively fast and an 

economical computational tool for predicting in silico the bindings modes and affinities of 

molecular recognition events. Protein-ligand docking is a branch of this field and is of 

particular importance due to its utilisation in drug discovery processes. AutoDock (Morris et 

al., 2009), GOLD (Jones et al., 1997), DOCK (Ewing et al., 2001, Allen et al., 2015), FlexX 

(Matthias et al., 1996) and Glide (Friesner et al., 2004) are examples of well-established 

methods that exist and each method implements different algorithms to solve the docking 

problem (Pagadala, Syed and Tuszynski, 2017).  

 

Protein-ligand docking plays an important role in predicting the orientation of a ligand when it 

is bound to a receptor using shape and electrostatic interactions to quantify it (Trott & Olson, 

2010). Therefore, the goal of protein-ligand docking is to predict the bound conformations 

and the binding affinity for a protein to its ligand(s) (Pagadala, Syed and Tuszynski, 2017). In 

general protein-ligand docking methods contain two essential components; the search 

algorithm and the scoring function. Search algorithms are responsible for searching through 

different ligand conformations and orientations, sometimes referred to as poses within a 

given target protein and scoring functions are responsible for estimating the binding affinities 

of the generated poses. Some methods will rank these poses and identify the most 
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favourable binding mode(s) of the ligand to the given target (Lee and Im, 2013). 

Theoretically, the search space for protein-ligand binding should consist of all possible 

conformations of the protein and the ligand in their unbound forms, all possible orientations 

and conformations of the ligand within a given protein conformational state and all possible 

conformations of the protein paired with all the possible conformations of the ligand. As one 

can imagine, it is impossible to exhaustively explore the search space given the limitations of 

current computational power and search algorithms (Pagadala, Syed and Tuszynski, 2017).  

 

The earliest docking methods focused on the classical protein-ligand relationship, of a “lock-

and-key” assumption. The ligand and the receptor are treated as rigid bodies and their 

affinity is directly proportional to a geometric fit between their shapes (Trott & Olson, 2010). 

Rigid-body algorithms are the simplest approach when it comes to sampling the 

conformational space. The methods used are ZDOCK, MDock and older versions of DOCK. 

On the other hand, flexible-ligand algorithms consider only the ligand flexibility; and neglect 

the protein flexibility, DOCK is an example of this (Ewing et al., 2001).  

 

As understanding about protein-ligand interactions increased and that conformational 

changes occur in the receptor to bind the ligand, the “lock-and-key” theory moved onto the 

induced-fit theory, in which the ligand and receptor should be treated as flexible during 

docking and was proposed by Koshland (Mezei, 2003). Over the past twenty years, more 

than 60 different docking tools have been developed (Hammes, 2002,,Trott & Olson, 2010),  

and can be broadly categorised into the following algorithms; incremental construction 

approaches (Rarey et al., 1996), shape-based, genetic, systematic search techniques and 

Monte Carlo simulations (Rarey et al., 1996).  

 

The binding affinity of a ligand and protein can be affected by the entropy loss of a flexible 

ligand in a rigid anisotropic environment of the receptor and the change in internal energy 
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upon binding (Venkatachalam et al., 2003). As a result of this, information regarding binding 

site location before the docking processes becomes very important in increasing docking 

efficiency (Pagadala, Syed and Tuszynski, 2017). However, the caveat to this is that, it 

depends on the accuracy of the binding site predictions as well as the method which has 

been used to predict protein function and more importantly if the protein has no sequence 

homology. One of the common issues with FunFOLD3 predictions has been the variety in 

quality of the ligand-binding site predictions, as has been seen in the analysis of CASP11-

13. The MCC and BDT score can vary quite markedly from 0.877 and 0.853, respectively 

(e.g. for CASP11 target T0819) being the highest score and -0.05 and 0.0375, respectively 

(for CASP11 target T0849) being the lowest score.  

 

AutoDock Vina uses flexible docking and in standard virtual docking studies, ligands are 

freely docked into a rigid receptor with the number of active rotatable bonds ranging from 0-

32 (Pagadala, Syed and Tuszynski, 2017). However, it is becoming increasingly clear that 

side chain flexibility plays a crucial role in ligand-protein complexes. These changes allow 

the receptor to alter its binding site according to the orientation of the ligand. The ligand 

orients in a space within the binding site which is translational, rotational and conformational 

variable in the anisotropic environment of the receptor (Trott & Olson, 2010). This will 

compliment FunFOLD3, as FunFOLD3 will predict the ligand-binding site and then AutoDock 

Vina will orientate the ligand into different conformations and pick the “best one”. 

Subsequently we can determine how similar this new orientation is to the original predicted 

ligand location. The next step would be to confirm the MCC and BDT score to determine if 

there has been any improvement based on the orientation of the ligand.  

 

The utilisation of molecular docking using AutoDock Vina to refine ligand-binding poses has 

been studied previously (Wu et al., 2018). However, COACH-D failed to demonstrate a 

statistically significant difference in the improvement of ligand-binding sites between COACH 
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and COACH-D, and the major improvement was in resolving  steric clashes. As a result, of 

AutoDock Vina being used to refine ligand-binding poses it has been chosen to do the same 

with FunFOLD3.  Futhermore, AutoDock Vina was chosen as the protein-ligand method of 

choice, due to the ability to specify a search box for the simulation which can manually be 

adjusted by the user, thus enabling the search algorithm to search only within a specific 

area. Thereby, reducing two critical elements; speed and effectiveness in covering the 

relevant conformational space (Du et al., 2016). 

 

 

Aim: The aim of this chapter was to determine if ligand-binding site predictions by 

FunFOLD3 could be improved following docking with  AutoDock Vina. Improvements in 

ligand-binding site predictions will be reported as a change in MCC and BDT score following 

docking and this will act as an objective measure to determine if there has been any 

improvements Therefore, the overall aim of this chapter is to “fix” the problem, i.e. the ligand-

binding site residues, in order to obtain ligand-binding site predictions which are closer to the 

observed ligand-binding site residues. This chapter is based upon the results provided 

mainly in Chapter 3 and to a lesser extent Chapter 4. The CASP11, 12 and 13 experiments 

provided a basis to identify the “problem” by providing unsolved protein targets, to enable 

prediction of ligand and ligand-binding site residues. As the protein targets would eventually 

have solved structures and where applicable solved ligands, this provided an “ideal” to work 

towards with improving ligand-binding site predictions. As a result of developing FunFOLD3 

into FunFOLD3-D, this chapter is the main chapter of thesis. 
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6.2 Materials & Methods   

 
6.2.1 Materials  

As mentioned previously in Chapter 3, the CASP organisers provided amino acid sequences 

and prediction of biologically relevant ligands is performed by FunFOLD3. In this Chapter, 

refinements will be made to predictions in CASP11, CASP12 and CASP13. The amino acid 

sequences for these targets have been provided previously in Chapter 3 and is shown in 

Table 3.1.   

 

6.2.2 Methods  

  

AutoDock Vina has been chosen to refine the ligand-binding site for predictions as it has 

been used previously for similar purposes with some success (Wu et al., 2018). One of the 

grid sizes for the ligand-binding pockets search space will be 22.5Å in total as this grid 

space has been explored previously in the literature (Feinstein and Brylinski, 2015). This 

also ensures consistency with the earlier tests of AutoDock, where the 22.5Å grid size was 

chosen and the developers of AutoDock recommend making sure that the search space is 

large enough for the ligand to be able to rotate inside. In order to further expand refinement 

with docking, three different percentages will be used as a maximum ligand distance of 10%, 

20% and 50% of the volume of the box around the ligand space to help determine if a 

specific distance around the predicted ligand provides better ligand-binding site predictions. 

Figure 6.1 below is the grid box space for CASP11 target T0849, two examples are given; 

10% of the volume of the box around the ligand and 22.5Å. 
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Figure 6.1. 10% and 22.5Å grid box for CASP11 target T0849  
(A) Predicted 3D model for CASP11 T0849 coloured green and shown as cartoon and the predicted ligand GSH is shown as 
sphere and coloured yellow. The grid box volume is 10% around the ligand space. (B) Predicted 3D mode for CASP11 target 
T0849 with a 22.5Å grid box volume around the ligand space.   

 

The methodology for docking using AutoDock Vina is given below and the input for 

AutoDock Vina is the output ligand and receptor file (referred to as the lig2.pdb file. See 

Chapter 2, point 13C)  from FunFOLD3. Therefore, in order to complete the methodology 

below, the method outlined in Chapter 2 needs to be completed first, or alternatively, a 

ligand and protein file can be obtained elsewhere.  

 

The purpose of docking was to determine if the ligand-binding site residue prediction, as 

assessed using the MCC and BDT scores can be improved with AutoDock Vina by finding 

the best rotation of the ligand within the ligand-binding space.  

 

The steps for using AutoDock Vina are described below: 

1. AutoDock Vina can be freely downloaded from: http://vina.scripps.edu/download.html 

2. Separate the ligand and receptor into two separate files  

A B 
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3. Prepare ligand and receptor .pdbqt files using the ./prepare_ligand4.py -l and 

./prepare_recetopr4.py commands, respectively. This will generate a ligand.pdbqt and 

recetopr.pdbqt file which will be used to generate the new ligand rotations.    

4. Set docking parameters to obtain the required grid box calculation space e.g. grid box of 

10% bigger than current ligand-binding space. Utilising the command line ./Centre_v3.py. The 

user can use any grid box they wish. It is recommended to use 10, 20 or 50%, as it has been 

explored in this thesis. The source code is provided in Appendix 4   

5. The grid box calculation will appear in terminal and the centroid box sizes in x, y and z 

plane and size for x,y,z plane should be used to determine the new ligand-binding space.  

6. The grid box calculation will need to be added to the conf.txt file and also the maximum 

number of ligand models to generate. The recommended number is nine which has been 

investigated as part of this thesis  

6. Run the vina shell script (./vina_screen_local.sh)  and output files will be all the ligand 

models. 

7. Convert the ligand and receptor files back to PDB files and merge the different ligand 

models with the receptor. 

8. Analyse the ligand-binding residues with the preferred functional prediction method and 

use an objective scoring method to determine if an improvement has been obtained. 

 

These newly adjusted ligand-binding site residue predictions were then compared against 

the actual ligand binding site residues and a new MCC and BDT scores were calculated. 

These adjusted binding site scores were then compared against the MCC and BDT scores 

for the original FunFOLD3 ligand-binding residue predictions, to determine if there has been 

an objective improvement in ligand-binding site predictions following the docking procedure. 

The new version of FunFOLD3 which included refinement of the protein-ligand complexes 

with docking was called FunFOLD3-D.   
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Figure 6.2. Graphical abstract to demonstrate the flow of IntFOLD, FunFOLD3 and AutoDock Vina  
(A) Input into AutoDock Vina is the FunFOLD3 ligand and receptor (protein) file with the 3D protein model being an output from the IntFOLD server (B) Separate ligand and receptor (protein) PDB 
files are required for input into AutoDock Vina (C) Nine different ligand-binding site predictions are produce for each grid box calculation, for simplicity the top scoring models have been shown (D) 
The top scoring models are determined by the MCC and BDT scores (E) The best prediction will be the model which has the highest MCC and BDT scores and is the final developed method. The 
putative plans are to incorporate AutoDock Vina into future workflows of FunFOLD3

A 

FunFOLD3 
prediction  

B 

Separate ligand and receptor (protein)  

C 

Ligand-binding site predictions for each 
of the grid box calculations  

D 

Predicted	MCC	=	0.84 
Predicted	BDT	=	0.71 

Predicted	MCC	=	0.75 
Predicted	BDT	=	0.57 

Predicted	MCC	=	0.71 
Predicted	BDT	=	0.50 

Predicted	MCC	=	0.85 
Predicted	BDT	=	0.91 

E 

Best	prediction	according	to	MCC	and	BDT	
scores	 

Final	developed	method 
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model	from	IntFOLD6 

AutoDock	Vina	method 
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6.3 Results and discussion 

 
6.3.1 Summary of results  

The main findings in this chapter were 

 The developed method, FunFOLD3-D utilised four different grid boxes (10%, 20%, 

50% and 22.5Å) in order to determine how to improve the ligand-binding site 

residues by FunFOLD3. The main finding was there is no “one size fits all” with 

regard to a grid box. It very much depends on the ligand and where the ligand has 

been predicted in relation to the observed ligand and the observed ligand-binding 

space. For example, if the predicted ligand is distal to the observed ligand, a larger 

grid box is required and converse (refer to Figure 6.3) 

 Based on the above, an adaptable grid box is required and this challenges literature, 

somewhat, which identified a grid box of 22.5Å being the most suitable (Feinstein & 

Brylinski, 2015). However, in certain predictions a smaller grid box was required    

 FunFOLD3 predictions with an MCC and BDT score of around >0.70 were unable to 

be improved further with docking. Therefore, this suggests there is a threshold when 

it comes to docking. In essence, docking can’t improve good predictions even further   



Chapter 6. Refinement of FunFOLD3 ligand‐binding predictions   

 
 

Page 277 of 645 

6.3.2 Analysis of CASP11, CASP12 and CASP13 targets by AutoDock Vina  

 

Out of a total of 55 targets from CASP11, CASP12 and CASP13 that had ligand-binding site 

predictions by FunFOLD3, 18 targets were docked using AutoDock Vina. Of the nine targets 

from CASP11, six were successfully docked. Successfully docked was defined as the 

conversion of both the receptor and ligand to PDBQT files in order for docking to occur.  

Thus meaning three targets were unable to be docked; T0845 (PDB ID 4r5o) due to multiple 

metal ions being predicted, so there is no specific ligand space to focus on. With respect to 

T0854 (PDB ID 4rn3), the MG metal ion and the ZN metal ion for T0786 (PDB ID 4qvu) had 

be excluded as the current Babel-based method used by AutoDock does not handle metal 

charges (Trott & Olson, 2010). Therefore, for metal ligands a different method will need to be 

explored. 

 

For CASP12, of the 12 targets which FunFOLD3 predicted ligands, two were excluded as 

there were no biologically relevant ligands were found in the observed structure, this was 

T0868 (PDB ID 5j4a) and T0872 (PDB ID 5jmb). Four targets; T0899, T0901, T0905, T0907 

did not have PDB IDs associated and another target; T0919 had the structure cancelled by 

CASP organisers. This left five targets which could be docked by AutoDock Vina, however 

two targets T0909 (PDB ID 5g5n) and  T0911 (PDB ID 6e9n)  were unable to be docked by 

AutoDock Vina due to Gasteiger charges not being able to be added to the ligands and thus 

convert to PDBQT files and polar hydrogens are necessary for docking by AutoDock Vina.  

 

With respect to CASP13, of the 34 targets which FunFOLD3 predicted ligands, eleven had 

to be excluded as no observed structure was released to do observed ligand-binding site 

residues by CASP organisers; T0949, T0973 (PDB ID 6yfn), T0975, T0985, T0995, T0997, 

T1001, T1013, T1017s1 and T1023s3. Nine targets had no observed biologically relevant 

ligands; T0955 (PDB ID 5w9f), T0957s2 (PDB ID 6cp8), T0958 (PDB ID 6btc), T0970 (PDB 
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ID 6g57), T0980s1 (PDB ID 6gnx), T0980s2 (PDB ID 6gnx), T0986s2 (PDB ID 6d2y), 

T0993s1 (PDB ID 6xbd) and T1008 (PDB ID 6msp). Three targets had the observed 

structure cancelled by CASP organisers; T0972, T0994 and T1012. One target had a perfect 

prediction despite a different between the predicted an observed ligand so was excluded 

from docking; T0974s1 (PDB ID 6tri).  This left a total of ten targets for docking of which two 

(T0961 (PDB ID 6sd8) and T1018)  didn’t work. The reason for T1018 not working could be 

to the ligand being a metal ion and AutoDock Vina is unable to assign coordinates for metal 

ions, as mentioned previously. With regards to T0961, it could be due to the location of the 

ligand, FunFOLD3 predicted the ligand in one ligand-binding space but there are two 

locations for the ligand. Steps taken to rectify this were to separate out the ligands in 

PyMOL, however when adding partial charges in AutoDock Vina, Gasteiger  parameters 

could not be added. 
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6.3.3 Summary of docking results using AutoDock Vina  

 
Tables 6.1, 6.2 and 6.3 below show the best MCC and BDT scores obtained for CASP11, 

CASP12 and CASP13 targets which were docked using AutoDock Vina. The MCC and BDT 

scores obtained by FunFOLD3 are given, along with the new MCC and BDT scores using 

the docking method. Improvements in MCC and BDT scores are highlighted in black and 

bold.  The top five predictions will be shown and for remaining results refer to Appendix 4. 

 
 
Table 6.1. Summary of the comparison between the results obtained with FunFOLD3 and FunFOLD3-D 
 

CASP11 target  FunFOLD3 prediction FunFOLD3-D prediction Grid box 
parameters  

 MCC BDT MCC BDT  
T0783 Mg = 0.17 

Cl =0.015 
Mg = 0.21 

Cl=0.1 
0.63 0.45 22.5Å 

T0798 0.753 0.797 0.75 0.65 10% 
T0807 0.771 0.849 0.49 0.43 10% 
T0813 (NAD) 0.086 0.19 0.46 0.43 50% 
T0813 (NAI) -0.029 0.11 0.34 0.28 22.5Å 
T0813 (NAP) 0.079 0.20 0.34 0.27 10% 
T0819 0.877 0.853 0.87 0.80 10% 
T0849 -0.05 0.0375 0.0086 0.24 22.5Å 

  

 
 
Table 6.2. Summary of the comparison between the results obtained with FunFOLD3 and FunFOLD3-D 
 

CASP12 target  FunFOLD3 prediction FunFOLD3-D prediction Grid box 
parameters 

 MCC BDT MCC BDT  
T0912  - FRU -0.00672 0.0295 -0.006 0.076 22.5Å 
T0912 – MAV -0.00892 0.0213 -0.008 0.026 22.5Å 
T0913 -0.0367 0.091 -0.04 0.13 20% 
T0916 GLC(1) = 0.162 

GLC(2) = 0.263 
GLC(1)=0.276 
GLC(2)=0.37 

GLC(2)=0.16 GLC(2)=0.32 50% 

 
 
 
 
Table 6.3. Summary of the comparison between the results obtained with FunFOLD3 and FunFOLD3-D 
 

CASP13 target FunFOLD3 prediction FunFOLD3-D prediction Grid box 
parameters 

 MCC BDT MCC BDT  
T0953s2 0.12 0.11 -0.010 0.21 20% 
T0954 -0.015 0.028 -0.015 0.028 10% 
T0965 0.12 0.35 0.22 0.33 22.5Å 
T0983 0.715 0.715 0.83 0.71 50% 
T1003 -0.04 0.06 0,06 0.15 22.5 Å 
T1009 0.91 0.94 0.61 0.49 20% 
T1014 -0.05 0.05 0.05 0.13 10% 
T1016 0.556 0.646 0.85 0.91 22.5Å 
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Figure 6.3. Comparison of FunFOLD3 and FunFOLD3-D ligand-binding site predictions for T0783 (PDB ID 4cvh) 
(A) Predicted ligand-binding site residues shown as sticks with incorrect predictions shown in red, the cytidine-5’-triphosphate 
(CTP) ligand is shown as sphere and coloured yellow (B) The observed ligand binding site residues for T0783 (PDB ID 4cvh) 
shown as sticks and coloured blue, the MG ligand is shown as sphere and coloured yellow (C) Predicted ligand-binding site 
residues following docking with AutoDock Vina and using 22.5Å. Correct predictions are shown as sticks and coloured blue and 
incorrect predictions are shown as sticks and coloured red (D) Predicted ligand-binding site residues following docking with 
AutoDock Vina and using 10% grid box calculation. (E) Predicted ligand-binding site residues following docking with AutoDock 
Vina and using 20% grid box calculation. (F) Predicted ligand-binding site residues following docking with AutoDock Vina and 
using 50% grid box calculation. (G) Comparison of the ligand binding site for predictions made by FunFOLD3 with the predicted 
structure  coloured green and the observed structure coloured cyan (H) Comparison of the ligand binding site for predictions 
made by FunFOLD3-D for the best model with the predicted structure coloured green and the observed structure coloured 
cyan. BDT and MCC score of 0.45 and 0.63, respectively. The best BDT and MCC scores were achieved for the Cl ligand using 
22.5Å

A B 

C D 

E F 

G H 
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Results from docking with this target is given below in the Tables 6.4-6.7. Despite Mg being 

the observed ligand and an incorrect ligand being predicted, the procedure could still 

improve the prediction of binding site residues. The Cl ligand can be found below in Figure 

6.4 with a comparison the FunFOLD3 method. The predicted ligand-binding residues by 

FunFOLD3 were 12,13,14,15,16,17,18,19,26,27,83,84,85,86,89,116,117,118,223 (correct 

residues in red) and the observed ligand-binding residues were 85,86,87,194,195,197 for 

Mg ligand and 88,93 for Cl ligand. The MCC and BDT scores were 0.17 and 0.21, 

respectively when compared to the Mg ligand.  
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Table 6.4. Predicted ligand-binding site residues and MCC and BDT scores with box calculation 22.5Å for CASP11 T0783 (PDB ID 4vch) 
Models are listed in numerical order following docking with change in MCC and BDT given as a percentage increase or decrease. The model with the best MCC and BDT is in bold. The box 
calculation is 22.5Å. MCC and BDT scores are given against both the Mg and Cl predicted ligands  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Model 
number 

Pose 
Predicted ligand-binding 

site residues 
MCC Score change  BDT Score change  

   Mg Cl Mg Cl Mg Cl Mg Cl 

1 
1 

16,17,18,26,84,85,86, 
117,118 

0.26 -0.01 0.09 0.005 0.30 0.093 0.09 -0.007 

2 
12,16,18,26,84,86,116, 
117,118 

0.12 -0.01 -0.05 0.005 0.21 0.078 0.00 -0.022 

2 
1 

12,13,14,15,26,84,85,86, 
195,198 

0.38 -0.01 0.21 0.005 0.44 0.11 0.23 0.010 

2 
13,14,15,26,85,86,118,195, 
198,223 

0.38 -0.01 0.21 0.005 0.39 0.092 0.18 -0.008 

3 
1 

15,16,17,19,85,86,173,198,199,22
3 

0.24 -0.01 0.07 0.005 0.30 0.084 0.09 -0.016 

2 16,84,85,86,119,171,173,223 0.28 -0.01 0.11 0.005 0.33 0.10 0.12 0.020 

4 
1 19,144,170,171,172,225 -0.015 -0.01 -0.185 0.005 0.036 0.02 -0.17 -0.274 

2 
19,144,170,171,172,222, 
223,225 

-0.017 -0.01 -0.187 0.005 0.036 0.02 -0.17 -0.27 

5 
1 

86,119,144,171,172, 
199,223 

0.14 -0.01 -0.030 0.005 0.20 0.059 -0.01 -0.11 

2 
119,144,171,172,198, 
199,221,222 

-0.017 -0.01 -0.187 0.005 0.10 0.034 -0.11 -0.21 

6 
1 144,171,222,223,226,229 -0.015 -0.009 -0.185 0.006 0.030 0.018 -0.18 -0.082 
2 119,170,171,223,226,228 -0.014 -0.009 -0.184 0.006 0.033 0.019 -0.18 -0.081 

7 
1 88,92,186,187,189,190,191 -0.016 0.53 -0.186 0.545 0.20 0.33 -0.01 0.230 
2 88,92,186,187,189 -0.014 0.63 -0.184 0.645 0.15 0.45 -0.06 0.350 

8 
1 119,171,222,223 -0.012 -0.007 -0.182 0.008 

-
0.007 

0.022 -0.22 -0.078 

2 119,144,147,170,199,221,222,223 -0.017 -0.01 -0.187 0.005 0.052 0.023 -0.16 -0.077 

9 
1 

15,16,19,26,85,86,116,117, 
118,195,198 

0.36 -0.012 0.19 0.003 0.35 0.082 0.14 0.040 

2 
12,15,16,26,85,116,117,118, 
195,198 

0.24 0.30 0.07 0.315 -0.01 0.073 -0.22 -0.320 
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Table 6.5. Predicted ligand-binding site residues and MCC and BDT scores with 10% box calculation for CASP11 T0783 (PDB ID 4vch) 
Models are listed in numerical order following docking with change in MCC and BDT given as a percentage increase or decrease. The model with the best MCC and BDT is in bold. The grid box 
calculation is based on 10%. MCC and BDT scores are given against both the Mg and Cl predicted ligands  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Model 
number 

Pose 
Predicted ligand-binding 

site residues 
MCC Score change  BDT Score change  

   Mg Cl Mg Cl Mg Cl Mg Cl 

1 
 

 

1 
15,16,26,84,85,86,116,118, 
223 

0.25 -0.097 0.08 -0.082 0.31 0.097 0.10 0.00 

2 
12,13,14,15,16,18,84,86, 
116,117,118 

0.11 -0.011 -0.06 0.004 0.21 0.081 0.00 -0.02 

2 
1 12,15,16,19,26,86,116 0.14 -0.01 -0.03 0.005 0.22 0.075 0.010 -0.93 

2 
12,15,16,26,84,116,117,118 

-0.017 -0.01 -0.19 0.005 0.13 0.063 
-

0.080 
-0.04 

3 
1 

13,14,15,16,17,18,19,26, 
86,223 

0.11 -0.01 -0.060 0.005 0.16 0.062 -0.05 -0.04 

2 
15,16,18,19,26,84,85,86, 
116,223 

0.24 -0.01 0.070 0.005 0.29 0.09 0.08 -0.01 

4 
1 

12,15,16,18,27,84,85, 
86,117,118,223 

0.23 -0.01 0.060 0.005 0.27 0.09 0.06 -0.01 

2 
12,15,16,19,26,27,84, 
85,86,116,117,118,223 

0.21 -0.01 0.040 0.005 0.24 0.08 0.03 -0.02 

5 
1 14,15,16,19,26,85,86 0.29 -0.01 0.120 0.005 0.35 0.10 0.14 0.00 
2 12,14,15,16,19,84,85,86 0.28 -0.01 0.110 0.005 0.37 0.11 0.16 0.01 

6 
1 12,15,16,19,84,85,86,116 0.28 -0.01 0.110 0.005 0.36 0.11 0.15 0.01 

2 
12,14,15,19,26,84,85,86, 
116,117,118,223 

0.22 -0.01 0.05 0.005 0.26 0.09 0.05 -0.01 

7 
1 

12,13,15,18,19,26,27,84,85,
86,116,117,118,223 

0.20 -0.013 0.030 0.002 0.23 0.08 0.02 -0.02 

2 
12,13,15,16,18,19,26,84,85,
86,116,117,118,223 

0.20 -0.013 0.030 0.002 0.23 0.08 0.02 -0.02 

8 
1 

12,13,15,19,84,85,86,116, 
117,223 

0.24 -0.01 0.07 0.005 0.30 0.10 0.09 0.00 

2 
12,13,15,16,18,19,26,27,84,
85,116,117,118,223 

0.1 -0.01 -0.07 0.005 0.2 0.06 -0.01 -0.04 

9 
1 12,13,14,19,84,85,86,89 0.28 -0.01 0.11 0.005 0.39 0.16 0.18 0.06 

2 
12,13,14,15,16,19,26, 
84,85,89 

0.11 -0.01 -0.06 0.005 0.24 0.12 0.03 0.02 
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Table 6.6. Predicted ligand-binding site residues and MCC and BDT scores with 20% box calculation for CASP11 T0783 (PDB ID 4vch) 
Models are listed in numerical order following docking with change in MCC and BDT given as a percentage increase or decrease. The model with the best MCC and BDT is in bold. The grid box 
calculation is based on 20%. MCC and BDT scores are given against both the Mg and Cl predicted ligands  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Model 
number 

Pose 
Predicted ligand-binding 

site residues 
MCC Score change  BDT Score change  

   Mg Cl Mg Cl Mg Cl Mg Cl 

1 
1 

12,15,16,18,84,85,86,117, 
118 

0.26 -0.01 0.090 0.005 0.32 0.10 0.11 0.09 

2 12,15,16,18,84,86,117,118,223 0.11 -0.01 -0.060 0.005 0.21 0.08 0 -0.02 

2 
1 15,16,84,85,86,116,223 0.30 -0.01 0.130 0.005 0.39 0.12 0.18 0.020 
2 12,14,15,16,18,84,85,86,116 0.26 -0.01 0.090 0.005 0.34 0.11 0.13 0.010 

3 
1 

12,15,16,18,84,85,86, 
117,118,223 

0.24 -0.01 0.070 0.005 0.30 0.10 0.090 0.000 

2 
12,16,19,26,27,84,85,86, 
116,117,118,223 

0.22 -0.01 0.120 0.005 0.25 0.08 0.040 -0.020 

4 
1 

12,15,16,19,84,85,86, 
116,223 

0.26 -0.01 0.090 0.005 0.33 0.1 0.120 0.000 

2 
12,15,19,26,84,86,116, 
118,223 

0.12 -0.01 -0.050 0.005 0.22 0.08 0.010 -0.020 

5 
1 13,14,15,16,17,19,85,86,223 0.26 -0.01 0.090 0.005 0.29 0.09 0.080 -0.010 
2 15,19,84,85,86,116,223 0.30 -0.009 0.130 0.006 0.38 0.11 0.170 0.010 

6 
1 12,15,19,84,86,116 0.15 -0.009 -0.020 0.006 0.30 0.11 0.090 0.010 
2 12,15,26,84,86,116,118,223 0.13 -0.01 -0.040 0.005 0.24 0.09 0.030 -0.010 

7 
1 

15,16,26,84,85,86,116, 
118,223 

0.26 -0.01 0.090 0.005 0.31 0.1 0.10 0 

2 
12,13,14,15,16,18,84,86,116, 
117,118 

0.11 -0.01 -0.060 0.005 0.21 0.08 0 -0.02 
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Table 6.7. Predicted ligand-binding site residues and MCC and BDT scores with 50% box calculation for CASP11 T0783 (PDB ID 4vch) 
Models are listed in numerical order following docking with change in MCC and BDT given as a percentage increase or decrease. The model with the best MCC and BDT is in bold. The grid box 
calculation is based on 50%. MCC and BDT scores are given against both the Mg and Cl predicted ligands  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Model Pose 
Predicted ligand-binding 

site residues 
MCC Score change  BDT Score change  

   Mg Cl Mg Cl Mg Cl Mg Cl 

1 
1 15,16,18,84,85,86,117,118 0.28 -0.01 0.11 0.01 0.35 0.11 0.14 0.01 
2 12,16,26,84,86,116,117,118 0.13 -0.01 -0.04 0.01 0.24 0.085 0.03 -0.015 

2 
1 13,14,15,16,18,19,85,86,223 0.26 -0.01 0.09 0.01 0.29 0.09 0.08 -0.01 

2 
12,14,15,18,19,84,85, 
86,116,223 

0.24 -0.01 0.07 0.01 0.30 0.10 0.09 0 

3 
1 

15,16,19,26,84,85,86, 
116,195 

0.40 -0.01 0.23 0.01 0.42 0.10 0.21 0 

2 12,15,16,84,86,116 0.15 -0.01 -0.02 0.01 0.31 0.11 0.1 0.01 

4 
1 15,16,84,85,86,116,223 0.30 -0.01 0.13 0.01 0.39 0.12 0.13 0.02 
2 12,14,15,16,18,84,85,86,116 0.26 -0.01 0.09 0.01 0.34 0.11 0.13 0.01 

5 
1 

14,15,16,19,84,85,116, 
117,118,223 

0.11 -0.01 -0.06 0.01 0.20 0.08 -0.01 -0.02 

2 
12,13,14,15,18,19,84,85,86,116,
117,118,223 

0.21 -0.01 0.04 0.01 0.25 0.09 0.04 -0.01 

6 
1 

15,16,19,26,84,85,86, 
116,118,223 

0.24 -0.01 0.07 0.01 0.29 0.09 0.08 -0.01 

2 
12,13,14,15,16,17,18,27,86,116,
117,118 

0.10 -0.01 -0.07 0.01 0.16 0.06 -0.05 -0.04 

7 
1 12,14,15,19,84,85,86 0.30 -0.01 0.13 0.01 0.41 0.13 0.2 0.03 
2 12,13,14,15,16,84,86 0.14 -0.01 -0.03 0.01 0.29 0.11 0.08 0.01 

8 
1 12,13,14,15,26,84,85,86 0.28 -0.01 0.11 0.01 0.37 0.12 0.16 0.02 

2 
12,13,14,15,26,84,85,86,118,19
5,198,223 

0.34 -0.01 0.17 0.01 0.37 0.10 0.16 0 
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The first CASP11 target to be docked was T0783 (PDB ID 4cvh). FunFOLD3 had predicted 

four biologically relevant ligands, with no predicted ligands matching the observed Mg and Cl 

ligands. However, both cytidine-5’-triphosphate (CTP) and cytidine-5’-monophosphate (C) 

had two correctly predicted ligand-binding residues (THR85 and ARG86). CTP was 

successfully docked but C was unable to be docked due to AutoDock being unable to add 

Gasteiger charges to the PDB file. Despite no correct ligand-binding site residues being 

predicted for the observed Cl ligand initially,  MCC and BDT scores were calculated 

following docking to determine if there had been an improvement towards either of the 

observed ligands. 

 

The predicted protein models from the four different grid box calculations along with the 

predicted ligand from FunFOLD3 and observed ligand are shown in Figure 6.3C-F. The best 

MCC and BDT models are depicted. All of the predicted ligand-binding site residues from the 

models with the respective MCC and BDT scores given in Tables 6.4-6.7.  

 

Figure 6.3A shows the prediction using FunFOLD3 for the CTP ligand, a MCC and BDT 

score of 0.17 and 0.21 was achieved, respectively compared to the Mg ligand and -0.015 

and 0.10, respectively compared to the Cl ligand (comparison to the Cl ligand is shown 

below in Figure 6.4). Overall, the best docked result was complex 7, pose two (Figure 6.3H) 

for grid box calculation 22.5A where an MCC and BDT score of 0.63 and 0.45, respectively 

was achieved. These scores were obtained for the Cl ligand, of which poor scores were 

achieved with FunFOLD3 (MCC and BDT -0.015 and 0.1, respectively). The increase in 

MCC and BDT was 4300% and 350%, respectively with the MCC and BDT scores 

increasing to 0.63 and 0.45, respectively. This was due to correct predictions for both of the 

ligand binding site residues (ARG88 and ASN92). As can be seen in Figure 6.3H, the 

improvement in ligand-binding came from the rotation of the ligand from a more distal 

location in relation to the observed ligand-binding residues to more proximal, which is also 
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demonstrated by the correct ligand-binding residues. An important consideration with this 

target is the difference between molecular weight between the predicted and observed 

ligands, the CTP ligand has a molecular weight of 483.16, whereas Cl is 35.45 and Mg is 

24.30. As a result of the difference in molecular weight, the predicted ligand will occupy a 

larger binding pocket and it is therefore reasonable to expect incorrect ligand-binding 

residues due to this. However, despite this difference the target was docked successfully 

with improvements against both the observed ligands. A more consistent improvement in 

MCC and BDT scores was observed with the Mg ligand, in comparison to the Cl ligand.  

 

 

 

 

 

 

 

 

 

Figure 6.4. Comparison of FunFOLD3 and observedligand-binding site predictions for T0783 (PDB ID 4cvh) 
(A) Predicted ligand-binding site residues shown as sticks with incorrect predictions shown in red, the cytidine-5’-triphosphate 
(CTP) ligand is shown as sphere and coloured yellow. The best BDT and MCC scores were achieved using 22.5Å (B) The 
observed ligand binding site residues for T0783 (PDB ID 4cvh) shown as sticks and coloured blue, the CL ligand is shown as 
sphere and coloured yellow 

 

A B 
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The second CASP11 target was T0798 and the predicted ligand-binding residues by 

FunFOLD3 were 13,14,15,16,17,18,19,29,30,31,33,35,36,61,62,117,118,120,121,147,148, 

149 (correct residues in red) and the observed ligand-binding residues were 12,14,15,16, 

17,18,19,29,30,31,32,34,117,118,120,121,147,148,149. The MCC and BDT scores were 

0.753 and 0.797, respectively.   

 
 

 
For T0798, FunFOLD3 obtained MCC and BDT scores of 0.753 and 0.797, respectively. 

There were six over-predictions and three under-predictions. In comparison, the best docked 

model had an MCC and BDT score of 0.74 and 0.65, respectively and this was achieved for 

complex 2 using a 10% grid box calculation (refer to Table S.33 in Appendix 4). Although, 

this was not an improvement in the overall scores, there was an improvement in the number 

of over-predictions which had reduced to one (SER 35) from the six in FunFOLD3. 

Additionally, the number of correct predictions had reduced from the 16 predictions by 

FunFOLD3 to 12 with FunFOLD3-D. This trend was seen across all the different grid box 

calculations; a reduction in the number of incorrect over-predictions, but also a reduction in 

the number of correct predictions. This could have been caused by a rotation of the ligand 

within the ligand-binding space, which is illustrated in Figures S.75C-F. As can be seen in 

Figure S.76C-F the ligand has rotated from a more "ideal" position seen with FunFOLD3, to 

a position which has reduced the number of both correct and incorrect predictions. The 

results from docking with this target highlights the importance of balance when it comes to 

ligand-binding residue prediction; scores are not necessarily proportionally improved by 

reducing the number of incorrect residue predictions and decreasing the number of correct 

residue predictions. 

 

Furthermore, this target also addresses whether FunFOLD3 predictions with good MCC and 

BDT scores can be improved further, i.e. is there a cut-off when it comes to refinement with 

docking and further improvements can’t be made?  
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The third CASP11 target was T0807 and the predicted ligand-binding residues by 

FunFOLD3 were 20,21,22,23,50,54,55,113,143,165,193,194,195,196,197,198,199,200, 

201,207,224,240,241,242,244,248,251 (correct residues in red) and the observed ligand-

binding residues were 20,21,22,50,55,80,142,143,165,193,194,195,196,198,199,201,224, 

240,241,242,243,244,245,248,251,252. The MCC and BDT scores were 0.771 and 0.849, 

respectively.  

 
 

 
T0807 was similar to T0798 in terms of good FunFOLD3 prediction, which was unable to be 

improved by docking. FunFOLD3 obtained scores of 0.771 and 0.849 for MCC and BDT, 

respectively. However, the best prediction by FunFOLD3-D was complex 5 for 10% box 

calculation and yielded an MCC and BDT of 0.49 and 0.43, respectively (Figure S.77D). This 

was driven by the number of correct ligand-binding residues  which was greater than for the 

other complexes of different grid box sizes totalling seven correct ligand-binding residues. 

As with T0798, the number of incorrect ligand-binding residues reduced from six with 

FunFOLD3 to five with FunFOLD3-D and two further correct ligand-binding residues were 

predicted (SER245 and ASN252). 

 

A similar trend was seen with this target as with T0798 where the ligand had rotated out of 

the ligand-binding space and hence reduced the quality of the prediction. This target adds 

further weight to the observation of good MCC and BDT scores cannot be improved further 

with docking, but in fact might be more detrimental to the prediction.  
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The fourth docked CASP11 target was T0813 and the predicted ligand-binding residues by 

FunFOLD3 for NAD were 11,12,13,14,15,16,37,38,72,73,74,75,98,100,123,127,128,131, 

132,235 (correct residues in red) and the observed ligand-binding residues were 13,42,46, 

133 for the Mg ligand. The MCC and BDT scores were 0.086 and 0.19, respectively.   

 

 
 
T0813 was similar to CASP11 target T0783 where the predicted ligands did not match the 

observed ligand and a clear size difference between the ligands with NAD having a 

molecular weight of 663.42 and the observed Mg ligand having a weight of 24.30. As with 

T0783, despite the size in molecular weight of the ligands, there was an improvement in the 

MCC and BDT scores following docking. The greatest improvement was seen with 50% grid 

box calculation where the MCC and BDT score was 0.46 and 0.43, respectively (Figure 

S.80F). In comparison to FunFOLD3 where the MCC and BDT scores were 0.086 and 0.19, 

respectively. This was an increase of 435% and 126%, for MCC and BDT, respectively. The 

increase in ligand-binding site residue prediction was driven by an increase in the number of 

correct predictions from one with FunFOLD3 (ILE13) to three with FunFOLD3-D (ILE13, 

THR42 and PRO133). Given the size difference between the predicted ligand and observed 

ligand, further improvement to the ligand-binding site residues is unlikely. 
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The predicted ligand-binding residues for T0813 for the NAI ligand by FunFOLD3 were 

11,15,16,38,72,73,74,75,77,98,100,123,127,128,131,132,235 and the observed ligand-

binding residues were 13,42,46,133 for the Mg ligand. The MCC and BDT scores were 

0.029 and 0.11, respectively.   

 
As with the predicted NAD ligand seen in the previous example, AutoDock Vina was able to 

improve the MCC and BDT scores from -0.029 and 0.11 for MCC and BDT scores, 

respectively to 0.34 and 0.28, respectively for complex 2 using 22.5A (Figure S.78C). This 

gave a score increase of 0.23 and 0.17 (1307% and 155%), respectively which is much 

pronounced compared with the NAD ligand, despite the MCC and BDT scores being lower, 

however the FunFOLD3 scores were low initially. As seen with the NAD ligand, the 

improvement in scores is driven by inclusion of correctly observed ligand-binding residues, 

of which there were none with FunFOLD3, as shown by the poor MCC score, but there were 

closely aligned residues as shown by the better BDT scores. For complex 2 using 22.5A box 

calculation, three (ILE13, THR42, PRO133) of the four correct predictions were included in 

the ligand binding residues, thus greatly increasing the MCC and BDT score. 
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The predicted ligand-binding residues by FunFOLD3 for NAP ligand for CASP11 target 

T0813 were 11,12,14,15,16,36,37 38,39,42, 55,72,73,74,75,98,100,127,128,131,132,235 

(correct residues in red and bold) and the observed ligand-binding residues were 

13,42,46,133 for the Mg ligand. The MCC and BDT scores were 0.079 and 0.2, respectively  

 

 

The predicted NAP ligand for T0813 follows the same pattern as with NAD and NAI ligands. 

The MCC and BDT scores as obtained with FunFOLD3 were 0.079 and 0.19, respectively. 

The best MCC and BDT score was for complex 1, pose 1 from 10% box calculation (Figure 

S.80D) and was 0.34 and 0.27, respectively. This was a score increase of 0.261 and 0.27 

(330% and 35%), respectively. As with NAI, this improvement was driven by the prediction of 

three of the four correct ligand-binding site residues (ILE13, THR42, PRO133). In the 

FunFOLD3 prediction, only one correct ligand-binding residue had been predicted (THR42). 

The more modest increase in BDT score between FunFOLD3 and FunFOLD3-D was due to 

less of a spread of the ligand-binding site residues, in particular incorrect residues with 

FunFOLD3-D predictions more aligned with the correct ligand-binding site residues. 
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The fifth docked CASP11 target was T0819 and the predicted ligand-binding residues by 

FunFOLD3 were 93,94,95,119,167,194,197,223,225,226,234,347 (correct residues in red) 

and the observed ligand-binding residues were 93,94,95,119,161,167,194,196,197,223, 

225,226,234. The MCC and BDT scores were 0.877 and 0.853, respectively  

 

 

T0819 was similar to CASP11 targets T0798 and T0807, in relation to all of these had good 

MCC and BDT scores. Additionally, FunFOLD3-D was unable to improve the MCC and BDT 

scores with docking. Across all the different grid box calculations, there was a decrease in 

the MCC and BDT scores. The lowest decrease was seen with a 10% grid box calculation 

(complex 8 Figure S.81D), which is unsurprising as this grid box is closest to the original 

ligand-binding space. An MCC and BDT score of 0.87 and 0.80 was achieved, respectively. 

This gave a modest decrease of 1% for the MCC score and 6% for the BDT score which 

was a score decrease of -0.007 and -0.053 for MCC and BDT, respectively. 

 

FunFOLD3 had one incorrect over-prediction (ARG347) and missed off two correct 

predictions (TYR161 and ALA196). FunFOLD3-D, in comparison had no incorrect 

predictions, however the correct predictions had reduced from 11 to 10 (GLY93 was missed 

from FunFOLD3-D prediction), and thus decreasing the MCC score. This finding aligns with 

T0798 regarding improvement of MCC and BDT scores in relation to the number of correct 

and incorrect predictions. 
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Figure 6.5. Comparison of FunFOLD3 and FunFOLD3-D ligand-binding site predictions for T0849 (PDB ID 4w66) 
(A) Predicted ligand-binding site residues shown as sticks with incorrect predictions shown in red, the GSH ligand is shown as 
sphere and coloured yellow. BDT score of 0.0375 and MCC score of -0.05  (B) The observed ligand binding site residues for 
T0849 (PDB ID 4w66) shown as sticks and coloured blue, the GSH ligand is shown as sphere and coloured yellow (C) 
Predicted ligand-binding site residues following docking with AutoDock Vina and using 22.5Å. Correct prediction is shown as 
sticks and coloured blue and incorrect predictions are shown as sticks and coloured red (D) Predicted ligand-binding site 
residues following docking with AutoDock Vina and using 10% grid box calculation. Incorrect predictions are shown as sticks 
and coloured red (E) Predicted ligand-binding site residues following docking with AutoDock Vina and using 20% grid box 
calculation. Incorrect predictions are shown as sticks and coloured red (F) Predicted ligand-binding site residues following 
docking with AutoDock Vina and using 50% grid box calculation. Incorrect predictions are shown as sticks and coloured red (G) 
Comparison of the ligand binding site for predictions made by FunFOLD3 with the protein coloured green and the observed 
structure coloured cyan (H) Comparison of the ligand binding site for predictions made by FunFOLD3-D with 22.5Å the 
predicted structure coloured green and the observed structure coloured cyan. BDT and MCC score of 0.24 and 0.0086, 
respectively   

A B 

C D 

E F 

G H 
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The predicted ligand-binding residues for T0849 by FunFOLD3 were 9,10,14,15,54,55,56, 

67,68,108,113,226,230 and the observed ligand-binding residues were 168,171,179,182, 

183,190,194,197. The MCC and BDT scores were -0.05 and 0.0375, respectively. The 

results from the different grid box calculations are shown below in Table 6.8-6.11.   

 
Table 6.8. Predicted ligand-binding site residues and MCC and BDT scores with box calculation 22.5Å for T0849 (PDB 
ID 4w66) 
Models are listed in numerical order following docking with change in MCC and BDT given as a percentage increase or 
decrease. The model with the best MCC and BDT is in bold. The box calculation is 22.5Å 

 
Table 6.9. Predicted ligand-binding site residues and MCC and BDT scores with 10% box calculation for T0849 (PDB ID 
4w66) 
Models are listed in numerical order following docking with change in MCC and BDT given as a percentage increase or 
decrease. The model with the best MCC and BDT is in bold. The grid box calculation was based 10% of the ligand-binding site  

 
Table 6.10. Predicted ligand-binding site residues and MCC and BDT scores with 20% box calculation for T0849 (PDB 
ID 4w66) 
Models are listed in numerical order following docking with change in MCC and BDT given as a percentage increase or 
decrease. The model with the best MCC and BDT is in bold. The grid box calculation was based 20% of the ligand-binding site  

 
 
 
 
 

Model 
number 

Predicted ligand-binding site residues MCC Score 
change 

BDT Score 
change 

1 13,17,107,108,168,169,172,206,217 0.086 0.136 0.24 0.2025 
2 9,10,12,14,15,54,55,108,112,113,218,226 -0.043 0.007 0.028 -0.0095 
3 9,10,12,15,55,56,112,113,222,226 -0.039 0.011 0.023 -0.0145 
4 9,10,12,15,108,112,113,222,226 -0.037 0.013 0.027 -0.0105 
5 13,17,21,104,107,108,111,165,168,169, 

172,173,217 
0.058 0.108 0.21 0.1725 

6 13,14,17,104,107,108,111,112,165,168, 
169,172,173,215,217,218 

0.043 0.093 0.18 0.1425 

7 68,69,72,94,97,98,101,162 -0.034 0.016 0.035 -0.0025 
8 9,10,15,55,56,108,112,113,226 -0.037 0.013 0.025 -0.0125 
9 10,12,14,55,112,113,222,226 -0.034 0.016 0.025 0.2025 

Model 
number 

Predicted ligand-binding site 
residues 

MCC Score 
change 

BDT Score 
change 

1 9,10,15,54 55,105,108,109,113,226 -0.039 0.011 0.026 -0.0115 
2 9,10,14,15 55,56,67,68,113,226 -0.039 0.011 0.022 -0.0155 
3 9,10,15,54,55,56,105,108,109 -0.037 0.013 0.027 -0.0105 
4 9,14,15,55,56,68,108,226 -0.034 0.016 0.027 -0.0105 
5 9,10,15,54,55,108,109,113,226,230 -0.039 0.011 0.023 -0.0145 
6 9,10,14,15,54 55,56,67,68,108,226 -0.040 0.01 0.024 -0.0135 
7 9,10,15,52,55,67,68,226 -0.034 0.016 0.019 -0.0185 
8 9,10,15,54,55,56,67,68,230 -0.037 0.013 0.019 -0.0185 
9 9,10,15,55,105,108,109,226 -0.034 0.016 0.029 -0.0085 

Model 
number 

Predicted ligand-binding site 
residues 

MCC Score 
change 

BDT Score 
change 

1 9,10,14,15,55,108,112,113,226 -0.037 0.013 0.027 -0.0105 
2 9,10,14,54,55,108,112,113,218,226,230 -0.041 0.009 0.025 -0.0125 
3 9,10,15,54,55,105,108,109,113,230 -0.039 0.011 0.026 -0.0115 
4 9,14,15,55,56,67,68,108,113,218 -0.039 0.011 0.028 -0.0095 
5 9,10,15,55,56,67,68,108,113,226 -0.039 0.011 0.023 -0.0145 
6 9,10,14,54,55,108,113,226 -0.034 0.016 0.024 -0.0135 
7 9,10,14,15,54,55,108,226,230 -0.037 0.013 0.024 -0.0135 
8 9,10,14,55,108,112,113,226,230 -0.037 0.013 0.024 -0.0135 
9 14,15,101,105,108,112,113,218,226 -0.037 0.013 0.036 -0.0015 
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Table 6.11. Predicted ligand-binding site residues and MCC and BDT scores with 50% box calculation for T0849 (PDB 
ID 4w66) 
Models are listed in numerical order following docking with change in MCC and BDT given as a percentage increase or 
decrease. The model with the best MCC and BDT is in bold. The grid box calculation was based 50% of the ligand-binding site  

 
 

For T0849, FunFOLD3 achieved a BDT and MCC score of 0.0375 and -0.05, respectively. 

As can be seen from the results in the tables, model one from 22.5Å provided the best MCC 

and BDT scores across all the four different  grid box calculations. The MCC and BDT 

scores increased to 0.086 and 0.24, respectively aided by one correct ligand residue 

prediction (GLU 168).  This gave a score increase of 0.136 and 0.2025, for MCC and BDT, 

respectively.  

 

The increase in the MCC and BDT was driven by the rotation of the ligand from a distal 

place within the protein in relation to the observed ligand to a more proximal location (see 

Figure 6.5). Unsurprisingly, the grid box calculations which were close to the predicted 

ligand-binding space for FunFOLD3, did not provide the best MCC and BDT scores due to 

the ligand needing to rotate to a location further away and therefore a wider ligand-binding 

space was required. 

 
  

Model 
number 

Predicted ligand-binding site residues MCC Score 
change 

BDT Score 
change 

1 9,10,14,15,55,108,112,113,226 -0.037 0.013 0.027 -0.0105 
2 9,10,12,14,15,55,108,112,113,226 -0.039 0.011 0.028 -0.0095 
3 9,10,12,14,15,55,108,112,218,226,230 -0.041 0.009 0.028 -0.0095 
4 9,10,14,54,55,108,112,113,226 -0.037 0.013 0.025 -0.0125 
5 9,10,12,14,55,108,112,113,218,226 -0.039 0.011 0.029 -0.0085 
6 9,10,14,55,112,113 226,229,230 -0.037 0.013 0.020 -0.0175 
7 9,10,12,14,15,41,53,54,108,112,218,226, 

229,230 
-0.046 0.004 0.024 -0.0135 

8 9,10,12,15,112,226,229,230 -0.034 0.016 0.022 -0.0155 
9 9,10,12,14,15,55,56,67,68,112,226 -0.041 0.009 0.024 -0.0135 
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The first CASP12 target to be docked was T0912 and the predicted ligand-binding site 

residues for the FRU ligand were 207,208,209,490 and the observed ligand-binding site 

residues were 155,262,264,268 for the calcium ligand. The MCC and BDT scores were -

0.00672 and 0.0295, respectively. The predicted ligand-binding site residues for the MAV 

ligand were 334,340,423,426,468,469,470 and the MCC and BDT scores were -0.00892 and 

0.0213, respectively.    

 

 
FunFOLD3 predicted two biologically relevant ligands and neither of the ligands matched the 

observed calcium ligand. FunFOLD3 obtained MCC and BDT scores of -0.00672 and 0.030, 

respectively. The BDT which was the most improved was for complex 3, pose 2 which 

achieved a BDT score of 0.076 which was a 158% increase for the 22.5Å box calculation. 

This increase was most likely driven by one ligand-binding residue (ARG153) which was 

close in proximity to ARG155 from the observed structure. It is likely, that a larger ligand-

binding rotational space could have improved the score further. 

 
 
The second ligand to be docked was MAV and as with the FRU ligand, there was no real 

definite improvement on the ligand-binding site residues and ultimately the MCC and BDT 

scores. As with the FRU ligand, no figures were made due to the poor MCC and BDT 

scores.  
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The second CASP12 target to be docked was T0913 and the predicted ligand-binding site 

residues by FunFOLD3 were 100,149,153,156,171,206,266,267,318,358,359,364 and the 

observed ligand-binding site residues were 64,65,66,67,209,210,273,274,320,321,363,368, 

371. The MCC and BDT scores were -0.0367 and 0.091, respectively.  

T0913 was an interesting target for docking as the observed structure as released by the 

CASP12 organisers did not have a ligand present in the observed structure, however, 

ligand-binding site residues were released in a publication pertaining to CASP12 (Liu et al., 

2018). As previous docking experiments had resulted in some improvement of MCC and 

BDT scores if there were differences between predicted and observed ligands, it was 

reasonable to consider this target for docking. However, there was no improvement in the 

MCC and BDT scores and hence no figures were created. BDT scores did increased for 

10% and 20% grid box calculation. With complex 1, pose 2 20% grid box calculation 

providing the best increase in BDT scores. This could have been due to ligand-binding site 

residues predicted by FunFOLD3-D being closer to the observed ligand-binding residues. 

For example, predicted residues ALA315 and ASN318 are close to the observed residue 

LEU320, predicted residues GLY360 and GLY361 is close to observed residue LYS363. 
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The third CASP12 target to be docked was T0916 and the predicted ligand-binding site 

residues by FunFOLD3 were 14,15,16,17,18,51,59,60,62,63,64,68,107 (correct predictions 

in red and bold) and the observed ligand-binding residues were 62,63,65,66,153,154,155, 

340,344 for the GLC(1) ligand and 12,14,15,63,111,153,155,156,230 for the GLC(2) ligand. 

The MCC and BDT scores were 0.162 and 0.263 when compared against GLC(1), 

respectively and 0.263 and 0.37, when compared against GLC(2), respectively  

 

 
T0916 involved docking a proportion of the predicted structure, due to CASP organisers only 

releasing part of the structure for prediction and was the only target docked in this way. The 

predicted ligand by FunFOLD3 was NAD for CASP12 and the observed ligands GLC were 

predicted in two different areas of the protein structure and hence denoted as GLC(1) and 

GLC(2). BDT and MCC scores were calculated for both ligands, in case there was a 

preference following docking for one ligand over the other. FunFOLD3 achieved a BDT and 

MCC score of 0.370 and 0.263, respectively for GLC(2) ligand as there were more correct 

predictions for this ligand, in comparison to GLC(1), were there was no correct ligand-

binding site residues.  

  

As can be seen from Table S.71 model seven from 50% grid box calculation provided the 

best MCC and BDT scores across all the four different  grid box calculations. However, the 

MCC and BDT scores decreased to 0.16 and 0.32, respectively and was a 39% and 14% 

reduction. The decrease was due to a decline in the number of correct prediction by 

FunFOLD3 which was three (VAL14, LEU15 and LYS63) to only two correct predictions 

(LEU15 and LYS63) by FunFOLD3-D. Additionally, LYS63 seems to be a ligand-binding 

residue which is conserved across all the higher scoring models.  

 

Figure S.82G is the alignment of the FunFOLD3 predicted ligand-binding site with the 

observed structure and Figure S.82H is the alignment of the top scored complex following 
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docking and the observed structure and a clear difference between the location of the 

predicted ligand binding site by FunFOLD3 and FunFOLD3-D can be seen. 
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The first CASP13 target was T0953s2 and the predicted ligand-binding site residues by 

FunFOLD3 were 119,120,121,122,124,125,126,127,155,156,157,158,159,164,165,166, 

167,168,169,170,174,195,198 and the observed ligand-binding site residues were 54,164. 

The MCC and BDT scores were 0.11 and 0.12, respectively  

 

FunFOLD3 predicted the DJB ligand, whereas the observed ligand was IMD. An MCC and 

BDT score of 0.12 and 0.11 was achieved, respectively, mainly due to the prediction of one 

correct ligand-binding site residue (THR164) by FunFOLD3. There was no increase in MCC 

scores across all four of the grid box calculations, however two grid box calculations 

increased the BDT score to 0.21 which was a 91% increase. The increase was for complex 

4 from 10% box calculation and complex 8 from 20% grid box calculation both box 

calculations had the same residue predictions and the increase in BDT score was due to the 

residues closely aligning with the correct observed residue THR164. The closely aligned 

residues were GLU165, ALA166,GLY167. Hence the increase in BDT scores, as the 

correctly predicted residue from FunFOLD3 was not predicted this lead to the increase in the 

MCC scores. 

 

It is worth noting with this structure (see Figure 3.23 in Chapter 3), that due to the overlap in 

the flexible loops in the predicted structure, there was unlikely to be an improvement due to 

the predicted and observed structures not aligning. 

 

The second CASP13 target to be docked was T0954 and the predicted ligand-binding site 

residues by FunFOLD3 for T0954 were 77,119,273,274,275 for the LYS ligand and the 

observed ligand-binding site residues were 123,124,129,130,131. The MCC and BDT scores 

were -0.015 and 0.028, respectively 
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FunFOLD3 predicted LYS and DNA as ligands for T0954 and the observed ligand was Mg. 

The LYS ligand was docked using AutoDock Vina, it was felt the DNA ligand was not 

suitable for docking due to the double-helix structure of DNA and that DNA was not a 

correctly predicted ligand.. Following docking, there was no improvement in either the MCC 

or BDT scores. For all the four grid box calculations, the MCC and BDT scores either stayed 

the same or decreased. As a result of no improvement in ligand-binding, no figures were 

created. 
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Figure 6.6. Comparison of FunFOLD3 and FunFOLD3-D ligand-binding site predictions for T0965 (PDB ID 6d2v) 
(A) Predicted ligand-binding site residues shown as sticks with incorrect predictions shown in red, the NAD ligand is shown as 
sphere and coloured yellow. BDT score of 0.35 and MCC score of 0.12  (B) The observed ligand binding site residues for 
T0965 (PDB ID 6d2v) shown as sticks and coloured blue, the NDP ligand is shown as sphere and coloured yellow (C) 
Predicted ligand-binding site residues following docking with AutoDock Vina and using 22.5Å. Correct prediction is shown as 
sticks and coloured blue and incorrect predictions are shown as sticks and coloured red (D) Predicted ligand-binding site 
residues following docking with AutoDock Vina and using 10% grid box calculation. Incorrect predictions are shown as sticks 
and coloured red (E) Predicted ligand-binding site residues following docking with AutoDock Vina and using 20% grid box 
calculation. Incorrect predictions are shown as sticks and coloured red (F) Predicted ligand-binding site residues following 
docking with AutoDock Vina and using 50% grid box calculation. Incorrect predictions are shown as sticks and coloured red (G) 
Comparison of the ligand binding site for predictions made by FunFOLD3 with the protein coloured green and the observed 
structure coloured cyan (H) Comparison of the ligand binding site for predictions made by FunFOLD3-D (22.5Å box calculation) 
with the predicted structure coloured green and the observed structure coloured cyan. NAD coloured orange and NDP coloured 
yellow. BDT and MCC score of 0.33 and 0.22, respectively 

 

A B 

C D 

E F 

G H 
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The predicted ligand-binding residues for T0965 by FunFOLD3 were 30,32,33,34,35,53,54, 

56,58,75,76,77,97,98,99,101,103,134,135,136,165,192,193,194,195,201,204,219,220,221, 

226,264,286,291 (correct residues are in red and bold). The observed ligand-binding site 

residues were 10,12,13,14,15,33,34,35,54,55,56,57,77,78,79,81,114,115,116,145,149,172, 

173,174,175 for the observed NDP ligand. The MCC and BDT score was 0.12 and 0.35, 

respectively. The results from the different grid box calculations are shown below in Tables 

6.12-6.15.   

 
 
Table 6.12. Predicted ligand-binding site residues and MCC and BDT scores with box calculation 22.5Å for T0965 (PDB 
ID 6d2v) 
Models are listed in numerical order following docking with change in MCC and BDT given as a percentage increase or 
decrease. The model with the best MCC and BDT is in bold. The box calculation is 22.5Å 

 

 

Table 6.13. Predicted ligand-binding site residues and MCC and BDT scores with 10% box calculation for T0965 (PDB 
ID 6d2v) 
Models are listed in numerical order following docking with change in MCC and BDT given as a percentage increase or 
decrease. The model with the best MCC and BDT is in bold. The grid box calculation was based 10% of the ligand-binding 
space 

 

Model 
number 

Predicted ligand-binding site residues  MCC Score  
change 

BDT Score  
change 

1 
30,33,34,35,36,57,58,97,99,100,101,103,104,
195,201,202,203,204,205 

0.12 0 0.22 -0.13 

2 
30,33,34,35,53,54,57,58,76,77,97,98,99,101,1
13,136,192,194,195 

0.22 0.1 0.33 -0.02 

3 
33,34,35,36,57,58,97,99,100,101,102,103,104
,201,203,204 

0.15 0.03 0.22 -0.13 

4 
30,33,34,57,58,97,100,101,201,202,203,204,2
07,219,284 

0.099 -0.021 0.16 -0.19 

5 
33,34,35,57,58,97,100,101,103,104,201,202,2
03,285,286,333 

0.16 0.04 0.20 -0.15 

6 
101,103,104,136,137,138,165,193,194,202,20
3,204,207,288,333,334 

-0.064 -0.184 0.029 -0.321 

7 
101,103,104,136,137,138,193,194,195,203,20
4,285,286,288,291 

-0.064 -0.184 0.028 -0.322 

8 
101,103,194,195,202,203,204,206,207,210,32
7,328,333 

-0.054 -0.174 0.024 -0.326 

9 
101,102,103,104,136,193,194,195,203,204,28
4,286 

-0.057 -0.177 0.017 -0.333 

Model 
number 

Predicted ligand-binding site residues  MCC Score  
change 

BDT Score  
change 

1 
30,33,34,35,36,53,54,57,58,76,77,97,99,101,136, 
137,138,192,193,194,195,201 

0.20 0.08 0.33 -0.02 

2 
30,33,34,35,36,57,58,97,98,99,100,101,136,137, 
138,192,193,194,195,201 

0.12 0 0.23 0.12 

3 
34,35,54,57,97,99,100,101,113,134,136,137,138, 
192,193,194,195,201 

0.13 0.01 0.21 -0.14 

4 
30,33,34,53,54,57,58,76,77,98,99,100,101,113,201, 
202,333 

0.20 0.08 0.28 -0.07 

5 
30,33,34,35,53,54,57,58,76,98,99,100,101,113,134, 
136,165,192,194,195,201 

0.16 0.04 0.29 -0.06 

6 30,33,34,35,57,58,97,98,99,100,101,134,136,165, 0.15 0.03 0.21 -0.14 
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Table 6.14. 1Predicted ligand-binding site residues and MCC and BDT scores with 20% box calculation for T0965 (PDB 
ID 6d2v) 
Models are listed in numerical order following docking with change in MCC and BDT given as a percentage increase or 
decrease. The model with the best MCC and BDT is in bold. The grid box calculation was based 20% of the ligand-binding 
space 
 

 

Table 6.15. Predicted ligand-binding site residues and MCC and BDT scores with 50% box calculation for T0965 (PDB 
ID 6d2v) 
Models are listed in numerical order following docking with change in MCC and BDT given as a percentage increase or 
decrease. The model with the best MCC and BDT is in bold. The grid box calculation was based 50% of the ligand-binding 
space  

 

195,201 

7 
30,33,34,35,53,54,57,58,76,98,99,100,101,113,134, 
136,192,193,195,201 

0.16 0.04 0.28 -0.07 

8 
30,34,35,53,54,57,58,76,97,98,99,100,101,136,137, 
138,165,192,193,194,195,201 

0.10 -0.02 0.25 -0.1 

9 
30,33,34,35,53,54,57,58,76,97,98,99,100,101,113,134, 
136,165,193,195,201 

0.16 0.04 0.29 -0.06 

Model 
number 

Predicted ligand-binding site residues  MCC Score  
change 

BDT Score  
change 

1 
30,33,34,35,36,57,58,97,98,99,100,101,136,137, 
138,192,193,194,195,201 

0.12 0.000 0.23 -0.12 

2 
30,33,34,35,36,53,54,57,58,76,77,97,99,101,136, 
137,138,192,193,194,195,201 

0.20 0.080 0.33 -0.02 

3 
30,33,34,35,53,54,57,58,97,99,100,101,136,137, 
138,192,193,194,195,201 

0.16 0.040 0.27 -0.08 

4 
30,33,34,35,36,54,58,97,98,99,100,101,113,136, 
137,138,192,193,194,195 

0.12 0.0 0.25 -0.1 

5 
33,34,35,57,97,99,100,101,113,136,137,138,192, 
193,194,195,201 

0.14 0.020 0.21 -0.14 

6 
30,32,33,34,53,54,57,58,75,76,77,97,98,99,100, 
101,113,201,202,333 

0.17 0.050 0.31 -0.04 

7 
30,33,34,53,54,57,58,76,77,98,99,100,101, 
113,201,202,333 

0.20 0.080 0.28 -0.07 

8 
33,34,35,54,57,58,97,98,99,100,101,103,136, 
192,193,194,195,201 

0.18 0.060 0.25 -0.1 

9 
30,33,34,35,53,54,57,58,76,97,98,99,100,101,113, 
134,136,165,193,195,201 

0.16 0.040 0.29 -0.06 

Model 
number 

Predicted ligand-binding site residues  MCC Score  
change 

BDT Score 
change 

1 
30,33,34,35,36,53,54,57,58,76,77,97,99,101, 
136,137,138,192,193,194,195,201 

0.20 0.08 0.33 -0.02 

2 
30,33,34,35,36,57,58,97,98,99,100,101,136, 
137,138,192,193,194,195,201 

0.12 0 0.23 -0.12 

3 
30,32,34,35,53,54,57,58,97,99,101,103,136,165, 
192,194,195,201,203,205 

0.20 0.08 0.34 -0.01 

4 
30,32,34,35,53,54,57,58,97,99,101,103,136,165, 
192,194,195,201,203,205 

0.12 0 0.24 -0.11 

5 
30,33,34,35,54,57,58,77,97,98,99,100,101,104, 
109,110,113,201,202 

0.22 0.1 0.30 -0.05 

6 
30,33,34,35,57,58,97,98,99,100,101,136,192, 
193,194,195,201,203 

0.13 0.01 0.21 -0.14 

7 
33,34,35,36,57,97,99,100,101,136,137,138,192, 
193,194,195,201 

0.14 0.02 0.21 -0.14 

8 
30,33,34,35,54,57,58,97,98,99,100,101,113,136, 
137,138,165,192,193,194,195 

0.16 0.04 0.27 -0.08 

9 
30,33,34,35,53,54,57,58,97,98,99,100,101,136, 
192,193,194,195,201 

0.17 0.05 0.26 -0.09 
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CASP13 target T0965 predicted NAD as the biologically relevant ligand, however the 

observed ligands were NDP and Cl. Due to the closeness between NAD and NDP, and the 

cross over in correct ligand predictions, this target was selected for docking. 

 

The results for this target were somewhat interesting, as across all four grid box calculations 

the BDT score did not increase but decreased, with some grid box calculations having 

modest decreases of 6%. However, the MDT scores increased in each one of the grid box 

calculations. Complex 2 using 22.5Å was provided the best MDT and BDT scores, although 

the BDT score decrease, the decrease was smaller compared to the decrease with other 

box calculations. 

 

The increase in MDT score was likely driven by a decrease in the number of incorrect 

ligand-binding residue predictions. FunFOLD3 had predicted a total of 28 incorrect 

predictions, whereas the top-scoring model from AutoDock Vina had 13 incorrect 

predictions. As can be seen in Figure 6.6.  
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Figure 6.7. Comparison of FunFOLD3 and FunFOLD3-D ligand-binding site predictions for T0983 (PDB ID 6uk5) 
(A) Predicted ligand-binding site residues shown as sticks with incorrect predictions shown in red, the SAH ligand is shown as 
sphere and coloured yellow. BDT and MCC score of 0.715  (B) The observed ligand binding site residues for T0983 (PDB ID 
6uk5) shown as sticks and coloured blue, the SAM ligand is shown as sphere and coloured yellow (C) Predicted ligand-binding 
site residues following docking with AutoDock Vina and using 22.5Å. Correct prediction is shown as sticks and coloured blue 
and incorrect predictions are shown as sticks and coloured red (D) Predicted ligand-binding site residues following docking with 
AutoDock Vina and using 10% grid box calculation. Incorrect predictions are shown as sticks and coloured red (E) Predicted 
ligand-binding site residues following docking with AutoDock Vina and using 20% grid box calculation. Incorrect predictions are 
shown as sticks and coloured red (F) Predicted ligand-binding site residues following docking with AutoDock Vina and using 
50% grid box calculation. Incorrect predictions are shown as sticks and coloured red (G) Comparison of the ligand binding site 
for predictions made by FunFOLD3 with the predicted structure coloured green and the observed structure coloured cyan. 
Predicted ligand SAH is coloured orange for ease of identification (H) Comparison of the ligand binding site for predictions 
made by FunFOLD3-D (50% box calculation) with the protein coloured green and the observed structure coloured cyan. SAH 
coloured orange and SAM coloured yellow. BDT and MCC score of 0.71 and 0.83,respectively 

A B 
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G H 
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The predicted ligand-binding residues for T0983 by FunFOLD3 were 2,14,17,21,46,47,48, 

52,67,68,69,72,88,89,90,105,106,107,108,111,141,147,150,178,228 (correct residues are in 

red and bold). The observed ligand-binding site residues were 2,10,21,46, 47,48,52,66,67, 

68,69,72,88,89,90,91,105,106,108,111,112 for the observed SAM ligand. The MCC and 

BDT score was 0.715 and 0.715, respectively.   

 
The incorrect ligand-binding site residues are surrounding biologically irrelevant ligands, as 

determined by FunFOLD3, phenyl-uridine-5’-diphosphate, thymidine diphosphate phenol 

and thymidine. Whilst FunFOLD3 correctly identified the ligands and not being biologically 

relevant, the residues surrounding these ligands were incorrectly included in the prediction 

as shown in Figure 6.7A. Docking with AutoDock Vina correctly identified these residues not 

being part of the ligand-binding residue cluster (Figure 6.7C-F). The results from the grid box 

calculations are shown below in Tables 6.16-6.19.  

 
Table 6.16. Predicted ligand-binding site residues and MCC and BDT scores with box calculation 22.5Å for T0983 (PDB 
ID 6uk5) 
Models are listed in numerical order following docking with change in MCC and BDT given as a percentage increase or 
decrease. The model with the best MCC and BDT is in bold. The box calculation is 22.5Å 

 
 
Table 6.17. Predicted ligand-binding site residues and MCC and BDT scores with 10% box calculation for T0983 (PDB 
ID 6uk5) 
Models are listed in numerical order following docking with change in MCC and BDT given as a percentage increase or 
decrease. The model with the best MCC and BDT is in bold. The grid box calculation was based 10% of the ligand-binding site   

 

Model 
number 

Predicted ligand-binding site residues  MCC Score 
change 

BDT Score  
change 

1 2,46,67,68,72,89,90,91,108,111,112,198 0.67 -0.045 0.53 -0.185 
2 1,2,14,46,67,68,69,72,90,105,106,108,111 0.64 -0.075 0.55 -0.165 
3 1,2,46,67,68,88,90,111,197,198 0.45 -0.265 0.37 -0.345 
4 17,106,107,110,111,140,150,152,165,167,169,178, 

199,228 
0.049 -0.666 0.17 -0.545 

5 17,19,106,150,153,165,167,178,228 0.016 -0.699 0.077 -0.638 
6 17,141,150,165,169,178,228 -0.054 -0.769 0.021 -0.694 
7 2,67,68,90,111,197,198 0.38 -0.335 0.25 -0.465 
8 17,19,24,140,150,178,226,228 -0.058 -0.773 0.044 -0.671 
9 1,67,68,89,90,111,196,197,198 0.33 -0.385 0.27 -0.445 

Model 
number 

Predicted ligand-binding site residues  MCC Score 
change 

BDT Score 
change 

1 2,14,21,46,47,48,49,50,51,52,67,68,72,88,90,108,111 0.66 -0.055 0.68 -0.035 
2 2,14,21,46,47,48,49,50,51,52,67,68,72,106,108,111 0.63 -0.085 0.63 -0.085 
3 2,14,21,46,47,48,49,51,52,67,68,105,106,108,111 0.65 -0.065 0.62 -0.095 
4 1,2,14,21,46,47,48,49,50,51,52,67,68,72,106,108,111 0.60 -0.115 0.65 -0.065 
5 2,45,46,67,68,72,88,89,90,105,106,108,111 0.71 -0.005 0.59 -0.125 
6 1,2,14,19,21,67,68,69,72,90,106,108,111 0.58 -0.135 0.51 -0.205 
7 2,14,21,46,47,48,49,52,67,72,90,105,106,108,111 0.71 -0.005 0.64 -0.075 
8 2,14,21,46,52,67,68,72,90,106,108,111 0.67 -0.045 0.53 -0.185 
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Table 6.18. Predicted ligand-binding site residues and MCC and BDT scores with 20% box calculation for T0983 (PDB 
ID 6uk5) 
Models are listed in numerical order following docking with change in MCC and BDT given as a percentage increase or 
decrease. The model with the best MCC and BDT is in bold. The grid box calculation was based 20% of the ligand-binding site  

 
 
Table 6.19. Predicted ligand-binding site residues and MCC and BDT scores with 50% box calculation for T0983 (PDB 
ID 6uk5) 
Models are listed in numerical order following docking with change in MCC and BDT given as a percentage increase or 
decrease. The model with the best MCC and BDT is in bold. The grid box calculation was based 50% of the ligand-binding site  

 

T0983 was similar to T0965 in respect a different but related ligand being predicted SAH by 

FunFOLD3 and the observed ligand was in fact SAM. Additionally, a similar trend was seen 

whereby the MCC score increased however the BDT stayed the same/decreased slightly. 

FunFOLD3 achieved a MCC and BDT score of 0.715 for both scores. However, the top 

scoring complex; complex 7 from 50% box calculation achieved an MCC and BDT of 0.83 

and 0.71, respectively. This was an increase in score of 0.115 for MCC and a decrease of    

-0.005 for BDT. 

 

The increase in MCC score would be due to no incorrect ligand-binding residues being 

predicted in the FunFOLD3-D method compared to eight incorrect ligand-binding residues 

which was predicted by FunFOLD. Furthermore, two correct ligand-binding residues (PHE91 

and GLU112) were predicted by FunFOLD3-D which were missed by FunFOLD3. Despite 

Model 
number 

Predicted ligand-binding site residues  MCC Score 
change 

BDT Score 
change 

1 2,14,21,46,47,48,49,50,51,52,67,68,72,88,90,108,111 0.66 -0.055 0.68 -0.035 
2 2,14,21,46,47,48,49,50,51,52,67,72,108,111 0.55 -0.165 0.53 -0.185 
3 2,14,21,46,48,49,50,51,52,67,68,72,89,90,108,111,112 0.66 -0.055 0.68 -0.035 
4 1,2,14,21,46,48,49,50,51,52,67,68,69,72,108,111 0.57 -0.145 0.60 -0.115 
5 2,14,21,46,47,49,50,51,52,67,72,90,108,111 0.55 -0.165 0.53 -0.185 
6 2,14,21,46,47,48,49,51,52,67,68,72,90,105,106,108,111 0.72 0.005 0.71 -0.005 
7 1,2,14,46,47,48,49,67,68,69,72,90,108,111 0.62 -0.095 0.57 -0.145 
8 2,46,67,68,90,106,108,111,112 0.64 -0.075 0.43 -0.285 

Model 
number 

Predicted ligand-binding site residues  MCC Score 
change 

BDT Score 
change 

1 2,14,21,46,47,48,49,50,51,52,67,68,72,88,90,108,111 0.66 -0.055 0.68 -0.035 
2 2,14,21,46,47,48,49,51,52,67,68,72,88,90,105,106,108,111 0.75 0.035 0.78 0.065 
3 2,14,21,46,48,49,50,51,52,67,68,72,89,90,108,111 0.63 -0.085 0.63 -0.085 
4 2,14,21,46,47,48,49,50,51,52,67,72,106,108,111 0.59 -0.125 0.58 -0.135 
5 2,14,21,47,48,49,50,51,52,67,68,72,108,111 0.55 -0.165 0.53 -0.185 
6 2,14,21,46,47,49,50,51,52,67,68,69,72,108,111 0.59 -0.125 0.58 -0.135 
7 2,46,48,67,68,72,88,89,90,91,105,106,108,111,112 0.83 0.115 0.71 -0.005 
8 1,2,14,48,49,67,68,69,72,90,106,108,111 0.58 -0.135 0.52 -0.195 
9 2,14,46,47,48,49,52,67,72,90,105,106,108,111 0.68 -0.035 0.60 -0.115 
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the addition of two correct ligand-binding residues the overall number of correct ligand-

binding residues decreased from 17 with FunFOLD3 to 15 with FunFOLD3-D. 
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The next CASP13 target to be docked was T1003 and the predicted ligand-binding residues 

for T1003 by FunFOLD3 were 113,144,145,146,149,172,244,246,247,275,278,284,306, 

308,474. The observed ligand-binding site residues were 257,258,259,262,285,287,328, 

332,357,359,360,388,391,419,420,421. The MCC and BDT score was -0.04 and 0.06, 

respectively.   

 
 
The FunFOLD3 prediction for T1003 and the observed ligand matched however, a poor 

MCC and BDT score was achieved. The MCC and BDT score was -0.04 and 0.06, 

respectively. Despite a correctly predicted ligand, docking failed to improve the MCC scores 

towards a more positive score. The best MCC and BDT score was obtained for complex 8 

with grid box calculation 22.5Å, the MCC score improved to 0.06 and the BDT score to 0.15, 

thus giving a score increase of 0.1 and 0.09, respectively. Despite the impressive 

percentage increases the scores are still weak and therefore, no images have been 

produced. The FunFOLD3 prediction failed to predict any correct ligand-binding site 

residues. However, following docking with FunFOLD3-D this was increased to one correct 

ligand-binding residue (ILE391), this correct residue most likely drove the increase in MCC 

score. The BDT score increase was most likely increased due to two ligand-binding residues 

(GLN389 and ALA390) which were close to the  observed ligand residues (VAL388 and 

ILE391). 
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The fifth CASP13 target to be docked was T1009 and the predicted ligand-binding residues 

by FunFOLD3 were 257,286,325,393,395,396,470,484,487,520,557 (correct ligand-binding 

residues in red and bold). The observed ligand-binding site residues were 257,285,286, 325, 

393,395,470,484,487,520,557 for the XYS ligand. The MCC and BDT score was 0.91 and 

0.94, respectively. 

 

 
FunFOLD3 predicted the GLC ligand in two different locations with the one of the GLC 

ligands (identified as GLC ligand(2) - see Figure S.58 in Appendix 4. In comparison, the 

observed ligand had five observed ligands, with some predicted at different locations. The 

GLC ligand(2) shared 10 correct ligand-binding residues with XYS ligand and missed off one 

correct residue (285) and included one incorrect prediction (396), this this contributed to an 

MCC and BDT score of 0.91 and 0.94, respectively. As seen previously, in CASP11 with 

other top scoring MCC and BDT proteins, further improvement is unlikely. All four grid box 

calculations decreased the MCC and BDT scores, with 10% grid box, unsurprisingly, 

decreasing the MCC and BDT scores, the least with a 33% and 48% reduction, respectively. 

This target provides further support that there is a maximum threshold when it comes to 

improvement of FunFOLD3 predictions.  
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The sixth CASP13 target to be docked was T1014 and the predicted ligand-binding residues 

by FunFOLD3 were 57,58,60,61,85,88,90,98,103,104,105,114,115,116,117,118,119,120, 

121,144,156. The observed ligand-binding site residues were 139,142,143,167,172,180, 

185,186,187,199,200,201,202,228  for the observed ANP ligand. The MCC and BDT score 

was -0.05 and 0.05, respectively.   

 

For T1014 FunFOLD3 predicted ADP and the observed ligand was ANP and Mg. The MCC 

and BDT score were on the poor side of the prediction with  -0.05 and 0.05, respectively. 

Following docking, the MCC and BDT scores, did remain fairly poor. However, grid box 

calculation of 22.5Å improved the MCC and BDT score by 40% or 60%, depending on the 

complex but the BDT score decreased by 2%, 20% or 80%, once again depending on the 

complex. In comparison, complex 1 from 10% box grid calculation increased the BDT score 

by 160% to 0.13 with no effect on the MCC score. The clearest explanation for the increase 

in BDT is most likely due to the removal of ASN57, ALA58, LYS60 as ligand-binding 

residues and retainment of the ALA144 and PHE146 which are close to the GLN142 and 

GLY143 observed ligand-binding residues. This seemed to be common with other higher 

scoring complexes at other grid box calculations (e.g. complex 2 10% grid box calculation 

and complex 2 20% grid box calculation).  
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Figure 6.8. Comparison of FunFOLD3 and FunFOLD3-D ligand-binding site predictions for T1016 (PDB ID 6e4b) 
(A) Predicted ligand-binding site residues shown as sticks with incorrect predictions shown in red, the PO4 ligand is shown as 
sphere and coloured yellow. BDT score of 0.646 and MCC score of 0.556  (B) The observed ligand binding site residues for 
T1016 (PDB ID 6e4b) shown as sticks and coloured blue, the CL ligand is shown as sphere and coloured yellow (C) Predicted 
ligand-binding site residues following docking with AutoDock Vina and using 22.5Å. Correct prediction is shown as sticks and 
coloured blue and incorrect predictions are shown as sticks and coloured red (D) Predicted ligand-binding site residues 
following docking with AutoDock Vina and using 10% grid box calculation. Incorrect predictions are shown as sticks and 
coloured red (E) Predicted ligand-binding site residues following docking with AutoDock Vina and using 20% grid box 
calculation. Incorrect predictions are shown as sticks and coloured red (F) Predicted ligand-binding site residues following 
docking with AutoDock Vina and using 50% grid box calculation. Incorrect predictions are shown as sticks and coloured red (G) 
Comparison of the ligand binding site for predictions made by FunFOLD3 with the protein coloured green and the observed 
structure coloured cyan (H) Comparison of the ligand binding site for predictions made by FunFOLD3-D (22.5Å box calculation) 
with the predicted structure coloured green and the observed structure coloured cyan. PO4 coloured orange and CL coloured 
yellow. BDT and MCC score of 0.91 and 0.85, respectively for 22.5Å 
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The predicted ligand-binding residues for T1016 by FunFOLD3 were 7,8,14,19,20,21,57,81, 

84,149,150. The observed ligand-binding site residues were 7,8,14,57,81,149,150 for the Cl 

ligand. The MCC and BDT score was 0.556 and 0.646, respectively.   

 
Table 6.20. Predicted ligand-binding site residues and MCC and BDT scores with box calculation 22.5Å for T1016 (PDB 
ID 6e4b) 
Models are listed in numerical order following docking with change in MCC and BDT given as a percentage increase or 
decrease. The model with the best MCC and BDT is in bold. The box calculation is 22.5Å 

 
Table 6.21. Predicted ligand-binding site residues and MCC and BDT scores with 10% box calculation for T1016 (PDB 
ID 6e4b) 
Models are listed in numerical order following docking with change in MCC and BDT given as a percentage increase or 
decrease. The model with the best MCC and BDT is in bold. The grid box calculation was based 10% of the ligand-binding site  

 
Table 6.22. Predicted ligand-binding site residues and MCC and BDT scores with 20% box calculation for T1016 (PDB 
ID 6e4b) 
Models are listed in numerical order following docking with change in MCC and BDT given as a percentage increase or 
decrease. The model with the best MCC and BDT is in bold. The grid box calculation was based 20% of the ligand-binding site  

 
Table 6.23. Predicted ligand-binding site residues and MCC and BDT scores with 50% box calculation for T1016 (PDB 
ID 6e4b) 
Models are listed in numerical order following docking with change in MCC and BDT given as a percentage increase or 
decrease. The model with the best MCC and BDT is in bold. The grid box calculation was based 50% of the ligand-binding site 

Model 
number 

Predicted ligand-binding site 
residues  

MCC Score 
change 

BDT Score  
change 

1 7,57,81,149,150,151 0.76 0.204 0.77 0.214 
2 7,8,57,81,149,150,151 0.85 0.294 0.91 0.354 
3 Same as complex 2 - - - - 
4 Same as complex 2 - - - - 
5 Same as complex 2 - - - - 
6 Same as complex 2 - - - - 
7 Same as complex 2 - - - - 

Model 
number 

Predicted ligand-binding site 
residues  

MCC Score 
change 

BDT Score 
change 

1 7,81,150,151 0.56 0.004 0.48 -0.166 
2 7,57,81,150,151 0.67 0.114 0.63 -0.016 
3 Same as complex 2 - - - - 
4 Same as complex 2 - - - - 
5 Same as complex 2 - - - - 
6 Same as complex 2 - - - - 
7 Same as complex 2 - - - - 
8 7,14,57,81,150 0.84 0.284 0.71 0.064 
9 Same as complex 8 - - -  - 

Model 
number 

Predicted ligand-binding site 
residues  

MCC Score 
change 

BDT Score 
change 

1 7,81,150 0.64 0.084 0.43 -0.216 
2 Same as complex 1 - - - - 
3 Same as complex 1 - - - - 
4 7,14,81,150,151 0.67 0.114 0.63 -0.016 
5 7,81,150,151 0.56 0.004 0.48 -0.166 
6 Same as complex 5 - - - - 
7 Same as complex 1 - - - - 
8 7,14,81,150 0.75 0.194 0.57 0.076 
9 14,19,20,57,81 0.49 -0.066 0.46 -0.186 

Model 
number 

Predicted ligand-binding site 
residues  

MCC Score 
change 

BDT Score 
change 

1 7,81,84,150,151 0.49 -0.066 0.50 -0.146 
2 Same as complex 1 - - - - 
3 Same as complex 1 - - - - 
4 Same as complex 1 - - - - 
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The best CASP13 target to be docked was T1016 (PDB ID 6e4b), despite the predicted PO4 

ligand not matching the observed Cl ligand as shown in Figure 6.8 above. As can be seen 

from Tables 6.20-6.23  the number of predictions per grid box calculation was decreased. 

This could be due to the size of the ligand and the ligand-binding space and therefore the 

number of rotations that is possible. Additionally, PO4 was the smallest ligand to be 

successfully docked so could highlight there is a size threshold for ligands when undergoing 

docking. The PO4 ligand has a molecular weight of 94.97, as mentioned previously in the 

chapter targets with small ligands such as Mg were unable to be docked. PO4 is almost four 

times the size of Mg and almost three times the size of the observed ligand Cl. The 22.5Å 

gave the best results and improvement in MCC and BDT score with increases from 0.556 

and 0.646, respectively to 0.85 and 0.91, respectively. This gave a score increase of 0.294 

and 0.354, respectively (and a percentage increase of 53% and 41%, respectively). Whilst 

this isn't the greatest percentage increase across the docking targets it is the best scores to 

be achieved following docking. With respect to the FunFOLD3 prediction there were seven 

correct ligand-binding residue predictions and four incorrect ligand binding residue 

predictions (see Table 3.9 Chapter 3). In comparison, 22.5Å from FunFOLD3-D correctly 

predicted six ligand-binding residues and had one incorrect ligand binding residue prediction 

which was not included in the FunFOLD3 prediction (GLY151). Only one of the correct 

ligand-binding residues was missed off (HIS8). All of these factors could have contributed to 

the improvement in MCC and BDT scores. 

 
 
 
 
 

5 Same as complex 1 - - - - 
6 Same as complex 1 - - - - 
7 Same as complex 1 - - - - 
8 Same as complex 1 - - - - 
9 Same as complex 1 - - - - 
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6.4 Summary and conclusion 

 
As mentioned previously in the introduction, AutoDock Vina has been used previously in 

order to enhance the ligand-binding sites for COACH and was subsequently called COACH-

D (Wu et al., 2018). As a result, AutoDock Vina was selected as a method to improve the 

ligand-binding residues predicted by FunFOLD3. FunFOLD3-D is the proposed new method, 

which will utilise docking to improve the predicted ligand-binding sites by rotating the 

predicted ligand in the binding space, as identified using FunFOLD3. Therefore, FunFOLD3-

D will not be a stand-alone method at this stage but an additional step following prediction 

with FunFOLD3. FunFOLD3-D outputs, up to a total of nine models for generation, as 

recommended by the developers of AutoDock Vina. However, it is worth noting, that the 

results in this chapter have shown in certain circumstances nine different ligand-binding sites 

might be unable to obtain due to the type of ligand involved for the quality of the original 

prediction. FunFOLD3-D has a clear difference between COACH-D with the utilisation of a 

box calculation method, a grid size of 22.5Å was chosen as the grid space for docking due 

to published information. However, the results in this chapter suggest that having various 

different grid box calculations is worthwhile and the grid box depends on a) the size of the 

ligand and b) how close the original prediction by FunFOLD3 was to the observed ligand-

binding space. i.e. the more distal the predicted and observed ligand, the greater the grid 

box calculation needs to be. The converse would be true for more proximal ligands. A further 

consideration for docking is the similarity between the predicted and observed protein 

structure. For example, CASP13 target T1014 (PDB ID 6qrj) had a MCC and BDT score of -

0.05 and 0.05, respectively. The TM score was 0.31010, corresponding towards a poor 

alignment and therefore with a poor alignment between the predicted and observed 

structure, this could have impacted on the ability of AutoDock Vina to improve the ligand-

binding residues with docking. 
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FunFOLD3-D is the developed method, following on from the problems identified with 

FunFOLD3 with protein targets across the various CASP11, CASP12 and CASP13 

experiments. Despite 12 of the 17 protein targets having an improvement in MCC and BDT 

scores. FunFOLD3-D is not without its limitations which is explored below:  

 

1. Semi-automated and manual curation: The docking element of FunFOLD3-D is 

currently reliant on manually checking each of the nine 3D protein-ligand models produced 

by AutoDock Vina and the user selects the best model. Therefore, this stage of the process 

is time-consuming. Currently there is no scoring method to pre-select the best model. 

FunFOLDQA could be potentially used as a method to score these models. This will be an 

area which can be further developed. Further work is needed to overcome this limitation and 

this will make FunFOLD3-D a fully incorporated tool in the IntFOLD server pipeline.  

 

2. Variability in successfully docking ligands: Not all ligands can be docked. If the ligand 

is a small metal ion, for example, which is bound in a tight space, there is therefore not 

enough space for the ligand to rotate and therefore will not benefit from docking, this does 

not present an immediate problem, as the prediction could stop at the FunFOLD3 stage with 

larger ligands and/or bigger ligand-binding pockets progressing onto FunFOLD3-D. Thus, 

FunFOLD3-D becomes an “add-on” method in certain circumstances i.e. a case-by-case 

basis.  

 

3. MCC and BDT score threshold: Difficulty in improving an already good MCC and BDT 

score following prediction with FunFOLD3. As can be seen from the examples in this chapter 

if FunFOLD3 has predicted an MCC and BDT score of >0.70 then it is unlikely to be 

improved further by docking and there are no examples with the protein targets where 

docking with AutoDock Vina has improved these scores further and in certain 

circumstances, docking has been more detrimental to the MCC and BDT scores. Therefore, 
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this raises a potential consideration, of whether docking should be considered on an MCC 

and BDT score basis, which relates back to the limitations raised in point 2, albeit a different 

focus  

 

4. Time-consuming: At this stage, FunFOLD3-D is currently not a stand-alone method but 

an add-on to the FunFOLD3 method, as a result this has made the refinement a relatively 

labour intensive task, although this could become more automated in future versions and as 

discussed in point 1 the plan is to male FunFOLD3-D fully automated in a similar way to 

FunFOLD3-D with only the input (refer to Figure 6.2B) requiring manual user input. 

 

Despite the above-mentioned limitations, FunFOLD3-D has demonstrated that ligand-

binding residue predictions can be improved even if the predicted and observed ligand do 

not match or if the predicted ligand is distal to the observed ligand-binding space. 

 

Aside from the limitations above, in order to get to the end goal, this was not without 

problems. Overall, the success rate of docking software, depends on protein-ligand 

preparation and  sampling of the search space. Protein-ligand preparation was not a 

problem faced by FunFOLD3-D, the receptor (protein) and ligand files can be easily 

separated either manually or with code. The output file from FunFOLD3, the lig2.pdb file is in 

a format which is user friendly and compatible with AutoDock Vina. The biggest problem 

faced by FunFOLD3-D was point number 2; sampling of the search space. As mentioned 

previously, the 22.5Å grid box calculation was published in literature. Therefore, it was an 

obvious decision to explore this, however in order to test the method and determine if there 

was a better option, other grid box calculations needed to be explored. The final decision 

was not an easy one and was based on trial and error of grid box calculations on a few 

selected targets. Initial grid box calculations ranged from 5% to as high as 100% of the 

protein model. The extremes were soon disregarded as 5% did not allow for much 
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improvement if the MCC and BDT scores were at the lower end and 100% was incorporate 

too much of the protein model. In general, FunFOLD3 can be seen as identify the rough 

location of a ligand, with docking being utilised to make the ligand location more precise. 

Thus, having an 100% grid box calculation defeats this purpose and 5% was having a 

tendency to favour the FunFOLD3 methodology results, which would mean the method 

hadn’t been developed sufficiently. Therefore, 50% was decided as this would take into 

account the original ligand-binding site and also part of the receptor (protein) which may be 

more suitable as the ligand-binding site. The 10% and 20% grid box calculations were 

selected, as there are two options when sampling a search space for docking; full protein or 

a region focused on the known binding site. As mentioned earlier, sampling on a full protein 

has limitations, so a region focused on the known binding site was preferred with 5% being 

ruled out, as mentioned previously and thus 10% and 20% seemed a reasonable search 

space.  

 

The plan moving forward with FunFOLD3-D is to make it a downloadable software, like the 

predecessor FunFOLD3 and to add a scoring metric to select the best ligand-binding poses, 

rather than having to manually verify, with the idea, as mentioned in point 1 utilising 

FunFOLDQA. In the short-term, FunFOLD3-D be will assessed on further protein targets 

obtained from the CASP experiment, namely the CASP14 experiment.  

 

The longer term vision is to obtain consistently good MCC and BDT scores (>0.70) across a 

variety of ligands (e.g. small metal ions and co-factors) and protein targets. Once this 

consistency has been reached it can assist with confidence of going into the “unknown” with 

protein -ligand and ligand-binding site predictions. Finally, the initial positive results from this 

chapter and the novelty of the FunFOLD3-D methodology, with the four different grid box 

calculations has been accepted as a book chapter. To further expand of the novelty of the 

FunFOLD3-D method, the code created for to explore the 10%, 20% and 50% grid box 
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calculations, can be adapted to any grid box calculation and therefore highlights the 

versatility of the methodology for users. At the time of writing, this is in draft form but has 

been accepted by the publishers (refer to Appendix 1, Arvinas Book Chapter).  

 

In conclusion, preliminary results from FunFOLD3-D shows that across 17 protein targets 

from CASP11, CASP12 and CASP13 with 20 ligands, FunFOLD3-D was able to improve the 

MCC and BDT scores for 12 of the ligand-binding sites with varying results. As a result, 

FunFOLD3-D is a viable option for refining the prediction of ligand-binding residues from 

FunFOLD3. Lastly, consideration needs to be given that the MCC and BDT score can only 

be determined, when there is an answer, e.g. an observed structure. Hence, why it is 

important to make improvements to FunFOLD3 in way that can be benchmarked so that 

FunFOLD3 can be applied to other aspects of ligand-binding site prediction and ligand-

prediction.  

 

Chapter six of this thesis will apply what has been learned about the strengths and 

limitations of the methods that have been developed and benchmarked (in Chapters 3-6) to 

discover more about the SARS-CoV-2 proteins with unknown structures and functions.   
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7.1 Introduction 

 

7.1.1 The SARS-CoV-2 Infection  

 
In December 2019, a novel coronavirus infection emerged in Wuhan, China. At the time, it 

was given a provisional name of 2019 novel coronavirus (2019-nCoV) and rapidly spread 

across China and many other countries across the world (Feinstein & Brylinski, 2015). Other 

names for the virus were, novel coronavirus pneumonia or Wuhan pneumonia and fever was 

the most common symptom, followed by cough. On 11th February 2020, the World Health 

Organisation (WHO) announced a new name for the disease caused by the novel 

coronavirus – COVID-19 and the virus itself was renamed to severe acute respiratory 

syndrome coronavirus-2 (SARS-CoV-2) by the International Committee on Taxonomy of 

Viruses (Lai et al., 2020). 

 

Early reports suggested a link to a single local fish and wild animal or “wet” market as a 

possible source of emergence and thereby suggesting animal-to-human transmission, the 

rapid spreading of the virus globally demonstrated human-to-human transmission through 

droplets via the nose and/or mouth and direct contact (Lai et al., 2020). On 30th January 

2020, the WHO declared the COVID-19 outbreak as the sixth public health emergency of 

international concern. Following H1N1 (2009), polio (2014), Ebola in West Africa (2014), 

Zika (2016) and Ebola in the Democratic Republic of Congo (2019) and thereby making 

COVID-19 a global pandemic (Lai et al., 2020). At the time of writing (February 2021), 

SARS-CoV-2 has affected more than 109,217,366 patients worldwide with 2,413,912 

reported deaths in 223 countries (World Health Organisation, 2021). 

 

Using molecular methods, SARS-CoV-2 was found to be a positive-sense, single-stranded 

RNA virus belonging to the genus Betacoronavirus (Lai et al., 2020). Phylogenetic analysis 

revealed that SARS-CoV-2 is closely related (88–89% similarity) to two bat-derived SARS-
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like coronaviruses, namely bat-SL-CoVZC45 and bat-SL-CoVZXC21. However, it is more 

distant from SARS-CoV (~79% similarity) and Middle East respiratory syndrome coronavirus 

(MERS-CoV) (~50% similarity) (Chan, et al., 2020).  

 

COVID-19 is characterised by three clinical patterns; no symptoms, mild to moderate 

disease, severe pneumonia requiring admission to intensive care unit and supplementary 

oxygen of which occurs in up to 31% of infected patients (Chan,  et al., 2020). As SARS-

CoV-2 is a novel virus with high virulence and mortality, further study to shed light on the 

immunopathogenesis of COVID-19 was required for the development or repurposing of 

antiviral medications to make the disease treatable and/or curable or vaccine development 

to make the disease preventable (Huang et al., 2020). Figure 7.1 illustrates the classification 

of disease states for COVID-19, highlighting the importance of the viral load early on in the 

disease.  

 

 
Figure 7.1. Classification of COVID-19 disease states 
Figure 7.1 illustrates the three escalating phases of COVID-19 disease progression, with associated signs, symptoms, and 
potential phase-specific therapies. ARDS, acute respiratory distress syndrome; CRP, C-reactive protein; LDH, lactate 
dehydrogenase; NT-proBNP, N-terminal pro B-type natriuretic peptide; SIRS, systemic inflammatory response syndrome. 
Figure adapted from Seif et al., 2020 
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7.1.2 The structure of the virus  

 
Coronaviruses belong to Nidovirales order, which are viruses that depend on a nested group 

of mRNAs for their replication (nido = nest). They contain the biggest known viral RNA 

genomes (27–32 kb in length) and are enveloped positive-sense single-stranded RNA 

viruses (Huang et al., 2020). The virus has a characteristic crown-like shape due to the 

presence of spike proteins on the surface and hence the name corona, which is served from 

the Latin corona meaning crown.  

 

The spike or S protein is extensively glycosylated, forming a homotrimer and mediates virus 

entry through binding to specific receptors (e.g. angiotensin-converting enzyme 2 (ACE2)) 

and fusion with the cell membrane of the host (Figure 7.1). The S protein harbours the major 

antigen that stimulates the formation of neutralising antibodies, in addition to targets of 

cytotoxic lymphocytes. The membrane (M) protein (a glycoprotein, that spans the membrane 

bilayer, thus a transmembrane protein) (Thomas, 2020) has a major role in viral assembly 

(Saber-Ayad, Saleh and Abu-Gharbieh, 2020), the nucleocapsid (N) protein is responsible 

for the regulation of viral RNA synthesis and interacts with the M protein during the budding 

of the virus and forms part of the nucleocapsid (in association with the RNA).  

 

SARS-CoV-2 has sequence homology with the influenza virus through hemagglutinin-

esterase glycoprotein (HE). The HE binds to neuraminic acid on the host cell surface, 

leading to the adsorption of the virus on the cell surface. Such homology may denote an 

early recombination between the two viruses. Proteins M, N, and E are essential for the 

virus’ assembly and release (Tseng et al., 2010) however, the exact function of the envelope 

(E) protein is not fully elucidated. 
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Additionally, Figure 7.2 demonstrates several pathways of the viral entry into the host cell 

which can be targeted by drugs and ultimately hinder viral replication and development of 

symptoms associated with COVID-19. 

 
Figure 7.2. SARS-CoV-2 entry into the host cell 
The attachment protein “-spike glycoprotein” of the severe acute respiratory syndrome-2 (SARS-CoV-2) uses a cellular 
attachment factor (angiotensin-converting enzyme 2 (ACE2)) and uses the cellular protease TMPRSS2 (transmembrane 
protease serine 2) for its activation. ACE2 can be activated via either losartan or recombinant human ACE 2 (rhACE2). 
Potential pharmacotherapeutic approaches include the use of camostat mesylate (which is a TMPRSS2 inhibitor) to block the 
priming of the spike protein, increasing the number of ACE2 receptors via losartan, and the use of soluble recombinant human 
ACE2 (which should slow viral entry into cells Is a competitive binding with SARS-CoV-2). The structure of SARS-CoV-2 is 
shown in the upper right. Figure taken from Siu et al., 2008  
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Table 7.1 below lists the function, or at least what is known, of the different proteins that 

form the SARS-CoV-2 genome. Where applicable solved experimental structures are also 

provided.   

Table 7.1. Function annotation of SARS-CoV-2 genome  
Table adapted from Zhang Lab (https://zhanggroup.org//COVID-19/index.html#download) based on UniProt curation of SARS-
CoV-2 (Magrane & UniProt Consortium, 2011). Some of the functions have been identified specifically to the proteins which are 
part of the SARS-CoV-2 genome and some functions have been inferred from previous literature information  
 

Protein name Protein function 
Solved experimental 

structure 
 (where applicable) 

nsp 1 (host translation 
inhibitor) 

Inhibits host translation by 
interaction with the 40S 
ribosomal subunit, the C-
terminal domain of nsp1 binds 
to the ribosomal mRNA 
channel to prevent host mRNA 
binding. By suppressing host 
gene expression, nsp1 
facilitates efficient viral gene 
expression in infected cells and 
evasion from host immune 
response (Schubert et al., 
2020). 

7k3n 

nsp2 (non-structural protein 
2) 

Function not entirely known. 
May play a role in the 
modulation of host cell survival 
signalling pathway by 
interaction with host prohibitin 
1 and 2 (PHB and 
PHB2).Protein is conserved in 
SARS-CoV. 
(Cornillez-Ty et al., 2009). 
 
Prohibitin plays a role in 
maintaining the functional 
integrity of the mitochondria 
and protecting cells from 
various stresses  

N/A 

Papain-like proteinase 

Together with nsp4 in the 
assembly of virally-induced 
cytoplasmic double-membrane 
vesicles required for viral 
replication  
(Lei et al., 2020). 
 
Antagonises innate immune 
induction of type I interferon by 
blocking phosphorylation, 
dimerisation and subsequent 
nuclear translocation of host 
IRF3 
(Lei et al., 2020). 
 
 

7kag  
(amino acid range 1-111) 

6w6y  
(amino acid range 207-379) 

6w9c  
(amino acid range 748-1060) 
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Prevents host NF-kappa-B 
signalling  
(Lei et al., 2020). 

nsp4 (non-structural protein 
4) 

Along with papain-like 
proteinase. Participates in the 
assembly of virally induced 
cytoplasmic double-membrane 
vesicles necessary for viral 
replication (Lei et al., 2020). 

N/A 

Proteinase 3CL-PRO Required for the processing 
viral polyproteins, that are 
translated from the viral RNA. 
This generates a functional 
replicase complex and enables 
viral spread (Zhang et al., 
2020). 

6lu7 

nsp6 (non-structural protein 
6) 

Antagonises interferon 
production to evade host anti-
viral defence (Cao et al., 
2020).  

N/A 

nsp7 (non-structural protein 
7)  

Forms a hexadecamer with 
nsp8 that may participate in 
viral replication by acting as a 
primase (Peng et al., 2020; 
Konkolova et al., 2020).  

6m71 

nsp8 (non-structural protein 
8)  

Forms a hexadecamer with 
nsp7 (refer to nsp7) 
(Peng et al., 2020; Konkolova 
et al., 2020). 

7cyq 

nsp9 (non-structural protein 
9) 

May participate in viral 
replication, overall virulence 
and viral genomic RNA 
reproduction by binding to 
RNA, although exact 
mechanism is unknown (Littler 
et al., 2020). 

6w4b 

nsp10 (non-structural 
protein 10) 

Plays a role in viral mRNAs 
methylation potentially with 
nsp16 (Viswanathan et al., 
2021)  

6w75 

RdRp (RNA-directed RNA 
polymerase) 

Responsible for replication and 
transcription of the viral RNA 
genome. Comprised of a 
catalytic subunit as nsp12 and 
two accessory subunits, nsp8 
and nsp7 (Hillen et al., 2020)  

6m71 

Helicase  RNA and DNA duplex-
unwinding activities and activity 
of helicase is dependent on 
magnesium (Chen et al., 2020) 

5rl9 

Proofreading 
exoribonuclease/Guanine-N7 

Involved in viral mRNA cap 
synthesis. The RNA cap has 
several important biological 
roles in viruses as it is crucial 
for the stability of mRNAs, for 
translation and to evade the 
host immune response 
(Romano et al., 2020) 

N/A 
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NendoU (Uridylate-specific 
endoribonuclease) 

Potentially has two roles: 
1. Responsible for protein 

interface within the 
innate immune 
response (Deng et al., 
2017) 

2. Degrades viral RNA to 
hide it from host 
defenses (Kim et al., 
2020) 

6vww 

2’-O-methyltransferease  Plays an essential role in viral 
mRNAs methylation to improve 
viral protein translation which is 
essential to avoid host immune 
detection (Rosas-Lemus et al., 
2020) 

6w75 

Spike glycoprotein (S) Attaches the virion to the cell 
membrane by interacting with 
the host receptor (ACE2). 
Binding to receptor causes 
internalisation of the virus 
(Hoffmann et al., 2020)  

6vyb (open state) 
6vxx (closed state) 

6lxt 
(amino acid range 912-988, 

1164-1202) 

ORF3a (open reading frame 
3a) 

Forms homotetrameric 
potassium sensitive ion 
channels (viroporin) and 
involved in virus release via 
lysosomal trafficking  
(Miao et al., 2021) 

6xdc 

E (envelope)  Acts as a viroporin and self 
assembles in host membranes 
forming pentameric protein-
lipid pores that allow ion 
transport. Additional function, 
as per membrane (M) protein 
with regulation of the 
localisation of the spike (S) 
protein at cis-Golgi, the place 
of virus budding (Boson et al., 
2020)   

7k3g 

M (membrane) A  transmembrane 
Component of the viral 
envelope that plays a central 
role in virus morphogenesis 
and assembly via its 
interactions with other viral 
proteins. Regulates the 
localisation of spike (S) protein 
at cis-Golgi, the place of virus 
budding (Boson et al., 2020) 

N/A 

ORF6 (open reading frame 
6a) 

Blocks expression of interferon 
stimulated genes that display 
antiviral activities 
(Xia et al., 2020)  

N/A 

ORF7a (open reading frame 
7a) 

Alters host immune response 
by binding to specific immune 
cells and is involved in the 
cytokine storm (Zhou et al., 
2021) 

6w37 (amino acid range 16-82) 
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ORF8 (open reading frame 8) Plays a role in modulating host 
immune response. Causes an 
increase in proinflammatory 
cytokines and contributes to 
cytokine storm in COVID-19 
(Chan et al., 2020) 

7jtl 

N (nucleocapsid) Packages the positive strand 
viral genome RNA into a 
helical RNP particle and plays 
a vital role during virion 
assembly. Plays an important 
role in enhancing the efficiency 
of viral RNA transcription and 
replication  (Bai et al., 2021) 

6m3m  
(amino acid range 50-174) 

6yun  
(amin acid range 249-364) 

ORF10 (open reading frame 
10) 

Function is unclear (Bateman 
et al., 2021) 

N/A  

 

7.1.3 CASP Commons 

 
At the end of January 2020, the genome of the virus had been decoded and in order to help 

understand the virus spread and function, the CASP organisers launched the SARS-CoV-2 

structure modelling initiative (Saber-Ayad, Saleh and Abu-Gharbieh, 2020). This initiative 

was part of CASP Commons and made the biggest contribution towards generating and 

evaluating models for the virus and in particular the proteins and domains for where there 

was no experimental structure available (The Protein Prediction Center, 2020). The goal was 

to obtain the best possible consensus 3D models and then use these models to assist in 

gaining further insight into the virus’ structure and function. Additionally, a subsequent goal 

would be to identify possible epitopes that can be used for vaccine development and finally, 

evaluate drug targeting strategies by the identification of ligand-binding sites (The Protein 

Prediction Center, 2020). The identification of ligands, ligand-binding sites and GO terms will 

be done by FunFOLD3. If ligands, ligand-binding sites and GO terms can be identified then 

this can provide valuable insights into the relatively limited knowledge that is known about 

SARS-CoV-2 and could help in explaining the pathophysiology of COVID-19.  

 

The objectives of the CASP Commons program was firstly, to provide the best quality 

predicted structures, which could be used to aid investigators working on these proteins. 
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Secondly, they would provide a basis for other CASP competition targets (e.g. CASP14), 

and thirdly for those proteins where experimental structure is not undertaken or 

unsuccessful, members of the CASP community will be invited to contribute structure 

models. 

 
Aim: The aim of this chapter was to assist in the elucidation of function and potential ligand-

binding sites for the ten CASP Commons SARS-CoV-2 protein targets using FunFOLD3. 

The purpose of this chapter is to apply FunFOLD3 into the unknown for the first occurrence 

in this thesis and to demonstrate how FunFOLDD3 can be applied outside of the CASP 

experiments.The identification of templates with possible ligands could help in identifying the 

function of the virus’ proteins/domains in the absence of identification of ligands. Where 

ligands could be identified, then this could provide insight into possible targets for drug 

repurposing.   
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7.2 Materials and Methods   

 

As with previous CASP competitions, the CASP Commons organisers provided the protein 

sequences for the ten protein targets of the SARS-CoV-2 targets that required 3D modelling 

and subsequent predictions of  ligand-binding sites. The CASP Commons target ID, amino 

acid sequence and name of the protein targets are given in Table 7.2. CASP Commons 

occurred in two rounds in order to iteratively enhance the prediction of 3D protein/domain 

structures and ligand-binding sites. The methodology has been described previously in 

Chapter 2. Briefly, the top-ranked 3D model, a list of templates  some of which may contain 

biologically relevant ligands and the fasta sequence were inputed to determine ligands and 

ligand-binding residues. The output was a list of templates containing biologically relevant 

ligands and if a ligand and ultimately a ligand-binding residues was identified this would be 

the output, along with GO terms. In instances where FunFOLD3 does not predict a 

biologically relevant ligand the functional predictions from IntFOLD6, where applicable, will 

be presented.  

 

Starting models were from our groups updated manual tertiary structure prediction pipeline 

which was developed for CASP14 (see the McGuffin group CASP14 abstract for further 

details, https://predictioncenter.org/casp14/doc/CASP14_Abstracts.pdf) 

 

Ultimately, the targets were analysed in the same way CASP12 and 13 targets without PDB 

IDs have been reported (refer to Chapter 3). Additionally, given the evolution of knowledge 

with COVID-19, CASP Commons occurred in stages. Stage one focused on predictions for 

all the residues of the target, stage two focused on specific residues for some of the targets 

or some targets were modelled again in hopes of improving the modelling from the first 

round. A description of the stages is provided below: 
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Stage 1: Full chain sequences were modelled and scored. Then, where applicable, domains 

were released for modelling. Domain models were scored using QA methods, such as 

ModFOLD8 (McGuffin, Aldowsari and Alharbi, 2021). 

 

Stage 2: A further stage of full chain sequence modelling, however not all methods or groups 

that participated in stage 1, participated in stage 2 hence the drop in scores between stage 1 

and stage 2  

 

Due to domains being scored on the full chain sequence to ensure consistency for residue 

numbering, the global scores for domains were lower than expected as normalised based on 

a full length sequence rather than shorter domains  

 

Following modelling and scoring with ModFOLD8, structures were refined with ReFOLD 

(McGuffin & Adiyaman, 2021) and then FunFOLD3 was utilised to determine ligand and 

ligand-binding residues.  

 

Across the two stages this yielded a total of 32 targets for ten protein targets. At the time of 

writing, two of the targets had PDB IDs associated; C1905 (PDB ID 6xdc) and C1908 (PDB 

ID 7tjl). Out of the 10 proteins targets, FunFOLD3 was able to predict ligand and ligand-

binding site residues for two targets in round one and ten targets in round two. Even for 

targets without ligands and ligand-binding site residues, results will be presented around the 

templates in order to contribute towards this novel situation. Templates which were identified 

as containing a biologically relevant ligand are highlighted in the results tables.  
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Table 7.2. Amino acid sequence of CASP Commons targets  
CASP Commons 

target ID 
Amino acid sequence Protein 

C1901 AYTRYVDNNFCGPDGYPLECIKDLLARAGKASCTLSEQLDFIDTKRGVYCCREHEHEIAWYTERSEKSYELQTPFEIKLAKKFDTFNGECPNFVFPLNSIIKTI
QPRVEKKKLDGFMGRIRSVYPVASPNECNQMCLSTLMKCDHCGETSWQTGDFVKATCEFCGTENLTKEGATTCGYLPQNAVVKIYCPACHNSEVGPEHS
LAEYHNESGLKTILRKGGRTIAFGGCVFSYVGCHNKCAYWVPRASANIGCNHTGVVGEGSEGLNDNLLEILQKEKVNINIVGDFKLNEEIAIILASFSASTSAF
VETVKGLDYKAFKQIVESCGNFKVTKGKAKKGAWNIGEQKSILSPLYAFASEAARVVRSIFSRTLETAQNSVRVLQKAAITILDGISQYSLRLIDAMMFTSDLA
TNNLVVMAYITGGVVQLTSQWLTNIFGTVYEKLKPVLDWLEEKFKEGVEFLRDGWEIVKFISTCACEIVGGQIVTCAKEIKESVQTFFKLVNKFLALCADSIIIG
GAKLKALNLGETFVTHSKGLYRKCVKSREETGLLMPLKAPKEIIFLEGETLPTEVLTEEVVLKTGDLQPLEQPTSEAVEAPLVGTPVCINGLMLLEIKDTEKYC
ALAPNMMVTNNTFTLKGG 

nsp2 

C1902 KIVNNWLKQLIKVTLVFLFVAAIFYLITPVHVMSKHTDFSSEIIGYKAIDGGVTRDIASTDTCFANKHADFDTWFSQRGGSYTNDKACPLIAAVITREVGFVVPG
LPGTILRTTNGDFLHFLPRVFSAVGNICYTPSKLIEYTDFATSACVLAAECTIFKDASGKPVPYCYDTNVLEGSVAYESLRPDTRYVLMDGSIIQFPNTYLEGS
VRVVTTFDSEYCRHGTCERSEAGVCVSTSGRWVLNNDYYRSLPGVFCGVDAVNLLTNMFTPLIQPIGALDISASIVAGGIVAIVVTCLAYYFMRFRRAFGEY
SHVVAFNTLLFLMSFTVLCLTPVYSFLPGVYSVIYLYLTFYLTNDVSFLAHIQWMVMFTPLVPFWITIAYIICISTKHFYWFFSNYLKRRVVFNGVSFSTFEEAAL
CTFLLNKEMYLKLRSDVLLPLTQYNRYLALYNKYKYFSGAMDTTSYREAACCHLAKALNDFSNSGSDVLYQPPQTSITSAVLQ 

nsp4 

C1903 SAVKRTIKGTHHWLLLTILTSLLVLVQSTQWSLFFFLYENAFLPFAMGIIAMSAFAMMFVKHKHAFLCLFLLPSLATVAYFNMVYMPASWVMRIMTWLDMVDT
SLSGFKLKDCVMYASAVVLLILMTARTVYDDGARRVWTLMNVLTLVYKVYYGNALDQAISMWALIISVTSNYSGVVTTVMFLARGIVFMCVEYCPIFFITGNTL
QCIMLVYCFLGYFCTCYFGLFCLLNRYFRLTLGVYDYLVSTQEFRYMNSQGLLPPKNSIDAFKLNIKLLGVGGKPCIKVATVQ 

nsp6 

C1904 KPANNSLKITEEVGHTDLMAAYVDNSSLTIKKPNELSRVLGLKTLATHGLAAVNSVPWDTIANYAKPFLNKVVSTTTNIVTRCLNRVCTNYMPYFFTLLLQLCT
FTRSTNSRIKASMPTTIAKNTVKSVGKFCLEASFNYLKSPNFSKLINIIIWFLLLSVCLGSLIYSTAALGVLMSNLGMPSYCTGYREGYLNSTNVTIATYCTGSIP
CSVCLSGLDSLDTYPSLETIQITISSFKWDLTAFGLVAEWFLAYILFTRFFYVLGLAAIMQLFFSYFAVHFISNSWLMWLIINLVQMAPISAMVRMYIFFASFYYV
WKSYVHVVDGCNSSTCMMCYKRNRATRVECTTIVNGVRRSFYVYANGGKGFCKLHNWNCVNCDTFCAGSTFISDEVARDLSLQFKRPINPTDQSSYIVDS
VTVKNGSIHLYFDKAGQKTYERHSLSHFVNLDNLRANNTKGSLPINVIVFDGKSKCEESSAKSASVYYSQLMCQPILLLDQALVSDVGDSAEVAVKMFDAYV
NTFSSTFNVPMEKLKTLVATAEAELAKNVSLDNVLSTFISAARQGFVDSDVETKDVVECLKLSHQSDIEVTGDSCNNYMLTYNKVENMTPRDLGACIDCSAR
HINAQVAKSHNIALIWNVKDFMSLSEQLRKQIRSAAKKNNLPFKLTCATTRQVVNVVTTKIALKGG 

PL-PRO 

C1905 
 

MDLFMRIFTIGTVTLKQGEIKDATPSDFVRATATIPIQASLPFGWLIVGVALLAVFQSASKIITLKKRWQLALSKGVHFVCNLLLLFVTVYSHLLLVAAGLEAPFL
YLYALVYFLQSINFVRIIMRLWLCWKCRSKNPLLYDANYFLCWHTNCYDYCIPYNSVTSSIVITSGDGTTSPISEHDYQIGGYTEKWESGVKDCVVLHSYFTS
DYYQLYSTQLSTDTGVEHVTFFIYNKIVDEPEEHVQIHTIDGSSGVVNPVMEPIYDEPTTTTSVPL 

ORF3a 

C1906 MADSNGTITVEELKKLLEQWNLVIGFLFLTWICLLQFAYANRNRFLYIIKLIFLWLLWPVTLACFVLAAVYRINWITGGIAIAMACLVGLMWLSYFIASFRLFART
RSMWSFNPETNILLNVPLHGTILTRPLLESELVIGAVILRGHLRIAGHHLGRCDIKDLPKEITVATSRTLSYYKLGASQRVAGDSGFAAYSRYRIGNYKLNTDHS
SSSDNIALLVQ 

Transmembr
ane protein 

C1907 MFHLVDFQVTIAEILLIIMRTFKVSIWNLDYIINLIIKNLSKSLTENKYSQLDEEQPMEID ORF6 

C1908 MKFLVFLGIITTVAAFHQECSLQSCTQHQPYVVDDPCPIHFYSKWYIRVGARKSAPLIELCVDEAGSKSPIQYIDIGNYTVSCLPFTINCQEPKLGSLVVRCSFY
EDFLEYHDVRVVLDFI 

ORF8 

C1909 MGYINVFAFPFTIYSLLLCRMNSRNYIAQVDVVNFNLT ORF10 

C1910 MIELSLIDFYLCFLAFLLFLVLIMLIIFWFSLELQDHNETCHA ORF7b 
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7.3 Results  

 
Analysis of CASP Commons COVID-19 predictions   
 
A total of ten protein targets were available for analysis. Given the uniqueness of COVID-19, 

suggested proteins targets where the experimental structure would not be immediately 

available, it is possible that additional experimental structures may be released at a later 

stage.  

 

An overview of the ligands predicted by FunFOLD3 or the FunFOLD3 component of 

IntFOLD6 are given below in Table 7.3  

 

Table 7.3. Predicted ligands for CASP Commons SARS-Cov-2  
Predictions were made by either standalone FunFOLD3 or the FunFOLD3 component of IntFOLD6. For the two targets which 
had an actual crystal structure (C1905 and C1908) no biologically relevant ligands were identified. The protein name is 
provided in brackets   

CASP Commons Target ID Predicted ligand Further information 

C1901d2 (nsp2) Palmitic acid (PLM) Predicted by FunFOLD3 
component of IntFOLD6 

C1902d3 (nsp4) Chlorophyll A (CLA) Predicted by FunFOLD3 
component of IntFOLD6 

C1903d1 (nsp6) HEME (HEM) Predicted by FunFOLD3 
component of IntFOLD6 

C1903x2 (nsp6) (2~{S})-2,3-bis(oxidanyl)propyl] 
(~{E})-undec-2-enoate 
(MUN)  

[(Z)-octadec-9-enyl] (2R)-2,3-
bis(oxidanyl)propanoate 
(MPG) 

Retinal (RET) 

Predicted by FunFOLD3 
component of IntFOLD6 

C1904d1 (PL-PRO) Palmitic acid (PLM) Predicted by FunFOLD3 
component of IntFOLD6 

C1904d2 (PL-PRO) [(Z)-octadec-9-enyl] (2R)-2,3-
bis(oxidanyl)propanoate 
(MPG) 

Predicted by FunFOLD3 
component of IntFOLD6 

C1904d3 (PL-PRO) Guanosine 5’ Diphosphate 
(GDP) 

Predicted by FunFOLD3 
component of IntFOLD6 

C1904x2 (PL-PRO) ALA, SER, ASN Predicted by FunFOLD3 
component of IntFOLD6 

C1905d1 (ORF3a) [(Z)-octadec-9-enyl] (2R)-2,3-
bis(oxidanyl)propanoate 
(MPG) 

FunFOLD3 
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C1906d1 (Transmembrane 
protein) 

Duocarmycin A  
(DUO)  
 
[(Z)-octadec-9-enyl] (2R)-2,3-
bis(oxidanyl)propanoate 
(MPG) 

FunFOLD3 

C1906x2 (Transmembrane 
protein) 

Glycerol (GOL), ASN, LEU FunFOLD3 

C1907 (ORF6) Calcium (CA)  
 
HEME (HEM),  
 
Methyl 2-(2,5-
dihydroxyphenyl)acetate 
(DCO) 
 
methyl 2-(3,5-

dihydroxyphenyl)ethanoate 
(XQI) 

FunFOLD3 

C1908 (ORF8) Calcium (CA) FunFOLD3 

C1909 (ORF10) 24-methylenecholesterol 
(94R) 

Predicted by FunFOLD3 
component of IntFOLD6 

C1910 (ORF7b) Chlorophyll A (CLA) FunFOLD3 
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Figure 7.3. Top-scoring structure predictions from the McGuffin group for nsp2 (CASP Commons target C1901) full chain and individual domains 
(A) Predicted structure for nsp2 (C1901) shown as cartoon and coloured by secondary structure with helices coloured red, sheets coloured yellow and loops coloured green. Residue length of 638 
(B) Predicted structure for nsp2 (C1901d1) shown as cartoon and coloured by secondary structure with a residues 1-359 modelled (C) Predicted structure for nsp2 (C1901d2) shown as cartoon and 
coloured by secondary structure with residues 360-499 modelled (D) Predicted structure for nsp2 (C1901d3) shown as cartoon and coloured by secondary structure with residues 500-638 modelled 
(E) Predicted structure for nsp2 (C1901x2) shown as cartoon and coloured by secondary structure. This was the whole target of 638 residues following stage two modelling  

A B 

D E 

C 
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The first predicted CASP Commons target (C1901) was nsp2 proteinand is described as a a 

non-structural protein 2. Non-structural protein 2 is one of four nsps and is an essential 

component of the replicative complexes. It contains helicase and RNA triphosphatase 

activities, required for RNA synthesis, and is also a protease that orchestrates sequential 

cleavages of non-structural polyprotein precursor P1234 (Frolova et al., 2002). Additionally, 

nsp2 most likely acts by decreasing interferon (IFN) production and minimises virus visibility 

(Frolova et al., 2002). Interferon gamma (IFN) is a cytokine that is critical for innate and 

adaptive immunity against viral, some bacterial and protozoal infections (Tau & Rothman, 

1999).    

 

There were five different variations of the structure and as can be seen from the results in 

Figure 7.3,  no ligands were predicted across the five different variations by FunFOLD3. As 

per CASP Commons ID C1901 (nsp2) was the first stage modelling of the whole structure 

and C1901x2 was stage 2 modelling. The global model quality score had improved from 

0.4146 for C1901 to 0.4701 for C1901x2 (nsp2) according to ModFOLD8 (McGuffin, 

Aldowsari and Alharbi, 2021) following the refinement with ReFOLD3 (McGuffin & 

Adiyaman, 2021). As there is no PDB ID associated with the target, no comparisons with the 

actual structure can be made at present.  

 

As per the CASP Commons ID C1901d1, C1901d2, C1901d3 (all nsp2 protein) are sub-

domains of the protein with global model quality scores of 0.2850, 0.1181 and 0.1146, 

respectively, although these scores are based on the full length structure. The global scores 

increased to 0.4887, 0.5270 and 0.5060, when scores are recalculated based on the shorter 

individual domains sequences. The global model quality scores range between 0 and 1. In 

general, scores <0.2 indicate there may be incorrectly modelled domains and scores >0.4 
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generally indicate more complete and confident models, which are highly similar to the 

native structure.  

  

In comparison, IntFOLD6 obtained a prediction for C1901d2 (nsp2) and is depicted in Figure 

7.4. In comparison, the global model quality score was 0.5280. The predicted ligand was 

palmitic acid (PLM). Palmitic acid is the most common saturated fatty acid found in the 

human body and can be provided in the diet or synthesised endogenously from other fatty 

acids, carbohydrates and amino acids (Carta et al., 2017). Palmitic acid undergoes tight 

homeostatic control and this is likely related to its fundamental physiological role to 

guarantee membrane physical properties and in the lung is has efficient surfactant activity 

(Carta et al., 2017).    

 

 

 

 

Figure 7.4. IntFOLD6 prediction for nsp2 (C1901d2)  
Predicted structure for nsp2 (C1901d2) shown as cartoon and coloured green the PLM ligand is shown as sphere and coloured 
yellow. The ligand-binding site residues are 67,78,107 and are shown as sticks and coloured red   
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Table 7.4, below shows the templates associated with the target with the templates identified 

as having ligands by FunFOLD3 highlighted in yellow. The role/function of each protein and 

ligand as per the PDB entry is also depicted. How this relates to the description of the 

protein will be discussed later in the chapter.  

Table 7.4. Template list for nsp2 (C1901)  
Templates for nsp2 (C1901) with the role/function and ligand as per PBD ID. Templates identified by FunFOLD3 to contain 
biologically relevant ligands in the output are highlighted in yellow.  
 

Template  Role/function Ligand 
1b3uA scaffold protein N/A 
1dx5l hydrolase/hydrolase inhibitor CA 
1is2A oxidoreductase FAD 
1kloA Glycoprotein N/A 
1yvlA Signaling protein TYR-ASP-LYS-PRO-HIS 
2cvcA electron transport HEM 
2d5bA isomerase ZN 
2fd6U   

2fiyA 
structural genomic/unknown 

function 
FE 

2jneA Metal binding protein ZN 

2jrpA 
structural genomic/unknown 

function 
ZN 

2k2dA Metal binding protein ZN 
2lggA Ligase/DNA binding protein ZN 
2wscF photosynthesis CLA 
2yheA Hydrolase ZN, SO4 
3h9bA Ligase ZN, NOT 
3ld1A Hydrolase N/A 
3lw5F photosynthesis CLA 
3ouqA electron transport HEM 
3txaA cell adhesion MG 
4aybP Transferase ZN 
4c8vA Signalling protein N/A 
4cb8A Apoptosis SO4 
4cb9A Apoptosis N/A 
4fyeA Hydrolase PO4 
4jc8A Transport protein N/A 
4nurA Hydrolase ZN 
4pdxA Hydrolase  SO4, GOL 
4tqlA De novo protein N/A 
4ui9I Cell cycle ZN 

4uosA De novo protein N/A 
4uvkA Cell cycle N/A 
4wrtC Transferase/RNA DNA/RNA 
4ziqA Membrane protein GOL, CL 
4zyaA Ligase ZN 
5bptA Cell cycle N/A 
5cwbA De novo protein N/A 
5icuA Chaperone CU 

5mspA oxidoreductase NAP 
5owvC Lipid binding protein N/A 
5urbA Ligase ZN 
5vchA Protein transport  N/A 
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5wgrA 
Oxidoreductase/oxidoreductase 

inhibitor 
FAD, PM7 

5yjgA cell adhesion C, CA, MG 
6ab7C Viral protein N/A 
6ahcA Hydrolase N/A 
6bzaA Flavoprotein 13X, FAD 
6dvwA Membrane protein N/A 
6gapA Viral protein N/A 
6jfkA Membrane protein GDP 
6lthL gene regulation ZN 
6nctA Transferase 144, SO4 
6nwfa Membrane protein RET, C14, BGC, D10, CL 
6qp1a Lyase LCS 
6rl5a Transferase PLP 
6slfa Hydrolase LJ8, GOL, ACT, BTB, ZN 

6snhx Membrane protein LMH 

6u7kA Viral protein 
NAG-NAG-BMA-MAN-MAN-

MAN, NAG-NAG, NAG 
6ueha Hydrolase ACT, CA 
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Figure 7.5. Top-scoring structure predictions from the McGuffin group for nsp4 (CASP Commons target C1902) full chain and individual domains 
(A) Predicted structure for nsp4 (C1902) shown as cartoon and coloured by secondary structure with a residue length of 500 (B) Predicted structure for nsp4 (C1902d1) shown as cartoon and 
coloured by secondary structure with a residues 1-32 + 279-400 modelled (C) Predicted structure for nsp4 (C1902d2) shown as cartoon and coloured by secondary structure with residues 33-278 
modelled (D) Predicted structure for nsp4 (C1902d3) shown as cartoon and coloured by secondary structure with residues 401-500 modelled (E) Predicted structure for nsp4 (C1902x2) shown as 
cartoon and coloured by secondary structure. This was the whole target of 500 residues following stage two modelling  

A B C 

D E 
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The second predicted CASP Commons target is nsp4 or non-structural protein 4 (CASP 

Commons target C1902). Non-structural protein 4 can also be identified in rotaviruses as 

rotavirus nsp4 (Pham et al., 2017). Rotavirus nonstructural protein 4 is an endoplasmic 

reticulum transmembrane glycoprotein that has a viroporin domain and nsp4 viroporin 

activity elevates cytosolic Ca2+ in mammalian cells (Pham et al., 2017). Viroproteins have 

been predominantly identified in animal viruses and disruption of host cell Ca2+ homeostatis 

is critical for virus replication and pathogenesis (Pham et al., 2017).      

 

There were five different variations of the structure for prediction and as can be seen in 

Figure 7.5, there were no ligands or ligand-binding site residues predicted by FunFOLD3. As 

with C1901 (nsp2), C1902 (nsp4) was the first round of full structure modelling and achieved 

a global model quality score of 0.5057 and with C1902x2 (nsp4) the score had decreased to 

0.4847. The global model quality scores were 0.1654, 0.236 and 0.1202 for C1902d1 (nsp4), 

C1902d2 (nsp4) and C1902d3 (nsp4), respectively, when based on the full chain reference 

sequence. As with C1901 (nsp2), no actual structure has been confirmed, so no 

comparisons with an actual structure can be made at present.  

 

In comparison, IntFOLD6 obtained a prediction for the C1902d3 (nsp4) target sequence. In 

comparison, the global model quality score was 0.5942. The predicted ligand was 

chlorophyll A (CLA) and is depicted below in Figure 7.6.  

 

It is worth mentioning that, chlorophyll and haem contain a common precursor, 

protoporphyrin IX. Both haem and chlorophyll contain metal containing components with iron 

being the metal complex in haems such as haemoglobin and myoglobin. In comparison, 

magnesium is characteristic of all chlorophylls and bacteriochlorophylls (Hendry & Jones, 

1980). There are early literature reports attempting to unify the evolution of haemoglobin, 

cytochromes and chlorophylls with suggestions that porphyrin biosynthesis is essentially 
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similar across the biological systems and the variation arose between haem and chlorophyll 

as a result of the adaptability of the porphyrin structure to differences in the biochemical 

requirements (Hendry & Jones, 1980). Therefore, it is likely that IntFOLD6 has identified a 

template in which chlorophyll has been identified as a biologically relevant ligand, however 

due to evolutionary changes it is likely that haem would be more suitable. Additionally, 

studies have shown that the non-structural proteins of SARS-CoV-2 can bind porphyrin, 

such as haem (Wenzhong & Hualan, 2020). Initially, viral proteins such as SARS-CoV-2 

may attack haemoglobin, causing haem to dissociate into iron and porphyrins and then viral 

proteins capture the porphyrin (Wenzhong & Hualan, 2020). This attack causes respiratory 

distress and coagulation reaction (Wenzhong & Hualan, 2020). Furthermore, the virus and 

the porphyrin cause a complex which could enhance evasion of the virus (Wenzhong & 

Hualan, 2020).    

 

 

 

Figure 7.6. IntFOLD6 prediction for nsp4 (C1902d3) 
Predicted structure for nsp4 (C1902d3) shown as cartoon and coloured green the CLA ligand is shown as sphere and coloured 
yellow. The ligand-binding site residues are shown as sticks and coloured red   
 

 

Table 7.5, below shows the templates associated with the target with the templates identified 

as having biologically relevant ligands by FunFOLD3 highlighted in yellow. The role/function 

of each protein and ligand as per the PDB entry is also depicted.
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Table 7.5. Template list for nsp4 (C1902)  
Templates for nsp4 (C1902) with the role/function and ligand as per PBD ID. Templates identified by FunFOLD3 to be of 
biological relevance are highlighted in yellow 
 

Template  Role/function Ligand 
1dgjA Oxidoreductase FES, 2MO-MCN 
1f86A Transport protein T44 
1jdhA Transcription N/A 
1z7gA Transferase N/A 
2a65A Transport protein BOG, LEU, NA, CL 

2js3A 
Structural genomics, unknown 

function 
N/A 

2k9jB Membrane protein N/A 
2ketA Antibiotic N/A 
2l1qA Antimicrobial protein N/A 
2p22D Transport protein SO4 

2rccA Oxidoreducase 
PG4, PEG, EDO, PGE, GOL 

and ZN 

2zy9A 
Membrane protein, metal 

transport 
MG 

3a6pA 
Protein transport/nuclear 

protein/RNA 
DNA/RNA (RA, RC, RU, RG) 

3gzfA Viral protein T44 
3pcvA Lyase GSH 
3tshA Allerfen, oxidoreductase FDA 
3vc8A Viral protein N/A 
4al0A Isomerase GSH 

4bpmA Isomerase GSH, LVJ 
4bx8A Protein transport CL 
4im7A Oxidoreducase NAI, CS2 
4mlbA Transport protein CXE, CL 
4or2A2 Signaling protein CLR, FM9 
4wrtC Transferase DNA/RNA (RA, RC, RU, RG) 

5k47A and 5k47A1 Transport protein NAG, NAG-NAG 
5mkeA Transport protein CHS 
5uz7R Signaling protein N/A 
5w3sA Transport protein Y01 

5z1wA and 5z1wA1 Membrane protein NAG 
6an7D Transport protein N/A 
6d6tB Transport protein Y01 
6e20A Sugar binding protein NDG 
6ftg51 No entry on PDBsum -  

6gcs5 Oxidoreducase 
SF4,FES, FMN, NDP, ZMP, 

CDL, 3PE and ZN 
6jyjA Gene regulation FLC 

6k7kA Membrane protein Y01, ADP, ALF 
6lnwA and 6lnwB Transport protein N/A 

6n29A Blood clotting CA 
6qp1A Lyase LCS 
6rl5A Transferase PLP 
6slfA Hydrolase LJ8, GOL, ACT, BTB, ZN 
6snhX Membrane protein LMH 
6uehA Hydrolase ACT, CA 
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Figure 7.7. Top-scoring structure predictions from the McGuffin group for nsp6 (CASP Commons target C1903) full 
chain and individual domains 
(A) Predicted structure for nsp6 (C1903) shown as cartoon and coloured by secondary structure with a residue length of 290 
(B) Predicted structure for nsp6 (C1903d1) shown as cartoon and coloured by secondary structure with a residues 1-220 
modelled (C) Predicted structure for nsp6 (C1903d2) shown as cartoon and coloured by secondary structure with residues 221-
290 modelled (D) Predicted structure for nsp6 (C1903x2) shown as cartoon and coloured by secondary structure. This was the 
whole target of 290 residues following stage two modelling

A B 

C 
D 
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The third predicted protein was nsp6 (CASP Commons targets  C1903).  Non-structural 

protein 6 can exist as a coronavirus non-structural protein 6. Autophagy, is activated by nsp6 

and is a cellular response to starvation which generates autophagosomes to carry cellular 

organelles and long-lived proteins to lysosomes for degradation (Cottam et al., 2011).  

Degradation through autophagy can provide an innate defence against virus infection, or 

autophagosomes can promote infection by facilitating assembly of replicase proteins 

(Cottam et al., 2011). SARS-CoV can activate autophagy, an example is avian coronavirus 

infectious bronchitis virus (IBV) (Cottam et al., 2011). Nsp6 may alter adaptive immune 

responses by directing immunomodulatory proteins synthesised by the ER into 

autophagosomes for degradation (Cottam et al., 2011). 

 

There were four different variations of the structure for prediction and as can be seen in 

Figure 7.8, there were no ligands and ligand-binding sites predicted by FunFOLD3. For the 

rounds of modelling of the full structure C1903 (nsp6) had a global quality score of 0.5232 

and 0.5160 for C1903x2 (nsp6). For specific residues of the C1903 target (nsp6), C1903d1 

(nsp6) and C1903d2 (nsp6) global quality score of 0.4139 and 0.1225, respectively, based 

on the full length sequences.  

 

In comparison, IntFOLD6 obtained predictions for C1903d1, C1903d2 and C1903x2 (all 

nsp6 proteins) domain sequences, and is depicted below in Figure 7.9.  The global model 

quality score was 0.4626, 0.4608 and 0.4618, respectively. The predicted ligands were 

haem (C1903d1), (3beta,14beta,17alpha)-ergosta-5,24(28)-dien-3-ol  (94R) (C1903d2) and 

[(2~{S})-2,3-bis(oxidanyl)propyl] (~{E})-undec-2-enoate (MUN), [(2~{S})-2,3-

bis(oxidanyl)propyl] (~{E})-undec-2-enoate (MPG) and retinal (RET) (1903x2).  
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Table 7.6, shows the templates associated with the target nsp6 (C1903) with the templates 

identified as having ligands by FunFOLD3 highlighted in yellow. The role/function of each 

template as per the PDB entry is also depicted.   

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.8. IntFOLD6 predictions for nsp6 (C1903) domains  
(A) Predicted structure for nsp6 (C1903d1) shown as cartoon and coloured green with the predicted ligand HEM shown as 
sphere and coloured yellow. Ligand-binding sites are shown as sticks and coloured red (B) Predicted structure for nsp6 
(C1903d2) shown as cartoon and coloured green with a residues with the predicted ligand 94R shown as sphere and coloured 
yellow. Ligand-binding sites are shown as sticks and coloured red (C) Predicted structure for nsp6 (C1903x2) shown as cartoon 
and coloured green with the predicted ligand MUN shown as sphere and coloured yellow, the MUN ligand was predicted in 
several locations in the protein. Ligand-binding sites are shown as sticks and coloured red (D) Predicted structure for nsp6  
(C1903x2) shown as cartoon and coloured green with the predicted ligand  MPG shown as sphere and coloured blue and the 
RET ligand shown as sphere and coloured yellow 

A B 

C D 
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Table 7.6. Template list for nsp6 (C1903)  
Templates for nsp6 (C1903) with the role/function and ligand as per PBD ID. Templates identified by FunFOLD3 to be of  
biological relevance are highlighted in yellow 
  

Template  Role/function Ligand 
1q06A Transcription AG 
1r8dA Transcription/DNA DNA 
1sp3A Oxidoreductase HEM 
2ga1A Unknown protein GOL 
2jihB1 Hydrolase 097 
2l95A Hydrolase N/A 
2ot3A Protein transport N/A 
2r18A Viral protein N/A 
3gp4A Transcription regulator MED 

3rkoB, 3rkoC and 3rkoN Oxidoreductase CA7 
3zuxa Transport protein NA, TCH 

4c0oA 
Transport protein/RNA binding 

protein 
K 

4jkvA Membrane protein 1KS 
4l6rA2 Membrane protein  
4mlqA Transferase DPM 
4qi1A Membrane protein MPG, RET 

4w6vA2 Transport protein PEG 
4yubA Ligase N/A 
5ctgA Transport protein PE5, BNG, TRS 
5dn6J Hydrolase ATP, ADP, MG 

5ee7A1 Signalling protein 5MV 
5hvdA Transport protein 2CV 
5i5fA Membrane protein N/A 

5tqqA1 Transport protein N/A 
5xpdA1 Transport protein DCM 
5y6pgy No entry -  
5y78A Transport protein P04 
6bmlA Transferase ZN 
6bmsA Membrane protein ZN 
6csmA Membrane protein RET 
6erdA Transferase GOL, CA 
6eyuA Membrane protein RET, MUN 

6gcs5 Oxidoreductase 
SF4, FES, FMN, NDP, ZMP, 

CDL, 3PE, ZN 
6gyhA Proton transport RET, CLR 
6humD Proton transport BCR, LMG, SF4 
6i1rA Membrane protein C5P 
6k2ca Oncoprotein N/A 
6n1zA Transport protein N/A 
6nwfa Membrane protein RET, C14, BGC, D10, CL 

6ob6A1 Transport protein NBM 
6pb1P Signalling protein CLR 
6pw4A Transport protein PIO, CPL, PIK 
6qv6B Membrane protein N/A 
6rj8a Hydrolase PG4, PEG, EDO 
6rl5A Transferase PLP 
6tdxO Membrane protein N/A 
6ukjA Membrane protein Y01 
6vloa Oxidoreductase TYD, NAD, NI 
6w08a Toxin ACY, EDO, FMT, K, CL 
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Figure 7.9. Top-scoring structure predictions from the McGuffin group for PL-PRO (CASP Commons target C1904) full chain and individual domains 
(A) Predicted structure for PL-PRO (C1904) shown as cartoon and coloured by secondary structure with a residue length of 686 (B) Predicted structure for PL-PRO (C1904d1) shown as cartoon 
and coloured by secondary structure with a residues 1-151 modelled (C) Predicted structure for PL-PRO (C1904d2) shown as cartoon and coloured by secondary structure with residues 152-317 
modelled (D) Predicted structure for PL-PRO (C1904d3) shown as cartoon and coloured by secondary structure with residues 318-686 modelled (E) Predicted structure for PL-PRO (C1904x2) 
shown as cartoon and coloured by secondary structure. This was the whole target of 686 residues following stage two modelling

A B C 

D E 
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The fourth predicted protein was PL-PRO (CASP Commons target was C1904), papain-like 

protease. The coronaviral proteases, papain-like protease and 3CL-like protease (3CLpro), 

are attractive antiviral drug targets because they are essential for coronaviral replication 

(Báez-Santos, St John and Mesecar, 2015). The primary function of PLpro and 3CLpro are 

to process the viral polyprotein in a coordinated manner (Báez-Santos, St John and 

Mesecar, 2015). PLpro has the additional function of stripping ubiquitin and interferon-

induced gene 15 from host-cell proteins, to aid coronaviruses in their evasion of the host 

innate immune responses (Báez-Santos, St John and Mesecar, 2015). Thus, targeting 

PLpro with antiviral drugs may have an advantage in not only inhibiting viral replication, but 

also inhibiting the dysregulation of signalling cascades in infected cells that may lead to cell 

death in surrounding uninfected cells (Báez-Santos, St John and Mesecar, 2015). SARS-

CoV PLpro antagonistic activities have been shown to block the production of important 

cytokines involved in the activation of the host’s innate immune response such as CXCL10 

and CCL5 (Báez-Santos, St John and Mesecar, 2015).  

 

There were five variations of the structure available for prediction as shown in Figure 7.9, 

and there were no ligands and ligand-binding sites predicted by FunFOLD3. Based on  the 

full length reference sequences, the global quality score was 0.4853 for C1904, 0.3278 for 

C1904d1, 0.1202 for C1904d2, 0.3038 for C1904d3 and 0.4842 for C1904x2 (all PL-PRO 

proteins).  

 

IntFOLD6 predicted ligands and ligand-binding site residues for C1904d1, C1904d2, 

C1904d3 and C1904x2 (all PL-PRO proteins) and results are shown in Figure 7.10. The 

global quality score was 0.4332, 0.4507, 0.3969 and 0.3717, respectively.  
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Table 7.7 shows the templates associated with the protein PL-PRO  (C1904) with the 

templates identified as having ligands by FunFOL3 highlighted in yellow. The role/function of 

each protein is also provided. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.10. IntFOLD6 prediction for PL-PRO (C1904) 
(A) Predicted structure for PL-PRO (C1904d1) shown as cartoon and coloured green with the predicted ligand PLM shown as 
sphere and coloured yellow. Ligand-binding sites are shown as sticks and coloured red (B) Predicted structure for PL-PRO 
(C1904d2) shown as cartoon and coloured green with a residues with the predicted ligand MPG shown as sphere and coloured 
yellow, the ligand has been predicted in three different locations. Ligand-binding sites are shown as sticks and coloured red (C) 
Predicted structure for PL-PRO (C1904d3) shown as cartoon and coloured green with the predicted ligand GDP shown as 
sphere and coloured yellow. Ligand-binding sites are shown as sticks and coloured red (D) Predicted structure for PL-PRO 
(C1904x2) shown as cartoon and coloured green with the predicted ligands  ALA shown as sphere and coloured blue, SER 
ligand shown as sphere and coloured orange  and the ASN ligand shown as sphere and coloured blue 

A B 

C D 



Chapter 7. Application of FunFOLD3   

 
 

Page 353 of 645 

Table 7.7. Template list for PL-PRO (C1904)  
Templates for PL-PRO (C1904) with the role/function and ligand as per PBD ID. Templates identified by FunFOLD3 to be of 
biological relevance are highlighted in yellow 
 

Template  Role/function Ligand 
1b3ua/1b3uA Scaffold protein N/A 

1bm8A Cell cycle  N/A 
1d0qA Transferase ZN 
1ek0A Endocytosis/exocytosis GNP, GDP, MG 
1m7bA Signalling protein GTP, MG 
1z1wA Hydrolase ZN 
1z2aA Protein transport GDP 
2atxA Hydrolase GNP,MG 
2bptA Nuclear transport Random… 
2fg5A Signalling protein GNP, ZN 
2fgeA Hydrolase/plant protein MG, GNP 
3ga8A DNA binding protein ZN 
3jd8A Membrane protein CLR 
3kkqA Signalling protein GDP 
3opeA Transferase ZN, SAM 
3qf4A Transport protein ANP, MG 

3t5gA 
Signalling protein, lipid 

binding protein GDP, FAR 
3uonA Signalling protein/antagonist QNB, BGC 
3wajA Transferase ZN, SO4 
4iuwA Hydrolase ZN, CO3 
4kxfB Immune system ADP 

4r5xA 
Hydrolase/hydrolase 

inhibitor ZN, R5X 
4rnbA Signalling protein SUV 

4ui9N/4ui90 Cell cycle Random… 
5ch1B Transferase ZN, SAH 
5ee7A Signalling protein 5MV 
5fd3A Transcription/DNA ZN and DNA 
5l22B Protein transport ADP, MG 

5mscA Oxidoreductase AMP 
5msoA Oxidoreductase NAP 
5mspA Oxidoreductase NAP 
6co7A3 Membrane protein CLR, CA 
6du7A Oxidoreductase FAD 
6e3yR Signalling protein Random… 
6itcA Protein transport BEF, ADP 

6me2A Membrane protein JEV 
6n29A Blood clotting CA 
6nq0A Transport protein EUJ 
6oh2A Transport protein C5P 

6qp6A2 Membrane protein CA 
6rflK Viral protein RC, RA, RG, RU 
6rl5a Transferase PLP 

6snhx Membrane protein LMH 
6ueha Hydrolase  ACT, CA 
6v6bC Structural protein N/A 
6vbu0 Protein transport CA 
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Figure 7.11. Top-scoring structure predictions from the McGuffin group for protein ORF3a (CASP Commons target C1905) full chain and individual domains 
(A) Predicted structure for ORF3a (C1905) shown as cartoon and coloured by secondary structure with a residue length of 275 (B) Predicted structure for ORF3a (C1905d1) shown as cartoon and 
coloured green with a residues 1-130 modelled the predicted ligand MPG shown as sphere and coloured yellow with ligand-binding site residues shown as sticks and coloured red (C) Predicted 
structure for ORF3a (C1905d2) shown as cartoon and coloured by secondary structure with residues 131-275 modelled (D) Predicted structure for ORF3a (C1905x2) shown as cartoon and 
coloured by secondary structure. This was the whole target of 686 residues following stage two modelling (E) PDB structure (PDB ID 6xdc) for ORF3a (C1905) which is a dimer and the chains are 
coloured by secondary structure  
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The fifth predicted protein was ORF3a, open reading frame 3a (CASP Commons target  

C1905) . ORF3a is found in other coronaviruses along with ORF7b (C1910).  Severe acute 

respiratory syndrome coronavirus (SARS-CoV) open reading frame 3a (ORF3a) accessory 

protein activates the NLRP3 inflammasome by promoting TNF receptor-associated factor 3 

(TRAF3)–mediated ubiquitination of apoptosis-associated speck-like protein containing a 

caspase recruitment domain (ASC). ORF3a and three ion channel proteins; E are 

collectively required for viral replication and virulence (Siu et al., 2019). SARS-CoV  is 

capable of inducing a storm of proinflammatory cytokines (Siu et al., 2019). A robust 

elevation of IL-1ß was seen during early infection of SARS-CoV and IL-1ß is a key 

proinflammatory cytokine (Siu et al., 2019).  Proinflammatory cytokines are double-edged 

swords that mobilise host defence and also drive pathologic inflammation (Siu et al., 2019). 

Inflammation has both antiviral and proviral roles, on one hand it is part of the innate antiviral 

response that restricts viral replication and infection and conversely it facilitates viral 

dissemination by releasing a large number of virions (Siu et al., 2019).    

 

The UniProtKB entry for ORF3a states the function as, forms homotertrameric potassium 

sensitive ion channels (viroporin) and may modulate virus release (UniProt Consortium, 

2019). Up-regulates expression of fibrinogen subunits FGA, FGB and FGG in host lung 

epithelial cells. Induces apoptosis in cell culture. Downregulates the type I interferon 

receptor by inducing serine phosphorylation within the IFN alpha-receptor subunit 

1(IFNAR1) degradation motif and increasing IFNAR1 ubiquitination (UniProt Consortium, 

2019). In terms of GO terms associated with ORF3a ion channel activity (GO:0005216) and 

pore formation by virus in membrane of host cell (GO:0039707)(UniProt Consortium, 2019). 

In comparison, FunFOLD3 predicted ion transport (GO:0006811) as the closest to ion 

channel activity. In terms of cellular component, integral component of membrane 

(GO:0016021) is associated with the UniProtKB entry and was also predicted by FunFOLD3.    
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There were four different variations of the structure available for prediction as shown in 

Figure 7.11 with one having a ligand and ligand-binding site residues predicted (Figure 

7.11B). According to the full length reference sequence, the global quality model scores 

were 0.4392, 0.2252, 0.2311 and 0.4151 which relates to  C1905,  C1905d1, C1905d2 and 

C1905x2 (all ORF3a proteins), respectively.  

 

This target was the first target of all the CASP Commons targets to not only have a predicted 

ligand by FunFOLD3 but also have an actual structure PDB associated. No ligand was 

observed in the actual structure and the predicted GO terms by FunFOLD3 have been 

outlined in Table 7.8 below. Additionally, TM scores and TM-align structures of the predicted 

structures by ModFOLD has been compared against the actual structure from PDB.  

Table 7.8. Predicted GO terms for CASP Commons target  ORF3a (C1905d1) 
The GO terms for CASP Commons target ORF3a (C1905d1) and their associated term domains and function are shown below. 
Molecular function coloured green, biological process coloured red and cellular component coloured purple  
 

GO term GO term domain Function 
GO: 0004129 Molecular function cytochrome-c oxidase 

activity  
GO:0016491 Molecular function oxidoreductase activity 
GO:0005506 Molecular function iron ion binding  
GO:0009055 Molecular function electron transfer activity 
GO:0020037 Molecular function haeme binding  
GO:0046872 Molecular function  metal ion binding  
GO:0048039 Molecular function ubiquinone binding  
GO:0005507 Molecular function  copper ion binding 
GO:0006811 Biological process ion transport 
GO:0022900 Biological process electron transport chain 
GO:0055114 Biological process oxidation-reduction process 
GO:0006119 Biological process oxidative phosphorylation 
GO:0009060 Biological process aerobic respiration  
GO:0006099 Biological process tricarboxylic acid cycle 
GO:0006121 Biological process mitochondrial electron 

transport, succinate to 
ubiquinone 

GO:0022904 Biological process respiratory electron 
transport chain 

GO:0005886 Cellular Component plasma membrane 
GO:0016020 Cellular Component membrane  
GO:0016021 Cellular Component integral component of 

membrane 
GO:0070469 Cellular Component respirasome  
GO:0005740 Cellular Component mitochondrial envelope 
GO:0005739 Cellular Component  mitochondrion  
GO:0005743 Cellular Component  mitochondrial inner 

membrane 
GO:0005749 Cellular Component  mitochondrial respiratory 

chain complex II, succinate 
dehydrogenase complex 

(ubiquinone) 
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Figure 7.12  below, shows the TMalign structural alignments for the predicted ORF3a protein 

targets; C1905 (A) and C1905x2 (B) and the observed structure from the PDB entry. A TM-

score of 0.26105 and 0.30148 was achieved, respectively demonstrating poor structural 

alignment over the full chain structure. However, there was an improvement between stage 

one and stage two modelling. The domains achieved a TMscore of 0.26238 for domain 1 (C) 

and 0.22785 for domain 2 (D).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 7.12. Comparison of TMalign superposition for CASP Commons target C1905 (ORF3a) and SARS-CoV-2 ORF3a 
(PDB ID 6xdc)  
(A) The structure in blue is the structure of 6xdc and the predicted structure for ORF3a (CASP_Commons target C1905) is 
shown in red. A TM-align score of 0.26105 was achieved for the protein structures. This was normalised for SARS-CoV-2 
ORF3a (PDB ID 6xdc) as it is the reference molecule (B) The structure in blue is the structure of 6xdc and the predicted 
structure for ORF3a (CASP_Commons target C1905x2) is shown in red. A TM-align score of 0.30148 was achieved for the 
protein structures (C) The structure in blue is the structure of 6xdc and the predicted structure for ORF3a (CASP_Commons 
target C1905d1) is shown in red. A TM-align score of 0.26238 was achieved for the protein structures. (D) The structure in blue 
is the structure of 6xdc and the predicted structure for ORF3a (CASP_Commons target C1905x2) is shown in red. A TM-align 
score of 0.22785 was achieved for the protein structures 
  

A B 

C D 
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Figure 7.13. Top-scoring structure predictions from the McGuffin group for transmembrane protein (CASP Commons 
target C1906) full chain and individual domains 
(A) Predicted structure for transmembrane protein (C1906) shown as cartoon and coloured by secondary structure with a 
residue length of 222 (B) Predicted structure for transmembrane protein (C1906d1) shown as cartoon and coloured green with 
a residues 1-103 modelled the predicted ligand DUO (duocarmycin) shown as sphere and coloured yellow and the ligand MPG 
shown as sphere an coloured blue. Ligand-binding site residues shown as sticks and coloured red (C) Predicted structure for 
transmembrane (C1906d2) shown as cartoon and coloured by secondary structure with residues 104-222 modelled (D) 
Predicted structure for transmembrane (C1906x2) shown as cartoon and coloured green. This was the whole target of 222 
residues following stage two modelling the GOL ligand is shown as sphere and coloured yellow, the ASN ligand shown as 
sphere and coloured blue and the LEU ligand shown as sphere and coloured cyan. Ligand-binding site residues are shown as 
sticks and coloured red 

A B 

C D 
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The sixth predicted protein was transmembrane protein (CASP Commons target was 

C1906). On a whole, “membrane protein” is quite a broad description for a protein however, 

when specifically related to SARS-CoV-2, membrane protein is a major structural protein as 

mentioned in the introduction (Tseng et al., 2010). The most abundant structural protein of 

SARS-CoV-2 is the M glycoprotein (Thomas, 2020) and spans the membrane bilayer, 

leaving a short NH2-terminal domain outside the virus and a long COOH terminus 

(cytoplasmic domain) inside the virion (Thomas, 2020). The M protein can bind to all other 

structural proteins and cooperates with the S protein (Thomas, 2020) despite this, the role of 

M protein is not fully understood (Thomas, 2020). 

 

The UniProtKB entry on membrane protein states the function, as a component of the viral 

envelope that plays a central role in virus morphogenesis and assembly via its interactions 

with other viral proteins (UniProt Consortium, 2019). Additionally, GO terms related to 

structural constituent of virion (GO:0039660) and mitigation of host immune response by 

virus (GO:0030683) were predicted by FunFOLD3. In terms of cellular components, the 

following GO terms were associated; host cell Golgi membrane (GO:0044178), integral 

component of membrane (GO:0016021), viral envelope (GO:0019031) and virion membrane 

(GO:0055036)(UniProt Consortium, 2019).  

 

Membrane protein is defined as a homomultimer and (1) interacts with envelope E protein in 

the budding compartment of the host cell, which is located between endoplasmic reticulum 

and the Golgi complex. (2) Forms a complex with HE (hemagglutinin-esterase) and S 

proteins (UniProt Consortium, 2019), (3) interacts with nucleocapsid N protein. This 

interaction probably participates in RNA packaging into the virus and (4) interacts with the 

accessory proteins 3a and 7a (UniProt Consortium, 2019).  
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Two ligands were predicted for C1906d1; duocarmycin and MPG. Duocarmycins are a group 

of antineoplastic agents with low picomolar potency (Guerrero et al., 2020). They are 

thought to act by binding and alkylating double-stranded DNA in AT-rich regions of the minor 

groove (Guerrero et al., 2020). Octadec-9-enyl] (2R)-2,3-bis(oxidanyl)propanoate or MPG is 

classed  as experimental and belongs to the class of organic compounds known as fatty 

alcohol esters (Wishart et al., 2018). Three ligands were predicted for C1906x2, compared 

to no ligands predicted in the first round with C1906 (all transmembrane proteins). However, 

the ligands were ASN and LEU which are amino acids and glycerol (GOL) which despite 

being a crystallisation additive can also bind to proteins as a substrate (Yamanishi et al., 

2012). 

 

According to the full length reference sequence, the global quality model scores were 

0.4172, 0.2532, 0.2966 and 0.5149 for targets C1906, C1906d1, C1906d2 and C1906x2, 

respectively (all transmembrane proteins).  

 

To provide further insight into the function of the protein the GO terms associated are listed 

below in Table 7.9, no GO terms were predicted for C1906d1. Due to C1906 

(transmembrane protein) having predicted ligands, no template list has been provided.    

 

Table 7.9. Predicted GO terms for transmembrane protein (CASP Commons target C1906x2) 
The GO terms for CASP Commons target C1906x2 (transmembrane protein) and their associated term domains and function 
are shown below. Molecular function coloured green and biological process coloured red  
  

 
 
 
 
 
 
 

GO term GO term domain Function 
GO: 0003824 Molecular function catalytic activity  
GO:00088152 Biological process metabolic process 
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Figure 7.14. Top-scoring structure predictions from the McGuffin group for protein ORF6 (CASP Commons target C1907) 
(A) Predicted structure for ORF6 (C1907) shown as cartoon and coloured green with a residue length of 61 with the predicted 
ligand calcium shown as sphere and coloured yellow. Ligand-binding site residues shown as sticks and coloured red (B) 
Predicted structure for ORF6 (C1907) shown as cartoon and coloured green with a residue length of 61 with the predicted 
ligand 3,3-Dichloro-2-phosphonomethyl-acrylic acid (DCO) shown as sphere and coloured yellow. Ligand-binding site residues 
shown as sticks and coloured red  (C) Predicted structure for ORF6 (C1907) shown as cartoon and coloured green with a 
residue length of 61 with the predicted ligand haemoglobin shown as sphere and coloured yellow. Ligand-binding site residues 
shown as sticks and coloured red (D) Predicted structure for ORF6 (C1907) shown as cartoon and coloured green with a 
residue length of 61 with the predicted ligand methyl 2-(2,5-dihydroxyphenyl)acetate (XQI) shown as sphere and coloured 
yellow. Ligand-binding site residues shown as sticks and coloured red
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C D 
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The seventh predicted protein was ORF6, open reading frame 6 (CASP Commons target 

was C1907),. ORF6 protein is one of the eight accessory proteins of SARS-CoV (Gunalan, 

Mirazimi and Tan, 2011). Furthermore, it has been suggested that accessory genes have 

subtle effects on SARS-CoV replication that may be more important for viral replication or 

pathogenesis in vivo (Gunalan, Mirazimi and Tan, 2011). ORF6, encodes for a ~7kDa 

protein with a hydrophobic N-terminal that has been suggested to have a N-endo-C-endo 

conformation (Gunalan, Mirazimi and Tan, 2011). Additionally, ORF6 has been shown to 

interact with nsp8 protein from the SARS replicase complex (Kumar et al., 2007), able to 

increase infection titre during early infection at low multiplicity of infection (Zhao et al., 2009), 

increase the rate of cellular gene synthesis (Geng et al., 2005), inhibit interferon production 

(Kopecky-Bromberg et al., 2007) and inhibit the nuclear translocation of STAT1 by 

interacting with karyopherin alpha2 (Frieman et al., 2007). Most recently, the ORF6 protein 

has been suggested to induce intracellular membrane rearrangements resulting in a 

vesicular population in the infected cell which should potentially serve some role in 

increasing replication (Zhou et al., 2010).  

 

The UniProtKB entry for ORF6, identifies the gene as a major DNA-binding protein (UniProt 

Consortium, 2019) and outlines the function as several crucial roles in viral infection (UniProt 

Consortium, 2019). Participating in the opening of the viral DNA origin to initiate replication 

by interacting with the origin-binding protein. May disrupt loops, hairpins and other 

secondary structures present on ssDNA to reduce and eliminate pausing of viral DNA 

polymerase at specific sites during elongation. Promotes viral DNA recombination by 

performing strand-transfer (UniProt Consortium, 2019).  

 

In terms of ligand prediction, calcium is essential for virus entry, viral gene replication, virion 

maturation and release (Chen, Cao and Zhong, 2019). The alteration of host cells Ca2+ 

homeostasis is one of the strategies that viruses use to modulate host cell signal 
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transduction mechanisms in their favour by to achieve successful replication via multiple 

routes; for instance, viral proteins directly bind to Ca2+ to disturb the membrane permeability 

for Ca2+ by manipulating Ca2+ apparatus (Chen, Cao and Zhong, 2019). With respect to 

haemoglobin; envelope protein, nucleocapsid phosphoprotein and ORF3a all have haem 

linked sites, with Arg134 of ORF3a, Cys44 of envelope protein and Ile304 of nucleocapsid 

phosphoprotein have been identified as the haem-iron sites, respectively (Liu, 2020a). Of 

which, none were predicted by FunFOLD3 as ligand-binding site residues.  No information 

could be found on 3,3-Dichloro-2-phosphonomethyl-acrylic acid or   

methyl 3,5-dihydroxyphenylacetate with respect to SARS-CoV-2 or similar viruses.  

 

The global quality model score for the structure was 0.5865.  

 

To provide further insight into the function of the protein the GO terms associated are listed 

below in Table 7.10.  

 
Table 7.10. Predicted GO terms for ORF6 (CASP_Commons target C1907)  
The GO terms for CASP_Commons target C1907 and their associated term domains and function are shown below. Molecular 
function coloured green, biological process coloured red and cellular component coloured purple  
 

GO term GO term domain Function 
GO:0005524 Molecular function ATP binding 
GO:0051082 Molecular function unfolded protein binding 
GO:0003824 Molecular function catalytic activity   
GO:0008964 Molecular function phosphoenolpyruvate 

carboxylase activity 
GO:0016829 Molecular function lyase activity  
GO:0003677 Molecular function  DNA binding  
GO:0043565 Molecular function sequence-specific DNA 

binding  
GO:0004497 Molecular function  monooxygenase activity  
GO:0005496 Molecular function steroid binding  
GO:0005506 Molecular function iron ion binding 
GO:0008395 Molecular function steroid hydroxylase activity  
GO:0009055 Molecular function electron transfer activity  
GO:0016491 Molecular function oxidoreductase activity 
GO:0016705 Molecular function oxidoreductase activity, 

acting on paired donors, 
with incorporation or 

reduction of molecular 
oxygen 

GO:0016712 Molecular function oxidoreductase activity, 
acting on paired donors, 

with incorporation or 
reduction of molecular 

oxygen, reduced flavin or 
flavoprotein as one donor, 
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and incorporation of one 
atom of oxygen 

GO:0019825 Molecular function  oxygen binding 
GO:0019899 Molecular function enzyme binding 
GO:0020037 Molecular function haeme binding  
GO:0030343 Molecular function Vitamin D3 25-hydroxylase 

activity  
GO:0033780 Molecular function taurochenodeoxycholate 

6alpha-hydroxylase activity 
GO:0034875 Molecular function caffeine oxidase activity  
GO:0046872 Molecular function  metal ion binding 
GO:0047638 Molecular function  albendazole 

monooxygenase activity 
GO:0050591 Molecular function quinine 3-monooxygenase 

activity  
GO:0050649 Molecular function testosterone 6-beta-

hydroxylase activity  
GO:0070576 Molecular function  vitamin D 24-hydroxylase 

activity  
GO:0009822 Biological process alkaloid catabolic process 
GO:0006457 Biological process protein folding 
GO:0006950 Biological process response to stress 
GO:0006099 Biological process tricarboxylic acid cycle 
GO:0008152 Biological process metabolic process 
GO:0015977 Biological process carbon fixation 
GO:0006629 Biological process lipid metabolic process 
GO:0006706 Biological process steroid catabolic process 
GO:0008202 Biological process steroid metabolic process 
GO:0008209 Biological process androgen metabolic 

process 
GO:0006805 Biological process xenobiotic metabolic 

process 
GO:00016098 Biological process monoterpenoid metabolic 

process 
GO:0017144 Biological process drug metabolic process 
GO:0042737 Biological process drug catabolic process 
GO:0042738 Biological process exogenous drug catabolic 

process 
GO:0044281 Biological process small molecule metabolic 

process 
GO:0046483 Biological process heterocycle metabolic 

process 
GO:0055114 Biological process oxidation-reduction process 
GO:0070989 Biological process oxidative demethylation 
GO:0005737 Cellular Component cytoplasm 
GO:0005783 Cellular Component endoplasmic reticulum 
GO:0005789 Cellular Component endoplasmic reticulum 

membrane 
GO:0009986 Cellular Component cell surface 
GO:0016020 Cellular Component membrane 
GO:0016021 Cellular Component  integral component of 

membrane 
GO:0031090 Cellular Component  organelle membrane  
GO:0043231 Cellular Component intracellular membrane-

bounded organelle 
GO:0005749 Cellular Component  mitochondrial respiratory 

chain complex II, succinate 
dehydrogenase complex 

(ubiquinone) 
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Figure 7.15. Top-scoring structure predictions from the McGuffin group for protein ORF8 (CASP Commons target C1908) 
(A) Predicted structure for ORF8 (C1908) shown as cartoon and coloured by secondary structure with a residue length of 121 
(B) Predicted structure for ORF8 (C1908x2) shown as cartoon and coloured green with a residue length of 121 following stage 
2 modelling and the CA ligand shown as sphere and coloured yellow with ligand-binding site residues shown as sticks and 
coloured red (C) PDB structure for ORF8 (PDB ID 7jtl) shown as cartoon and coloured cyan. Only domain A has been shown 
for comparison purposes  
 

  

A B 

C
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The eighth predicted protein was ORF8, opening reading frame 8 (CASP Commons target 

C1908),. As with ORF6, ORF8 is also one of the accessory proteins for SARs-CoV-2 and is 

one of the several transcribed non-structural proteins (Liu, 2020b). Spike proteins, ORF8a 

and ORF3a proteins are significantly different from other known SARS-like coronaviruses 

and may cause more serious pathogenicity and transmission differences than SARS-CoV 

(Liu, 2020b).  

 

The function of ORF8 as per the UniProtKB entry is (1) may play a role in modulating host 

immune response and (2) may play a role in blocking host IL17 cytokine by its interaction 

with host IL17RA (Magrane & UniProt Consortium, 2011). Literature information available 

specifically for SARS-CoV-2 ORF8 shows it disrupts IFN-1 signalling when exogenously 

overexpressed in cells (Li et al., 2020).   

 

Predictions on this target were done on the same residue length after two rounds of 

modelling, with the second round predicting the calcium ligand. The global model score 

decreased from 0.4935 for C1908 to 0.4721 for C1908x2 (all ORF8 proteins), this could be 

explained by some groups who participated in round one not partaking in round two. Despite 

the decrease in the global model score the stage two model predicted a ligand, however no 

ligand was observed in the actual structure.   

 
To provide further insight into the function of the protein, from a FunFOLD3, perspective the 

GO terms associated are listed below in Table 7.11.  

 
Table 7.11. Predicted GO terms for ORF8 (CASP Commons target C1908)  
The GO terms for ORF 8 (CASP_Commons target C1908) and their associated term domains and function are shown below. 
Molecular function coloured green, biological process coloured red and cellular component coloured purple 

 
 
 
 
 
 
 

GO term GO term domain Function 
GO:0007155 Biological process cell adhesion 
GO:0006954 Biological process inflammatory response 
Go:0045087 Biological process innate immune response 
GO:0005604 Cellular Component  basement membrane 
GO:0005615 Cellular Component  extracellular space 
GO:0005576 Cellular Component  extracellular region 
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Figure 7.16 below, shows the TMalign structural alignments for the predicted C1908 (A) and 

C1908x2 (B) (all ORF8 proteins) and the observed structure from the PDB entry. A TM-

score of 0.34318 and 0.38410 was achieved, respectively demonstrating poor structural 

homology..  

 
 

 
 

 
 
Figure 7.16. Comparison of TMalign superposition for predicted ORF8 (CASP Commons target C1908) and SARS-CoV-
2 ORF8 (PDB ID 7jtl)  
(A) The structure in blue is the structure of 7jtl and the predicted structure for the predicted ORF8 (CASP Commons C1908) is 
shown in red . A TM-align score of 0.34318 was achieved for the protein structures. This was normalised for SARS-CoV-2 
ORF8 (PDB ID 7jtl) as it is the reference molecule (B) The structure in blue is the structure of 6xdc and the predicted ORF8 
structure  (CASP Commons C1908x2) is shown in red . A TM-align score of 0.38410 was achieved for the protein structure. 

A 

B 
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Figure 7.17. Top-scoring structure predictions from the McGuffin group for protein ORF10 (CASP Commons target 
C1909) 
Predicted structure for ORF10 (C1909) shown as cartoon and coloured green with a residue length of 38 residues  
 
 

The nineth predicted protein was ORF10, open reading frame 10 (CASP Commons target 

C1909). Recent experiments to characterise SARS-CoV-2 gene functions, predicted nine 

accessory proteins ORFs (3a, 3b, 7a, 7b, 8, 9b, 9c and 10)(Gordon et al., 2020) and ORF10 

is believed to be involved in ubiquitin ligases with SARS-CoV-2 (Gordon et al., 2020). 

However, DNA nanoball sequencing concluded that SARS-CoV-2 expresses only five 

canonical accessory ORFs (3a, 6, 7a, 7b, 8)(D. Kim et al., 2020). 

 

The role of ORF10 has been studied in Kaposi’s sarcoma-associated herpesvirus (Bisson, 

Page and Ganem, 2009). Viral protein replication timing regulatory Factor 1 (RIF) is a 

product of ORF10 and RIF is a potent and specific suppressor of interferon signalling 

(Bisson, Page and Ganem, 2009). Type I interferon are important mediators of innate 

antiviral defence and function by activating a signalling pathway through their cognate type I 

receptor type I receptor and this in turn triggers activation of a signalling pathway that 

generates a plethora of proteins with broad-spectrum antiviral activities (Bisson, Page and 

Ganem, 2009).   
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A FunFOLD3 prediction was made on one protein structure and the global model quality 

score was 0.4061.  

 

IntFOLD6 predicted ligands and ligand-binding site residues for the target and results are 

shown in below in Figure 7.18.  

 

Table 7.12, shows the templates associated with the protein ORF10 (target C1909) with the 

templates identified as having ligands by FunFOL3 highlighted in yellow. The role/function of 

each protein is also provided.  

 

 

 
Figure 7.18. IntFOLD6 prediction for ORF10 (C1909) 
Predicted structure for ORF10 (C1909) shown as cartoon and coloured green with the predicted ligand (3beta,14beta,17alpha)-
ergosta-5,24(28)-dien-3-ol (94R) shown as sphere and coloured yellow. Ligand-binding sites are shown as sticks and coloured 
red  
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Table 7.12. Template list for ORF10 (C1909)  
Templates for ORF10 (C1909) with the role/function and ligand as per PBD ID. Templates identified by FunFOLD3 to be of 
biological relevance are highlighted in yellow 
 

Template  Role/function Ligand 
1f60B Translation N/A 
1i8nA Toxin  ROP 

1m93A Viral protein PO4 
1maeH6 Oxidoreductase HDZ 
1pl7A2 Oxidoreductase  ZN 
1ytfC1 Transcription DNA 
2abyA Unknown function  N/A 
2lzlA Membrane protein N/A 
2ot9A Unknown function SRT, NA 
2wjvd - - 
3fdfA1 Unknown function  N/A 
3gdzA Ligase  EDO 
3ig9A Viral protein IMD 
3iibA Hydrolase PGE, PEG, ZN 

3jcuX Membrane protein 
CLA, LUT, NEX, LHG, LMG, 

BCR 
3m6iA2 Oxidoreductase ZN, NAD 
3wcxA Hydrolase EPE, SIN 
4cu5A Hydrolase  N/A 
4hizA Hydrolase/viral protein SLB, SIA, CA 

4m4dA Lipid binding protein NAG, PC1 
4o66A DNA binding protein  SO4, NA 
4q9tA Protein transport - 
4u7nA Transferase  -  
5hy3B Toxin/antitoxin - 
5js4A Viral protein  MLA 

5kc1c Endocytosis 
NO3, ED0, NH4, SO4, CL, 

IOD, NA 
5o9eA Ribosome EDO  
5yylC Signalling protein  94R 
6fbsA RNA binding protein DNA/RNA, ZN 
6ovkb Signalling protein  TLA 
6pvra Viral protein -  
6tdvL Membrane protein CDL, LMT, LPP, TRT 

6vqva 
RNA binding 

protein/RNA/inhibitor 
DNA/RNA 

6vqwa 
RNA binding 

protein/RNA/inhibitor 
DNA/RNA 

6vqxa 
RNA binding 

protein/RNA/inhibitor 
DNA/RNA 

6vz6a Metal binding protein HEM 
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Figure 7.19. Top-scoring structure predictions from the McGuffin group for protein ORF7b (CASP Commons target 
C1910) 
Predicted structure for ORF7b (C1910) shown as cartoon and coloured green with a residue length of 43 residues the CLA 
ligand is shown as sphere and coloured yellow. The ligand-binding site residues are shown as sticks and coloured red  
 
 

The tenth predicted protein was ORF7b, or opening reading frame 7b (CASP Commons 

target C1910). As mentioned in the previous target, (C1909), ORF7b is one of the nine 

accessory proteins associated with SARS-CoV-2. The role of ORF7b, has been identified in 

SARS-CoV, where it is a putative viral accessory protein encoded on subgenomic (sg) RNA 

(Schaecher, Mackenzie and Pekosz, 2007). The SARS-CoV  ORF7b protein is predicted to 

be a 44-amino-acid, highly hydrophobic protein and due to the hydrophobic nature of 

ORF7b, it has been hypothesised that ORF7b is a transmembrane protein and possibly a 

viral structural protein (Schaecher, Mackenzie and Pekosz, 2007). ORF7b localises to the 

Golgi complex, is an integral membrane protein, is translated for the gene 7 mRNA via 

ribosomal leaky scanning, is associated with intracellular virus particles and is present in 

purified virus particles (Schaecher, Mackenzie and Pekosz, 2007). Additionally, ORF7b has 

been shown to be deleted in SARS-CoV-2 (Su et al., 2020). 

 

A FunFOLD3 prediction was made on one protein structure and the global model quality 

score was 0.4854 and one ligand was predicted with chlorophyll A (CLA). The role of CLA.  
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 was explored previously with nsp4 (C1902).  

 

The UniProtKB entry identifies the subcellular location as host membrane and single-pass 

membrane protein. The GO terms predicted by FunFOLD3 are given below in Table 7.13. 

UniProtKB had GO:0016021 associated with the entry as well as GO:0033644 which was 

host cell membrane which was not predicted by FunFOLD3.  

 
Table 7.13. Predicted GO terms for protein ORF7b (C1910) 
The GO terms for CASP Commons target C1910 and their associated term domains and function are shown below. Molecular 
function coloured green, biological process coloured red and cellular component coloured purple 

 
 
 
 
 
 
 
 
 
 

 
 

GO term GO term domain Function 
GO:0005391 Molecular Function  sodium:potassium-

exchanging ATPase activity  
GO:0006754 Biological Process ATP biosynthetic process 
GO:0006813 Biological Process potassium ion transport 
GO:0006814 Biological Process  sodium ion transport 
GO:0046034 Biological Process ATP metabolic process 
GO:0015979 Biological Process photosynthesis  
GO:0019684 Biological Process photosynthesis, light 

reaction 
GO:0016020 Cellular Component  membrane 
GO:0016021 Cellular Component  Integral component of 

membrane 
GO:0009523 Cellular Component  photosystem II 
GO:0009579 Cellular Component thylakoid 
GO:0042651 Cellular Component thylakoid membrane 
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7.4 Discussion  

 
COVID-19 provided a unique opportunity for FunFOLD3 to be used on novel proteins and 

aid in the elucidation of function from structure for the lesser known proteins from the SARS-

CoV-2 virus. Across the 32 targets (composed of the 10 full length stage 1 sequences, the 

15 domain sequences and the 7 stage two full length sequences). FunFOLD3 made  ligand-

binding site predictions for six of the targets (C1905d1 (ORF3a), C1906x2 (transmembrane 

protein), C1906d1 (transmembrane protein) C1907 (ORF6), C1908x2 (ORF8), C1910 

(ORF7b). For some targets, where FunFOLD3, using the top 3D model and templates, did 

not identify any ligands and ligand-binding site residues, using the IntFOLD6 models 

FunFOLD3 was able to make predictions (C1901d2 (nsp2), C1903d1 (nsp6), C1903d2 

(nsp6), C1903x2 (nsp6), C1904d1 (PL-PRO), C1904d2 (PL-PRO), C1904d3 (PL-PRO), 

C1904x2 (PL-PRO) and C1909 (ORF10). For targets where no ligand predictions  were 

made by FunFOLD3, the templates identified by FunFOLD3 as containing biologically 

relevant ligands could potentially be useful in the elucidation of function.  

 

For target C1901 (nsp2), the largest of all the CASP Commons structures, no ligands were 

predicted by FunFOLD3. In terms of templates with biologically relevant ligands, there was a 

diverse spread ranging from membrane proteins (6jfkA), cell adhesion proteins (5yjgA, 

3txaA), hydrolase (1dx5l, 2yheA, 4fyeA and 4nurA) to templates with activities related to 

DNA or RNA (2lggA and 4wrtC, respectively). In a publication about the role of nsp2 in the 

pathogenesis of COVID-19, it was found that the nsp2 differs from bat coronavirus for 11 

residues (Angeletti et al., 2020). Additionally, some regions of nsp2 has been shown to be 

structurally homologous to other known viral proteins, for example PDB ID 3ld1 (Angeletti et 

al., 2020). This template was identified as a similar template but no ligands are associated 

with the protein. Furthermore, nsp2 is believed to have transmembrane helices and the 

predicted topology is shown in Figure 7.20 below (Angeletti et al., 2020).  
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Figure 7.20. Diagram of the topology of predicted transmembrane helices  
Figure taken from Angeletti et al., 2020 

 

Position 321 of the nsp2 protein has a polar amino acid and can be speculated, that due to 

its side chain length, polarity and potential to form H-bonds the glutamine amino acid may 

confer higher stability to the protein (Angeletti et al., 2020). Mutations fall within the protein 

nsp2 on the region homologous to the endosome-associated protein, similar to the avian 

infections bronchitis virus (PDB ID 3ld1) that plays a key role in the viral pathogenicity 

(Angeletti et al., 2020). When relating this to the function identified in literature for nsp2 in 

decreasing interferon production to minimise virus visibility (Frolova et al., 2002), it could be 

argued that this is aligned with the role of PDB ID 3ld1, in playing a key role in viral 

pathogenicity. Interferon (IFN)- is a critical antiviral mediator and central to the elimination 

of viruses. Secreted IFN- stimulates adaptive antigen-specific immunity and activates innate 

cell-mediated immunity, particularly through the activation of macrophages (Kang, Brown 

and Hwang, 2018). Overall, IFN- is a broad-spectrum anti-microbial agent and a crucial 

regulatory of overall inflammatory responses to pathogens (Kang, Brown and Hwang, 2018). 
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Hence, how inhibition of IFN-, minimises the virus’s visibility and enables profound infection 

with the virus (Kang, Brown and Hwang, 2018).  

 

Additionally, PDB ID 3ld1 is a hydrolase and the information in literature has shown that the 

nsp2 protein of SARS-CoV-2 contains polar amino acids (Angeletti et al., 2020). Serine, is a 

polar amino acid and serine hydrolases are known to perform crucial functions in bacteria 

and viruses where they contribute to pathogen life cycle (Shahiduzzaman & Coombs, 2012). 

All serine hydrolases possess a common catalytic mechanism that involves activation of a 

conserved serine nucleophile for attack on a substrate ester/thioester/amide bond to form an 

acyl-enzyme intermediate, followed by water-catalysed hydrolysis of this intermediate to 

liberate the product (Shahiduzzaman & Coombs, 2012). Thus, the role of this target in the 

pathogenesis of SARS-CoV-2, could as a serine hydrolase which attaches to a host cell and 

by the catalytic mechanism prevents IFN- from exhibiting its effects as an anti-viral agent. 

Most likely, by preventing IFN-  from binding to Janus kinase/signal transducer and 

activator of transcription (JAK/STAT) protein signal transduction pathways (Kang, Brown and 

Hwang, 2018).  IFN- can target various stages within a viral life cycle which includes entry, 

replication, gene expression, stability, release and reactivation (Kang, Brown and Hwang, 

2018). Hence, why it is an attractive target for viruses. The full antiviral mechanism of IFN- 

is depicted below in Figure 7.21 (Kang, Brown and Hwang, 2018).  
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Figure 7.21. Antiviral mechanisms of IFN- 
IFN- obstructs the various stages of viral life cycle in the cells. Representative examples are depicted here: IFN- inhibits viral 
entry at both extracellular and intracellular stages, replication by disrupting replication niche, gene expression by hindering 
translation, stability by impeding nucleocapsid assembly, release by breaking the disulfide bond of a necessary cellular 
interaction partner, and reactivation by suppressing the transcription of a viral master regulator. Red colour bars signify 
inhibiting function of IFN-. Figure taken from Kang, Brown and Hwang, 2018 

 

Protein nsp4 (CASP Commons target C1902), as with nsp2 (CASP Commons C1901) no 

ligands were predicted by FunFOLD3 based on the top selected model. However, the 

FunFOLD3 component of IntFOLD6 predicted chlorophyll A. The potential role of this was 

mentioned with nsp4 (CASP Commons C1902). In addition, the application of porphyrins 

and their use in the inactivation of viruses has been published (Sh Lebedeva et al., 2020) 

and the abnormal concentration of porphyrins in the serum of COVID-19 patents has also 

been reported (San Juan et al., 2020).  

 

In terms of templates, the term “transport protein” is by far the most common with frequency 

and specifically templates with ligands (1f86A, 2a65A, 3a6pA, 5mkeA, 5w3sA and 6d6tB).  

 

As a whole coronaviruses, consisting of HCoV-OC43, which causes the milder common-cold 

like symptoms, SARS-CoV-1 (emerged in 2002), MERS-CoV (in 2012) and the recent 

SARS-CoV-2 possess the largest known RNA viral genomes and the 5’ 20 kb region of the 

genome encodes for two open reading frames (ORF1a/1ab) that produces 16 non-structural 
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proteins (nsp1-16) needed to form the viral replication complex, while the 3’ proximal region 

encodes for the structural proteins and several accessory factors with varying roles, as 

shown below in Figure 7.22 (Davies, Jonathan; Almasy, McDonald and Plate, 2020). NSP4 

is 80% identical between SARS strains but only 42% between SARS and OC43 strains ( 

Davies, Jonathan; Almasy, McDonald and Plate, 2020). 

 

 

Figure 7.22. Schematic of SARS-CoV-2 genome  
Figure taken from Davies, Jonathan; Almasy, McDonald and Plate, 2020 

 

As can be seen in Figure 7.23, nsp4, is a transmembrane glycoprotein and is better defined 

most notably in formation of the double-membrane vesicles associated with replication 

complexes and unlike nsp2, has a high degree of sequence similarity across human 

coronavirus strains (Davies, Jonathan; Almasy, McDonald and Plate, 2020). Nsp4 contains 

hydrophobic stretches and is predicted to be integral membrane protein and is likely to 

function in anchoring the replication complexes to the lipid bilayer (Davies, Jonathan; 

Almasy, McDonald, 2020). This could explain why the term “transport protein” has been the 

common among predicted templates. Figure 7.23 below is a schematic representation of the 

intracellular localisation and cellular transport for nsp4 and the SARS-CoV M protein (Oostra 

et al., 2007). Nsp4 is transported to the double membrane vesicles without passing through 

the Golgi compartment, once again supporting the common templates for transport proteins. 

Furthermore, the commonly associated ligand with transport protein templates, cholesterol 

hemisuccinate is an acidic cholesterol ester that self-assembles into bilayers in alkaline and 
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neutral aqueous media, (Hafez & Cullis, 2000) this sounds similar to double-membrane 

vesicles (DMV) which is depicted in Figure 7.23.    

Additionally, GO-terms associated with the nsp4 showed terms related to biological 

processes for cell organisation and biogenesis, transport and metabolic process (Davies, 

Jonathan; Almasy, McDonald and Plate, 2020). In evaluation of cellular compartment GO-

terms, nsp4 interactors are enriched in membranes of the endoplasmic reticulum and the 

mitochondria (Davies, Jonathan; Almasy, McDonald and Plate, 2020). In particular ERLIN1/2 

and RNF170. SARS-CoVs may use ERLIN1/2 to regulate ER Ca2+ signalling and the myriad 

of downstream host processes controlled by this signalling pathway (Davies, Jonathan; 

Almasy, McDonald and Plate, 2020).   

 

 

Figure 7.23. Intracellular localisation and celular transport for nsp4  
Intracellular localisation and cellular transport for nsp4 and SARs-CoV M protein. The M protein is transported from the 
endoplasmic reticulum to the Golgi compartment via the intermediate compartment (IC), whereas nsp4 is transported to the 
double membrane vesicles (DMV) without passing through the IC. Figure taken from Oostra et al., 2007 

 
 
 
Nsp6 is the last of the non-structural proteins available for prediction; (CASP Commons ID 

C1903) . As with  nsp2 (C1901) and nsp4 (C1902), FunFOLD3 did not predict any ligands 

when using the top selected 3D model. However, the FunFOLD3 component of IntFOLD6 

predicted a diverse range of ligands with haemoglobin, 24-methylenechloresterol (94R), 
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monoundecenion (MUN), [Z-octadec-9-enyl] (2R)-2,3-bis(oxidanyl)propanoate (MPG) and 

retinal (RET). Membrane protein was the commonly predicted term associated with 

templates (4jkvA, 4qi1A, 6bmsA, 6csmA, 6eyuA and 6i1rA) followed by transport protein 

(3zuxa, 5hvdA, 5xpdA1, 5y78A and 6pw4A). As can be imagined, literature is fast-paced in 

the SARS-CoV-2 space and a recent publication identified non-structural proteins as critical 

elements of the replication and transcription complex (RTC), as well as immune system 

evasion (Santerre et al., 2020). Co-expression of all three SARS-CoV NSPs (nsp3, nsp4 and 

nsp6) is essential to induce DMVs and these proteins contain particular multiple 

transmembrane domains that help the virus replication complex via the recruitment of 

intracellular membranes (Santerre et al., 2020). Figure 7.24 below shows the nsp6 domain 

similarity between SARS-CoV and SARS-CoV-2.  

 

 

Figure 7.24. Nsp6 domain similarities  
The 1D and 2D panels show the amino acid sequence coloured by the consensus topology. Colours are based on the 
localisation: grey, black, blue red and yellow and orange for transit sequence, signal peptide, extra-cytosolic, cytosolic, 
membrane, and re-entrant loop regions, respectively. Figure taken from Santerre et al., 2020 

 

Nsp6 is a membrane protein (Santerre et al., 2020), which fits in with the commonly 

occurring template and is approximately 34 kDa with six transmembrane helices and a 

highly conserved C-terminus. When inserted in the ER membrane, it associates with nsp3 

and nsp4 multi-pass transmembrane proteins during the assembly of coronavirus replication 

complex to form DMVs (Santerre et al., 2020). Nsp6 may modify adaptive immune 

responses by sending immunomodulatory proteins synthesised by the ER into 

autophagosomes for degradation and the SARS-CoV-2 nsp6 protein also interacts with the 

sigma receptor, which is known to participate in ER stress response(Santerre et al., 2020). A 

further mechanism is that nsp6 binds TANK binding kinase 1 (TBK2) to supress interferon 

regulatory factor 3 (IRF3) phosphorylation (Xia, et al., 2020). An example of the inhibitory 
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role of nsp6 is shown below in Figure 7.25. The role of interferon, specifically IFN- has been 

discussed previously. Furthermore, nsp6 along with other non-structural proteins and open 

reading frames may suppress STAT1 and STAT2 phosphorylation and thus suppress the 

nuclear translocation of STAT1 during IFN signalling (Xia, et al., 2020).  

 

 
Figure 7.25. Summary of antagonism of IFN production  
The inhibitory steps are indicated for individual viral proteins. Figure taken from Xia et al., 2020 
 
 
    

PL-PRO (C1904) is the only target for papain-like protease, encoded by nsp3, PLpro is one 

of two known CoV proteases and is required for efficient cleavage of nsp2 and nsp3 from the 

viral polyprotein, a process essential for viral genome transcription and replication. Both 

SARS-CoV-2 and SARS-CoV critically relies on the activity of viral proteases (Shin et al., 

2020). Papain-like proteases are the protease domain from the membrane anchored multi-

domain protein nsp3 and generate a functional replicase complex to enable viral spread 

(Shin et al., 2020). The crystal structure of SARS-CoV-2 PLpro has been determined and is 
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shown below in Figure 7.26. As can be seen in Figure 7.26, there is a clear finger and thumb 

region of the protein with the beta sheets and alpha helixes, respectively. There was an 

increase in the number of beta sheets from the first prediction in Figure 7.9A to Figure 7.9E, 

however neither structures look as ordered, as expected, compared to the crystal structure.  

 
 

 
 
Figure 7.26. Crystal structure of the unliganded SARS-CoV-2 PLpro  
Ribbon model of the unliganded SARS-CoV-2 PLpro.  β-strands magenta, α-helices cyan. PLpro subdomains Ub1, Thumb, 
Finger and Palm are indicated. Four cysteine residues forming the zine finger on the Finger subdomain are shown with stick 
model. Figure taken from Gao et al., 2020 

 
  
In terms of templates, the common terms were oxidoreductase (5mscA, 5msoA, 5mspA and 

6du7A) and transport protein/protein transport (1z2aA, 3qf4A, 6ltcA, 6nq0A and 6oh2A). 

SARS-CoV-2 PLpro  and the two ISG15 domains are compared to MERS PLpro (PDB ID 

6bI8),(Shin et al., 2020) the latter protein is classified as a hydrolase/substrate. It is worth 

noting, that PDB ID 6bI8 was not identified as a template with similar folds. The structural 

and accessory proteins are variable between SARS-CoV and SARS-CoV-2, however, the 

virally-encoded replicases are highly conserved (Gao et al., 2020).  
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PLpro along with main protease are responsible for the processing of viral polyproteins 

(pp1a and pp1ab) yielding mature viral proteins and has been suggested as an attractive 

drug target for treating COVID-19. Additionally, PLpro suppresses innate immunity through 

reversing the ubiquitination and ISGylation events (Gao et al., 2020) and SARS-CoV-2 

preferentially reduced the appearance of ISG15-conjugated (ISGylated) protein substrates 

(Shin et al., 2020). Ubiquitination and ISGylation play important roles in the regulation of 

innate immune responses to viral infection, ubiquitination is a post-translational modification 

characterised by the addition of ubiquitin chains to lysine residues of a protein, which 

regulates its activity, notability via its targeting to proteasomal degradation (McClain & 

Vabret, 2020). ISGylation involves interferon-stimulated gene 15 (ISG15), a small protein 

highly induced by IFN-α and γ, by viral infection and double-strand as well as ischaemia, 

DNA damage and aging, is conjugated to target proteins and modulates their functions 

(Villarroya-Beltri, Guerra and Sánchez-Madrid, 2017). ISGylation ultimately blocks the entry, 

replication or release of different intracellular pathogens (Villarroya-Beltri, Guerra and 

Sánchez-Madrid, 2017). The induction of ISG15 in viral infection is given below in Figure 

7.27 

 



Chapter 7. Application of FunFOLD3 

 
 

Page 383 of 645 

 
 
Figure 7.27. ISG15 induction and conjugation pathways  
ISG15 expression is induced upon binding of interferon response factors (IRF) to the interferon-stimulated response element 
(ISRE) located in the ISG15 promoter. This binding is induced by type I interferon (IFN-I) through activation of IFN receptor 
(IFNAR) and JAK/STAT signalling, as well as by single strand (ss)RNA, double-strand (ds)RNA, or other viral compounds 
(pathogen-associated molecular patterns; PAMPs). Figure taken from Villarroya-Beltri, Guerra and Sánchez-Madrid, 2017 

 
Information available in literature (Gao et al., 2020) has found that GRL-0617, is an inhibitor 

of SARS-CoV-2 PLpro and ultimately inhibits the deubiquitination and deISGylation activities 

of SARS-CoV-2 (McClain & Vabret, 2020)  and thus the proteolytic processing of the viral 

polypeptide. The structure is given below in Figure 7.28 and the effect in the viral replication 

pathway is shown in Figure 7.29 (McClain & Vabret, 2020). The closest example is GRL-

0617 would be the prediction of GDP by the FunFOLD3 component of IntFOLD6 and the 

figures are shown below. Whilst not exact, the structures are similar in terms of containing 

benzenes rings and amine groups.  
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A      B 

 
 
Figure 7.28. Comparison of GRL-0617 and GDP ligand  
The difference between GRL-0617 (A) and GDP (B) ligand. The GRL-0617 ligand has been shown as a ligand in literature and 
the GDP ligand was a biologically relevant ligand identified in the predicted structure by the FunFOLD3 component of the 
IntFOLD6 server. Figure for GRL-0617 taken from Báez-Santos, St John and Mesecar, 2015  

 

 
Figure 7.29. Dual role of SARS-CoV-2 protease PLpro in viral replication and inhibition of innate sensing  
PLpro is required for the processing of SARS-CoV-2 polyprotein into mature sub-units to generate a functional replicase 
complex. Additionally, PLpro antagonizes the ISGylation of cellular proteins, including IRF3, leading the dysregulation of innate 
immune sensing. GRL-0617 targets PLpro and prevents genome replication and virus synthesis and the dysregulation of innate 
immune sensing. Figure taken from McClain & Vabret, 2020 
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ORF3a (C1905) was the first CASP Commons target with a ligand predicted by FunFOLD3. 

The ligand (Z)-octadec-9-enyl] (2R)-2,3-bis(oxidanyl)propanoate (MPG) was predicted in the 

C1905d1 target spanning the 1-130 residues for the whole target. Additionally, this target 

also had a solved structure as per PDB. No ligands were identified in the solved structure 

and there was also a poor overall structural superposition between the predicted and 

observed structure.  

 

In total there are six accessory proteins (ORF3a, ORF6, ORF7a, ORF7b, ORF8 and 

ORF10) in SARS-CoV-2 (Majumdar & Niyogi, 2020). SARS-CoV-2 ORF3a bears 72.4% 

sequence identity and 85.1% sequence similarity with that of SARS-CoV (Majumdar & 

Niyogi, 2020). The role of ORF3a in both SARS-CoV and SARS-CoV-2 are ion channels 

(viroporins) and involved in virion assembly and membrane budding (Tan, Schneider, 

Shukla, Chandrasekharan, Aravind and Zhang, 2020). Additionally, in vitro studies have 

shown that SARS-CoV-2 ORF3a can efficiently induce apoptosis in cells (Ren et al., 2020). 

Furthermore, it was found that ORF3a induces apoptosis via the extrinsic pathway, in which 

activated caspase-8 cleaves Bid to tBid and in turn induces the release of mitochondrial 

cytochrome c, resulting in apoptosome formation and caspase-9 cleavage/activation and it’s 

pro-apoptotic activity is weaker than SARS-CoV ORF3a (Ren et al., 2020) which could 

potentially add to the virus’s pathogenicity. On drug bank the predicted ligand MPG is 

predicted to be a weak inhibitor of hERG (Wishart et al., 2018), which is a voltage sensitive 

K+ channel with a fundamental role in cardiac action potential repolarisation (Butler et al., 

2020) Although, this would not specifically be relevant to SARS-CoV-2 ORF3a, targeting ion 

channels to inhibit virion and membrane budding could provide some basis particularly 

because ORF3a forms homotetrameric potassium sensitive ion channels (UniProt 

Consortium, 2019). 
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C1906, or transmembrane protein was the next target with FunFOLD3 ligand predictions 

with a total of five predictions across two targets. Despite no PDB ID being associated with 

the target, there is published information of the structure and function of the membrane 

protein, which happens to the most abundant structural protein of SARS-CoV-2 (Thomas, 

2020). The M protein of SARS-CoV-2 is 98.6% similar to the M protein of bat SARS-CoV 

(Thomas, 2020) and spans the membrane bilayer, leaving a short NH2-terminal domain 

outside the virus and a long COOH terminus (cytoplasmic domain) inside the virion 

(Mousavizadeh & Ghasemi, 2020). Binding with M protein helps to stabilise N proteins and 

promotes complete of viral assembly by stabilising the N protein-RNA complex, inside the 

internal virion (Astuti & Ysrafil, 2020).  

 

The predicted structure from Thomas (Thomas, 2020) is shown below in Figure 7.30 as 

predicted using I-TASSER, as can be seen the structure does bare some similarities with the 

top ranked predicted structure selected from ModFOLD8 (C1906x1) with three distinct 

alpha-helices and beta-sheets are also present, however the I-TASSER model has more 

flexible loops (Thomas, 2020). Comparisons with 3D models and the models produced by 

the McGuffin group are shown in Appendix 5.  
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A 

 
 
 
B 

 
 
 
Figure 7.30. Predicted M protein structure of SARS-CoV-2 and transmembrane protein (C1906x1) from the McGuffin 
group  
(A) Predicted structure of membrane protein using the software I-TASSER. Similarities between the top selected model for 
C1906x1 (B) can clearly be seen with the alpha helices. Figure taken from Thomas, 2020 

 

In silico analyses of the M protein demonstrated that it has a triple-helix bundle and forms a 

continuous three-transmembrane domain. The M protein has a short amino terminal domain 

inside the viral envelopes as shown below in Figure 7.31.  
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Figure 7.31. Membrane topology of Membrane protein (snake diagrams)  
Membrane glycoprotein of SARS-CoV-2 has a triple helix bundle and formed a single three-transmembrane domain. Figure 
taken from Thomas, 2020 

 

Additional, in silico data analysis has shown that the M protein resembles the SemiSWEET 

sugar transport of prokaryotes, which mediate the movement of amino acids across 

lysosomal membranes, which could explain why amino acids were predicted as binding 

ligands by FunFOLD3 for transmembrane protein (C1906x2). In the study by Thomas 

(Thomas, 2020), it was hypothesised that that the sugar transport-like structure of the M 

protein influences glycosylation of the S protein. Sucrose is involved in endosome and 

lysosome maturation and may also induce autophagy, pathways that help the entry of the 

virus (Thomas, 2020). However, further experiments would be needed to validate these 

findings (Thomas, 2020).  

 
The first accessory proteins and thus, open reading frame targets is C1907 with ORF6. 

ORF6 of SARS-CoV-2 has 69% amino acid identity with SARS-CoV (Miorin et al., 2020).  
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Based on studies with SARS-CoV, the role of ORF6 has been implicated in virus replication 

due to interaction with nsp8 (Kumar et al., 2007). SARS-CoV ORF6 is localised in the ER 

and Golgi membranes in infected cells and binds to karyopherin alpha 2 and karyopherin 

beta 1 proteins and hinders STAT1 nuclear import and ultimately STAT1 function (Frieman 

et al., 2007). Following interferon stimulation STAT1:STAT1 or STAT1:STAT2 dimers 

translocate into the nucleus by binding to the import receptor karyopherin alpha 1, KPNA1. 

The STAT:KPNA1 complex interacts with KPNB1, which mediates docking of the import 

complex to the nuclear pore complex (NPC).(Miorin et al., 2020). Studies have shown that 

SARS-CoV ORF6 interferes with IFNAR signalling by tethering KPNA2 and KPNB1 to the 

endoplasmic reticulum/Golgi membrane to block STAT1 nuclear import (Kopecky-Bromberg 

et al., 2007;Frieman et al., 2007). Experimentally, SARS-CoV-2 ORF6 has been shown to 

interact with both KPNA1 and KPNA2 and shown a change in localisation of KPNA1 and 

KPNA2 form the nucleus to the cytoplasm in ORF6-expressing cells (Miorin et al., 2020). 

However, overexpression of KPNA1 or KPNA2 could not rescue the ORF6-dependent block 

of STAT1-GFP nuclear translocation, thereby suggesting another factor which is involved in 

ORF6 blocking IFN signalling. The C-terminal region of ORF6 directly binds the 

nucleoporins98 (Nup98) Nup98-Rae1 complex (Miorin et al., 2020). ORF6 is associated with 

Nup98 both at NPCs present at the nuclear envelope and at annulate lamellae in the 

cytoplasm. These data are consistent with ORF6 altering nuclear transport functions of 

Nup98 at NPCs and it has been shown that ORF6 specifically targets Nup98 to block STAT 

nuclear import (Miorin et al., 2020). In a paper by Gordon et al, which looked at targets for 

drug repurposing, Selinexor was identified as a potential pharmacological target due to the 

interaction of ORF6 and the mRNA nuclear export complex Nup98-Rae1 (Gordon et al., 

2020).  
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C1908, or open reading frame 8, ORF8 was the second of the open reading frames to have 

a predicted ligand and also has an observed structure and a PDB ID associated. The ligand 

was predicted following the second round of modelling.  

 

Unlike ORF6, ORF8 shares a low sequence homology with SARS-CoV of 26% (Zhang et al., 

2020). ORF8 is an immunoglobin-like protein that modulates pathogenesis (Zinzula, 2020)  

and is part of a hypervariable genomic region of ~430 bp in length and is a recombination 

hotspot and is highly susceptible to deletions and nucleotide substitutions (Zinzula, 2020).    

 

Computational analysis of ORF8 revealed that its structural organisation resembles the one 

observed among members of the immunoglobin-like domains containing protein superfamily 

(IgSF)(Zinzula, 2020). Encoded by a variety of viruses, IgSF proteins seem to evolved from 

host-acquired genes and so have evolved to mimic the original host function, which consist 

of cell-to-cell adhesion or ligand-receptor recesses, thereby interfering with and acting as 

molecular traps immunomodulatory properties (Zinzula, 2020). Indeed, this relates to the GO 

terms predicted by FunFOLD3, with cell adhesion being predicted as a biological process. 

The crystallised structure of ORF8 (PDB ID 7jtl) reveals a covalently-bound dimer, held by 

an intermolecular disulphide bridge between the two cysteine residues at position 30. In 

each monomer are a ß-sheet core of eight antiparallel ß-strands is held together by three 

intramolecular disulphide bridges, while two ß-strands from each core are involved in 

hydrophobic interactions with their counterparts in the other monomer to further stabilise the 

dimer interface (Zinzula, 2020). Figure 7.32 below shows the two hypothetical states of 

ORF8. 
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Figure 7.32. Schematic diagram showing the two hypohetical states of ORF8 
Membrane-anchored and secretory states of ORF8. Figure taken from Zinzula, 2020 

 
Cytotoxic T lymphocytes (CTLs) are important for the control of viral infections by directly 

eradicating the virus-infected cells. In a virus-infected cell, MHC-1 molecules present 

peptides derived from a variety of viral proteins (Zhang et al., 2020). Once the T cell receptor 

on CD8+ T cells recognise the signal presented by MHC-1-peptide complex, the CTL 

releases varies toxic substances including perforins, granzyme and FasL which directly 

induce the death of viral-infected cells, as well as many other cytokines such as IFN-γ, TNF-

 and IL-2 (Berke, 1995). Figure 7.33 shows the inhibition of the type 1 IFN antiviral 

response.  

 
Figure 7.33. Inhibition of the type I IFN antiviral response by ORF8  
Schematic diagram describing how ORF8 suppresses IFN stimulated expression of ISGs. Figure taken from(Zinzula, 2020) 
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Experimental studies have shown that the overexpression of ORF8 in 293T cells significantly 

down-regulates MHC-1 molecules.  

 

The mechanism by which ORF8-mediated MHC-I reduction is possibly due to lysosomal 

degradation by an autophagy-dependent mechanism and in ORF8-expressing cells, the 

surface expression of MHC-1 was almost abrogated and redistribute into cytoplasm (Zhang 

et al., 2020). Thus, allowing the virus to evade immune surveillance and increase in viral 

load. Additionally, data has shown that ORF8 can bind directly to MHC-I molecules and 

targets for lysosomal degradation. The authors concluded that based upon the available 

data, instead of regular routing through Golgi to plasma membrane, MHC-I at ER is captured 

by ORF8 and is re-routed to autophagosome and subsequently to autolysosome for 

degradation ( Zhang et al., 2020). SARS-CoV-2 utilises its ORF8 as a unique mechanism to 

alter the expression of, but not limited to, surface MHC-I expression to evade immune 

surveillance (Zhang et al., 2020). This mechanism supports the GO term prediction by 

FunFOLD3 of innate immune response. Figure 7.34 below shows the dysregulation of the 

MHC-I mediated antigen presentation by ORF8.  
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Figure 7.34. Downregulation of the MHC-I mediated antigen presentation by ORF8  
Schematic diagram describing how ORF8 mediates the MHC-I degradation via an autophagy-dependent pathway. Figure taken 
from Zinzula, 2020 which is adapted from Zhang et al., 2020 

 

In a paper by Gordan et al, (Gordon et al., 2020) that focused on drug repurposing, 

rapamycin was identified as a potential target for ORF8 (Gordon et al., 2020). Several 

proteins are found to interact with ORF8 and these include complex formed by transforming 

growth factor-β 1 (TGFβ1), latency associated peptide (LAP) and latent TGFβ binding 

protein 1 (LTBP1), and with the complex formed by integrin subunit alpha 3 (ITGA3) and 

serpin family E member 1 (SERPINE1). Potentially, these could be investigated as targets.  

 

C1909, ORF10 is proposed to be unique to SARS-CoV-2 (Wu et al., 2020) and there is no 

data to provide evidence that the protein is expressed during SARS-CoV-2 infection (Michel 

et al., 2020) and at 38-residue peptides, is the smallest accessory protein (Hassan et al., 

2020). New viruses can originate from existing proteins acquired through horizontal gene 

transfer or through gene duplication, or can be generated de novo (Michel et al., 2020). 

Michel et al., (Michel et al., 2020) suggested that the ORF10 of SARS-CoV-2 evolved via the 
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mutation of a stop codon (TAA) at nucleotide 76 and the addition of a new X motif of length 

15 nucleotides in the 3’ region. Of all the putative ORF proteins, ORF10 has the highest 

number of immunogenic epitopes, therefore making it a potential target for vaccine 

development (Kiyotani et al., 2020).  

 

ORF10 consists of a molecular recognition feature region from amino acid residue 3-7, 

which is a molecular recognition site for interaction with other proteins (Giri et al., 2020). 

Molecular recognition features, are intrinsic disorder-based protein-protein interaction sites 

that are commonly utilised by proteins for interaction with specific partners (Giri et al., 2020). 

One of the critical properties of intrinsically disordered proteins that allow proteins to adapt 

an ensemble of conformations when bound to different proteins, and hereby permits 

interaction with multiple proteins (Uversky, 2011). Through high-throughput analysis it has 

been revealed that ORF10 can interact with a large number of hot proteins and most likely 

due to the MoRF region (Giri et al., 2020). Through bioinformatic techniques it has been 

reported that ORF10 interacts with multiple members of the Cullin-ubiquitin-ligase complex 

and controls host-ubiquitin machinery for viral pathogenesis (Gordon et al., 2020). 

Specifically the CUL2ZYG11B complex, in particular the -helical region. The ubiquitin transfer 

to a substrate requires neddylation of CUL2 by NEDD8-activating enzyme (NAE), which is a 

druggable target (Gordon et al., 2020). One of the druggable targets which has been 

identified is pevonedistat, which inhibits NAE. Whilst FunFOLD3 did not predict any ligands, 

the FunFOLD3 component of IntFOLD6 predicted 94R, or 24-methylenecholesterol and the 

comparison between pevonedistat and 94R is given below: 
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A       B 

  
 
 
Figure 7.35. Comparison between 94R and peveonedistat  
(A) Predicted 94R ligand from the FunFOLD3 component of the IntFOLD6 server and (B) pevonedistat which inhibits NAE and 
due to ORF8 potentially also interacting with this enzyme it has been propsed as a ligand  
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C1910, ORF7b is the final CASP Commons target and one of the ten proteins that 

significantly suppressed IFN-alpha signalling, along with nsp1, nsp6, nsp7, nsp13, nsp14, 

ORF3a, M, ORF6 and ORF7a (Xia, Cao, Xie, Zhang, Chen, Wang, Vineet D. Menachery, et 

al., 2020) in terms of sequence identity it shares 85.4% with SARS-CoV and 97.2% similarity 

(Yoshimoto, 2020).  

 

In vitro studies found that ORF7b, along with some of the aforementioned proteins inhibited 

STAT2 phosphorylation by 33-50% (Xia, Cao, Xie, Zhang, Chen, Wang, Vineet D. 

Menachery, et al., 2020). Consistent with inhibition of STAT2 phosphorylation, ORF7b 

suppressed nuclear translocation of STAT1 during IFN-I signalling (Xia, Cao, Xie, Zhang, 

Chen, Wang, Vineet D. Menachery, et al., 2020) and is localised in the Golgi compartment 

(Yoshimoto, 2020).  

 

The role of STAT and IFN signalling in pathogen defence has been discussed previously in 

this chapter and Figure 7.25 has shown the antagonist role of IFN production by ORF7b and 

other proteins. 

 

As can be expected with viruses, mutations can occur and a SARS-CoV-2 variant with a 

382-nucleotide deletion was detected in a cluster of cases in Singapore between January-

February 2020. The deletion truncates ORF7b and removes the ORF8 transcription-

regulatory sequence and has not been detected after March 2020 (Young et al., 2020).  

 

In terms of ligands, FunFOLD3 predicted chlorophyll A, which is a metalloporphyrin with 

Mg2+ at its core. Many organometallic compounds derived from chlorophyll A or B are 

approved for human consumption, for example, sodium copper chlorophyllin is promoted for 

its use an antibacterial and anti-viral agent the Mg2+ has been replaced with Cu2+(Clark & 
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Taylor-Robinson, 2020). Zinc pheophorbide a (ZnPh), a chlorophyll derivative for which Zn2+ 

is replaced with natural occurring Mg2+ and are harnessed to produce a cytotoxic effect in 

the treatment of cancer cells (Clark & Taylor-Robinson, 2020). Zn2+ ions attached to this 

tetrapyrrole derivative can pass through cell membranes as it is water-soluble but no 

localisation of ZnPh has been shown in mitochondria, therefore it is unlikely to impair the 

function of mitochondria in healthy cells (Clark & Taylor-Robinson, 2020). Free Zn2+ appears 

to promote an antiviral effect and demonstrates accumulation of Zn2+ in human lung tissue 

and zinc supplementation and using ionophore such as pyrithione effectively impairs RNA 

replication by human coronaviruses leading to improved treatment outcomes (Zhang & Liu, 

2020). ZnPh is non-toxic to humans, and there is a strong likelihood that this compound 

could act as a carrier molecule for Zn2+ to trigger anti-viral response that impairs SARS-CoV-

2 replication and this provide an novel therapeutic option for COVID-19 (Clark & Taylor-

Robinson, 2020).  

 

The role/function of each CASP Commons protein, based on the FunFOLD3 ligand and GO 

term prediction or the templates which had biologically relevant ligands are given below: 

1. Nsp2 (C1901) – serves as a hydrolase, potentially a serine hydrolase to contribute to 

the viruses cell cycle.  

2. Nsp4 (C1902) – most common predicted template is for transport. However, a 

template related to blood clotting is particularly interesting due to the a porphyrin 

(chlorophyll A) being predicted.  

3. Nsp6 (C1903) – limited GO term predictions for this target, molecular function 

suggests role in catalytic activity or a biological process of metabolic process.  

4. PL-PRO (C1904) – based on the predicted ligand (GDP) and the templates 

containing this ligand, most likely has a role in signalling/lipid-binding. This would 

also compliment the amino acid predictions.  
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5. ORF3a (C1905) – role in binding and based on the predicted GO terms for cellular 

component is a plasma membrane or an integral component of membrane.   

6. Membrane protein (C1906) – a transmembrane protein 

7. ORF6a (C1907) – based on both the predicted ligand (haeme) and the GO predicted 

terms for clotting involvement and iron ion binding has a role in blood clot formation.  

8. ORF8 (C1908) – no GO terms related to molecular function where predicted. 

However, GO terms related to cell adhesion and innate immune response and 

inflammatory response. Therefore, this protein could potentially bind to a host cell 

and as a result of this binding or adhesion causes an immune response and this in 

turn causes the production of an inflammatory response. 

9. ORF10 (C1909) – a hydrolase, in particular a viral hydrolase or oxidoreductase.  

10.  ORF7b (C1910) – A porphyrin was predicted (chlorophyll A) so may have a role in 

blood clotting or blood coagulation, at this stage it is a speculation. However, there is 

data to support it. GO predicted terms around ATP, suggest a role in energy-

carrying, so potentially involved in reactions within a host cell.  

 

In comparison, the roles of the different proteins as per information in literature are outlined 

below and are listed in CASP Commons target order (refer to Table 7.1 for further details 

and other proteins/domains). For completion, the proteins which were not part of CASP 

Commons have also been included:  

1. The spike protein (a glycoprotein) mediates the attachment of the virus to the host 

cell by the angiotensin-converting enzyme (ACE2) receptor on host cell surface 

(Yoshimoto, 2020).  

2. Non-structural polyproteins are expressed by ORF1ab and consists of 16 non-

structural polyproteins 

3. Nsp2 (C1901) and binds to two host proteins: prohibitin 1 and prohibitin 2 (PHB1 and 

PHB2)(Yoshimoto, 2020). PHB1 and PHB2 proteins are known to play roles in cell 
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cycle progression, cell migration, cellular differentiation, apoptosis and mitochondrial 

biogenesis (Yoshimoto, 2020). Downstream effects of this interaction inhibit the 

production of interferon and proinflammatory cytokine IL-6 (UniProt Consortium, 

2019). 

4. Nsp4 (C1902) interacts with Nsp3 and possibly host proteins to confer a role related 

to membrane rearrangement (Yoshimoto, 2020). 

5. Nsp6 (C1903) generates autophagosomes from the ER. Autophagosomes facilitate 

assembly of replicase proteins (Yoshimoto, 2020). Additionally, nsp6 limited 

autophagosomes/lysosome expansion, which in turn prevents autophagosomes from 

delivering viral components from degradation in lysosomes (Yoshimoto, 2020). 

6. PL-PRO (C1904) attenuates host antiviral IFN pathways (Shin et al., 2020). 

7. ORF3a (C1905) mediates trafficking of spike protein (Michel et al., 2020).  

8. Membrane protein (C1906) is an integral membrane protein that plays an important 

role in viral assembly (Yoshimoto, 2020). The M protein interacts with nucleocapsid 

to encapsulate the RNA genome. M protein is expressed by ORF5 (Yoshimoto, 

2020).    

9. ORF6 (C1907) interacts with nsp8, nsp8 is related to promoting RNA polymerase 

activity (Yoshimoto, 2020) with downstream activities on interferon signalling 

(Yoshimoto, 2020). 

10. ORF8 (C1908) interacts with a variety of host proteins and causes downstream 

suppression of IFN (Zinzula, 2020).  

11. ORF10 (C1909) interacts with ubiquitin ligases (Gordon et al., 2020). 

12. ORF7b (C1910) is localised in the Golgi complex (Yoshimoto, 2020) and suppresses 

IFN signalling (Xia, Cao, Xie, Zhang, Chen, Wang, Vineet D. Menachery, et al., 

2020).  
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To date, there is only one drug which has been approved for the treatment of SARS-CoV-2, 

remdesivir, an inhibitor of the viral RNA-dependent, RNA polymerase (Beigel et al., 2020) 

and is shown below in Figure 7.26  

 
Figure 7.36. PyMOL generated image of SARS-CoV-2 (PDB ID 7bv2) and F86  
PDB structure for SARS-CoV-2 (PDB ID 7bv2) shown as cartoon and coloured green, the ligand F86 (remedesivir) is shown as 
sphere and coloured yellow. RNA is also shown with the ligand F86 within RNA showing the inhibition of activity.   
 

 
 
In conclusion, CASP Commons brought together the protein prediction community to 

understand the role and function of the various SARS-CoV-2 proteins and domains. Results 

from CASP11, CASP12 and CASP13 showed that FunFOLD3 was able to predict ligands 

and ligand-binding site residues, with varying results and the benchmarking in CAFA3 

showed that GO terms, although not specific enough can be used in infer the role and 

function of a protein. Therefore, FunFOLD3 was used as the method of choice to determine 

a) if there is a role for FunFOLD3 outside the CASP competitions and in the application of 

novel proteins and b) aid in the understanding of the proteins and domains that make the 

SARS-CoV-2 virus. Stand-alone FunFOLD3 predicted ligands for six of the 32 targets 

released for prediction by CASP Commons. Ligands together with templates could 

potentially provide insight in the potential function of each protein such as signalling protein, 
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cell adhesion proteins  and immune system. Taken together the ligands and template 

functions could be used to explore potential drug targeting strategies and ultimately 

contribute to the understanding of a novel virus.  



Chapter 8. Synposis and Next direction  

 
 

Page 402 of 645 

 
 
 
 

 

 

 

 

 

 

Chapter 8: Synopsis and Next Directions  

 

 

 

 
  



Chapter 8. Synposis and Next direction  

 
 

Page 403 of 645 

 
8.1 Introduction 

 
The aims of this thesis were to objectively measure the performance of FunFOLD3, in 

structure-function prediction using targets from the Critical Assessment of protein Structure 

Prediction (CASP11, 12 and 13) experiments. An additional aim was to evaluate the GO 

term annotations using FunFOLDQ, in the Critical Assessment of Functional Annotation 

(CAFA3) experiment. Each of these experiments provided an independent accuracy 

benchmarks, which could be used to determine strengths and weaknesses of the methods 

and they provided an indication where improvements could be made.  Protein-ligand docking 

was next investigated as the method of choice to refine FunFOLD3 predictions and thereby 

improve the identification of likely ligand-binding residues. Thus, chapters 3, 4 and 5 can be 

thought of assessing the state-of-the-art and determination of the known. Chapter 6 is “doing 

it better” and chapter 7 is going into the unknown and a highly relevant application of 

FunFOLD3.  

 

The main findings of each of the different algorithms is provided below: 

1. FunFOLD3: The main findings with FunFOLD3 is the inconsistency with the 

prediction of ligand-binding site residues. As shown in Chapter 3, there is a variation 

in the MCC and BDT scores obtained across the protein targets. This is directly 

related to variation of the templates for the ligands. For example, if a specific ligand is 

predicted and is related to only a few templates (e.g. PLP and aminotransferase) then 

the MCC and BDT scores are likely to be on the higher end of the scale (>0.70). If the 

ligand is ubiquitous (e.g. metal ion) then it is likely to bind to a large number of 

proteins and therefore not specific. Thereby, resulting in lower MCC and BDT scores 

2.     IntFOLD: The main finding with IntFOLD was the clear strength in predicting holo 

vs apo for ligands and ligand-binding site residues. The main difference between 

IntFOLD and FunFOLD is the utilisation of templates by FunFOLD3. Templates with 
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similar folds will bind similar ligands and this aids in the prediction of ligands and 

ligand-binding residues by FunFOLD3. As holo structures contain the ligand in crystal, 

there is no need for templates, however with apo structures where the ligand isn’t 

present, templates could be useful in identification of ligands. As FunFOLD3, is the 

function prediction aspect and utilises this, this limitation has been addressed    

3. FunFOLDQ: The main finding from FunFOLDQ was the prediction of GO terms were 

not specific enough, despite being related to the actual GO terms. FunFOLDQ is the 

only algorithm of the two previously described which focuses solely on the prediction 

of GO terms to provide insights into a protein’s function. This algorithm raised the 

question of “are GO terms enough to provide insight into a protein’s function?” This 

thesis has demonstrated that both ligands and GO terms are valuable to answer 

questions related to function, particularly with the utilisation in the SARS-CoV-2 virus, 

which was an example of going into the unknown 

4. FunFOLD3-D: This was the method developed in the thesis based on the outcomes 

of FunFOLD3. This method utilised an extra step with docking via AutoDock Vina and 

had novelty with the inclusion of four different grid box calculation methods. The mian 

findings were 1) ligand-binding residues can be improved or, impaired depending on 

the original prediction. Better predictions (MCC or BDT scores of >0.70) are hard to 

improve further 2) no standard grid box calculation “fits all”. The next stage, will be to 

publish the early findings from this methodology in a book chapter (refer to Appendix 

1, Arvinas Book Chapter).         

 

This synopsis will provide an overview of the different aspects of this project and discuss 

how they interlink with one another. Additionally, this synopsis will highlight the potential 

contribution made by the application of FunFOLD3 towards functional insights on the less 

understood SARS-CoV-2 proteins, and finally, the future directions for FunFOLD 

developments will be discussed.  
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8.2 Prediction of ligands and ligand-binding residues by FunFOLD3 

 
The determination of ligand-binding sites is an important aspect into providing insights into 

the elucidation of protein functions, additionally the specific identification of the ligand 

binding site residues in a protein is also important, because substrate specificity of an 

enzyme is determined by finer details of the binding site, for example side chain orientation 

and physiochemical properties (Schwede et al., 2009). Thus, highlighting the need for both 

ligands and the interacting residues to be predicted.  

 

The FunFOLD server was developed by the McGuffin group and uses an automatic 

approach for identification of clusters of putative ligands and selection of interacting residues 

(Roche, Tetchner and McGuffin, 2011). Previous versions of FunFOLD have been 

benchmarked in Critical Assessment of protein Structure Predictions since CASP9 and they 

have featured among the top ranked methods.  Despite the good performance of FunFOLD, 

relative to competing methods, the accuracy of predicted ligand-binding sites varies greatly, 

as has been seen in Chapter 3 and also the accuracy of GO term prediction as has been 

shown in Chapter 5. Furthermore, a limitation of earlier versions of FunFOLD was that only 

one ligand-binding site could be predicted per target, even if the observed target has 

multiple ligand-binding sites, as was seen with CASP11 target T0845 (Figure S.10). A 

further consideration is the quality of the 3D model for which the ligand-binding prediction is 

based. It could be assumed, that the better the 3D model quality the better the outcome of 

the ligand predictions. This general trend was seen in CASP11 and shown in Figure 3.2. 

However, in CASP12, as shown in Figure 3.3., the better 3D models, did not necessarily 

always lead to better BDT and MCC scores. In fact, the poorer scoring 3D models, as shown 

by the TM-score scored the best BDT and MCC scores (e.g. T0916). CASP12 target T0912 

was a case in point and it highlighted the need to focus on the ligand-binding space; T0912 

was modelled correctly, but the true ligand-binding site, may not have been well modelled, 
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as it was incorrectly predicted to be in a different region of the protein. Thus, these results 

pointed towards two possible areas for the improvement of prediction accuracy 1) to improve 

the model around the ligand-binding site, or 2) to improve the ligand-pose by docking. 

Option two was later explored in this thesis (Chapter 6 and section 6.4).  

 
 
8.3 Prediction of function using GO terms by FunFOLDQ 

 
Chapter 4 of this thesis aimed to explore higher throughput methods for protein function 

prediction and utilised GO terms which provides a classification of function based on the 

three categories - molecular function, biological process and cellular component (Ashburner 

et al., 2000). Correct prediction of a biologically-relevant ligand might not provide this level of 

detail and the function of a protein can cover a plethora of aspects related to its role and is 

not well defined (Wrzeszczynski et al., 2003). One definition of function is “a complex 

phenomenon that is associated with many mutually over-lapping levels: biochemical, 

cellular, organism-mediated, developmental and physiological”(Wrzeszczynski et al., 2003). 

These overlapping levels are intertwined in complex ways (Wrzeszczynski et al., 2003) and 

can explain why GO term prediction, can serve to better understand the role of protein 

prediction.  

 

The results of FunFOLDQ in CAFA3 showed how complex and nuanced the prediction of 

GO terms can be, despite the requirement for absolute GO term predictions in CAFA3. GO 

terms can be thought of as layers, and, as knowledge is gained about the function of a 

protein, the layer becomes deeper. CAFA3 required the prediction of the latest layer, 

whereas in some instances FunFOLDQ predicted a GO term, which was lower down the 

annotation, but was nevertheless related to the latest term when looking at ancestry of terms 

on a hierarchical graph, and as a result the prediction was deemed incorrect. The “top layer” 

can be viewed as the most recent knowledge and compliments previous knowledge as 

opposed to deeming this knowledge incorrect, which as per CAFA3 this would be the case. 
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The difficulty in predicting GO terms was highlighted in CASP6, were the organisers 

observed the prediction of EC numbers and GO terms were not suitable in assessing 

predictions. The “problem” with CASP6 was availability of newer GO terms being identified 

with targets after the end of the CASP competition (López et al., 2007). GO terms and 

relationships are being updated constantly so that new functions, error corrections and 

amended definitions can be included (Friedberg, 2006). Given the dynamic nature of GO 

term prediction and the better performance of FunFOLD3 in a blind competition, refinement 

of FunFOLD3 and ligand-binding site prediction was favoured. However, the recent global 

pandemic (which occurred during the last year of this PhD project) highlighted both the 

importance of predicting ligands for the investigation of potential drug targets, but also the 

importance of GO term prediction for understanding the plethora of functions of the SARS-

CoV-2 virus.  

  
8.4 The development of FunFOLD3-D  

 
In Chapter 6, the focus was on the improvement of ligand binding site residues using 

AutoDock Vina. The rationale for using docking was that whilst FunFOLD3 is able to 

potentially provide the general area for the ligand, docking may improve the rotation of the 

ligand within the ligand-binding space and therefore improve the subsequent  ligand-binding 

residue prediction accuracy. As was seen in Chapter 6, this was carried out with somewhat 

varying degrees of success, however unlike COACH-D (Wu et al., 2018) in which the mean 

MCCs were very similar to COACH (0.66 versus 0.67), in comparison for FunFOLD3-D, the 

mean MCC score improved from 0.25 to 0.34 and the mean BDT score improved from 0.33 

to 0.35 thereby, FunFOLD3-D was shown to improve the ligand-binding for some CASP 

targets and is therefore a potential improvement to the method, which is worth considering 

further. Note the MCC and BDT scores were compared against targets which were docked 

which was a total of 21 targets. It is worth noting, that whilst the methods are tested on 
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different data sets, this nevertheless served to show that there is potential for improvements 

to be made.   

 

A further improvement to FunFOLD3-D may be a consensus method for the ligand-binding 

residues. Consensus methods are used for functional prediction (Xie & Hwang, 2012) (e.g. 

DoGSite (Volkamer et al., 2010)) and it would seem plausible that a similar approach could 

be applied for FunFOLD3-D where the most commonly predicted residues across the grid 

box calculations are selected as the key ligand-binding residues. However, a small scale test 

was attempted for targets (T0819, T0849 and T0916) and no improvements were made 

versus the top-scoring grid box calculation. An additional aspect that could potentially be 

explored is finer grained alternative grid box thresholds, e.g. could 12% or 15% be more 

suitable.    

 

The template-based modelling approach for prediction of protein structure is a really 

powerful approach when proper templates can be found (Lance, Deane and Wood, 2010). 

However, in instances where there are limited templates, could the role of docking be to 

improve the location of ligand-binding sites? FunFOLD3-D development and testing 

explored three aspects of docking (i) can an incorrect ligand be rotated to a portion of protein 

which contains the correct ligand-binding space (ii) can a correct ligand be docked to 

improve the ligand-binding residues and (iii) can an already good prediction be improved 

even further.  Based on our analysis, we found that a good predictions of >0.7 could not be 

improved further, but differing ligands could be rotated to a portion of the correct ligand-

binding space and for matching ligands, and the ligand-binding residues could potentially be 

improved further. It is therefore worth considering if docking can be used in future FunFOLD 

pipelines, as a way of improving the modelling specifically around the ligand-binding space, 

by potentially providing a better rotation of the ligand.  
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Template based modelling generally consist of, four steps: 1) detect template, 2) align 

sequence onto template, 3) build model and 4) refine model (Haddad, Adam and Heger, 

2020). Docking could be added as an extra stage when investigating functional prediction 

from sequence via structure. Thus, the procedure would become: 1) detect template, 2) align 

sequence, 3) build model, 4) refine model 5) predict ligand binding site and 6) refine ligand-

binding space using docking.  One of the limitations with FunFOLD3-D, is the utilisation in 

novel protein prediction. Another limitation, is there is currently no scoring method to predict 

which one of the nine models might have the best ligand-binding site predictions, thereby a 

quality scoring method could be developed to overcome this, similar to the ModFOLD 

element on the IntFOLD server.   

 
 
 
 
8.5 The novel SARS-CoV-2 virus and the contribution of FunFOLD3 

 
The recent global pandemic provided an additional opportunity for the structure and function 

prediction community to come together to share knowledge in order to produce 3D models 

for the domains of the SARS-CoV-2 virus, in addition to just competing against one another 

in the biennial CASP competition. Additionally, for the first time in this thesis the different 

aspects of FunFOLD3 have come together to aid in the understanding of this novel virus. 

For example, and where possible, ligands and similarity to other ligands were used in order 

to improve understanding of the clinical pathology of the virus. This was shown with the 

predictions for porphyrin binding sites (e.g. haeme and the similar structure of chlorophyll A). 

SARS-CoV-2 has shown to have effects on the haematopoietic system and blood clots 

which develop as a result of SARS-CoV-2 infection have been widely reported and 

described in literature (Biswas et al., 2021). Understanding the putative porphyrin binding 

sites in SARS-CoV-2 proteins could potentially provide an insight into the less well 

understood mechanism f the virus. The second aspect of FunFOLD3, which has proved to 

be insightful are the predicted templates. FunFOLD3 uses template-based modelling and 
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works on the concept that, ligand containing templates from the PDB with the same folds, 

may contain similar binding sites. For nsp4 (C1902), the FunFOLD3 component of IntFOLD6 

predicted porphyrin binding and of the templates which were deemed to have biologically 

relevant ligands had blood clotting as a role/function associated with this target. Therefore, 

whilst the ligand itself, has not provided the clearest indication of the function of the protein, 

thinking more broadly around ligand similarity and the templates and their role has 

potentially provided interesting information around the role/function. The final aspect of 

FunFOLD3 is GO term prediction and for SARS-CoV-2, there were some GO term 

predictions which has supported the available literature on the virus. For example, for ORF8 

(C1908) there were predicted GO terms for biological process around innate immune 

response and literature information has suggested ORF8 interacts with a variety of host 

proteins and causes suppression of IFN, a key cytokine involved in immune response           

(Zhang et al., 2020). In summary, the timely analysis of SARS-CoV-2 proteins served as a 

useful case study for the application of FunFOLD3, bringing everything together (e.g. ligand-

binding site prediction and GO term prediction) It also demonstrated how FunFOLD3 can 

contribute to the wider community and despite the difficulties of benchmarking using GO 

terms, the GO term prediction by FunFOLD3 provided some insights into the roles of the 

lesser understood SARS-CoV-2 proteins.   

 

Overall, there are two principle ways to determine the functions of a protein, by either 

predicting interacting partners such as ligands or by prediction of GO terms. The need for 

two different aspects to determine function complimented the understanding of this impactful 

novel virus. 

 
8.6 Summary of Future Directions 

 
In order to enhance the benchmarking of the FunFOLD3 results and develop a new 

FunFOLD pipeline, which can be incorporated into the IntFOLD6 server, the next step will be 
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to investigate the AutoDock Vina method further, as docking was shown to have promise in 

improving ligand-binding residues as shown by BDT and MCC scores. One aspect is to 

explore alternative grid box thresholds, to determine if there is a “one size fit all” or if the size 

of the ligand should determine the grid box threshold. Additionally, AutoDock Vina produces 

up to nine different models and each model has to be assessed in order to determine if there 

has been an improvement in MCC or BDT scores. One method to assess the quality of each 

model could be to incorporate FunFOLDQA to act a benchmarking tool to select the most 

improved docking models. Incorporation of refinement restricted to the binding site location 

could be an additional direction for this project. With ligand-binding site prediction, 

refinement of the entire structure might not be necessary and therefore refinement focusing 

on the binding-site location and then docking around the refined binding site.  

  

Other methods for protein-ligand docking could be explored such as PLANTS (Korb, Stützle 

and Exner, 2006), which provides a scoring function to find a low energy ligand 

conformation. This method could prove helpful as it could provide a way of scoring the 

models, in the form of a quality check, as opposed to manually checking the AutoDock Vina 

outputs. An additional aspect to explore is the prediction of the folding of the protein models 

particularly within flexible loops, which appears to be a universal problem across all of the 

predicted protein models, especially because flexible loops are known to be important in 

ligand-interactions.  

 

A more longer-term aspirational goal of FunFOLD is the utilisation of structure-function 

prediction in playing an important role in understanding the role of proteins in disease. For 

example, docking was used to optimise drug candidates by examining and modelling 

molecular interactions between ligands and macromolecules (Kapetanovic, 2008). An 

example being the designing of a selective ERβ agonist, ERB-041 by the Wyeth group 

(Kapetanovic, 2008). The first stage in optimisation of the potential drug candidate was 
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understanding the ligands binding to  ERβ receptor and identification of the binding site. 

Following various substitutions and computational modelling, a selective ERβ agonist, ERB-

041 with similar affinity but more than 200-fold greater selectivity for ERβ than that of 17β-

estradiol was identified.   

 

Drug discovery and development is a time and resource consuming processes and therefore 

there is an ever growing effort to apply computational power in order to streamline drug 

discovery, design, development and optimisation (Kapetanovic, 2008). Based on the above 

example it is clear that structure-function prediction and docking, could be methods which 

can be used to streamline drug discovery in several ways, by either understating the 

proteins involved in diseases by elucidating their function in silico or by docking within the 

ligand-binding pockets to identify potential drug targets. 

 

This thesis has identified the potential of FunFOLD3 in the prediction of ligands and ligand-

binding site residues. Thinking of the bigger picture for FunFOLD3 could be utilisation in 

high-throughput ligand docking. Molecular docking is central to rational drug design (Souza 

et al., 2021) and structure-based drug design has been extensively used by pharmaceutical 

companies and academia research groups to reduce both the time and cost for the 

discovery of new drugs. The docking aspect of FunFOLD3-D could be utilised in the docking 

of potential drug candidates, especially with the next step of this methodology is to become 

fully automated and without manual curation, and with this improvement there is potential for 

high-throughput.  

 

Another application of FunFOLD3 could be in plastic. Plastics (e.g. polyethylene 

terephthalate (PET)) are widely used for various applications (Almeida et al., 2019). 

Improper plastic waste management and difficulty in recycling has meant plastic waste has 

become an environmental issue. In the past decade, a number of bacterial enzymes capable 
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of degrading PET have been identified (Almeida et al., 2019) and have been identified from 

bacterium (Almeida et al., 2019). Almeida et al., 2019, utilised protein structure analysis with 

SWISS-MODEL, and molecular docking with AutoDock Vina in order to order to investigate 

a class of PETase-like enzymes. AutoDock Vina was used to analyse the likelihood of an 

enzymes capacity to bind plastics as substrates. There are similarities between FunFOLD3 

and SWISS-MODEL, as both methods make use of templates and FunFOLD3-D, utilised 

AutoDock Vina, therefore this research by Almeida et al., 2019 highlights the potential 

application of FunFOLD3-D, not only in bacterium but in a highly topical and relevant 

environmental problem. This therefore demonstrates why one should care about ligand and 

ligand-binding site prediction. 
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Appendix 1 

 
Publications to date  
 

1. Int J Mol Sci. 2015 Dec 15;16(12):29829-42. doi: 10.3390/ijms161226202. 
Proteins and Their Interacting Partners: An Introduction to Protein-Ligand Binding 
Site Prediction Methods. 
Roche DB1,2, Brackenridge DA3, McGuffin LJ4. 
Author information 

   1Institut de Biologie Computationnelle, LIRMM, CNRS, Université de 
Montpellier, Montpellier 34095, France. daniel.roche@lirmm.fr. 

   2Centre de Recherche de Biochimie Macromoléculaire, CNRS-UMR 
5237, Montpellier 34293, France. daniel.roche@lirmm.fr. 

   3School of Biological Sciences, University of Reading, Reading RG6 
6AS, UK. d.a.brackenridge@pgr.reading.ac.uk. 

   4School of Biological Sciences, University of Reading, Reading RG6 
6AS, UK. l.j.mcguffin@reading.ac.uk. 

 
Abstract 
Elucidating the biological and biochemical roles of proteins, and subsequently determining 
their interacting partners, can be difficult and time consuming using in vitro and/or in vivo 
methods, and consequently the majority of newly sequenced proteins will have unknown 
structures and functions. However, in silico methods for predicting protein-ligand binding 
sites and protein biochemical functions offer an alternative practical solution. The 
characterisation of protein-ligand binding sites is essential for investigating new functional 
roles, which can impact the major biological research spheres of health, food, and energy 
security. In this review we discuss the role in silico methods play in 3D modelling of protein-
ligand binding sites, along with their role in predicting biochemical functionality. In addition, 
we describe in detail some of the key alternative in silico prediction approaches that are 
available, as well as discussing the Critical Assessment of Techniques for Protein Structure 
Prediction (CASP) and the Continuous Automated Model EvaluatiOn (CAMEO) projects, and 
their impact on developments in the field. Furthermore, we discuss the importance of protein 
function prediction methods for tackling 21st century problems. 
 

2. Abstract B-161 at International Society for Computational Biology: ISCB July 2017 
 
FunFOLDQ: a fast automated method for the prediction of ligand binding site 
residues and 
Gene Ontology terms  
 
Brackenridge DA1, Roche DB2,3 and McGuffin LJ1 

 
1School of Biological Sciences, University of Reading, Reading RG6 6AS, UK. 
2Centre de Recherche en Biologie cellulaire de Montpellier, CNRS-UMR 5237, 34293, 
Montpellier, France 
3Institut de Biologie Computationnelle, LIRMM, CNRS, Université de Montpellier, 34095, 
Montpellier, France. 
 
Protein ligand binding site prediction methods aim to predict, from amino acid sequence, 
protein-ligand interactions, putative ligands and ligand binding site residues using either 
sequence information, structural information or a combination of both. In silico 
characterisation of protein-ligand interactions have become extremely important to help 
determine a protein functionality, as in vivo based functional elucidation is unable to keep 
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pace with the current growth of sequence databases. Additionally, in vitro biochemical 
functional elucidation is time consuming, costly and may not be feasible for large scale 
analysis, such as drug discovery. Thus, in silico prediction of protein-ligand interactions need 
to be utilized to aid in functional elucidation. 
 
Hence, we developed a structurally informed functional annotation pipeline, called 
FunFOLDQ, which predicts in silico protein-ligand interactions and Gene Ontology terms. 
FunFOLDQ, along with its previous implementations, have been ranked amongst the top 
methods in previous Critical Assessment of Techniques for Protein Structure Prediction 
(CASP) competitions, ranked 2nd for prediction of “Holo” binding sites in the recent CASP12 
competition. We also recently competed in Critical Assessment of protein Function 
Annotation 3 (CAFA3) challenge. We will present our new methodology and benchmarking 
results. FunFOLDQ can be used to improve the functional annotation of protein domains, 
protein dark matter as well as the study of protein-ligand interactions in areas such as 
rational drug design. 
 
Further output from this abstract is expected in the form a paper that will be published by the 
CAFA team  
 
 

3. Abstract at CASP 13  
 
Manual Prediction of Protein Tertiary and Quaternary Structures and 3D Model 
Refinement 
Manual Prediction of Protein Tertiary and Quaternary Structures and 3D Model 
Refinement 

L.J. McGuffin1, R. Adiyaman1, D.A. Brakenridge1, J.O. Nealon1, L.S. Philomina1 and A.N. 
Shuid1,2 
1 - School of Biological Sciences, University of Reading, Reading, UK 
2 - Infectomics Cluster, Advanced Medical and Dental Institute, University of Science 
Malaysia, Pulau Pinang, Malaysia 
l.j.mcguffin@reading.ac.uk 
 
For our manual predictions we used several components from our latest servers1,2,3 (also 
see our IntFOLD5 and ModFOLD7 server abstracts). For our tertiary structure (TS) 
predictions we made use of the CASP hosted 3D server models, which we ranked using 
ModFOLD7_rank and then refined with the our new refinement method (ReFOLD2). For our 
quaternary structure predictions, we used a docking and template based approach 
(MultiFOLD) along with our newly developed quality assessment method (ModFOLDdock). 
Finally, clues from likely ligand binding sites (predicted with FunFOLD3), aided our manual 
evaluation of submitted models.  

Methods 

Tertiary structure predictions: The server models were ranked according the 
ModFOLD7_rank global quality scores (see our ModFOLD7 abstract). The top ranked initial 
model was then selected and submitted to the ReFOLD2 and MultiFOLD pipelines described 
below. For each model, the ModFOLD7 predicted per-residue error scores were added into 
the B-factor column for each set of atom records. 

Refinement (ReFOLD2): For the refinement of 3D models of proteins we used a modified 
version of our automated ReFOLD method3. Our new refinement pipeline, ReFOLD2, 
consisted of three protocols that were similar to the original version. The first protocol used a 
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rapid iterative strategy (i3Drefine4) and the second employed a more CPU/GPU intensive 
molecular dynamic simulation strategy (using NAMD5) to refine each starting model.  

The major new step for ReFOLD version 2 was the modification of the second protocol, 
which included the introduction of molecular dynamics simulations that were guided by the 
per-residue accuracy scores obtained from ModFOLD7. The per-residue accuracy scores 
were used to identify the poorly predicted regions, which were then targeted for refinement 
to improve the overall model quality. A new restraint was applied by putting a threshold 
based on the per-residue accuracy scores (either 2, 3 or 5 Å) during the molecular dynamic 
simulation. For each starting model, the threshold was determined by considering the 
distribution of the per-residue accuracy scores.  

Refined models generated from the first two protocols were then assessed and ranked using 
ModFOLD7_rank. The third protocol was a combination of the first 2 approaches, where the 
top ranked model from the 2nd protocol was then further refined using i3Drefine. Finally, all 
of the refined models generated by each of these protocols and the starting model were 
pooled and re-ranked again using ModFOLD7_rank and the final top 5 models were 
selected and submitted. 

Quaternary structure predictions (MultiFOLD): The highest scoring models from the 
ReFOLD2 procedure, described above, were used to generate predicted quaternary 
structures using LZerD6, MEGADOCK7, FRODOCK8, PatchDock9 and ZDOCK10 for dimeric 
complexes, and M-ZDOCK11 and Multi-LZerD12 for multimeric complexes. In addition to the 
docking strategy, a multimeric fold recognition approach was also deployed. The fold 
template lists (with PDB and chain IDs) generated by the IntFOLD server1 were filtered using 
multimeric data extracted from PISA13 for each template.  Model assemblies were then 
constructed using TM-align14 for structural superposition of tertiary models onto assemblies 
and PyMOL was used for visualisation and manual quality checking of the template 
generated models. The final predicted quaternary structures were then ranked for 
submission using the newly developed ModFOLDdock method described below. 
Furthermore, the information from our FunFOLD3 method (regarding the function and 
locations of putative bound ligands) along with visual inspection was used for some targets 
in order to manually filter the modelled complexes. 

Quaternary structure model quality assessment (ModFOLDdock): The ModFOLDdock 
protocol uses a hybrid consensus approach for producing both global and local (interface 
residue) scores for predicted quaternary structures. The ModFOLDdock global score was 
taken as the mean score from four individual methods: ProQDock15, QSscoreJury, 
DockQJury and ModFOLDIA.  For each interacting pair of chains in a modelled complex, the 
ProQDock scores were simply taken and averaged to produce a global score for the 
complete assembly. For the QSscoreJury and DockQJury methods, pairwise comparisons 
were made for each quaternary structure model to every other model made for the target 
and then the mean QS16 and DockQ17 scores were calculated. The  ModFOLDIA method 
also carries out structure based comparisons of alternative oligomer models and can 
produce both global and local/per-residue interface scores. The first stage of the 
ModFOLDIA method was to identify the interface residues in the model to be scored 
(defined as <= 5Å between the heavy atoms in different chains) and then obtain the 
minimum contact distance (Dmin) for each contacting residue. The second stage was to 
locate the equivalent residues in all other models and then obtain the mean minimum 
distances of those residues in all other models (MeanDmin). The final IA score for each of the 
interface residues in the model was the absolute difference in the Si from the mean Si : IA = 
1-|Si-MeanSi|, where Si = 1/(1+(Dmin/20)2) and MeanSi = 1/(1+(MeanDmin/20)2). The global 
ModFOLDIA score for a model was then taken as the total interface score (sum of residue 
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scores) normalised by the maximum of either the number of residues in the interface or the 
mean number of interface residues across all models for the same target. 

Availability 

Our software will be freely available after publication from: 
http://www.reading.ac.uk/bioinf/downloads/ 
Server methods are available via: 
http://www.reading.ac.uk/bioinf/ 
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4. Nucleic Acids Res. 2019 May 2. pii: gkz322. doi: 10.1093/nar/gkz322. [Epub ahead 

of print] 
IntFOLD: an integrated web resource for high performance protein structure and 
function prediction. 
McGuffin LJ1, Adiyaman R1, Maghrabi AHA1, Shuid AN1,2, Brackenridge DA1, Nealon 
JO1, Philomina LS1. 
Author information 
1 School of Biological Sciences, University of Reading, Whiteknights, Reading RG6 6AS, 
UK. 
2 Infectomics cluster, Advanced Medical and Dental Institute, University of Science, 
Malaysia, Bertam, 13200, Kepala Batas, Pulau Pinang, Malaysia. 
 
Abstract 
The IntFOLD server provides a unified resource for the automated prediction of: protein tertiary 
structures with built-in estimates of model accuracy (EMA), protein structural domain boundaries, 
natively unstructured or disordered regions in proteins, and protein-ligand interactions. The 
component methods have been independently evaluated via the successive blind CASP 
experiments and the continual CAMEO benchmarking project. The IntFOLD server has 
established its ranking as one of the best performing publicly available servers, based on 
independent official evaluation metrics. Here, we describe significant updates to the server back 
end, where we have focused on performance improvements in tertiary structure predictions, in 
terms of global 3D model quality and accuracy self-estimates (ASE), which we achieve using our 
newly improved ModFOLD7_rank algorithm. We also report on various upgrades to the front end 
including: a streamlined submission process, enhanced visualization of models, new confidence 
scores for ranking, and links for accessing all annotated model data. Furthermore, we now 
include an option for users to submit selected models for further refinement via convenient push 
buttons. The IntFOLD server is freely available at: http://www.reading.ac.uk/bioinf/IntFOLD/. 
 
Genome Biol. 2019 Nov 19;20(1):244. doi: 10.1186/s13059-019-1835-8. 
The CAFA challenge reports improved protein function prediction and new functional 
annotations for hundreds of genes through experimental screens. 
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JM109, Liao WH109, Liu YW109, Pascarelli S110, Frank Y111, Hoehndorf R112, Kulmanov 
M112, Boudellioua I113,114, Politano G115, Di Carlo S115, Benso A115, Hakala K116,117, Ginter 
F116,118, Mehryary F116,117, Kaewphan S116,117,119, Björne J120,121, Moen H118, Tolvanen 
MEE122, Salakoski T120,121, Kihara D123,124, Jain A125, Šmuc T126, Altenhoff A127,128, Ben-Hur 
A129, Rost B47,130, Brenner SE131, Orengo CA67, Jeffery CJ132, Bosco G133, Hogan 
DA6,8, Martin MJ9, O'Donovan C9, Mooney SD4, Greene CS134,135, Radivojac P136, Friedberg 
I137. 
Abstract 
BACKGROUND:  
The Critical Assessment of Functional Annotation (CAFA) is an ongoing, global, community-
driven effort to evaluate and improve the computational annotation of protein function. 
RESULTS:  
Here, we report on the results of the third CAFA challenge, CAFA3, that featured an 
expanded analysis over the previous CAFA rounds, both in terms of volume of data 
analyzed and the types of analysis performed. In a novel and major new development, 
computational predictions and assessment goals drove some of the experimental assays, 
resulting in new functional annotations for more than 1000 genes. Specifically, we performed 
experimental whole-genome mutation screening in Candida albicans and Pseudomonas 
aureginosa genomes, which provided us with genome-wide experimental data for genes 
associated with biofilm formation and motility. We further performed targeted assays on 
selected genes in Drosophila melanogaster, which we suspected of being involved in long-
term memory. 
CONCLUSION:  
We conclude that while predictions of the molecular function and biological process 
annotations have slightly improved over time, those of the cellular component have not. 
Term-centric prediction of experimental annotations remains equally challenging; although 
the performance of the top methods is significantly better than the expectations set by 
baseline methods in C. albicans and D. melanogaster, it leaves considerable room and need 
for improvement. Finally, we report that the CAFA community now involves a broad range of 
participants with expertise in bioinformatics, biological experimentation, biocuration, and bio-
ontologies, working together to improve functional annotation, computational function 
prediction, and our ability to manage big data in the era of large experimental screens. 
KEYWORDS:  
Biofilm; Community challenge; Critical assessment; Long-term memory; Protein function 
prediction 
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Proteins and their interacting partners: An introduction to protein-ligand binding site 
prediction methods with a focus on FunFOLD3  
 
Danielle Allison Brackenridge1 and Liam James McGuffin2  
 
1School of Biological Sciences, University of Reading, Reading RG6 6AS, UK. 
d.a.brackenridge@pgr.reading.ac.uk 
2School of Biological Sciences, University of Reading, Reading RG6 6AS, UK. 
l.j.mcguffin@reading.ac.uk 
 
Abstract 
 
Proteins are essential molecules with a diverse range of functions; elucidating their 
biological and biochemical roles from their interacting partners can be difficult and time 



Appendices 

 
 

Page 450 of 645 

consuming using in vitro and/or in vivo methods. Additionally, in vivo protein-ligand binding 
site elucidation is unable to keep pace with current growth in sequencing, leaving the 
majority of new sequences without known functions. Therefore, the development of new 
methods, which aim to predict the protein-ligand interactions and ligand-binding site residues 
directly from amino acid sequences, is becoming increasingly important. In silico prediction 
can utilise either sequence information, structural information or a combination of both. In 
this chapter, we will discuss the broad range of methods for ligand-binding site prediction 
from protein structure and we will describe our method FunFOLD3, for the prediction of 
protein-ligand interactions and ligand-binding sites based on template-based modelling. 
Additionally we will describe the step-by-step instructions on using the FunFOLD3 
downloadable application, along with examples from the Critical Assessment of Techniques 
for Protein Structure Prediction (CASP) where FunFOLD3 has been used to aid ligand and 
ligand-binding site prediction. Finally, we will introduce our newer method, FunFOLD3-D, a 
version of FunFOLD3 which will aim to improve template based protein-ligand binding site 
prediction through the integration of docking, using AutoDock Vina. 
 
Key words protein-ligand interactions, ligand-binding site prediction, Critical Assessment of 
Techniques for Protein Structure Prediction (CASP), protein structure prediction, template-
based modelling, in silico prediction, FunFOLD3, docking  
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Abstract: Elucidating the biological and biochemical roles of proteins, and subsequently
determining their interacting partners, can be difficult and time consuming using in vitro and/or
in vivo methods, and consequently the majority of newly sequenced proteins will have unknown
structures and functions. However, in silico methods for predicting protein–ligand binding sites
and protein biochemical functions offer an alternative practical solution. The characterisation of
protein–ligand binding sites is essential for investigating new functional roles, which can impact the
major biological research spheres of health, food, and energy security. In this review we discuss the
role in silico methods play in 3D modelling of protein–ligand binding sites, along with their role in
predicting biochemical functionality. In addition, we describe in detail some of the key alternative
in silico prediction approaches that are available, as well as discussing the Critical Assessment
of Techniques for Protein Structure Prediction (CASP) and the Continuous Automated Model
EvaluatiOn (CAMEO) projects, and their impact on developments in the field. Furthermore, we
discuss the importance of protein function prediction methods for tackling 21st century problems.

Keywords: protein–ligand binding site prediction; protein function prediction; binding-site residue
prediction; biochemical functional elucidation; sequence-based function prediction; structure-based
function prediction; biological and biochemical role of enzymes; gene Ontology; enzyme
commission numbers

1. Introduction

Proteins are essential molecules involved in a wide variety of essential intra- and inter-cellular
activities. These activities include, but are not limited to: maintaining cellular defences, enzymatic
catalysis, metabolism and catabolism, maintenance of the structural integrity of cells, and signalling
within and between cells. Furthermore, protein–ligand interactions are essential for biochemical
functionality and are implicated in all biochemical roles, in all kingdoms of life. Hence, studying
protein–ligand binding sites and their associated residues, is an important step in the functional
elucidation of proteins involved in these cellular processes [1–4].

Understanding protein–ligand interactions in the context of protein–ligand binding sites and
ligand binding site residues is important for fully understanding cellular mechanisms, and is critical
for understanding responses to drugs. Methods for the prediction of protein–ligand binding sites,
which are detailed in the following section, can greatly enhance our understanding of the molecular

Int. J. Mol. Sci. 2015, 16, 29829–29842; doi:10.3390/ijms161226202 www.mdpi.com/journal/ijms
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mechanisms involved in many research spheres, helping us tackle numerous 21st century problems.
The effects of protein–ligand binding are transient, but this knowledge can be exploited for the
treatment of human and animal diseases, in addition to impacting food security research, examples
of which are highlighted in Figure 1 and discussed in Section 6.
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Figure 1. Examples of protein–ligand interactions, focusing on the ligand binding site. Proteins are 
shown in cartoon form and coloured in light grey, with binding site residues shown as blue sticks, 
and ligands shown as sticks or spheres coloured by element; (A) The Human cytochrome P450 1A1 
protein (PDB ID 4i8v) bound to the drug N-Benzylformamide; (B) Cyclooxygenase-2 (PDB ID 4ph9) 
from Mus musculus bound to the drug Ibuprofen; (C) The Plasmodium vivax TRAP protein (PDB ID 
4hqo, CASP ID T0686) bound to magnesium and; (D) The aminopeptidase N family protein Q5QTY1 
(PDB ID 4fgm, CASP ID T0726) from Idiomarina loihiensis bound to zinc (a cofactor). 

We begin by briefly highlighting some key protein–ligand interactions from a biomedical 
perspective. In Figure 1 we focus on four examples of proteins bound to diverse types of ligands, 
which are important in health and disease. This includes Cytochrome P450 bound to the drug N-
Benzylformamide (Figure 1A—PDB ID 4i8v). The enzyme Cytochrome P450 has an essential role in 
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Figure 1. Examples of protein–ligand interactions, focusing on the ligand binding site. Proteins are
shown in cartoon form and coloured in light grey, with binding site residues shown as blue sticks,
and ligands shown as sticks or spheres coloured by element; (A) The Human cytochrome P450 1A1
protein (PDB ID 4i8v) bound to the drug N-Benzylformamide; (B) Cyclooxygenase-2 (PDB ID 4ph9)
from Mus musculus bound to the drug Ibuprofen; (C) The Plasmodium vivax TRAP protein (PDB ID
4hqo, CASP ID T0686) bound to magnesium and; (D) The aminopeptidase N family protein Q5QTY1
(PDB ID 4fgm, CASP ID T0726) from Idiomarina loihiensis bound to zinc (a cofactor).

We begin by briefly highlighting some key protein–ligand interactions from a biomedical
perspective. In Figure 1 we focus on four examples of proteins bound to diverse types of ligands,
which are important in health and disease. This includes Cytochrome P450 bound to the drug
N-Benzylformamide (Figure 1A—PDB ID 4i8v). The enzyme Cytochrome P450 has an essential
role in the electron transfer chain, and is therefore ubiquitous in all kingdoms of life [5]. The
human Cytochrome P450 (CYP1A1) is known to play a role in the biotransformation of polycyclic
aromatic hydrocarbons into carcinogens [6]. In addition, CYP1A1 (PDB ID 4i8v) is responsible
for the metabolism of theophylline [7], a drug used to provide symptomatic relief from asthma.
Cyclooxygenase-2 from Mus musculus, which is involved in the biosynthesis of prostaglandins, is a
target of non-steroidal anti-inflammatory drugs such as Ibuprofen (Figure 1B). The Plasmodium vivax
TRAP protein, bound to magnesium, is involved in phosphate ester hydrolysis (Figure 1C). Finally,
Figure 1D shows the protein–ligand binding site of the aminopeptidase N family protein Q5QTY1,
from Idiomarina loihiensis bound to zinc (its cofactor), which can be used as a biomarker to detect
kidney damage.

This review aims to provide an overview of the variety of different methodologies available for
the prediction of protein–ligand binding sites and their associated binding site residues. Here we will
focus on computational methods developed in the last six years, since the inclusion of the function
prediction (FN) category in the Critical Assessment of Techniques for Protein Structure Prediction
(CASP) competition [8]. For methods developed before 2010, please refer to the review by Kaufmann
and Karypis [9]. Furthermore, molecular docking methods are beyond the scope of this review, which
have been recently reviewed by Yuriev et al. [10]. In this review, the term ligand is used to refer to
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molecules capable of binding to a protein, such as metal ions, small organic (e.g., ATP) and inorganic
compounds (e.g., NH4), peptides, and DNA/RNA; not large macromolecules such as proteins.

2. In Silico Methods for the Prediction of Protein–Ligand Binding Sites and Their Associated
Binding Site Residues

In recent years, a large number of methods have been developed for the prediction of protein
function and protein–ligand binding sites. In this review, we discuss methods for the prediction of
protein–ligand binding sites and their associated binding site residues. These methods can be broadly
divided into sequence-based methods and structure-based methods.

2.1. Sequence-Based Methods

Sequence-based methods that predict protein–ligand binding sites and their interacting
ligand-binding site residues are those that use information from evolutionary conservation and/or
sequence similarity of homologous proteins. These methods can be broadly categorised into methods
that utilize machine learning (Multi-RELIEF [11], TargetS [12], LigandRF [13], and OMSL [14]),
methods that utilize only position-specific scoring matrices or PSSMs (INTREPID [15], DISCERN [16],
ConSurf [17], and ConFunc [18]) and graph-based methods such as Conditional Random Field
(CRF) [19]. The advent of including machine learning-based strategies into sequence-based methods
has resulted in improved method sensitivity. Machine learning is applied to PSSMs or multiple
sequence alignment-based properties using various alternative strategies, examples of which will
now be discussed.

Many of the sequence-based methods, such as Multi-RELIEF [11], deploy machine learning
methods to directly interpret multiple sequence alignment profiles. Multi-RELIEF works by
estimating the functional specificity of residues from a multiple sequence alignment using local
conservation properties. This method uses a machine learning technique called RELIEF [20] for
feature selection and weighting, using a binary classification to discriminate features from two classes.
A residue’s local specificity is determined by comparing the sequence with the closest homologue
in each of the two classes (same class and opposite class), using global sequence identity to find
the nearest neighbour sequence. If a residue has high local specificity to one pair of classes, it is
labelled as relevant. Furthermore, global sequence similarity is considered while scoring each residue
locally [11]. This results in the prediction of residues comprising a putative ligand binding site.

In contrast, LigandRFs [13] uses a random forest-based algorithm to predict protein–ligand
binding site residues. LigandRFs extracts 544 amino acid properties from the AAindex database [21],
which are then compared using the Matthews correlation coefficient. Each of the 544 properties are
ranked in relation to the number of their related properties. The properties are filtered to remove all
properties related to the top property; this removes redundant properties, which do not add any new
information. This process is continued through the list until 34 properties remain. These properties
relate to specific features crucial for determining putative binding site residues. The properties are
then applied over a seven residue sliding window of a PSI-BLAST [22] profile. A 1 ˆ 238 vector
is used to represent the 34 amino acid properties for each seven residue window. A random forest
is then utilized to learn the relationship between the large vector and the binding or non-binding
residue properties [13].

TargetS [12] is another machine learning-based method, but in contrast to other methods,
it utilizes secondary structure-based features in addition to sequence and PSSM-based features.
Currently, TargetS can predict ligand-binding sites for proteins that bind to nucleotides, metal ions,
DNA, and heme. The algorithm incorporates: protein conservation from a PSI-BLAST [22] PSSM
searching SwissProt [23], secondary structure features determined from the PSIPRED algorithm [24],
along with ligand-binding propensity of residues for each amino acid and each ligand category
(nucleotides, metal ions, DNA, and heme). These properties are subsequently combined using a
support vector machine (SVM) to predict ligand-binding site residues.
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2.2. Structure-Based Methods

Structure-based methods are those that exploit information from 3D atomic coordinates
(either predicted from sequence or derived from experiments). These methods either predict
the location of the ligand binding site and/or the putative ligand binding site residues. Such
methods can be further sub-categorised into: 1. Geometric-based methods (FINDSITE [25],
LigDig [26], LISE [27], PatchSurfer2.0 [28], Surflex-PSIM [29], EvolutionaryTrace [30], PRANK [31],
a Two-dimensional replica-exchange method [32], FMO-RESP [33], MapReduce approach [34],
TIFP [35], ProGolem [36], a Chemogenomics approach [37], ProPose [38], FunFHMMer [39],
mFASD [40], ProBis [41,42], and CavBase [43,44]); 2. Energetic methods (SITEHOUND [45],
VISCANA [46], SiteComp [47], and FTMap [48]); 3. Miscellaneous methods, which use information
from homology or template-based modelling (FunFOLD3 [3,4], COACH [49], COFACTOR [50],
GalaxySite [51], GASS [52], VISM-CFA [53], and PLIP [54]), Surface accessibility based methods
such as LigSiteCSC [55], in addition to Physicochemical properties exploited by Andersson and
colleagues [56]. Examples of different methods from each sub-category are now described, in addition
to their limitations.

2.2.1. Considerations When Employing Structure-Based Methods

Structure-based methods for prediction of protein–ligand binding sites have a number of
limitations, including the following: 1. If a 3D model or experimental structure cannot be obtained,
then it is not possible to make a prediction; in such cases the solution is to rely on purely
sequence-based methods. 2. If templates with the same fold as the target protein that contain
biologically relevant ligands cannot be detected, then it is not possible to make a prediction. 3. Most
prediction servers, such as COACH [49] and FunFOLD [3,4,57], utilize in-house structure prediction
pipelines to construct models for protein–ligand interaction predictions that may not always produce
the best quality model for every target, which may result in over- and under-predicted protein–ligand
binding sites. Nevertheless, despite these shortcomings, prediction methods are constantly under
development and improvements can be gauged via the rigorous independent blind assessment
scoring, described in Section 3.

2.2.2. Geometric Methods

FINDSITE [25] combines evolutionary and structural information to predict protein function,
identifying binding pockets based on binding site similarity between homologous structures. This
is undertaken by superposing templates onto the structure of interest and then finding sites where
ligands overlap. These results are then used to determine putative binding pockets and then
identifying the geometric centre of each pocket [25].

Similarly, LigDig [26] is another geometric method, but uses a ligand-centric approach, rather
than the traditional protein-centric approach to detect ligand-binding pockets in proteins. LigDig
utilizes a variety of information from ChEBI [58], PubChem, PDB [59], UniProt [23], and KEGG [60],
combined via a graph-based network to locate similar ligands along with their potential binding
partners. The method is available as a webserver and also uses text-based searches to find proteins
that may bind to a particular ligand of interest [26]. This results in the prediction of putative
protein–ligand binding sites.

In contrast to FINDSITE, LigDig, and the majority of geometric-based approaches, LISE [27]
is an algorithm that utilizes a novel concept of binding site-enriched protein triangles in order to
predict protein–ligand binding site locations. LISE uses ideas developed in a previous method, called
MotifScore [61], that determined motifs in a protein–ligand interaction database, composed of 6276
protein–ligand structures. The motifs contain the interactions between three atoms of a protein and
two atoms of a ligand. Thus, the three protein atoms of these motifs compose the “protein triangles”.
An additional step is to encapsulate the protein into a 3D grid of 1 Å size steps. Each vertex in this
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grid is then labelled as occupied or empty (with a 2.7 Å distance cutoff). For each empty grid point,
a grid point score is calculated, which equals the sum of the triangle scores. A large sphere of 11Å is
then centred on each empty vertex, and for each sphere, a sphere score is calculated, which is based
on the sum of the grid point scores for all empty grid points within the sphere. The sphere with the
highest score is determined as the putative ligand binding site [27].

2.2.3. Energetic Methods

SITEHOUND [45] is a widely used energetic method for the prediction of protein–ligand binding
sites, which utilizes a chemical probe to explore the surface of the protein structure, determining
regions that may have optimum energy for binding. SITEHOUND uses two different chemical
probes: a carbon probe to identify drug-like binding sites, and a phosphate probe to locate binding
sites for ligands having a phosphate group. Affinity maps or molecular interaction fields are
then used to describe the interaction of each probe with the protein surface. These affinity maps
are subsequently filtered to remove unfavourable interaction energies. The next step is to utilize
agglomerative hierarchical clustering to cluster the remaining interaction points based on their spatial
proximity. These clustered points are ranked by total interaction energy and result in a list of potential
ligand-binding pocket locations [45].

2.2.4. Miscellaneous Methods

A recent review by Petrey et al. [62] highlights the essential need for template-based 3D
modelling methods in the prediction of protein function [62]. The majority of these methods
predict putative protein–ligand binding sites and ligand binding site residues, while some methods
additionally predict Enzyme Commission Numbers (EC) and Gene Ontology (GO) terms. We have
developed a number of versions of a template-based method, called FunFOLD [3,4,57], which starts
with a 3D model of the target protein predicted from sequence, for example using the IntFOLD
server [63,64]. Each version of the algorithm has worked on the assumption that proteins with the
same fold that bind to similar biologically relevant ligands are likely to have similar binding sites.
The latest FunFOLD3 pipeline is composed of updated versions of two main algorithms, FunFOLD [4]
and FunFOLDQA [1], and it produces output comprising predicted EC and GO terms, ligand-binding
site residues, putative ligands, binding site quality scores, and per-atom p-values to comply with the
CAMEO-LB format [65].

FunFOLD firstly superposes, using TM-align [66], a list of structural templates containing
biologically relevant ligands (determined using the BioLip database [67]) onto the target 3D model.
Template-model superpositions with a TM-score ě 0.4 are retained. The next step is to superimpose
all retained templates onto the target model and assign ligands from the template files into clusters
using agglomerative hierarchical clustering. The identified ligand clusters are located at the potential
ligand-binding sites. Ligands are determined to be components of a cluster if the contact distance
is less than or equal to 0.5 Å plus the Van der Waal radii of the contacting atoms. The putative
ligand-binding site containing the largest ligand cluster is determined to be the most probable
ligand-binding site of the protein. The identification of the putative ligand-binding site residues is
carried out via a residue voting method [3,4].

The next component of the FunFOLD3 pipeline is the FunFOLDQA algorithm [1], which
evaluates the quality of FunFOLD predictions, subsequently producing a set of confidence scores. The
algorithm outputs scores for five sequence- and structure-based features that are combined using a
neural network, outputting predicted Binding-site Distance Test (BDT) [68] and Matthews Correlation
Coefficient (MCC) [69] scores. The FunFOLD3 [57] pipeline additionally outputs a set of per-residue
binding probability scores to comply with the CAMEO-LB format [65]. Furthermore, the FunFOLD3
method outputs a putative ligand binding site, putative ligand binding site residues, putative ligands
that may bind to the target protein, along with predicted EC and GO [70,71] terms (see Section 4) for
each target protein [3,4].
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The COACH [49] method is similar to FunFOLD and is one of the most accurate ligand-binding
site prediction methods that utilizes both sequence and structural homology in the prediction
pipeline. The structure component (TM-SITE) of the pipeline firstly locates putative ligand-binding
pockets using ConCavity [72]. TM-SITE then uses fifteen residues within the binding pocket structure
to search against the BioLip database to find structures containing similar binding pockets, in addition
to searching for similar structures (using TM-align [66]) to the target protein containing biologically
relevant ligands within BioLip [67]. All templates and sub-structural templates are superposed onto
the target and scored based on empirically determined cutoffs. Ligand binding site residues are
then determined using a similar strategy to FunFOLD [4], but using average linkage clustering and
assigning a confidence score to each predicted ligand binding site residue. The sequence component
of the algorithm, S-SITE, uses residue conservation of sequence profiles to predict ligand binding
site residues, subsequently scoring the confidence of each predicted binding site residue. COACH
then uses a consensus of predictions, combining the results from TM-SITE and S-SITE along with
COFACTOR [50], FINDSITE [25], and ConCavity [72]. Similar to FunFOLD3, COACH predicts a
putative ligand binding site, putative ligand binding site residues, putative ligands that may bind to
the target protein, along with predicted EC and GO terms for each target protein.

A somewhat alternative approach to that of FunFOLD and COACH is used by GASS [52]. GASS
(Genetic Active Site Search) is developed by Izidoro et al. [52], who have employed a genetic algorithm
to predict ligand binding site residues for putative enzymes. Their method takes a list of templates
from the CSA [73] with predefined binding site residues. They then simulate evolutionary effects
(crossover and mutations) over this population of templates, according to predefined mutational
probabilities, for a specific number of user-defined generations. The resultant binding site residue
predictions are then assessed using a fitness function, which ranks individual sets of predictions.
The fitness function is similar to an RMSD (root-mean-square deviation) for the ligand binding site
residues, with the main difference being that the square distance of the results is not averaged [74].

Several structure-based methods that exploit surface accessibility have also been developed,
such as LIGSITEcsc [55]. LIGSITEcsc uses the Connolly surface in its ligand binding site prediction
protocol. The first step of the protocol is to encapsulate the protein structure into a 3D grid of 1 Å
steps. In the second step of the protocol, each point in the grid is labelled as either protein, surface,
or solvent. In the third step, the Connolly algorithm is utilized to calculate the solvent-excluded
surface. In the fourth step, surface-solvent-surface events are then determined. In the fifth step, if the
surface-solvent-surface events in a grid exceed a minimum threshold, set to six grid locations, this is
determined to be a pocket. Each pocket cluster is then ranked in relation to the number of grid points
within the cluster. The top three pockets are then retained. In the final step, the top three pockets are
re-ranked in relation to the conservation of pocket surface residues [55].

Further structure-based methods have used physiochemical properties to determine ligand
binding cavities. For example, the method by Andersson et al. (2010, [56]) works initially by
identifying solvent accessible patches. In the second step, data is collected from each patch based
on 408 surface descriptors, divided into eight categories. These descriptors include neighbouring
amino acids, secondary structure, polarity of adjacent amino acids, close hydrogen bond donors
and acceptors, electrostatic potential, shape, polarity, and flexibility. In the third step, the descriptor
results are divided into bins and scaled to be usable for Principal Component Analysis (PCA). In the
fourth step, PCA is carried out and the relationships between pockets are analysed. This method
produces results for all putative pockets, leaving the user to determine which pocket is the most
suitable ligand binding pocket for their particular task [56].

3. Methods for the Evaluation of Protein–Ligand Binding Site Residue Predictions

Assessment of protein–ligand binding site residue predictions have been carried out in
CASP [8,75,76] and CAMEO [65] using a number of different scores, which include the Matthews
Correlation Coefficient (MCC) [69] and the Binding-site Distance Test (BDT) score [68]. The MCC
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score is a statistical measure that compares observed ligand binding site residues to predictions by
assessing the number of residues assigned as true positives, false positives, true negatives, and false
negatives. This results in a score between ´1 and 1, with scores close to zero representing random
predictions and scores close to one representing near perfect predictions. The MCC score may only
be a good choice for scoring sequence-based predictions, when no structural information is available,
as the MCC score does not consider the 3D nature of the protein within the scoring metric.

To overcome the limitations of the MCC score, we developed the Binding-site Distance Test
(BDT score) [68]. The BDT score utilizes the distance in 3D space between a predicted ligand binding
site residue and an observed ligand binding site residue in the scoring process. The BDT score has
a range from zero to one, where scores close to zero represent random predictions and scores close
to one represent near perfect predictions. Predicted ligand binding sites closer in 3D space to the
observed ligand binding site are scored higher than ligand binding sites predicted farther from the
observed ligand binding site. In the CASP9 and CASP10 FN assessments [75,76], the BDT score was
used by the official assessors in addition to the MCC score. Furthermore, the BDT score is used in the
CAMEO [65] project as one of the standard assessment metrics.

4. Prediction of Enzyme Commission Numbers (EC) and Gene Ontology Terms (GO)

In addition to the determination of protein–ligand binding sites and their associated binding site
residues, it is also useful to determine the likely function of a protein. Functionality can be generally
assigned using Gene Ontology (GO) terms [70,71], or more specifically for enzymes, using Enzyme
Commission numbers (EC).

The Gene Ontology Commission was formed in 2000 [70] to develop a controlled vocabulary
for describing genes, as a result of the large increase of sequence data from genomics projects.
Gene Ontology (GO) terms, often referred to as a shared vocabulary for genes, comprise over
40,000 terms. GO terms are broadly divided into three categories: cellular components, molecular
function (a weak analogy to EC codes), and biological processes, which are further subdivided in
a hierarchical graph-like structure. Each protein has the potential to be assigned to multiple GO
classes and sub-classes. Moreover, each GO term has a unique serial number, in addition to a textual
description [70,71].

The Enzyme Commission (EC) was set up in 1956 as part of the International Union of Pure
and Applied Chemistry (IUPAC), publishing the first version of EC numbers in 1961. Today, the
EC classification is maintained by the Nomenclature Committee of the International Union for
Biochemistry and Molecular Biology (NC-IUBMB) and the enzyme list is curated and maintained
by the Tipton group at Trinity College Dublin [77]. The list officially classifies enzymes by the
overall reactions they catalyse, in order to reduce the ambiguous names enzymes previously acquired.
Enzymes are hierarchically classified by four-digit EC numbers. The first number designates the
broad classification into: 1. Oxidoreductases; 2. Transferases; 3. Hydrolases; 4. Lyases; 5. Isomerases;
and 6. Ligases. The second class usually designates the type of molecule involved in the reaction.
The third class designates the type of reaction involved, while the fourth class is essentially a serial
number, which has been utilized to differentiate enzymes within the subclasses [77].

Recently, a number of methods have been developed specifically to predict GO and EC
terms. A large number of these methods have been developed as rapid methods that utilize
sequence information only. The majority of methods predict function based on Gene Ontology (GO)
terms (which include: INGA [78], EFI-EST [79], SIFTER [80], GEO2Enrichr [81], PANNZER [82],
and PILL [83]) with fewer utilizing EC numbers (EFI-EST [79] and DomSign [84]) for functional
annotation. Furthermore, a number of structure-based methods for the prediction of protein–ligand
binding sites have incorporated methods for predicting GO and EC terms, including COACH [49]
and FunFOLD3 [3,4,57] (See Section 2.2.4). However, as these methods build 3D models as
part of their prediction pipeline, they are somewhat more computationally intensive than the
sequence-only methods.
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The prediction of EC and GO terms, in addition to the prediction of protein–ligand binding sites
and their associated ligand binding site residues, further enriches the information that can be gleaned
for a particular protein. This highlights the biological need for in silico methods in function prediction
and rational drug design, contributing to future in silico, in vitro, and in vivo experiments for both
biomedical and bioenvironmental research applications.

5. CASP, CAFA, and CAMEO—Their Role in Development and Assessment of Protein–Ligand
Binding Site Prediction Algorithms

The development of methods for the prediction of protein–ligand binding sites and function
prediction has been driven in recent years as a direct result of community wide prediction
experiments, such as the Critical Assessment of Techniques for Protein Structure Prediction
(CASP) [8,75,76], the Continuous Automated Model EvaluatiOn (CAMEO) project [65], and the
Critical Assessment of Function Annotation (CAFA) [85].

Ligand binding site residue prediction was first introduced in CASP8 (as the FN category) [8],
with the concept then involving the prediction of putative ligand binding site residues, which may
functionally interact with a biologically relevant bound ligand. Since it is not presently possible
to clearly distinguish between catalytic, active, and binding site residues, using computational
methods, the algorithms simply predict protein–ligand binding site residues. In CASP8, the top
performing methods LEE [86] and 3DLigandSite [87] used a similar prediction strategy, combining
information from homology models along with the templates used to construct the models
that contained biologically-relevant bound ligands. In CASP9 [75] and CASP10 [76], successful
methods for the prediction of protein–ligand binding sites built upon and further refined this
template-based approach.

Following on from CASP10 [76], it was decided to move the FN prediction category
to a continuous assessment strategy, due to the lack of available targets containing bound
biologically-relevant ligands during the short three month CASP prediction period. Hence, the
CASP FN category moved to the CAMEO continuous assessment project [65]. The move to fully
automated assessment resulted in a change of prediction format, with the additional prediction of
which ligand category (I—Ion, O—Organic, N—Nucleotide, and P—Peptide) a protein may bind.
Participating servers must also provide a p-value representing the likelihood that each residue
(or atom) binds a ligand in each category. The CAMEO assessment runs weekly on structures
containing biologically-relevant ligands using target sequences of structures that are on hold for
release by the Protein Data Bank (PDB) [65]. The CAMEO project provides a better picture of how
each method performs on a large and diverse dataset, containing a wide variety of proteins bound to
a wide variety of ligands.

Complementary to CAMEO and CASP is the CAFA [85] experiment, which has also been a major
driver for the development of function prediction methods. The goal of CAFA is to functionally
annotate proteins on a large scale using GO terms [70,71]. The CAFA1 dataset contained >48,000
proteins as of October 2010, for which predictions were made. Following the prediction season,
methods were evaluated on 866 of the proteins, which had acquired annotations over the eleven
months following the close of the prediction season. Methods that compete in CAFA [85] include
a large number of the methods described in the proceeding sections, comprising sequence-based
methods, structure-based methods and combinations of both.

6. The Application of in Silico Protein–Ligand Binding Site Prediction Methods: Impact on
in Vitro Studies

In addition to the theoretical and computational uses of protein–ligand binding site prediction
algorithms previously highlighted, methods for the prediction of protein–ligand binding sites have
been used in numerous in silico/in vitro studies. These studies have focused on a wide range
of subjects as diverse as calcium-binding proteins [88], olfactory proteins [89], the CollagenQ
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protein–COLQ [90], human PE5 proteins [91], barley powdery mildew proteins [92,93], and spider
mite glutathione S-transferases [94], which have led to biological findings of relevance to the study of
health and disease and to food security [88–95].

We firstly describe a number of case studies from research projects investigating proteins
implicated in health and disease. The first study [88] analysed a large number of calcium-binding
proteins present in biological systems on a genome-wide scale, termed: calciomics. As calcium
impacts every aspect of cellular life, Ca2+ binding proteins can be implicated in a wide range of
diseases, thus this in silico study investigates their potential roles [88]. Another in silico proteome-wide
study, this time on PE5 proteins (plasma membrane transporters and receptors) from the human
proteome, was undertaken by Dong et al. to correct misannotations of these highly misannotated
proteins [91]. Furthermore, Don and Riniker undertook in silico analysis of olfactory receptor proteins,
members of the G-protein coupled receptor (GPCR) family, to enable the future design of therapeutics
targeting olfactory-related and GPCR-related diseases [89]. In addition, Arredondo et al. combined
modelling and the prediction of protein–ligand binding sites with in vitro studies to investigate a
number of COLQ mutants and determine their mode of action [90]. These COLQ mutants cause
human deficiency of endplate acetylcholinesterase, which results in the impairment of the interaction
of COLQ with the basal lamina. This leads to a reduction in the duration of synaptic activation, which
can lead to synaptic-related diseases.

Focusing on projects that have implications on food security, we highlight a study on the
barley powdery mildew proteome [92]. This research involved the combination of proteogenomic
along with structural and functional (protein–ligand binding sites and binding site residues)
predictions, in order to investigate the pathogenic properties of barley powdery mildew. Basically,
IntFOLD [63,64] was used to construct models for the entire proteome, which were validated utilizing
ModFOLD3 [63]. Subsequently, FunFOLD [4] was used to predict protein–ligand binding sites
for these models. This resulted in interesting conclusions about the Blumera graminis f.sp. hordei
proteome. Firstly, the proteins are structurally diverse and remotely homologous to known proteins,
potentially containing novel folds, as it was only possible to model six proteins with a model quality
score above 0.4. Secondly, FunFOLD was able to help in the assignment of functionality for these six
proteins, all were carbohydrate-binding and probably glycosyl hydrolases. Moreover, this putative
functionality was experimentally elucidated, highlighting the utility of protein–ligand interaction
methods to aid functional elucidation [92]. An additional study with relevance to food security from
Pavlidi et al. [94] involves the functional characterization of a particular glutathione S-transferase,
which may enable the two-spotted spider mite (Tetranychus urticae) to have acaricide/insecticide
resistance. Tetranychus urticae has been shown to be one of the most damaging agricultural pests
globally. The spider mite has three glutathione S-transferase enzymes; TuGSTd10, TuGSTd14, and
TuGSTm09. Subsequently, assays determined that TuGSTd14 was the glutathione S-transferase
involved in the acaricide/insecticide resistance. The structure of TuGSTd14 was predicted using
IntFOLD [63,64] and protein–ligand binding site residues predicted using FunFOLD [3]. These
in silico results were utilized to determine the key structural characteristics, including residues that
were involved in the substrate binding specificity [94].

The studies described above, on proteins related to health and disease [88–91] in addition to
food security [92–94] highlight the utility of protein–ligand binding site prediction methods, which
can contribute to the interpretation of the function and the biochemical interactions of key proteins
and enzymes, impacting our ability to tackle urgent global problems.

7. Conclusions

A large number of predictive methods are available to predict and analyse protein–ligand
binding sites. These methods incorporate different approaches, providing numerous different data
types ranging from lists of ligand binding site residues, 3D atomic coordinates of ligand binding sites,
lists of putative binding ligands, EC, and GO terms. The results produced by these in silico methods
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can be useful to generate new hypotheses and drive further experiments that can impact on major
challenges in biology.
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Asgari23,24, Mohammad R.K. Mofrad25, Giuseppe Profiti26,27, Castrense Savojardo26, Pier Luigi Martelli26, Rita
Casadio26, Florian Boecker28, Heiko Schoof29, Indika Kahanda30, Natalie Thurlby31, Alice C. McHardy32,33,
Alexandre Renaux34,35,36, Rabie Saidi37, Julian Gough38, Alex A. Freitas39, Magdalena Antczak40, Fabio Fabris39,
Mark N. Wass40, Jie Hou41,42, Jianlin Cheng42, Zheng Wang43, Alfonso E. Romero44, Alberto Paccanaro44,
Haixuan Yang45, Tatyana Goldberg129, Chenguang Zhao49, Liisa Holm50, Petri Törönen50, Alan J. Medlar50,
Elaine Zosa51, Itamar Borukhov51, Ilya Novikov53, Angela Wilkins54, Olivier Lichtarge54, Po-Han Chi55, Wei-Cheng T
seng56, Michal Linial57, Peter W. Rose58, Christophe Dessimoz59,60,61, Vedrana Vidulin62, Saso Dzeroski63,64, Ian Sillit
oe65, Sayoni Das66, Jonathan Gill Lees66,67, David T. Jones69,70, Cen Wan68,69, Domenico Cozzetto68,69, Rui
Fa68,69, Mateo Torres44, Alex Warwick Vesztrocy70,71, Jose Manuel Rodriguez72, Michael L. Tress73, Marco
Frasca74, Marco Notaro74, Giuliano Grossi74, Alessandro Petrini74, Matteo Re74, Giorgio Valentini74, Marco
Mesiti74, Daniel B. Roche76, Jonas Reeb76, David W. Ritchie77, Sabeur Aridhi77, Seyed Ziaeddin Alborzi77,79,
Marie-Dominique Devignes77,78,79, Da Chen Emily Koo80, Richard Bonneau81,82, Vladimir Gligorijević83, Meet
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Abstract
Background: The Critical Assessment of Functional Annotation (CAFA) is an ongoing, global, community-driven effort
to evaluate and improve the computational annotation of protein function.
Results: Here, we report on the results of the third CAFA challenge, CAFA3, that featured an expanded analysis over
the previous CAFA rounds, both in terms of volume of data analyzed and the types of analysis performed. In a novel
and major new development, computational predictions and assessment goals drove some of the experimental assays,
resulting in new functional annotations for more than 1000 genes. Specifically, we performed experimental whole-
genome mutation screening in Candida albicans and aeruginosa genomes, which provided us with genome-wide
experimental data for genes associated with biofilm formation and motility. We further performed targeted assays on
selected genes in Drosophila melanogaster, which we suspected of being involved in long-term memory.
Conclusion: We conclude that while predictions of the molecular function and biological process annotations have
slightly improved over time, those of the cellular component have not. Term-centric prediction of experimental anno-
tations remains equally challenging; although the performance of the top methods is significantly better than the
expectations set by baseline methods in C. albicans and D. melanogaster, it leaves considerable room and need for
improvement. Finally, we report that the CAFA community now involves a broad range of participants with expertise
in bioinformatics, biological experimentation, biocuration, and bio-ontologies, working together to improve functional
annotation, computational function prediction, and our ability to manage big data in the era of large experimental
screens.

Keywords: Protein function prediction, Long-term memory, Biofilm, Critical assessment, Community challenge

Introduction
High-throughput nucleic acid sequencing [1] and mass-
spectrometry proteomics [2] have provided us with a del-
uge of data for DNA, RNA, and proteins in diverse species.
However, extracting detailed functional information from
such data remains one of the recalcitrant challenges in the
life sciences and biomedicine. Low-throughput biological
experiments often provide highly informative empirical
data related to various functional aspects of a gene prod-
uct, but these experiments are limited by time and cost. At
the same time, high-throughput experiments, while pro-
viding large amounts of data, often provide information
that is not specific enough to be useful [3]. For these rea-
sons, it is important to explore computational strategies
for transferring functional information from the group of
functionally characterized macromolecules to others that
have not been studied for particular activities [4–9].
To address the growing gap between high-throughput

data and deep biological insight, a variety of computa-
tional methods that predict protein function have been
developed over the years [10–24]. This explosion in the
number of methods is accompanied by the need to under-
stand how well they perform, and what improvements are
needed to satisfy the needs of the life sciences commu-
nity. The Critical Assessment of Functional Annotation
(CAFA) is a community challenge that seeks to bridge the
gap between the ever-expanding pool of molecular data
and the limited resources available to understand protein
function [25–27].

The first two CAFA challenges were carried out in
2010–2011 [25] and 2013–2014 [26]. In CAFA1, we
adopted a time-delayed evaluation method, where pro-
tein sequences that lacked experimentally verified anno-
tations, or targets, were released for prediction. After the
submission deadline for predictions, a subset of these
targets accumulated experimental annotations over time,
either as a consequence of new publications about these
proteins or the biocuration work updating the annotation
databases. The members of this set of proteins were used
as benchmarks for evaluating the participating computa-
tional methods, as the function was revealed only after the
prediction deadline.
CAFA2 expanded the challenge founded in CAFA1. The

expansion included the number of ontologies used for
predictions, the number of target and benchmark pro-
teins, and the introduction of new assessmentmetrics that
mitigate the problems with functional similarity calcula-
tion over concept hierarchies such as Gene Ontology [28].
Importantly, we provided evidence that the top-scoring
methods in CAFA2 outperformed the top-scoring meth-
ods in CAFA1, highlighting that methods participating
in CAFA improved over the 3-year period. Much of this
improvement came as a consequence of novel method-
ologies with some effect of the expanded annotation
databases [26]. Both CAFA1 and CAFA2 have shown that
computational methods designed to perform function
prediction outperform a conventional function transfer
through sequence similarity [25, 26].



Consortium Genome Biology          (2019) 20:244 Page 3 of 23

In CAFA3 (2016–2017), we continued with all types
of evaluations from the first 2 challenges and addition-
ally performed experimental screens to identify genes
associated with specific functions. This allowed us to
provide unbiased evaluation of the term-centric perfor-
mance based on a unique set of benchmarks obtained by
assaying Candida albicans, Pseudomonas aeruginosa, and
Drosophila melanogaster. We also held a challenge follow-
ing CAFA3, dubbed CAFA-π , to provide the participating
teams another opportunity to develop or modify predic-
tion models. The genome-wide screens on C. albicans
identified 240 genes previously not known to be involved
in biofilm formation, whereas the screens on P. aerugi-
nosa identified 532 new genes involved in biofilm forma-
tion and 403 genes involved in motility. Finally, we used
CAFA predictions to select genes from D. melanogaster
and assay them for long-term memory involvement. This
experiment allowed us to both evaluate prediction meth-
ods and identify 11 new fly genes involved in this bio-
logical process [29]. Here, we present the outcomes of
the CAFA3 challenge, as well as the accompanying chal-
lenge CAFA-π , and discuss further directions for the
community interested in the function of biological macro-
molecules.

Results
Topmethods have improved from CAFA2 to CAFA3, but
improvement was less dramatic than from CAFA1 to CAFA2
One of CAFA’s major goals is to quantify the progress
in function prediction over time. We therefore conducted
a comparative evaluation of top CAFA1, CAFA2, and
CAFA3 methods according to their ability to predict
Gene Ontology [28] terms on a set of common bench-
mark proteins. This benchmark set was created as an
intersection of CAFA3 benchmarks (proteins that gained
experimental annotation after the CAFA3 prediction sub-
mission deadline) and CAFA1 and CAFA2 target proteins.
Overall, this set contained 377 protein sequences with
annotations in the Molecular Function Ontology (MFO),
717 sequences in the Biological Process Ontology (BPO),
and 548 sequences in the Cellular Component Ontol-
ogy (CCO), which allowed for a direct comparison of all
methods that have participated in the challenges so far.
The head-to-head comparisons in MFO, BPO, and CCO
between the top 5 CAFA3 and CAFA2methods are shown
in Fig. 1. CAFA3 and CAFA1 comparisons are shown in
Additional file 1: Figure S1.
We first observe that, in effect, the performance of base-

line methods [25, 26] has not improved since CAFA2. The
Naïve method, which uses the term frequency in the exist-
ing annotation database as a prediction score for every
input protein, has the same Fmax performance using both
annotation databases in 2014 (when CAFA2 was held)
and in 2017 (when CAFA3 was held), which suggests little

change in term frequencies in the annotation database
since 2014. In MFO, the BLAST method based on the
existing annotations in 2017 is slightly but significantly
better than the BLAST method based on 2014 training
data. In BPO and CCO, however, the BLAST based on the
later database has not outperformed its earlier counter-
part, although the changes in effect size (absolute change
in Fmax) in both ontologies are small.
When surveying all 3 CAFA challenges, the perfor-

mance of both baseline methods has been relatively sta-
ble, with some fluctuations of BLAST. Such performance
of direct sequence-based function transfer is surprising,
given the steady growth of annotations in UniProt-GOA
[30]; that is, there were 259,785 experimental annotations
in 2011, 341,938 in 2014, and 434,973 in 2017, but there
does not seem to be a definitive trend with the BLAST
method, as they go up and down in Fmax across ontolo-
gies.We conclude from these observations on the baseline
methods that first, the ontologies are in different annota-
tion states and should not be treated as a whole. In fact, the
distribution of annotation depth and information content
is very different across 3 ontologies, as shown in Addi-
tional file 1: Figures S15 and S16. Second, methods that
perform direct function transfer based on sequence sim-
ilarity do not necessarily benefit from a larger training
dataset. Although the performance observed in our work
is also dependent on the benchmark set, it appears that
the annotation databases remain too sparsely populated
to effectively exploit function transfer by sequence simi-
larity, thus justifying the need for advanced methodology
development for this problem.
Head-to-head comparisons of the top 5 CAFA3 meth-

ods against the top 5 CAFA2methods showmixed results.
In MFO, the top CAFA3 method, GOLabeler [23], out-
performed all CAFA2 methods by a considerable margin,
as shown in Fig. 2. The rest of the 4 CAFA3 top methods
did not perform as well as the top 2 methods of CAFA2,
although only to a limited extent, with little change in
Fmax. Of the top 12 methods ranked in MFO, 7 are
from CAFA3, 5 are from CAFA2, and none from CAFA1.
Despite the increase in database size, the majority of func-
tion prediction methods do not seem to have improved
in predicting protein function in MFO since 2014, except
for 1 method that stood out. In BPO, the top 3 methods
in CAFA3 outperformed their CAFA2 counterparts, but
with very small margins. Out of the top 12 methods in
BPO, 8 are from CAFA3, 4 are from CAFA2, and none
from CAFA1. Finally, in CCO, although 8 out of the top 12
methods over all CAFA challenges come fromCAFA3, the
top method is from CAFA2. The differences between the
top-performing methods are small, as in the case of BPO.
The performance of the top methods in CAFA2 was

significantly better than of those in CAFA1, and it is inter-
esting to note that this trend has not continued in CAFA3.
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Fig. 1 A comparison in Fmax between the top 5 CAFA2 models against the top 5 CAFA3 models. Colored boxes encode the results such that (1) the
colors indicate margins of a CAFA3 method over a CAFA2 method in Fmax and (2) the numbers in the box indicate the percentage of wins. a CAFA2
top 5 models (rows, from top to bottom) against CAFA3 top 5 models (columns, from left to right). b Comparison of the performance (Fmax) of Naïve
baselines trained respectively on SwissProt2014 and SwissProt2017. Colored box between the two bars shows the percentage of wins and margin
of wins as in a. c Comparison of the performance (Fmax) of BLAST baselines trained on SwissProt2014 and SwissProt2017. Colored box between the
two bars shows the percentage of wins and margin of wins as in a. Statistical significance was assessed using 10,000 bootstrap samples of
benchmark proteins
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Fig. 2 Performance evaluation based on the Fmax for the top CAFA1,
CAFA2, and CAFA3 methods. The top 12 methods are shown in this
barplot ranked in descending order from left to right. The baseline
methods are appended to the right; they were trained on training
data from 2017, 2014, and 2011, respectively. Coverage of the
methods were shown as text inside the bars. Coverage is defined as
the percentage of proteins in the benchmark that are predicted by
the methods. Color scheme: CAFA2, ivory; CAFA3, green; Naïve, red;
BLAST, blue. Note that in MFO and BPO, CAFA1 methods were ranked,
but since none made to the top 12 of all 3 CAFA challenges, they
were not displayed. The CAFA1 challenge did not collect predictions
for CCO. a: molecular function; b: Biological process; c: Cellular
Component

This could be due to many reasons, such as the quality of
the benchmark sets, the overall quality of the annotation
database, the quality of ontologies, or a relatively short
period of time between challenges.

Protein-centric evaluation
The protein-centric evaluation measures the accuracy of
assigning GO terms to a protein. This performance is
shown in Figs. 3 and 4.
We observe that all top methods outperform the base-

lines with the patterns of performance consistent with
CAFA1 and CAFA2 findings. Predictions of MFO terms
achieved the highest Fmax compared with predictions
in the other two ontologies. BLAST outperforms Naïve
in predictions in MFO, but not in BPO or CCO. This
is because sequence similarity-based methods such as
BLAST tend to perform best when transferring basic
biochemical annotations such as enzymatic activity. Func-
tions in biological process, such as pathways, may not
be as preserved by sequence similarity, hence the poor
BLAST performance in BPO. The reasons behind the
difference among the three ontologies include the struc-
ture and complexity of the ontology as well as the state
of the annotation database, as discussed previously [26,
31]. It is less clear why the performance in CCO is
weak, although it might be hypothesized that such per-
formance is related to the structure of the ontology
itself [31].
The top-performing method in MFO did not have as

high an advantage over others when evaluated using
the Smin metric. The Smin metric weights GO terms by
conditional information content, since the prediction
of more informative terms is more desirable than less
informative, more general, terms. This could potentially
explain the smaller gap between the top predictor and the
rest of the pack in Smin. The weighted Fmax and normal-
ized Smin evaluations can be found in Additional file 1:
Figures S4 and S5.

Species-specific categories
The benchmarks in each species were evaluated individu-
ally as long as there were at least 15 proteins per species.
Here, we present the results from eukaryotic and bacte-
rial species (Fig. 5). We observed that different methods
could perform differently on different species. As shown
in Fig. 6, bacterial proteins make up a small portion of
all benchmark sequences, so their effects on the perfor-
mances of the methods are often masked. Species-specific
analyses are therefore useful to researchers studying cer-
tain organisms. Evaluation results on individual species
including human (Additional file 1: Figure S6), Arabidop-
sis thaliana (Additional file 1: Figure S7) and Escherichia
coli (Additional file 1: Figure S10) can be found in
Additional file 1: Figure S6-S14.
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Fig. 3 Performance evaluation based on the Fmax for the top-performing methods in 3 ontologies. Evaluation was carried out on No knowledge
benchmarks in the fullmode. a–c: bar plots showing the Fmax of the top 10 methods. The 95% confidence interval was estimated using 10,000
bootstrap iterations on the benchmark set. Coverage of the methods was shown as text inside the bars. Coverage is defined as the percentage of
proteins in the benchmark which are predicted by the methods. d–f: precision-recall curves for the top 10 methods. The perfect prediction should
have Fmax = 1, at the top right corner of the plot. The dot on the curve indicates where the maximum F score is achieved

Diversity of methods
It was suggested in the analysis of CAFA2 that ensem-
ble methods that integrate data from different sources
have the potential of improving prediction accuracy [32].
Multiple data sources, including sequence, structure,
expression profile, genomic context, and molecular inter-
action data, are all potentially predictive of the function
of the protein. Therefore, methods that take advantage

of these rich sources as well as existing techniques from
other research groups might see improved performance.
Indeed, the one method that stood out from the rest in
CAFA3 and performed significantly better than all meth-
ods across three challenges is a machine learning-based
ensemble method [23]. Therefore, it is important to ana-
lyze what information sources and prediction algorithms
are better at predicting function. Moreover, the similarity
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Fig. 4 Performance evaluation based on Smin for the top-performing methods in 3 ontologies. Evaluation was carried out on No knowledge
benchmarks in the fullmode. a–c: bar plots showing Smin of the top 10 methods. The 95% confidence interval was estimated using 10,000
bootstrap iterations on the benchmark set. Coverage of the methods was shown as text inside the bars. Coverage is defined as the percentage of
proteins in the benchmark which are predicted by the methods. d–f: remaining uncertainty-missing information (RU-MI) curves for the top 10
methods. The perfect prediction should have Smin = 0, at the bottom left corner of the plot. The dot on the curve indicates where the minimum
semantic distance is achieved

of the methods might explain the limited improvement in
the rest of the methods in CAFA3.
The top CAFA2 and CAFA3 methods are very similar

in performance, but that could be a result of aggregat-
ing predictions of different proteins to one metric. When

computing the similarity of each pair of methods as the
Euclidean distance of prediction scores (Fig. 7), we are not
interested whether these predictions are correct according
to the benchmarks, but simply whether they are similar
to one another. The diagonal blocks in Fig. 7 show that
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Fig. 5 Evaluation based on the Fmax for the top-performing methods in eukaryotic and bacterial species



Consortium Genome Biology          (2019) 20:244 Page 9 of 23

Fig. 6 Number of proteins in each benchmark species and ontology

CAFA1 top methods are more diverse than CAFA2 and
CAFA3. The off-diagonal blocks shows that CAFA2 and
CAFA3 methods are more similar with each other than
with CAFA3 methods. It is clear that some methods are
heavily based on the Naïve and BLAST baseline methods.
Participating teams also provided keywords that

describe their approach to function prediction with
their submissions. A list of keywords was given to the
participants, listed in Additional file 1. Figure 8 shows
the frequency of each keyword. In addition, we have
weighted the frequency of the keywords with the predic-
tion accuracy of the specific method. Machine learning
and sequence alignment remain the most used approach
by scientists predicting in all three ontologies. By raw
count, machine learning is more popular than sequence
in all three ontologies, but once adjusted by performance,
their difference shrinks. In MFO, sequence alignment
even overtakes machine learning as the most popular key-
word after adjusting for performance. This indicates that
methods that use sequence alignments are more helpful
in predicting the correct function than the popularity of
their use suggests.

Evaluation via molecular screening
Databases with proteins annotated by biocuration, such
as UniProt knowledge base and UniProt Gene Ontol-
ogy Annotation (GOA) database, have been the primary
source of benchmarks in the CAFA challenges. New to
CAFA3, we also evaluated the extent to which meth-
ods participating in CAFA could predict the results of
genetic screens in model organisms done specifically for
this project. Predicting GO terms for a protein (protein-
centric) and predicting which proteins are associated with

a given function (term-centric) are related but different
computational problems: the former is a multi-label clas-
sification problem with a structured output, while the
latter is a binary classification task. Predicting the results
of a genome-wide screen for a single or a small num-
ber of functions fits the term-centric formulation. To
see how well all participating CAFA methods perform
term-centric predictions, we mapped the results from
the protein-centric CAFA3 methods onto these terms. In
addition, we held a separate CAFA challenge, CAFA-π ,
whose purpose was to attract additional submissions from
algorithms that specialize in term-centric tasks.
We performed screens for three functions in three

species, which we then used to assess protein func-
tion prediction. In the bacterium Pseudomonas aerugi-
nosa and the fungus Candida albicans, we performed
genome-wide screens capable of uncovering genes with
two functions, biofilm formation (GO:0042710) and
motility (for P. aeruginosa only) (GO:0001539), as
described in the “Methods” section. In Drosophila
melanogaster, we performed targeted assays, guided by
previous CAFA submissions, of a selected set of genes and
assessed whether or not they affected long-term memory
(GO:0007616).
We discuss the prediction results for each function

below in detail. The performance, as assessed by the
genome-wide screens, was generally lower than in the
protein-centric evaluations that were curation driven. We
hypothesize that it may simply be more difficult to per-
form term-centric prediction for broad activities such as
biofilm formation and motility. For P. aeruginosa, an exist-
ing compendium of gene expression data was already
available [33]. We used the Pearson correlation over this
collection of data to provide a complementary baseline to
the standard BLAST approach used throughout CAFA.
We found that an expression-basedmethod outperformed
the CAFA participants, suggesting that success on certain
term-centric challenges will require the use of differ-
ent types of data. On the other hand, the performance
of the methods in predicting long-term memory in the
Drosophila genome was relatively accurate.

Biofilm formation
In March 2018, there were 3019 annotations to biofilm
formation (GO:0042710) and its descendent terms across
all species, of which 325 used experimental evidence
codes. These experimentally annotated proteins included
131 from the Candida Genome Database [34] for
C. albicans and 29 for P. aeruginosa, the 2 organisms that
we screened.
Of the 2746 genes we screened in the Candida albicans

colony biofilm assay, 245 were required for the forma-
tion of wrinkled colony biofilm formation (Table 1). Of
these, only 5 were already annotated in UniProt: MOB,
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Fig. 7 Heatmap of similarity for the top 10 methods in CAFA1, CAFA2, and CAFA3. Similarity is represented by Euclidean distance of the prediction
scores from each pair of methods, using the intersection set of benchmarks in the “Top methods have improved from CAFA2 to CAFA3, but
improvement was less dramatic than from CAFA1 to CAFA2” section. The higher (darker red color) the euclidean distance, the less similar the
methods are. Top 10 methods from each of the CAFA challenges are displayed and ranked by their performance in Fmax. Cells highlighted by black
borders are between a pair of methods that come from the same PI. a: Molecular Function; b: Biological Process; c: Cellular Component
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Fig. 8 Keyword analysis of all CAFA3 participating methods. a–c: both relative frequency of the keywords and weighted frequencies are provided
for three respective GO ontologies. The weighted frequencies accounts for the performance of the the particular model using the given keyword. If
that model performs well (with high Fmax), then it gives more weight to the calculation of the total weighted average of that keyword. d shows the
ratio of relative frequency between the Fmax-weighted and equal-weighted. Red indicates the ratio is greater than one while blue indicates the ratio
is less than one. Only the top five keywords ranked by ratio are shown. The larger the ratio, the more difference there is between the Fmax-weighted
and the equal-weighted

EED1 (DEF1), and YAK1, which encode proteins involved
in hyphal growth, an important trait for biofilm for-
mation [35–38]. Also, NUP85, a nuclear pore protein
involved in early phase arrest of biofilm formation [39]
and VPS1, contributes to protease secretion, filamenta-
tion, and biofilm formation [40]. Of the 2063 proteins that
we did not find to be associated with biofilm formation,
29 were annotated with the term in the GOA database in
C. albicans. Some of the proteins in this category highlight
the need for additional information to GO term annota-
tion. For example, Wor1 and the pheromone receptor are
key for biofilm formation in strains under conditions in
which the mating pheromone is produced [41], but not
required in the monocultures of the commonly studied
a/α mating type strain used here.

Table 1 Number of proteins in Candida albicans and
Pseudomonas aeruginosa associated with the GO term “Biofilm
formation” (GO:0042710) in the GOA databases versus
experimental results

GOA annotations

C. albicans

Total, 2308 Unannotated Annotated

CAFA experiments
False 2034 29

True 240 5

P. aeruginosa

Total, 4056 Unannotated Annotated

CAFA experiments
False 3491 25

True 532 9
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We used receiver operating characteristic (ROC) curves
to measure the prediction accuracy. Area under ROC
curves (AUROC) was used to compare the performance.
AUROC is a common accuracy measure for classification
problems where it evaluates how good a model is at dis-
tinguishing between the positive and negative classes. No
method in CAFA-π or CAFA3 (not shown) exceeded an
AUC of 0.60 on this term-centric challenge (Fig. 9) for
either species. Performance for the best methods slightly
exceeded a BLAST-based baselines. In the past, we have
found that predicting BPO terms, such as biofilm forma-
tion, resulted in poorer method performance than pre-
dicting MFO terms. Many CAFA methods use sequence
alignment as their primary source of information (the
“Diversity of methods” section). For Pseudomonas aerug-
inosa, a pre-built expression compendium was available

from prior work [33]. Where the compendium was avail-
able, simple gene expression-based baselines were the
best-performing approaches. This suggests that success-
ful term-centric prediction of biological processes may
need to rely more heavily on information that is not
sequence-based and, as previously reported, may require
methods that use broad collections of gene expression
data [42, 43].

Motility
In March 2018, there were 302,121 annotations for
proteins with the GO term: cilium or flagellum-
dependent cell motility (GO:0001539) and its descen-
dent terms, which included cell motility in all eukary-
otic (GO:0060285), bacterial (GO:0071973), and archaeal
(GO:0097590) organisms. Of these, 187 had experimental

Fig. 9 AUROC of the top five teams in CAFA-π . The best-performing model from each team is picked for the top five teams, regardless of whether
that model is submitted as model 1. Four baseline models all based on BLAST were computed for Candida, while six baseline models were
computed for Pseudomonas, including two based on expression profiles. All team methods are in gray while BLAST methods are in red, BLAST
computational methods are in blue, and expression are in yellow, see Table 3 for the description of the baselines
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evidence codes, and the most common organism to have
annotations was P. aeruginosa, on which our screen was
performed (Additional file 1: Table S2).
As expected, mutants defective in the flagellum or its

motor were defective in motility (fliC and other fli and
flg genes). For some of the genes that were expected, but
not detected, the annotation was based on the experi-
ments performed in a medium different from what was
used in these assays. For example, PhoB regulates motil-
ity but only when phosphate concentration is low [44].
Among the genes that were scored as defective in motility,
some are known to have decreased motility due to over
production of carbohydrate matrix material (bifA) [45], or
the absence of directional swimming due to absence of
chemotaxis functions (e.g., cheW, cheA) and others likely
showed this phenotype because of a medium-specific
requirement such as biotin (bioA, bioC, and bioD) [46].
Table 2 shows the contingency table for the number of
proteins that are detected by our experiment versus GOA
annotations.
The results from this evaluation were consistent with

what we observed for biofilm formation. Many of the
genes annotated as being involved in biofilm formation
were identified in the screen. Others that were annotated
as being involved in biofilm formation did not show up in
the screen because the strain background used here, strain
PA14, uses the exopolysaccharide matrix carbohydrate Pel
[47] in contrast to the Psl carbohydrate used by another
well-characterized strain, strain PAO1 [48, 49]. The psl
genes were known to be dispensable for biofilm formation
in the strain PA14 background, and this nuance highlights
the need for more information to be taken into account
when making predictions.
The CAFA-π methods outperformed our BLAST-based

baselines but failed to outperform the expression-based
baselines. Transferred methods from CAFA3 also did
not outperform these baselines. It is important to note
this consistency across terms, reinforcing the finding that
term-centric prediction of biological processes is likely to
require non-sequence information to be included.

Long-termmemory in D.melanogaster
Prior to our experiments, there were 1901 annota-
tions made in the long-term memory, including 283

Table 2 Number of proteins in Pseudomonas aeruginosa
associated with function motility (GO:0001539) in the GOA
databases versus experimental results

GOA annotations

Total, 3630 Unannotated Annotated

CAFA experiments
False 3195 12

True 403 21

experimental annotations. Drosophila melanogaster had
the most annotated proteins of long-term memory with
217, while human has 7, as shown in Additional file 1:
Table S3.
We performed RNAi experiments in Drosophila

melanogaster to assess whether 29 target genes were asso-
ciated with long-term memory (GO:0007616). Briefly,
flies were exposed to wasps, which triggers a behavior
that causes females to lay fewer eggs. The acute response
is measured until 24 h post-exposure, and the long-term
response is measured at 24 to 48 h post-exposure. RNAi
was used to interfere with the expression of the 29 target
genes in the mushroom body, a region of the fly brain
associated with memory. Using this assay, we identified 3
genes involved in the perception of wasp exposure and 12
genes involved in the long-term memory. For details on
the target selection and fly assay, see [29]. None of the 29
genes had an existing annotation in the GOA database.
Because no genome-wide screen results were available,
we did not release this as part of the CAFA-π and instead
relied only on the transfer of methods that predicted the
“long-term memory" at least once in D. melanogaster
from CAFA3. Results from this assessment were more
promising than our findings from the genome-wide
screens in microbes (Fig. 10). Certain methods performed
well, substantially exceeding the baselines.

Participation growth
The CAFA challenge has seen growth in participation,
as shown in Fig. 11. To cope with the increasingly large
data size, CAFA3 utilized the Synapse [50] online plat-
form for submission. Synapse allowed for easier access
for participants, as well as easier data collection for the
organizers. The results were also released to the individ-
ual teams via this online platform. During the submission
process, the online platform also allows for customized
format checkers to ensure the quality of the submission.

Methods
Benchmark collection
In CAFA3, we adopted the same benchmark generation
methods as CAFA1 and CAFA2, with a similar timeline
(Fig. 12). The crux of a time-delayed challenge is the
annotation growth period between time t0 and t1. All
target proteins that have gained experimental annotation
during this period are taken as benchmarks in all three
ontologies. “No knowledge” (NK, no prior experimental
annotations) and “Limited knowledge” (LK, partial prior
experimental annotations) benchmarks were also distin-
guished based on whether the newly gained experimental
annotation is in an ontology that already have experimen-
tal annotations or not. Evaluation results in Figs. 3 and
4 are made using the No knowledge benchmarks. Evalu-
ation results on the Limited knowledge benchmarks are
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Fig. 10 AUROC of top five teams in CAFA3. The best-performing model from each team is picked for the top five teams, regardless of whether that
model is submitted as model 1. All team methods are in gray while BLAST methods are in red and BLAST computational methods are in blue, see
Table 3 for the description of the baselines

shown in Additional file 1: Figure S3. For more informa-
tion regarding NK and LK designations, please refer to the
Additional file 1 and the CAFA2 paper [26].
After collecting these benchmarks, we performed two

major deletions from the benchmark data. Upon inspect-
ing the taxonomic distribution of the benchmarks, we
noticed a large number of new experimental annotations
from Candida albicans. After consulting with UniProt-
GOA, we determined these annotations have already
existed in the Candida GenomeDatabase long before 2018
but were only recently migrated to GOA. Since these
annotations were already in the public domain before
the CAFA3 submission deadline, we have deleted any
annotation from Candida albicans with an assigned date
prior to our CAFA3 submission deadline. Another major
change is the deletion of any proteins with only a protein-
binding (GO:0005515) annotation. Protein binding is a
highly generalized function description, does not provide

more specific information about the actual function of a
protein, and in many cases may indicate a non-functional,
non-specific binding. If it is the only annotation that a
protein has gained, then it is hardly an advance in our
understanding of that protein; therefore, we deleted these
annotations from our benchmark set. Annotations with
a depth of 3 make up almost half of all annotations in
MFO before the removal (Additional file 1: Figure S15B).
After the removal, the most frequent annotations became
of depth 5 (Additional file 1: Figure S15A). In BPO, the
most frequent annotations are of depth 5 or more, indi-
cating a healthy increase of specific GO terms being
added to our annotation database. In CCO, however, most
new annotations in our benchmark set are of depths
3, 4, and 5 (Additional file 1: Figure S15). This differ-
ence could partially explain why the same computational
methods perform very differently in different ontologies
and benchmark sets. We have also calculated the total

Fig. 11 CAFA participation has been growing. Each principal investigator is allowed to head multiple teams, but each member can only belong to
one team. Each team can submit up to three models
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Fig. 12 CAFA3 timeline

information content per protein for the benchmark sets
shown in Additional file 1: Figure S16. Taxonomic dis-
tributions of the proteins in our final benchmark set are
shown in Fig. 6.
Additional analyses were performed to assess the char-

acteristics of the benchmark set, including the overall
information content of the terms being annotated.

Protein-centric evaluation
Two main evaluation metrics were used in CAFA3, the
Fmax and the Smin. The Fmax based on the precision-recall
curve (Fig. 3), while the Smin is based on the remain-
ing uncertainty/missing information (RU-MI) curve as
described in [51] (Fig. 4), where S stands for semantic
distance. The shortest semantic distance across all thresh-
olds is used as the Smin metric. The RU-MI curve takes
into account the information content of each GO term
in addition to counting the number of true positives,
false positives, etc., see Additional file 1 for the precise
definition of Fmax and Smin. The information theory-
based evaluation metrics counter the high-throughput
low-information annotations such as protein binding, but
down-weighing these terms according to their informa-
tion content, as the ability to predict such non-specific
functions are not as desirable and useful and the ability to
predict more specific functions.
The two assessment modes from CAFA2 were also used

in CAFA3. In the partial mode, predictions were evaluated
only on those benchmarks for which amodel made at least
one prediction. The full evaluation mode evaluates all
benchmark proteins, and methods were penalized for not
making predictions. Evaluation results in Figs. 3 and 4 are
made using the full evaluation mode. Evaluation results
using the partial mode are shown in Additional file 1:
Figure S2.
Two baseline models were also computed for these

evaluations. The Naïve method assigns the term fre-
quency as the prediction score for any protein, regard-
less of any protein-specific properties. BLAST was based
on the results using the Basic Local Alignment Search

Tool (BLAST) software against the training database [52].
A term will be predicted as the highest local align-
ment sequence identity among all BLAST hits annotated
from the training database. Both of these methods were
trained on the experimentally annotated proteins and
their sequences in Swiss-Prot [53] at time t0.

Microbe screens
To assess the matrix production, we used mutants from
the PA14 NR collection [54]. Mutants were transferred
from the− 80 ◦C freezer stock using a sterile 48-pinmulti-
prong device into 200 μl LB in a 96-well plate. The cultures
were incubated overnight at 37 ◦C, and their OD600 was
measured to assess growth.Mutants were then transferred
to tryptone agar with 15 g of tryptone and 15 g of agar
in 1L amended with Congo red (Aldrich, 860956) and
Coomassie brilliant blue (J.T. Baker Chemical Co., F789-
3). Plates were incubated at 37 ◦C overnight followed
by 4-day incubation at room temperature to allow the
wrinkly phenotype to develop. Colonies were imaged and
scored on day 5. To assess motility, mutants were revived
from freezer stocks as described above. After overnight
growth, a sterile 48-pin multiprong transfer device with a
pin diameter of 1.58 mm was used to stamp the mutants
from the overnight plates into the center of swim agar
made with M63 medium with 0.2% glucose and casamino
acids and 0.3% agar). Care was taken to avoid touch-
ing the bottom of the plate. Swim plates were incubated
at room temperature (19–22 ◦C) for approximately 17 h
before imaging and scoring. Experimental procedures
in P. aeruginosa to determine proteins that are associ-
ated with the two functions in CAFA-π are shown in
Fig. 13.
Biofilm formation in Candida albicans was assessed in

single gene mutants from the Noble [55] and GRACE [56]
collections. In the Noble Collection, mutants of C. albi-
cans have had both copies of the candidate gene deleted.
Most of the mutants were created in biological dupli-
cate. From this collection, 1274 strains corresponding to
653 unique genes were screened. The GRACE Collection
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Fig. 13 Experimental procedure of determining genes associated with the functions biofilm formation (a) and motility (b) in P. aeruginosa

provided mutants with one copy of each gene deleted and
the other copy placed under the control of a doxycycline-
repressible promoter. To assay these strains, we used
a medium supplemented with 100 μg/ml doxycycline
strains, when rendered them functional null mutants. We
screened 2348 mutants from the GRACE Collection, 255
of which overlapped with mutants in the Noble Collec-
tion, for 2746 total unique mutants screened in total. To
assess the defects in biofilm formation or biofilm-related
traits, we performed 2 assays: (1) colony morphology on
agar medium and (2) biofilm formation on a plastic sur-
face (Fig. 14). For both of these assays, we used Spider
medium, which was designed to induce hyphal growth
in C. albicans [57] and which promotes biofilm forma-
tion [39]. Strains were first replicated from frozen 96-well
plates to YPD agar plates. Strains were then replicated

from YPD agar to YPD broth and grown overnight at
30 ◦C. From YPD broth, strains were introduced onto Spi-
der agar plates and into 96-well plates of Spider broth.
When strains from the GRACE Collection were assayed,
100 μg/ml doxycycline was included in the agar and
broth, and aluminum foil was used to protect the media
from light. Spider agar plates inoculated with C. albicans
mutants were incubated at 37 ◦C for 2 days before colony
morphologies were scored. Strains in Spider broth were
shaken at 225 rpm at 37 ◦C for 3 days and then assayed
for biofilm formation at the air-liquid interface as follows.
First, broth was removed by slowly tilting the plates and
pulling the liquid away by running a gloved hand over
the surface. Biofilms were stained by adding 100 μl of
0.1 percent crystal violet dye in water to each well of the
plate. After 15 min, plates were gently washed in three
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Fig. 14 a: different phenotypes in response to doxycycline treatment: low growth, smooth, no growth and intermediate. b: adherence phenotypes.
See text for details

baths of water to remove dye without disturbing biofilms.
To score biofilm formation for agar plates, colonies were
scored by eye as either smooth, intermediate, or wrinkled.
A wild-type colony would score wrinkled, and mutants
with intermediate or smooth appearance were considered
defective in colony biofilm formation. For biofilm forma-
tion on a plastic surface, the presence of a ring of cell
material in the well indicated normal biofilm formation,
while low or no ring formation mutants were considered
defective. Genes whose mutations resulted defects in both
or either assay were considered true for biofilm function.
A complete list of the mutants identified in the screens is
available in Additional file 1: Table S1.
A protein is considered true in the biofilm function, if

its mutant phenotype is smooth or intermediate under
doxycycline.

Term-centric evaluation
The evaluations of the CAFA-π methods were based on
the experimental results in the “Microbe screens” section.
We adopted Fmax based on both precision-recall curves
and area under ROC curves. There are a total of six
baseline methods, as described in Table 3.

Discussion
Since 2010, the CAFA community has been the home
to a growing group of scientists across the globe sharing
the goal of improving computational function prediction.
CAFA has been advancing this goal in three ways. First,
through independent evaluation of computational meth-
ods against the set of benchmark proteins, thus providing
a direct comparison of the methods’ reliability and per-
formance at a given time point. Second, the challenge
assesses the quality of the current state of the annota-
tions, whether they are made computationally or not, and
is set up to reliably track it over time. Finally, as described
in this work, CAFA has started to drive the creation
of new experimental annotations by facilitating syner-
gies between different groups of researchers interested in
function of biological macromolecules. These annotations
not only represent new biological discoveries, but simul-
taneously serve to provide benchmark data for rigorous
method evaluation.
CAFA3 and CAFA-π feature the latest advances in

the CAFA series to create advanced and accurate meth-
ods for protein function prediction. We use the repeated
nature of the CAFA project to identify certain trends
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Table 3 Baseline methods in term-centric evaluation of protein function prediction

Model
number

Training data Score assignment

Expression 1 Gene expression compendium for
P. aeruginosa PAO1

Highest correlation score out of all pairwise
correlations

2 Top 10 average correlation score

BLAST 1 All experimental annotation in UniProt-GOA. Sequences from Swiss-Prot

Highest sequence identity out of all pairwise
BLASTp hits

2 All experimental annotation in UniProt-GOA. Sequences from Swiss-Prot
and TrEMBL

blastcomp 1 All experimental and computational annotations in UniProt-GOA.
Sequences from Swiss-Prot

2 All experimental and computational annotations in UniProt-GOA.
Sequences from Swiss-Prot and TrEMBL

via historical assessments. The analysis revealed that the
performance of CAFA methods improved dramatically
between CAFA1 and CAFA2. However, the protein-
centric results for CAFA3 are mixed when compared to
historical methods. Though the best-performing CAFA3
method outperformed the top CAFA2 methods (Fig. 1),
this was not consistently true for other rankings. Among
all 3 CAFA challenges, CAFA2 and CAFA3 methods
inhabit the top 12 places in MFO and BPO. Between
CAFA2 and CAFA3, the performance increase is more
subtle. Based on the annotations of methods (Addi-
tional file 1), many of the top-ranking methods are
improved versions of the methods that have been evalu-
ated in CAFA2. Interestingly, the top-performing CAFA3
method, which consistently outperformed the methods
from all past CAFAs in the major categories (GOLabeler

[23]), utilized 5 component classifiers trained from differ-
ent features; those included GO term frequency, sequence
alignment, amino acid trigram, domains, motifs, and
biophysical properties. It performs best in the Molec-
ular Function Ontology, where sequence features per-
form best. Another method which did not participate in
CAFA3 yet seems to perform well under CAFA parame-
ters is NetGO [58], which utilizes the information from
STRING, a network association database [59] in addition
to sequence information. Taken together, the strong pre-
dictive performance of mRNA co-expression data (Figs. 9
and 15) leads us to hypothesize that including more varied
sources of data can lead to additional large improvements
in protein function prediction. We are looking forward
to testing this hypothesis in future CAFA challenges. It
should be noted that CAFA uses both Fmax and Smin.

Fig. 15 AUROC of top 5 teams in CAFA-π . The best-performing model from each team is picked for the top five teams, regardless of whether that
model is submitted as model 1. All team methods are in gray while BLAST methods are in red, BLAST computational methods are in blue and
expression are in yellow. See Table 3 for description of the baselines
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Fmax’s strength lies in its interpretability, as it is sim-
ply the maximum F1 given for each model. At the same
time, precision/recall-based assessment does not capture
the hierarchical nature of ontologies or the differences
in information content between different GO terms. For
that reason, we also use the Smin score which incorporates
information content, but is somewhat less interpretable
than Fmax and less robust to the problems of incomplete
annotation [60, 61]. Additionally, since the information
content of a GO term is derived from its frequency in the
corpus [62], it is somewhat malleable depending on the
corpus from which it is derived. We therefore use both
measures for scoring, to achieve a more comprehensive
picture of the models’ performance.
For this iteration of CAFA, we performed genome-wide

screens of phenotypes in P. aeruginosa and C. albicans as
well as a targeted screen in D. melanogaster. This not only
allowed us to assess the accuracy with whichmethods pre-
dict genes associated with select biological processes, but
also to use CAFA as an additional driver for new biological
discovery. Note that high-throughput screening for a sin-
gle phenotype should be interpreted with caution as the
phenotypic effect may be the result of pleiotropy, and the
phenotype in question may be expressed as part of a set
of other phenotypes. The results of genome-wide screen-
ings typically lack context for the observed phenotypic
effects, and each genotype-phenotype association should
be examined individually to ascertain how immediate is
the phenotypic effect from the seeming genotypic cause.
In sum, our experimental work identified more than

a thousand new functional annotations in three highly
divergent species. Though all screens have certain limita-
tions, the genome-wide screens also bypass questions of
biases in curation. This evaluation provides key insights:
CAFA3methods did not generalize well to selected terms.
Because of that, we ran a second effort, CAFA-π , in which
participants focused solely on predicting the results of
these targeted assays. This targeted effort led to improved
performance, suggesting that when the goal is to iden-
tify genes associated with a specific phenotype, tuning
methods may be required.
For CAFA evaluations, we have included both Naïve and

sequence-based (BLAST) baseline methods. For the eval-
uation of P. aeruginosa screen results, we were also able
to include a gene expression baseline from a previously
published compendium [33]. Intriguingly, the expression-
based predictions outperformed the existing methods for
this task. In future CAFA efforts, we will include this type
of baseline expression-basedmethod across evaluations to
continue to assess the extent to which this data modal-
ity informs gene function prediction. The results from the
CAFA3 effort suggest that gene expression may be partic-
ularly important for successfully predicting term-centric
biological process annotations.

The primary takeaways from CAFA3 are as follows:
(1) genome-wide screens complement annotation-based
efforts to provide a richer picture of protein func-
tion prediction; (2) the best-performing method was a
new method, instead of a light retooling of an existing
approach; (3) gene expression, and more broadly, systems
data may provide key information to unlocking biologi-
cal process predictions, and (4) performance of the best
methods has continued to improve. The results of the
screens released as part of CAFA3 can lead to a re-
examination of approaches which we hope will lead to
improved performance in CAFA4.
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ABSTRACT

The IntFOLD server provides a unified resource
for the automated prediction of: protein tertiary
structures with built-in estimates of model accu-
racy (EMA), protein structural domain boundaries,
natively unstructured or disordered regions in pro-
teins, and protein–ligand interactions. The compo-
nent methods have been independently evaluated via
the successive blind CASP experiments and the con-
tinual CAMEO benchmarking project. The IntFOLD
server has established its ranking as one of the best
performing publicly available servers, based on in-
dependent official evaluation metrics. Here, we de-
scribe significant updates to the server back end,
where we have focused on performance improve-
ments in tertiary structure predictions, in terms of
global 3D model quality and accuracy self-estimates
(ASE), which we achieve using our newly improved
ModFOLD7 rank algorithm. We also report on vari-
ous upgrades to the front end including: a stream-
lined submission process, enhanced visualization of
models, new confidence scores for ranking, and links
for accessing all annotated model data. Furthermore,
we now include an option for users to submit se-
lected models for further refinement via convenient
push buttons. The IntFOLD server is freely available
at: http://www.reading.ac.uk/bioinf/IntFOLD/.

INTRODUCTION

Despite recent advances in the experimental methods for de-
termining protein tertiary structures and their interactions,
the sequence-to-structure gap has been relentlessly increas-
ing. The gap in our knowledge of protein sequences ver-
sus known structures is being exacerbated by onset of ever
cheaper and more efficient genome sequencing methods. At
the time of writing, we now have close to two hundred mil-

lion unique protein sequences in UniProt (1), but the num-
ber of protein structures in the Protein Data Bank (PDB)
(2) remains <150 000. In order to realize the promise of
next generation sequencing, it is clear that we must rely on
computational tools for predicting structures and building
3D models of proteins directly from sequence so that we
may close the knowledge gap. While the routine use of pre-
dicted 3D models by life scientists continues to grow, the
protein structure prediction community has faced a num-
ber of challenges, which may have restricted the more wide
spread acceptance of 3D protein models by non-experts (3).
For example, until relatively recently we have not had meth-
ods that can confidently estimate the likely quality of 3D
protein models, although these tools are now becoming in-
creasingly accurate and more widely available (4).

The structure prediction community has made great ad-
vances over the past 20+ years with several major improve-
ments in template based modelling (TBM), free modelling
(FM) and estimates of 3D model accuracy (EMA) com-
ing in the last few CASP (Critical Assessment of Struc-
ture Prediction) experiments (5–7). Successive versions of
the IntFOLD server components have been independently
benchmarked in the CASP experiments, from CASP9 to
CASP13, and continually by the CAMEO project (8). Many
of our own advances in performance over the years have
come through improvements in our ModFOLD methods
for EMA, and in particular our Accuracy Self Estimate
(ASE) scoring for our 3D models (5,9).

Previous versions of the IntFOLD server were described
in the Web Server issues of this journal in 2011 (10) and
2015 (11). Since its inception, the server has had ∼15,000
unique users and it has completed ∼200 000 predictions.
The server’s component methods have been applied in or-
der to model protein structures and their interactions for a
diverse range of specialisations accross the life sciences. For
example, our tools have been used: to model novel proteins
in the Drosophila melanogaster genome (12), to reveal new
interactions and mechanisms for the regulation of mam-
malian GCKIII kinases (13,14), to explain the evolutionary

*To whom correspondence should be addressed. Tel: +44 118 378 6332; Fax: +44 118 378 8106; Email: l.j.mcguffin@reading.ac.uk

C© The Author(s) 2019. Published by Oxford University Press on behalf of Nucleic Acids Research.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

http://orcid.org/0000-0003-4501-4767
http://www.reading.ac.uk/bioinf/IntFOLD/


Nucleic Acids Research, 2019, Vol. 47, Web Server issue W409

resurrection of flagellar motility in Pseudomonas fluorescens
(15), to structurally and functionally annotate the proteome
of barley powdery mildew (Blumeria graminis f. sp. hordei)
(16), and to understand the effect of the missense mutation
associated with dermatosparaxis (17).

In this paper, we describe the significant modifications to
IntFOLD server and its component methods, which have
led to successive performance gains since our last paper on
the server from 2015. As well as reporting the major en-
hancements ‘under the hood’ to the server backend, we also
report on the provision of new data outputs and user inter-
face improvements.

MATERIALS AND METHODS

The IntFOLD server provides a single point of access to an
integrated suite of six component methods: IntFOLD-TS,
for tertiary structure prediction (9–11,18,19); ModFOLD,
for 3D model Accuracy Self-Estimate (ASE) scoring (9,20);
ReFOLD, for 3D model refinement (9,21); DISOclust, for
disorder prediction (22,23); DomFOLD for structural do-
main prediction (10,11) and FunFOLD for ligand bind-
ing site prediction (24,25). These component methods have
been independently evaluated in the various CASP (5,7,26–
28) experiments over the years and are continually bench-
marked by the CAMEO project (8) (also see results sec-
tion). The major enhancement to the server methodology,
since the last web server paper, has been to the underlying
Tertiary Structure (TS) prediction algorithm. Since its in-
ception, the high performance tertiary structure prediction
algorithms with integrated model quality assessment have
been at the core of IntFOLD server (10,11,18), and these
factors have been key contributors to the historical success
of the component methods (5,7,9,18,26–30). For version 5
of the IntFOLD server, the algorithms for both 3D model
selection and ASE scoring have been upgraded via the inte-
gration of our new ModFOLD7 rank method.

The IntFOLD-TS method is the major component of
the server and its output of high quality 3D models
forms the basis for subsequent prediction algorithms. The
IntFOLD5-TS method was newly developed for CASP13
and worked via iterative multi-template based modelling
(19) using the target-template alignments from 14 alterna-
tive methods (SP3 (31), SPARKS2 (31), HHsearch (32),
COMA (33), SPARKSX (34), CNFsearch (35) and the
eight alternative threading methods that are integrated into
the current LOMETS package (36)). The multiple target-
template alignments for 3D modelling were then selected
using ASE scoring via the ModFOLD7 rank method, with
the aim of minimising local errors in final generated mod-
els. Additionally, the HHpred (37) method and the tem-
plate free method I-TASSER light (38) (for sequence <500
residues; run in ‘light mode’ with wall-time restricted to
5h) contributed models for ranking. All of the final models
were pooled and then scored and ranked using the Mod-
FOLD7 rank method and presented to the user in descend-
ing order of global model quality. The ASE scores from
ModFOLD7 rank were included in the temperature factor
column of each of the PDB formatted model files. The in-
tegration of ASE scores in this way allows users to conve-
niently view the local model quality as temperature gradi-

ent that can be mapped onto their 3D models using their
favourite molecular viewing software, for example PyMOL
(http://www.pymol.org/).

The ModFOLD7 rank method is our latest update to
Quality Assessment (QA) that combines the strengths of
multiple pure-single and quasi-single model methods for
improving prediction accuracy, building on the successful
strategy that was used in ModFOLD6 (4,9,20). For the Int-
FOLD5 server our major emphasis was on increasing the
performance of per-residue accuracy prediction for our own
models, as well as improving our model ranking and score
consistency for our models. Each IntFOLD5 model was
considered individually using 6 pure-single model methods
(CDA (20), SSA (20), ProQ2 (4), ProQ2D (39), ProQ3D
(39) and VoroMQA (40)), and four alternative quasi-single
model methods (DBA (20), MF5s (20), MFcQs (20) and
ResQ (41)). For producing final local score outputs, Artifi-
cial Neural networks (NNs) were used to combine the com-
ponent per-residue/local quality scores from each of the 10
alternative scoring methods, resulting in a final consensus
of per-residue quality scores for each model. For producing
the global score outputs, we made several variants that com-
bined the mean global scores from the different methods
and each were optimized for different aspects of the quality
estimation problem. For the IntFOLD5 server, the accurate
ranking of our models was the main objective, so for this
reason we integrated the ModFOLD7 rank variant, which
was optimized for ranking.

As well as improvements in performance to underlying
algorithms, several new user interface upgrades were imple-
mented. These included a streamlined submission form, re-
calibrated P-values for confidence scoring of model quality
estimates, the ability to download compressed archives of
all annotated models, and the ability to interact with mod-
els and then further refine them with a few clicks via simple
push buttons. The server inputs and outputs are described
in more detail below.

RESULTS AND DISCUSSION

Server inputs and outputs

Inputs. A single amino acid sequence for the protein chain
is the only required input for the server. However, users also
have the option to provide a short memorable name for their
prediction job and an email address, which will only be used
to provide a notification of the link to the results when the
predictions are completed. If users do not wish to be noti-
fied via email, then they can bookmark the link to the results
page for later viewing.

Graphical outputs. Examples of the graphical outputs
from the IntFOLD5 server are shown in Figure 1. The
graphical output is presented as a single table that graph-
ically summarises all prediction data using thumbnail im-
ages of ASE plots and models, links to the template infor-
mation and colour coded scoring (Figure 1A). It is always
recommended to choose the model with the highest score or
lowest P-value. The confidence rating relates to the P-value.
For example, a ‘CERT’ rating relates to models where P <
0.001, i.e., less than a 1/1000 chance that the model is incor-
rect (see help pages for other ratings). So all ‘CERT’ mod-

http://www.pymol.org/
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Figure 1. The IntFOLD5 server results pages for CASP13 target T0971. (A) Graphical output from the main results page showing (from top to bottom):
1. The table with the top 5 selected 3D models and scores (table truncated here to fit); 2. The prediction of natively unstructured/disordered regions;
3. The predicted structural domain boundaries; 4. The ligand binding site prediction; 5. The full model quality rankings for all generated models (table
truncated here to fit). The arrows point to additional pages that are linked to when users click on images/buttons on the main page. (B) Clicking the button
titled ‘View model in 3D and download’ leads to dynamically generated pages showing interactive views of the model, and structural superpositions of
the model with relevant template/s, which can be manipulated in 3D using the JSmol/HTML5 framework (http://www.jmol.org/) and/or downloaded for
local viewing. (C) Clicking the button titled ‘Refine model using ReFOLD’ submits the 3D model to the ReFOLD service (21) for refinement guided by
accurate quality estimates. (D) Clicking on the image of the ligand binding site prediction links to a dynamically generated page that provides numerous
options for interactively viewing the likely protein–ligand interactions in 3D with JSmol.

http://www.jmol.org/
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Figure 2. The IntFOLD5 server predictions for CASP13 target T0971 – comparison of models with the native crystal structure (PDB ID: 6d34). All
images were rendered using PyMOL (http://www.pymol.org/). (A) The IntFOLD5 3D model coloured by accuracy self-estimate of local quality using the
temperature coloured scheme from blue (indicating residues in the model predicted to be close to the native structure) to red (indicating residues in the
model that are far from the native or unstructured). (B) The IntFOLD5 3D model with the main cluster of predicted ligands (red spheres) indicating the
predicted location of binding site. (C) The crystal structure of T0971/6d34 with ligand (blue spheres). Note: the disordered domain predicted in the model
is absent in the X-ray data. (D) Superposition of the IntFOLD5 model and the native structure.

els are highly likely to have the correct fold. However, the
models with the lowest P-values are more likely to have the
highest backbone accuracy and overall quality. Several new
user interface options are available. Users have the option
to download coordinates and view the detailed IntFOLD5-
TS tertiary structure prediction results interactively in 3D
(Figure 1B) and submit individual 3D models for further re-
finement using ReFOLD (Figure 1C) via simple push but-
tons. Downloadable coordinates and interactive 3D views
of the protein ligand interactions can also be accessed via
the FunFOLD results summary image (Figure 1D). In ad-
dition, clicking on the DISOclust disorder prediction pro-
file images and the thumbnail images of the ASE score pro-
files from ModFOLD7 rank will allow users to view and/or
download higher quality versions of the plots.

Figure 2 shows a comparison of the example models for
CASP13 target T0971 (obtained via the pages shown in Fig-
ure 1) and the native structure (PDB ID 6d34). The 3D
model of the protein (Figure 2A and B) is close to the na-
tive structure shown in Figure 2C. The predicted location
of the ligand binding site is shown to be accurate (Figure
2B) and there is a close superposition of the model and na-
tive structure (Figure 2D), with a GDT TS score of 95%.
The ASE for the model, indicated by the colouring in Fig-
ure 2A, and the identification of the unstructured domain
are also shown to be accurately predicted.

Machine readable outputs. All of the raw data files for the
predictions are available to download via links on the re-
sults pages. The file formats comply with the CASP and/or
CAMEO data standards. An additional new feature is the
provision of a link that allows users to download all of the

ASE annotated models in PDB format (with the error es-
timates, in Angstroms, in place of temperature factor data)
as a zipped archive.

Independent benchmarking

Each major version of the server has been independently
tested in each of the relevant categories of the CASP exper-
iments (from CASP9 to CASP13, http://predictioncenter.
org) and the performance has been competitive (9,18). Re-
cently, the component methods have ranked among top
independent servers in the Tertiary Structure (TS) predic-
tion (5) and Estimates of Model Accuracy (EMA) cate-
gories (7), as well as ranking well in the historical cate-
gories of intrinsic disorder prediction and function predic-
tion (26,27). The DISOclust method was designed to add
a significant performance boost to DISOPRED (22), and
the latest version of DISOPRED is integrated with the Int-
FOLD server. Additionally, the IntFOLD5 server compo-
nents (IntFOLD, ModFOLD and FunFOLD) have been
continuously benchmarked using the CAMEO resource (8)
and they have been shown to be competitive in each respec-
tive category (see results from the 3D, QE and LB cate-
gories at https://www.cameo3d.org/). Furthermore, the GO
term outputs from the FunFOLD component of the server
have been benchmarked during the most recent CAFA ex-
periment (https://www.biofunctionprediction.org/cafa/, pa-
per in preparation).

CAMEO results summary. The TS predictions from
the IntFOLD5 server are continuously evaluated by the
CAMEO project (8). The IntFOLD versions have consis-
tently ranked among the top few public servers accord-
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Table 1. Independent benchmarking of tertiary structure predictions with CAMEO 3D data. Performance results for 3 months of data (26 October
2018 to 19 January 2019) are shown for all (250) targets and all (17) public methods. Data are sorted by average lDDT score for all targets. The scores for
the IntFOLD-TS methods are indicated in bold. Data are taken from the CAMEO 3D front page http://www.cameo3d.org/ on 19 January 2019.

Average lDDT Average lDDT-BS

Server name All targets Modelled targets All targets Modelled targets

IntFOLD5-TS 68.04 68.04 70.94 70.94
RaptorX 67.38 67.38 68.45 68.45
Robetta 65.51 69.1 63.24 66.11
HHpredB 64.06 64.06 68.59 68.59
SWISS-MODEL 62.22 62.97 64.85 65.56
IntFOLD4-TS 55.02 68.1 58.12 73.25
SPARKS-X 54.63 60.7 58.07 66.78
M4T-SMOTIF-TF 54.45 60.77 62.92 65.78
IntFOLD3-TS 53.75 66.85 55.76 69.33
PRIMO 51.74 57.48 58.32 64.65
PRIMO BST CL 51.71 57.45 58.32 64.65
NaiveBLAST 50.34 55.69 60.08 62.11
PRIMO BST 3D 49.83 55.86 57.99 63.51
PRIMO HHS 3D 48.27 55.87 56.49 62.62
PRIMO HHS CL 46.73 56.43 55.55 61.58
Princeton TEMPLATE 24.46 54.61 25.63 58.95
Phyre2 24.06 52.77 29.27 67.31

Table 2. Independent benchmarking of IntFOLD versions with CAMEO 3D data showing the sequential improvement in server performance since the
last webserver paper describing IntFOLD3. Performance results for 1 year of data (26 January 2018 to 19 January 2019) are shown for a common subset
of 581 targets. The reference method is IntFOLD5-TS and the table is sorted by average lDDT. Data are downloaded from http://www.cameo3d.org/

Avg. lDDT Avg. CAD-score Avg. lDDT-BS

Server Name Dif. Ref. Dif. Ref. Dif. Ref.

IntFOLD5-TS 0 67.72 0 0.67 0 71.86
IntFOLD4-TS 0.53 67.18 0 0.66 0.23 71.62
IntFOLD3-TS 2.11 65.61 0.02 0.65 1.9 69.96

ing to lDDT BS scores and lDDT scores. At the time of
writing, IntFOLD5-TS ranks as the top publicly available
method based on the last 3-month data for all targets (Ta-
ble 1). Based on pairwise comparisons using a common
subset of targets over the last year, IntFOLD5-TS ranks as
the second best 3D server according to the CAMEO lDDT
scores (Supplementary Tables S1 and S2). Moreover, the
IntFOLD5-TS version of the method has been indepen-
dently verified to be an improvement over our two previous
methods (IntFOLD3-TS and IntFOLD4-TS) (Table 2).

CASP12 and 13 results summary. In the last few CASP
experiments since the last webserver publication, the Int-
FOLD server has performed well at Template Based Mod-
elling (TBM), ranking as high as third place and outper-
forming other servers in terms of Accuracy Self Estimates
(ASE) (5). The IntFOLD4 and IntFOLD5 server perfor-
mance rankings, for CASP12 and CASP13 targets respec-
tively, are shown in Supplementary Tables S3–S6. The Int-
FOLD server methods have also been key to our group’s
success at CASP12 and 13 allowing us to rank as high as
second place on the ‘all group’ TBM + TBM/FM domains.
The McGuffin group performance is summarized in Sup-
plementary Tables S7 and S8.

CONCLUSIONS

The IntFOLD server provides free access to an integrated
set of high performance, fully automated tools for struc-
ture and function prediction of proteins from their amino

acid sequences. The component methods of the server are
continually benchmarked via the CAMEO project and they
have been rigorously blind tested at recent CASP exper-
iments. The IntFOLD methods have been independently
verified to rank among the top performing servers in many
prediction categories. Results from the IntFOLD server are
presented to non-expert users in an intuitive manner with
graphical output providing a visual summary of a complex
set of data. More detailed results for individual predictions
can be interactively viewed and the raw, machine readable
data can be accessed in standard data formats.
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Abstract 

 

Proteins are essential molecules with a diverse range of functions; elucidating their 

biological and biochemical roles from their interacting partners can be difficult and time 

consuming using in vitro and/or in vivo methods. Additionally, in vivo protein-ligand binding 

site elucidation is unable to keep pace with current growth in sequencing, leaving the 

majority of new sequences without known functions. Therefore, the development of new 

methods, which aim to predict the protein-ligand interactions and ligand-binding site 

residues directly from amino acid sequences, is becoming increasingly important. In silico 

prediction can utilise either sequence information, structural information or a combination 

of both. In this chapter, we will discuss the broad range of methods for ligand-binding site 
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prediction from protein structure and we will describe our method FunFOLD3, for the 

prediction of protein-ligand interactions and ligand-binding sites based on template-based 

modelling. Additionally we will describe the step-by-step instructions on using the 

FunFOLD3 downloadable application, along with examples from the Critical Assessment of 

Techniques for Protein Structure Prediction (CASP) where FunFOLD3 has been used to aid 

ligand and ligand-binding site prediction. Finally, we will introduce our newer method, 

FunFOLD3-D, a version of FunFOLD3 which will aim to improve template based protein-

ligand binding site prediction through the integration of docking, using AutoDock Vina. 

 

 Key words protein-ligand interactions, ligand-binding site prediction, Critical 

Assessment of Techniques for Protein Structure Prediction (CASP), protein structure 

prediction, template-based modelling, in silico prediction, FunFOLD3, docking  

 

Introduction  

Proteins are essential molecules involved in a wide variety of essential intra- and inter-

cellular activities. The particular activities include, but are not limited to; maintaining 

cellular defences; enzymatic catalysis; metabolism and catabolism; maintenance of the 

structural integrity of cells and signalling within and between cells. Hence, studying protein-
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ligand interactions is an important step in the functional elucidation of proteins involved in 

these cellular processes.1–4  

 

In silico methods are used to address the problem with the sequence-structure-function 

knowledge gaps. Bioinformatics approaches that utilise information from existing protein-

ligand complexes are becoming increasingly important, because ligands that bind to a 

protein are pivotal to understanding protein function. In general, function prediction 

methods can be split into two broad categories: the sequence-based and structure-based 

alignment .5  

 

Sequence comparison is used to infer homology and collect evidence about membership in 

a given family. The key requirement is to properly choose similarity measures and related 

cut-off values in order to avoid false positives and false negatives. When new sequences 

diverge with low homology (<30%) to those within known databases, then finding 

functionally annotated homologs becomes less likely. Sequence alignment relies on the 

evolutionarily related segments of two proteins, which could consist of binding sites and 

domains.6 The main strength of sequence-based approaches for prediction of binding sites 

is that methods that utilise this approach have the ability to determine ligand-binding motif 

in proteins that may not have the same overall fold.7 Homology-based methods require 
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related proteins with significant identity to the query protein to be available in the PDB 

because the conservation of biochemical function drops rapidly for proteins sharing <35-

40% sequence identity.7 Therefore, a limitation of this approach is that methods do not 

work for remote homologs (<30% pairwise identity). For sequence-based methods, the 

homologous sequence of the target sequence is required, and a multiple sequence 

alignment (MSA) is constructed. Then, using the specific approach conserved residues are 

identified among all the sites in the MSA. The selection of homologous sequences to a query 

protein is a critical step in methods based on both sequence and structure approaches for 

prediction of protein functional site.7   

 

Structure-based methods require the 3D dimensional structures of proteins, often also 

relying on available structural templates from distantly related proteins.8 There are two 

principal methods to resolve structures experimentally; x-ray crystallography and nuclear 

magnetic resonance (NMR) with the former being the preferred structural tool.8 

Additionally, tertiary structures may be modelled directly from sequences using prediction 

servers.9 Based on the observation of existing protein-ligand binding sites/complexes, it is 

evident that homologous proteins with similar global topology will often bind similar ligands 

and there will be conserved residues.7 As a result, there are methods utilising both 

geometric match and evolutionary information to identify binding sites.7 In general, these 
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methods are broadly classified into geometry-based approaches and energetic based 

approaches. Geometry-based approaches identify binding residues by searching for pockets 

or cavities in a protein structure whereas, energetic-based approaches identify binding 

residues by using various derived interaction energies.7 Whilst purely sequence-based and 

structure-based methods have different approaches, there are many methods which are 

based on a combination of both.10 

 

Considerations when employing structure-based methods for prediction of protein–ligand 

binding sites have a number of limitations, including the following: 1. If a 3D model or 

experimental structure cannot be obtained, then it is not possible to make a prediction; in 

such cases the solution is to rely on purely sequence-based methods. 2. If templates with 

the same fold as the target protein that contain biologically relevant ligands cannot be 

detected, then it is not possible to make a prediction. 3. Most prediction servers, such as 

COACH11 and FunFOLD3,4,12, utilise in-house structure prediction pipelines to construct 

models for protein–ligand interaction predictions that may not always produce the best 

quality model for every target, which may result in over- and under-predicted protein–

ligand binding sites. Nevertheless, despite these shortcomings, prediction methods are 

constantly under development and improvements can be gauged via the rigorous 

independent blind assessment scoring that is employed in competitive community-wide 

experiments and will be discussed later in the chapter.  
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Table 1. Availability of existing tools for ligand binding site prediction from protein structure introduced since 2009  

Figure adapted from10 

Method Year Type 

SiteMap13 2009 Geometric 

Fpocket14 2009 Geometric 

SiteHound15 2009 Energetic 

ConCavity16 2009 Conservation 

3DLigandSite17 2010 Template 

POCASA18 2010 Geometric 

DoGSite19 2010 Consensus 

FunFOLD4 2011 Template 

MetaPocket 2.020 2011 Consensus 

MSPocket21 2011 Geometric 

FTSite22 2012 Energetic 

LISE23 2012 Knowledge/conservation 

COFACTOR24 2012 Template 

COACH11 2013 Template 

G-LoSA25 2013 Template 

eFindSite26 2013 Template 

GalaxySite27 2014 Template/Docking 
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LIBRA28 2015 Template 

P2RANK10 2015 Machine learning 

bSiteFinder29 2016 Template 

ISMBLabLIG30 2016 Machine learning  

DeepSite31  2017 Machine learning  
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The natural step after determination of protein structure, is the prediction of ligand-binding 

sites. An important consideration when investigating protein-ligand interactions is whether 

any predicted ligands are biologically relevant. The most direct way to investigate the 

biological relevance of a ligand is by manual verifications.32 These verifications can consist of 

reading literature, however given the growth of protein sequences and structures, such 

manual checking can be time consuming to carry out for numerous targets. Additionally, 

novel proteins may not have adequate amounts of literature available to deduce the 

biologically relevant ligands. As a result, there has been a need to develop automatic 

procedures to select biologically relevant ligands based on proteins available in PDB.32 These 

consist of; FireDB33, LigASite (LIGand Attachment SITE)34, Binding MOAD (Mother of All 

Databases)35, PDBbind36, BindingDB37 and BioLiP32.  For the Critical Assessment of protein 

Structure Prediction competitions, biologically relevant ligands were defined using 

information from the literature, Swiss-Prot ligand annotations,38 sequence conservation of 

functionally important residues and information from homologous structures.39    

FunFOLD3 

FunFOLD3 is a template-based method for protein-ligand binding site prediction40 and it 

uses an automatic approach for cluster identification and residue selection.4 The main 

requirement for FunFOLD3 is a 3D model and a list of templates as inputs.4 FunFOLD3 will 

provide: 
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1. A list of residues in the target sequence that are most likely to bind a ligand  

2. A list of putative binding ligand(s) 

3. 3D models of the likely protein-ligand interactions  

4. Lists of likely GO terms and EC identifiers 

 

The FunFOLD3 method for predicting ligand-binding site residues is based on the concept 

that, target proteins with similar structures to known structures within the PDB, may also 

contain similar ligand binding sites.3 The FunFOLD3 method predicts protein-ligand binding 

sites from a single sequence using predicted 3D structures (for example from the IntFOLD 

server), and lists of identified PDB structure templates.40  

 

The FunFOLD3 algorithm utilises the TM-align41 method to superpose templates containing 

biologically relevant ligands with the predicted 3D structures.3 This method is a similar 

concept to methods from the Lee group42 and Sternberg group.17 However, the FunFOLD3 

algorithm uses a novel automated method for ligand clustering and identification of binding 

residues.4 The method also integrates protein-ligand binding site and quality assessment 

protocols for the prediction of protein function from sequence via structure.3 
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The input to the FunFOLD3 method  is a 3D model of the protein under analysis and a list of 

template PDB IDs.4 Once the 3D model formatting has been checked, the TM-align method 

is used to superimpose the template structures of the 3D protein model. Template-model 

superpositions with a TM-score ≥0.4 are retained.40 This is because, TM-scores from 0.4 to 

0.6 have previously been shown to mark the transition from unrelated to significantly 

related folds.43 Then superpositions are combined and reoriented using a PyMOL script to 

determine putative ligands.3 The next step is that ligands are assigned to clusters using a 

agglomerative hierarchical clustering algorithm. To determine the ligand binding site 

residues in the selected binding pocket, a novel residue-voting algorithm is used. Residues 

are determined to be in contact with a ligand cluster, if the residue is in contact with the 

ligand cluster.3 Ligands are considered to be part of a cluster if the Van der Waals radius is 

≤0.5 Å. Other authors also support using this cut-off.5 The most probable ligand-binding site 

is the site with the largest ligand cluster.40  

 

Blind evaluation of methods: CASP, CAMEO and CAFA 

There are several community wide prediction experiments such as; Critical Assessment of 

techniques for protein Structure Prediction (CASP),44 the Continuous Automated Model 

EvaluatiOn (CAMEO) project45 and the Critical Assessment of Function Annotation (CAFA).46 

All of the listed methods can be used to analyse the performance of FunFOLD3.  CASP is 
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perhaps the premier community wide experiment for blind testing of modelling methods 

and is used to assess progress in capabilities.47 Contributors are provided with amino acid 

sequences of unknown structures and are asked to deposit structure models.47 The 

deposited models are then compared with newly determined experimental structures. 47 On 

of the scoring methods utilised in the CASP experiments for evaluating ligand binding site 

predicting is the Matthew Correlation Coefficient (MCC score). The MCC score provides a 

statistical score for the comparison of predicted ligand binding sites to observed ligand 

binding site residues. Residues will be assigned to one of the following; true positives, false 

positives, true negatives and false negatives. This provides a score of between -1 and 1, with 

1 being a perfect positive prediction, whereas 0 is a random prediction. The calculation for 

MCC is given below:44  

 

Equation 1. Matthews correlation coefficient  

The equation above illustrates the calculation of the MCC, where TP is the number of true positives, TN is the 

number of true negatives, FP is the number of false positives and FN is the number of false negatives  

 

The main disadvantage of the MCC score is that it is a purely a statistical measure and does 

not consider the overall tertiary structure of the protein.48 In order to address this, a new 

scoring metric, the BDT score was developed and tested.40 The BDT score takes into 
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consideration the distance in 3D space that a predicted binding site residue is from the 

observed binding site residue. Similar to the MCC score, the BDT score of 1 indicates a 

perfect prediction while a score of 0 indicates a random prediction, but the score ranges 

from 0-1. The higher the BDT score, the closer the predicted site is to the observed site.  

  

Equation 2. Binding site distance test score   

The equation above illustrates the calculation of BDT, where Sij was the S-score between a predicted residue i 

and an observed residue j, dij was the Euclidean distance between the C-alpha coordinates of residues i and j 

and d0 was a distance threshold (values between 1 and 3 Å are recommended). The maximum Sij score, 

max(Sij ), was then determined for each predicted residue. The final BDT score is the sum of the maximum Sij 

scores normalized by the greater value of the number of predicted residues (Np) and the number of observed 

residues (No) 

 

The BDT score has been used in CASP experiments since CASP940 and the utilisation of BDT 

in CASP9 by the McGuffin group was cited in the publication about ligand-binding 

residues.49 The BDT score was applied to predictions for the top ranked groups and no 

significant deviations to the MCC-based assessment were observed, supporting BDT as a 

robust alternative for evaluating the prediction of protein-ligand binding sites.  
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Methods  

Instructions for installing and running theFunFOLD3 program have been described 

previously12. A downloadable version of the FunFOLD3 method is available as an executable 

JAR file, which can be run locally.  

 

The system requirements are as follows: 

1. A linux-based operating system such as Ubuntu 

2. A recent version of Java (www.java.com/getjava/) 

3. A recent version of PyMOL (www.pymol.org) 

4. The TM-align program41 (http://zhanglab.ccmb.med.umich.edu/TM-align/). The TMalign 

file is made executable: chmod +x TMalign. 

5. wget and ImageMagick installed system wide. 

6. The CIF chemical components database file50 should be downloaded from here: 

ftp://ftp.wwpdb.org/pub/pdb/data/monomers/components.cif  

7. The BioLip databases51 containing ligand and receptor PDB files are also required (up to 

30 GB of disc space may be required). The databases need to be downloaded in two 

sections: firstly all annotations prior to 6/3/2013 can be downloaded from here for the 

receptor database:  
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http://zhanglab.ccmb.med.umich.edu/BioLiP/download/receptor_2013-03-6.tar.bz2  (3.6 G) 

and from here for the ligand database: 

http://zhanglab.ccmb.med.umich.edu/BioLiP/download/ligand_2013-03-6.tar.bz2 (438 M). 

The text file of the BioLip annotations can be downloaded from here: 

http://zhanglab.ccmb.med.umich.edu/BioLiP/download/BioLiP.tar.bz2. To update the 

databases to include annotations after 2013-03-6 it is recommended to download and use 

this perl script which will update the databases: 

http://zhanglab.ccmb.med.umich.edu/BioLiP/download/download_all_sets.pl. The BioLip 

text file: http://zhanglab.ccmb.med.umich.edu/ BioLiP/download/BioLiP.tar.bz2 and all the 

weekly update text files should be concatenated to form a large text file containing all of the 

annotations. Furthermore, it is recommended to regularly update your BioLip and CIF 

databases. Additionally, a shell script is available as downloadBioLipdata.sh, which can be 

downloaded from here: http://www.reading.ac.uk/bioinf/downloads/, in a compressed 

directory: downloadBioLip_CIF.tar.gz. To run the shell script simply edit the file paths for the 

location of the BioLip databases and the executable directory. 

8. Please ensure your system environment is set to English, as utilising other languages may 

cause problems with the FunFOLD calculations: export LC_ALL=en_US.utf-8. 

9. To run the program you can simply edit the shell script (FunFOLD3.sh)  
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10. For example, if the path of your model was “/home/dani/bin/FunFOLD3/MUProt_TS3”, 

your list of templates was 

“/home/dani/bin/FunFOLD3/T0470_PARENTNew.dat” (all templates should be listed on a 

single line separated by a space), your FASTA sequence file was 

“/home/dani/bin/FunFOLD3/T0470.fasta”, your output directory was 

“/home/dani/bin/FunFOLD3/” and your target was called 

T0470: 

$JAVA_HOME/java -jar FunFOLD3.jar /home/dani/bin/FunFOLD3/MUProt_TS3 T0470 

/home/dani/bin/FunFOLD3/ /home/dani/bin/FunFOLD3/T0470_PARENTNew.dat 

/home/dani/bin/FunFOLD3/T0470.fasta $BIOLIP_TXT $BIOLIP_LIGAND $BIOLIP_RECEPTOR 

$CIF 

Or, using the shell script provided: 

./FunFOLD3.sh /home/dani/bin/FunFOLD3/MUProt_TS3 T0470 /home/dani/bin/FunFOLD3/ 

/home/dani/bin/FunFOLD3/T0470_PARENTNew.dat /home/dani/bin/ 

FunFOLD3/T0470.fasta5 

11.Basically, the user requires a model generated for their target protein, this can be 

achieved using a homology modeling method either in-house or via a web server such as 

IntFOLD (see Note 3). Additionally, the user needs a list of structurally similar templates. 

Again this list of templates can be generated from the list of templates used to generate the 
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target protein model. The program utilizes the templates that have the same fold and 

contain biologically relevant ligands in the prediction process. Furthermore, it is important 

to download and install the BioLip databases51 and CIF chemical components library file50. 

Additionally, it is important that the full paths for all input files are used, the output 

directory should also end with a "/" and must contain the input model, template list, and 

FASTA sequence file. A shell script is available called downloadBioLipdata.sh, which can be 

used to download and update the BioLip and CIF libraries. The shell script and the required 

perl script can be found on the downloads page, in a compressed directory: 

downloadBioLip_CIF.tar.gz. To run the shell script simply edit the file paths for the location 

of the BioLip databases and the executable directory. 

13. A number of output files are produced in the output directory (e.g. 

“/home/dani/bin/FunFOLD3/”) and a log of the prediction process is output to screen as 

standard output. A description of the output files are as follows: 

(a) The final ligand binding site prediction file “T0470_FN.txt” is supplied, conforming to 

CASP FN format. This file contains a list of predicted binding site residues, ligands, along 

with associated EC and GO terms. 

(b) The final binding site prediction file “T0470_FN2_CAMEO-LB.txt” is additionally supplied 

in CAMEO-LB format. This file contains the predicted propensity that each ligand type is in 

contact with the predicted binding site residues. 



Proteins and their interacting partners  

(c) A PDB file “T0470_lig.pdb”, which contains superpositions of all templates, having the 

same fold and containing biologically relevant ligands, onto the model is produced. 

(d) A reduced version of the PDB file “T0470_lig2.pdb”, which contains only the target 

model with all possible ligands is also produced. 

(e) Another reduced version of the PDB file “T0470_lig3.pdb”, which contains only the 

target model with the predicted centroid ligand, is additionally output. 

(f) A graphical representation of the protein–ligand interaction prediction 

“T0470_binding_site.png” is automatically generated using PyMOL. 

(g) Finally, the PyMOL script “pymol.script” that was used to generate the image file is also 

output. 

8. An example of output produced by FunFOLD3 for target T0470 can be found in the 

compressed directory: “T0470_Results.tar.gz” along with an example of the required input: 

“T0470_Input.tar.gz”. These example directories can be found on the downloads page: 

http://www.reading.ac.uk/bioinf/downloads/ 

 

FunFOLD3 for Function Predictions in CASP11, CASP12 and CASP13  

FunFOLD3 has been used for prediction of protein ligand binding sites for all CASP targets 

since CASP11. Function prediction and modelling of protein ligand binding sites remains an 

important part of our prediction pipelines to aid with our manual evaluation of models 
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during each CASP prediction season. The information from our FunFOLD3 method 

(regarding the function and locations of putative bound ligands) along with visual inspection 

was used for some targets in order to manually filter our modelled complexes prior to 

submission of our final models. The next CASP competition will start in 2020 with CASP14, 

and we will utilise FunFOLD3 with AutoDock Vina to improve ligand-binding site predictions 

for target proteins.  

 

Following the release of the experimental data, all of the CASP11, CASP12 and CASP13 

targets were analysed using the BioLip database to determine if their resolved structures 

contained biologically relevant ligands. Once targets with biologically relevant ligands were 

determined then the ligand-binding site residues were identified using Van der Waal radius 

of the contacting atom of a residue and the contacting ligand atom plus 0.5 Å. This resulted 

in a total of nine targets with PDB IDs containing biologically relevant ligands and binding 

site residues associated for CASP11, three for CASP12 and seven for CASP13.  There can be a 

disparity between the number of predictions that were made and the availability of 

observed structures for analysis of these predictions, due to structures being cancelled by 

organisers or PDB IDs not being released for many CASP targets.  
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Figure 1A shows the predicted ligand-binding site for histidinol-phosphate aminotransferase 

(HisC) from Sinorhizobium meliloti (CASP11 ID T0819 and PDB ID 4wbt), with correctly 

predicted ligand-binding site residues in blue and incorrect predictions, defined as under 

and/or over-predictions in red. The pyridoxal-5’-phosphate (PLP) ligand is coloured yellow. 

This prediction resulted in a MCC score of 0.877 and a BDT score of 0.853. Figure 1B shows 

the observed binding site for T0819 with the binding site residues coloured in blue and the 

PLP ligand coloured yellow. This is an example of a good prediction and would therefore not 

benefit from refinement using docking, as when a prediction is already good there is less 

room for improvement.  

 

The CASP12 target is T0911 Escherichia Coli Figure 1C shows the predicted ligand binding 

site, with correctly predicted binding site residues in blue and under- and over-predictions 

in red, the predicted dibromotyrosine ligand is coloured yellow. This prediction has a MCC 

score of -0.006 and BDT score of 0.006. Figure 1D shows the observed binding site for T0911 

with the binding site residues coloured in blue and the gluconic ligand coloured yellow. A 

target such as this, would be a good candidate for refinement using docking because the 

correct ligand has been predicted. However, the ligand predicted is in an incorrect part of 

the protein and needs to be improved, initially by being in the correct section of the protein, 

at the very least and this could potentially lead to a better ligand-binding site prediction. 
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Figure 1. Comparison of FunFOLD3 ligand binding site predictions (A and C) for CASP targets, compared to the 

observed ligand binding sites (B and D). (A) Predicted ligand binding site residues  for T0819 (PDB ID 4wbt) 

shown as sticks with correctly predicted binding site residues in blue and incorrect predictions in red, the atoms in 

the pyridoxal-5’-phosphate (PLP) ligand are shown as spheres and coloured yellow. BDT score of 0.853 and 

MCC score of 0.877. (B) The observed ligand binding site for T0819 (PDB ID 4wbt), with binding site residues 

shown as sticks and coloured in blue and the ligand PLP is coloured yellow. (C) Predicted ligand binding site 

residues  for T0912 shown as sticks with incorrect predictions in red, the calcium ligand is shown as a sphere 

and coloured yellow. BDT score of 0.006 and MCC score of -0.006. (D) The observed ligand binding site 

residues shown as sticks for T0912 with binding site residues coloured in blue and the calcium coloured yellow. 
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Figure 2. Comparison of FunFOLD3 ligand binding site predictions (a) for CASP13 T1016 target, compared to 

the observed ligand binding sites (b) and alignment of the predicted and observed proteins and ligand (c) (A) 

Predicted ligand binding site residues  for  CASP13 T1016 (PDB ID 6e4b) shown as sticks with correctly 

predicted binding site residues in blue and incorrect predictions in red, the phosphate (PO4) ligand atoms are 

shown as spheres and coloured yellow. BDT score of 0.646 and MCC score of 0.556 (B) The observed ligand 

binding site for T1016 (PDB ID 6e4b), with binding site residues shown as sticks and coloured in blue and the 

ligand cholrine coloured yellow. (C)  Comparison of the predicted and observed protein structures and ligands 

with the predicted ligand PO4 coloured orange and the observed ligaind CL coloured yellow.  

The results in Figure 2 show that despite an incorrect ligand prediction; PO4 instead of CL 

FunFOLD3 was able to produce corect binding site residues, as shown by the blue sticks in 

Figure 2A. Figure 2C illustrates how close the two ligands were to one another in the binding 

pocket and the difference in size between the ligands, with the PO4 ligand being larger and 

could explain why there were some incorrect bnding site residue predictions.  

 These results demonstrate not only the similarities in the structure but also the similarity in 

the location of the predicted and observed ligand, despite an incorrect prediction of the 

ligand type. The differing results from CASP11, CASP12 and CASP13 show the variability of 

results obained with FunFOLD3. Figure 1A and B show a prediction where the ligand is 
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correct and there are few incorrect predicitions. In comparions, Figure 1C and D shows a 

correctly predicted ligand wbut in a different location within the structure aand Figure2A-C 

shows that FunFOLD3 can produce ligand-binding site predictions which are similar to the 

observed protein strcuture despite the predicted ligand not being the same ligand. Given 

the diversity of the predictions there is a clear need to refine and docking will be used to do 

this.  
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FunFOLD3-D  

FunFOLD3-D is a new method, which utilises docking to improve the predicted ligand 

binding sites by rotating the predicted ligand in the predicted binding site space. The 

method outputs the predictions of both the ligand and ligand-binding site residues for nine 

alternative models, which should, in theory produce a more refined ligand-binding site. 

Note, nine models is the recommended number of binding models AutoDock Vina to 

generate. Currently, this method is under development and is being benchmarked using 

CASP11, CASP12 and CASP13 functional target predictions to determine if there has been an 

improvement in the ligand-binding site predictions. FunFOLD3-D will also be integrated into 

our CASP14 pipelines so we can objectively test our ligand-binding site predictions during a 

blind experiment.  AutoDock Vina has been used to refine ligand-binding site predictions 

previously.52 Wu et al., utilised molecular docking by AutoDock Vina in order to enhance the 

low quality of the predicted ligand-binding poses that usually had severe steric clashes to 

the protein structure. FunFOLD3-D will be different to COACH-D, due to a box calculation 

method. A grid size of 22.5Å was chosen as the grid space for docking because this space 

has been explored in literature53 and ensures the space is large enough for the ligand to 

rotate. Note, this grid size may change once the final methodology has been finalised for 

FunFOLD3-D and is being used as a guide to start improving docking. Once the predicted 

ligand and receptor files have been docked, the output files will be analysed using 
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FunFOLD3 to produce new ligand-binding site residues and MCC and BDT scores calculated 

to objectively measure any changes in the predicted-ligand binding site residues.  

Figure 3 shows the improved predictions, compared to the observed binding sites following 

docking. Figure 3A shows the predicted ligand-binding site for Glutathione S-transferase 

domain protein from Haliangium ochraceum (CASP11 ID T0849 and PDB ID 4w66), with 

correctly predicted ligand-binding site residues in blue and incorrect predictions in red. The 

GSH ligand is coloured yellow. This prediction by FunFOLD3 resulted in a MCC score of -0.05 

and a BDT score of 0.0375. Figure 3B shows the observed binding site for T0849 with the 

binding site residues coloured in blue and the GSH ligand coloured yellow. Figure 3C shows 

the structure following docking with AutoDock Vina and the MCC score was 0.18 and BDT 

score was 0.28 for the best model (out of nine models). Residues predicted by FunFOLD3 

were 9,10,14,15,54,55,56,67,68,108,113,226,230  and observed predictions were 

168,171,179,182,183,190,194,197 with FunFOLD3-D predicting 

13,107,108,111,168,169,171,172,215,217,218.  



 

 



 

Figure 3. Comparison of FunFOLD3 and FunFOLD3-D ligand binding site predictions for CASP 11 target T0849 

(PDB ID 4w66). 

(A) Predicted ligand binding site residues shown as sticks with incorrect predictions in red, the glutathione (GSH)  

ligand is shown as a sphere and coloured yellow. BDT score of 0.0375 and MCC score of -0.05. (B) The 

observed ligand binding site residues shown as sticks for T0849 (PDB ID 4w66), with binding site residues 

coloured in blue and the ligand GSH coloured yellow (C) Predicted ligand binding site residues shown as sticks 

with correctly predicted binding site residues in blue and over-predictions in red following docking with AutoDock 

Vina. The GSH ligand is coloured yellow. BDT score of 0.28 and MCC score of 0.18 was achieved for the top 

scoring docked model.



 

 

 

 

 

 

 



 

 

Figure 4. Comparison of FunFOLD3 and FunFOLD3-D ligand binding site predictions for CASP 11 target T0813 

(PDB ID 4wji). 

(A) Predicted ligand binding site residues shown as sticks with correctly predicted binding site residues in blue 

and incorrect predictions in red, the NAI ligand is shown as a sphere and coloured yellow. BDT score of 0.11and 

MCC score of 0.03. (B) The observed ligand binding site residues shown as sticks for T0813 (PDB ID 4wji), with 

binding site residues coloured in blue and the ligand magnesium (MG) coloured yellow (C) Predicted ligand 

binding site residues shown as sticks with correctly predicted binding site residues in blue and over-predictions in 

red following docking with AutoDock Vina. The NAI ligand is coloured yellow. BDT score of 0.32 and MCC score 

of 0.25 was achieved for the top scoring docked model 



 

Preliminary results from FunFOLD3-D shows that docking is able to enhance predictions of 

the same ligands within the same ligand-binding site pocket  (Figures 3A-C) and also 

different ligands within the same pocket (Figure 4). Although, if the prediction is already 

good (e.g. MCC/BDT of >0.8), then there is less room for improvement and if the ligand is a 

small metal ion in within a small binding pocket, docking is unable to rotate the ligand with 

enough space to improve the predicted ligand-binding site.  
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Notes  

1. As can be seen from the variation in MCC and BDT scores prediction of ligand-

binding site residues is a difficult task and limitations can arise from what is deemed a 

biologically relevant ligand. Ligands, which are part of the PDB ID entry, are not 

necessarily biologically relevant ligand and information is required from the BioLip 

database and users must update this database regularly to ensure the information is as 

up-to-date as possible  

2. Docking is quite time-consuming as each of the nine models which are produced 

following the refinement process needs to be analysed individually as currently there is 

no scoring method to pre-select the best model. This will be an area which will be 

improved on in the future  

3. Not all proteins and ligands can be docked. If the ligand is a small metal ion bound in 

a tight space then there is not enough of a space for it to rotate and therefore will not 

benefit from docking  
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Appendix 2  

 

1. How to analyse ligand-binding site prediction results from CASP competitions  
 
1. Get a list of CASPIDs to PDBIDs from the CASP website 

http://www.predictioncenter.org/casp11/targetlist.cgi 
 

2. Download the target structures from CASP 
http://www.predictioncenter.org/download_area/CASP11/targets/casp11.targets_unsplitte
d.release11242014.tgz  
unzip the file tar -xvzf targets_unsplitted.release11242014.tgz  

3. Use the list of PDBIDs to search the BioLiP database to determine which proteins have 
biologically relevant ligands  
a. Once you have the list of PDBIDs search the BioLiP database to see which proteins 

have biologically relevant ligands  
b. The BioLiP database is available to download from  

http://zhanglab.ccmb.med.umich.edu/BioLip/download.html  
 

c. grep  -f list of PDBIDs  PDBIDsinBioLip 
The command more PDBIDs | wc –l will determine how many experimental structures 
were released   

 
4. Download these PDB files from the PDB 

wget http://www.rcsb.org/pdb/files/1A3H.pdb  
 

5. Extract the ligand atoms HETATMS and attached them to the CASP PDB files from 
number 2 
a. grep “HETATM” 4rn3.pdb | grep -v “HOH” > HET_T0854.het   
b. The HETATOMS need to be attached to the CASP PDB files  
c. cat T0854.pdb HET_T0854.het >  T0854.pdb  

6. Use proLigContacts.jar to determine ligand binding site residues, using new CASP PDB 
files  

a. To run proLigContacts see the READ ME  
wget http://www.reading.ac.uk/bioinf/downloads/proLigContacts.sh 
wget http://www.reading.ac.uk/bioinf/downloads/proLigContacts.jar 
chmod +x proLigContacts.jar 
chmod +x  proLigContacts.sh  

 
7. Predictions need to be analysed using IntFOLD TS133 and McGuffin TS162  

a. Models need to be downloaded from CASP wget 
http://www.predictioncenter.org/download_area/CASP11/predictions/HETATM_mode
ls.tar  

8. The IntFOLD TS133 models need to be assessed using proLigContacts.jar as in step 6  
9. Once the predicted ligand binding site residues and observed predicted binding site 
residues have been determined, compare using BDT score  
10. To run the BDT score see the READ ME  

a. http://www.reading.ac.uk/bioinf/downloads/README_BDT 
b. Download at http://www.reading.ac.uk/bioinf/downloads/bdt.sh  
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2. FunFOLD3 Downloadable Executable  
 
A downloadable version of the FunFOLD3 method is available as an executable JAR file, 

which can be run locally. The executable has several dependencies and system 

requirements, which are briefly described below. The executable along with a detailed 

README file and example input and output data can be downloaded from the following 

location: http://www.reading.ac.uk/bioinf/downloads/  

The system requirements are as follows: 
1. A linux-based operating system such as Ubuntu. 
2. A recent version of Java (http://www.java.com/getjava/). 
3. A recent version of PyMOL (http://www.pymol.org). 
4. The TM-align program (http://zhanglab.ccmb.med.umich.edu/TM-align/) 
5. wget and ImageMagick installed system wide. 
6. The CIF chemical components database file should be downloaded from here: 
ftp://ftp.wwpdb.org/pub/pdb/data/monomers/components.cif. 
7. The BioLip databases containing ligand and receptor PDB files are also required. The 

databases need to be downloaded in two sections: firstly all annotations prior to 6/3/2013 

can be downloaded from here for the receptor database: 

http://zhanglab.ccmb.med.umich.edu/BioLiP/download/receptor_2013-03-6.tar.bz2 (3.6 G) 

and from here for the ligand database: 

http://zhanglab.ccmb.med.umich.edu/BioLiP/download/ligand_2013-03-6.tar.bz2(438 M). 

The Text File of the BioLip annotations can be downloaded from here: 

http://zhanglab.ccmb.med.umich.edu/BioLiP/download/BioLiP.tar.bz2. To update the 

databases to include annotations after 2013-03-6 it is recommended to download and use 

this perl script which will update the databases: 

http://zhanglab.ccmb.med.umich.edu/BioLiP/download/download_all_sets.pl. The BioLip text 

file: http://zhanglab.ccmb.med.umich.edu/BioLiP/download/BioLiP.tar.bz2 and all the weekly 

update text files should be concatenated to form a large text file containing all of the 

annotations. Furthermore, it is recommended to regularly update your BioLip and CIF 

databases. Additionally, a shell script is available as downloadBioLipdata.sh, which can be 

downloaded from here: http://www.reading.ac.uk/bioinf/downloads/, in a compressed 

directory: downloadBioLip_CIF.tar.gz. To run the shell script simply edits the file paths for 

the location of the BioLip databases and the executable directory. 
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3. Predicted and observed structure files for CASP11 target T0807  
 
Predicted structure is titled T0807.lig2.pdb and observed structure is T0807_HET.pdb, the MSE/MET residues 
are highlighted in yellow and only the relevant ATOMS are shown  
 
 
T0807.lig2.pdb 
 
ATOM    170  CB  TYR    23      58.000  49.930  15.259  1.00  2.26           C   
ATOM    171  CG  TYR    23      59.011  50.998  15.543  1.00  2.26           C   
ATOM    172  CD1 TYR    23      59.815  51.495  14.541  1.00  2.26           C   
ATOM    173  CD2 TYR    23      59.138  51.537  16.805  1.00  2.26           C   
ATOM    174  CE1 TYR    23      60.744  52.479  14.789  1.00  2.26           C   
ATOM    175  CE2 TYR    23      60.064  52.524  17.064  1.00  2.26           C   
ATOM    176  CZ  TYR    23      60.868  52.999  16.056  1.00  2.26           C   
ATOM    177  OH  TYR    23      61.818  54.011  16.317  1.00  2.26           O   
ATOM    392  CA  GLU    53      69.598  46.902  11.215  1.00  0.70           C   
ATOM    393  C   GLU    53      68.986  47.309  12.521  1.00  0.70           C   
ATOM    394  O   GLU    53      68.821  46.491  13.424  1.00  0.70           O   
ATOM    395  CB  GLU    53      71.085  47.293  11.230  1.00  0.70           C   
ATOM    396  CG  GLU    53      71.832  46.805   9.985  1.00  0.70           C   
ATOM    397  CD  GLU    53      73.192  47.482   9.959  1.00  0.70           C   
ATOM    398  OE1 GLU    53      73.217  48.729   9.787  1.00  0.70           O   
ATOM    399  OE2 GLU    53      74.221  46.770  10.117  1.00  0.70           O1- 
ATOM    673  CB  ALA    89      86.478  50.084   8.954  1.00  1.08           C   
ATOM    674  N   ALA    90      83.495  50.558   9.564  1.00  1.04           N   
ATOM    675  CA  ALA    90      82.381  50.112  10.340  1.00  1.04           C   
ATOM    676  C   ALA    90      81.230  49.809   9.436  1.00  1.04           C   
ATOM    677  O   ALA    90      80.495  48.851   9.674  1.00  1.04           O   
ATOM    678  CB  ALA    90      81.919  51.150  11.374  1.00  1.04           C   
ATOM    679  N   MET    91      81.031  50.621   8.379  1.00  0.71           N   
ATOM    680  CA  MET    91      79.910  50.400   7.508  1.00  0.71           C   
ATOM    826  C   ASP   108      69.220  46.438  -3.263  1.00  0.66           C   
ATOM    827  O   ASP   108      69.684  47.124  -4.173  1.00  0.66           O   
ATOM    828  CB  ASP   108      67.429  44.727  -3.727  1.00  0.66           C   
ATOM    829  CG  ASP   108      67.296  43.262  -4.142  1.00  0.66           C   
ATOM    830  OD1 ASP   108      68.014  42.849  -5.092  1.00  0.66           O   
ATOM    831  OD2 ASP   108      66.492  42.527  -3.506  1.00  0.66           O1- 
ATOM    832  N   MET   109      68.971  46.962  -2.040  1.00  0.50           N   
ATOM    833  CA  MET   109      69.249  48.352  -1.778  1.00  0.50           C   
ATOM    975  CG  GLU   125      84.187  56.026   1.852  1.00  1.22           C   
ATOM    976  CD  GLU   125      85.647  56.456   1.907  1.00  1.22           C   
ATOM    977  OE1 GLU   125      86.363  56.202   0.902  1.00  1.22           O   
ATOM    978  OE2 GLU   125      86.068  57.030   2.947  1.00  1.22           O1- 
ATOM    979  N   ALA   126      81.949  53.841   1.520  1.00  0.75           N   
ATOM    980  CA  ALA   126      81.898  52.435   1.805  1.00  0.75           C   
ATOM    981  C   ALA   126      80.813  51.802   0.981  1.00  0.75           C   
ATOM    982  O   ALA   126      80.981  50.700   0.460  1.00  0.75           O   
ATOM   1148  O   GLU   147      73.640  69.207   1.369  1.00  1.21           O   
ATOM   1149  CB  GLU   147      71.714  71.284   2.939  1.00  1.21           C   
ATOM   1150  CG  GLU   147      71.143  70.696   4.230  1.00  1.21           C   
ATOM   1151  CD  GLU   147      72.212  69.834   4.887  1.00  1.21           C   
ATOM   1152  OE1 GLU   147      73.369  69.830   4.388  1.00  1.21           O   
ATOM   1153  OE2 GLU   147      71.882  69.173   5.908  1.00  1.21           O1- 
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ATOM   1154  N   ASP   148      72.050  68.116   2.534  1.00  0.84           N   
ATOM   1155  CA  ASP   148      72.871  66.954   2.761  1.00  0.84           C  
ATOM   1485  CG  LEU   188      67.281  60.629  -4.450  1.00  1.58           C   
ATOM   1486  CD1 LEU   188      68.142  59.360  -4.395  1.00  1.58           C   
ATOM   1487  CD2 LEU   188      67.560  61.584  -3.273  1.00  1.58           C   
ATOM   1488  N   PRO   189      65.123  58.945  -6.755  1.00  0.93           N   
ATOM   1489  CA  PRO   189      63.766  58.601  -6.436  1.00  0.93           C   
ATOM   1490  C   PRO   189      63.384  58.764  -4.997  1.00  0.93           C   
ATOM   1491  O   PRO   189      64.096  58.267  -4.122  1.00  0.93           O   
ATOM   1659  C   ASP   211      39.123  63.771   3.658  1.00  2.03           C   
ATOM   1660  O   ASP   211      38.518  63.547   2.611  1.00  2.03           O   
ATOM   1661  CB  ASP   211      40.202  65.870   4.309  1.00  2.03           C   
ATOM   1662  CG  ASP   211      40.209  66.566   2.960  1.00  2.03           C   
ATOM   1663  OD1 ASP   211      39.153  66.540   2.275  1.00  2.03           O   
ATOM   1664  OD2 ASP   211      41.272  67.138   2.597  1.00  2.03           O1- 
ATOM   1665  N   ILE   212      39.983  62.891   4.200  1.00  1.69           N   
ATOM   1666  CA  ILE   212      40.349  61.660   3.559  1.00  1.69           C   
ATOM   2170  CB  LYS   278      61.710  68.817  12.821  1.00  6.56           C   
ATOM   2171  CG  LYS   278      60.924  68.471  14.088  1.00  6.56           C   
ATOM   2172  CD  LYS   278      61.579  67.452  15.015  1.00  6.56           C   
ATOM   2173  CE  LYS   278      60.847  67.295  16.342  1.00  6.56           C   
ATOM   2174  NZ  LYS   278      60.987  68.536  17.135  1.00  6.56           N1+ 
ATOM   2175  N   ASN   279      63.868  66.672  11.017  1.00  6.32           N   
ATOM   2176  CA  ASN   279      65.122  65.984  11.028  1.00  6.32           C   
ATOM   2177  C   ASN   279      66.137  66.830  11.708  1.00  6.32           C   
TER 
HETATM 4516  P2B NAP   285      48.830  47.414  12.414  1.00 42.98           P   
HETATM 4517  PA  NAP   285      53.080  53.596   8.953  1.00 36.22           P   
HETATM 4518  PN  NAP   285      55.818  53.098   9.912  1.00 39.54           P   
HETATM 4519  C1B NAP   285      48.401  50.831  10.770  1.00 41.97           C   
HETATM 4520  C1D NAP   285      60.077  52.556   7.643  1.00 30.93           C   
HETATM 4521  N1A NAP   285      44.001  50.746   8.027  1.00 50.77           N   
HETATM 4522  N1N NAP   285      60.571  53.621   8.584  1.00 32.67           N   
HETATM 4523  O1A NAP   285      53.311  52.503   7.922  1.00 36.48           O1- 
HETATM 4524  O1N NAP   285      55.838  51.654  10.351  1.00 36.89           O1- 
HETATM 4525  O1X NAP   285      48.577  46.886  13.811  1.00 45.95           O   
HETATM 4526  C2A NAP   285      44.205  51.231   9.302  1.00 44.20           C   
HETATM 4527  C2B NAP   285      49.299  49.808  11.432  1.00 43.23           C   
HETATM 4528  C2D NAP   285      59.833  51.158   8.264  1.00 34.76           C   
HETATM 4529  C2N NAP   285      61.746  54.249   8.282  1.00 34.51           C   
HETATM 4530  O2A NAP   285      52.805  54.966   8.442  1.00 23.10           O   
HETATM 4531  O2B NAP   285      48.560  48.998  12.312  1.00 37.76           O   
HETATM 4532  O2D NAP   285      60.083  50.071   7.417  1.00 30.65           O   
HETATM 4533  O2N NAP   285      56.559  54.025  10.803  1.00 33.97           O   
HETATM 4534  O2X NAP   285      50.292  47.003  12.271  1.00 40.71           O1- 
HETATM 4535  C3B NAP   285      50.341  50.656  12.136  1.00 42.35           C   
HETATM 4536  C3D NAP   285      58.357  51.198   8.600  1.00 23.11           C   
HETATM 4537  C3N NAP   285      62.278  55.235   9.117  1.00 35.14           C   
HETATM 4538  N3A NAP   285      45.444  51.144   9.888  1.00 47.51           N   
HETATM 4539  O3  NAP   285      54.312  53.706   9.945  1.00 33.14           O   
HETATM 4540  O3B NAP   285      49.997  50.928  13.486  1.00 39.71           O   
HETATM 4541  O3D NAP   285      57.858  49.934   9.035  1.00 38.29           O   
HETATM 4542  O3X NAP   285      47.889  46.951  11.309  1.00 35.79           O   
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HETATM 4543  C4A NAP   285      46.463  50.595   9.202  1.00 41.87           C   
HETATM 4544  C4B NAP   285      50.365  51.969  11.339  1.00 35.15           C   
HETATM 4545  C4D NAP   285      57.849  51.859   7.340  1.00 29.61           C   
HETATM 4546  C4N NAP   285      61.587  55.646  10.277  1.00 34.11           C   
HETATM 4547  O4B NAP   285      49.274  51.927  10.417  1.00 33.45           O   
HETATM 4548  O4D NAP   285      58.791  52.912   7.169  1.00 39.86           O   
HETATM 4549  C5A NAP   285      46.293  50.104   7.919  1.00 43.76           C   
HETATM 4550  C5B NAP   285      51.753  52.178  10.735  1.00 28.06           C   
HETATM 4551  C5D NAP   285      56.441  52.464   7.310  1.00 35.60           C   
HETATM 4552  C5N NAP   285      60.368  55.013  10.565  1.00 31.88           C   
HETATM 4553  O5B NAP   285      51.753  53.246   9.834  1.00 38.18           O   
HETATM 4554  O5D NAP   285      56.331  53.407   8.381  1.00 45.08           O   
HETATM 4555  C6A NAP   285      45.044  50.162   7.321  1.00 43.07           C   
HETATM 4556  C6N NAP   285      59.881  54.009   9.741  1.00 34.06           C   
HETATM 4557  N6A NAP   285      44.899  49.895   6.014  1.00 32.48           N   
HETATM 4558  C7N NAP   285      63.531  55.911   8.650  1.00 29.20           C   
HETATM 4559  N7A NAP   285      47.483  49.634   7.487  1.00 42.95           N   
HETATM 4560  N7N NAP   285      64.042  55.647   7.456  1.00 34.89           N   
HETATM 4561  O7N NAP   285      64.149  56.831   9.477  1.00 32.62           O   
HETATM 4562  C8A NAP   285      48.369  49.795   8.464  1.00 36.25           C   
HETATM 4563  N9A NAP   285      47.752  50.381   9.532  1.00 38.51           N   
HETATM 4589  P2B NAP   286      48.372  47.203  12.302  0.87 56.79           P   
HETATM 4590  PA  NAP   286      52.521  53.392   8.625  1.00 55.11           P   
HETATM 4591  PN  NAP   286      54.999  52.504   9.836  1.00 52.75           P   
HETATM 4592  C1B NAP   286      48.390  50.685  11.971  0.74 56.24           C   
HETATM 4593  C1D NAP   286      59.957  52.362   7.341  1.00 47.03           C   
HETATM 4594  N1A NAP   286      43.282  51.206  11.637  0.14 56.15           N   
HETATM 4595  N1N NAP   286      60.638  53.416   8.186  0.55 46.11           N   
HETATM 4596  O1A NAP   286      52.218  54.692   9.068  1.00 54.77           O1- 
HETATM 4597  O1N NAP   286      55.740  53.298  10.813  0.37 52.55           O1- 
HETATM 4598  O1X NAP   286      48.208  46.432  10.997  1.00 55.84           O   
HETATM 4599  C2A NAP   286      44.124  51.376  12.753  0.58 55.89           C   
HETATM 4600  C2B NAP   286      49.457  49.584  11.638  0.63 56.35           C   
HETATM 4601  C2D NAP   286      59.625  51.072   8.016  1.00 47.61           C   
HETATM 4602  C2N NAP   286      61.731  54.203   7.697  1.00 45.43           C   
HETATM 4603  O2A NAP   286      52.143  52.813   7.279  1.00 55.36           O   
HETATM 4604  O2B NAP   286      49.350  48.484  12.552  0.77 56.47           O   
HETATM 4605  O2D NAP   286      60.293  50.007   7.381  0.85 47.37           O   
HETATM 4606  O2N NAP   286      55.351  51.099   9.484  0.47 52.85           O   
HETATM 4607  O2X NAP   286      48.010  46.564  13.620  1.00 54.99           O1- 
HETATM 4608  C3B NAP   286      50.795  50.311  11.644  1.00 56.36           C   
HETATM 4609  C3D NAP   286      58.110  50.935   7.975  1.00 48.69           C   
HETATM 4610  C3N NAP   286      62.325  55.139   8.568  0.57 45.01           C   
HETATM 4611  N3A NAP   286      45.496  51.196  12.697  1.00 55.69           N   
HETATM 4612  O3  NAP   286      54.098  53.172   8.718  0.07 53.79           O   
HETATM 4613  O3B NAP   286      51.450  50.214  12.907  1.00 55.87           O   
HETATM 4614  O3D NAP   286      57.692  49.652   7.493  0.50 49.34           O   
HETATM 4615  O3X NAP   286      49.724  46.518  12.298  1.00 56.47           O   
HETATM 4616  C4A NAP   286      45.985  50.832  11.448  0.13 56.20           C   
HETATM 4617  C4B NAP   286      50.489  51.815  11.496  1.00 56.82           C   
HETATM 4618  C4D NAP   286      57.591  52.092   7.046  0.95 48.66           C   
HETATM 4619  C4N NAP   286      61.843  55.308   9.946  1.00 44.89           C   
HETATM 4620  O4B NAP   286      49.034  51.911  11.742  0.63 56.74           O   
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HETATM 4621  O4D NAP   286      58.738  52.939   6.777  0.41 47.93           O   
HETATM 4622  C5A NAP   286      45.191  50.649  10.295  0.01 56.38           C   
HETATM 4623  C5B NAP   286      50.576  52.364  10.023  0.55 55.96           C   
HETATM 4624  C5D NAP   286      56.339  52.849   7.473  1.00 48.44           C   
HETATM 4625  C5N NAP   286      60.754  54.510  10.383  0.78 44.94           C   
HETATM 4626  O5B NAP   286      51.978  52.325   9.695  1.00 54.62           O   
HETATM 4627  O5D NAP   286      56.252  53.013   8.940  0.42 51.15           O   
HETATM 4628  C6A NAP   286      43.801  50.838  10.382  1.00 56.53           C   
HETATM 4629  C6N NAP   286      60.136  53.559   9.522  1.00 45.32           C   
HETATM 4630  N6A NAP   286      42.900  50.705   9.386  0.75 56.41           N   
HETATM 4631  C7N NAP   286      63.503  56.008   8.079  0.47 44.52           C   
HETATM 4632  N7A NAP   286      45.978  50.288   9.201  1.00 57.16           N   
HETATM 4633  N7N NAP   286      63.976  55.912   6.866  1.00 42.78           N   
HETATM 4634  O7N NAP   286      63.965  56.784   8.882  1.00 45.11           O   
HETATM 4635  C8A NAP   286      47.193  50.268   9.713  0.63 56.39           C   
HETATM 4636  N9A NAP   286      47.257  50.588  11.062  1.00 55.95           N   
HETATM 4446  P2B NAP   287      48.752  47.496  12.256  1.00 31.77           P   
HETATM 4447  PA  NAP   287      52.917  53.709   8.741  1.00 32.82           P   
HETATM 4448  PN  NAP   287      55.577  53.511   9.923  1.00 32.70           P   
HETATM 4449  C1B NAP   287      48.108  50.887  10.735  1.00 31.45           C   
HETATM 4450  C1D NAP   287      59.889  52.688   7.389  1.00 28.62           C   
HETATM 4451  N1A NAP   287      44.000  50.610   7.742  1.00 29.20           N   
HETATM 4452  N1N NAP   287      60.385  53.845   8.209  1.00 28.60           N   
HETATM 4453  O1A NAP   287      52.276  54.883   8.277  1.00 33.31           O1- 
HETATM 4454  O1N NAP   287      55.453  52.056  10.131  1.00 33.36           O1- 
HETATM 4455  O1X NAP   287      47.945  47.044  13.478  1.00 32.07           O   
HETATM 4456  C2A NAP   287      44.100  51.061   9.075  1.00 29.16           C   
HETATM 4457  C2B NAP   287      49.251  49.965  11.230  1.00 32.01           C   
HETATM 4458  C2D NAP   287      59.686  51.404   8.120  1.00 29.07           C   
HETATM 4459  C2N NAP   287      61.640  54.430   7.908  1.00 28.62           C   
HETATM 4460  O2A NAP   287      53.336  52.552   7.870  1.00 32.91           O   
HETATM 4461  O2B NAP   287      48.767  49.143  12.303  1.00 31.69           O   
HETATM 4462  O2D NAP   287      60.028  50.304   7.302  1.00 28.32           O   
HETATM 4463  O2N NAP   287      56.086  54.300  11.059  1.00 32.87           O   
HETATM 4464  O2X NAP   287      48.051  47.230  10.962  1.00 30.63           O1- 
HETATM 4465  C3B NAP   287      50.407  50.897  11.570  1.00 32.42           C   
HETATM 4466  C3D NAP   287      58.205  51.412   8.472  1.00 29.10           C   
HETATM 4467  C3N NAP   287      62.102  55.469   8.695  1.00 28.05           C   
HETATM 4468  N3A NAP   287      45.297  51.071   9.772  1.00 29.58           N   
HETATM 4469  O3  NAP   287      54.190  54.158   9.555  1.00 32.64           O   
HETATM 4470  O3B NAP   287      50.524  51.052  12.982  1.00 33.07           O   
HETATM 4471  O3D NAP   287      57.656  50.108   8.720  1.00 29.76           O   
HETATM 4472  O3X NAP   287      50.202  47.050  12.363  1.00 31.46           O   
HETATM 4473  C4A NAP   287      46.388  50.611   9.050  1.00 29.60           C   
HETATM 4474  C4B NAP   287      50.034  52.322  11.064  1.00 32.28           C   
HETATM 4475  C4D NAP   287      57.549  52.176   7.257  1.00 29.27           C   
HETATM 4476  C4N NAP   287      61.326  55.968   9.833  1.00 28.18           C   
HETATM 4477  O4B NAP   287      48.647  52.165  10.631  1.00 32.04           O   
HETATM 4478  O4D NAP   287      58.622  53.013   6.726  1.00 28.45           O   
HETATM 4479  C5A NAP   287      46.339  50.151   7.729  1.00 29.22           C   
HETATM 4480  C5B NAP   287      50.664  52.773   9.680  1.00 33.16           C   
HETATM 4481  C5D NAP   287      56.269  52.928   7.482  1.00 29.96           C   
HETATM 4482  C5N NAP   287      60.062  55.359  10.102  1.00 28.31           C   
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HETATM 4483  O5B NAP   287      52.053  53.022   9.928  1.00 33.04           O   
HETATM 4484  O5D NAP   287      56.437  53.776   8.623  1.00 31.64           O   
HETATM 4485  C6A NAP   287      45.126  50.152   7.044  1.00 28.66           C   
HETATM 4486  C6N NAP   287      59.569  54.295   9.306  1.00 28.40           C   
HETATM 4487  N6A NAP   287      44.918  49.748   5.784  1.00 28.08           N   
HETATM 4488  C7N NAP   287      63.463  56.084   8.360  1.00 28.40           C   
HETATM 4489  N7A NAP   287      47.598  49.759   7.298  1.00 29.40           N   
HETATM 4490  N7N NAP   287      64.172  55.656   7.338  1.00 28.47           N   
HETATM 4491  O7N NAP   287      63.845  56.971   9.087  1.00 28.87           O   
HETATM 4492  C8A NAP   287      48.346  49.984   8.350  1.00 29.72           C   
HETATM 4493  N9A NAP   287      47.664  50.497   9.430  1.00 30.20           N   
HETATM 4409  N   GLU   288      62.343  53.498   9.602  1.00 44.32           N   
HETATM 4410  CA  GLU   288      62.398  54.456  10.665  1.00 42.32           C   
HETATM 4411  C   GLU   288      62.929  55.795  10.146  1.00 43.26           C   
HETATM 4412  O   GLU   288      62.241  56.785  10.312  1.00 45.81           O   
HETATM 4413  CB  GLU   288      63.264  53.871  11.793  1.00 42.80           C   
HETATM 4414  CG  GLU   288      63.165  54.578  13.130  1.00 41.81           C   
HETATM 4415  CD  GLU   288      64.483  54.633  13.792  1.00 37.69           C   
HETATM 4416  OE1 GLU   288      65.353  55.350  13.294  1.00 35.71           O   
HETATM 4417  OE2 GLU   288      64.631  53.934  14.778  1.00 38.76           O   
HETATM 4418  OXT GLU   288      63.995  55.975   9.539  1.00 42.82           O   
HETATM 4817  P2B NAP   289      48.579  47.042  11.759  1.00 11.96           P   
HETATM 4818  PA  NAP   289      52.818  53.223   8.615  1.00  8.70           P   
HETATM 4819  PN  NAP   289      55.516  53.046   9.993  1.00  9.44           P   
HETATM 4820  C1B NAP   289      48.255  50.486  10.368  1.00 12.08           C   
HETATM 4821  C1D NAP   289      59.860  52.322   7.486  1.00  8.97           C   
HETATM 4822  N1A NAP   289      44.043  50.537   7.446  1.00 11.88           N   
HETATM 4823  N1N NAP   289      60.316  53.467   8.312  1.00  9.65           N   
HETATM 4824  O1A NAP   289      52.651  54.664   8.449  1.00  9.12           O1- 
HETATM 4825  O1N NAP   289      55.830  54.261  10.627  1.00 12.96           O1- 
HETATM 4826  O1X NAP   289      50.025  46.545  11.677  1.00 11.96           O   
HETATM 4827  C2A NAP   289      44.205  51.000   8.698  1.00 11.71           C   
HETATM 4828  C2B NAP   289      49.291  49.520  10.920  1.00 12.87           C   
HETATM 4829  C2D NAP   289      59.765  51.017   8.228  1.00  8.13           C   
HETATM 4830  C2N NAP   289      61.600  53.961   8.081  1.00  9.64           C   
HETATM 4831  O2A NAP   289      53.086  52.409   7.364  1.00  8.99           O   
HETATM 4832  O2B NAP   289      48.713  48.662  11.937  1.00 12.87           O   
HETATM 4833  O2D NAP   289      59.901  49.872   7.363  1.00  8.83           O   
HETATM 4834  O2N NAP   289      56.094  51.740  10.381  1.00 11.84           O   
HETATM 4835  O2X NAP   289      47.838  46.572  12.993  1.00 14.51           O1- 
HETATM 4836  C3B NAP   289      50.428  50.394  11.391  1.00 15.67           C   
HETATM 4837  C3D NAP   289      58.312  51.081   8.751  1.00  8.69           C   
HETATM 4838  C3N NAP   289      62.058  55.040   8.844  1.00  8.80           C   
HETATM 4839  N3A NAP   289      45.360  50.924   9.361  1.00 11.57           N   
HETATM 4840  O3  NAP   289      54.108  53.025   9.485  1.00 12.18           O   
HETATM 4841  O3B NAP   289      50.538  50.333  12.810  1.00 20.93           O   
HETATM 4842  O3D NAP   289      57.781  49.789   9.160  1.00  8.43           O   
HETATM 4843  O3X NAP   289      47.826  46.815  10.451  1.00 13.33           O   
HETATM 4844  C4A NAP   289      46.453  50.320   8.729  1.00 10.74           C   
HETATM 4845  C4B NAP   289      49.995  51.835  11.067  1.00 14.21           C   
HETATM 4846  C4D NAP   289      57.604  51.618   7.459  1.00  9.42           C   
HETATM 4847  C4N NAP   289      61.220  55.601   9.854  1.00  9.22           C   
HETATM 4848  O4B NAP   289      48.989  51.692  10.128  1.00 11.95           O   
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HETATM 4849  O4D NAP   289      58.535  52.616   6.999  1.00  9.03           O   
HETATM 4850  C5A NAP   289      46.323  49.847   7.438  1.00 10.48           C   
HETATM 4851  C5B NAP   289      50.897  52.861  10.452  1.00 15.97           C   
HETATM 4852  C5D NAP   289      56.239  52.223   7.565  1.00  8.53           C   
HETATM 4853  C5N NAP   289      59.902  55.130  10.092  1.00  9.61           C   
HETATM 4854  O5B NAP   289      51.574  52.606   9.355  1.00 12.40           O   
HETATM 4855  O5D NAP   289      55.873  53.138   8.521  1.00 11.43           O   
HETATM 4856  C6A NAP   289      45.116  49.929   6.776  1.00 10.56           C   
HETATM 4857  C6N NAP   289      59.455  54.072   9.304  1.00 10.42           C   
HETATM 4858  N6A NAP   289      44.879  49.494   5.555  1.00 11.68           N   
HETATM 4859  C7N NAP   289      63.396  55.677   8.530  1.00  8.44           C   
HETATM 4860  N7A NAP   289      47.484  49.292   7.011  1.00 10.29           N   
HETATM 4861  N7N NAP   289      63.943  55.344   7.357  1.00  9.01           N   
HETATM 4862  O7N NAP   289      63.917  56.444   9.327  1.00  9.04           O   
HETATM 4863  C8A NAP   289      48.325  49.467   8.056  1.00  9.99           C   
HETATM 4864  N9A NAP   289      47.685  50.090   9.109  1.00  9.61           N   
HETATM 4865  C1  TES   290      62.209  53.252  16.939  1.00 24.00           C   
HETATM 4866  C2  TES   290      61.560  54.243  15.964  1.00 24.69           C   
HETATM 4867  C3  TES   290      62.223  55.569  15.996  1.00 24.73           C   
HETATM 4868  O3  TES   290      61.637  56.621  15.921  1.00 26.11           O   
HETATM 4869  C4  TES   290      63.663  55.544  16.083  1.00 25.00           C   
HETATM 4870  C5  TES   290      64.386  54.438  16.380  1.00 24.51           C   
HETATM 4871  C6  TES   290      65.882  54.530  16.406  1.00 24.61           C   
HETATM 4872  C7  TES   290      66.477  54.033  17.718  1.00 24.36           C   
HETATM 4873  C8  TES   290      65.913  52.645  18.031  1.00 24.57           C   
HETATM 4874  C9  TES   290      64.381  52.580  18.031  1.00 23.76           C   
HETATM 4875  C10 TES   290      63.733  53.081  16.732  1.00 24.54           C   
HETATM 4876  C11 TES   290      63.786  51.195  18.377  1.00 25.17           C   
HETATM 4877  C12 TES   290      64.339  50.711  19.728  1.00 24.81           C   
HETATM 4878  C13 TES   290      65.865  50.727  19.744  1.00 25.69           C   
HETATM 4879  C14 TES   290      66.359  52.138  19.399  1.00 24.87           C   
HETATM 4880  C15 TES   290      67.852  52.126  19.728  1.00 25.35           C   
HETATM 4881  C16 TES   290      67.912  51.272  21.008  1.00 25.72           C   
HETATM 4882  C17 TES   290      66.493  50.670  21.174  1.00 25.73           C   
HETATM 4883  O17 TES   290      66.465  49.376  21.788  1.00 27.78           O   
HETATM 4884  C18 TES   290      66.469  49.657  18.813  1.00 26.08           C   
HETATM 4885  C19 TES   290      64.027  52.115  15.566  1.00 24.27           C   
HETATM 4809  P2B NAP   291      47.862  46.959  11.412  1.00 33.49           P   
HETATM 4810  PA  NAP   291      52.729  53.384   8.631  1.00 30.11           P   
HETATM 4811  PN  NAP   291      55.086  52.603  10.398  1.00 22.86           P   
HETATM 4812  C1B NAP   291      48.221  50.349   9.783  1.00 31.30           C   
HETATM 4813  C1D NAP   291      59.749  52.317   7.445  1.00 14.05           C   
HETATM 4814  N1A NAP   291      43.972  50.303   6.918  1.00 31.63           N   
HETATM 4815  N1N NAP   291      60.288  53.392   8.309  1.00 17.27           N   
HETATM 4816  O1A NAP   291      52.339  54.768   8.273  1.00 30.65           O1- 
HETATM 4817  O1N NAP   291      54.557  51.248  10.659  1.00 31.27           O1- 
HETATM 4818  O1X NAP   291      49.180  46.301  11.548  1.00 34.88           O   
HETATM 4819  C2A NAP   291      44.187  50.861   8.099  1.00 31.56           C   
HETATM 4820  C2B NAP   291      48.943  49.216  10.493  1.00 34.03           C   
HETATM 4821  C2D NAP   291      59.906  50.992   8.153  1.00  9.22           C   
HETATM 4822  C2N NAP   291      61.549  53.946   8.046  1.00 15.48           C   
HETATM 4823  O2A NAP   291      52.969  52.420   7.533  1.00 32.59           O   
HETATM 4824  O2B NAP   291      48.060  48.553  11.421  1.00 29.26           O   
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HETATM 4825  O2D NAP   291      60.198  49.916   7.270  1.00  8.60           O   
HETATM 4826  O2N NAP   291      55.561  53.396  11.546  1.00 33.61           O   
HETATM 4827  O2X NAP   291      46.807  46.643  12.393  1.00 41.99           O1- 
HETATM 4828  C3B NAP   291      50.082  49.905  11.226  1.00 33.29           C   
HETATM 4829  C3D NAP   291      58.537  50.779   8.756  1.00 17.33           C   
HETATM 4830  C3N NAP   291      62.042  54.967   8.851  1.00 15.25           C   
HETATM 4831  N3A NAP   291      45.358  50.774   8.705  1.00 30.71           N   
HETATM 4832  O3  NAP   291      54.000  53.497   9.623  1.00 26.62           O   
HETATM 4833  O3B NAP   291      49.791  50.081  12.612  1.00 40.48           O   
HETATM 4834  O3D NAP   291      58.309  49.388   9.002  1.00 18.83           O   
HETATM 4835  O3X NAP   291      47.281  46.661   9.942  1.00 31.41           O   
HETATM 4836  C4A NAP   291      46.370  50.115   8.124  1.00 30.33           C   
HETATM 4837  C4B NAP   291      50.190  51.273  10.597  1.00 32.57           C   
HETATM 4838  C4D NAP   291      57.650  51.364   7.685  1.00 16.79           C   
HETATM 4839  C4N NAP   291      61.289  55.422   9.929  1.00 15.51           C   
HETATM 4840  O4B NAP   291      49.171  51.404   9.590  1.00 29.69           O   
HETATM 4841  O4D NAP   291      58.340  52.548   7.248  1.00 17.50           O   
HETATM 4842  C5A NAP   291      46.199  49.505   6.891  1.00 30.44           C   
HETATM 4843  C5B NAP   291      51.544  51.422   9.951  1.00 31.71           C   
HETATM 4844  C5D NAP   291      56.247  51.643   8.202  1.00 22.46           C   
HETATM 4845  C5N NAP   291      60.043  54.872  10.202  1.00 18.85           C   
HETATM 4846  O5B NAP   291      51.571  52.800   9.573  1.00 32.69           O   
HETATM 4847  O5D NAP   291      56.291  52.521   9.337  1.00 28.12           O   
HETATM 4848  C6A NAP   291      44.945  49.617   6.280  1.00 30.03           C   
HETATM 4849  C6N NAP   291      59.538  53.864   9.391  1.00 16.60           C   
HETATM 4850  N6A NAP   291      44.670  49.130   5.077  1.00 33.92           N   
HETATM 4851  C7N NAP   291      63.387  55.623   8.544  1.00 13.34           C   
HETATM 4852  N7A NAP   291      47.351  48.928   6.561  1.00 32.23           N   
HETATM 4853  N7N NAP   291      63.920  55.306   7.375  1.00 11.60           N   
HETATM 4854  O7N NAP   291      63.916  56.391   9.341  1.00 16.00           O   
HETATM 4855  C8A NAP   291      48.222  49.178   7.539  1.00 32.91           C   
HETATM 4856  N9A NAP   291      47.629  49.902   8.493  1.00 31.70           N   
HETATM 4857  C1  TES   292      64.218  55.021  13.948  1.00 30.63           C   
HETATM 4858  C2  TES   292      63.898  55.110  12.451  1.00 28.75           C   
HETATM 4859  C3  TES   292      63.280  53.858  11.947  1.00 29.08           C   
HETATM 4860  O3  TES   292      63.609  53.348  10.901  1.00 26.61           O   
HETATM 4861  C4  TES   292      62.263  53.273  12.791  1.00 31.33           C   
HETATM 4862  C5  TES   292      62.122  53.591  14.104  1.00 30.77           C   
HETATM 4863  C6  TES   292      61.070  52.893  14.919  1.00 31.61           C   
HETATM 4864  C7  TES   292      61.604  52.345  16.238  1.00 34.80           C   
HETATM 4865  C8  TES   292      62.328  53.469  16.988  1.00 38.01           C   
HETATM 4866  C9  TES   292      63.461  54.088  16.161  1.00 32.96           C   
HETATM 4867  C10 TES   292      62.988  54.659  14.814  1.00 32.11           C   
HETATM 4868  C11 TES   292      64.304  55.171  16.869  1.00 35.54           C   
HETATM 4869  C12 TES   292      64.824  54.638  18.213  1.00 40.80           C   
HETATM 4870  C13 TES   292      63.680  54.114  19.080  1.00 44.71           C   
HETATM 4871  C14 TES   292      62.929  53.017  18.312  1.00 43.01           C   
HETATM 4872  C15 TES   292      62.018  52.363  19.352  1.00 43.73           C   
HETATM 4873  C16 TES   292      62.886  52.367  20.624  1.00 46.73           C   
HETATM 4874  C17 TES   292      64.137  53.216  20.274  1.00 47.71           C   
HETATM 4875  O17 TES   292      64.700  53.920  21.390  1.00 55.21           O   
HETATM 4876  C18 TES   292      62.736  55.242  19.537  1.00 37.85           C   
HETATM 4877  C19 TES   292      62.096  55.897  15.035  1.00 29.20           C   
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HETATM 4334  PA  NAD   293      52.736  54.088   8.925  1.00 30.06           P   
HETATM 4335  PN  NAD   293      55.409  53.234   9.656  1.00 65.04           P   
HETATM 4336  C1B NAD   293      48.548  51.054  10.409  1.00 48.31           C   
HETATM 4337  C1D NAD   293      59.740  52.278   7.177  1.00 77.91           C   
HETATM 4338  N1A NAD   293      44.390  50.772   7.931  1.00 42.79           N   
HETATM 4339  N1N NAD   293      60.370  53.333   8.020  1.00 54.39           N   
HETATM 4340  O1A NAD   293      52.408  55.427   8.391  1.00 17.09           O1- 
HETATM 4341  O1N NAD   293      56.387  53.817  10.617  1.00 63.94           O1- 
HETATM 4342  C2A NAD   293      44.747  51.209   9.148  1.00 34.34           C   
HETATM 4343  C2B NAD   293      49.316  49.954  11.127  1.00 66.65           C   
HETATM 4344  C2D NAD   293      59.514  50.931   7.893  1.00 70.45           C   
HETATM 4345  C2N NAD   293      61.564  53.994   7.798  1.00 50.88           C   
HETATM 4346  O2A NAD   293      52.818  52.972   7.935  1.00 53.49           O   
HETATM 4347  O2B NAD   293      48.465  49.269  12.023  1.00 63.29           O   
HETATM 4348  O2D NAD   293      59.986  49.817   7.119  1.00 27.64           O   
HETATM 4349  O2N NAD   293      55.079  51.790   9.858  1.00 47.22           O   
HETATM 4350  C3B NAD   293      50.467  50.672  11.822  1.00 96.77           C   
HETATM 4351  C3D NAD   293      57.994  50.914   8.151  1.00 77.99           C   
HETATM 4352  C3N NAD   293      62.032  55.003   8.657  1.00 52.93           C   
HETATM 4353  N3A NAD   293      45.954  51.234   9.706  1.00 25.73           N   
HETATM 4354  O3  NAD   293      54.023  54.163   9.728  1.00 64.56           O   
HETATM 4355  O3B NAD   293      50.289  50.719  13.235  1.00117.09           O   
HETATM 4356  O3D NAD   293      57.463  49.592   8.125  1.00 66.31           O   
HETATM 4357  C4A NAD   293      46.867  50.736   8.863  1.00 20.08           C   
HETATM 4358  C4B NAD   293      50.483  52.084  11.240  1.00 75.97           C   
HETATM 4359  C4D NAD   293      57.433  51.748   7.001  1.00 83.36           C   
HETATM 4360  C4N NAD   293      61.271  55.370   9.779  1.00 46.02           C   
HETATM 4361  O4B NAD   293      49.378  52.191  10.316  1.00 53.72           O   
HETATM 4362  O4D NAD   293      58.463  52.737   6.714  1.00 92.76           O   
HETATM 4363  C5A NAD   293      46.656  50.252   7.588  1.00 20.67           C   
HETATM 4364  C5B NAD   293      51.767  52.433  10.521  1.00 66.82           C   
HETATM 4365  C5D NAD   293      56.036  52.397   7.214  1.00 71.60           C   
HETATM 4366  C5N NAD   293      60.052  54.704  10.012  1.00 43.26           C   
HETATM 4367  O5B NAD   293      51.722  53.735   9.968  1.00 53.19           O   
HETATM 4368  O5D NAD   293      55.969  53.447   8.256  1.00 64.18           O   
HETATM 4369  C6A NAD   293      45.340  50.271   7.114  1.00 31.82           C   
HETATM 4370  C6N NAD   293      59.651  53.702   9.110  1.00 50.77           C   
HETATM 4371  N6A NAD   293      44.994  49.823   5.897  1.00 23.68           N   
HETATM 4372  C7N NAD   293      63.351  55.756   8.425  1.00 34.12           C   
HETATM 4373  N7A NAD   293      47.840  49.813   7.025  1.00 22.49           N   
HETATM 4374  N7N NAD   293      63.844  55.775   7.170  1.00 23.23           N   
HETATM 4375  O7N NAD   293      63.870  56.335   9.375  1.00 21.93           O   
HETATM 4376  C8A NAD   293      48.729  50.049   7.952  1.00 25.41           C   
HETATM 4377  N9A NAD   293      48.208  50.626   9.071  1.00 34.84           N   
HETATM 4716  P2B NAP   294      48.212  50.347  14.132  1.00 52.55           P   
HETATM 4717  PA  NAP   294      52.945  55.492  10.533  1.00 38.71           P   
HETATM 4718  PN  NAP   294      55.489  54.299   9.812  1.00 38.53           P   
HETATM 4719  C1B NAP   294      47.843  53.250  11.477  1.00 45.87           C   
HETATM 4720  C1D NAP   294      59.696  55.267  11.960  1.00 40.35           C   
HETATM 4721  N1A NAP   294      43.408  52.004   9.231  1.00 46.73           N   
HETATM 4722  N1N NAP   294      60.360  54.972  10.646  1.00 38.42           N   
HETATM 4723  O1A NAP   294      52.667  56.304  11.803  1.00 35.06           O1- 
HETATM 4724  O1N NAP   294      55.098  52.806   9.825  1.00 39.69           O1- 
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HETATM 4725  O1X NAP   294      49.722  50.069  14.274  1.00 54.86           O   
HETATM 4726  C2A NAP   294      43.637  52.694  10.435  1.00 45.92           C   
HETATM 4727  C2B NAP   294      48.766  52.320  12.320  1.00 46.29           C   
HETATM 4728  C2D NAP   294      58.803  56.467  11.914  1.00 41.92           C   
HETATM 4729  C2N NAP   294      61.590  55.566  10.288  1.00 35.94           C   
HETATM 4730  O2A NAP   294      52.470  56.207   9.273  1.00 33.80           O   
HETATM 4731  O2B NAP   294      48.060  51.854  13.485  1.00 49.87           O   
HETATM 4732  O2D NAP   294      59.481  57.626  12.365  1.00 45.57           O   
HETATM 4733  O2N NAP   294      55.790  54.771   8.356  1.00 36.49           O   
HETATM 4734  O2X NAP   294      47.529  50.518  15.446  1.00 53.49           O1- 
HETATM 4735  C3B NAP   294      49.990  53.179  12.627  1.00 45.71           C   
HETATM 4736  C3D NAP   294      57.594  56.113  12.759  1.00 43.67           C   
HETATM 4737  C3N NAP   294      62.139  55.268   9.049  1.00 33.96           C   
HETATM 4738  N3A NAP   294      44.910  52.944  10.932  1.00 45.25           N   
HETATM 4739  O3  NAP   294      54.345  55.338  10.491  1.00 38.85           O   
HETATM 4740  O3B NAP   294      49.841  53.902  13.859  1.00 43.20           O   
HETATM 4741  O3D NAP   294      57.658  56.674  14.075  1.00 46.01           O   
HETATM 4742  O3X NAP   294      47.555  49.387  13.154  1.00 51.60           O   
HETATM 4743  C4A NAP   294      45.943  52.456  10.152  1.00 43.77           C   
HETATM 4744  C4B NAP   294      50.042  54.277  11.530  1.00 44.79           C   
HETATM 4745  C4D NAP   294      57.559  54.560  12.778  1.00 42.44           C   
HETATM 4746  C4N NAP   294      61.473  54.356   8.106  1.00 33.60           C   
HETATM 4747  O4B NAP   294      48.651  54.312  11.017  1.00 45.17           O   
HETATM 4748  O4D NAP   294      58.843  54.109  12.280  1.00 43.09           O   
HETATM 4749  C5A NAP   294      45.777  51.763   8.942  1.00 43.89           C   
HETATM 4750  C5B NAP   294      50.898  53.963  10.244  1.00 43.45           C   
HETATM 4751  C5D NAP   294      56.471  53.959  11.940  1.00 42.22           C   
HETATM 4752  C5N NAP   294      60.240  53.775   8.500  1.00 34.84           C   
HETATM 4753  O5B NAP   294      52.243  53.974  10.719  1.00 41.84           O   
HETATM 4754  O5D NAP   294      56.627  54.535  10.607  1.00 40.22           O   
HETATM 4755  C6A NAP   294      44.479  51.520   8.457  1.00 45.23           C   
HETATM 4756  C6N NAP   294      59.659  54.069   9.768  1.00 36.99           C   
HETATM 4757  N6A NAP   294      44.143  50.873   7.320  1.00 46.04           N   
HETATM 4758  C7N NAP   294      63.463  55.925   8.673  1.00 32.29           C   
HETATM 4759  N7A NAP   294      47.006  51.408   8.406  1.00 41.98           N   
HETATM 4760  N7N NAP   294      64.057  56.738   9.501  1.00 28.90           N   
HETATM 4761  O7N NAP   294      63.913  55.664   7.575  1.00 31.78           O   
HETATM 4762  C8A NAP   294      47.859  51.891   9.286  1.00 43.44           C   
HETATM 4763  N9A NAP   294      47.270  52.536  10.353  1.00 44.65           N   
 
 
4. Observed protein structure: T0807_HET.pdb  
Note only HETATOMS have been shown  
 
REMARK  T0807 
REMARK   3   RESOLUTION RANGE HIGH (ANGSTROMS) :   1.80  
REMARK   3   FREE R VALUE                     :  0.22129  
REMARK   3   MEAN B VALUE      (OVERALL, A**2) :  34.365  
CRYST1   99.483   99.483   55.181  90.00  90.00 120.00 P 62                       
REMARK 290 THE FOLLOWING TRANSFORMATIONS OPERATE ON THE 
ATOM/HETATM              
HETATM  170  N   MSE A  24      51.978  14.364  -0.720  1.00 26.86           N   
HETATM  171  CA  MSE A  24      50.991  13.632   0.065  1.00 26.08           C   
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HETATM  172  C   MSE A  24      49.998  14.604   0.639  1.00 27.41           C   
HETATM  173  O   MSE A  24      50.254  15.807   0.817  1.00 27.05           O   
HETATM  174  CB  MSE A  24      51.654  12.812   1.171  1.00 24.82           C   
HETATM  175  CG  MSE A  24      52.569  11.728   0.594  1.00 26.73           C   
HETATM  176 SE   MSE A  24      53.180  10.645   2.121  1.00 28.93          SE   
HETATM  177  CE  MSE A  24      54.323   9.426   1.101  1.00 28.30           C   
HETATM  392  N   MSE A  54      53.686  23.740   4.714  1.00 23.28           N   
HETATM  393  CA  MSE A  54      53.309  24.052   3.342  1.00 24.06           C   
HETATM  394  C   MSE A  54      52.548  22.939   2.648  1.00 24.64           C   
HETATM  395  O   MSE A  54      51.705  23.215   1.780  1.00 25.02           O   
HETATM  396  CB  MSE A  54      54.586  24.347   2.476  1.00 26.10           C   
HETATM  397  CG  MSE A  54      54.312  24.434   0.978  1.00 30.15           C   
HETATM  398 SE   MSE A  54      56.079  24.574   0.127  1.00 37.36          SE   
HETATM  399  CE  MSE A  54      55.422  23.946  -1.631  1.00 39.96           C   
HETATM  673  N   MSE A  91      55.960  32.391  15.454  1.00 27.81           N   
HETATM  674  CA  MSE A  91      56.595  31.102  15.430  1.00 27.17           C   
HETATM  675  C   MSE A  91      55.847  30.067  16.250  1.00 27.49           C   
HETATM  676  O   MSE A  91      55.679  28.942  15.840  1.00 26.22           O   
HETATM  677  CB  MSE A  91      57.999  31.261  15.980  1.00 28.69           C   
HETATM  678  CG  MSE A  91      58.760  29.966  16.084  1.00 29.87           C   
HETATM  679 SE   MSE A  91      59.346  29.292  14.359  1.00 31.30          SE   
HETATM  680  CE  MSE A  91      61.142  30.045  14.322  1.00 32.79           C   
HETATM  826  N   MSE A 109      62.958  17.773  14.896  1.00 22.27           N   
HETATM  827  CA  MSE A 109      63.656  18.836  14.187  1.00 23.51           C   
HETATM  828  C   MSE A 109      62.678  19.733  13.504  1.00 22.57           C   
HETATM  829  O   MSE A 109      61.655  19.281  12.974  1.00 21.79           O   
HETATM  830  CB  MSE A 109      64.533  18.091  13.197  1.00 25.51           C   
HETATM  831  CG  MSE A 109      65.219  18.945  12.193  1.00 28.74           C   
HETATM  832 SE   MSE A 109      66.871  19.558  13.016  1.00 35.13          SE   
HETATM  833  CE  MSE A 109      67.723  17.806  13.495  1.00 33.55           C   
HETATM  975  N   MSE A 127      63.497  29.918  17.605  1.00 27.43           N   
HETATM  976  CA  MSE A 127      63.697  28.474  17.588  1.00 26.51           C   
HETATM  977  C   MSE A 127      64.213  28.038  18.954  1.00 27.91           C   
HETATM  978  O   MSE A 127      63.816  27.004  19.477  1.00 28.23           O   
HETATM  979  CB  MSE A 127      64.725  28.059  16.545  1.00 26.20           C   
HETATM  980  CG  MSE A 127      64.278  28.225  15.102  1.00 26.41           C   
HETATM  981 SE   MSE A 127      62.778  26.975  14.774  1.00 28.83          SE   
HETATM  982  CE  MSE A 127      62.895  27.001  12.844  1.00 24.89           C   
HETATM 1148  N   MSE A 149      74.699  30.191   5.265  1.00 35.20           N   
HETATM 1149  CA  MSE A 149      75.193  29.406   6.425  1.00 34.88           C   
HETATM 1150  C   MSE A 149      76.242  30.160   7.216  1.00 37.39           C   
HETATM 1151  O   MSE A 149      76.265  30.123   8.441  1.00 37.49           O   
HETATM 1152  CB  MSE A 149      75.773  28.084   5.983  1.00 34.89           C   
HETATM 1153  CG  MSE A 149      74.765  27.089   5.421  1.00 34.49           C   
HETATM 1154 SE   MSE A 149      73.279  26.734   6.685  1.00 34.68          SE   
HETATM 1155  CE  MSE A 149      74.183  26.267   8.364  1.00 34.22           C   
HETATM 1484  N   MSE A 191      70.463  17.187   4.614  1.00 26.83           N   
HETATM 1485  CA  MSE A 191      69.299  16.418   4.138  1.00 25.04           C   
HETATM 1486  C   MSE A 191      69.183  16.702   2.670  1.00 24.92           C   
HETATM 1487  O   MSE A 191      69.064  17.841   2.307  1.00 26.30           O   
HETATM 1488  CB  MSE A 191      68.026  16.856   4.864  1.00 25.02           C   
HETATM 1489  CG  MSE A 191      68.111  16.603   6.364  1.00 25.16           C   
HETATM 1490 SE   MSE A 191      66.469  17.188   7.266  1.00 26.02          SE   
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HETATM 1491  CE  MSE A 191      65.278  15.740   6.723  1.00 24.88           C   
HETATM 1659  N   MSE A 215      74.159  -0.335 -15.576  1.00 54.29           N   
HETATM 1660  CA  MSE A 215      74.867  -0.454 -14.333  1.00 55.95           C   
HETATM 1661  C   MSE A 215      73.970  -1.026 -13.282  1.00 53.60           C   
HETATM 1662  O   MSE A 215      74.427  -1.813 -12.467  1.00 56.32           O   
HETATM 1663  CB  MSE A 215      75.378   0.913 -13.935  1.00 58.37           C   
HETATM 1664  CG  MSE A 215      76.243   0.823 -12.682  1.00 63.59           C   
HETATM 1665 SE   MSE A 215      76.954   2.605 -12.153  1.00 70.46          SE   
HETATM 1666  CE  MSE A 215      77.523   3.298 -13.919  1.00 69.74           C   
HETATM 2170  N   MSE A 283      67.246  24.684  -6.383  1.00 39.49           N   
HETATM 2171  CA  MSE A 283      66.110  24.653  -5.428  1.00 45.39           C   
HETATM 2172  C   MSE A 283      64.981  24.319  -6.331  1.00 50.57           C   
HETATM 2173  O   MSE A 283      65.045  24.576  -7.522  1.00 50.98           O   
HETATM 2174  CB  MSE A 283      65.689  25.947  -4.717  1.00 48.12           C   
HETATM 2175  CG  MSE A 283      66.745  26.547  -3.818  1.00 50.80           C   
HETATM 2176 SE   MSE A 283      66.240  28.417  -3.402  1.00 68.58          SE   
HETATM 2177  CE  MSE A 283      67.943  29.230  -2.796  1.00 65.89           C   
HETATM 2185  PA  NAP A 301      61.935  12.650  -5.038  1.00 31.18           P   
HETATM 2186  O1A NAP A 301      63.309  12.825  -5.631  1.00 29.86           O   
HETATM 2187  O2A NAP A 301      61.870  12.104  -3.623  1.00 33.14           O   
HETATM 2188  O5B NAP A 301      60.999  11.823  -6.050  1.00 32.15           O   
HETATM 2189  C5B NAP A 301      59.638  11.514  -5.805  1.00 29.43           C   
HETATM 2190  C4B NAP A 301      59.120  10.668  -6.952  1.00 31.90           C   
HETATM 2191  O4B NAP A 301      59.910   9.478  -7.027  1.00 29.35           O   
HETATM 2192  C3B NAP A 301      57.691  10.266  -6.699  1.00 31.89           C   
HETATM 2193  O3B NAP A 301      56.840  10.444  -7.818  1.00 32.95           O   
HETATM 2194  C2B NAP A 301      57.782   8.784  -6.399  1.00 30.63           C   
HETATM 2195  O2B NAP A 301      56.709   8.012  -6.895  1.00 30.03           O   
HETATM 2196  C1B NAP A 301      59.028   8.351  -7.081  1.00 32.13           C   
HETATM 2197  N9A NAP A 301      59.763   7.252  -6.447  1.00 31.95           N   
HETATM 2198  C8A NAP A 301      60.156   7.138  -5.143  1.00 31.71           C   
HETATM 2199  N7A NAP A 301      60.862   6.062  -4.923  1.00 29.14           N   
HETATM 2200  C5A NAP A 301      60.904   5.430  -6.148  1.00 32.14           C   
HETATM 2201  C6A NAP A 301      61.470   4.211  -6.572  1.00 32.00           C   
HETATM 2202  N6A NAP A 301      62.170   3.358  -5.778  1.00 32.97           N   
HETATM 2203  N1A NAP A 301      61.309   3.881  -7.880  1.00 34.46           N   
HETATM 2204  C2A NAP A 301      60.659   4.683  -8.735  1.00 30.14           C   
HETATM 2205  N3A NAP A 301      60.070   5.848  -8.436  1.00 33.94           N   
HETATM 2206  C4A NAP A 301      60.233   6.158  -7.110  1.00 31.79           C   
HETATM 2207  O3  NAP A 301      61.244  14.101  -5.019  1.00 29.96           O   
HETATM 2208  PN  NAP A 301      60.623  15.024  -3.871  1.00 30.09           P   
HETATM 2209  O1N NAP A 301      59.365  14.375  -3.310  1.00 30.88           O   
HETATM 2210  O2N NAP A 301      60.436  16.483  -4.394  1.00 29.63           O   
HETATM 2211  O5D NAP A 301      61.805  15.202  -2.807  1.00 28.39           O   
HETATM 2212  C5D NAP A 301      61.933  14.401  -1.622  1.00 29.11           C   
HETATM 2213  C4D NAP A 301      61.369  15.166  -0.405  1.00 26.69           C   
HETATM 2214  O4D NAP A 301      62.178  16.294  -0.048  1.00 25.53           O   
HETATM 2215  C3D NAP A 301      59.994  15.759  -0.541  1.00 25.73           C   
HETATM 2216  O3D NAP A 301      58.913  14.833  -0.593  1.00 25.27           O   
HETATM 2217  C2D NAP A 301      59.957  16.709   0.640  1.00 27.78           C   
HETATM 2218  O2D NAP A 301      59.745  15.961   1.862  1.00 23.52           O   
HETATM 2219  C1D NAP A 301      61.379  17.266   0.570  1.00 26.20           C   
HETATM 2220  N1N NAP A 301      61.496  18.505  -0.245  1.00 29.03           N   
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HETATM 2221  C2N NAP A 301      61.932  19.600   0.376  1.00 26.91           C   
HETATM 2222  C3N NAP A 301      62.063  20.826  -0.278  1.00 27.45           C   
HETATM 2223  C7N NAP A 301      62.538  22.026   0.459  1.00 29.64           C   
HETATM 2224  O7N NAP A 301      62.446  23.153  -0.082  1.00 29.10           O   
HETATM 2225  N7N NAP A 301      63.106  21.838   1.663  1.00 25.30           N   
HETATM 2226  C4N NAP A 301      61.790  20.850  -1.655  1.00 26.27           C   
HETATM 2227  C5N NAP A 301      61.366  19.691  -2.310  1.00 29.23           C   
HETATM 2228  C6N NAP A 301      61.255  18.502  -1.596  1.00 28.64           C   
HETATM 2229  P2B NAP A 301      55.605   7.331  -5.879  1.00 32.53           P   
HETATM 2230  O1X NAP A 301      55.233   8.354  -4.859  1.00 30.76           O   
HETATM 2231  O2X NAP A 301      54.440   6.914  -6.666  1.00 32.30           O   
HETATM 2232  O3X NAP A 301      56.284   6.181  -5.163  1.00 33.49           O   
HETATM 2233  C   ACT A 302      59.064  22.186  -0.877  1.00 36.10           C   
HETATM 2234  O   ACT A 302      59.196  23.284  -1.495  1.00 33.49           O   
HETATM 2235  OXT ACT A 302      59.498  22.041   0.318  1.00 32.47           O   
HETATM 2236  CH3 ACT A 302      58.358  21.069  -1.608  1.00 35.96           C  
 
 

5. Observed  PDB structure files for CASP11 target T0863 
File has been truncated to show just the HETATOMS   
 
REMARK 290 THE FOLLOWING TRANSFORMATIONS OPERATE ON THE ATOM/HETATM              
 
HETATM11080 NA    NA A 801     ‐23.927 ‐59.285 ‐21.780  1.00 12.66          NA   
HETATM11081 CL    CL A 802     ‐20.283 ‐57.183 ‐19.864  1.00 29.81          CL   
HETATM11082  CHA HEM A 803     ‐10.679 ‐61.506 ‐40.506  1.00 12.80           C   
HETATM11083  CHB HEM A 803      ‐9.943 ‐65.374 ‐37.746  1.00 13.61           C   
HETATM11084  CHC HEM A 803     ‐14.708 ‐65.999 ‐37.411  1.00 13.51           C   
HETATM11085  CHD HEM A 803     ‐15.411 ‐62.179 ‐40.211  1.00 12.26           C   
HETATM11086  C1A HEM A 803     ‐10.076 ‐62.388 ‐39.671  1.00 13.48           C   
HETATM11087  C2A HEM A 803      ‐8.671 ‐62.448 ‐39.371  1.00 13.85           C   
HETATM11088  C3A HEM A 803      ‐8.482 ‐63.583 ‐38.642  1.00 13.79           C   
HETATM11089  C4A HEM A 803      ‐9.739 ‐64.190 ‐38.478  1.00 14.41           C   
HETATM11090  CMA HEM A 803      ‐7.230 ‐64.093 ‐38.003  1.00 13.65           C   
HETATM11091  CAA HEM A 803      ‐7.606 ‐61.438 ‐39.741  1.00 13.52           C   
HETATM11092  CBA HEM A 803      ‐7.603 ‐60.140 ‐38.914  1.00 13.68           C   
HETATM11093  CGA HEM A 803      ‐6.624 ‐59.197 ‐39.564  1.00 14.16           C   
HETATM11094  O1A HEM A 803      ‐5.386 ‐59.536 ‐39.602  1.00 14.01           O   
HETATM11095  O2A HEM A 803      ‐6.930 ‐58.053 ‐40.036  1.00 14.71           O   
HETATM11096  C1B HEM A 803     ‐11.189 ‐65.874 ‐37.414  1.00 14.71           C   
HETATM11097  C2B HEM A 803     ‐11.381 ‐67.106 ‐36.684  1.00 14.53           C   
HETATM11098  C3B HEM A 803     ‐12.744 ‐67.241 ‐36.545  1.00 14.93           C   
HETATM11099  C4B HEM A 803     ‐13.344 ‐66.152 ‐37.342  1.00 13.79           C   
HETATM11100  CMB HEM A 803     ‐10.270 ‐67.915 ‐36.069  1.00 15.03           C   
HETATM11101  CAB HEM A 803     ‐13.545 ‐68.323 ‐35.933  1.00 14.94           C   
HETATM11102  CBB HEM A 803     ‐13.022 ‐69.494 ‐35.907  1.00 16.13           C   
HETATM11103  C1C HEM A 803     ‐15.370 ‐64.988 ‐38.062  1.00 13.45           C   
HETATM11104  C2C HEM A 803     ‐16.786 ‐64.739 ‐38.028  1.00 12.91           C   
HETATM11105  C3C HEM A 803     ‐16.954 ‐63.587 ‐38.761  1.00 12.97           C   
HETATM11106  C4C HEM A 803     ‐15.669 ‐63.129 ‐39.259  1.00 13.12           C   
HETATM11107  CMC HEM A 803     ‐17.812 ‐65.497 ‐37.176  1.00 13.19           C   
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HETATM11108  CAC HEM A 803     ‐18.195 ‐62.901 ‐39.169  1.00 13.69           C   
HETATM11109  CBC HEM A 803     ‐19.374 ‐63.500 ‐39.229  1.00 13.51           C   
HETATM11110  C1D HEM A 803     ‐14.137 ‐61.764 ‐40.644  1.00 12.35           C   
HETATM11111  C2D HEM A 803     ‐13.947 ‐60.592 ‐41.488  1.00 11.91           C   
HETATM11112  C3D HEM A 803     ‐12.614 ‐60.432 ‐41.586  1.00 12.08           C   
HETATM11113  C4D HEM A 803     ‐12.036 ‐61.447 ‐40.744  1.00 12.57           C   
HETATM11114  CMD HEM A 803     ‐14.959 ‐59.866 ‐42.331  1.00 12.10           C   
HETATM11115  CAD HEM A 803     ‐11.858 ‐59.510 ‐42.477  1.00 12.20           C   
HETATM11116  CBD HEM A 803     ‐11.389 ‐58.169 ‐41.897  1.00 11.96           C   
HETATM11117  CGD HEM A 803     ‐10.991 ‐57.146 ‐42.916  1.00 11.53           C   
HETATM11118  O1D HEM A 803     ‐10.327 ‐56.143 ‐42.481  1.00 11.07           O   
HETATM11119  O2D HEM A 803     ‐11.340 ‐57.228 ‐44.141  1.00 11.34           O   
HETATM11120  NA  HEM A 803     ‐10.690 ‐63.476 ‐39.155  1.00 13.40           N   
HETATM11121  NB  HEM A 803     ‐12.384 ‐65.401 ‐37.807  1.00 13.96           N   
HETATM11122  NC  HEM A 803     ‐14.729 ‐64.008 ‐38.792  1.00 12.93           N   
HETATM11123  ND  HEM A 803     ‐12.986 ‐62.179 ‐40.133  1.00 12.68           N   
HETATM11124 FE   HEM A 803     ‐12.679 ‐63.727 ‐39.002  1.00 14.09          FE   
HETATM11125  C   CYN A 804     ‐12.592 ‐62.336 ‐37.614  1.00 15.82           C   
HETATM11126  N   CYN A 804     ‐12.182 ‐62.237 ‐36.426  1.00 15.78           N   
HETATM11127  C1  MPD A 805     ‐21.435 ‐35.377 ‐42.546  1.00 40.96           C   
HETATM11128  C2  MPD A 805     ‐21.088 ‐36.857 ‐42.681  1.00 39.54           C   
HETATM11129  O2  MPD A 805     ‐21.079 ‐37.561 ‐41.407  1.00 36.46           O   
HETATM11130  CM  MPD A 805     ‐22.142 ‐37.577 ‐43.459  1.00 38.33           C   
HETATM11131  C3  MPD A 805     ‐19.654 ‐36.959 ‐43.220  1.00 42.56           C   
HETATM11132  C4  MPD A 805     ‐19.239 ‐36.363 ‐44.596  1.00 43.88           C   
HETATM11133  O4  MPD A 805     ‐20.050 ‐37.069 ‐45.524  1.00 46.78           O   
HETATM11134  C5  MPD A 805     ‐19.293 ‐34.828 ‐44.781  1.00 43.24           C   
HETATM11135  C1  MPD A 806      ‐1.538 ‐57.208 ‐31.129  1.00 43.02           C   
HETATM11136  C2  MPD A 806      ‐0.230 ‐57.938 ‐31.407  1.00 44.51           C   
HETATM11137  O2  MPD A 806       0.027 ‐57.855 ‐32.788  1.00 42.26           O   
HETATM11138  CM  MPD A 806       0.926 ‐57.203 ‐30.737  1.00 45.08           C   
HETATM11139  C3  MPD A 806      ‐0.256 ‐59.449 ‐31.123  1.00 47.35           C   
HETATM11140  C4  MPD A 806      ‐0.577 ‐60.348 ‐32.339  1.00 47.33           C   
HETATM11141  O4  MPD A 806      ‐0.593 ‐59.585 ‐33.517  1.00 46.79           O   
HETATM11142  C5  MPD A 806       0.427 ‐61.443 ‐32.713  1.00 49.63           C   
HETATM11143  CHA HEM B 801      ‐2.291 ‐44.158  24.591  1.00 12.59           C   
HETATM11144  CHB HEM B 801       1.341 ‐42.748  21.834  1.00 13.08           C   
HETATM11145  CHC HEM B 801      ‐0.632 ‐38.381  21.352  1.00 12.48           C   
HETATM11146  CHD HEM B 801      ‐4.250 ‐39.852  24.223  1.00 12.56           C   
HETATM11147  C1A HEM B 801      ‐1.200 ‐44.202  23.766  1.00 12.75           C   
HETATM11148  C2A HEM B 801      ‐0.411 ‐45.369  23.441  1.00 12.43           C   
HETATM11149  C3A HEM B 801       0.620 ‐44.965  22.681  1.00 12.69           C   
HETATM11150  C4A HEM B 801       0.501 ‐43.516  22.577  1.00 12.98           C   
HETATM11151  CMA HEM B 801       1.744 ‐45.752  22.074  1.00 12.34           C   
HETATM11152  CAA HEM B 801      ‐0.589 ‐46.783  23.816  1.00 12.75           C   
HETATM11153  CBA HEM B 801      ‐1.668 ‐47.466  23.012  1.00 13.19           C   
HETATM11154  CGA HEM B 801      ‐1.930 ‐48.819  23.624  1.00 13.11           C   
HETATM11155  O1A HEM B 801      ‐0.981 ‐49.659  23.697  1.00 12.89           O   
HETATM11156  O2A HEM B 801      ‐3.141 ‐49.117  23.950  1.00 13.05           O   
HETATM11157  C1B HEM B 801       1.161 ‐41.390  21.499  1.00 13.63           C   
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HETATM11158  C2B HEM B 801       2.036 ‐40.591  20.695  1.00 13.79           C   
HETATM11159  C3B HEM B 801       1.493 ‐39.352  20.556  1.00 13.84           C   
HETATM11160  C4B HEM B 801       0.219 ‐39.442  21.258  1.00 13.55           C   
HETATM11161  CMB HEM B 801       3.320 ‐40.992  20.011  1.00 13.92           C   
HETATM11162  CAB HEM B 801       1.893 ‐38.097  19.887  1.00 14.25           C   
HETATM11163  CBB HEM B 801       3.132 ‐37.733  19.902  1.00 15.32           C   
HETATM11164  C1C HEM B 801      ‐1.854 ‐38.406  22.027  1.00 12.30           C   
HETATM11165  C2C HEM B 801      ‐2.867 ‐37.381  21.986  1.00 11.26           C   
HETATM11166  C3C HEM B 801      ‐3.962 ‐37.808  22.776  1.00 11.25           C   
HETATM11167  C4C HEM B 801      ‐3.531 ‐39.117  23.296  1.00 12.03           C   
HETATM11168  CMC HEM B 801      ‐2.747 ‐36.136  21.116  1.00 11.44           C   
HETATM11169  CAC HEM B 801      ‐5.260 ‐37.180  23.180  1.00 10.71           C   
HETATM11170  CBC HEM B 801      ‐5.369 ‐35.829  23.200  1.00 10.44           C   
HETATM11171  C1D HEM B 801      ‐3.958 ‐41.132  24.609  1.00 12.35           C   
HETATM11172  C2D HEM B 801      ‐4.766 ‐41.885  25.556  1.00 12.15           C   
HETATM11173  C3D HEM B 801      ‐4.203 ‐43.113  25.638  1.00 12.32           C   
HETATM11174  C4D HEM B 801      ‐3.070 ‐43.076  24.729  1.00 12.41           C   
HETATM11175  CMD HEM B 801      ‐6.006 ‐41.475  26.296  1.00 11.91           C   
HETATM11176  CAD HEM B 801      ‐4.646 ‐44.262  26.507  1.00 12.53           C   
HETATM11177  CBD HEM B 801      ‐5.472 ‐45.343  25.944  1.00 12.52           C   
HETATM11178  CGD HEM B 801      ‐6.020 ‐46.308  26.947  1.00 12.58           C   
HETATM11179  O1D HEM B 801      ‐6.437 ‐47.463  26.479  1.00 12.95           O   
HETATM11180  O2D HEM B 801      ‐6.130 ‐46.017  28.152  1.00 12.60           O   
HETATM11181  NA  HEM B 801      ‐0.649 ‐43.093  23.231  1.00 12.68           N   
HETATM11182  NB  HEM B 801       0.120 ‐40.685  21.844  1.00 13.51           N   
HETATM11183  NC  HEM B 801      ‐2.276 ‐39.429  22.800  1.00 12.05           N   
HETATM11184  ND  HEM B 801      ‐2.936 ‐41.826  24.147  1.00 12.74           N   
HETATM11185 FE   HEM B 801      ‐1.471 ‐41.282  23.029  1.00 14.24          FE   
HETATM11186 NA    NA B 802     ‐11.116 ‐34.514   5.635  1.00 13.26          NA   
HETATM11187 CL    CL B 803     ‐10.971 ‐38.874   3.738  1.00 31.84          CL   
HETATM11188  C   CYN B 804      ‐2.649 ‐41.945  21.510  1.00 16.68           C   
HETATM11189  N   CYN B 804      ‐2.833 ‐42.666  20.470  1.00 17.78           N   
HETATM11190  C1  MPD B 805     ‐11.073  ‐4.222   1.524  1.00 44.03           C   
HETATM11191  C2  MPD B 805      ‐9.714  ‐3.743   0.982  1.00 48.25           C   
HETATM11192  O2  MPD B 805      ‐9.631  ‐4.172  ‐0.409  1.00 47.44           O   
HETATM11193  CM  MPD B 805      ‐9.835  ‐2.218   0.776  1.00 51.52           C   
HETATM11194  C3  MPD B 805      ‐8.386  ‐4.082   1.849  1.00 46.84           C   
HETATM11195  C4  MPD B 805      ‐8.446  ‐4.797   3.258  1.00 47.03           C   
HETATM11196  O4  MPD B 805      ‐7.264  ‐5.012   4.041  1.00 40.73           O   
HETATM11197  C5  MPD B 805      ‐9.406  ‐4.134   4.246  1.00 49.52           C   
HETATM11198  C1  MPD B 806       4.593 ‐22.740 ‐42.044  1.00 32.12           C   
HETATM11199  C2  MPD B 806       4.714 ‐24.256 ‐41.904  1.00 33.56           C   
HETATM11200  O2  MPD B 806       5.348 ‐24.470 ‐40.638  1.00 27.94           O   
HETATM11201  CM  MPD B 806       3.392 ‐24.970 ‐41.809  1.00 34.61           C   
HETATM11202  C3  MPD B 806       5.503 ‐24.804 ‐43.078  1.00 35.18           C   
HETATM11203  C4  MPD B 806       4.777 ‐24.726 ‐44.416  1.00 38.63           C   
HETATM11204  O4  MPD B 806       3.966 ‐25.866 ‐44.504  1.00 41.30           O   
HETATM11205  C5  MPD B 806       3.723 ‐23.649 ‐44.786  1.00 40.26           C   
HETATM11206  C1  MPD B 807       1.589 ‐54.775  17.947  1.00 45.47           C   
HETATM11207  C2  MPD B 807       2.349 ‐54.050  16.859  1.00 43.67           C   
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HETATM11208  O2  MPD B 807       2.566 ‐52.694  17.116  1.00 43.71           O   
HETATM11209  CM  MPD B 807       3.751 ‐54.630  16.848  1.00 46.21           C   
HETATM11210  C3  MPD B 807       1.714 ‐54.026  15.478  1.00 43.93           C   
HETATM11211  C4  MPD B 807       0.304 ‐54.546  15.373  1.00 40.10           C   
HETATM11212  O4  MPD B 807       0.301 ‐55.883  15.748  1.00 40.44           O   
HETATM11213  C5  MPD B 807      ‐0.719 ‐53.887  16.276  1.00 36.58           C   
HETATM11214  P   PO4 B 808       7.117 ‐52.019  38.412  1.00 53.67           P   
HETATM11215  O1  PO4 B 808       6.444 ‐52.053  37.032  1.00 51.08           O   
HETATM11216  O2  PO4 B 808       6.145 ‐52.673  39.377  1.00 57.19           O   
HETATM11217  O3  PO4 B 808       7.474 ‐50.618  38.830  1.00 40.70           O   
HETATM11218  O4  PO4 B 808       8.355 ‐52.923  38.440  1.00 56.58           O   
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Analysis of CASP11, CASP12 and CASP13 
 
 
 
                                                                               
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S.1. Comparison of FunFOLD3 ligand binding site predictions for CASP 11 target T0798 (PDB ID 4ojk). 
(A) Predicted ligand binding site residues shown as sticks with correctly predicted binding site residues in blue and incorrect 
predictions in red, the guanosine-5’-diphosphate (GDP) ligand is shown as a sphere and coloured yellow. BDT score of 0.797 
and MCC score of 0.753. (B) The observed ligand binding site residues shown as sticks for T0798 (PDB ID 4ojk), with binding 
site residues coloured in blue and the ligand GDP coloured yellow  
 
 
 

The fourth CASP11 target is cGMP Dependent Protein Kinase II from Rattus norvegicus. 

(CASP 11 T0798 and PDB ID 4ojk). There were a total of nine incorrect predictions, which 

consisted of three underpredictions (ALA 12, TYR 32 and ARG 32) and six overpredictions 

(VAL 13, GLU 33, ILE 35, MET 36, ARG 61, GLU 62). A majority of under- and over-

predictions were caused by extension of the ligand binding site, due to having a large ligand; 

guanosine-5’-diphosphate (GDP) with a large binding site.   

 

Cyclic GMP-dependent protein kinases (PKG) are key mediators of the nitric oxide/cGMP 

signaling pathway and play a key role in the regulation of cardiovascular and neuronal 

functions. Type II is a membrane-anchored PKG.(Seifried, Schultz and Gohla, 2013) 

 

A TM-score of 0.88190 was obtained, showing a high level of molecular similarity between 

the observed and predicted molecular structures. The number of residues obtained for the 

observed protein model, were 172 residues compared to 198 residues for the predicted 

protein model. Despite the difference in the number of residues, there was still a high level of 

A B 
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molecular similarity. This was because the predicted protein model had extra residues; 

which made the α helix of the model longer and added a flexible loop. The rest of the 

predicted protein model aligns with the observed protein model.  

 

Figure S.2. Comparison of TMalign(Zhang and Skolnick, 2005) superposition for CASP11 target T0798 (PDB ID 4ojk).  
The structure in blue is the observed structure for T0798 and the structure in red is the predicted structure from 
InFOLD3(McGuffin et al., 2015) 
 
 
\ 
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Figure S.3. Comparison of FunFOLD3 ligand binding site predictions for CASP 11 target T0783 (PDB ID 4cvh). 
(A) Predicted ligand binding site residues shown as sticks with correctly predicted binding site residues in blue and incorrect 
predictions in red, the cytidine-5’-triphosphate (CTP) ligand is shown as a sphere and coloured yellow. BDT and MCC score of 
0.17 and 0.21, respectively and compared against the MG ligand due to correctly predicted residues against this observed 
ligand (B) Predicted ligand binding site residues shown as sticks with correctly predicted binding site residues in blue and 
incorrect predictions in red, the carbon (C) ligand is shown as a sphere and coloured yellow. BDT and MCC score of 0.17 and 
0.21, respectively and compared against the MG ligand due to correctly predicted residues against this observed ligand (C) 
Predicted ligand binding site residues shown as sticks with and incorrect predictions in red, the cytidine-5’-monophosphate 
(C5P) ligand is shown as a sphere and coloured yellow. No BDT or MCC score could be calculated at the predicted ligand does 
not match the observed ligand (D) Predicted ligand binding site residues shown as sticks with and incorrect predictions in red, 
the copper (CU) ligand is shown as a sphere and coloured yellow. No BDT or MCC score could be calculated at the predicted 
ligand does not match the observed ligand (E) The observed ligand binding site residues shown as sticks for T0783 (PDB ID 
4cvh), with binding site residues coloured in blue and the  magnesium (MG)  ligand coloured yellow (F) The observed ligand 

A B 

C D 

E F 
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binding site residues shown as sticks for T0783 (PDB ID 4cvh), with binding site residues coloured in blue and the chlorine (CL) 
ligand coloured yellow  

 

The fifth CASP11 target is human isoprenoid synthase (CASP 11 T0783 and PDB ID 4cvh). 

There were only two correct predictions, which were THR 85 and ARG 86 (Figure S.3A and 

B). These correct predictions were on two (CTP and C) of the four predicted ligands. Refer 

to Figure S.3 for the location and labels for the associated predicted residues for this protein.   

 

Isoprenoid synthase utilises the magnesium as a cofactor for the dissociation of the enzyme 

to the tetra anion.(Casteel et al., 2010) The FunFOLD3 server did not correctly predicted any 

of these ligands. According to the PDB entry for this protein, Isoprenoid synthase binds a 

total of three ligands the previously mentioned magnesium ligand as well as chlorine and 

ethylene glycol. FunFOLD3 correctly predicted more than one ligand, however not the 

correct ones.  Despite the incorrect ligands, two of the ligands; CTP and C had two of the 

same ligand-binding site residues as MG and therefore BCC and MDT scores were 

compared against this observed ligand. Similar BDT and MCC scores were achieved for the 

two predicted ligands with 0.21 and 0.17, respectively for CTP ligand and 0.27 and 0.20, 

respectively for C ligand. This was compared against the MG ligand due to two of the  same 

ligand binding site residues in the predicted ligands; CTP and C.  

 

A TM-score of 0.545 was obtained, meaning generally the same fold of the protein in 

structural classification of proteins/CATH protein structure classification database. The 

number of residues for the observed protein model was 399 and for the predicted model was 

411 residues.  
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Figure S.4. Comparison of TMalign(Zhang and Skolnick, 2005) superposition for CASP11 target T0783 (PDB ID 4cvh).  
The structure in blue is the observed structure for T07983 and the structure in red is the predicted structure from 
InFOLD3(McGuffin et al., 2015) 
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A       B 

 
 
C       D 

 
 
Figure S.5. Comparison of FunFOLD3 ligand binding site predictions for CASP 11 target T0813 (PDB ID 4wji). 
(A) Predicted ligand binding site residues shown as sticks with incorrect predictions in red, the 1,4-dihydronicotinamide adenine 
dinucleotide (NAI) ligand is shown as a sphere and coloured yellow. BDT score of 0.11 and MCC score od -0.029 was achieved 
(B) Predicted ligand binding site residues shown as sticks with correctly predicted binding site residues in blue and with 
incorrect predictions in red, the nicotinamide adenine dinucleotide (NAD) ligand is shown as a sphere and coloured yellow. BDT 
score of 0.086 and MCC score of 0.19 was achieved (C) Predicted ligand binding site residues shown as sticks with correctly 
predicted binding site residues in blue and with incorrect predictions in red, the nicotinamide adenine dinucleotide phosphate 
(NAP) ligand is shown as a sphere and coloured yellow. BDT score of 0.2 and MCC score of 0.079 was achieved  (D) The 
observed ligand binding site residues shown as sticks for T0813 (PDB ID 4wji), with binding site residues coloured in blue and 
the ligand MG coloured yellow  

  
 
 
The sixth CASPP11 target is cyclohexadienyl dehydrogenase from Sinorhizobium meliloti 

(CASP 11 T0813 and PDB ID 4wji). There was only one correct prediction THR 42, as part 

of the prediction for NAD ligand (Figure S.5B).  

 

Cyclohexadienyl dehydrogenase belongs to a family of enzymes in the tyrosine-pathway 

dehydrogenase in the TyrA protein family.(Park et al., 2014) As with other enzymes, the 
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magnesium ligand most likely acts as a cofactor for enzymatic reactions. The correct 

prediction was near the magnesium ligand. Upon investigating the PDB entry for this protein, 

there are a total of four ligands; NADP, tyrosine, chlorine and magnesium. FunFOLD3 

predicted NAD and NAP as close ligands to NADP. As can be seen in Figure S.6, the 

incorrect predictions for FunFOLD3 are clustered around NADP and this could provide 

insight into why the incorrect predictions are in these locations. The tyrosine ligand is located 

directly next to NADP at residue 302 and could also be included in the prediction cluster. As 

a result, it would seem unreasonable to penalise FunFOLD3 for predicting this additional 

binding site, particularly as it is clearly clustered around an identifiable ligand.  

 

 

 

 

Figure S.6. NADP ligand bound to T0813 (PDB ID 4wji) 
Predicted ligand binding site residues shown as sticks with correctly predicted binding site residues in blue and under- and 
over-predictions in red, the NADP ligand is shown as a sphere and coloured yellow 

 
 

A TM-score of 0.856 was obtained suggesting a high level of structural similarity. The 

number of residues was close; with 302 residues for the observed protein model and 307 

residues for the predicted protein model. This seems to be peculiar result, given that for the 
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four top scoring BDT and MCC CASP11 targets with a prediction closer to perfect, as 

opposed to random there is also a high level of structural similarity. This shows the 

prediction of protein structure and ligand binding is multi-faceted. It is not just about 

matching the structure and assuming the ligand binding will also match. It is worth noting, 

that so far, that all the CASP11 targets with a close to perfect prediction also had high 

structural similarity, note structural similarity does not result in perfect predictions for BDT 

and MCC.  

 

 

Figure S.7. Comparison of TMalign(Zhang and Skolnick, 2005) superposition for CASP11 target T0813 (PDB ID 4wji).  
The structure in blue is the observed structure for T0813 and the structure in red is the predicted structure from 
InFOLD3(McGuffin et al., 2015) 
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A      B 
 

 
 
 
C      D 
 

  
 
Figure S.8. Comparison of FunFOLD3 ligand binding site predictions for CASP 11 target T0786 (PDB ID 4qvu).  
(A) Predicted ligand binding site residues shown as sticks with incorrect predictions in red, the adenosine monophosphate 
(AMP) ligand is shown as a sphere and coloured yellow. No BDT and MCC scores were calculated as this ligand did not match 
the observed ligand (B) Predicted ligand binding site residues shown as sticks with incorrect predictions in red, the iron (FE) 
ligand is shown as a sphere and coloured yellow. No BDT and MCC scores were calculated as this ligand did not match the 
observed ligand (C) Predicted ligand binding site residues shown as sticks with correctly predicted binding site residues in blue 
and with incorrect predictions in red, the zinc (ZN) ligands are shown as a sphere and coloured yellow. BDT score of 0.0139 
and MCC score of -0.014 was achieved for ZN ligand with no correct predictions and BDT score of 0.38 and MCC score of 0.40 
for ZN ligand with one correct prediction (D) The observed ligand binding site residues shown as sticks for T0786 (PDB ID 
4qvu), with binding site residues coloured in blue and the ligand ZN coloured yellow  
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The seventh CASP11 target is DUF4931 family protein (BCE0241) from Bacillus cereus 

(CASP 11 T0786 and PDB ID 4qvu). There was only one correct prediction; HIS 152.  

 

DUF4931 binds a number of ligands; tetraethylene glycol, zinc and sodium. The FunFOLD3 

server correctly identified the zinc ligand. An explanation for such a poor prediction is 

potentially FunFOLD3 has extended the binding site to attempt to capture the “binding” site 

for MSE and the two other ligands tetraethylene and sodium. For completeness, the 

predicted tetraethylene and sodium ligands have been illustrated in Figure S.8A to provide 

insight into the incorrect predictions. However, this has been missed Figure S.8B to focus on 

the zinc ligand binding site.   

  

A TM-score of 0.679 was obtained; which although is within the high level of structural 

similarity, is still close to the lower end. The observed number of residues was 217 

compared to 264 residues for the predicted protein model. The differences between the two 

structures are shown in Figure S9. As with other CASP11 targets (T0798 and T0854) the 

flexible loop on the predicted protein model is not fully aligned with the flexible loop on the 

observed model. Additionally, a part of the predicted protein model does not have an α helix 

which is present on the observed protein model and the predicted model either has an extra 

α helix or the α helix has not aligned with the rest of the molecule.  
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Figure S.9. Comparison of TMalign(Zhang and Skolnick, 2005) superposition for CASP11 target T0786 (PDB ID 4qvu).  
The structure in blue is the observed structure for T0786 and the structure in red is the predicted structure from 
IntFOLD3(McGuffin et al., 2015) 
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Figure S.10. Comparison of FunFOLD3 ligand binding site predictions for CASP 11 target T0845 (PDB ID 4r5o). 
(A) Predicted ligand binding site residues shown as sticks with correctly predicted binding site residues in blue and incorrect 
predictions in red, the chlorine (CL) ligand is shown as a sphere and coloured yellow. BDT score of 0.035 and MCC score 
of -0.02. (B) The observed ligand binding site residues shown as sticks for T0845 (PDB ID 4r5o), with binding site residues 
coloured in blue and the ligand CA coloured yellow and CL ligand coloured orange 

 
The ninth CASP11 target is quinonprotein alcohol dehydrogenase-like protein 

(BT1487) from Bacteroides thetaiotaomicron (CASP 11 T0845 and PDB ID 4r5o). 

There were no correct predictions with this protein. 

 
 

Alcohol dehydrogenase is responsible for the detoxification of ethanol to 

acetaldehyde and binds a number of ligands such as; calcium, chloride, 

polyethylene glycol and acetate. The FunFOLD3 server correctly identified calcium 

and chloride ligands. A explanation as to why the prediction is so poor; the server 

has tried to pick up all the ligands which are bound to the protein molecule, rather 

than having some specificity and selectivity. 

 
 

A TM-score of 0.621 was obtained with 426 residues for the observed protein and 

448 for the predicted protein. As Figure S.10 illustrates, the structural similarity is 

contained within some of the molecule. The predicted protein model has failed to 

form β sheets and flexible loops in a portion of the protein. The failure of the 

predicted protein molecule to form the entire molecule, may have contributed to no 

correct predictions being obtained.  
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Figure S.11. Comparison of TMalign(Zhang and Skolnick, 2005) structures for CASP11 target T0845 (PDB ID 4r5o) 
The structure in blue is the observed structure for T0845 and the structure in red is the predicted structure from InFOLD3 
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Figure S.12. FunFOLD3 ligand binding site predictions for CASP12 target T0868 (PDB ID 5j4a) 
Predicted ligand binding site residues are shown as sticks and coloured red, the predicted ligand beta-d-glucose (BCG) is 
shown as spheres and coloured yellow.  
 
 

The first predicted CASP12 target is CdiA-CT/CdiI-SU1 from Burkholderia pseudomallei 

(CASP ID T0868 and PDB ID 5j4a). As can be seen from Figure S.12, there is no image 

related to correct ligand-binding site residues. This is because, whilst FunFOLD3 predicted 

ligands on the predicted structure, there are no ligands associated with the observed protein 

and this is supported by the PDB  entry. Further work will be done to determine the 

biological relevance of these predicted ligands.   

 

CdiA-CT/CdiI-SU1 are responsible for bacterial contact-dependent growth inhibition (CDI) 

and these genes encoding CDI systems are distributed throughout α- β- γ-proteobacteria 

and are commonly found in human pathogens such as, enterohaemorrhagic Escherichia 

coli, Neisseria meningitidis, Pseudomonas aeruginosa and Burkholderia pseudomallei.(Lan 

et al., 2016) As previously mentioned, T0868 is from Burkholderia pseudomallei upon 

researching the other closely aligned proteobacteria, such as CdiA-CT/CdiI toxin and 
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immunity complex from Escherichia coli (PDB ID 4g6u) ligands are identified. The ligands 

identified with PDB ID 4g6u are YT3 (yttrium ion), ZN (zinc ion), ACT (acetate ion) and CL 

(chloride ion), FunFOLD3 identified BGC (beta-d-glucose) for T0868. As this wasn’t 

identified in the functional text file, ZN and GDP might not have been biologically relevant 

ligands for this target. It could be likely that ZN is a biologically relevant ligand, based on 

sharing some commonality with PDB ID 4g6u additionally GDP also has a role as a ligand.  

 

The TM-score for the predicted CASP12 target T0868 is 0.566 compared to the actual 

protein structure is, illustrating structural similarity, the TMalign structures are shown in 

Figure S.13. As mentioned previously, FunFOLD works on the basis that proteins with a 

similar structure will bind similar ligands and T0868 (PDB ID 5j4a) and 4g6u have a TM 

score of 0.46718 illustrating that the structures have a degree of homology. Thus, an 

explanation for why FunFOLD3 predicted ligands for this CASP12 target could be the 

incorrect template identification of a similar protein with biologically relevant ligands and this 

led to ligands being incorrectly identified.  As a result of having no actual ligand binding 

residues, no MCC/BDT score can be obtained. 
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Figure S.13. Comparison of TMalign(Zhang and Skolnick, 2005) superposition for CASP12 target T0868 (PDB ID 5j4a) 
The structure in blue is the observed structure for T0868 and the structure in red is the predicted structure from IntFOL.D4. A 
TM-score of 0.566 was achieved for the protein structures. The score was normalised for the observed structure as it is the 
reference molecule 
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Figure S.14. FunFOLD3 ligand binding site predictions for CASP12 target T0872 (PDB ID 5jmb) 
Predicted ligand binding site residues are shown as sticks and coloured red the predicted ligand calcium (CA) is shown as 
sphere and coloured yellow 

 
The second predicted CASP12 target with predicted ligand-binding site residues is novel 

cellulases from Bacteroides coprocola (CASP ID T0872 and PDB ID 5jmb). As can be seen 

from Figure S.14, there is no image related to correct ligand-binding site residues. This is 

because, whilst FunFOLD3 predicted ligands, there are no ligands associated with the 

observed protein and this is further supported by the  PDB  entry for the target.  

 

Bacteroides are a genus of gram-negative, anaerobic rod a bacterium, which are isolated 

from human faeces and is one of the predominant genera in human faeces.(Johnson et al., 

2016)  rRNA gene sequence clone libraries have shown that may novel phyloptypes in the 

Bacteroides genus exist and up until 2015 B.coprocola was an unknown species.(Kitahara, 

2005) 

 

Further literature search on B.coprocola has shown that specific strains of this bacterium 

may be associated with type II diabetes and findings from a study investigating the gut 

metagenomes in type II diabetic patients, suggest a potential restorative influence of 

probiotic supplements could be further investigated.(Kitahara, 2005) Additionally, it is worth 

noting if there are any ligands with may be on benefit in these patients. Whilst no ligand has 
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been identified on PDB, it could be due to the limited data available on this protein and this 

protein could be potentially studied further in docking experiments to provide insight into 

ligands, which bind and thus provide further insight into its function in type II diabetes.  Data 

on this protein is so scarce, that on PDB the only publication related to this protein is from a 

group whom participated in CASP12 and to date, the publication has yet to be published.  

 
The TM-score for the predicted CASP12 target T0868 compared the actual protein structure 

is 0.680 illustrating structural similarity, the TMalign superposition of observed and predicted 

structures is shown in Figure S.15. As a result of having no actual ligand binding residues, 

no MCC/BDT score can be obtained.  

 

 
Figure S.15. Comparison of TMalign(Zhang and Skolnick, 2005) superposition for CASP11 target T0872 (PDB ID 5jmb) 
The structure in blue is the observed structure for T0872 and the structure in red is the predicted structure from IntFOLD4. A 
TM-align of 0.680 was achieved for the protein structures. The score was normalised for the observed structure as it is the 
reference molecule 
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Figure S.16. FunFOLD3 ligand-binding site predictions for CASP12 target T0899  
Predicted ligand-binding site residues are shown as sticks and coloured red. The predicted ligand magnesium (MG), is  shown 
as sphere and coloured yellow  

 
 
The third predicted CASP12 target with predictions is an uncharacterised protein from the 

gene Bd0412 and organism Bdelllovibrio bacteriovorus. As this CASP target was not 

associated with a PDB ID, information on observed ligand-binding residues is unable to be 

obtained.  Information on UniProtKB(UniProt Consortium, 2019) demonstrates very little 

annotation with this protein, with only level one annotation, out of a possible five and the 

status is currently unreviewed. On UniProtKB,(UniProt Consortium, 2019) no GO terms are 

associated with this protein, so the function is unable to be determined. As one of the 

predicted ligands is magnesium, this can be used to establish what the function of the 

protein is based on other proteins that utilise magnesium as a ligand.  Protein Tm1631 is 

from the hyperthermophilic organism (Thermotoga maritima) belongs to a domain of 

unknown function protein family. Ogrizek et al.,(Chen et al., 2017) studied the role of 

magnesium ions in the protein and found that magnesium ions are required in the binding 

pockets to allow reactions to occur. Based on the location of the magnesium ion, in Figure 

S.16 it would be reasonable to assume that this is also the binding pocket of this protein and 

the magnesium ion has a role in enabling reactions. It is worth bearing in mind, that whilst 
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the aim of FunFOLD3 for CASP competitions are prediction of ligand-binding sites, GO 

terms are also predicted and are presented in Table S.1 below.  As can be seen in Table 

S.1, none of the GO terms are related to metal ion binding, which could suggest the primary 

function of this protein is not the binding of metal ions, but utilisation of metal ions to facilitate 

other actions of the protein. However, this would need to be validated using other methods. 

As no PDB ID is associated with this protein, the information provided by FunFOLD3 and 

UniProtKB are able to provide insights into the role and potentially function of the protein.  

 

Table S.1. Predicted GO terms for CASP12 target T0899 
The predicted GO terms  for CASP12 target T0899 and their associated term domains and function are shown below. 
Biological process is coloured red, molecular function coloured green and cellular component coloured purple  
 

GO term GO term domain Function 
GO: 0001934 Biological process positive regulation of protein 

phosphorylation 
 

GO: 0001938 Biological process positive regulation of endothelial cell 
proliferation 

 
GO:0002576 Biological process platelet degranulation 

 
GO:0007155 Biological process cell adhesion 
GO:0007160 Biological process cell-matrix adhesion 
GO:0007229 Biological process integrin-mediated signalling pathway 
GO:0007275 Biological process multicellular organism development 
GO:0007411 Biological process axon guidance 
GO:0007596 Biological process blood coagulation 
GO:0010595 Biological process positive regulation of endothelial cell 

migration 
GO:0010745 Biological process negative regulation of macrophage 

derived foam cell differentiation 
GO:0010888 Biological process negative regulation of lipid storage 
GO:0014909 Biological process smooth muscle cell migration  
GO:0019048 Biological process modulation by virus of host morphology  
GO:0030168 Biological process platelet activation  
GO:0030949 Biological process positive regulation of vascular 

endothelial growth factor receptor 
signalling pathway 

GO:0032147 Biological process  activation of protein kinase activity  
GO:0032369 Biological process negative regulation of lipid transport 
GO:0035295 Biological process tube development 
GO:0045124 Biological process regulation of bone sorption 
GO:0045715 Biological process negative regulation of low-density 

lipoprotein particle receptor 
biosynthetic process 

GO:0050731 Biological process  positive regulation of peptidyl-tyrosine 
phosphorylation 

GO:0050748 Biological process negative regulation of lipoprotein 
metabolic process 

 
GO:0050900 Biological process leukocyte migration 
GO:0060055 Biological process  angiogenesis involved in wound 

healing 
 

GO:0070527 Biological process platelet aggregation 
GO:0005886 Cellular component plasma membrane 
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GO:0005887 Cellular component integral component of plasma 
membrane 

GO:0008305 Cellular component integrin complex 
GO:0016020 Cellular component  membrane  
GO:0016021 Cellular component  integral component of membrane  
GO:0031092 Cellular component  platelet alpha granule membrane 
GO:0042470 Cellular component  melanosome 
GO:0071062 Cellular component  alpha-beta3 integrin-vitronectin 

complex 
GO:0003756 Molecular function protein disulfide isomerase activity 
GO:0004872 Molecular function signalling receptor activity 
GO:0005102 Molecular function signalling receptor binding 
GO:0005161 Molecular function platelet-derived growth factor receptor 
GO:0005515 Molecular function protein binding 
GO:0042802 Molecular function  identical protein binding 
GO:0043184 Molecular function  vascular endothelial growth factor 

receptor 2 binding 
GO:0050839 Molecular function  cell adhesion molecule binding  
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Figure S.18. FunFOLD3 ligand binding site predictions for CASP12 target T0901  
Predicted ligand binding site residues are shown as sticks and coloured red with predicted ligand magnesium (MG) shown as 
spheres and coloured yellow 
 
The fourth predicted CASP12 target is Bd3099 and is similar to T0899, in terms of organism 

(Bdelllovibrio bacteriovorus) and low/minimal level of annotation on UniProtKB.(UniProt 

Consortium, 2019) Once again, this protein has metal ions predicted with MG ligand. On 

PDB the enzymes that are associated with the MG ligand are; oxidoreductase (49 enzymes), 

hydrolase (39 enzymes), transferees (30 enzymes), lyases (nine enzymes), ligases (four 

enzymes) and isomerases (one enzyme). On the basis of limited information with this 

protein, it is impossible to determine which potential enzyme this protein could 

classify.(Ogrizek et al., 2016) Further information around this protein, such as GO term 

annotations would be useful in determining its precise function. However, there were no 

predictions from FunFOLD3 related to this and this could be due to the limited information 

available in literature and available data in literature is required for BioLip annotations. 

Additionally, as no PDB ID is associated with this protein no further information can be 

provided.  
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Figure S.18. FunFOLD3 ligand-binding predictions for CASP12 target T0905  
Predicted ligand-binding site residues are shown as sticks and coloured red  the predicted ligand glycine (GLY) has not been 
shown as it features as an amino acid throughout the structure of the protein 
 

 

The fifth CASP12 target is Bd1483 (CASP ID T0905) and is similar to CASP targets T0899 

and T0901, where there is low/minimal annotation available on this protein from 

UniProtKB(UniProt Consortium, 2019) and it is uncharacterised. Additionally, no PDB ID has 

been associated with the protein. However, the protein has been predicted but there is no 

evidence at protein, transcript or homology levels and this is also the same for CASP targets 

T0899 and T0901. Indeed, the results from the CASP12 experiment could be the level of 

evidence, which is available for these CASP targets. Interestingly, FunFOLD3 predicted the 

exact same GO terms for this CASP target as it did for T0899, however different ligands 

were predicted. Therefore, these two proteins could potentially share some structural 

homology and/or come from the same class of proteins just with different specific roles. It is 

highly likely that the predicted ligand, GLY, for T0905 is not biologically relevant due to not 

being presented in the structure.  
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One of the ways to determine structural homology is by using TMalign. CASP target T0899 

contains 423 residues and T0905 contains 353 residues, thereby immediately demonstrating 

there is a difference between these two proteins. A TMscore of 0.719 is achieved for the two 

proteins, showing clear structural homology and potentially the same or similar function 

which adds further support to the same prediction of GO terms. The TMalign structures for 

these two CASP targets are illustrated in Figure S.19.  

 

 
Figure S.19. Comparison of TMalign(Zhang and Skolnick, 2005) superposition for CASP12 target T0899 and T0905  
The structure in blue is the predicted structure for T0899 and the structure in red is T0905. The extra residues for T0899 can 
clearly be seen with an additional flexible loop and alpha helix. Both structures have been predicted by IntFOLD4 
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Figure S.20. FunFOLD3 ligand-binding predictions for CASP12 target T0907 
Predicted ligand-binding site predictions are shown as sticks and coloured yellow with predicted ligand calcium (CA) shown as 
sphere and coloured red  
 
The sixth predicted CASP12 target is PorM_NB-SU1 (CASP ID T0907)  and as can be seen 

from Figure S.20, there is no image related to correct ligand-binding site residues. This is 

because, whilst FunFOLD3 predicted ligands, there are no ligands associated with this 

protein in the observed structure or from the PDB entry for the target, as is with CASP target 

T0868 and T0892.  

 

A search on UniProtKB and PubMed has yielded no information on this specific protein. 

However, there is information linked to SU1 genes and proteins with SU1 in the submitted 

name.(Burley et al., 2017) There are several proteins associated with the SU1 gene and 

these proteins are but not limited to sucrase, debranching enzyme, isoamylase, bacterium 

SU1 (bacterial small subunit ribosoml RNA), achromobacter sp. SU1 small subunit 

ribosomal RNA (16S), proteasome subunite beta type and RNA binding protein. The most 

interesting proteins are Cytochrome P450-SU1, which has eight annotations, one of these 

annotations is GO:0046872 and is metal ion binding, specifically cation binding and the 

ancestor chart is illustrated in Figure S.21, additionally baculoviral IAP repeat-containing 

protein 5.2-A also has this associated annotation.   

 

Currently, the only information available for this specific protein is from the ligand predictions 

made by FunFOLD3. The predicted ligand is calcium, which is also located on the central 
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part of the molecule. Currently, this does not reveal much information on the function of the 

protein. The prediction of GO terms would be the ideal starting point in order to provide 

further insight into the function of this protein.  

 

 
Figure S.21. GO ancestor chart for metal ion binding associated with Cytochrome P450-SU1 and baculoviral IAP 
repeat-containing protein 5.2-A 
Chart demonstrates that metal ion binding is part of molecular function and as CASP12 target T0907 has a calcium ligand 
associated with it, there is a clear role of metal on binding with this protein. Figure created using(QuickGO, 2017)  
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Figure S.22. FunFOLD3 ligand-binding site predictions for CASP12 target T0909 (PDB ID 5g5n) 
(A) Predicted ligand binding site residues shown as sticks and coloured red and the predicted ligand CO3 shown as sphere and 
coloured yellow. MCC score of (B) The observed ligand binding site residues shown as sticks with binding site residues 
coloured in blue the calcium (CL) ligands are shown as sphere and coloured yellow in multiple locations within the protein 
structure. As a result of CASP13 organisers not releasing an observed structure, this is the structure as per the PDB entry for 
target 
 

 
The seventh predicted CASP12 target is LH3 hexon-interlacing capsid protein (CASP T0909 

and PDB ID 5g5n), as can be seen from Figure S.22 predicted and observed ligand-binding 

site residues were obtained. The latter of which was obtained from the PDB file associated 

with the entry and the CASP12 organisers did not release an observed structure. The 

protein is classified as a viral protein with three chains and the associated observed CL 

ligand present in all three chains. Additionally, methyl mercury ion and glycerol are also 

associated with the PDB entry. Literature information associated with the PDB entry, states 

a stable fragment of the snake adenovirus (SnAdV-1) LH3 protein was crystallised with a 

methylmercury chloride derivative and a total of fourteen chloride ions were modelled within 
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the protein structure(Menéndez-Conejero et al., 2017) and this matches the number of 

chloride ions in the sequence when viewed using PyMOL. It is clear from the information in 

literature that the chloride ion has been used in the crystallisation of the protein structure so 

it could be argued whether chloride ligand is biologically relelvant.  

 

Although there is a PDB entry with ligands, there are limited data on the protein related to its 

function. UniProtKB has no annotations related to the function.(Consortium, 2017)  The GO 

terms predicted by FunFOLD3 are shown in Table S.2 below: 

 

Table S.2. Predicted GO terms for CASP12 target T0909 (PDB ID 5g5n) 
The predicted GO terms  for CASP12 target T0909 and their associated term domains and function are shown below. 
Biological process is coloured red, molecular function coloured green and cellular component coloured purple 

 
 

  

GO term GO term domain Function 

GO:0016740 Molecular function transferase activity 

GO:0016829 Molecular function lyase activity 

GO:0030570 Molecular function pectate lyase activity 

GO:0046872 Molecular function metal ion binding 

GO:0045490 Biological process  pectin catabolic process 

GO:0005576 Cellular component extracellular region 
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Figure S.23.  FunFOLD3 ligand-binding predictions for CASP12 target T0911 (PDB ID 6e9n)  
(A) Predicted ligand binding site residues shown as sticks incorrect  predictions in red, the predicted ligand phosphate 
dibromotyrosine (DBY) shown as sphere and coloured yellow. (B) The observed ligand binding site residues shown as sticks 
for T0911, with binding site residues coloured in blue. The gluconic acid ligand has not been illustrated as it is not present in the 
sequence when in PyMOL 

 
 
The eighth predicted CASP12 target is D-galactonate transporter from Escherichia Coli 

(CASP T0911). The PDB entry for this target classifies the protein as a membrane protein 

and in terms of ligands, nonyl beta D-glucopyranoside (BNG) which is present in chains A 

and B and D-gluconic acid (GCO) which is present in chain A. Literature information 

available on the protein, as associated with the PDB entry, identifies conserved residues in a 

pocket between sialin and vesicular glutamate transporters these include ARG47, ARG126 

and GLU133. Of which, ARG126 was identified in the observed protein structure.(Leano et 

al., 2019)   

 

Several different entries exist for this protein on UniProtKB(Consortium, 2017) based on the 

residue length of 445 residues as obtained from CASP this short lists the protein to 36 

entries out of a possible 2,652 entries. All of the 36 entries are unreviewed and the level of 

evidence is minimal with the protein predicted for the level of evidence available. This means 

there is no evidence at protein, transcript or homology levels.  Despite the low level of 

annotation, there are GO terms associated with the molecular function and biological 
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process of this protein. The predicted GO terms are shown in Table S.3 below:(Consortium, 

2017) 

Table S.3. Predicted GO terms for CASP12 target T0911 
The predicted GO terms  for CASP12 target T0911 and their associated term domains and function are shown below. 
Biological process is coloured red, molecular function coloured green and cellular component coloured purple 

GO term GO term domain Function 

GO:0022857 Molecular function transmembrane activity 

GO:0055085 Biological process transmembrane transport 

GO:0016020 Cellular component membrane 

GO:0016021 Cellular component integral component of membrane 

 

GO term 0022857 has the qualifier enables and 0055085 has the qualifier involved in, 

therefore this protein enables transmembrane transporter activity and is involved with 

transmembrane transport, which is also suggested in the name of the protein. FunFOLD3 

predicted phosphate ion as a possible ligand but was not deemed to be the likely ligand. 

Literature evidence on phosphate ions suggests phosphate ions in the form of HP04
2- and 

H2PO4
- regulate the size of rapidly releasable intracellular calcium pool and is produced in 

the cytoplasm.(Consortium, 2017)  

 

Figure S.24 below, shows the TMalign superposition of observed and predicted structures. A 

TM-score of 0.82921 was achieved between the structures, demonstrating good structural 

homology.   
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Figure S.24. Comparison of TM-align(Zhang and Skolnick, 2005) superposition for CASP12 target T0911  
The structure in blue is the observed structure for T0911 and the structure in red is the predicted structure from IntFOLD4. A 
TM-score of 0.82921 was achieved. The score was normalised for the observed structure as it is the reference molecule.  
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Figure S.25. FunFOLD3 ligand-binding site predictions for CASP12 target T0919 
Predicted ligand binding site residues shown as sticks and coloured red with the predicted ligand BGC shown as sphere and 
coloured yellow. The observed structure was cancelled by CASP12 organisers   
 

The twelfth CASP12 target is C-terminal part of Gp20 (T0919) and information available 

from UniProtKB identifies this protein as Phage protein. As with all the previous CASP12 

targets, which have no PDB ID, there is limited data available on this protein, with no 

evidence at protein, transcript or homology levels. There is one annotation associated with 

this protein in cellular component, the GO term is 0019028 and the qualifier is part of 

meaning the protein is part of viral capsid.(Hergueta-Redondo et al., 2014) In comparison, 

FunFOLD3 predicted the following GO terms as shown in Table S.4:  

 

Table S.4. Predicted GO terms for CASP12 target T0919  
The predicted GO terms for CASP12 target T0919 and their associated term domains and function are shown below. Molecular 
function coloured green  
 

GO term GO term domain Function 
GO:0006629 Molecular function lipid metabolic process 

GO:0016787 Molecular function hydrolase activity 

GO:0016788 Molecular function hydrolase activity 

GO:0046872 Molecular function metal ion binding 

 
GO:0046872 ties in with the prediction of a magnesium ligand, and the ancestor for this GO 

term is cation binding and magnesium is a cation. A literature search on portal ring protein 

Gp20 provides information of the function of Gp20 in the assembly of phage T4. Gp20 along 
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with Gp40 and other unknown E.Coli proteins build a membrane-bound initiator complex and 

following on from this is involved in the next stage, which is assembly of a prohead. Gp20 

plays a crucial role for the assembly process.(Consortium, 2017) As Gp20 is involved in the 

assembly of a membrane-bound initiator complex, the prediction of GO term 0006629 

seems quite reasonable as the membrane layer will most likely be made of lipids. The 

formation of such a complex would most likely involve a reaction of which the ligand ion; 

magnesium may well act as a co-factor. As with all previous CASP12 with limited 

annotations, further investigation is required in order to determine if the GO terms predicted 

by FunFOLD3 are related to the function of this protein.  
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Figure S.26. FunFOLD3 ligand-binding site predictions for CASP13 target T0949 
Predicted ligand binding site residues shown as sticks and coloured red with the predicted oxygen ligand shown as sphere and 
coloured orange and the predicted copper ligand also shown as sphere coloured yellow. No observed structure was released 
by CASP organisers so no comparisons can be made  

 
The first CASP13 target with ligand binding site residue predictions and ligands is 

B7JAQ5_ACIF2. No PDB ID was associated with this protein and the CASP organisers did 

not release an observed structure following prediction. The UniProtKB(UniProt Consortium, 

2019) entry identifies this protein as an uncharacterised protein with the lowest annotation 

score of one out of five meaning the denotation of the protein is predicted, meaning that 

there is no evidence at protein, transcript or homology levels. Furthermore, the homology 

model is PDB ID 6kol which is roseiflexus castenholzil and is classified as a metal binding 

protein with two ligands copper and chloride ion. Roseiflexus castenholzil contains a 

chloroflexus aurantiacus copper binding pocket. However, it is worth noting that this 

template was not identified by FunFOLD3, despite showing some structural homology which 

can be seen in Figure S.27 and an TMscore of 0.84753 was achieved, for normalisation of 

6kol which is the reference structure in this instance. This clearly demonstrates a high level 

of molecular similarity between the predicted structure for T0949 and roseiflexus 

castenholzil. The total number of residues in roseiflexus castenholzil was 125 residues and 
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in T0949 183 residues. The extra residues in T0949 can be seen in the alpha helix portion 

on the T0949 molecule.  

 

 

Figure S.27. Comparison of TMalign(Zhang and Skolnick, 2005) superposition for CASP13 target T0949 and roseiflexus 
castenholzil (PDB ID 6kol)  
The structure in blue is the structure of 6kol and the predicted structure for CASP13 target T0949 in red.. A TM-align score of 
0.84753 was achieved for the protein structures. This was normalised for roseiflexus castenholzil (PDB ID 6kol) as it is the 
reference molecule  

 

The UniProtKB entry identifies Acidithiobacillus ferrooxidans as the organism as the source 

of the protein sequence.(UniProt Consortium, 2019)  Acidithiobacillus ferrooxidans are 

microorganisms used for the industrial recovery of copper.(Valdés et al., 2008)  

 

The GO terms predicted by FunFOLD3 tie in with the function of Acidithiobacillus 

ferrooxidans in the following ways; copper ion binding (GO:005507) which also relates to 

metal ion binding (GO:0046872). In the process of bioleaching Acidithiobacillus ferrooxidans 

plays a key role by reoxidising the Fe(II) to Fe(III) and thus supports the following GO terms 
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predicted by FunFOLD3; oxidoreductase (GO:0016491) and oxidation-reductase process 

(GO:0855114). 

 
Table S.5 below, shows the GO terms predicted by FunFOLD3.  
 
 
Table S.5. Predicted GO terms for CASP13 target T0949 
The predicted GO terms for CASP13 target T0949 and their associated term domains and function are shown below. Biological 
process is coloured red, molecular function coloured green and cellular component is coloured purple  
 

GO term GO term domain Function 
GO: 0005507 

 
Molecular function  copper ion binding  

GO:0009055 
 

Molecular function electron transfer activity  

GO:0016491 Molecular function  oxidoreductase activity 

GO:0046872 
 

Molecular function metal ion binding  

GO:0050421 
 

Molecular function nitrite reductase (NO-forming) activity 
 

GO:0052716 
 

Molecular function hydroquinone:oxygen oxidoreductase 
activity 

GO:0004129 Molecular function cytochrome-c oxidase activitY 

GO:0005509 
 

Molecular function calcium ion binding 
 

GO:0050304 
 

Molecular function nitrous-oxide reductase activity 
 

GO:0020037 
 

Molecular function heme binding  

GO: 0030435 
 

Biological process sporulation resulting in formation of a 
cellular spore  

GO: 0055114 Biological process oxidation-reduction process 

GO: 0006807 
 

Biological process nitrogen compound metabolic process 

GO: 0019333 Biological process denitrification pathway  

GO: 0042128 Biological process nitrate assimilation  

GO:0022900 Biological process electron transport chain 
 

GO:0017000 Biological process antibiotic biosynthetic process 
 

GO:0030245 Biological process cellulose catabolic process 
 

GO:0046274 Biological process lignin catabolic process 

GO:0022904 Biological process respiratory electron transport chain 

GO:0042597 Cellular Component periplasmic space 

GO:0043245 Cellular Component extraorganismal space 
 

GO:0016020 Cellular Component membrane 
 

GO:0005886 Cellular Component plasma membrane 

GO:0016021 Cellular Component  integral component of membrane 
 

GO:0070469 Cellular Component respirasome 

GO:0009279 Cellular Component  cell outer membrane 
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Figure S.28. FunFOLD3 ligand-binding site predictions for CASP13 target T0954 (PDB ID 6cvz)  
(A) Predicted ligand binding site residues shown as sticks with incorrect predictions in red, the predicted ligand lysine shown as 
sphere and coloured yellow and the thymidine-5’-monophosphate (DT) ligand shown as double helix  (B) The observed ligand 
binding site residues shown as sticks for T0954 with binding site residues coloured in blue the magnesium ligand is not shown 
as it is not present in the PDB file  
 
The third CASP13 target was RFWD3_HUMAN and is classified as a transferase protein. 

The UniProtKB and PDB entry expands the protein to E3 ubiquitin-protein ligase 

RFWD3.(UniProt Consortium, 2019) The human genome is frequently exposed to insults 

form the environment and endogenous sources and DNA lesions resulting from these insults 

need to be repaired in order to maintain genetic stability.(Elia et al., 2015) The co-ordination 

A 

B 
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of the repair is done by a network known as DNA damage response (DDR). Regulation of 

DDR is mediated by a host of protein modifications, among which ubiquitination plays a key 

role.(Elia et al., 2015)  Ubiquitin-dependent signalling regulates the double-strand response 

of DNA.(Elia et al., 2015) As can be seen in Figure S.28A DNA is one of the ligands that has 

been predicted by FunFOLD3. In contrast, the observed ligand is magnesium however, this 

does fit in with the molecular function of the target as per the UniProtKB(UniProt 

Consortium, 2019) entry and shown in Table S.6 below.  

 

Table S.6 below shows the molecular function and biological processes associated with 

RFWD3 as per the UniProtKB(UniProt Consortium, 2019) entry.  FunFOLD3 predictions 

which match the are denoted by ticks or if closely related to the GO term, the ancestor term 

is given  

 
Table S.6. Predicted GO terms for CASP13 target T0954 (PDB ID 6cvz) 
The GO terms for CASP13 target T0954 (PDB ID 6cvz) and their associated term domains and function as per the UniProtKB 
entry are shown below . The association with FunFOLD3 is denoted in the final column with exact matches denoted with a tick 
and related GO terms with the associated fucntion. Biological process is coloured red and molecular function  
 

GO term GO term domain Function FunFOLD3 
GO:0097371 

 
Molecular function MDM2/MDM4 family protein 

binding 
GO:0005515 (protein binding) 

GO:0046872 
 

Molecular function metal ion binding N/A 

GO:0002039 Molecular function p53 binding GO:0005515 (protein binding) 
GO:0061630 

 
Molecular function ubiquitin protein ligase 

activity 
GO: 0004842 (ubiquitin-protein 

transferase activity) 
GO:0006974 

 
Biological process cellular response to DNA 

damage stimulus 
✔ 

GO:0031052 
 

Biological process chromosome breakage N/A 

GO:0000724 
 

Biological process double-strand break repair 
via homologous 
recombination 

GO:0006281 (DNA repair) 

GO:0036297 
 

Biological process interstrand cross-link repair GO:0006281 (DNA repair) 

GO:0031571 
 

Biological process mitotic G1 DNA damage 
checkpoint 

N/A 

GO:0016567 
 

Biological process protein ubiquitination ✔ 
GO:2000001 

 
Biological process regulation of DNA damage 

checkpoint 
GO:0006974 (cellular response 

to DNA damage) 
GO:0031297 

 
Biological process replication fork processing N/A 

GO:0010212 
 

Biological process response to ionising radiation N/A 
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A TMscore of 0.87236 was obtained and this assumes the same fold within the two proteins. 

The superposition of the structures is shown in Figure S.29 below.  

 

 

Figure S.29. Comparison of TMalign(Zhang and Skolnick, 2005) superposition for CASP13 target T0954 (PDB ID 6cvz)  
The structure in blue is the observed structure for 6f45 and the predicted structure for CASP13 target T0954 in red. A TM-align 
of 0.87236 was achieved for protein structures. The score was normalised for PDB ID 6cvz as it is the reference molecule 
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Figure S.30. FunFOLD3 ligand-binding site predictions for CASP13 target T0955 (PDB ID 5w9f)  
Predicted ligand binding site residues shown as sticks with predictions in red, the predicted ligand ZN shown as sphere and 
coloured yellow and the RNA ligand shown as double helix. No biologically relevant ligands were found in the observed 
structure   

 
The fourth predicted CASP13 target was gHEEE_02 and is classified as a de novo protein 

and is an synthetic construct. The protein is a mix of two peptides with divergent structures 

and sequences containing a mixed α/β topology with a helix packing against a three-

stranded antiparallel β-sheet stabilised by three disulphide bonds.(Buchko et al., 2018) As 

the protein has been designed computationally, there are no further data available the target 

and the PDB entry contains no information on ligands and no biologically relevant ligands 

were found on the observed structure using FunFOLD3.  

 
The TMalign score for the predicted structure was 0.73628 showing good structural 

alignment between the predicted and observed protein structure. A superposition of the two 

structures are shown below in Figure S.31.  
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Figure S.31. Comparison of TMalign(Zhang and Skolnick, 2005) superposition for CASP13 target T0955 (PDB ID 5w9f) 
The structure in blue is the observed structure for PDB ID 5w9f and the predicted structure for CASP13 target T0955 in red. A 
TM-align of 0.73628 was achieved for protein structures. The score was normalised for PDB ID 5w9f as it is the reference 
molecule 
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Figure  S.32. FunFOLD3 ligand-binding site predictions for CASP13 target T0957s2 (PDB ID 6cp8)  
Predicted ligand binding site residues shown as sticks with predictions in red, the predicted ligand iron/sulphur cluster (SF4) 
shown as sphere and coloured yellow and the alanine (ALA) ligand shown as sphere and coloured orange. No biologically 
relevant ligands were found in the observed structure   

 
 

The fifth predicted CASP13 target was CdiA_CdiI-CPX200209, a contact-dependent growth 

inhibition toxin-immunity protein complex and is classified as a toxin/antitoxin. Contact-

dependent growth inhibition (CDI) is a form of interbacterial competition meditated by CdiB-

CdiA two partner secretion systems.(Gucinski et al., 2019) CdiA effectors, bind to specific 

receptors on neighbouring bacteria and deliver C-terminal toxic domains to suppress target 

cell growth. Upon binding a specific receptor, CdiA transfers its C-terminal toxin domain 

(CdiA-CT) into the target bacterium through an incompletely understood translocation 

pathway.(Ruhe et al., 2017) Therefore, based on this role it is expected that ligands and 

ultimately ligand-binding site residues would be predicted. The PDB entry for 6cp8 identifies 

glycerol and 4-(2-Hydroxyethyl)piperazin-1-ylethanesulphonic acid (EPE) as ligands and in 

comparison FunFOLD3 predicted SF4 and alanine.  

 

As there were no biologically relevant ligands predicted in the observed structure and the 

identified ligand predicted by FunFOLD3 it is difficult to make any comparisons.   
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The TMscore for the predicted structure is 0.61518 showing good structural alignment 

between the predicted and observed protein structure. A superposition of the two structures 

are shown below in Figure S.33. 

 

 
Figure S.33. Comparison of TMalign(Zhang and Skolnick, 2005) superposition for CASP13 target T0957s2 (PDB ID 6cp8) 
The structure in blue is the observed structure for PDB ID 6cp8 and the predicted structure for CASP13 target T0957s2 in red. 
A TM-align of 0.61518 was achieved for protein structures. The score was normalised for PDB ID 6cp8 as it is the reference 
molecule. The TMalign image is showing aligned portion of the protein molecules, therefore disordered regions have not been 
included  
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Figure S.34. FunFOLD3 ligand-binding site predictions for CASP13 target T0958 (PDB ID 6btc)  
Predicted ligand binding site residues shown as sticks with predictions in red, the predicted s-adenosyl-l-homocysteine ligand 
(SAH) shown as sphere and coloured yellow and the DNA ligand shown as double-helix. No biologically relevant ligands were 
found in the observed structure  

 
The sixth predicted CASP13 target was LP1413 and the PDB entry classifies the target as 

DNA binding protein, despite the classification, DNA and no other ligands are included in the 

PDB entry. Additionally, FunFOLD3 did not predict any biologically relevant ligands in the 

observed structure. However, DNA was predicted as a ligand in the predicted structure from 

the CASP competition and this fits in with the classification of the protein.  

 

Literature information on LP1413 identifies the protein as a ssDNA-binding protein and is 

encoded by staphylococcal cassette chromosome (SCC) family.(Mir-Sanchis, Pigli and Rice, 

2018) The naming of the protein means little protein with domain of unknown function 

1413.(Mir-Sanchis, Pigli and Rice, 2018) Studies have found that it binds single stranded 

DNA with high affinity and weak affinity for double-stranded DNA, however experimental 

structure evidence shows LP1413 adopts a winged helix-turn-helix DNA binding motif and 

this suggests the protein can bind dsDNA, as shown in Figure S.34.(Mir-Sanchis, Pigli and 

Rice, 2018)  
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In addition to DNA, FunFOLD3 predicted s-adenosyl-L-homocysteine (SAH) as a ligand, 

SAH is a potent competitive inhibitor of S-adenosyl-l-methionine (AdoMet)-dependent 

methyltransferases, given the identification of a potential role of LP1413, it is difficult to 

determine the role of this ligand in relation to the protein function.  

 

The TMscore for the predicted structure is 0.63081 showing good structural alignment 

between the predicted and observed protein structure. A superposition of the two structures 

are shown below in Figure S.35. 

 

 

Figure S.35. Comparison of TMalign(Zhang and Skolnick, 2005) superposition for CASP13 target T0958 (PDB ID 6btc) 
The structure in blue is the observed structure for PDB ID 6btc and the predicted structure for CASP13 target T0958 in red. A 
TM-align of 0.63081 was achieved for protein structures. The score was normalised for PDB ID 6btc as it is the reference 
molecule.  
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A           B 

 
 
Figure S.36. FunFOLD3 ligand-binding site predictions for CASP13 target T0965 (PDB ID 6d2v) 
(A) Predicted ligand binding site residues shown as sticks with incorrect predictions in red and correct predictions in blue, the 
predicted nicotinamide-adenine dinucleotide (NAD) ligand shown as sphere. A BDT score of 0.35 and an MCC score of 0.12 
was achieved, respectively (B) The observed ligand binding site residues shown as sticks with binding site residues coloured in 
blue the NDP ligand is shown as the larger sphere and the CL ligands are shown as sphere and coloured yellow. The actual 
structure is a dimer, whereas the predicted structure is a homodimer. As a result of CASP13 organisers not releasing an 
observed structure, this is the structure as per the PDB entry for target 

 
The eighth predicted CASP13 target is NADP dependent oxidoreductase, the PDB ID entry 

is the apo structure and has been used for the comparison against the predicted structure, 

due to no observed structure being released by the CASP13 organisers. The observed 

protein is a dimer with two chains and the PDB ID entry states NADPH dihydro-

nicotinamide-adenine-dinucleotide phosphate (NDP), thiocyanate ion (SCN) and chloride 

(CL). FunFOLD3 predicted NAD as the biologically relevant ligand. Nicotinamide adenine 

dinucleotide is a coenzyme as well as a substrate for three classes of enzymes (sirtuin 

family deacetylases, poly(ADP)-ribosyl polymerase and cADP-ribose synthases.(Xiao et al., 

2018) NAD+ can be reduced to NADH via dehydrogenases and can also be phosphorylated 

to NADP+ via NAD+ kinases.(Xiao et al., 2018) The NAD+/NADH redox couple is known as a 

regulator of cellular energy metabolism e.g. glycolysis and mitochondrial oxidative 

phosphorylation.(Xiao et al., 2018) In contrast, NADP+/NADPH is involved in maintaining 

redox balance and supporting the biosynthesis of fatty acids and nucleic acids.(Xiao et al., 

2018) Despite the close similarities between the two ligands, there are subtle differences. 

However, the FunFOLD3 prediction is close to the observed ligand. The BDT and MCC 

score was 0.35 and 0.12, respectively.  
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The TMscore for the predicted structure compared to the observed structure is 0.81556, 

demonstrating good structural alignment between the predicted structure and the structure 

obtained from PDB. A superposition of the two structures is seen below in Figure S.37.  

 

 
Figure S.37. Comparison of TMalign(Zhang and Skolnick, 2005) superposition for T0965 and PDB ID 62dv  
The structure in blue is the observed structure for PDB ID 62dv and the predicted structure for CASP13 target T0965 is in red . 
A TM-align of 0.81556 was achieved for protein structures. The score was normalised for PDB ID 62dv as it is the reference 
molecule, 
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Figure S.38. FunFOLD3 ligand-binding site predictions for CASP13 target T0970 (PDB 6g57) 
Predicted ligand binding site residues shown as sticks with predictions in red, the predicted ZN ligand shown as sphere and 
coloured blue and the dTDP-4-amino-4,6-dideoxyglucose (0FX) ligand shown as sphere and coloured yellow. No biologically 
relevant ligands were identified in the observed structure  

 
The ninth predicted CASP13 target is Q6ZWB6 and the PDB entry classifies the protein 

target as human KCTD8 and is a ligase. The UniProtKB entry classifies the protein as 

BTB/POZ domain-containing protein KCTDB with experimental evidence at protein 

level,(UniProt Consortium, 2019) the highest level of evidence and demonstrates that there 

is clear experimental evidence for the existence of the protein and the criteria can include 

mass spectrometry, X-ray or NMR structure, this is supported by the data in the  PDB entry. 

Additionally, the PDB entry has no ligands identified.   

 

The UniProtKB entry states the function of the protein as an auxiliary subunit of GABA-B 

receptors that determine the pharmacology and kinetics of the receptor response. Increases 

agonist potency and markedly after the G-protein signalling of the receptors by accelerating 

onset and promoting desensitisation.(UniProt Consortium, 2019) The following GO – 

biological process terms were associated with the UniProtKB entry; GO:0051260 (protein 

homooligomerisation) and GO:0008277 (regulation of G protein-coupled receptor signalling 

pathway). 
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FunFOLD3 predicted the following GO terms listed below in Table S.7.  

 
Table S.7. Predicted GO terms for CASP13 target T0970 (PDB ID 6g57) 
The GO terms for CASP13 target T0970 (PDB ID 6g57) and their associated term domains and function are shown below. 
Biological process is coloured red and molecular function coloured green  

 
GO term GO term domain Function 

GO:0001510 
 

Biological process RNA methylation  

GO:0032259 
 

Biological process methylation  

GO:0005975 
 

Biological process carbohydrate metabolic 
process 

GO:0006508 
 

Biological process proteolysis  

GO:0006396 Biological process RNA processing  
GO:0008173 

 
Molecular function RNA methyltransferase 

activity  
GO:0009020 

 
Molecular function tRNA (guanosine-2’-O-)-

methyltransferase activity  
GO:0016740 Molecular function transferase activity 
GO:0003824 

 
Molecular function catalytic activity 

GO:0016810 
 

Molecular function Hydrolase activity, acting on 
carbon-nitrogen (but not 

peptide) bonds 
GO:0004252 

 
Molecular function serine-type endopeptidase 

activity  
GO:0003723 

 
Molecular function RNA binding 

GO:0008168 
 

Molecular function Methyltransferase activity  

 
As can be seen in Table S.7, the predicted function of the protein is related to RNA activity 

and is quite different to the function stated in the UniProtKB entry. The function as predicted 

by FunFOLD3 relates to the predicted zinc ligand as most RNA polymerases contain zinc 

and evidence suggests that zinc controls the stability of RNA polymerase.(Chanfreau, 2013) 

Additionally and directly related to the observed category of the protein, DNA ligases utilise 

zinc fingers to bind DNA containing secondary structures and to stimulate ligation of DNA 

strand breaks located near such structures.(Taylor, Whitehouse and Caldecott, 2000) 

 

Figure S.39 below shows the TMalign superposition of observed and predicted structures 

from the PDB entry. A TM align score of 0.43860 was achieved, showing poor structural 

homology.  
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Figure S.39. Comparison of TMalign(Zhang and Skolnick, 2005) superposition for predicted and observed T0970  
The structure in blue is the observed structure for T0970 and the predicted structure for CASP13 target T0970 is in red . A TM-
align of 0.43860 was achieved for protein structures. The score was normalised for the observed T0970 target as it is the 
reference molecule 
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Figure S.40. FunFOLD3 ligand-binding site predictions for CASP13 target T0972  
(A) Predicted ligand binding site residues shown as sticks with predictions in red, the predicted DNA ligand shown as double-
helix (B) Predicted ligand binding site residues shown as sticks with predictions in red, the predicted HEM ligand is shown as 
sphere and coloured yellow. Structure was cancelled by CASP organisers so no observed structure has been released  

 
The tenth predicted CASP13 target was T0972 and is classified as Q0P914_CAMJE. The 

structure was cancelled by the CASP13 organisers and no PDB entry is associated with this 

target therefore no comparisons can be made.  

 

A 

B 
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As per the UniProtKB entry the protein is uncharacterised and has the lowest annotation 

score of one out of five, denoting an entry with a rather basic annotation. Additionally, there 

is no evidence at protein, transcript or homology levels.(UniProt Consortium, 2019)  

 

Similar proteins to Q0P914_CAMJE are invasion antigen CiaC and available literature 

describes the role of CiaC is to enable maximal invasion of host cells by C.jejuni and in part 

responsible for host cell cytoskeletal rearrangements that result in membrane ruffling.(Neal-

McKinney and Konkel, 2012)  

 

In terms of the predicted ligands, relaxation of DNA supercoiling leads to an increased ability 

of C.jejuni strains to penetrate human epithelial cells, hence potentially why DNA has been 

predicted as a ligand.(Scanlan et al., 2017) No information in literature could be found about 

the role of haemoglobin.  

 

Table S.8 below, shows the predicted GO term for T0972 which can serve to provide some 

potential insight into the function of T0972.  
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Table S.8. Predicted GO terms for CASP13 target T0972 
The GO terms for CASP13 target T0972 (PDB ID 6g57) and their associated term domains and function are shown below. 
Biological process is coloured red, molecular function coloured green and cellular component is coloured purple  

 
 

GO term GO term domain Function 
GO:0006265 Biological process DNA topological change 
GO:0006259 

 
Biological process DNA metabolic process 

GO:0022900 Biological process electron transport chain 
GO:0005694 

 
Cellular Component  chromosome 

GO:0042597 
 

Cellular Component  periplasmic space 

GO:0005746 
 

Cellular Component  Mitochondrial respirasome 

GO:0005524 
 

Molecular function ATP binding 

GO:0003918 
 

Molecular function DNA topoisomerase type II 

GO:0005506 
 

Molecular function iron ion binding 

GO:0009055 
 

Molecular function electron transfer activity 

GO:0020037 Molecular function heme binding 
GO:0003824 

 
Molecular function  

GO:0004252 
 

Molecular function metal ion binding 

GO:0003677 
 

Molecular function DNA binding  
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Figure S.41. FunFOLD3 ligand-binding site predictions for CASP13 target T0973 (PDB ID 6yfn) 
(A) Predicted ligand binding site residues shown as sticks with predictions in red, the predicted RNA ligand shown as double-
helix (B) Predicted ligand binding site residues shown as sticks with predictions in red, the predicted RNA ligand is shown as 
double-helix. Two different binding sites for the same ligand were identified for this target. No structure released by CASP 
organisers  

 
 
  

A 

B 
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The eleventh CASP13 target is bacteriophage ESE058 coat protein and the associated PDB 

entry classifies the target as a virus like particle. No observed structure was released by 

CASP13 organisers and despite having a PDB entry, there is currently no pdb file available 

to download to enable comparisons between the predicted and observed structures. 

However, the PDB entry identifies calcium as a ligand. Furthermore, there is no entry for this 

protein on UniProtKB.  

 

As a class of protein molecules, bacteriophages are composed of proteins that encapsulate 

DNA or RNA genome.(Liekniņa et al., 2019) The single-stranded RNA (ssRNA) 

bacteriophages of the levivirdae family, as this target belows to, are a family of small viruses 

that infect a variety of gram-negative bacteria.(Liekniņa et al., 2019) Based on this 

information, it would suggest that the RNA ligand predicted by FunFOLD3 is a rational 

conclusion. Additional information the ssRNA phage virus-like particles have found a variety 

of applications, mostly in the field of vaccine development where various antigens are 

presented onto the capsid surface to invoke a strong immune response.(Liekniņa et al., 

2019)   

  
The GO terms predicted by FunFOLD3 are given below in table 20 and all the predictions 

relate to the available literature information on bacteriophages. In terms of similar templates 

which the target was modelled on were bacteriophage MS2 caspsid protein/RNA complex 

(PDB ID 1aq3), bacteriophage qbeta coat protein in complex with RNA operator hairpin 

(PBD ID 4l8h) and unusually MrkH, a novel c-di-GMP dependence transcription regulatory 

factor (PDB ID 5ejl) 
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Table S.9. Predicted GO terms for CASP13 target T0973  
The GO terms for CASP13 target T0973 (PDB ID 6yfn) and their associated term domains and function are shown below. 
Molecular function coloured green and cellular component is coloured purple  
 

GO term GO term domain Function 
GO:0005694 

 
Cellular Component  T=3 icosahedral viral capsid 

GO:0019028 
 

Cellular Component  viral capsid 

GO:0019012 
 

Cellular Component  virion 

GO:0003723 
 

Molecular function RNA binding 

GO:0005198 
 

Molecular function structural molecule activity 
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Figure S.42. FunFOLD3 ligand-binding site predictions for CASP13 target T0975 
(A) Predicted ligand binding site residues shown as sticks with predictions in red, the predicted DNA ligand shown as double-
helix. (B) Predicted ligand binding site residues shown as sticks with predictions in red, the predicted DNA ligand is shown as 
double-helix. Two different binding sites for the same ligand were identified for this target. (C) Predicted ligand binding site 
residues shown as sticks with predictions in red, the predicted ligand iron/sulphur cluster (SF4) shown as sphere and coloured 
yellow. No observed structure was released by CASP organisers 

 

The thirteenth predicted CASP13 target is T0975 is EXO5 (saccharomyces cerevisiae 

exonuclease 5) and the UniProtKB entry classifies the function of the protein as a single-

stranded (ssDNA) bidirectional exonuclease involved in DNA repair.(UniProt Consortium, 

2019) Probably involved in DNA repair following ultraviolet (UV) irradiation and inter-strand 

cross-links (ICLs) damage.(UniProt Consortium, 2019) The protein is required for 

mitochondrial genome maintenance.(Sparks et al., 2012)  

 

Additionally, the protein has both 5’-3’ and 3’-5’ exonuclease activities with a strong 

preference for 5’ ends.(UniProt Consortium, 2019) This could potentially explain why two 

different binding site locations were predicted for the DNA molecule by FunFOLD3. EXO5 

acts as a sliding exonuclease that loads ssDNA and then slides along the ssDNA prior to 

cutting,(Sparks et al., 2012) once again, this could explain why the prediction DNA ligand is 

uncoiled in the prediction.  

 

C 
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The protein has several co-factor binding sites of which includes a 4FE-4S cluster and also 

magnesium.(Sparks et al., 2012) Available literature information about the protein, shows 

that that members of the EXO5 family share some common characteristics beyond that of 

primary amino acid sequence. They possess an iron-sulphur that is structurally important in 

linking the N terminus to the C terminus of the enzyme, thereby likely creating a cavity that 

may encircle the ssDNA.(Sparks et al., 2012)   

 

Table S.10 below, shows the GO terms associated with the protein as part of the UniProtKB 

entry. Additional GO terms predicted by FunFOLD3 are molecular function: GO:0016788 

(hydrolase activity, acting on ester bonds), GO:0017111 (nucleoside-triphosphate activity), 

GO:0016787 (hydrolase activity), GO:0008854 (exodeoxyribonuclease V activity), 

GO:0005524 (ATP binding), GO:0005515 (protein binding), GO:0004527 (exonuclease 

activity), GO:0004519 (endonuclease activity), GO:0004518 (nuclease activity), 

GO:0004386 (helicase activity) and GO:0000166 (nucleotide binding). Biological process: 

GO:0000724 (double-strand break repair via homologous recombination), GO:0090305 

(nucleic acid phosphodiester bond hydrolysis), GO:0006974 (cellular response to DNA 

damage stimulus), GO:0006310 (DNA recombination), GO:0006302 (double-strand break 

repair) and GO:0006281 (DNA repair). Cellular component GO:0009338 

(exodeoxyribonuclease V complex). 

 

Table S.10. Predicted GO terms for CASP13 target T0975  
The GO terms for CASP13 target T0975 and their associated term domains and function as per the UniProtKB entry are shown 
below . The association with FunFOLD3 is denoted in the final column with exact matches denoted with a tick and related GO 
terms with the associated function. Biological process is coloured red and molecular function coloured green  
 

GO term GO term domain Function FunFOLD3 
GO:0051539 

 
Molecular function  4 iron, 4 sulfur clustering 

binding  
✔

(additionally GO:0051536 iron-
sulfur cluster binding) 

GO:0003677 
 

Molecular function DNA binding ✔ 

GO:0046872 Molecular function metal ion binding ✔ 

GO:0008310 
 

Molecular function single-stranded DNA 3’-5’ 
exodeoxyribonuclease 

activity  

N/A 
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GO:0045145 Molecular function single-stranded DNA 5’-3’ 
exodeoxyribonuclease 

activity 

N/A 

GO:0036297 
 

Biological process interstrand cross-link repair N/A 

 
A           B  

 
Figure S.43. FunFOLD3 ligand-binding site predictions for CASP13 target T0980s1 (PBD ID 6gnx) 
(A) Predicted ligand binding site residues shown as sticks with predictions in red, the predicted proline (PRO) ligand shown as 
sphere and coloured yellow (B) Predicted ligand binding site residues shown as sticks with predictions in red, the predicted 
serine (SER) ligand is shown as sphere and coloured yellow. Two different binding sites for the same ligand were identified for 
this target. No observed structure was released by CASP organisers and no biologically relevant ligands were found in the PDB 
structure  

 
The fourteenth predicted CASP13 target is Q3KP22-3; Q8NHR7 and the PDB entry 

associated with this target identifies the protein as structural protein.  The UniProtKB entry 

states the protein as a membrane-anchored junction protein.(UniProt Consortium, 2019) 

 

Additionally, the UniProtKB entry states the function of the proteins as a meiosis-specific 

telomere-associated protein involved in meiotic telomere attachment to the nucleus inner 

membrane, a crucial step for homologous pairing and synapsis.(UniProt Consortium, 2019) 

Q3KP22-3 is an isoform of the protein and is identified as isoform 1(UniProt Consortium, 

2019) and differs from isoform 3 in terms of canonical sequence.(UniProt Consortium, 2019) 

 

Component of the MAJIN-TERB1-TERB2 complex, which promotes telomere cap exchange 

by mediating attachment of the telomeric DNA to the inner nuclear membrane and 

replacement of the protective cap of telomeric chromosomes, in early meiosis, the MAJIN-

TERB1-TERB2 complex associates with telomeric DNA and the shelterin/telosome 

complex.(UniProt Consortium, 2019)  
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The UniProtKB entry denotes the following GO terms as shown in Table S.11 which are 

associated with the protein and provide insight into the function of the protein. In 

comparison, FunFOLD3 predicted the following GO terms as shown in Table S.12.   

 
 
Table S.11. Predicted GO terms for CASP13 target T0980s1 (PDB ID 6gnx) 
The GO terms for CASP13 target T0980s1 and their associated term domains and function as per the UniProtKB entry are 
shown below. Biological process is coloured red and molecular function coloured green  

 
GO term GO term domain Function 

GO:0003677 
 

Molecular function DNA binding 

GO:0070197 
 

Biological process meiotic attachment of 
telomere to nuclear envelope 

GO:0045141 Biological process meiotic telomere clustering 
GO:0007129 Biological process homologous chromosome 

pairing at meiosis 
 

 
 
 
Table S.12. Predicted GO terms for CASP13 target T0980s1 (PDB ID 6gnx) as predicted by FunFOLD3 
The GO terms for CASP13 target T0980s1 (PDB ID 6gnx and their associated term domains and function are shown below. 
Molecular function coloured green, biological process coloured red and cellular component is coloured purple  
 

GO term GO term domain Function 
GO:0003723 Molecular function RNA binding 
GO:0004652 Molecular function polynucleotide 

adenylyltransferase activity 
GO:0016779  Molecular function nucleotidyltransferase activity 

 
GO:0004527 Molecular function exonuclease activity  
GO:0016787 Molecular function hydrolase activity 
GO:0005515 Molecular function protein binding 
GO:0008432 Molecular function JUN kinase binding  
GO:0042803 Molecular function protein homodimerization 

activity  
GO:0006259 Biological process DNA metabolic process 
GO:0043631 Biological process RNA polyadenylation  
GO:0031123 Biological process RNA 3’-end processing  
GO:0006351 Biological process transcription, DNA-templated 
GO:0001558 Biological process regulation of cell growth  
GO:0006281 Biological process DNA repair  
GO:0006302 Biological process double-strand break repair 
GO:0006355 Biological process regulation of transcription, 

DNA-templated 
GO:0006974  Biological process cellular response to DNA 

damage 
GO:0007049 Biological process cell cycle  
GO:0007094 Biological process mitotic spindle assembly 

checkpoint 
GO:0033188 Biological process positive regulation of 

peptidyl-serine 
phosphorylation  

GO:0042177  Biological process negative regulation of protein 
catabolic process 

GO:0042771 Biological process DNA damage response, 
signal transduction resulting 

in transcription  
GO:0045893 Biological process Positive regulation of 

transcription, DNA-templated 



Appendices 

 
 

Page 529 of 645 

GO:0051301 Biological process cell division  
GO:0000070 Biological process mitotic sister chromatid 

segregation  
GO:0000075 Biological process cell cycle checkpoint 
GO:0000087 Biological process mitotic M phase 
GO:0000236 Biological process mitotic prometaphase 
GO:0000278 Biological process mitotic cell cycle 
GO:0007093 Biological process mitotic cell cycle checkpoint 
GO:0031145 Biological process anaphase-promoting 

complex-dependent catabolic 
process 

GO:0043066 Biological process negative regulation of 
apoptotic process 

Go:0090267 Biological process positive regulation of mitotic 
cell cycle spindle assemble 

checkpoint  
GO:0005634 Cellular Component nucleus  
GO:0005654 Cellular Component neoplasm  
GO:0005737 Cellular Component cytoplasm 
GO:0005819 Cellular Component spindle 
GO:0005856 Cellular Component cytoskeleton 
GO:0016035 Cellular Component zeta DNA polymerase 

complex 
GO:0005680 Cellular Component anaphase-promoting 

complex 
GO:0000775 Cellular Component chromosome centromeric 

region 
GO:0000776 Cellular Component kinetochore 
GO:0000777 Cellular Component condensed chromosome 

kinetochore 
GO:0000922 Cellular Component spindle pole 

GO:0005694 Cellular Component chromosome  
GO:0005829 Cellular Component cytosol 
GO:0048471 Cellular Component perinuclear region of 

cytoplasm 
GO:0005643 Cellular Component nuclear pore 

  

 
 
Whilst the GO terms predicted by FunFOLD3 do not match the GO terms associated with 

the UniProtKB entry for the target. There are some similarities with the predictions. Namely 

around, mitotic functions (GO:0007093, GO:0000087, GO:0000236, GO:0000278) RNA 

binding (similarity to the DNA binding), nucleus (GO:0005634), the latter which matches the 

subcellular location of the protein as per UniProtKB.(UniProt Consortium, 2019)  Membrane-

anchored junction protein shows DNA-binding activity, possible for the stabilisation of 

telomere attachment on the nucleus inner membrane.(UniProt Consortium, 2019) 

 
Figure S.44 below shows the TM-align superposition between the predicted model and 

observed structure from the PDB entry. A TM align score of  0.34981 was achieved, showing 

poor structural homology.  
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Figure S.44. Comparison of TMalign(Zhang and Skolnick, 2005) structures for predicted T0980s1 and PDB ID 6gnx 
The structure in blue is the observed structure for PDB ID 6gnx and the predicted structure for CASP13 target T0980s1 is in 
red. A TM-align of 0.34981 was achieved for protein structures. The score was normalised for PDB ID 6tri target as it is the 
reference molecule 
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Figure S.45. FunFOLD3 ligand-binding site predictions for CASP13 target T0980s2 (PBD ID 6gnx) 
Predicted ligand binding site residues shown as sticks with predictions in red, the predicted s-adenosyl-l-homocysteine (SAH) 
ligand shown as sphere and coloured yellow. No observed structure was released by CASP organisers organisers and no 
biologically relevant ligands were found in the PDB structure  
 
 

The fifteenth predicted CASP13 target is subunit 2 of Q3KP22-3;Q8NHR7. As with T0980s1, 

no biologically relevant ligands were found in the PDB structure. As T0980s2 is related to 

T0980s1, no further literature information is available on the target. However, FunFOLD3 

predicted the following GO terms and are specific to this target. The predictions are different 

to the GO terms for T0980s1 and are not similar or complimentary to T0980s1. 

 
Table S.13. Predicted GO terms for CASP13 target T0980s2 (PDB ID 6gnx) as predicted by FunFOLD3 
The GO terms for CASP13 target T0980s2 (PDB ID 6gnx) and their associated term domains and function are shown below. 
Molecular function coloured green, biological process coloured red and cellular component is coloured purple  
 

GO term GO term domain Function 
GO:0000166 Molecular function nucleotide binding  
GO:0000287 Molecular function magnesium ion binding  
GO:0004363 Molecular function glutathione synthase activity 
GO:0005524 Molecular function ATP binding 
GO:0016874 Molecular function ligase activity 
GO:0046872 Molecular function metal ion binding  
GO:0004324 Molecular function Ferredoxin-NADP+ 

reductase activity 
GO:0016491 Molecular function oxidoreductase activity  
GO:0050660 Molecular function flavin adenine dinucleotide 

binding 
GO:0050661 Molecular function NADP binding 
GO:0006750 Biological process glutathione biosynthetic 

process 
GO:0055114 Biological process oxidation-reduction process 
GO:0005829 Cellular Component cytosol 
GO:0009579 Cellular Component thylakoid 
GO:0016020 Cellular Component membrane 
GO:0030089 Cellular Component phycobilisome 
GO:0042651 Cellular Component thylakoid membrane 
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Figure S.46 below shows the TM-align superposition between the predicted model and 

observed structure from the PDB entry. A TM-align score of 0.21242 was achieved, showing 

poor structural homology. This poor structural homology could also explain why the GO 

terms and ultimately function predictions are not aligned with the observed protein.  

 

 
Figure S.46. Comparison of TMalign(Zhang and Skolnick, 2005) structures for predicted T0980s2 and PDB ID 6gnx 
The structure in blue is the observed structure for PDB ID 6gnx and the predicted structure for CASP13 target T0980s2 is in 
red. A TM-align of 0.21242 was achieved for protein structures. The score was normalised for PDB ID 6tri target as it is the 
reference molecule 
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Figure S.47. FunFOLD3 ligand-binding site predictions for CASP13 target T0985 
Predicted ligand binding site residues shown as sticks with predictions in red, the predicted beta-D-glucopyranose (BGC) ligand 
shown as sphere and coloured yellow. Two different binding sites for the same ligand were identified for this target. No 
observed structure was released by CASP organisers 

 
The seventeenth predicted CASP13 target is ACL_1061, there was no structure released by 

the CASP13 organisers and no PDB ID is associated with the target. UniProtKB identifies 

the protein as glycol_hydro_36 domain-containing protein and ACL_1061 is the 

gene.(UniProt Consortium, 2019) In terms of annotation status, the protein has the lowest 

score of one out of five and is deemed ‘protein predicted’ and denotes there is no evidence 

at protein, transcript or homology levels.(UniProt Consortium, 2019) 

 

In terms of function of the protein, the UniProtKB entry has transferase activity 

(GO:0016740) for the function of the protein. The GO terms predicted by FunFOLD3 are 

provided in Table S.14 below. The GO term related to transferase activity has also been 

predicted by FunFOLD3. 
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Table S.14. Predicted GO terms for CASP13 target T0985 as predicted by FunFOLD3 
The GO terms for CASP13 target T0985 and their associated term domains and function are shown below. Molecular function 
coloured green, biological process coloured red and cellular component is coloured purple 

 
GO term GO term domain Function 

GO:0003824 Molecular function catalytic activity 
GO:0030246 Molecular function carbohydrate binding  
GO:0004348 Molecular function glucosylceramidase activity 
GO:0046872 Molecular function metal ion binding  
GO:0016740 Molecular function transferase activity  
GO:0016757 Molecular function transferase activity, 

transferring glycosyl groups 
GO:0047738 Molecular function cellobiose phosphorylase 

activity   
GO:0005975 Biological process carbohydrate metabolic 

process 
GO:0006665 Biological process Sphingolipid metabolic 

process 
GO:0016021 Cellular Component integral component of 

membrane 
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Figure S.48. FunFOLD3 ligand-binding site predictions for CASP13 target T0986s2 (PDB ID 6d7y) 
Predicted ligand binding site residues shown as sticks with predictions in red, the predicted 2-hydroxybenzoic acid (DAL) ligand 
shown as sphere and coloured yellow. No observed structure was released by CASP organisers and no biologically relevant 
ligands were found in the PDB file  
 
 
 

The eighteenth  predicted CASP13 target is toxic C-terminal tip of CdiA and immune protein 

and is classified as classified as toxin as per the PDB entry and there is no ligand associated 

with the target. The UniProtKB entry provides quite extensive information into the function of 

Toxic CdiA proteins.(UniProt Consortium, 2019)  

 

Toxin CdiA proteins are toxic component of a toxin-immunity protein module, which functions 

as a cellular contact-dependent growth inhibition (CDI) system.(UniProt Consortium, 2019) 

CDI modules allow bacteria to communicate with and inhibit the growth of closely related 

neighboring bacteria  in a contact-dependent fashion.(UniProt Consortium, 2019) The CdiA 

protein is thought to be exported from the cell through the central lumen of CdiB, the other 

half of its two-partner system (TPS).(UniProt Consortium, 2019)  
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Finally, in terms of related GO terms; toxin activity (GO:0090729), cell adhesion 

(GO:0007155), and pathogenesis (GO:0009405), none of these terms were predicted by 

FunFOLD3.  

 
 

Figure S.49 below is of the TM-align superposition of the predicted and observed protein 

structure, with the observed structure from the PDB entry for the target. A TM-align score of  

0.31392 was achieved showing poor structural homology between the predicted and 

observed structure. 

 
Figure S.49. Comparison of TMalign(Zhang and Skolnick, 2005) structures for predicted T0986s2 and PDB ID 6d7y 
The structure in blue is the observed structure for PDB ID 6d7y and the predicted structure for CASP13 target T0986s2 is in 
red. A TM-align of 0.31392 was achieved for protein structures. The score was normalised for PDB ID 6d7y target as it is the 
reference molecule 
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Figure S.50. FunFOLD3 ligand-binding site predictions for CASP13 target T0992 
Predicted ligand binding site residues shown as sticks with predictions in red, the predicted CA ligand shown as sphere and 
coloured yellow. No observed structure was released by CASP organisers and no PDB ID is associated with the target  

 
The nineteenth predicted CASP13 target is Q6MKZ7, no structure was released by CASP13 

organisers and no PDB ID is associated with the target. UniProtKB identifies the protein from 

gene Bd2229 and is an uncharacterised protein.(UniProt Consortium, 2019) In terms of 

status the protein has the lowest level of annotation and has been predicted, meaning there 

is no evidence at protein, transcript or homology levels.(UniProt Consortium, 2019)  

 

As there is limited information available on the target, information related to FunFOLD3 will 

be presented to provide potential insight into the target. Table S.15, below shows the GO 

terms predicted by FunFOLD3 with their associated functions. 

Table S.15. Predicted GO terms for CASP13 target T0992 as predicted by FunFOLD3 
The GO terms for CASP13 target T0992 and their associated term domains and function are shown below. Molecular function 
coloured green, biological process coloured red and cellular component is coloured purple  
 

GO term GO term domain Function 
GO:0003824 Molecular function catalytic activity 
GO:0016837 Molecular function carbon-oxygen lyase activity, 

acting on polysaccharides 
GO:0016829 Molecular function lyase activity 
GO:0030246 Molecular function carbohydrate binding 
GO:0005975 Biological process carbohydrate metabolic 

process 
GO:0005576 Cellular Component extracellular region 
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In terms of templates which the prediction has been based, the following information is 

available; 2qlf (caspase-7 and classified as hydrolase), 3jqw (collagenase and classified as 

cell adhesion), 3sik (bacillus hemophore lsdX1 and classified as transport protein), 3zm8 

(mannanases and classified as hydrolase), 4ruw (endonuclease/exonuclease/phosphatase 

and classified as hydrolase), 5c2v (hydrazine synthase and classified as oxidoreductase), 

5mnw (cinaciguat classified as a lyase), 5otl (CK2alpha classified as transferase) and 6dk4 

(campylobacter jejuni peroxide and classified as metal transport).  

 

In terms of the templates with the same ligand 3jqw, 3zm8 and 5c2v all have calcium as a 

ligand. The classification of each of the proteins is quite different so comparisons to a 

specific protein would be quite difficult. For example 3jqw, collagen-binding derived from 

collagenase G (s3b) in the presence of Ca2+ shows shortened hydrodynamic radius, better 

stability and more efficient substrate binding.(Bauer et al., 2013) Additionally, X-ray crystal 

structures of s3b were solved in the presence of Ca2+ (holo) as well as in the abense of Ca2+ 

(apo) to show a secondary structure transformation of the linker at its N terminus.(Bauer et 

al., 2013) In terms of 3zm8, β-mannanase are encountered as modular enzymes and some 

harbour carbohydrate binding modules (CBM), one of which is CBM35.(Couturier et al., 

2013) Calcium has been identified in the structure of CBM35 and is involved in carbohydrate 

recognition,(Bauer et al., 2013) which ties in nicely with two of the GO terms predicted by 

FunFOLD3 (GO:0030246 and GO:0005975). There is no information in literature to relate 

the role of calcium to 5c2v.  
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Figure S.51. FunFOLD3 ligand-binding site predictions for CASP13 target T0993s1 (PDB ID 6xbd) 
Predicted ligand binding site residues shown as sticks with predictions in red, the predicted adenosine-5-‘phosphate (ADP) 
ligand shown as sphere and coloured yellow. No observed structure was released by CASP organisers organisers and no 
biologically relevant ligands were found in the PDB file  
 
 
 

The twentieth predicted CASP13 target is MiaFA and is classified as lipid transport as per 

the PDB entry. UniProtKB information around a similar protein, called intermembrane 

phospholipid transport system binding protein MiaD identifies the function as part of the ABC 

transporter complex MiaFEDB,which is involved in a phospholipid transport pathway that 

maintains lipid asymmetry in the outer membrane by retrograde trafficking of phospholipids 

from the outer membrane to the inner membrane(Malinverni and Silhavy, 2009),(Thong et 

al., 2016) MiaD functions in substrate binding with strong affinity for phospholipids and 

modulates ATP hydrolytic activity of the complex.(Thong et al., 2016) Based on this 

information from the UniProtKB entry, it seems reasonable as to why ATP was predicted as 

a ligand. However, no ligands are associated with the PDB entry, therefore the identification 

of ATP would be based on 1b0u, a transport protein and 1ji0 also a transport protein.  

 
Figure S.51 below, shows the TMalign superposition between the predicted and observed 

protein structure, with the observed structure from the PDB entry for the target. A TM-align 
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score of  0.24098 was achieved showing poor structural homology between the predicted 

and observed structure.  

 
 

 
Figure S.52. Comparison of TMalign(Zhang and Skolnick, 2005) structures for predicted T0993s1 and PDB ID 6xbd 
The structure in blue is the observed structure for PDB ID 6xbd and the predicted structure for CASP13 target T0993s1 is in 
red. A TM-align of 0.24098 was achieved for protein structures. The score was normalised for PDB ID 6xbd target as it is the 
reference molecule 
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A           B 

 
 

Figure S.53. FunFOLD3 ligand-binding site predictions for CASP13 target T0994  
(A) Predicted ligand binding site residues shown as sticks with predictions in red, the predicted acylated ceftazidime (CAZ) 
ligand shown as sphere and coloured yellow (B) Predicted ligand binding site residues shown as sticks with predictions in red, 
the predicted histidine (HIS) ligand is shown as sphere and coloured yellow. Two different binding sites for the same ligand 
were identified for this target. Structure cancelled by CASP organisers  

 
The twenty-first predicted CASP13 target is Q79ER8_STAAU and no PDB ID is associated 

with this target and the CASP13 organisers cancelled the structure, therefore no analysis 

can be made against the observed structures.  

 

The UniProtKB entry identifies Q79ER8_STAAU as a beta-lactam sensor/signal transducer 

MecR1. In terms of annotation, the lowest score with one out of five is associated with the 

protein and the protein is inferred by homology and indicates that the existence of a protein 

is probable because clear orthologs exist in closely related species.(UniProt Consortium, 

2019) 

 

In relation to GO terms penicillin binding (GO:0008658) and integral component of 

membrane (GO:0016021). In comparison the GO terms predicted by FunFOLD3 are given 

below in Table S.16.  
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Table S.16. Predicted GO terms for CASP13 target T0994 as predicted by FunFOLD3 
The GO terms for CASP13 target T0994 and their associated term domains and function are shown below. Molecular function 
coloured green, biological process coloured red and cellular component is coloured purple  
 

GO term GO term domain Function 
GO:0000166 Molecular function nucleotide binding 
GO:0015408 Molecular function ATPase-coupled ferric iron 

transmembrane transporter 
activity  

GO:0016787 Molecular function hydrolase activity 
GO:0005524 Molecular function ATP binding  
GO:0016887 Molecular function ATPase activity  
GO:0017111 Molecular function nucleoside-triphosphatase 

activity 
GO:0005215 Molecular function transporter activity 
GO:0015426 Molecular function ATPase-coupled polar amino 

acid-transporter activity  
GO:0015423 Molecular function ATPase-coupled maltose 

transmembrane transporter 
activity  

GO:0043865 Molecular function methionine transmembrane 
transporter activity 

GO:0048474 Molecular function  D-methionine 
transmembrane transporter 

activity  
GO:0046872 Molecular function  metal ion binding  
GO:0006200 Biological process obsolete ATP catabolic 

process 
GO:0006810 Biological process transport 
GO:0008643 Biological process carbohydrate transport 
GO:0015768 Biological process maltose transport 
GO:0042956 Biological process maltodextrin transport 
GO:0006865 Biological process amino acid transport 
GO:0015821 Biological process methionine transport 
GO:0048473 Biological process D-methionine transport 
GO:0005886 Cellular Component plasma membrane  
GO:0043190 Cellular Component ATP-binding cassette (ABC) 

transporter complex 
GO:0016020 Cellular Component membrane 
GO:0009276 Cellular Component Gram-negative-bacterium-

type cell wall 

 
FunFOLD3 did not predict any GO terms which were associated with the protein as per 

UniProtKB. The closest GO terms could be GO:0009276 and the protein is a beta-lactam 

and as antibiotics have activity on both gram-negative and gram-positive bacteria.(Fisher 

and Mobashery, 2016) In terms of the predicted ligand by FunFOLD3, ceftazidime is a novel 

β-lactamase inhibitor with activity against multi-drug resistant gram-negative 

bacteria.(Zasowski, Rybak and Rybak, 2015) The role of this predicted ligand ties in with the 

predicted GO term 0009276 and also the protein as a beta-lactam.  
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Figure S.54. FunFOLD3 ligand-binding site predictions for CASP13 target T0995  
Predicted ligand binding site residues shown as sticks with predictions in red, the predicted 4-methylsulfanyl-2-ureido-butyric 
acid (CDT) ligand shown as sphere and coloured yellow. No observed structure was released by CASP organisers  
 

 
The twenty-second predicted CASP13 target is B3GNT7 (B3GNTY_BACPU) and no PDB ID 

is associated with this entry. The UniProtKB entry identifies the protein as cyanide 

dehydratase(UniProt Consortium, 2019) and as expected of a protein target with no PDB ID, 

has a low annotation score with one out of five and has the status of ‘protein predicted’.  

 

Information about function states an active site and this subsection of function relates 

specifically to enzymes and indicates the residues directly involved in catalysis. The active 

site position is 48 as per UniProtKB(UniProt Consortium, 2019) and the predicted ligand-

binding site residues were 48,54,130,137,164,189 and 192. The description of the site is 

proton acceptor.  

 

GO terms associated with the protein are nitrilase activity (molecular function, GO:0000257) 

and nitrogen compound metabolic process (biological process, GO:0006807). In comparison 

the GO terms predicted by FunFOLD3 are given below in Table S.17 with the matched GO 

term for biological process. Furthermore, the family and domains section of the entry 

identifies position of 8-270 as a CN hydrolase of which FunFOLD3 has predicted terms 

related to this (GO:0047417 and GO:0016787).(UniProt Consortium, 2019)  
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Table S.17. Predicted GO terms for CASP13 target T0995 as predicted by FunFOLD3 
The GO terms for CASP13 target T0995 and their associated term domains and function are shown below. Molecular function 
coloured green, biological process coloured red and cellular component is coloured purple  
 

GO term GO term domain Function 
GO:0047417 Molecular function N-carbamoyl-D-amino acid 

hydrolase activity 
GO:0016787 Molecular function hydrolase activity 
GO:0016810 Molecular function hydrolase activity, acting on 

carbon-nitrogen (but not 
peptide) bonds 

GO:0003824 Molecular function catalytic activity  
GO:0047710 Molecular Function  bis(5’-adenosyl)-

triphosphatase activity 
GO:0006807 Biological process nitrogen compound 

metabolic process 
GO:0006139 Biological process nucleobase-containing 

compound metabolic process 
GO:0008152 Biological process metabolic process 
GO:0005575 Cellular Component cellular component  

 
In terms of templates, 1ems is classified as an antitumor protein and is NITFHIT protein and 

N-carbamyl-D-amino acid amidohydrolase and classified as hydrolase and has CDT as a 

ligand. No other further information can be found about the protein in literature.   
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Figure S.55. FunFOLD3 ligand-binding site predictions for CASP13 target T0997  
Predicted ligand binding site residues shown as sticks with predictions in red, the predicted d-glutamic acid (DGL) ligand shown 
as sphere and coloured yellow. No observed structure was released by CASP organisers  

 

The twenty-third CASP13 target is Q6MN59, as uncharacterised protein from gene Bd1402 

as per the UniProtKB entry for the protein.(UniProt Consortium, 2019) The status of the 

protein is unreviewed and has the lowest annotation score with one out of five and has the 

status of protein predicted for the level of existence. As with all proteins with limited 

information, there is no PDB ID associated with the target.  

 

Post-translation modifications/processing of the protein occurs and there is the presence of 

an N-terminal signal peptides.(UniProt Consortium, 2019) Signal peptides are found in 

proteins that are targeted to the endoplasmic reticulum and eventually destined to be either 

secreted/extracellular/periplasmic, retained in the lumen of the endoplasmic reticulum, of the 

lysosome or of any other organelle along the secretory pathway or to be I single-pass 

membrane proteins.(UniProt Consortium, 2019) 

 

FunFOLD3 did not predict any GO terms for this target. However, the following templates 

and their roles were predicted; 3tur (M.tuberculosis LD-transpeptidase and classified as 
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peptidoglycan binding protein), 3vyp (mycobacterium tuberculosis L,D-transpeptidase and 

classified as transferase), 4k73 (L,D-transpeptidase and classified as transferase), 4x9l 

(heat shock protein and classified as chaperone), 5k69 (mycobacterium tuberculosis L,D-

transpeptidase 2 classified as transferase/transferase inhibitor), 5kis (YenB/RHS2 complex, 

classified as a toxin), 5mps (spliceosome and classified as splicing) and 6br8 (A6 and 

classified as a viral protein). Based on the predicted templates there appears to be come 

consensus, with mycobacterium tuberculosis L,D-transpeptidase being the most popular. 

Additionally, 3tur had the same ligand as was predicted by FunFOLD3, DGL.  

 

D-glutamic acid, as glutamic acid is the most common excitatory neurotransmitter in the 

neurotransmitter and the role of the ligand, potentially fits in with the post-translational 

modifications of the protein target as a signal peptides. No information in literature was 

available for the role of DGL and mycobacterium tuberculosis L,D-transpeptidase.  
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Figure S.56. FunFOLD3 ligand-binding site predictions for CASP13 target T1001  
Predicted ligand binding site residues shown as sticks with predictions in red, the predicted biliverdine IX alpha (BLA) ligand 
shown as sphere and coloured yellow. No observed structure was released by CASP organisers  

 
The twenty-fourth predicted CASP13 target is Q6MIM9, a sensor histidine kinase from gene 

Bd3125.(UniProt Consortium, 2019) There are limited information available on the protein as 

there is no PDB ID associated with the target. The UniProtKB entry states the protein is 

predicted and has the lowest annotation score.(UniProt Consortium, 2019) As a result of no 

PDB ID associated with the target or CASP13 organisers not releasing an observed 

structure, no comparisons of the predicted target can be made against a known (observed) 

protein. 

 

In the family and domains section of the UniProtKB entry, a feature of this protein is coiled 

coil which occurs at position 136-156.(UniProt Consortium, 2019) The total number of 

residues provided for this target is 140. Therefore, it would be difficult to visualise based on 

the current target. Coiled coils are built by two or more alpha-helices that wind around each 

other to form a super coil there can be two, three or four helices is in the bundle and they 

might either running the same (parallel) or in the opposite (antiparallel) directions.(UniProt 

Consortium, 2019) The role of sensor histidine kinases (SHKs) constitute the main means by 

which bacteria gather information about their surroundings and are found in plants and 
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certain other eukaryotes.(Berntsson et al., 2017) SHKs detect external signals, such as 

chemicals, light or pH changes.(Berntsson et al., 2017) This in turn triggers structural 

changes and the activity of the histidine kinase output domains is modulated.(Berntsson et 

al., 2017) The structure of SHKs is well understood and contains a coiled coil linker, which is 

supported in the UniProtKB entry. Information from a study by Berntsson et al.,(Berntsson et 

al., 2017) it was proposed that left-handed supercoiling is the structural mechanism by which 

signals are relayed from the sensor to the effector module of the SHK and by which activity 

is switched from kinase to phosphatase.(Berntsson et al., 2017) Furthermore, this is 

supported by the function of the target as per UniProtKB which lists kinase activity 

(GO:0016301) as part of molecular function.(UniProt Consortium, 2019) No GO terms were 

predicted by FunFOLD3, however in terms of templates signalling proteins were identified 

(4fof, 4s21 and 5akp – which has the ligand BLA).  
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A       B 

 
Figure S.57. FunFOLD3 ligand-binding site predictions for CASP13 target T1008 (PDB ID 6msp) 
(A) Predicted ligand binding site residues shown as sticks with predictions in red, the predicted flavin monoucleotide (FMN) 
ligand shown as sphere and coloured yellow (B) Predicted ligand binding site residues shown as sticks with predictions in red, 
the predicted FMN ligand is shown as sphere and coloured yellow. Two different binding sites for the same ligand were 
identified for this target. No observed structure was released by CASP organisers and no biologically relevant ligands were 
found in the PDB file  

 
The twenty-sixth predicted CASP13 target is UW_engnr, a de novo designed protein folfit3 

and as per the PDB entry is classified as a de novo protein and the organism is a synthetic 

construct. There is an article associated with the PDB entry.  

 

The authors wanted to investigate how crowd-based creativity could contribute to solving the 

de novo protein design problem.(Koepnick et al., 2019) The authors incorporated de novo 

design tools into the protein folding game Foldit.(Koepnick et al., 2019) Foldit is a free online 

computer game developed to crowdsource problems in protein modelling and provide full 

control over the three-dimensional structure of a protein model.(Koepnick et al., 2019) 

Players compete to build a model with the lowest free energy, as calculated by the Rosetta 

energy function.(Koepnick et al., 2019) Players were repeatedly challenged to design stably 

folded proteins from scratch and iteratively improved the game based on their 

results.(Koepnick et al., 2019) Four of the player-designed proteins had high-resolution 

strutures solved, of which Foldit3, T1008, was one of them and was nominated as a target 

for the CASP COMMONS Community Outreach program.(Koepnick et al., 2019) As the 

protein is de novo, there are no information available about the target in literature.    
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Figure S.58 below, shows the TMalign superposition for the predicted T1008 and the 

observed structure as per the PDB entry. A TM-score of 0.63629 was achieved 

demonstrating similar folds.  

 

 

 

Figure S.58. Comparison of TMalign(Zhang and Skolnick, 2005) structures for predicted and observed structure for 
T1008 (PDB ID 6msp) 
The structure in blue is the observed structure from 6msp and the predicted structure is in red. A TM-score of 0.63629 was 
achieved for protein structures. The score was normalised for the observed structure T1003 as it is the reference molecule 
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A       B 

 
Figure S.59. FunFOLD3 ligand-binding site predictions for CASP13 target T1009 (PDB ID 6dru) 
(A) Predicted ligand binding site residues shown as sticks with correct predictions in blue and incorrect predictions in red the 
predicted alpha-D-glucopyranose (GLC) ligand shown as sphere and coloured yellow. An MCC and BDT score of 0.91 and 
0.94 was achieved, respectively (B) The observed ligand binding site residues shown as sticks and coloured blue, the alpha-D-
xylopyranose (XYS) ligand is shown as sphere and coloured yellow.  

 

 
Figure S.60. FunFOLD3 ligand-binding site predictions for CASP13 target T1009 (PDB ID 6dru) 
Predicted ligand binding site residues shown as sticks with predictions in red, the predicted GLC ligand shown as sphere and 
coloured yellow 
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Figure S.61. FunFOLD3 ligand-binding site predictions for CASP13 target T1009 (PDB ID 6dru)  
(A)Observed ligand binding site residues shown as sticks and coloured blue the observed ligand alpha-D-mannopyranose 
(MAN) ligand is shown as sphere and coloured yellow. The MAN ligand was predicted in four different locations on the target. 
(B) Observed ligand binding site residues shown as sticks and coloured blue the observed ligand beta-D-glucopyranose (BGC) 
ligand is shown as sphere and coloured yellow. The BGC ligand was predicted in three different locations on the target. (C) 
Observed ligand binding site residues shown as sticks and coloured blue the observed ligand beta-D-mannopyranose (BMA) 
ligand is shown as sphere and coloured yellow. The BMA ligand was predicted in two different locations on the target (D) 
Observed ligand binding site residues shown as sticks and coloured blue the observed ligand beta-D-galactopyranose (GAL) 
ligand is shown as sphere and coloured yellow. 

  
  
  

 
The twenty-seventh predicted CASP13 target is A2QTU5.1 or xylosidase as per the PDB entry 

and is classified as a hydrolase. FunFOLD3 predicted the GLC ligand at two different 

locations. In comparison, the biologically relevant ligands identified in the observed structure 

as released by the CASP13 organisers were XYS, MAN, BGC, BMA and GAL. The MAN, 

A B 

C D 
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BGC and BMA ligand was identified in multiple locations within the protein structure. The PDB 

entry identifies NAG, XYS and GOL as ligands. Despite FunFOLD3 not predicting the same 

ligands as in the observed structure, the predicted GLC ligand has similar residues to the XYS 

ligand. Therefore, a comparison was made between these two ligands and an MCC and BDT 

score was calculated and was 0.91 and 0.94,respectively. Due to the very good MCC and 

BDT score it is fair to compare them as the same ligand and Figure S.61 below compares the 

two ligand structures to one another and there is clear homology between the two ligands.  

 
 

 
Figure S.62. Comparison of GLC and XYS ligand  
The difference between GLC and XYS ligand. The GLC ligand was predicted by FunFOLD3 and the XYS ligand was a 
biologically relevant ligand identified in the observed structure 

 
In literature information available on the protein, a key molecular determinant of substrate 

specificity corresponding to Tyr286, this residue was also predicted in the CASP13 target 

and this is despite the poor sequence conservation at this position among GH31 family 

enzymes.(Cao et al., 2020) Almost all the structurally available GH31 -xylosidases possess 

a bulky aromatic residue at the spatially equivalent position to Tyr286(Cao et al., 2020) 

expect for the E.Coli -xylosidases with Cys307 (PDB ID 2f2h)(Cao et al., 2020), of which 

this template was used by FunFOLD3 for prediction of the ligand-binding sites.  

 
 
Figure S.63 below, shows the TMalign superposition for the predicted T1009 and the 

observed structure as released by CASP organisers. A TM-score of  0.86740 was achieved 

demonstrating the higher end of the same fold.  
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Figure S.63. Comparison of TMalign structures for predicted and observed structure for T1009 (PDB ID 6dru) 
The structure in blue is the observed structure as released by the CASP13 organisers and the predicted structure is in red. A 
TM-score of 0.86740 was achieved for protein structures. The score was normalised for the observed structure T1009 as it is 
the reference molecule 
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Figure S.64. FunFOLD3 ligand-binding site predictions for CASP13 target T1012  
Predicted ligand binding site residues shown as sticks with predictions in red, the predicted acetyl coenzyme-A (ACO) ligand 
shown as sphere and coloured yellow. Observed structure cancelled by CASP organisers  

 
The twenty-eighth predicted CASP13 target is puromycin N-acetyltransferase and the 

structure was cancelled by CASP13 organisers. Additionally, no PDB ID is associated with 

this target. The status of the protein is predicted and has an annotation score of two out of 

five. The function of the protein is detoxification of puromycin and the UniProtKB entry 

identifies N-acetyltransferase activity (GO:008080) as the molecular function and response 

to antibiotic (GO:0046677) as a biological process.  FunFOLD3, also predicted N-

acetyltransferase activity and the full list of GO terms predicted by FunFOLD3 are depicted 

in Table S.18 below. 

 
Table S.18. Predicted GO terms for CASP13 target T1012 as predicted by FunFOLD3 
The GO terms for CASP13 target T1012 and their associated term domains and function are shown below. Molecular function 
coloured green, biological process coloured red and cellular component is coloured purple  
 

GO term GO term domain Function 
GO:0004059 Molecular function aralkylamine N-

acetyltransferase activity  
GO:0005515 Molecular function protein binding 
GO:0008080 Molecular function N-acetyltransferase activity  
GO:0016740 Molecular function transferase activity 
GO:0016746 Molecular Function  transferase activity, 

transferring acyl groups  
GO:0008483 Molecular Function Transaminase activity 
GO:0006474 Biological process N-terminal protein amino acid 

acetylation  
GO:0007623 Biological process circadian rhythm  
GO:0030187 Biological process melatonin biosynthetic 

process 
GO:0048511 Biological process rhythmic process 
GO:0071320 Biological process cellular response to cAMP 
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GO:0005737 Cellular Component cytoplasm 
GO:0048471 Cellular Component  perinuclear region of 

cytoplasm 
 

There are no recent literature publications on the role of puromycin acetyltransferase. 

Puromycin is an aminonucleoside antibiotic with structural similarity to aminoacyl 

tRNA.(Cary et al., 2014) This allows the drug to bind to the ribosomal A site and incorporate 

into nascent polypeptides, causing chain termination, ribosomal subunit dissociation and 

widespread translational arrest at high concentrations.(Cary et al., 2014) Puromycin N-

acetyltransferase is a bacterial enzyme which inactivates puromycin by acetylating the 

amino position of its tyrosinyl moiety.(Lahoz, de Haro and Esponda, 1991) This could be 

facilitated by the predicted ACO ligand. Acetyl-CoA represents a key node in metabolism 

due to its intersection with many other metabolic pathways and transformations.(Shi and Tu, 

2015)   
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Figure S.65. FunFOLD3 ligand-binding site predictions for CASP13 target T1013 
(A) Predicted ligand binding site residues shown as sticks with predictions in red, the predicted cholesterol (CLR) ligand shown 
as sphere and coloured yellow (B) Predicted ligand binding site residues shown as sticks with predictions in red, the predicted 
[Z-octadec-9-enyl]  (2R)-2,3-bis(oxidanyl)propanoate (MPG) ligand is shown as sphere and coloured yellow. (C) Predicted 
ligand binding site residues shown as sticks with predictions in red, the predicted retinal (RET) ligand shown as sphere and 
coloured yellow (D) Predicted ligand binding site residues shown as sticks with predictions in red, the predicted leucine (LEU) 
ligand is shown as sphere and coloured yellow.  No observed structure released by CASP organisers 
 

The twenty-ninth predicted CASP13 target is UNK2, as no observed structure was released 

by CASP13 organisers and a search on UniProtKB isn’t conclusive, information from the 

FunFOLD3 prediction will be presented. Table S.19 below shows the GO terms predicted by 

FunFOLD3. The GO terms are quite varied across the three groups, however there appears 

to be some consistency with the classification of the protein potentially a hydrolase, due to 

two different GO term predictions around hydrolase activity. Additionally, the function could 

potentially involve light as there are a number of GO terms related to this, in particular the 

cellular component where this could occur is the membrane. Additional support for this 

comes from the prediction of a retinal ligand. 

A B 

C D 
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Table S.19. Predicted GO terms for CASP13 target T1013 as predicted by FunFOLD3 
The GO terms for CASP13 target T1013 and their associated term domains and function are shown below. Molecular function 
coloured green, biological process coloured red and cellular component is coloured purple  
 

GO term GO term domain Function 
GO:0003796 Molecular function lysozyme activity 
GO:0003824 Molecular function catalytic activity 
GO:0004871 Molecular function obsolete signal transducer 

activity  
GO:0004930 Molecular function G protein-coupled receptor 

activity  
GO:0004969 Molecular Function  histamine receptor activity 
GO:0016787 Molecular Function hydrolase activity  
GO:0016798 Molecular Function hydrolase activity  
GO:0005515 Molecular Function  protein binding  
GO:0009881  Molecular Function  photoreceptor activity 
GO:0046872 Molecular Function  metal ion binding 
GO:0004995 Molecular Function  tachykinin receptor activity  
GO:0006954 Biological Process inflammatory response 
GO:0007165 Biological Process signal transduction  
GO:0007186 Biological Process G protein-coupled receptor 

signaling pathway  
GO: 0007200 Biological Process phospholipase C-activating G 

protein-coupled receptor 
signaling  

GO:0007268 Biological Process chemical synaptic 
transmission 

GO:0008152 Biological Process metabolic process 
GO:0009253 Biological Process peptidoglycan catabolic 

process 
GO:0009629 Biological Process response to gravity 
GO:0010894 Biological Process negative regulation of steroid 

biosynthetic process 
GO:0016998 Biological Process cell wall macromolecule 

catabolic process 
GO:0019835 Biological Process cytolysis 
GO:0032962 Biological Process positive regulation of inositol 

triphosphate biosynthetic 
process 

GO:0042742 Biological Process defense response to 
bacterium 

GO:0045429 Biological Process positive regulation of nitric 
oxide biosynthetic process 

GO:0045907 Biological Process Positive regulation of 
vasoconstriction  

GO:0048016 Biological Process inositol phosphate-mediated 
signaling  

GO:0071420 Biological Process cellular response to 
histamine  

GO:0006468 Biological Process protein phosphorylation  
GO:0007601 Biological Process visual perception  
GO:0007602 Biological Process phototransduction  
GO:0009416 Biological Process response to light stimulus  
GO:0009583 Biological Process detection of light stimulus  
GO:0018298 Biological Process protein-chromophore linkage  
GO:0050896 Biological Process response to stimulus  
GO:0050953 Biological Process sensory perception of light 

stimulus 
GO:0060041 Biological Process retina development in 

camera-type eye  
GO:0071482 Biological Process cellular response to light 

stimulus  
GO:0005634 Cellular Component nucleus 
GO:0005737 Cellular Component  cytoplasm 
GO:0005886 Cellular Component plasma membrane 
GO:0005887 Cellular Component integral component of 

plasma membrane  
GO:0016020 Cellular Component membrane  
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GO:0016021 Cellular Component  integral component of 
membrane  

GO:0005730 Cellular Component  nucleolus  
GO:0001750 Cellular Component  photoreceptor outer segment  
GO:0001917 Cellular Component  photoreceptor inner segment  
GO:0005794 Cellular Component  Golgi apparatus  
GO:0042622 Cellular Component  photoreceptor outer segment 

membrane  
GO:0060342 Cellular Component  photoreceptor inner segment 

membrane  

 
In terms of templates, out of the seventeen templates that were associated with the protein 

target, six of those were signalling protein and five were hydrolase. Thereby, suggesting that 

the protein target is potentially a signalling protein or a hydrolase. 
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Figure S.66. FunFOLD3 ligand-binding site predictions for CASP13 target T1014 (PDB ID 6qrj)  
Predicted ligand binding site residues shown as sticks with incorrect predictions in red, the predicted adenosine-5’-phosphate 
(ADP) ligand shown as sphere and coloured yellow. MCC and BDT score was -0.05 and 0.05, respectively (B) The observed 
ligand binding site residues shown as sticks for T0953s2 with binding site residues coloured in blue and the correctly predicted 
ligands MG shown as sphere and coloured blue and the phosphoaminophosphonic acid-adenylate ester (ANP) ligand shown 
as sphere and coloured yellow. As no observed structure was released by CASP organisers the predictions have been made 
against the PDB structure  
 
The thirtieth predicted CASP13 target is WP_010918027.1 or ShkA, as per the PDB entry 

for the target and is classified as a signalling protein. FunFOLD3 predicted ADP as the 

biologically relevant ligand, whereas the observed ligands are magnesium and ANP and this 

A 

B 
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is also as per the PDB entry. The observed ligands ANP and MG share two ligand-binding 

site residues; 139 and 142. ShkA, is a noncanonical hybrid histidine kinase lacking any N-

terminal input domain.(Dubey et al., 2020) Information in literature, suggest that ShkA is an 

ATPase, converting ATP to ADP via phosho-enzyme intermediates and in the presence of c-

di-GMP, ShkA efficiently catalyses ATP turnover by enabling autophosphorylation and 

subsequent phosphotransfer and dephosphorylation.(Dubey et al., 2020)  

 

Phosphoaminophosphonic acid-adenylate ester is also known as AMPPNP and the structure 

of ShkA has been resolved in the presence of AMPPNP and magnesium, as shown by the 

PDB structure.(Dubey et al., 2020) AMPPNP, is a nonhydrolyzable anlog of ATP in which 

the bridging O atom between the two terminal phosphate groups is substituted by the imido 

function.(Dauter and Dauter, 2011)  

 
Figure S.66 below, shows the TMalign superposition for the predicted T1014 and PDB 

structure for 6qrj. A TM-score of 0.31010 was achieved demonstrating almost random 

structural homology.  
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Figure S.67. Comparison of TMalign(Zhang and Skolnick, 2005) structures for predicted and observed structure for 
T1014 (PDB ID 6qrj) 
The structure in blue is the observed structure from the PDB entry and the predicted structure is in red. A TM-score of 0.31010 
was achieved for protein structures. The score was normalised for the observed structure 6qrj as it is the reference molecule 
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Figure S.68. FunFOLD3 ligand-binding site predictions for CASP13 target T1016 (PDB ID 6e4b)  
(A) Predicted ligand binding site residues shown as sticks with correct predictions in blue and over predictions in red the 
predicted phosphate (PO4) ligand shown as sphere and coloured yellow. An MCC and BDT score of 0.556 and 0.646, 
respectively was achieved (B) The observed ligand binding site residues shown as sticks and coloured blue, the CL ligand is 
shown as sphere and coloured yellow.  
 
The thirty-first predicted CASP13 target is IDP96117 or alpha-ribazole-5’-P-phosphatase as 

per the PDB entry for the target and is classified as hydrolase. FunFOLD3 predicted 

phosphate as the ligand, in comparison chloride was the observed ligand and this was also 

supported the PDB entry for the protein. Despite the difference between the two ligands an 

MCC and BDT score of 0.556 and 0.646, respectively.  

 

Information in UniProtKB about the function of alpha-ribazole-5’-P phosphatase, identifies 

the molecular function as alpha-ribazole phosphatase activity (GO:0043755) and the 

biological process as cobalamin biosynthetic process (GO:0009236).(UniProt Consortium, 

2019) Further entries regarding alpha-ribazole phosphatase relate the protein to 

adenosylcobalamin. For one particular entry, the function is catalysing the conversion of 

adenosylcobalamin 5’-phosphate to adenosylcobalamin (vitamin B12); involved in the 

assembly of the nucleotide loop of cobalamin.(UniProt Consortium, 2019) Additionally, two 

active sites at position eight and 81 are denoted with the description of tele-phosphohistidine 

intermediate and proton donor/acceptor, respectively(UniProt Consortium, 2019) (UniProt 

KB – P39701) both these residues were predicted by FunFOLD3 and are also part of the 

A B 
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observed structure ligand-binding site predictions. In addition to the molecular function 

mentioned above, intramolecular transferase activity, phosphotransferase 

(GO:0016868).(UniProt Consortium, 2019) In terms of catalytic activity 

adenosylcob(III)alamin 5’-phosphate and water results in adenosylcob(III)alamin and 

phosphate.(UniProt Consortium, 2019) 

  
Figure S.69 below, shows the TMalign superposition for the predicted T1016 and the 

observed structure. A TM-score of 0.89374 was achieved demonstrating very good 

structural homology.  

 
 

 
 
Figure S.69. Comparison of TMalign(Zhang and Skolnick, 2005) structures for predicted and observed structure for 
T1016 (PDB ID 634b) 
The structure in blue is the observed structure from the PDB entry and the predicted structure is in red. A TM-score of 0.89374 
was achieved for protein structures. The score was normalised for the observed structure as it is the reference molecule 
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Figure S.70. FunFOLD3 ligand-binding site predictions for CASP13 target T1017s1  
Predicted ligand binding site residues shown as sticks with predictions in red the predicted ZN ligand shown as sphere and 
coloured yellow. No observed structure released by CASP organisers 

 
 

The thirty-second  predicted CASP13 target is 201_INDD4, there is no information available 

on the protein target on UniProtKB and additionally, there is no PDB ID associated with the 

target. Therefore, no comparisons can be made to an observed structure. Table S.20 below 

shows the GO terms predicted by FunFOLD3 which can be used to provide insight into the 

role and function of the protein target.  

 

Table S.20. Predicted GO terms for CASP13 target T1017s1 as predicted by FunFOLD3 
The GO terms for CASP13 target T1017s1 and their associated term domains and function are shown below. Molecular 
function coloured green, biological process coloured red and cellular component is coloured purple  
 

GO term GO term domain Function 
GO:0008270 Molecular function zinc ion binding 
GO:0008892 Molecular function guanine deaminase activity 
GO:0016787 Molecular function hydrolase activity 
GO:0046872 Molecular function metal ion binding 
GO:0006147 Biological process guanine catabolic process 
GO:0006195 Biological process purine nucleotide catabolic 

process 
GO:0006139 Biological process nucleobase-containing 

compound metabolic process 
GO:0006144 Biological process purine nucleobase metabolic 

process 
GO:0007399 Biological process nervous system development  
GO:0044281 Biological process  small molecule metabolic 

process 
GO:0055086 Biological process nucleobase-containing small 

molecule metabolic process 
GO:0005829 Cellular Component cytosol 
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GO:0005622 Cellular Component intracellular anatomical 
structure 

  
In terms of modelled templates the following were identified 2heo (potassium channel 

blocker and classified as immune system/DNA), 2v39 (N-wasp WH2 domain), 2xvc (ESCRT-

III and classified as cell cycle), 4cc9 (SAMHDI and classified as protein binding) and 4ooj 

(legionella pneumophilia and classified as unknown function). The templates don’t show a 

consensus among each other so trying to infer the role and function of the target is difficult.  
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Figure S.71. FunFOLD3 ligand-binding site predictions for CASP13 target T1018 (PDB ID 6n91)  
(A) Predicted ligand binding site residues shown as sticks with correct predictions in blue and incorrect predictions in red the 
predicted zinc (ZN) ligand shown as sphere and coloured yellow. An MCC and BDT score of 0.522 and 0.48, respectively was 
achieved (B) The observed ligand binding site residues shown as sticks and coloured blue, the ZN ligand is shown as sphere 
and coloured yellow, the phosphate (PO4) ligand is shown as sphere and coloured red and the sulphate (SO4) ligand is shown 
as sphere and coloured blue. The gull dimer structure has been shown for demonstrative purposes 
 

A 

B 
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The thirty-third predicted CASP13 targets is IDP04388 or adenosine deaminase as per the 

PDB entry and is classified as a hydrolase. FunFOLD3, correctly predicted one of the 

biologically relevant ligands, ZN. There were three biologically relevant ligands identified in 

the PDB file obtained from PDB, as the CAP13 organisers did not realise an observed 

structure for the target. The PDB entry lists nine molecules, under the ligands section; 2’-

deoxycorformycin (DCF), 3-cyclohexyl-1-propoylsulpfonic acid (CXS), sulphate ion (SO4), 

phosphate ion (PO4), glyercol (GOL), 1,2-ethanediol (EDO), formic acid (FMT), sodium ion 

(NA) and ZN. In term of biological relevance; ZN, SO4 and PO4 were predicted. 

Interestingly, the ligands were predicted in only the A chain of the dimer of the observed 

protein with the ZN and SO4 ligand being present in both chains A and B but biological 

relevance being confined to one chain as demonstrated in Figure S.70A.  

 

Adenosine deaminase (ADA) is a key enzyme in purine metabolism and crucial for normal 

immune competence and contains a tightly bound zinc, which is required for activity.(Niu et 

al., 2010) Ada catalyses the irreversible deamination of adenosine or 2’-deoxyadenosine to 

inosine or 2’-deoxyinosine and ammonia.(Niu et al., 2010) Removing zinc or mutating amino 

acids involved in metal co-ordination leads to loss of the enzyme activity, confirming the role 

of Zinc in the catalytic function of ADA.(Niu et al., 2010)  The role of zinc is therefore clearly 

understood in literature. As a result of both the predicted and observed structure containing 

zinc the MCC and BDT scores were calculated based on just the zinc ligand.  

 

Figure S.72 below, shows the TMalign structures for the predicted T1018 and the observed 

structure as obtained from PDB. A TM-score of 0.92543 was achieved demonstrating very 

good structural homology.  
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Figure S.72. Comparison of TMalign(Zhang and Skolnick, 2005) structures for predicted and observed structure for T1018 
(PDB ID 6n91) 
The structure in blue is the observed structure from the PDB entry and the predicted structure is in red. A TM-score of 0.92543 
was achieved for protein structures. The score was normalised for the observed structure as it is the reference molecule 
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Figure S.73. FunFOLD3 ligand-binding site predictions for CASP13 target T1023s3  
(A) Predicted ligand binding site residues shown as sticks with predictions in red, the predicted leucine (LEU) ligand shown as 
sphere and coloured yellow (B) Predicted ligand binding site residues shown as sticks with predictions in red, the predicted 
guanosine-5’-diphosphate (GDP) ligand is shown as sphere and coloured yellow. (C) Predicted ligand binding site residues 
shown as sticks with predictions in red, the predicted RC ligand shown as sphere and coloured yellow (D) Predicted ligand 
binding site residues shown as sticks with predictions in red, the predicted ZN ligand is shown as sphere and coloured yellow.  
Structure cancelled by CASP organisers  

 
The thirty-fourth predicted CASP13 target and the final predicted target for CASP13 is eIF2 

or eukaryotic translation initiation factor 2A, as per the UniProtKB entry.(UniProt Consortium, 

2019) The protein has the highest annotation score with five out of five and has experimental 

evidence at protein level indicating that there is clear experimental evidence for the 

existence of the protein. 

 

A B 

C D 
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In the functions section of the entry, the protein functions in the early steps of protein 

synthesis of a small number of specific mRNAs and acts by directing the binding of 

methionyl-tRNAi to 40S ribosomal subunits.(Zoll et al., 2002) 

Additionally, the entry identifies the GO terms related to molecular function and biological 

process. Table S.21 below shows the GO terms predicted by FunFOLD3  

 
Table S.21. Predicted GO terms for CASP13 target T1023 as predicted by FunFOLD3 
The GO terms for CASP13 target T1017s1 and their associated term domains and function are shown below. Molecular 
function coloured green, biological process coloured red and cellular component is coloured purple  
 

GO term GO term domain Function GO term as per 
UniProt 

GO:0000166 Molecular function nucleotide binding   
GO:0003746 Molecular function translation elongation factor 

activity 
 

GO:0003924 Molecular function GTPase activity   
GO:0005525 Molecular function GTP binding  
GO:0003743 Molecular function translation initiation factor 

activity  
✔ 

GO:0003723 Molecular function  RNA binding GO:0000049 (GO:0003723 
ancestor term) 

GO:0006412 Biological process translation  
GO:0006414 Biological process translational elongation  
GO:0006413 Biological process translational initiation  
GO:0001514 Biological process selenocysteine incorporation  
GO:0005622 Cellular Component intracellular anatomical 

structure 
 

GO:0005737 Cellular Component cytoplasm  

 
In comparison, the following molecular function GO terms are associated with the entry as 

per UniProtKB entry(UniProt Consortium, 2019) cadherin binding (GO:0045296) and 

ribosome binding (GO:0043022). For biological process the following are associated positive 

regulation of signal transduction (GO:0009967), protein phosphorylation (GO:0006468), 

regulation of translation (GO:0006417), response to amino acid starvation (GO:1990928), 

ribosome assembly (GO:0042255), SREBP signalling pathway (GO:0032933). FunFOLD3 

correctly identified one GO term and predicted a GO term which is an ancestor term of 

another GO term. The function description as per the UniProtKB entry, in terms of mRNA 

aligns with the predicted RNA ligand as per FunFOLD3. Literature information about the 

protein identifies the role of GTP, in one of the pathways, methionylated initiator tRNA is 

loaded onto the ribsome in a guanosine-triphosphate (GTP)-dependent and mRNA-

independent manner.(Kashiwagi, Ito and Yokoyama, 2014) The predicted ligand, GDP is a 
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hydrolysed version of GTP. Despite no observed structure being released and no PDB entry 

associated with the target, the ligands predicted by FunFOLD3 and the available information 

in literature provide insight into the role and ultimately function of the protein.
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Appendix 3 

 

 

 

 

 

 

 

 

 

 

 
Figure S.74. Receiver operator characteristic curves for the three methods used in the CAFA3 challenge   
(A) ROC plot for FunFOLDQ, area under curve for this method is 0.47 (B) ROC plot for HHsearch, area under curve for this method is 0.46 (C) ROC plot for Combined, area under curve for this 
method is 0.47  
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1. Target files for CAFA3 GO prediction  
Target files moonlighting proteins  
>M96060000001 IPPK_HUMAN 
MEEGKMDENEWGYHGEGNKSLVVAHAQRCVVLRFLKFPPNRKKTSEEIFQHLQNIVDFGK 
NVMKEFLGENYVHYGEVVQLPLEFVKQLCLKIQSERPESRCDKDLDTLSGYAMCLPNLTR 
LQTYRFAEHRPILCVEIKPKCGFIPFSSDVTHEMKHKVCRYCMHQHLKVATGKWKQISKY 
CPLDLYSGNKQRMHFALKSLLQEAQNNLKIFKNGELIYGCKDARSPVADWSELAHHLKPF 
FFPSNGLASGPHCTRAVIRELVHVITRVLLSGSDKGRAGTLSPGLGPQGPRVCEASPFSR 
SLRCQGKNTPERSGLPKGCLLYKTLQVQMLDLLDIEGLYPLYNRVERYLEEFPEERKTLQ 
IDGPYDEAFYQKLLDLSTEDDGTVAFALTKVQQYRVAMTAKDCSIMIALSPCLQDASSDQ 
RPVVPSSRSRFAFSVSVLDLDLKPYESIPHQYKLDGKIVNYYSKTVRAKDNAVMSTRFKE 
SEDCTLVLHKV 
>M100900000002 HXK1_MOUSE 
MGWGAPLLSRMLHGPGQAGETSPVPERQSGSENPASEDRRPLEKQCSHHLYTMGQNCQ
RG 
QAVDVEPKIRPPLTEEKIDKYLYAMRLSDEILIDILTRFKKEMKNGLSRDYNPTASVKML 
PTFVRSIPDGSEKGDFIALDLGGSSFRILRVQVNHEKSQNVSMESEVYDTPENIVHGSGS 
QLFDHVAECLGDFMEKRKIKDKKLPVGFTFSFPCRQSKIDEAVLITWTKRFKASGVEGAD 
VVKLLNKAIKKRGDYDANIVAVVNDTVGTMMTCGYDDQQCEVGLIIGTGTNACYMEELRH 
IDLVEGDEGRMCINTEWGAFGDDGSLEDIRTEFDRELDRGSLNPGKQLFEKMVSGMYMGE 
LVRLILVKMAKESLLFEGRITPELLTRGKFTTSDVAAIETDKEGVQNAKEILTRLGVEPS 
HDDCVSVQHVCTIVSFRSANLVAATLGAILNRLRDNKGTPRLRTTVGVDGSLYKMHPQYS 
RRFHKTLRRLVPDSDVRFLLSESGSGKGAAMVTAVAYRLAEQHRQIEETLSHFRLSKQAL 
MEVKKKLRSEMEMGLRKETNSRATVKMLPSYVRSIPDGTEHGDFLALDLGGTNFRVLLVK 
IRSGKKRTVEMHNKIYSIPLEIMQGTGDELFDHIVSCISDFLDYMGIKGPRMPLGFTFSF 
PCKQTSLDCGILITWTKGFKATDCVGHDVATLLRDAVKRREEFDLDVVAVVNDTVGTMMT 
CAYEEPSCEIGLIVGTGSNACYMEEMKNVEMVEGNQGQMCINMEWGAFGDNGCLDDIRT
D 
FDKVVDEYSLNSGKQRFEKMISGMYLGEIVRNILIDFTKKGFLFRGQISEPLKTRGIFET 
KFLSQIESDRLALLQVRAILQQLGLNSTCDDSILVKTVCGVVSKRAAQLCGAGMAAVVEK 
IRENRGLDHLNVTVGVDGTLYKLHPHFSRIMHQTVKELSPKCTVSFLLSEDGSGKGAALI 
TAVGVRLRGDPTNA 
>M37020000003 HXK1_ARATH 
MGKVAVGATVVCTAAVCAVAVLVVRRRMQSSGKWGRVLAILKAFEEDCATPISKLRQVAD 
AMTVEMHAGLASDGGSKLKMLISYVDNLPSGDEKGLFYALDLGGTNFRVMRVLLGGKQER 
VVKQEFEEVSIPPHLMTGGSDELFNFIAEALAKFVATECEDFHLPEGRQRELGFTFSFPV 
KQTSLSSGSLIKWTKGFSIEEAVGQDVVGALNKALERVGLDMRIAALVNDTVGTLAGGRY 
YNPDVVAAVILGTGTNAAYVERATAIPKWHGLLPKSGEMVINMEWGNFRSSHLPLTEFDH 
TLDFESLNPGEQILEKIISGMYLGEILRRVLLKMAEDAAFFGDTVPSKLRIPFIIRTPHM 
SAMHNDTSPDLKIVGSKIKDILEVPTTSLKMRKVVISLCNIIATRGARLSAAGIYGILKK 
LGRDTTKDEEVQKSVIAMDGGLFEHYTQFSECMESSLKELLGDEASGSVEVTHSNDGSGI 
GAALLAASHSLYLEDS 
>M2627230000004 ENO_MYCS5 
MSAIKKIHAREVLDSRGNPTVQVEVYTELKGYGSAMVPSGASTGSREALELRDKGSKFES 
NWFGGKGVMQAVENVNKLIAPALIGFEVTDQRQVDLAMKALDGTKNKEKLGANAILGVSL 
AVARAAANELDLPLYKYLGGFNAHKLPLPMLNVINGGEHASNTLDFQEFMVMPVGAKSFR 
EALQMANFVFHNLAKLLKKHGHGVQVGDEGGFAPNFKSHEEALDFLVEAIKLSGYKPATS 
GEKAVAIAMDCASSELYKDGKYTFGKLKKAIEEKQPGFENLGKTKLVYTTDELIDYLDHL 
VSKYPIVSIEDGLAESDWAGFEKLTKRLGHKLQVVGDDLTVTNTELLAKAIERKAMNSIL 
IKVNQIGSLTETFEAIQMAQMANMTAVVSHRSGETEDTTIADVAVAMNTGQIKTGSMSRT 
DRIAKYNRLLAIEEELSKASTFPKDVFYNLKK 
>M96060000005 PFKAM_HUMAN 
MTHEEHHAAKTLGIGKAIAVLTSGGDAQGMNAAVRAVVRVGIFTGARVFFVHEGYQGLVD 
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GGDHIKEATWESVSMMLQLGGTVIGSARCKDFREREGRLRAAYNLVKRGITNLCVIGGDG 
SLTGADTFRSEWSDLLSDLQKAGKITDEEATKSSYLNIVGLVGSIDNDFCGTDMTIGTDS 
ALHRIMEIVDAITTTAQSHQRTFVLEVMGRHCGYLALVTSLSCGADWVFIPECPPDDDWE 
EHLCRRLSETRTRGSRLNIIIVAEGAIDKNGKPITSEDIKNLVVKRLGYDTRVTVLGHVQ 
RGGTPSAFDRILGSRMGVEAVMALLEGTPDTPACVVSLSGNQAVRLPLMECVQVTKDVTK 
AMDEKKFDEALKLRGRSFMNNWEVYKLLAHVRPPVSKSGSHTVAVMNVGAPAAGMNAAV
R 
STVRIGLIQGNRVLVVHDGFEGLAKGQIEEAGWSYVGGWTGQGGSKLGTKRTLPKKSFEQ 
ISANITKFNIQGLVIIGGFEAYTGGLELMEGRKQFDELCIPFVVIPATVSNNVPGSDFSV 
GADTALNTICTTCDRIKQSAAGTKRRVFIIETMGGYCGYLATMAGLAAGADAAYIFEEPF 
TIRDLQANVEHLVQKMKTTVKRGLVLRNEKCNENYTTDFIFNLYSEEGKGIFDSRKNVLG 
HMQQGGSPTPFDRNFATKMGAKAMNWMSGKIKESYRNGRIFANTPDSGCVLGMRKRALV
F 
QPVAELKDQTDFEHRIPKEQWWLKLRPILKILAKYEIDLDTSDHAHLEHITRKRSGEAAV 
>M96060000006 F16P1_HUMAN 
MADQAPFDTDVNTLTRFVMEEGRKARGTGELTQLLNSLCTAVKAISSAVRKAGIAHLYGI 
AGSTNVTGDQVKKLDVLSNDLVMNMLKSSFATCVLVSEEDKHAIIVEPEKRGKYVVCFDP 
LDGSSNIDCLVSVGTIFGIYRKKSTDEPSEKDALQPGRNLVAAGYALYGSATMLVLAMDC 
GVNCFMLDPAIGEFILVDKDVKIKKKGKIYSLNEGYARDFDPAVTEYIQRKKFPPDNSAP 
YGARYVGSMVADVHRTLVYGGIFLYPANKKSPNGKLRLLYECNPMAYVMEKAGGMATTGK 
EAVLDVIPTDIHQRAPVILGSPDDVLEFLKVYEKHSAQ 
>M96060000007 KPYM_HUMAN 
MSKPHSEAGTAFIQTQQLHAAMADTFLEHMCRLDIDSPPITARNTGIICTIGPASRSVET 
LKEMIKSGMNVARLNFSHGTHEYHAETIKNVRTATESFASDPILYRPVAVALDTKGPEIR 
TGLIKGSGTAEVELKKGATLKITLDNAYMEKCDENILWLDYKNICKVVEVGSKIYVDDGL 
ISLQVKQKGADFLVTEVENGGSLGSKKGVNLPGAAVDLPAVSEKDIQDLKFGVEQDVDMV 
FASFIRKASDVHEVRKVLGEKGKNIKIISKIENHEGVRRFDEILEASDGIMVARGDLGIE 
IPAEKVFLAQKMMIGRCNRAGKPVICATQMLESMIKKPRPTRAEGSDVANAVLDGADCIM 
LSGETAKGDYPLEAVRMQHLIAREAEAAIYHLQLFEELRRLAPITSDPTEATAVGAVEAS 
FKCCSGAIIVLTKSGRSAHQVARYRPRAPIIAVTRNPQTARQAHLYRGIFPVLCKDPVQE 
AWAEDVDLRVNFAMNVGKARGFFKKGDVVIVLTGWRPGSGFTNTMRVVPVP 
>M96060000008 ECHB_HUMAN 
MTILTYPFKNLPTASKWALRFSIRPLSCSSQLRAAPAVQTKTKKTLAKPNIRNVVVVDGV 
RTPFLLSGTSYKDLMPHDLARAALTGLLHRTSVPKEVVDYIIFGTVIQEVKTSNVAREAA 
LGAGFSDKTPAHTVTMACISANQAMTTGVGLIASGQCDVIVAGGVELMSDVPIRHSRKMR 
KLMLDLNKAKSMGQRLSLISKFRFNFLAPELPAVSEFSTSETMGHSADRLAAAFAVSRLE 
QDEYALRSHSLAKKAQDEGLLSDVVPFKVPGKDTVTKDNGIRPSSLEQMAKLKPAFIKPY 
GTVTAANSSFLTDGASAMLIMAEEKALAMGYKPKAYLRDFMYVSQDPKDQLLLGPTYATP 
KVLEKAGLTMNDIDAFEFHEAFSGQILANFKAMDSDWFAENYMGRKTKVGLPPLEKFNNW 
GGSLSLGHPFGATGCRLVMAAANRLRKEGGQYGLVAACAAGGQGHAMIVEAYPK 
>M99130000009 LDHA_BOVIN 
MATLKDQLIQNLLKEEHVPQNKITIVGVGAVGMACAISILMKDLADEVALVDVMEDKLKG 
EMMDLQHGSLFLRTPKIVSGKDYNVTANSRLVIITAGARQQEGESRLNLVQRNVNIFKFI 
IPNIVKYSPNCKLLVVSNPVDILTYVAWKISGFPKNRVIGSGCNLDSARFRYLMGERLGV 
HPLSCHGWILGEHGDSSVPVWSGVNVAGVSLKNLHPELGTDADKEQWKAVHKQVVDSAY
E 
VIKLKGYTSWAIGLSVADLAESIMKNLRRVHPISTMIKGLYGIKEDVFLSVPCILGQNGI 
SDVVKVTLTHEEEACLKKSADTLWGIQKELQF 
>M96060000010 MDHC_HUMAN 
MSEPIRVLVTGAAGQIAYSLLYSIGNGSVFGKDQPIILVLLDITPMMGVLDGVLMELQDC 
ALPLLKDVIATDKEDVAFKDLDVAILVGSMPRREGMERKDLLKANVKIFKSQGAALDKYA 
KKSVKVIVVGNPANTNCLTASKSAPSIPKENFSCLTRLDHNRAKAQIALKLGVTANDVKN 
VIIWGNHSSTQYPDVNHAKVKLQGKEVGVYEALKDDSWLKGEFVTTVQQRGAAVIKARKL 
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SSAMSAAKAICDHVRDIWFGTPEGEFVSMGVISDGNSYGVPDDLLYSFPVVIKNKTWKFV 
EGLPINDFSREKMDLTAKELTEEKESAFEFLSSA 
>M96060000011 AUHM_HUMAN 
MAAAVAAAPGALGSLHAGGARLVAACSAWLCPGLRLPGSLAGRRAGPAIWAQGWVPAAG
G 
PAPKRGYSSEMKTEDELRVRHLEEENRGIVVLGINRAYGKNSLSKNLIKMLSKAVDALKS 
DKKVRTIIIRSEVPGIFCAGADLKERAKMSSSEVGPFVSKIRAVINDIANLPVPTIAAID 
GLALGGGLELALACDIRVAASSAKMGLVETKLAIIPGGGGTQRLPRAIGMSLAKELIFSA 
RVLDGKEAKAVGLISHVLEQNQEGDAAYRKALDLAREFLPQGPVAMRVAKLAINQGMEVD 
LVTGLAIEEACYAQTIPTKDRLEGLLAFKEKRPPRYKGE 
>M72270000012 Q9VMB4_DROME 
MPEQDNYDDELVSSNPNQRNWRGILIALLVIIIVLALIVTSVVLLTPPDEGPRVKGQRIK 
LQDIVDGLFVPQHSNGSWIDGEEFLYQDHLGRICLLNAANRSERVLMSNVTFKTLSPFTF 
TISADKRYLLLAQNVVKLFRHSYLAQYTLYDIQTSESIKLRHSPHQDEWPYLHYARFTPA 
GNALVWVQSYDIYYREEVRSASVHRITHDAVPGVVYNGIPDWLYEEEILHANNAIWMSDN 
GQLMLYATFNDTHVQEQHFAWYGTTGPSAGGAAAAAAVGAGGAGTGSPGAGGSNPHAS
LY 
PEIRSLRYPKPGTQNPTVTLRVADLKDPLKVHITDLHPPQIIANEDHYFSSASWVSHSKI 
AVVWLNRPQNISVVSVCKAPLFQCIETHRVSGDGRGWVDTVAVPLFAANASIYVAISPLR 
DGLFGYFRHIVHVDIDKNRVLPLTHGPYEVNRLLHWDQLDNWIYFLGTPERLPSQQHLYR 
VSALPARQGQALRSPDCLTCPAVSQWSEGYDEGHTKSPPKLVTAWDDDWEDSEEAEAQP
P 
QPALPVEQQPPGRGQSAPLPPPPSDCLYHEAKFPISRQAKYVLIDCLGPVVPTSILYGLK 
SAAADSAKTKRHSTQQEEPPTEGGDEKPGEEPKSQFLELLVIVQNNTRLKEKMAKTAMPQ 
IKTFPVMISGGYHAQVRLYLPPVLREDEITRYPTILHVYSGPGSQLVTDHWHVDWNTYLS 
GSKDYIVVEIDGRGSAGQGYQLLHEVYKRLGSVEVSDQLEVSEYLRDNLHFIDSRRMGVW 
GWSYGGYTAALALAGQQSIFQCGISVSPVTNWKLYDSTYAERYLSFPNVTDNYKGYEESD 
LSKYVDNLRDRQFLLVHGTADDNVHVQQSMVLARSLTSKGVLYKQQIYPDEGHSLSGVKR 
HLYRSMTAFFEDCFKKLVPPESKAGLGNGGDMQQQ 
>M96060000013 EPS15_HUMAN 
MAAAAQLSLTQLSSGNPVYEKYYRQVDTGNTGRVLASDAAAFLKKSGLPDLILGKIWDLA 
DTDGKGILNKQEFFVALRLVACAQNGLEVSLSSLNLAVPPPRFHDTSSPLLISGTSAAEL 
PWAVKPEDKAKYDAIFDSLSPVNGFLSGDKVKPVLLNSKLPVDILGRVWELSDIDHDGML 
DRDEFAVAMFLVYCALEKEPVPMSLPPALVPPSKRKTWVVSPAEKAKYDEIFLKTDKDMD 
GFVSGLEVREIFLKTGLPSTLLAHIWSLCDTKDCGKLSKDQFALAFHLISQKLIKGIDPP 
HVLTPEMIPPSDRASLQKNIIGSSPVADFSAIKELDTLNNEIVDLQREKNNVEQDLKEKE 
DTIKQRTSEVQDLQDEVQRENTNLQKLQAQKQQVQELLDELDEQKAQLEEQLKEVRKKCA 
EEAQLISSLKAELTSQESQISTYEEELAKAREELSRLQQETAELEESVESGKAQLEPLQQ 
HLQDSQQEISSMQMKLMEMKDLENHNSQLNWCSSPHSILVNGATDYCSLSTSSSETANLN 
EHVEGQSNLESEPIHQESPARSSPELLPSGVTDENEVTTAVTEKVCSELDNNRHSKEEDP 
FNVDSSSLTGPVADTNLDFFQSDPFVGSDPFKDDPFGKIDPFGGDPFKGSDPFASDCFFR 
QSTDPFATSSTDPFSAANNSSITSVETLKHNDPFAPGGTVVAASDSATDPFASVFGNESF 
GGGFADFSTLSKVNNEDPFRSATSSSVSNVVITKNVFEETSVKSEDEPPALPPKIGTPTR 
PCPLPPGKRSINKLDSPDPFKLNDPFQPFPGNDSPKEKDPEIFCDPFTSATTTTNKEADP 
SNFANFSAYPSEEDMIEWAKRESEREEEQRLARLNQQEQEDLELAIALSKSEISEA 
>M96060000014 ARRB2_HUMAN 
MGEKPGTRVFKKSSPNCKLTVYLGKRDFVDHLDKVDPVDGVVLVDPDYLKDRKVFVTLTC 
AFRYGREDLDVLGLSFRKDLFIATYQAFPPVPNPPRPPTRLQDRLLRKLGQHAHPFFFTI 
PQNLPCSVTLQPGPEDTGKACGVDFEIRAFCAKSLEEKSHKRNSVRLVIRKVQFAPEKPG 
PQPSAETTRHFLMSDRSLHLEASLDKELYYHGEPLNVNVHVTNNSTKTVKKIKVSVRQYA 
DICLFSTAQYKCPVAQLEQDDQVSPSSTFCKVYTITPLLSDNREKRGLALDGKLKHEDTN 
LASSTIVKEGANKEVLGILVSYRVKVKLVVSRGGDVSVELPFVLMHPKPHDHIPLPRPQS 
AAPETDVPVDTNLIEFDTNYATDDDIVFEDFARLRLKGMKDDDYDDQLC 
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>M6560610000015 D5GCF2_TUBMM 
MSRPPLSLTAELEKLEQSITLTLQEIDHNFSKAHRIVTTSIIPIVERYAKESEAVWEGSK 
FWKQFFEASANVALSNYQEEEETYEETGVATNAETYITASSPGNYGEQSTRITQEDDPRH 
RETQWENIESPFDALRKDDDADMTFEPTLLPATPQTSRRTRPAKGSFETPKSSPFYPSAA 
GAIGKKTPGGANEDQLLHRVLDKNWRLQATPLGKPPPSRYRTIGAATATTPKAQILPPPG 
SESPMSSPPKPHFYSADIFSSPIPGFGGFDGGKKPKPSTTSNTTVLAGDPKTPISRRYGT 
AKVTTTHHHELSQQGDEGRFAYGYDDDDDSDDLDLPPGLSPPVTIQFSLPPSKLLATPAR 
EASRRIVHDILQTAGAADESGATGGSSPPVVRDVGPLDDTF 
>M99250000016 Q9MZB4_CAPHI 
RLLLEYTDSNYEEKKYTMGDAPDYDRSQWLNEKSKLGLDFPNLPYLIDGTHKLTQSNAIL 
RHIARKYNMCGETEEEKIRVDLLENQVMDVRLHMARICYSPDFEKLKPGYLKEIPGRMKL 
FSVFLGKRCWFAGNKLTYVDFLAYDILDLQRIFEPRCLDEFRNLKDFLTRFEGLKKISGY 
MKSSRFLP 
>M99250000017 GSTP1_CAPHI 
MASYTIVYFPVQGRCEAMRMLLADQDQSWKEEVVAMQSWLQGPLKASCLYGQLPKFQDG
D 
LTLYQSNAILRHLGRTLGLYGKDQREAALVDMVNDGVEDLRCKYVSLIYTNYQAGKEDYV 
KALPQHLKPFETLLSQNKGGQAFIVGDQISFADYNLLDLLRIHQVLAPSCLDSFPLLSAY 
VARLNSRPKLKAFLASPEHVNRPINGNGKQ 
>M2813090000018 Q6HEJ4_BACHK 
MAFEFKLPDIGEGIHEGEIVKWFIKPGDEVNEDDVLLEVQNDKAVVEIPSPVKGKVLEVL 
VEEGTVAVVGDTLIKFDAPGYENLKFKGDDHDEAPKAEEAKEEAPKAEATPAATAEVVNE 
RVIAMPSVRKYARENGVDIHKVAGSGKNGRIVKADIDAFANGGQAVAATEAPAAVEATPA 
AAKEEAPKAQPIPAGEYPETREKMSGIRKAIAKAMVNSKHTAPHVTLMDEVDVTELVAHR 
KKFKAVAADKGIKLTYLPYVVKALTSALREYPMLNTSLDDASQEVVHKHYFNIGIAADTD 
KGLLVPVVKDTDRKSIFTISNEINDLAGKAREGRLAPAEMKGASCTITNIGSAGGQWFTP 
VINHPEVAILGIGRIAEKPVVKNGEIVAAPVLALSLSFDHRLIDGATAQKALNQIKRLLN 
DPQLLVMEA 
>M56610000019 Q95VF2_LEIDO 
MGKDKVHMNLVVVGHVDAGKSTATGHLIYKCGGIDKRTIEKFEKEAAEIGKASFKYAWVL 
DKLKAERERGITIDIALWKFESPKSVFTIIDAPGHRDFIKNMITGTSQADAAILMIDSTH 
GGFEAGISKDGQTREHALLAFTLGVKQMVVCCNKMDDKTVTYAQSRYDEISKEVGAYLKR 
VGYNPEKVRFIPISGWQGDNMIERSDNMPWYKGPTLLDALDMLEPPVRPVDKPLRLPLQD 
VYKIGGIGTVPVGRVETGIMKPGDVVTFAPANVTTEVKSIEMHHEQLAEAQPGDNVGFNV 
KNVSVKDIRRGNVCGNSKNDPPKEAADFTAQVIVLNHPGQISNGYAPVLDCHTSHIACRF 
AEIESKIDRRSGKELEKNPKAIKSGDAAIVKMVPQKPMCVEVFNDYAPLGRFAVRDMRQT 
VAVGIIKGVNKKEGSGGKVTKAAAKAAKK 
>M9810870000020 E9BTJ1_LEIDB 
MSRVTIFQSQLPACNRLKTPYESELIATVKKLTTPGKGLLAADESIGSCTKRFEPIGLSN 
TEEHRRQYRALMLEAEGFEQYISGVILHEETVGQKASNGQTFPEYLTARGVVPGIKTDMG 
LCPLLEGAEGEQMTEGLDGYVKRASAYYKKGCRFCKWRNVYKIQNGTVSESAVRFNAETL 
ARYAILSQISGLVPIVEPEVMIDGKHDIDTCQRVSEHVWREVVAALQRHGVIWEGCLLKP 
NMVVPGAESGQTAAPAQVAHYTVMTLARTMPAMLPGVMFLSGGLSEVQASEYLNAINNSP 
LPRPYFLSFSYARALQSSALKAWGGKDSGVAAGRRAFLHRARMNSMAQLGKYKRADDDA
S 
SSSLYVKGNTY 
>M58330000021 ENO_PLAFA 
MAHVITRINAREILDSRGNPTVEVDLETNLGIFRAAVPSGASTGIYEALELRDNDKSRYL 
GKGVQKAIKNINEIIAPKLIGMNCTEQKKIDNLMVEELDGSKNEWGWSKSKLGANAILAI 
SMAVCRAGAAPNKVSLYKYLAQLAGKKSDQMVLPVPCLNVINGGSHAGNKLSFQEFMIVP 
VGAPSFKEALRYGAEVYHTLKSEIKKKYGIDATNVGDEGGFAPNILNANEALDLLVTAIK 
SAGYEGKVKIAMDVAASEFYNSENKTYDLDFKTPNNDKSLVKTGAQLVDLYIDLVKKYPI 
VSIEDPFDQDDWENYAKLTAAIGKDVQIVGDDLLVTNPTRITKALEKNACNALLLKVNQI 
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GSITEAIEACLLSQKNNWGVMVSHRSGETEDVFIADLVVALRTGQIKTGAPCRSERNAKY 
NQLLRIEESLGNNAVFAGEKFRLQLN 
>M96060000022 GPX4_HUMAN 
MSLGRLCRLLKPALLCGALAAPGLAGTMCASRDDWRCARSMHEFSAKDIDGHMVNLDKY
R 
GFVCIVTNVASQUGKTEVNYTQLVDLHARYAECGLRILAFPCNQFGKQEPGSNEEIKEFA 
AGYNVKFDMFSKICVNGDDAHPLWKWMKIQPKGKGILGNAIKWNFTKFLIDKNGCVVKRY 
GPMEEPLVIEKDLPHYF 
>M96060000023 TPIS_HUMAN 
MAEDGEEAEFHFAALYISGQWPRLRADTDLQRLGSSAMAPSRKFFVGGNWKMNGRKQSL
G 
ELIGTLNAAKVPADTEVVCAPPTAYIDFARQKLDPKIAVAAQNCYKVTNGAFTGEISPGM 
IKDCGATWVVLGHSERRHVFGESDELIGQKVAHALAEGLGVIACIGEKLDEREAGITEKV 
VFEQTKVIADNVKDWSKVVLAYEPVWAIGTGKTATPQQAQEVHEKLRGWLKSNVSDAVAQ 
STRIIYGGSVTGATCKELASQPDVDGFLVGGASLKPEFVDIINAKQ 
>M96060000024 VDAC2_HUMAN 
MATHGQTCARPMCIPPSYADLGKAARDIFNKGFGFGLVKLDVKTKSCSGVEFSTSGSSNT 
DTGKVTGTLETKYKWCEYGLTFTEKWNTDNTLGTEIAIEDQICQGLKLTFDTTFSPNTGK 
KSGKIKSSYKRECINLGCDVDFDFAGPAIHGSAVFGYEGWLAGYQMTFDSAKSKLTRNNF 
AVGYRTGDFQLHTNVNDGTEFGGSIYQKVCEDLDTSVNLAWTSGTNCTRFGIAAKYQLDP 
TASISAKVNNSSLIGVGYTQTLRPGVKLTLSALVDGKSINAGGHKVGLALELEA 
>M1711010000025 Q8DNW9_STRR6 
MTRYQDDFYDAINGEWQQTAEIPADKSQTGGFVDLDQEIEDLMLATTDKWLAGEEVPEDA 
ILENFVKYHRLVRDFDKREADGITPVLPLLKEFQELETFADFTAKLAEFELAGKPNFLPF 
GVSPDFMDARINVLWASAPSTILPDTTYYAEEHPQREELLTLWKESSANLLKAYDFSDEE 
IEDLLEKRLELDRRVAAVVLSNEESSEYAKLYHPYSYEDFKKFAPALPLDDFFKAVIGQL 
PDKVIVDEERFWQAAEQFYSEESWSLLKATLILSVVNLSTSYLTEDIRVLSGAYSRALSG 
VPEAKDKVKAAYHLAQEPFKQALGLWYAREKFSPEAKADVEKKVATMIDVYKERLLKNDW 
LTPETCKQAIVKLNVIKPYIGYPEELPARYKDKVVNETASLFENALAFARVEIKHSWSKW 
NQPVDYKEWGMPAHMVNAYYNPQKNLIVFPAAILQAPFYDLHQSSSANYGGIGAVIAHEI 
SHAFDTNGASFDENGSLKDWWTESDYAAFKEKTQKVIDQFDGQDSYGATINGKLTVSENV 
ADLGGIAAALEAAKREADFSAEEFFYNFGRIWRMKGRPEFMKLLASVDVHAPAKLRVNVQ 
VPNFDDFFTTYDVKEGDGMWRSPEERVIIW 
>M8887450000026 E7S2A7_STRA8 
MSLVGKEIIEFSAQAYHDGKFITVTNEDVKGKWAVFCFYPADFSFVCPTELGDLQEQYET 
LKSLDVEVYSVSTDTHFVHKAWHDDSDVVGTITYPMIGDPSHLISQGFDVLGQDGLAQRG 
TFIIDPDGVIQMMEINADGIGRDASTLIDKVRAAQYIRQHPGEVCPAKWKEGAETLTPSL 
DLVGKI 
>M1711010000027 ALF_STRR6 
MAIVSAEKFVQAARDNGYAVGGFNTNNLEWTQAILRAAEAKKAPVLIQTSMGAAKYMGGY 
KVARNLIANLVESMGITVPVAIHLDHGHYEDALECIEVGYTSIMFDGSHLPVEENLKLAK 
EVVEKAHAKGISVEAEVGTIGGEEDGIIGKGELAPIEDAKAMVETGIDFLAAGIGNIHGP 
YPVNWEGLDLDHLQKLTEALPGFPIVLHGGSGIPDEQIQAAIKLGVAKVNVNTECQIAFA 
NATRKFARDYEANEAEYDKKKLFDPRKFLADGVKAIQASVEERIDVFGSEGKA 
>M1711010000028 ALF_STRR6 
MAIVSAEKFVQAARDNGYAVGGFNTNNLEWTQAILRAAEAKKAPVLIQTSMGAAKYMGGY 
KVARNLIANLVESMGITVPVAIHLDHGHYEDALECIEVGYTSIMFDGSHLPVEENLKLAK 
EVVEKAHAKGISVEAEVGTIGGEEDGIIGKGELAPIEDAKAMVETGIDFLAAGIGNIHGP 
YPVNWEGLDLDHLQKLTEALPGFPIVLHGGSGIPDEQIQAAIKLGVAKVNVNTECQIAFA 
NATRKFARDYEANEAEYDKKKLFDPRKFLADGVKAIQASVEERIDVFGSEGKA 
>M72270000029 CH60_DROME 
MFRLPVSLARSSISRQLAMRGYAKDVRFGPEVRAMMLQGVDVLADAVAVTMGPKGRNVII 
EQSWGSPKITKDGVTVAKSIELKDKFQNIGAKLVQDVANNTNEEAGDGTTTATVLARAIA 
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KEGFEKISKGANPVEIRRGVMLAVETVKDNLKTMSRPVSTPEEIAQVATISANGDQAIGN 
LISEAMKKVGRDGVITVKDGKTLTDELEVIEGMKFDRGYISPYFINSSKGAKVEFQDALL 
LLSEKKISSVQSIIPALELANAQRKPLVIIAEDIDGEALSTLVVNRLKIGLQVAAVKAPG 
FGDNRKSTLTDMAIASGGIVFGDDADLVKLEDVKVSDLGQVGEVVITKDDTLLLKGKGKK 
DDVLRRANQIKDQIEDTTSEYEKEKLQERLARLASGVALLRVGGSSEVEVNEKKDRVHDA 
LNATRAAVEEGIVPGGGTALLRCIEKLEGVETTNEDQKLGVEIVRRALRMPCMTIAKNAG 
VDGAMVVAKVENQAGDYGYDALKGEYGNLIEKGIIDPTKVVRTAITDASGVASLLTTAEA 
VVTEIPKEDGAPAMPGMGGMGGMGGMGGMGGMM 
>M72270000030 CSN7_DROME 
MTQDMLLGNEEPSKSKETFLEKFCVLAKSSTGAALLDVIRQALEAPNVFVFGELLAEPSV 
LQLKDGPDSKHFETLNLFAYGTYKEYRAQPEKFIELTPAMQKKLQHLTIVSLAIKAKSIP 
YALLLSELEIDNVRHLEDIIIEAIYADIIHGKLFQNTRILEVDYAQGRDIPPGYTGQIVE 
TLQAWVNSCDSVSNCIEMQIKYANAEKSKRLINKERVEQDLINLKKVLKSQTSDSDESMQ 
IDTHGPGTSGGLGQSELRKKPSKLRNPRSAAVGLKFSK 
>M99860000031 ALDOA_RABIT 
MPHSHPALTPEQKKELSDIAHRIVAPGKGILAADESTGSIAKRLQSIGTENTEENRRFYR 
QLLLTADDRVNPCIGGVILFHETLYQKADDGRPFPQVIKSKGGVVGIKVDKGVVPLAGTN 
GETTTQGLDGLSERCAQYKKDGADFAKWRCVLKIGEHTPSALAIMENANVLARYASICQQ 
NGIVPIVEPEILPDGDHDLKRCQYVTEKVLAAVYKALSDHHIYLEGTLLKPNMVTPGHAC 
TQKYSHEEIAMATVTALRRTVPPAVTGVTFLSGGQSEEEASINLNAINKCPLLKPWALTF 
SYGRALQASALKAWGGKKENLKAAQEEYVKRALANSLACQGKYTPSGQAGAAASESLFIS 
NHAY 
>M30550000032 A8J7F6_CHLRE 
MQATTRVPAKSGVSSSAKRVAASGRRVLVVPNAVKDVFMPALSSTMTEGKIVSWLKNVGD 
KVKKGEALVVVESDKADMDVESFADGILGAIVVQEGERAVVGAPIAFVAENANEAPAAAP 
APAPAPVAAPAPPAPTPVPAAPVGRADGRIVATPYAKQLAKDLKVDLATVAGTGPNGRIT 
AADATTVSELRGTTKPFSTLQAAVARNMNESLKVPEFRVSYAITTDKLDALYQQLKPKGV 
TMTALLAKACGVALAKHPLLYAACTPDGNGITYSSQINVALAVAMPDGGLITPVLKNADS 
TDLYQMSRNWADLVKRARSKQLQPDEYNSGNFTISNLGMYGVETFDAILPPGTAAIMAVG 
GSKPTVVASPDGMIGVKKVMNVNLTADHRIVYGADAAEFLQTLKAVIENPDQLLF 
>M56710000033 Q95U89_LEIIN 
MLRRLPTSCFLKRSQFRGFAATSPLLNLDYQMYRTATVREAAPQFSGQAVVNGAIKDINM 
NDYKGKYIVLFFYPMDFTFVCPTEIIAFSDRHADFEKLNTQVVAVSCDSVYSHLAWVNTP 
RKKGGLGEMHIPVLADKSMEIARDYGVLIEESGIALRGLFIIDKKGILRHSTINDLPVGR 
NVDEALRVLEAFQYADENGDAIPCGWKPGQPTLDTTKAGEFFEKNM 
>M21330000034 PGK_SPICI 
MTNKKELKDVQVKGKKVLVRVDFNVPMKDGQVTDDNRIIAALPTIKYLIAQEAKVILFSH 
LGKVKTADDLEKRDMAPVAKVLEQKLGQPVKFINAFEGKQLEEAINEMHNKEVILFQNTR 
FADIINSNGQISVDSEGKAAAKRESKNDSALGKYWASLGDVFVNDAFGTAHRAHASNVGI 
AENITESCLGFLVEKEVKMLSQCVDNPVKPFVAIIGGAKVSDKIGVIEHLLTKADKILIG 
GGMAYTFFAAQGHKIGNSLLEVDKVEIAKTFLAKGQGKIILPIDALEAPEFADVPAKVTT 
GFDIDDGYMGLDIGPKTIELFKKELADAKTVTWNGPMGVFEFKNYSIGTKAVCEAIAELK 
GAFTLIGGGDSAAAAIQLGYKDKFTHISTGGGASLEYMEGKPLPGIEAVQSK 
>M1854310000035 Q383B2_TRYB2 
MLRRLATHGLQATCLTSEKLAYRYCLSICVPTIAESISSGKVVGWTKKVGDAVAEDEIIC 
QIESDKLNVDVRAPAAGVITKINFEEGTVVDVGAELSTMKEGEAPAAKAETADKPKQNAP 
AAAAPPKASPTEAAPKPAPAAAPVTSRGADPRVRSVRISSMRQRIADRLKASQNTCAMLT 
TFNEIDMTPLIELRNRYKDDFFKKNGVKLGFMSPFVKACAIALQDVPIVNASFGTDCIEY 
HDYVDISVAVSTPKGLVVPVLRDVQNSNFAQIEKQIADFGERARSNKLTMAEMTGGTFTI 
SNGGVFGSWMGTPIVNPPQSAILGMHATKKKPWVVGNSVVPRDIMAVALTYDHRLIDGSD 
AVTFLVKVKNLIEDPARIVLDLA 
>M54760000036 HGT1_CANAX 
MSSKIERIFSGPALKINTYLDKLPKIYNVFFIASISTIAGMMFGFDISSMSAFIGAEHYM 
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RYFNSPGSDIQGFITSSMALGSFFGSIASSFVSEPFGRRLSLLTCAFFWMVGAAIQSSVQ 
NRAQLIIGRIISGIGVGFGSAVAPVYGAELAPRKIRGLIGGMFQFFVTLGIMIMFYLSFG 
LGHINGVASFRIAWGLQIVPGLCLFLGCFFIPESPRWLAKQGQWEAAEEIVAKIQAHGDR 
ENPDVLIEISEIKDQLLLEESSKQIGYATLFTKKYIQRTFTAIFAQIWQQLTGMNVMMYY 
IVYIFQMAGYSGNSNLVASSIQYVINTCVTVPALYFIDKVGRRPLLIGGATMMMAFQFGL 
AGILGQYSIPWPDSGNDSVNIRIPEDNKSASKGAIACCYLFVASFAFTWGVGIWVYCAEI 
WGDNRVAQRGNAISTSANWILNFAIAMYTPTGFKNISWKTYIIYGVFCFAMATHVYFGFP 
ETKGKRLEEIGQMWEERVPAWRSRSWQPTVPIASDAELARKMEVEHEEDKLMNEDSNSE
S 
RENQA 
>M5592920000037 GPD2_YEAST 
MLAVRRLTRYTFLKRTHPVLYTRRAYKILPSRSTFLRRSLLQTQLHSKMTAHTNIKQHKH 
CHEDHPIRRSDSAVSIVHLKRAPFKVTVIGSGNWGTTIAKVIAENTELHSHIFEPEVRMW 
VFDEKIGDENLTDIINTRHQNVKYLPNIDLPHNLVADPDLLHSIKGADILVFNIPHQFLP 
NIVKQLQGHVAPHVRAISCLKGFELGSKGVQLLSSYVTDELGIQCGALSGANLAPEVAKE 
HWSETTVAYQLPKDYQGDGKDVDHKILKLLFHRPYFHVNVIDDVAGISIAGALKNVVALA 
CGFVEGMGWGNNASAAIQRLGLGEIIKFGRMFFPESKVETYYQESAGVADLITTCSGGRN 
VKVATYMAKTGKSALEAEKELLNGQSAQGIITCREVHEWLQTCELTQEFPLFEAVYQIVY 
NNVRMEDLPEMIEELDIDDE 
>M5592920000038 SODC_YEAST 
MVQAVAVLKGDAGVSGVVKFEQASESEPTTVSYEIAGNSPNAERGFHIHEFGDATNGCVS 
AGPHFNPFKKTHGAPTDEVRHVGDMGNVKTDENGVAKGSFKDSLIKLIGPTSVVGRSVVI 
HAGQDDLGKGDTEESLKTGNAGPRPACGVIGLTN 
>M833330000039 ADHE_ECOLI 
MAVTNVAELNALVERVKKAQREYASFTQEQVDKIFRAAALAAADARIPLAKMAVAESGMG 
IVEDKVIKNHFASEYIYNAYKDEKTCGVLSEDDTFGTITIAEPIGIICGIVPTTNPTSTA 
IFKSLISLKTRNAIIFSPHPRAKDATNKAADIVLQAAIAAGAPKDLIGWIDQPSVELSNA 
LMHHPDINLILATGGPGMVKAAYSSGKPAIGVGAGNTPVVIDETADIKRAVASVLMSKTF 
DNGVICASEQSVVVVDSVYDAVRERFATHGGYLLQGKELKAVQDVILKNGALNAAIVGQP 
AYKIAELAGFSVPENTKILIGEVTVVDESEPFAHEKLSPTLAMYRAKDFEDAVEKAEKLV 
AMGGIGHTSCLYTDQDNQPARVSYFGQKMKTARILINTPASQGGIGDLYNFKLAPSLTLG 
CGSWGGNSISENVGPKHLINKKTVAKRAENMLWHKLPKSIYFRRGSLPIALDEVITDGHK 
RALIVTDRFLFNNGYADQITSVLKAAGVETEVFFEVEADPTLSIVRKGAELANSFKPDVI 
IALGGGSPMDAAKIMWVMYEHPETHFEELALRFMDIRKRIYKFPKMGVKAKMIAVTTTSG 
TGSEVTPFAVVTDDATGQKYPLADYALTPDMAIVDANLVMDMPKSLCAFGGLDAVTHAME 
AYVSVLASEFSDGQALQALKLLKEYLPASYHEGSKNPVARERVHSAATIAGIAFANAFLG 
VCHSMAHKLGSQFHIPHGLANALLICNVIRYNANDNPTKQTAFSQYDRPQARRRYAEIAD 
HLGLSAPGDRTAAKIEKLLAWLETLKAELGIPKSIREAGVQEADFLANVDKLSEDAFDDQ 
CTGANPRYPLISELKQILLDTYYGRDYVEGETAAKKEAAPAKAEKKAKKSA 
>M96060000040 PGK1_HUMAN 
MSLSNKLTLDKLDVKGKRVVMRVDFNVPMKNNQITNNQRIKAAVPSIKFCLDNGAKSVVL 
MSHLGRPDGVPMPDKYSLEPVAVELKSLLGKDVLFLKDCVGPEVEKACANPAAGSVILLE 
NLRFHVEEEGKGKDASGNKVKAEPAKIEAFRASLSKLGDVYVNDAFGTAHRAHSSMVGVN 
LPQKAGGFLMKKELNYFAKALESPERPFLAILGGAKVADKIQLINNMLDKVNEMIIGGGM 
AFTFLKVLNNMEIGTSLFDEEGAKIVKDLMSKAEKNGVKITLPVDFVTADKFDENAKTGQ 
ATVASGIPAGWMGLDCGPESSKKYAEAVTRAKQIVWNGPVGVFEWEAFARGTKALMDEV
V 
 
KATSRGCITIIGGGDTATCCAKWNTEDKVSHVSTGGGASLELLEGKVLPGVDALSNI 
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As previously mentioned Chapter 4, the results for combined, FunFOLDQ and HHblits were variable and two examples were given; one of 

which was a good prediction example (ACE_RAT) and one poor prediction (ACH1_CANAL). This Appendix has further examples five of which 

have predicted at least one correct GO term and five of which have predicted no correct predictions. As the combined method was examined in 

CAFA3, further results for this method are given below in the Tables S.22-S.31. Tables S.22-S.26 are considered good predictions due to 

having correct predictions, whereas Tables S.27-S.31 are considered poor predictions due to no correct predictions.   

 
 
Table S.22. GO terms predicted by combined method for 1433E_MOUSE  

Predicted terms with their associated GO terms are given below. Correct matches are given in black and bold and ancestor terms are given in 
bold and green  

GO domain Predicted GO term Comparison to CAFA3 annotation 
Biological Process GO:0000086 - 
Biological Process GO:0000278 - 
Biological Process GO:0001764 Exact match in CAFA3 
Molecular Function GO:0005515 Ancestor of GO:0019904 
Cellular Component  GO:0005737 Ancestor of GO:0005739 and GO:0005829 
Cellular Component  GO:0005739 Exact match in CAFA3 
Cellular Component  GO:0005829 Exact match in CAFA3 
Cellular Component  GO:0005871 - 
Biological Process GO:0006605 Exact match in CAFA3 
Molecular Function GO:0019904 Exact match in CAFA3 
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Table S.23. GO terms predicted by combined method for ACEA_HYMPE 

Predicted terms with their associated GO terms are given below. Correct matches are given in black and bold and ancestor terms are given in 
bold and green  

GO domain Predicted GO term Comparison to CAFA3 annotation 
Biological Process GO:0001101 Exact match in CAFA3 
Molecular Function GO:0003824 Ancestor of GO:0004451 
Molecular Function GO:0004451 Exact match in CAFA3 
Cellular Component  GO:0005737 Ancestor of GO:0005829 
Cellular Component GO:0005829 - 
Cellular Component GO:0005886 - 
Biological Process GO:0006097 Exact match in CAFA3 
Biological Process GO:0006099 Exact match in CAFA3 
Biological Process GO:0006102 - 
Biological Process GO:0008152 Ancestor of GO:0006102 

 
Table S.24. GO terms predicted by combined method for 1433Z_MOUSE  

Predicted terms with their associated GO terms are given below. Correct matches are given in black and bold and ancestor terms are given in 
bold and green  

GO domain Predicted GO term Comparison to CAFA3 annotation 
Biological Process GO:0000086 - 
Biological Process GO:0000278 - 
Biological Process GO:0001764 - 
Molecular Function GO:0005515 Ancestor of GO:0019904 
Cellular Component GO:0005737 Ancestor of GO:0005739 
Cellular Component GO:0005739 Exact match in CAFA3 
Cellular Component GO:0005829 Exact match in CAFA3 
Cellular Component GO:0005871 - 
Biological Process GO:0006605 Exact match in CAFA3 
Molecular Function GO:0019904 Exact match in CAFA3 
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Table S.25. GO terms predicted by combined method for 6P21_YEAST 

Predicted terms with their associated GO terms are given below. Correct matches are given in black and bold, ancestor terms are given in bold 
and green and UniProtKB matches are in blue and bold 

GO domain Predicted GO term Comparison to CAFA3 annotation 
Molecular Function GO:0000166 - 
Molecular Function GO:0003824 Ancestor of GO:0003873 
Molecular Function GO:0003873 Exact match in CAFA3 
Molecular Function GO:0004331 - 
Molecular Function GO:0005524 Match on UniProtKB 
Biological Process GO:0006000 Match on UniProtKB 
Biological Process GO:0006003 Exact match in CAFA3 
Biological Process GO:0008152 Ancestor of GO:0006003 
Molecular Function GO:0016301 - 
Biological Process GO:0016310 - 

 
 
Table S.26. GO terms predicted by combined method for ACE_MOUSE 

Predicted terms with their associated GO terms are given below. Correct matches are given in black and bold and ancestor terms are given in 
bold and green  

GO domain Predicted GO term Comparison to CAFA3 annotation 
Biological Process GO:0006508 - 
Molecular Function  GO:0008237 Exact match in CAFA3 
Molecular Function GO:0008241 Exact match in CAFA3 
Cellular Component  GO:0016020 - 
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Table S.27. GO terms predicted by combined method for 2AAA_DROME  

Predicted terms with their associated GO terms are given below. Correct matches are given in black and bold and ancestor terms are given in 
bold and green  

GO domain Predicted GO term Relevant info 
No entry GO:0005087 - 
Molecular Function  GO:0005515 - 
Cellular Component GO:0005634 Ancestor of UniProtKB related term 

GO:0005654 
Cellular Component GO:0005635 - 
Cellular Component  GO:0005643 - 
Cellular Component GO:0005737 Ancestor of UniProtKB related term 

GO:0005829 
Biological Process  GO:0006606 - 
Biological Process  GO:0006612 - 
Biological Process GO:0006656 - 
Biological Process GO:0006810 - 

 
 
Table S.28. GO terms predicted by combined method for 6PGD_SHEEP 

Predicted terms with their associated GO terms are given below. Correct matches are given in black and bold and ancestor terms are given in 
bold and green  

GO domain Predicted GO term Relevant info 
Molecular Function  GO:0000166 Ancestor of UniProtKB related term 

GO:0050661 
Molecular Function  GO:0003979 - 
Molecular Function  GO:0004735 - 
Biological Process GO:0006561 - 
Molecular Function  GO:0016491 Ancestor of UniProtKB related term 

GO:0004616 
Molecular Function GO:0016616 Ancestor of UniProtKB related term 

GO:0004616 
Biological Process GO:0042121 - 
Molecular Function GO:0047919 - 
Biological Process  GO:0051287 - 
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Biological Process GO:0055114 Obsolete entry 
 
 
Table S.29. GO terms predicted by combined method for 3HAO_HUMAN  

Predicted terms with their associated GO terms are given below. Correct matches are given in black and bold and ancestor terms are given in 
bold and green  

GO domain Predicted GO term Relevant info 
Cellular Component GO:0005737 - 
Molecular Function GO:0008127 - 
Molecular Function GO:0016491 - 
Molecular Function GO:0016702 - 
Molecular Function GO:0016829 - 
Molecular Function GO:0016831 - 
Biological Process GO:0017000 - 
Molecular Function GO:0045735 - 
Molecular Function GO:0046872 Ancestor of UniProtKB related term 

GO:0008198 
Molecular Function  GO:0055114 Obsolete entry  
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Table S.30. GO terms predicted by combined method for ACL6A_HUMAN 

Predicted terms with their associated GO terms are given below. Correct matches are given in black and bold, ancestor terms are given in bold 
and green and UniProtKB matches are in blue and bold 

GO domain Predicted GO term Relevant info 
Molecular Function GO:0000166 - 
No entry GO:0001725 - 
Molecular Function GO:0004844 - 
Molecular Function GO:0005524 - 
Cellular Component GO:0005694 - 
Cellular Component GO:0005737 - 
Cellular Component  GO:0005856 - 
Cellular Component GO:0005865 - 
Cellular Component  GO:0005884 Actin filament (GO term) and protein is an 

actin-protein 6A 
Biological Process  GO:0006281 Match on UniprotKB 
Biological Process GO:0006284 Base-exicision repair (GO term) is a DNA 

repair so is related to GO:0006281  
Cellular Component  GO:0015629 Actin cytoskeleton  
Molecular Function GO:0016799 - 
Cellular Component GO:0030017 - 
Biological Process GO:0030240 - 
Biological Process GO:0048741 - 
Biological Process  GO:0051276 - 
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Table S.31. GO terms predicted by combined method for ACL7B_MOUSE  

Predicted terms with their associated GO terms are given below. Correct matches are given in black and bold and ancestor terms are given in 
bold and green  

GO domain Predicted GO term Relevant info 
Molecular Function GO:0000166 - 
Biological Process GO:0000902 - 
Molecular Function GO:0003674 - 
Molecular Function GO:0005524 - 
Biological process  GO:0007049 - 
Cellular Component  GO:0016020 - 
No entry GO:0043241 - 
Molecular Function  GO:0051082 - 
Biological Process GO:0051085 - 
Biological Process  GO:0051301 - 
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The chart below explains the difference between the colours on hierarchical mapping of GO 
ontology categories and denote the organism in which the activity was identified in 

 
Figure S.75. GO slim colours  
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Appendix 4 

 
Source code to run the different grid box calculations for AutoDock Vina  
 
#!/usr/bin/env python3 
 
# Program: Centre_v2.py 
# Function: Calculate the "bounding box" for the ligand. 
# Determine the "centre of geometry" of the ligand (atoms are equal mass) to get the centre 
of the cube and then the maximum  
# distance between ligand atoms will be the size of the cube needed to contain the ligand. 
 
 
# Call functions and create empty lists/dicts to store Residue and Ligand Atom co-ordinates. 
import math 
import numpy 
import pandas as pd 
from scipy.spatial import distance 
Lig_coords = [] 
Lig_x = {} 
Lig_y = {} 
Lig_z = {} 
Rg_x = {} 
Rg_y = {} 
Rg_z = {} 
dist_x = {} 
dist_y = {} 
dist_z = {} 
New_list=[] 
 
# Main routine to calculate the centre and maximum distances 
with open('T0849.txt',"r") as pdb2, open('CentreV2_out.txt', "w") as Lig: 
    # Read each line of the pdb file 
    for line in pdb2: 
        # Slice the lines and Limit the lines to chosen Ligand atoms 
        if line[0:6]=='HETATM' and line[17:20]=='GSH': 
            # Assign the split line parts to varibles to use below 
            sp0=line[0:6] 
            sp1=line[7:11] 
            sp2=line[13:16] 
            sp3=line[17:20] 
            sp4=line[22:26] 
            sp5=line[31:38] 
            sp6=line[39:46] 
            sp7=line[47:54] 
            # Append selected parts of the lines to the Lig_coords list and create x, y and z 
dictionaries 
            Lig_coords.append([sp1,sp2,sp3,sp4,float(sp5),float(sp6),float(sp7)]) 
            Lig_x[sp1] = float(sp5) 
            Lig_y[sp1] = float(sp6) 
            Lig_z[sp1] = float(sp7) 
# Calculation of distances from centre to furthest atom in x,y,z planes - REMOVED in place 
of Rg calculation 
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#            # Compare the coordinates to find the maximum distance between any two atoms 
#            # List through the Lig_coords list once 
#            for i in range(len(Lig_coords)): 
#                s=Lig_coords[i] 
#                # Create a nested for loop to list through the Lig_coords list again 
#                for j in range(len(Lig_coords)): 
#                    p=Lig_coords[j] 
#                # Calculate the distance between x coordinates, y coordinates and z coordinates, 
use square to get positive values 
#                dist_x[i,j] = float(round(math.sqrt((p[4]-s[4])**2),4)) 
#                dist_y[i,j] = float(round(math.sqrt((p[5]-s[5])**2),4)) 
#                dist_z[i,j] = float(round(math.sqrt((p[6]-s[6])**2),4))                 
    # Format the Lig_coords list into a dataframe table for output to check that it looks 
sensible 
    pd.set_option('display.max_rows', len(Lig_coords)) 
    df = pd.DataFrame(Lig_coords) 
    new_header = df.iloc[0] #grab the first row for the header 
    df = df[1:] #take the data less the header row 
    df.columns = new_header #set the first row as the header 
    Lig.write(str(df)) 
    Lig.write('\n') 
    pd.reset_option('display.max_rows') 
# Calculation of distances from centre to furthest atom in x,y,z planes - REMOVED in place 
of Rg calculation 
## Calculate the maximum distance between any two atoms (including VdW radii) in the x, y 
and z planes 
#Mltpr = raw_input('Please choose a % to add to your maximum ligand distance: ') 
#Pct = 1 + (float(Mltpr)/100) 
#Maxx_dist = round(max(dist_x.values()) + (1.6 * 2),1) 
#Maxy_dist = round(max(dist_y.values()) + (1.6 * 2),1) 
#Maxz_dist = round(max(dist_z.values()) + (1.6 * 2),1) 
# Calculate the xyz centroids from xyz dictionaries and assign the values to variables 
Centroid_x = round(sum(Lig_x.values())/len(Lig_x),2) 
Centroid_y = round(sum(Lig_y.values())/len(Lig_y),2) 
Centroid_z = round(sum(Lig_z.values())/len(Lig_z),2) 
# Calulate the radius of gyration (Rg) of the ligand 
# In the x plane 
for x in range(len(Lig_coords)): 
    s=Lig_coords[x] 
    R = (s[4]-Centroid_x)**2 
    Rg_x[x] = round(float(R),4) 
Rgx = round(math.sqrt(sum(Rg_x.values())),2) 
# In the y plane 
for y in range(len(Lig_coords)): 
    s=Lig_coords[y] 
    R = (s[5]-Centroid_y)**2 
    Rg_y[y] = round(float(R),4) 
Rgy = round(math.sqrt(sum(Rg_y.values())),2) 
# In the z plane 
for z in range(len(Lig_coords)): 
    s=Lig_coords[z] 
    R = (s[6]-Centroid_z)**2 
    Rg_z[z] = round(float(R),4) 
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Rgz = round(math.sqrt(sum(Rg_z.values())),2) 
#Add in the 2.9 times Rg multiplier to get the box size 
Multp = 2.9 
# Print out the centroid coordinates and the distances 
print ('Radius of gyration in the x plane is ' + str(Rgx)) 
print ('Radius of gyration in the y plane is ' + str(Rgy)) 
print ('Radius of gyration in the z plane is ' + str(Rgz)) 
print ('Box size is now calculated by Rg x 2.9 in each plane:') 
print ('Centroid x ' + str(Centroid_x) + ' box size in x plane = ' + str(round((Rgx * Multp),1))) 
print ('Centroid y ' + str(Centroid_y) + ' box size in y plane = ' + str(round((Rgy * Multp),1))) 
print ('Centroid z ' + str(Centroid_z) + ' box size in z plane = ' + str(round((Rgz * Multp),1))) 
Lig.close() 
# End 
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The remaining targets following docking with AutoDock Vina is shown below 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S.76. Comparison of FunFOLD3 and FunFOLD3-D ligand-binding site predictions for T0798 (PDB ID 4ojk) 
(A) Predicted ligand-binding site residues shown as sticks with incorrect predictions shown in red, the GDP ligand is shown as 
sphere and coloured yellow (B) The observed ligand binding site residues for T0798 (PDB ID 4ojk) shown as sticks and 
coloured blue, the GDP ligand is shown as sphere and coloured yellow (C) Predicted ligand-binding site residues following 
docking with AutoDock Vina and using 22.5Å. Correct predictions are shown as sticks and coloured blue and incorrect 
predictions are shown as sticks and coloured red (D) Predicted ligand-binding site residues following docking with AutoDock 
Vina and using 10% grid box calculation. Incorrect predictions are shown as sticks and coloured red (E) Predicted ligand-
binding site residues following docking with AutoDock Vina and using 20% grid box calculation. Incorrect predictions are shown 
as sticks and coloured red (F) Predicted ligand-binding site residues following docking with AutoDock Vina and using 50% grid 
box calculation. Incorrect predictions are shown as sticks and coloured red (G) Comparison of the ligand binding site for 
predictions made by FunFOLD3 with the protein coloured green and the observed structure coloured cyan (H) Comparison of 
the ligand binding site for predictions made by FunFOLD3-D for the best model from a 10% box calculation with the protein 
coloured green and the observed structure coloured cyan. BDT and MCC score of 0.65 and 0.74, respectively 
 
 

A B 

C D 

E F 

G H 
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Table S.32. Predicted ligand-binding site residues and MCC and BDT scores with box calculation 22.5 Å for T0798 
(PDB ID 4ojk) 
Models are listed in numerical order following docking with change in MCC and BDT given as a percentage increase or 
decrease. The model with the best MCC and BDT is in bold. The box calculation is 22.5Å 

 
Table S.33. Predicted ligand-binding site residues and MCC and BDT scores with 10% box calculation for T0798 (PDB 
ID 4ojk) 
Models are listed in numerical order following docking with change in MCC and BDT given as a percentage increase or 
decrease. The model with the best MCC and BDT is in bold. The grid box calculation was based 10% of the ligand-binding site   

 
Table S.34. Predicted ligand-binding site residues and MCC and BDT scores with 20% box calculaton for T0798 (PDB ID 
4ojk) 
Models are listed in numerical order following docking with change in MCC and BDT given as a percentage increase or 
decrease. The model with the best MCC and BDT is in bold. The grid box calculation was based 20% of the ligand-binding site  

 
Table S.35. Predicted ligand-binding site residues and MCC and BDT scores with 50% box calculation for T0798 (PDB 
ID 4ojk) 
Models are listed in numerical order following docking with change in MCC and BDT given as a percentage increase or 
decrease. The model with the best MCC and BDT is in bold. The grid box calculation was based 50% of the ligand-binding site  

 

Model 
number 

Predicted ligand-binding site 
residues  

MCC Score 
change 

BDT Score 
change 

1 14,16,19,29,31,33,35,118,121 0.51 -0.24 0.41 -0.387 
2 35,36,38,39,61,63,66,67,69,73 -0.075 -0.83 0.066 -0.731 
3 38,39,58,60,61,63,67,69,70,72,73 -0.079 -0.83 0.048 -0.749 
4 14,16,19,29,31,33,35,118,120,149 0.55 -0.20 0.46 -0.337 
5 14,16,19,29,31,33,35,118,121,149 0.55 -0.20 0.46 -0.337 
6 14,18,29,33,34,35,36,118,121,149 0.47 -0.28 0.42 -0.377 
7 35,36,37,38,39,61,63,67,68,69 -0.075 -0.83 0.070 -0.727 
8 35,38,60,61,63,67,69 -0.062 -0.82 0.053 -0.744 
9 38,39,60,61,63,66,67,69 -0.067 -0.82 0.040 -0.757 

Model 
number 

Predicted ligand-binding site residues  MCC Score 
change 

BDT Score 
change 

1 14,16,17,19,29,31,33,35,118,149 0.55 -0.203 0.46 -0.337 
2 14,16,17,18,19,29,30,31,35,118,120,121,149 0.74 -0.013 0.65 -0.147 
3 14,16,17,18,19,29,30,31,33,35,118 0.59 -0.163 0.51 -0.287 
4 14,18,29,31,33,34,35,36,118,121,149 0.52 -0.233 0.47 -0.327 
5 13,14,16,18,19,29,31,33,34,35,36,118,149 0.54 -0.213 0.55 -0.247 
6 14,16,18,19,29,31,33,34,35,118 0.55 -0.203 0.46 -0.337 
7 14,16,18,19,29,31,33,35,118 0.51 -0.243 0.41 -0.387 
8 13,14,16,17,18,19,29,33,34,35,36,118,121 0.54 -0.213 0.55 -0.247 
9 14,16,19,29,31,33,34,118,120 0.59 -0.163 0.44 -0.357 

Model 
number 

Predicted ligand-binding site residues  MCC Score  
change 

BDT Score  
change 

1 14,16,19,29,31,33,35,118,121 0.51 -0.243 0.41 -0.387 
2 14,16,18,19,29,31,35,118,120,121,149 0.67 -0.083 0.55 -0.247 
3 14,16,18,19,29,30,31,33,35,118,121 0.59 -0.163 0.51 -0.287 
4 14,18,29,31,33,34,35,36,118,121,149 0.52 -0.233 0.47 -0.327 
5 13,14,16,17,19,29,31,33,34,35,36,118,121 0.54 -0.213 0.55 -0.247 
6 16,19,29,30,31,33,34,35,118,121,149 0.59 -0.163 0.51 -0.287 
7 14,29,31,33,34,35,118,120,121,149 0.55 -0.203 0.46 -0.337 
8 13,14,16,19,29,31,33,34,35,36,118 0.44 -0.313 0.44 -0.357 
9 Same as complex 2 - - - - 

Model 
number 

Predicted ligand-binding site residues MCC Score  
change 

BDT Score  
change 

1 14,16,19,29,31,35,118,149 0.54 -0.213 0.39 -0.407 
2 13,14,16,17,18,19,29,30,31,33,35,61,118 0.54 -0.213 0.54 -0.257 
3 14,16,19,29,31,35,118,120,121,149 0.63 -0.123 0.49 -0.307 
4 14,16,18,19,29,30,31,33,35,118,121 0.59 -0.163 0.51 -0.287 
5 14,18,29,31,33,34,35,36,118,121,149 0.52 -0.233 0.47 -0.327 
6 13,14,16,17,18,19,31,33,34,35,36,118,120,121 0.58 -0.173 0.60 -0.197 
7 13,14,17,18,19,31,33,34,35,118 0.47 -0.283 0.43 -0.367 
8 14,16,18,19,30,31,33,35,85,88,118 0.45 -0.303 0.43 -0.367 
9 14,16,17,18,19,29,31,33,34,118,121,149 0.70 -0.053 0.60 -0.197 
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Figure S.77. Comparison of FunFOLD3 and FunFOLD3-D ligand-binding site predictions for T0807 (PDB ID 4wgh) 
(A) Predicted ligand-binding site residues shown as sticks with incorrect predictions shown in red, the NAP ligand is shown as 
sphere and coloured yellow (B) The observed ligand binding site residues for T0807 (PDB ID 4wgh) shown as sticks and 
coloured blue, the NAP ligand is shown as sphere and coloured yellow (C) Predicted ligand-binding site residues following 
docking with AutoDock Vina and using 22.5Å. Correct predictions are shown as sticks and coloured blue and incorrect 
predictions are shown as sticks and coloured red (D) Predicted ligand-binding site residues following docking with AutoDock 
Vina and using 10% grid box calculation. Incorrect predictions are shown as sticks and coloured red (E) Predicted ligand-
binding site residues following docking with AutoDock Vina and using 20% grid box calculation. Incorrect predictions are shown 
as sticks and coloured red (F) Predicted ligand-binding site residues following docking with AutoDock Vina and using 50% grid 
box calculation. Incorrect predictions are shown as sticks and coloured red (G) Comparison of the ligand binding site for 
predictions made by FunFOLD3 with the protein coloured green and the observed structure coloured cyan (H) Comparison of 
the ligand binding site for predictions made by FunFOLD3-D for the best model from 10% grid box calculation with the protein 
coloured green and the observed structure coloured cyan. BDT and MCC score of 0.43 and 0.49, respectively 

A B 

C D

E F 

G H 
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Table S.36. Predicted ligand-binding site residues and MCC and BDT scores with box calculation 22.5Å for T0807 (PDB 
ID 4wgh) 
Models are listed in numerical order following docking with change in MCC and BDT given as a percentage increase or 
decrease. The model with the best MCC and BDT is in bold. The box calculation is 22.5Å with the predicted ligand NAP 

 

 
 
Table S.37. Predicted ligand-binding site residues and MCC and BDT scores with 10% box calculation for T0807 (PDB 
ID 4wgh) 
Models are listed in numerical order following docking with change in MCC and BDT given as a percentage increase or 
decrease. The model with the best MCC and BDT is in bold. The grid box calculation was based 10% of the ligand-binding site 
with the predicted ligand NAP 

 

Model 
number 

Pose Predicted ligand-binding site 
residues  

MCC Score  
change 

BDT Score  
change 

1 

1 10,128,131,132,137,159 -0.047 -0.818 0.0089 -0.8401 
2 132,137 -0.027 -0.798 0.0029 -0.8461 
3 10,131,132,134,137,157,158,159 -0.054 -0.825 0.012 -0.837 
4 10,128,131,132,134,137,157,158,159 -0.058 -0.829 0.013 -0.836 
5 10,128,131,132,134,137,159 -0.051 -0.822 0.010 -0.839 

2 

1 225,247,250,251,254 -0.050 -0.821 0.093 -0.756 
2 247,251 0.119 -0.652 0.053 -0.796 
3 1,2,225,247,250,251,254,256,257 0.020 -0.751 0.10 -0.749 
4 1,225,247,250,251,254,256 0.038 -0.733 0.098 -0.751 
5 247,250,254,256 -0.038 -0.809 0.045 -0.804 
6 1,2,225,247,250,251,254 0.038 -0.733 0.094 -0.755 

3 

1 88,92,125,128,129,132,159 -0.051 -0.822 0.010 -0.839 
2 88,92,125,129,157,158 -0.047 -0.818 0.009 -0.84 
3 88,125,128,129,159 -0.043 -0.814 0.01 -0.839 
4 88,92,125,126,128,129,159 -0.051 -0.822 0.011 -0.838 
5 88,92,125,128,129,132,159 -0.051 -0.822 0.010 -0.839 
6 88,92,125,126,128,129,132,159 -0.054 -0.825 0.012 -0.837 

4 

1 270,271,272,274 -0.038 -0.809 0.005 -0.844 
2 272,274 -0.027 -0.798 0.003 -0.846 
3 204,205,209,270,272,274 -0.047 -0.818 0.019 -0.83 
4 171,204,209,270,271,272,274 -0.051 -0.822 0.019 -0.83 
5 204,270,272,273,274 -0.043 -0.814 0.013 -0.836 
6 171,204,270,271,272,273,274 -0.051 -0.822 0.018 -0.831 

5 

1 10,11,13,137 -0.038 -0.809 0.006 -0.843 
2 10,13 -0.027 -0.798 0.003 -0.846 
3 10,11,73,74,137 -0.043 -0.814 0.008 -0.841 
4 10,11,12,13,137 -0.047 -0.818 0.009 -0.84 

6 

1 175,177,184,234,263,266,269 -0.051 -0.822 0.011 -0.838 
2 177,184,263,266 -0.038 -0.809 0.005 -0.844 
3 175,177,180,184,233,234,235,266,269 -0.058 -0.829 0.016 -0.833 
4 175,177,184,233,234,263,266,269 -0.054 -0.825 0.012 -0.837 
5 175,177,184,263,266 -0.043 -0.814 0.008 -0.841 
6 175,177,233,234,263,266,269 -0.051 -0.822 0.011 -0.838 

7 

1 184,188,189,233,234,235,265 -0.051 -0.822 0.016 -0.833 
2 6,7,184,188,189,235 -0.047 -0.818 0.014 -0.835 
3 184,189,233,234,235,265 -0.047 -0.818 0.013 -0.836 
4 184,188,189,233,234,235,265 -0.051 -0.822 0.016 -0.833 
5 183,184,188,189,233,234,235,265 -0.054 -0.825 0.018 -0.831 

Model 
number 

Pose Predicted ligand-binding site residues  MCC Score 
change 

BDT Score  
change 

1 

1 196,200,207,222,224,241,242,243,245,248,251,252 0.48 -0.291 0.37 -0.479 
2 196,199,200,201,207,222,241,242,243,247,248,252 0.42 -0.351 0.35 -0.499 
3 196,207,222,224,241,242,243,245,248,249,251,252 0.48 -0.291 0.37 -0.479 
4 196,200,207,222,223,224,241,242,243,245, 

248,249,251,252 
0.44 -0.331 0.40 -0.449 

5 196,199,200,207,222,223,224,241,242,243, 
245,248,251,252 

0.49 -0.281 0.43 -0.419 
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Table S.38. Predicted ligand-binding site residues and MCC and BDT scores with 20% box calculation for T0807 (PDB 
ID 4wgh) 
Models are listed in numerical order following docking with change in MCC and BDT given as a percentage increase or 
decrease. The model with the best MCC and BDT is in bold. The grid box calculation was based 20% of the ligand-binding site 
with the predicted ligand NAP 
 

 
 
Table S.39. Predicted ligand-binding site residues and MCC and BDT scores with 50% box calculation for T0807 (PDB 
ID 4wgh) 
Models are listed in numerical order following docking with change in MCC and BDT given as a percentage increase or 
decrease. The model with the best MCC and BDT is in bold. The grid box calculation was based 50% of the ligand-binding site 
with the predicted ligand NAP 

 

 
 
  

Model 
number 

Pose Predicted ligand-binding site residues  MCC Score 
change 

BDT Score   
change 

1 

1 200,202,207,222,245,248 0.12 -0.651 0.12 -0.729 
2 199,200,201,207,222,248 0.21 -0.561 0.14 -0.709 
3 200,201,202,203,205,207,208,222,245,247,248 0.13 -0.641 0.19 -0.659 
4 199,200,201,202,205,207,208,222,245,247,248 0.19 -0.581 0.22 -0.629 
5 200,202,207,208,222,245,248 0.11 -0.661 0.12 -0.729 
6 200,207,208,222,245,248 0.12 -0.651 0.11 -0.739 

Model 
number 

Pose Predicted ligand-binding site 
residues  

MCC Score  
change 

BDT Score  
change 

1 

1 200,201,213,216,223,248 0.12 -0.651 0.11 -0.739 
2 200,213,216,222,223 -0.042 -0.813 0.045 -0.804 
3 213,223,245,248 0.17 -0.601 0.095 -0.754 
4 213,216,222,223,248 0.05 -0.721 0.069 -0.780 
5 200,201,207,213,216,221,222,223, 

248  
0.082 

-0.689 
0.13 

-0.719 

6 200,201,207,208,213,216,223,247,248 0.082 -0.689 0.14 -0.709 

2 

1 200,213,216,221,247,248,251 0.11 -0.661 0.12 -0.729 
2 213,216,221,222 -0.038 -0.809 0.02 -0.829 
3 213,216,245,247,248 0.14 -0.631 0.099 -0.75 
4 200,213,216,221,222,247,248,251 0.093 -0.678 0.13 -0.719 
5 200,213,216,221,222,223,247,248 0.020 -0.751 0.10 -0.749 
6 200,213,216,221,223,247,248 0.028 -0.743 0.094 -0.755 
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 Figure S.78. Comparison of FunFOLD3 and FunFOLD3-D ligand-binding site predictions for NAD T0813 (PDB ID 4wji) 
(A) Predicted ligand-binding site residues shown as sticks with incorrect predictions shown in red, the NAD ligand is shown as 
sphere and coloured yellow (B) The observed ligand binding site residues for T0813 (PDB ID 4wji) shown as sticks and 
coloured blue, the MG ligand is shown as sphere and coloured yellow (C) Predicted ligand-binding site residues following 
docking with AutoDock Vina and using 22.5Å. Correct predictions are shown as sticks and coloured blue and incorrect 
predictions are shown as sticks and coloured red (D) Predicted ligand-binding site residues following docking with AutoDock 
Vina and using 10% grid box calculation. Incorrect predictions are shown as sticks and coloured red (E) Predicted ligand-
binding site residues following docking with AutoDock Vina and using 20% grid box calculation. Incorrect predictions are shown 
as sticks and coloured red (F) Predicted ligand-binding site residues following docking with AutoDock Vina and using 50% grid 
box calculation. Incorrect predictions are shown as sticks and coloured red (G) Comparison of the ligand binding site for 
predictions made by FunFOLD3 with the protein coloured green and the observed structure coloured cyan (H) Comparison of 
the ligand binding site for predictions made by FunFOLD3-D for the best model from 50% grid box calculation with the 
predicted structure  coloured green and the observed structure coloured cyan. BDT and MCC score of 0.43 and 0.46 
respectively 
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Table S.40. Predicted ligand-binding site residues and MCC and BDT scores with box calculation 22.5Å for NAD T0813 
(PDB ID 4wji) 
Models are listed in numerical order following docking with change in MCC and BDT given as a percentage increase or 
decrease. The model with the best MCC and BDT is in bold. The box calculation is 22.5Å with the predicted ligand NAD 
 

 
 
Table S.41. Predicted ligand-binding site residues and MCC and BDT scores with 10% box calculation for NAD T0813 
(PDB ID 4wji) 
Models are listed in numerical order following docking with change in MCC and BDT given as a percentage increase or 
decrease. The model with the best MCC and BDT is in bold. The grid box calculation was based 10% of the ligand-binding site 
with the predicted ligand NAD 

 
Table S.42. Predicted ligand-binding site residues and MCC and BDT scores with 20% box calculation for NAD T0813 
(PDB ID 4wji) 
Models are listed in numerical order following docking with change in MCC and BDT given as a percentage increase or 
decrease. The model with the best MCC and BDT is in bold. The grid box calculation was based 20% of the ligand-binding site 
with the predicted ligand NAD 

 
 
 
 
 
 
 
 
 
 
 

Model 
number 

Pose Predicted ligand-binding site 
residues  

MCC Score 
change 

BDT Score 
change 

1 

1 128,139,144 -0.011 -0.097 0.029 -0.161 
2 128,129,144,227,287,288,289 -0.018 -0.104 0.026 -0.164 
3 128,137,139,140,144,227,287,288,289 -0.020 -0.106 0.035 -0.155 
4 128,137,139,140,144,227,287 -0.018 -0.104 0.043 -0.147 

2 

1 290,291,293,298,299,300,301 -0.018 -0.104 0.012 -0.178 
2 290,295,297,299,301,303 -0.015 -0.101 0.012 -0.178 
3 290,291,293,299,301,302,305 -0.015 -0.101 0.013 -0.177 
4 290,293,299,301,302 -0.015 -0.101 0.013 -0.177 

3 
1 40,43,55,57,62,65 -0.017 -0.103 0.14 -0.05 
2 43,54,57,61,62 -0.015 -0.101 0.12 -0.07 
3 34,57,61,62,65 -0.015 -0.101 0.05 -0.14 

4 

1 39,45,131,132,134,135,232 -0.018 -0.104 0.26 0.07 
2 37,39,42,45,130,131,134,232 0.16 0.074 0.31 0.12 
3 42,45,130,131,134,135,232 0.17 0.084 0.33 0.14 
4 45,130,131,134,135,232 -0.01 -0.096 0.22 0.03 

Model 
number 

Pose Predicted ligand-binding site residues  MCC Score 
change 

BDT Score 
change 

1 
1 12,13,14,15,16,37,38,39,42,72,131,234 0.27 0.184 0.33 0.14 
2 12,14,15,37,38,72,73,74,232,234,235 -0.02 -0.106 0.16 -0.03 
3 12,13,14,15,37,38,39,42,131,132,232,234,235 0.26 0.174 0.32 0.13 

2 

1 16,38,72,73,74,77,80,81,234,238 -0.021 -0.107 0.08 -0.11 
2 12,14,15,37,38,72,73,74,77,81,234,238 -0.024 -0.11 0.15 -0.04 
3 14,15,16,38,72,73,74,77,81,234,238 -0.023 -0.109 0.13 -0.06 
4 14,15,16,38,72,74,77,81,234,238 -0.02 -0.106 0.13 -0.06 

Model 
number 

Pose Predicted ligand-binding site residues  MCC Score 
change 

BDT Score 
change 

1 
1 38,57,73,74,77,132,232,234,238 -0.02 -0.106 0.15 -0.04 
2 13,14,38,57,73,74,77,234 0.16 0.074 0.23 0.04 
3 38,57,74,77,232,234,238 -0.018 -0.104 0.064 -0.126 

2 

1 12,13,14,15,16,37,38,42,72,74,131,132,232, 
234,235 

0.24 0.154 0.29 0.1 

2 14,15,37,38,73,74,132,232,234,235 -0.021 -0.107 0.16 -0.03 
3 12,13,14,15,37,38,39,42,131,132,232,234,235 0.26 0.174 0.32 0.13 



    Appendices 

 
 

Page 599 of 645 

Table S.43. Predicted ligand-binding site residues and MCC and BDT scores with 50% box calculation for NAD T0813 
(PDB ID 4wji) 
Models are listed in numerical order following docking with change in MCC and BDT given as a percentage increase or 
decrease. The model with the best MCC and BDT is in bold. The grid box calculation was based 50% of the ligand-binding site 
with the predicted ligand NAD 

  
  

Model 
number 

Pose Predicted ligand-binding site residues  MCC Score 
change 

BDT Score   
change 

1 

1 12,13,14,15,37,72,74,131,132,232,234,235 0.12 0.034 0.26 0.07 
2 14,15,38,73,74,232,234,235 -0.019 -0.105 0.13 -0.06 
3 12,13,14,15,37,39,132,232,234,235 0.14 0.054 0.29 0.1 
4 12,13,14,15,37,131,132,232,234,235 0.14 0.054 0.29 0.1 

2 
1 12,13,14,37,38,39,42,74,133,232,234 0.44 0.354 0.41 0.22 
2 37,38,39,42,74,234 0.19 0.104 0.28 0.09 
3 12,13,14,37,39,42,74,133,232,234 0.46 0.374 0.43 0.24 

3 

1 38,59,73,74,77,84,132,234 -0.019 -0.105 0.11 -0.08 
2 13,14,38,73,74,77,234 0.17 0.084 0.25 0.06 
3 38,59,74,77,234,238 -0.016 -0.102 0.062 -0.128 
4 38,59,74,77,84,234,238 -0.018 -0.104 0.057 -0.133 
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Figure S.79. Comparison of FunFOLD3 and FunFOLD3-D ligand-binding site predictions for NAI T0813 (PDB ID 4wji) 
(A) Predicted ligand-binding site residues shown as sticks with incorrect predictions shown in red, the NAI ligand is shown as 
sphere and coloured yellow (B) The observed ligand binding site residues for T0813 (PDB ID 4w66) shown as sticks and 
coloured blue, the MG ligand is shown as sphere and coloured yellow (C) Predicted ligand-binding site residues following 
docking with AutoDock Vina and using 22.5Å. Correct predictions are shown as sticks and coloured blue and incorrect 
predictions are shown as sticks and coloured red (D) Predicted ligand-binding site residues following docking with AutoDock 
Vina and using 10% grid box calculation. Incorrect predictions are shown as sticks and coloured red (E) Predicted ligand-
binding site residues following docking with AutoDock Vina and using 20% grid box calculation. Incorrect predictions are shown 
as sticks and coloured red (F) Predicted ligand-binding site residues following docking with AutoDock Vina and using 50% grid 
box calculation. Incorrect predictions are shown as sticks and coloured red (G) Comparison of the ligand binding site for 
predictions made by FunFOLD3 with the protein coloured green and the observed structure coloured cyan (H) Comparison of 
the ligand binding site for predictions made by FunFOLD3-D for the best model complex 2 with 22.5Å grid box calculation with 
the predicted structure coloured green and the observed structure coloured cyan. BDT and MCC score of 0.28 and 0.34, 
respectively  

A B 

C D 

E F 

G H 
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Table S.44. Predicted ligand-binding site residues and MCC and BDT scores with box calculation 22.5Å for NAI T0813 
(PDB ID 4wji) 
Models are listed in numerical order following docking with change in MCC and BDT given as a percentage increase or 
decrease. The model with the best MCC and BDT is in bold. The box calculation is 22.5Å with the predicted ligand NAI 

 
 
Table S.45. Predicted ligand-binding site residues and MCC and BDT scores with 10% box calculation for NAI T0813 
(PDB ID 4wji) 
Models are listed in numerical order following docking with change in MCC and BDT given as a percentage increase or 
decrease. The model with the best MCC and BDT is in bold. The grid box calculation was based 10% of the ligand-binding site 
with the predicted ligand NAI 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Model 
number 

Predicted ligand-binding site residues  MCC Score 
change 

BDT Score 
change 

1 12,13,14,15,16,37,38,42,72,73,74,98,100,131,235 0.24 0.269 0.27 0.16 
2 12,13,14,16,37,42,74,100,123,126,127,130,131,133

,232,235,236 
0.35 0.379 0.28 0.17 

3 12,14,15,16,72,100,123,128,129,130,132,189,193, 
232,235,236 

-0.027 0.002 0.13 0.02 

4 16,100,123,125,126,127,128,129,189,193,232,235,
236 

-0.025 0.004 0.047 -0.063 

5 14,15,16,37,38,74,98,99,100,123,124,128,130,131,
132,232,235,236 

-0.029 0 0.12 0.01 

6 189,192,193,196,224,225,227,228,235,236 -0.021 0.008 0.022 -0.088 
7 15,16,72,128,129,130,131,192,193,196,224,228, 

232,235,236,284 
-0.027 0.002 0.069 -0.041 

8 12,14,15,16,37,38,72,73,74,81,126,127,128,129, 
131,132,232,235,236 

-0.03 -0.001 0.14 0.03 

9 12,13,14,16,37,38,74,100,123,126,127,128,129,131
,232,235,236 

0.097 0.126 0.17 0.06 

Model 
number 

Predicted ligand-binding site residues  MCC Score 
change 

BDT Score 
change 

1 13,14,15,16,37,38,42,72,73,74,75,98,99,100, 
128,129,130,131,132,235 

0.20 0.229 0.22 0.11 

2 11,12,14,15,16,37,38,72,73,74,98,99,100,129, 
130,131,232,235 

-0.029 0 0.14 0.03 

3 12,13,14,16,37,38,72,73,74,81,98,100,127, 
128,130,235,236 

0.097 0.126 0.18 0.07 

4 11,12,13,14,16,37,38,72,73,74,75,98,99,100, 
128,129,130,131,232,235 

0.086 0.115 0.17 0.06 

5 11,12,14,15,16,37,38,72,73,74,128,130,131, 
232,235 

-0.026 0.003 0.16 0.05 

6 12,13,14,15,16,37,38,42,73,74,98,100,127,128, 
131,132,235 

0.22 0.249 0.26 0.15 

7 11,13,14,16,37,38,42,73,74,98,99,100,130,131, 
232,234,235 

0.22 0.249 0.22 0.11 

8 14,15,16,37,38,42,72,73,74,75,131,232,235 0.12 0.149 0.21 0.1 
9 12,14,15,16,37,38,72,73,74,100,123,126,127,128

,130,131,132,236 
-0.029 0 0.15 0.04 
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Table S.46. Predicted ligand-binding site residues and MCC and BDT scores with 20% box calculation for NAI T0813 
(PDB ID 4wji) 
Models are listed in numerical order following docking with change in MCC and BDT given as a percentage increase or 
decrease. The model with the best MCC and BDT is in bold. The grid box calculation was based 20% of the ligand-binding site 
with the predicted ligand NAI 

 
 
Table S.47. Predicted ligand-binding site residues and MCC and BDT scores with 50% box calculation for NAI T0813 
(PDB ID 4wji) 
Models are listed in numerical order following docking with change in MCC and BDT given as a percentage increase or 
decrease. The model with the best MCC and BDT is in bold. The grid box calculation was based 50% of the ligand-binding site 
with the predicted ligand NAI 
 

 
 

 

 

 

 
 
 
 
 
 
 

Model 
number 

Predicted ligand-binding site residues  MCC Score 
change 

BDT Score  
change 

1 11,12,13,14,15,16,37,38,72,73,74,123,126,127,128,132, 
235,236 

0.093 -0.017 0.20 0.09 

2 12,13,14,16,37,42,72,73,98,100,123,126,128,130,131, 
133,232,235 

0.34 0.23 0.28 0.17 

3 12,13,14,15,16,37,38,72,73,74,100,129,130,131,132, 
235,236 

0.097 -0.013 0.21 0.1 

4 12,13,14,16,37,72,74,100,123,124,126,128,132,232, 
235,236 

0.10 -0.01 0.19 0.08 

5 12,13,16,37,38,42,72,73,74,75,98,99,100,128,129, 
130,131,132,235 

0.21 0.1 0.22 0.11 

6 12,13,14,15,16,37,38,42,72,73,74,98,131,232,235 0.24 0.13 0.27 0.16 
7 12,14,16,37,38,42,73,74,81,98,127,128,235 0.12 0.01 0.21 0.1 
8 12,14,37,38,72,73,74,77,123,126,128,131,232,235 -0.026 -0.136 0.13 0.02 
9 12,37,38,72,73,74,100,127,128,130,235,236 -0.024 -0.134 0.11 0 

Model 
number 

Predicted ligand-binding site residues  MCC Score  
change 

BDT Score 
change 

1 11,12,13,14,15,16,37,38,72,73,74,100,123,126,127,128, 
130,235,236 

0.089 0.118 0.18 0.07 

2 12,13,14,16,72,73,74,100,123,128,129,131,132, 
232,234,235,236 

0.097 0.126 0.19 0.08 

3 12,14,15,16,37,72,98,100,123,126,127,128,129, 
130,131,232,235,236 

-0.029 0 0.12 0.01 

4 12,13,14,16,42,72,73,74,75,98,100,126,130, 
232,235,236 

0.23 0.259 0.23 0.12 

5 14,16,37,42,72,73,98,100,123,129,131,133,232, 
235,236 

0.24 0.269 0.23 0.12 

6 12,14,16,37,38,72,73,74,75,98,99,100,128,130, 
131,235 

-0.027 0.002 0.13 0.02 

7 12,13,14,15,16,37,38,72,73,74,127,128,129,130,236 0.11 0.139 0.21 0.1 
8 12,14,16,37,38,72,73,74,75,98,99,100,130,131, 

232,235 
-0.027 0.002 0.13 0.02 

9 14,15,16,72,73,74,75,98,99,123,125,126,128, 
129,130,131,189,231,235,236 

-0.031 -0.002 0.092 -0.018 
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Figure S.80. Comparison of FunFOLD3 and FunFOLD3-D ligand-binding site predictions for NAP T0813 (PDB ID 4wji) 
(A) Predicted ligand-binding site residues shown as sticks with incorrect predictions shown in red, the NAP ligand is shown as 
sphere and coloured yellow (B) The observed ligand binding site residues for T0813 (PDB ID 4w66) shown as sticks and 
coloured blue, the MG ligand is shown as sphere and coloured yellow (C) Predicted ligand-binding site residues following 
docking with AutoDock Vina and using 22.5Å. Correct predictions are shown as sticks and coloured blue and incorrect 
predictions are shown as sticks and coloured red (D) Predicted ligand-binding site residues following docking with AutoDock 
Vina and using 10% grid box calculation. Incorrect predictions are shown as sticks and coloured red (E) Predicted ligand-
binding site residues following docking with AutoDock Vina and using 20% grid box calculation. Incorrect predictions are shown 
as sticks and coloured red (F) Predicted ligand-binding site residues following docking with AutoDock Vina and using 50% grid 
box calculation. Incorrect predictions are shown as sticks and coloured red (G) Comparison of the ligand binding site for 
predictions made by FunFOLD3 with the protein coloured green and the observed structure coloured cyan (H) Comparison of 
the ligand binding site for predictions made by FunFOLD3-D for the best model complex 2 with 10% grid box calculation with 
the protein coloured green and the observed structure coloured cyan. BDT and MCC score of 0.27 and 0.34, respectively 
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C D 

E 

G H 
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Table S.48. Predicted ligand-binding site residues and MCC and BDT scores with box calculation 22.5Å for NAP T0813 
(PDB ID 4wji) 
Models are listed in numerical order following docking with change in MCC and BDT given as a percentage increase or 
decrease. The model with the best MCC and BDT is in bold. The box calculation is 22.5Å with the predicted ligand NAP 

 
 
Table S.49. Predicted ligand-binding site residues and MCC and BDT scores with 10% box calculation for NAP T0813 
(PDB ID 4wji) 
Models are listed in numerical order following docking with change in MCC and BDT given as a percentage increase or 
decrease. The model with the best MCC and BDT is in bold. The grid box calculation was based 10% of the ligand-binding site 
with the predicted ligand NAP 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Model 
number 

Pose Predicted ligand-binding site residues  MCC Score 
change 

BDT Score  
change 

1 
1 16,73,74,99,100,123,126,128,129,131,235,284 -0.024 -0.103 0.068 -0.132 
2 16,73,74,75,99,100,123,126,128,129,131, 

189,232,235 
-0.026 

-0.105 0.066 -0.134 

2 
1 188,192,254,257,261,280,284,287 -0.019 -0.098 0.009 -0.191 
2 188,192,195,254,257,261,280,284,287,288 -0.021 -0.1 0.009 -0.191 

3 
1 188,195,225,258,261,284,287,288 -0.019 -0.098 0.010 -0.19 
2 188,189,195,254,257,258,284 -0.018 -0.097 0.010 -0.19 

4 
1 192,195,224,225,253,276 -0.016 -0.095 0.011 -0.189 
2 192,224,276,279,280 -0.015 -0.094 0.009 -0.191 

5 

1 16,123,124,125,126,127,128,129,145,188, 
193,235,236 

-0.025 
-0.104 0.045 -0.155 

2 16,123,124,125,126,127,129,184,188, 
189,193,235,236 

-0.025 
-0.104 0.041 -0.159 

6 
1 127,187,188,193,227,254,284,287,288 -0.020 -0.099 0.017 -0.183 
2 188,193,254,257,284,287,288 -0.018 -0.097 0.011 -0.189 

7 
1 126,129,192,193,195,196,225,227,254,284 -0.021 -0.1 0.020 -0.18 
2 126,129,192,193,225,227,284 -0.018 -0.097 0.024 -0.176 

8 
1 191,192,195,253,254,257,272,276,279 -0.020 -0.099 0.008 -0.192 
2 191,192,253,254,275,276,279,280 -0.019 -0.098 0.008 -0.192 

9 
1 188,195,254,280,284,287 -0.016 -0.095 0.010 -0.19 
2 188,192,195,254,284,287 -0.016 -0.095 0.011 -0.189 

Model 
number 

Pose Predicted ligand-binding site residues  MCC Score 
change 

BDT Score 
change 

1 

1 13,14,16,37,42,72,98,123,124,126,127,128,129, 
130,131,132,133,235 

0.34 0.261 0.27 0.07 

2 14,16,37,39,42,72,73,74,98,99,100,128,129, 
130,132,235 

0.10 0.021 0.19 -0.01 

2 

1 11,12,16,37,38,39,73,74,75,98,99,100,123, 
127,131,235 

-0.027 -0.106 0.12 -0.08 

2 11,12,16,37,38,39,42,72,73,74,75,98,99,100, 
123,127,128,131,132,235 

0.086 0.007 0.18 -0.02 

3 
1 16,38,74,75,98,100,130,131,232,234,235 -0.023 -0.102 0.080 -0.12 
2 16,38,74,75,98,99,100,129,130,232,234,235 -0.023 -0.102 0.068 -0.132 
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Table S.50. Predicted ligand-binding site residues and MCC and BDT scores with 20% box calculation for NAP T0813 
(PDB ID 4wji) 
Models are listed in numerical order following docking with change in MCC and BDT given as a percentage increase or 
decrease. The model with the best MCC and BDT is in bold. The grid box calculation was based 20% of the ligand-binding site 
with the predicted ligand NAP 

 
 
Table S.51. Predicted ligand-binding site residues and MCC and BDT scores with 50% box calculation for NAP T0813 
(PDB ID 4wji) 
Models are listed in numerical order following docking with change in MCC and BDT given as a percentage increase or 
decrease. The model with the best MCC and BDT is in bold. The grid box calculation was based 50% of the ligand-binding site 
with the predicted ligand NAP 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Model 
number 

Pose Predicted ligand-binding site residues  MCC Score 
change 

BDT Score  
change 

1 
1 12,16,37,72,73,123,124,128,129,235,236 -0.023 -0.102 0.11 -0.09 
2 12,16,37,38,72,73,74,100,123,128,235,236 -0.024 -0.103 0.12 -0.08 

2 
1 14,16,37,72,73,98,123,128,129,130,131,132,235 -0.025 -0.104 0.14 -0.06 
2 16,37,39,42,72,73,74,98,99,100,128,129,130,235 0.11 0.031 0.16 -0.04 

3 
1 16,38,74,75,98,130,131,232,234,235 -0.021 -0.1 0.085 -0.115 
2 16,38,74,75,98,100,129,130,131,232,234,235 -0.024 -0.103 0.078 -0.122 

4 

1 11,12,16,37,38,39,73,74,75,98,99,100,123, 
127,131,235 

-0.027 
-0.106 0.12 -0.08 

2 11,12,16,37,38,39,42,72,73,74,75,98,99,100,123, 
127,128,131,132,235 

0.086 
0.007 0.18 -0.02 

Model 
number 

Pose Predicted ligand-binding site residues  MCC Score 
change 

BDT Score  
change 

1 

1 15,16,38,74,100,123,126,127,129,131, 
231,232,235,236 

-0.026 -0.226 0.08 -0.12 

2 15,16,38,74,100,123,124,126,128,129,231, 
232,235,236 

-0.026 -0.226 0.07 -0.13 
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Figure S.81. Comparison of FunFOLD3 and FunFOLD3-D ligand-binding site predictions for T0819 (PDB ID 4wbt) 
(A) Predicted ligand-binding site residues shown as sticks with incorrect predictions shown in red, the PLP ligand is shown as 
sphere and coloured yellow (B) The observed ligand binding site residues for T0819 (PDB ID 4wbt) shown as sticks and 
coloured blue, the PLP ligand is shown as sphere and coloured yellow (C) Predicted ligand-binding site residues following 
docking with AutoDock Vina and using 22.5Å. Correct predictions are shown as sticks and coloured blue and incorrect 
predictions are shown as sticks and coloured red (D) Predicted ligand-binding site residues following docking with AutoDock 
Vina and using 10% grid box calculation. Incorrect predictions are shown as sticks and coloured red (E) Predicted ligand-
binding site residues following docking with AutoDock Vina and using 20% grid box calculation. Incorrect predictions are shown 
as sticks and coloured red (F) Predicted ligand-binding site residues following docking with AutoDock Vina and using 50% grid 
box calculation. Incorrect predictions are shown as sticks and coloured red (G) Comparison of the ligand binding site for 
predictions made by FunFOLD3 with the protein coloured green and the observed structure coloured cyan (H) Comparison of 
the ligand binding site for predictions made by FunFOLD3-D for the best model (complex 8 with 10% grid box calculation with 
the protein coloured green and the observed structure coloured cyan. BDT and MCC score of 0.80 and 0.87, respectively 

A B 

C D 

E F 

G H 
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Table S.52. Predicted ligand-binding site residues and MCC and BDT scores with box calculation 22.5Å for T0819 (PDB 
ID  4wbt) 
Models are listed in numerical order following docking with change in MCC and BDT given as a percentage increase or 
decrease. The model with the best MCC and BDT is in bold. The box calculation is 22.5Å 

 
Table S.53. Predicted ligand-binding site residues and MCC and BDT scores with 10% box calculation for T0819 (PDB 
ID 4wbt) 
Models are listed in numerical order following docking with change in MCC and BDT given as a percentage increase or 
decrease. The model with the best MCC and BDT is in bold. The grid box calculation was based 10% of the ligand-binding site   

 
Table S.54. Predicted ligand-binding site residues and MCC and BDT scores with 20% box calculation for T0819 (PDB 
ID 4wbt) 
Models are listed in numerical order following docking with change in MCC and BDT given as a percentage increase or 
decrease. The model with the best MCC and BDT is in bold. The grid box calculation was based 20% of the ligand-binding site  

 
 
Table S.55. Predicted ligand-binding site residues and MCC and BDT scores with 50% box calculation for T0819 (PDB 
ID 4wbt) 
Models are listed in numerical order following docking with change in MCC and BDT given as a percentage increase or 
decrease. The model with the best MCC and BDT is in bold. The grid box calculation was based 50% of the ligand-binding site  

 

Model 
number 

Predicted ligand-binding site residues 
MCC Score 

change 
BDT Score 

change 
1 39,40,41,42,119,167,225,234,335,347 0.33 -0.547 0.36 -0.493 
2 37,39,40,41,42,119,167,225,226,234,335,347 0.38 -0.497 0.44 -0.413 
3 39,40,42,119,225,226,234,335 0.38 -0.497 0.33 -0.523 
4 40,42,225,226,231,234,335 0.30 -0.577 0.29 -0.563 
5 40,41,42,119,225,226,234,335,347 0.35 -0.527 0.35 -0.503 
6 40,42,119,225,226,234,335 0.40 -0.477 0.33 -0.523 
7 37,40,41,119,167,226,234,335 0.38 -0.497 0.33 -0.523 
8 39,40,42,119,225,226,234,335,347 0.35 -0.527 0.35 -0.503 
9 40,42,226,231,234,335 0.21 -0.667 0.21 -0.643 

Model 
number 

Predicted ligand-binding site residues 
MCC Score 

change 
BDT Score 

change 
1 94,95,119,167,194,196,197,226,234 0.83 -0.047 0.69 -0.163 
2 40,94,95,119,167,194,196,197,226 0.73 -0.147 0.62 -0.233 
3 41,94,95,119,194,196,197,226,234 0.73 -0.147 0.63 -0.223 
4 39,40,94,95,119,194,196,197,226,234,335 0.66 -0.217 0.63 -0.223 
5 94,95,119,122,163,167,194,196,197,226 0.69 -0.187 0.66 -0.193 
6 40,94,95,119,167,196,197,226,234 0.73 -0.147 0.62 -0.233 
7 94,95,119,122,163,165,167,194,196,197,226,234 0.71 -0.167 0.75 -0.103 
8 94,95,119,167,194,197,223,225,226,234 0.87 -0.007 0.80 -0.053 
9 40,94,119,167,194,196,197,225,226,234 0.78 -0.097 0.70 -0.153 

Model 
number 

Predicted ligand-binding site residues 
MCC Score 

change 
BDT Score  

change 
1 94,95,119,167,194,196,197,226,234 0.83 -0.047 0.69 -0.163 
2 40,94,95,119,167,194,196,197,226 0.73 -0.147 0.62 -0.233 
3 40,41,94,119,194,196,197,226,234 0.64 -0.237 0.56 -0.293 
4 39,40,94,95,119,196,197,226,234,335 0.60 -0.277 0.55 -0.303 
5 40,94,95,119,196,197,223,225,226,234 0.78 -0.097 0.70 -0.153 
6 40,41,119,167,194,196,197,226,234 0.64 -0.237 0.56 -0.293 
7 39,40,94,95,119,223,225,226,234,335,347 0.57 -0.307 0.56 -0.293 
8 41,94,95,119,122,163,165,167,194,196,197,226,234 0.68 -0.197 0.76 -0.093 
9 40,94,95,119,167,197,226,234,335 0.64 -0.237 0.55 -0.303 

Model 
number 

Predicted ligand-binding site 
residues 

MCC Score 
change 

BDT Score 
change 

1 39,40,41,42,119,225,226,234,335 0.35 -0.527 0.35 -0.503 
2 39,40,41,119,167,225,226,234,335 0.45 -0.427 0.41 -0.443 
3 39,40,41,42,119,167,225,234,335,347 0.33 -0.547 0.36 -0.493 
4 42,119,225,226,234,335,347 0.40 -0.477 0.33 -0.523 
5 39,40,41,42,119,167,226,234,335,347 0.33 -0.547 0.36 -0.493 
6 40,94,95,119,196,197,226 0.62 -0.257 0.47 -0.383 
7 40,94,95,119,167,194,196,197,226 0.73 -0.147 0.62 -0.233 
8 40,94,95,119,225,226,234,335 0.58 -0.297 0.47 -0.383 
9 94,119,167,197,225,226,234 0.73 -0.147 0.54 -0.313 
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Table S.56. Predicted ligand-binding site residues and MCC and BDT scores with box calculation 22.5Å for FRU ligand 
for T0912 (PDB ID 5mqp) 
Models are listed in numerical order following docking with change in MCC and BDT given as a percentage increase or 
decrease. The model with the best MCC and BDT is in bold. The box calculation is 22.5Å.  
 

 
 
Table S.57. Predicted ligand-binding site residues and MCC and BDT scores with 10% box calculation for FRU ligand 
for T0912 (PDB ID 5mqp) 
Models are listed in numerical order following docking with change in MCC and BDT given as a percentage increase or 
decrease. The model with the best MCC and BDT is in bold. The grid box calculation was based 10% of the ligand-binding site 
 

 
 
 
 
 
 
 

Model 
number 

Pose Predicted ligand-binding site 
residues  

MCC Score 
change 

BDT Score  
change 

1 
1 462,492,525,554,556,557 -0.007 -0.00028 0.027 -0.0025 
2 238,239,240,556 -0.006 0.00072 0.017 -0.0125 

2 
1 205,238,239,240,556 -0.006 0.00072 0.017 -0.0125 
2 238,492,524,525,557 -0.006 0.00072 0.024 -0.0055 

3 
1 238,462,492,524 -0.006 0.00072 0.022 -0.0075 
2 153,205,462,465 -0.006 0.00072 0.076 0.0465 

4 
1 208,209,232,234,489,490,521 -0.008 -0.00128 0.023 -0.0065 
2 163,164,208,230,231,232 -0.007 -0.00028 0.038 0.0085 

5 
1 208,209,231,232,234,489,490,521 -0.008 -0.00128 0.022 -0.0075 
2 163,164,208,230,231 -0.007 -0.00028 0.042 0.0125 

6 
1 210,238,240 -0.005 0.00172 0.025 -0.0045 
2 238,465,492,524,525,554,557 -0.008 -0.00128 0.026 -0.0035 

7 
1 462,492,525,554,556,557 -0.007 -0.00028 0.027 -0.0025 
2 238,239,240,556 -0.006 0.00072 0.017 -0.0125 

8 
1 205,238,239,240,556 -0.006 0.00072 0.017 -0.0125 
2 238,492,524,525,557 -0.006 0.00072 0.024 -0.0055 

9 
1 238,462,492,524 -0.006 -0.00028 0.022 -0.0075 
2 *Same as Complex 3, pose 2* - - - - 

Model 
number 

Pose Predicted ligand-binding site 
residues  

MCC Score 
change 

BDT Score  
change 

1 
1 163,208,232,459,489,490 -0.007 -0.00028 0.030 0.0005 
2 208,209,231,232,235,490 -0.007 -0.00028 0.026 -0.0035 

2 
1 208,209,231,232,234,235,490 -0.007 -0.00028 0.024 -0.0055 
2 163,208,459,489,490,521 -0.007 -0.00028 0.029 -0.0005 

3 
1 163,208,489,521 -0.006 0.00072 0.036 0.0065 
2 208,209,230,231,232,235,490,521 -0.008 -0.00128 0.023 -0.0065 

4 
1 208,209,231,232,234,235,238,490,521 -0.009 -0.00228 0.022 -0.0075 
2 163,208,232,489,490 -0.007 -0.00028 0.033 0.0035 

5 
1 208,209,231,232,234,235,490,521 -0.008 -0.00128 0.023 -0.0065 
2 163,208,459,489,490,521 -0.007 -0.00028 0.029 -0.0005 

6 
1 163,208,232,459,489,490 -0.007 -0.00028 0.030 0.0005 
2 208,209,231,232,235,490 -0.007 -0.00028 0.026 -0.0035 

7 
1 208,209,231,232,234,235,490 -0.007 -0.00028 0.024 -0.0055 
2 163,208,459,489,490,521 -0.007 -0.00028 0.029 -0.0005 

8 
1 *Same as complex 3 pose 1* -0.006 0.00072 0.036 0.0065 
2 208,209,230,231,232,235,490,521 -0.008 -0.00128 0.023 -0.0065 

9 
1 208,209,231,232,234,235,238,490,521 -0.009 -0.00228 0.022 -0.0075 
2 163,208,232,489,490 -0.007 -0.00028 0.033 0.0035 



    Appendices 

 
 

Page 609 of 645 

Table S.58. Predicted ligand-binding site residues and MCC and BDT scores with 20% box calculation for FRU ligand 
for T0912 (PDB ID 5mqp) 
Models are listed in numerical order following docking with change in MCC and BDT given as a percentage increase or 
decrease. The model with the best MCC and BDT is in bold. The grid box calculation was based 20% of the ligand-binding site 
 

 
 
Table S.59. Predicted ligand-binding site residues and MCC and BDT scores with 50% box calculation for FRU ligand 
for T0912 (PDB ID 5mqp) 
Models are listed in numerical order following docking with change in MCC and BDT given as a percentage increase or 
decrease. The model with the best MCC and BDT is in bold. The grid box calculation was based 50% of the ligand-binding site 
 

 
 
 
 
 
 
 

Model 
number 

Pose Predicted ligand-binding site 
residues  

MCC Score 
change 

BDT Score  
change 

1 
1 163,232,489,521 -0.006 0.00072 0.031 0.0015 
2 208,209,230,231,232,235,490,521 -0.008 -0.00128 0.023 -0.0065 

2 
1 163,208,232,459,489 -0.007 -0.00028 0.032 0.0025 
2 208,209,230,231,232,235,490,521 -0.008 -0.00128 0.023 -0.0065 

3 
1 163,232,489,521 -0.006 0.00072 0.031 0.0015 
2 209,231,232,234,235,237,490,521 -0.008 -0.00128 0.020 -0.0095 

4 
1 232,489,490,521 -0.006 0.00072 0.017 -0.0125 
2 163,164,208,230,231,232 -0.007 -0.00028 0.038 0.0085 

5 
1 163,208,232,489 -0.006 0.00072 0.037 0.0075 
2 208,231,232,489,490,521 -0.007 -0.00028 0.021 -0.0085 

6 
1 208,209,231,232,234,235,490,521 -0.008 -0.00128 0.023 -0.0065 
2 163,208,459,487,489,490,521 -0.008 -0.00128 0.026 -0.0035 

7 
1 208,209,231,232,234,235,490,521 -0.008 -0.00128 0.023 -0.0065 
2 163,208,489 -0.005 0.00172 0.043 0.0135 

8 
1 *Same as complex 7, pose 2* - - - - 
2 208,209,231,232,233,234,235,490 -0.008 -0.00128 0.023 -0.0065 

9 
1 163,232,489,521 -0.006 0.00072 0.031 0.0015 
2 208,209,230,231,232,235,490,521 -0.008 -0.00128 0.023 -0.0065 

Model 
number 

Pose Predicted ligand-binding site residues  MCC Score 
change 

BDT Score  
change 

1 
1 163,164,208,230,231,232 -0.007 -0.00028 0.038 0.0085 
2 163,208,232,489,490,521 -0.007 -0.00028 0.030 0.0005 

2 
1 163,208,459,487,489 -0.007 -0.00028 0.030 0.0005 
2 208,209,232,234,235,489,490,521 -0.008 -0.00128 0.022 -0.0075 

3 
1 163,232,489,521 -0.006 0.00072 0.031 0.0015 
2 208,231,232,489,490,521 -0.007 -0.00028 0.021 -0.0085 

4 
1 163,208,230,231 -0.006 0.00072 0.039 0.0095 

2 208,232,489,490 -0.006 0.00072 0.023 -0.0065 

5 
1 163,208,231,232 -0.006 0.00072 0.039 0.0095 
2 208,209,232,234,235,237,490,521 -0.008 -0.00128 0.022 -0.0075 

6 
1 163,208,459,489 -0.006 0.00072 0.035 0.0055 
2 208,209,231,232,235,489,490,521 -0.008 -0.00128 0.023 -0.0065 

7 
1 163,208,231,232,459,489 -0.007 -0.00028 0.030 0.0005 
2 208,209,232,234,235,237,490,521 -0.008 -0.00128 0.022 -0.0075 

8 
1 208,209,230,231,232,234,489,490,521 -0.008 -0.00128 0.02 -0.0095 
2 232 -0.003 0.00372 0.007 -0.0225 

9 
1 208,232,489 -0.005 0.00172 0.024 -0.0055 
2 208,209,232,234,235,237,490,521  -0.008 -0.00128 0.022 -0.0075 
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Table S.60. Predicted ligand-binding site residues and MCC and BDT scores with box calculation 22.5Å for MAV ligand 
for T0912 (PDB ID 5mqp) 
Models are listed in numerical order following docking with change in MCC and BDT given as a percentage increase or 
decrease. The model with the best MCC and BDT is in bold. The box calculation is 22.5Å.  

 

 
 
 
Table S.61. Predicted ligand-binding site residues and MCC and BDT scores with 10% box calculation for MAV ligand 
for T0912 (PDB ID 5mqp) 
Models are listed in numerical order following docking with change in MCC and BDT given as a percentage increase or 
decrease. The model with the best MCC and BDT is in bold. The grid box calculation was based 10% of the ligand-binding site 

 

Model 
number 

Pose Predicted ligand-binding site residues  MCC Score 
change 

BDT Score  
change 

1 
1 468,533,535,569 -0.006 0.00292 0.015 -0.0063 
2 334,335,468,500 -0.006 0.00292 0.023 0.0017 
3 332,333,334,336,468,469,474,500 -0.008 0.00092 0.026 0.0047 

2 
1 468,533,535,569 -0.006 0.00292 0.015 -0.0063 
2 334,335,468,500 -0.006 0.00292 0.023 0.0017 
3 334,335,336,340,426,429,474,476,500 -0.009 -8E-05 0.015 -0.0063 

3 
1 535 -0.003 0.00592 0.003 -0.0183 
2 *Same as Complex 1, pose 2* -0.006 0.00292 0.023 0.0017 
3 *Same as Complex 1, pose 3* -  - - 

4 
1 *Same as Complex 3, pose 1* -  - - 
2 *Same as Complex 1, pose 3* -  - - 
3 *Same as Complex 2, pose 3* -  - - 

5 
1 335,500,535 -0.005 0.00392 0.013 -0.0083 
2 *Same as Complex 1, pose 2* -  - - 
3 332,333,336,340,468,469,474,500 -0.008 0.00092 0.025 0.0037 

6 
1 468,474,497,499,500,533 -0.007 0.00192 0.013 -0.0083 
2 334,335,468,500,535 -0.007 0.00192 0.020 -0.0013 
3 334,468,533,569 -0.006 0.00292 0.019 -0.0023 

7 
1 500 -0.003 0.00592 0.003 -0.0183 
2 334,335,468,500,535 -0.007 0.00192 0.020 -0.0013 
3 332,333,334,335,340,468,469,474,500 -0.009 -8.0E-05 0.024 0.0027 

8 
1 *Same as Complex 6, pose 1* -  - - 
2 *Same as Complex 6, pose 2* -  - - 
3 *Same as Complex 6, pose 3* -  - - 

9 
1 334,335,468,533 -0.006 0.00292 0.023 0.0017 
2 334,468,499,500,535 -0.007 0.00192 0.017 -20% 
3 *Same as Complex 1, pose 3* - 0.00292 - - 

Model 
number 

Pose Predicted ligand-binding site residues  MCC Score 
change 

BDT Score  
change 

1 
1 332,340,399,423,426,428,469,474 -0.008 0.00092 0.017 -0.0043 
2 334,335,336,340,468,469,474,500 -0.008 0.00092 0.021 -0.0003 
3 334,335,468,500,533 -0.007 0.00192 0.020 -0.0013 

2 
1 334,468,533,535 -0.006 0.00292 0.019 -0.0023 
2 334,468,500 -0.005 0.00392 0.023 0.0017 
3 332,333,334,336,340,468,469,474,500 -0.009 -8E-05 0.025 0.0037 

3 
1 334,468,474,497,500 -0.007 0.00192 0.018 -0.0033 
2 334,335,468,535 -0.006 0.00292 0.023 0.0017 
3 468,569 -0.004 0.00492 0.014 -0.0073 

4 
1 468,469,474,497,500 -0.007 0.00192 0.018 -0.0033 
2 334,335,468,500,535 -0.007 0.00192 0.020 -0.0013 
3 334,468,533,569 -0.006 0.00292 0.019 -0.0023 

5 
1 468,533,535 -0.005 0.00392 0.017 -0.0043 
2 334,474,476,500 -0.006 0.00292 0.013 -0.0083 
3 329,332,336,340,399,423,426,428 -0.008 0.00092 0.020 -0.0013 
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Table S.62. Predicted ligand-binding site residues and MCC and BDT scores with 20% box calculation for MAV ligand 
for T0912 (PDB ID 5mqp) 
Models are listed in numerical order following docking with change in MCC and BDT given as a percentage increase or 
decrease. The model with the best MCC and BDT is in bold. The grid box calculation was based 20% of the ligand-binding site  

 

 
 
 
 
 
 
 
 

6 
1 *Same as Complex 5, pose 1* - - - - 
2 334,468,500 -0.005 0.00392 0.023 0.0017 
3 334,335,340,468,469,474,500 -0.008 0.00092 0.020 -0.0013 

7 
1 332,340,423,426,428,469,474 -0.008 0.00092 0.017 -0.0043 
2 335,468,469,474,500 -0.007 0.00192 0.020 -0.0013 
3 *Same as Complex 4, pose 2* - - - - 

8 
1 340,426,429,474,500 -0.007 0.01592 0.011 -0.0103 
2 334,335,468,474,500 -0.007 0.00192 0.020 -0.0013 
3 335,468,500,533,535 -0.007 0.00192 0.016 -0.0053 

9 

1 468,500,533,535 -0.006 0.00292 0.015 -0.0063 

2 468,471,474,497,499,500,533 -0.008 0.00092 0.014 -0.0073 

3 332,333,334,335,336,340,468,469,474,500 -0.009 -8E-05 0.024 0.0027 

Model 
number 

Pose Predicted ligand-binding site residues  MCC Score 
change 

BDT Score  
change 

1 
1 334,468,499,500,535 -0.007 0.00192 0.017 -0.0043 
2 334,335,340,468,469,474,500 -0.008 0.00092 0.020 -0.0013 
3 329,340,374,399,402,423,426,428,429,474 -0.009 -8E-05 0.014 -0.0073 

2 
1 329,332,340,374,399,402,423,426,428,474 -0.009 -8E-05 0.016 -0.0053 
2 427,474,476,500 -0.006 0.00292 0.009 -0.0123 
3 *Same as Complex 1, pose 1* - - - - 

3 
1 334,468,500,535 -0.006 0.00292 0.019 -0.0023 
2 334,335,468,474,500 -0.007 0.00192 0.020 -0.0013 
3 329,332,340,374,399,423,426,428,429,474 -0.009 -8E-05 0.016 -0.0053 

4 
1 468,474,497,499,500,533 -0.007 0.00192 0.013 -0.0083 
2 334,335,468,500,535 -0.007 0.00192 0.020 -0.0013 
3 334,468,569 -0.005 0.00392 0.023 0.0017 

5 
1 *Same as Complex 4, pose 2* - - - - 
2 334,335,336,340,468,474,500 -0.008 0.00092 0.021 -0.0003 
3 332,340,423,426,427,428,429,474 -0.008 0.00092 0.014 -0.0073 

6 
1 468,533,535 -0.005 0.00392 0.017 -0.0043 
2 334,474,476,500 -0.006 0.00292 0.013 -0.0083 
3 329,332,340,399,423,426,428,429 -0.008 0.00092 0.017 -0.0043 

7 
1 334,468,474,497,499,500 -0.007 0.00192 0.016 -0.0053 
2 334,335,500,535 -0.006 0.00292 0.016 -0.0053 
3 *Same as Complex 4, pose 3* - - - - 

8 
1 334,468,499,500,533,535 -0.007 0.00192 0.015 -0.0063 
2 334,468,535,569 -0.006 0.00292 0.019 -0.0023 
3 468,529,533,567,569 -0.007 0.00192 0.014 -0.0073 

9 
1 468,527,533,567,569 -0.007 0.00192 0.015 -0.0063 
2 *Same as Complex 4, pose 3* - - - - 
3 *Same as Complex 8, pose 1* - - - - 
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Table S.63. Predicted ligand-binding site residues and MCC and BDT scores with 50% box calculation for MAV ligand 
for T0912 (PDB ID 5mqp) 
Models are listed in numerical order following docking with change in MCC and BDT given as a percentage increase or 
decrease. The model with the best MCC and BDT is in bold. The grid box calculation was based 50% of the ligand-binding site  

 

 

  

Model 
number 

Pose Predicted ligand-binding site residues  MCC Score 
change 

BDT Score  
change 

1 
1 334,335,468,500,535 -0.007 0.00192 0.020 -0.0013 
2 334,335,468,474,500 -0.007 0.00192 0.020 -0.0013 
3 329,332,340,399,423,426,428,429,474 -0.009 -8E-05 0.016 -0.0053 

2 
1 468,533,535,569 -0.006 0.00292 0.015 -0.0063 
2 334,335,468,499,500 -0.007 0.00192 0.020 -0.0013 
3 332,333,334,336,340,468,469,474,500 -0.009 -8E-05 0.025 0.0037 

3 
1 468,533,535 -0.005 0.00392 0.017 -0.0043 
2 334,335,468,500 -0.006 0.00292 0.023 0.0017 
3 334,335,336,340,426,429,474,476,500 -0.009 -8E-05 0.015 -0.0063 

4 
1 329,332,340,374,399,402,423,426,428,474 -0.009 -8E-05 0.017 -0.0043 
2 427,474,476,500 -0.006 0.00292 0.009 -0.0123 
3 334,335,468,499,500,535 -0.007 0.00192 0.018 -0.0033 

5 
1 332,335,340,423,429,469,474,500 -0.008 0.00092 0.018 -0.0033 
2 *Same as Complex 3, pose 2* - - - - 
3 468,500,533,535 -0.006 0.00292 0.015 -0.0063 

6 
1 329,332,340,426,428,474 -0.007 0.00192 0.017 -0.0043 
2 468,474,475,476,499,500 -0.007 0.00192 0.013 -0.0083 
3 468,499,500,533,535 -0.007 0.00192 0.014 -0.0073 

7 
1 468,474,497,499,500,533 -0.007 0.00192 0.014 -0.0073 
2 334,335,468,500,535 -0.007 -6.99108 0.020 -0.0013 
3 334,468,569 -0.005 0.00392 0.023 0.0017 

8 
1 *Same as Complex 5, pose 3* - -  - 
2 *Same as Complex 1, pose 2* - -  - 
3 332,340,423,426,428,469,474,500 -0.008 0.00092 0.016 -0.0053 

9 
1 340,426,427,474,476,500 -0.007 0.00192 0.0100 -0.0113 
2 *Same as Complex 3, pose 2* - -  - 

3 *Same as Complex 5, pose 3* - -  - 
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Table S.64. Predicted ligand-binding site residues and MCC and BDT scores with box calculation 22.5Å for T0913  
Models are listed in numerical order following docking with change in MCC and BDT given as a percentage increase or 
decrease. The model with the best MCC and BDT is in bold. The box calculation is 22.5Å 

 
Table S.65. Predicted ligand-binding site residues and MCC and BDT scores with 10% box calculation for T0913  
Models are listed in numerical order following docking with change in MCC and BDT given as a percentage increase or 
decrease. The model with the best MCC and BDT is in bold. The grid box calculation was based 10% of the ligand-binding site  

 
 
Table S.66. Predicted ligand-binding site residues and MCC and BDT scores with 20% box calculation for T0913  
Models are listed in numerical order following docking with change in MCC and BDT given as a percentage increase or 
decrease. The model with the best MCC and BDT is in bold. The grid box calculation was based 20% of the ligand-binding site  

 
 
 
 
 
 
 

Model 
number 

Pose Predicted ligand-binding site residues  MCC Score 
change 

BDT Score  
change 

1 
1 99,103,171,266 -0.02 0.0167 0.009 -0.001 
2 98,99,103,171,222,263,264,266 -0.03 0.0067 0.020 -0.071 
3 98,99,103,171,263,266 -0.03 0.0067 0.014 -0.077 

2 
1 220,221,224,226,250,252,253 -0.03 0.0067 0.02 -0.071 
2 220,221,224,225,252,253 -0.03 0.0067 0.02 -0.071 
3 220,221,224,225,226,250,253,262 -0.03 0.0067 0.02 -0.071 

3 
1 96,103,171,222,263,264,266 -0.03 0.0067 0.02 -0.071 
2 96,103,171,222,262,263,264,266 -0.03 0.0067 0.02 -0.071 
3 96,103,171,222,263,264,266 -0.03 0.0067 0.02 -0.071 

4 
1 98,99,103,171,263,264,266 -0.03 0.0067 0.02 -0.071 
2 98,103,171,263,264 -0.02 0.0167 0.01 -0.081 
3 98,99,103,171,263,264,266 -0.03 0.0067 0.02 -0.071 

5 
1 98,99,103,263 -0.02 0.0167 0.01 -0.081 
2 91,96,98,99,103,104,263 -0.03 0.0067 0.01 -0.081 
3 96,98,99,102,103,171,263 -0.03 0.0067 0.01 -0.081 

6 
1 220,221,224,226,250,251,253 -0.03 0.0067 0.02 -0.071 
2 220,224,226,250,253 -0.02 0.0167 0.02 -0.071 
3 220,221,224,226,250,251,253 -0.03 0.0067 0.02 -0.071 

7 
1 95,96,99,103,171,222,262 -0.03 0.0067 0.01 -0.081 
2 96,99,103,171,222,263 -0.03 0.0067 0.01 -0.081 
3 95,96,99,103,171,222 -0.03 0.0067 0.01 -0.081 

8 
1 96,98,99,103,104 -0.02 0.0167 0.01 -0.081 
2 96,98,99,103 -0.02 0.0167 0.01 -0.081 
3 98,99,102,103,104 -0.02 0.0167 0.01 -0.081 

9 

1 96,98,99,103,104,171,263 -0.03 0.0067 0.01 -0.081 

2 91,98,99,103,263 -0.02 0.0167 0.01 -0.081 
3 96,98,99,103,171,263 -0.03 0.0067 0.01 -0.081 

Model 
number 

Pose Predicted ligand-binding site residues  MCC Score 
change 

BDT Score 
change 

1 
1 100,103,156,171,266,267,270,315,318,359,360,364 -0.04 -0.0033 0.10 0.009 
2 100,103,156,171,266,267,270,318,359,360,361,364 -0.04 -0.0033 0.11 0.019 
3 100,103,156,171,266,267,270,318,359,360,364 -0.04 -0.0033 0.10 0.009 

Model 
number 

Pose Predicted ligand-binding site residues  MCC Score 
change 

BDT Score  
change 

1 

1 100,103,156,171,266,267,270,315,318,359, 
360,361,364 

-0.04 -0.0033 0.12 0.029 

2 100,103,156,171,266,267,269,270,315,318, 
359,360,361,364 

-0.04 -0.0033 0.13 0.039 

3 100,103,171,266,267,270,318,359,360,361,364 -0.04 -0.0033 0.11 0.019 
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Table S.67. Predicted ligand-binding site residues and MCC and BDT scores with 50% box calculation for T0913  
Models are listed in numerical order following docking with change in MCC and BDT given as a percentage increase or 
decrease. The model with the best MCC and BDT is in bold. The grid box calculation was based 50% of the ligand-binding site  

 

  

Model 
number 

Pose Predicted ligand-binding site residues  MCC Score 
change 

BDT Score  
change 

1 
1 100,103,171,266,267,270,315,318,359,360,364 -0.04 -0.0033 0.10 0.009 
2 100,103,266,267,270,315,318,359,360,364 -0.03 0.0067 0.09 -0.001 
2 100,103,171,266,267,270,359,360,361,364 -0.03 0.0067 0.09 -0.001 
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Figure S.82. Comparison of FunFOLD3 and FunFOLD3-D ligand-binding site predictions for T0916 (PDB ID 5tj4) 
(A) Predicted ligand-binding site residues shown as sticks with incorrect predictions shown in red, the NAD ligand is shown as 
sphere and coloured yellow. BDT score of 0.370 and MCC score of 0.263 was achieved.  (B) The observed ligand binding site 
residues for T0916 (PDB ID 5tj4) shown as sticks and coloured blue, the GLC(2) ligand is shown as sphere and coloured 
yellow (C) Predicted ligand-binding site residues following docking with AutoDock Vina and using 22.5Å. Correct prediction is 
shown as sticks and coloured blue and incorrect predictions are shown as sticks and coloured red (D) Predicted ligand-binding 
site residues following docking with AutoDock Vina and using 10% grid box calculation. Incorrect predictions are shown as 
sticks and coloured red (E) Predicted ligand-binding site residues following docking with AutoDock Vina and using 20% grid box 
calculation. Incorrect predictions are shown as sticks and coloured red (F) Predicted ligand-binding site residues following 
docking with AutoDock Vina and using 50% grid box calculation. Incorrect predictions are shown as sticks and coloured red (G) 
Comparison of the ligand binding site for predictions made by FunFOLD3 with the protein coloured green and the observed 
structure coloured cyan (H) Comparison of the ligand binding site for predictions made by FunFOLD3-D with the predicted 
structure coloured green and the observed structure coloured cyan. BDT and MCC score of 0.32 and 0.16, respectively was 
achieved for 50% box calculation for GLC ligand (2) 

A B 

C D 

E F 

G H 
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Table S.68. Predicted ligand-binding site residues and MCC and BDT scores with box calculation 22.5Å for T0916 (PDB ID 5tj4) 
Models are listed in numerical order following docking with change in MCC and BDT given as a percentage increase or decrease. The model with the best MCC and BDT is in bold. The box 
calculation is 22.5Å 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table S.69. Predicted ligand-binding site residues and MCC and BDT scores with 10% box calculation for T0916 (PDB ID 5tj4) 
Models are listed in numerical order following docking with change in MCC and BDT given as a percentage increase or decrease. The model with the best MCC and BDT is in bold. The grid box 
calculation was based 10% of the ligand-binding site  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Model 
number 

Predicted ligand-binding site 
residues  

MCC 
Score 

change 
MCC 

Score 
change 

BDT 
Score 

change 
BDT 

Score 
change 

  GLC 
(1) 

 
GLC 
(2) 

 
GLC 
(1) 

 
GLC 
(2) 

 

1 16,57,58,59,60,63,64,107 0.093 -0.069 0.081 -0.182 0.25 -0.024 0.30 -0.07 
2 31,34,35,78,79,82,83,86,90,141,142,143 -0.56 -0.722 -0.06 -0.323 0.052 -0.222 0.04 -0.33 
3 28,31,32,79,82,83,86,90,142 -0.05 -0.212 0.059 -0.204 -0.05 -0.324 0.047 -0.323 
4 28,31,32,35,82,83,86,90 -0.047 -0.209 -0.05 -0.313 0.06 -0.214 0.049 -0.321 
5 15,16,18,23,58,59,64,68,71,72 -0.053 -0.215 0.06 -0.203 0.14 -0.134 0.27 -0.1 
6 28,31,32,78,79,82,83,86 -0.047 -0.209 0.059 -0.204 -0.051 -0.325 0.043 -0.327 
7 16,54,56,57,58,59,60,64 -0.047 -0.209 -0.051 -0.314 0.13 -0.144 0.17 -0.2 
8 28,31,32,78,79,80,82,83,86,142,143 -0.056 -0.218 -0.060 -0.323 0.069 -0.205 0.042 -0.328 
9 28,31,34,35,78,79,82,83,86,87,90 -0.056 -0.218 -0.060 -0.323 0.061 -0.213 0.046 -0.324 

Model 
number 

Predicted ligand-binding 
site residues  

MCC Score 
change 

MCC 
 

Score 
change 

BDT 
Score 

change 
BDT 

Score 
change 

  GLC (1)  GLC 
(2) 

 GLC 
(1) 

 GLC 
(2) 

 

1 53,54,55,56,57,58,60 -0.044 -0.206 -0.047 -0.31 0.068 -0.206 0.065 -0.305 
2 54,57,58,59,60,63,107 0.11 -0.052 0.11 -0.153 0.23 -0.044 0.20 -0.17 
3 54,56,57,59,60,107 -0.041 -0.203 -0.044 -0.307 0.085 -0.189 0.076 -0.294 
4 54,55,56,57,59 -0.037 -0.199 -0.040 -0.303 0.046 -0.228 0.045 -0.325 
5 54,56,57,58,59,60 63 0.11 -0.052 0.092 -0.171 0.23 -0.044 0.20 -0.17 
6 54,55,56,57,58,59,60,107 -0.047 -0.209 0.088 -0.175 -0.051 -0.325 0.094 -0.276 
7 53,54,55,57,58,59,60 -0.044 -0.206 -0.047 -0.31 0.086 -0.188 0.078 -0.292 
8 54,56,57,58,59,60 -0.041 -0.203 -0.044 -0.307 0.083 -0.191 0.077 -0.293 
9 54,56,57,58,60  -0.037 -0.199  -0.040 -0.303 0.060  -0.214 0.056 -0.314 
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Table S.70. Predicted ligand-binding site residues and MCC and BDT scores with 20% box calculation for T0916 (PDB ID 5tj4) 
Models are listed in numerical order following docking with change in MCC and BDT given as a percentage increase or decrease. The model with the best MCC and BDT is in bold. The grid box 
calculation was based 20% of the ligand-binding site  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table S.71. Predicted ligand-binding site residues and MCC and BDT scores with 50% box calculation for T0916 (PDB ID 5tj4) 
Models are listed in numerical order following docking with change in MCC and BDT given as a percentage increase or decrease. The model with the best MCC and BDT is in bold. The grid box 
calculation was based 50% of the ligand-binding site  

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Model 
number 

Predicted ligand-binding 
site residues  

MCC Score 
change 

MCC Score 
change  

BDT Score 
change 

BDT Score 
change 

  GLC  
(1) 

 GLC 
(2) 

 GLC 
(1) 

 GLC 
(2) 

 

1 50,51,54,57,58,59,60,107 -0.047 -0.209 -0.051 -0.314 0.094 -0.18 0.095 -0.275 
2 54,56,57,58,59,60,63,107 0.093 -0.069 0.081 -0.182 0.21 -0.064 0.21 -0.16 
3 54,55,56,57,58,60 -0.041 -0.203 -0.044 -0.307 0.064 -0.21 0.061 -0.309 
4 53,54,55,56,57,58,60 -0.044 -0.206 -0.047 -0.31 0.068 -0.206 0.065 -0.305 
5 54,55,56,57,59,60 -0.041 -0.203 -0.044 -0.307 0.076 -0.198 0.068 -0.302 
6 54,55,56,57,58,59,60,107 -0.047 -0.209 -0.051 -0.314 0.088 -0.186 0.094 -0.276 
7 53,54,55,56,57,59,60,107 -0.047 -0.209 -0.051 -0.314 0.082 -0.192 0.084 -0.286 
8 54,56,57,58,59,60 -0.041 -0.203 -0.044 -0.307 0.083 -0.191 0.077 -0.293 
9 53,54,56,57,58,59,60 -0.044 -0.206 -0.047 -0.31 0.087 -0.187 0.081 -0.289 

Model 
number 

Predicted ligand-binding site 
residues  

MCC Score 
change 

MCC Score 
change 

BDT Score 
change 

BDT Score 
change  

  GLC 
(1) 

 GLC 
(2) 

 GLC 
(1) 

 GLC 
(2)  

 

1 50,54,56,57,58,59,60,63,107 0.082 -0.08 0.070 -0.193 0.19 -0.084 0.20 -0.084 
2 54,56,57,58,59,60  -0.041 -0.203  0.083 -0.18  -0.044 -0.318 0.077  -0.318 
3 50,54,56,57,58,59,60,107 -0.047 -0.209  -0.051 -0.314 0.091  -0.183 0.096 -0.183 
4 54,57,58,59,60,107  -0.041 -0.203 -0.044  -0.307  0.091 -0.183 0.082 -0.183 
5 51,54,57,59,60,107 -0.041 -0.203 -0.044  -0.307  0.088 -0.186 0.075 -0.186 
6 50,51,52,53,54,55,56,57,58,59,60,107 -0.06  -0.222 -0.06  -0.323  0.074 -0.2 0.077 -0.2 
7 15,16,54,57,58,59,60,63,64,68,107 0.064 -0.098 0.16 -0.103 0.22 -0.054 0.32 -0.054 
8 16,50,54,56,57,58,59,60  -0.047 -0.209 -0.051 -0.314  0.090 -0.184  0.13 -0.184 
9 54,56,57,58,59,60,107 -0.044  -0.206 -0.047 -0.31  -0.047 -0.321 0.087 -0.321 
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Table S.72. Predicted ligand-binding site residues and MCC and BDT scores with box calculation 22.5Å for T0953s2 
(PDB ID 6f45) 
Models are listed in numerical order following docking with change in MCC and BDT given as a percentage increase or 
decrease. The model with the best MCC and BDT is in bold. The box calculation is 22.5Å 

 
 
Table S.73. Predicted ligand-binding site residues and MCC and BDT scores with 10% box calculation for T0953s2 (PDB 
ID 6f45) 
Models are listed in numerical order following docking with change in MCC and BDT given as a percentage increase or 
decrease. The model with the best MCC and BDT is in bold. The grid box calculation was based 10% of the ligand-binding site  

 
Table S.74. Predicted ligand-binding site residues and MCC and BDT scores with 20% box calculation for T0953s2 (PDB 
ID 6f45) 
Models are listed in numerical order following docking with change in MCC and BDT given as a percentage increase or 
decrease. The model with the best MCC and BDT is in bold. The grid box calculation was based 20% of the ligand-binding site  

 
 
Table S.75. Predicted ligand-binding site residues and MCC and BDT scores with 50% box calculation for T0953s2 (PDB 
ID 6f45) 
Models are listed in numerical order following docking with change in MCC and BDT given as a percentage increase or 
decrease. The model with the best MCC and BDT is in bold. The grid box calculation was based 50% of the ligand-binding site  

 

 
 

Model 
number 

Predicted ligand-binding site residues MCC 
Score 

change 
BDT 

Score 
change 

1 153,154,155,167,168,207,208,226 -0.016 -0.136 0.031 -0.079 
2 153,154,155,207,208,209,210 -0.015 -0.135 0.022 -0.088 
3 153,154,155,167,168,207,208,209,210,226 -0.018 -0.138 0.029 -0.081 
4 117,118,119,156,166,167,207 -0.015 -0.135 0.054 -0.056 
5 153,154,155,167,168,207,226 -0.015 -0.135 0.033 -0.077 
6 117,118,119,154,155,156,167,207 -0.016 -0.136 0.032 -0.078 
7 118,119,154,155,156,167,207 -0.015 -0.135 0.033 -0.077 
8 116,153,154,155,167,207,226 -0.015 -0.135 0.030 -0.08 
9 *Same as complex 6* - - - - 

Model 
number 

Predicted ligand-binding site 
residues 

MCC 
Score 

change 
BDT 

Score 
change 

1 118,119,156,165,166,167 -0.014 -0.134 0.12 0.01 
2 119,165,166,167 -0.012 -0.132 0.16 0.05 
3 119,155,156,165,166,167 -0.014 -0.134 0.12 0.01 
4 165,166,167 -0.010 -0.13 0.21 0.1 

Model 
number 

Predicted ligand-binding site 
residues 

MCC 
Score 

change 
BDT 

Score 
change 

1 119,156,165,167 -0.011 -0.131 0.13 0.02 
2 117,118,119,156,166,167 -0.014 -0.134 0.058 -0.052 
3 119,120,156,165,166,167 -0.014 -0.134 0.12 0.01 
4 119,165,166,167 -0.012 -0.132 0.16 0.05 
5 119,120,165,166,167 -0.013 -0.133 0.14 0.03 
6 117,118,119,156,165,166,167 -0.015 -0.135 0.10 -0.01 
7 118,119,120,165,166,167 -0.014 -0.134 0.12 0.01 
8 165,166,167 -0.010 -0.13 0.21 0.1 

Model 
number 

Predicted ligand-binding site 
residues 

MCC 
Score 

change 
BDT 

Score 
change 

1 117,118,119,120,155,156,165,166,167 -0.017 -0.137 0.09 -0.02 
2 117,118,119,156,166,167,207 -0.015 -0.135 0.05 -0.06 
3 118,119,156,165,166,167 -0.014 -0.134 0.12 0.01 
4 119,165,166,167 -0.012 -0.132 0.16 0.05 
5 118,119,120,165,166,167 -0.014 -0.134 0.12 0.01 
6 *Same as complex 5* - - - - 
7 118,119,155,156,167,207 -0.014 -0.134 0.036 -0.07 
8 117,118,119,155,156,166,167 -0.015 -0.135 0.053 -0.06 
9 119,120,156,165,166,167 -0.014 -0.134 0.12 0.01 
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Table S.76. Predicted ligand-binding site residues and MCC and BDT scores with box calculation 22.5Å for T0954 (PDB 
ID 6cvz) 
Models are listed in numerical order following docking with change in MCC and BDT given as a percentage increase or 
decrease. The model with the best MCC and BDT is in bold. The box calculation is 22.5Å 

 
Table S.77. Predicted ligand-binding site residues and MCC and BDT scores with 10% box calculation for T0954 (PDB 
ID 6cvz) 
Models are listed in numerical order following docking with change in MCC and BDT given as a percentage increase or 
decrease. The model with the best MCC and BDT is in bold. The grid box calculation was based 10% of the ligand-binding site  

 
Table S.78. Predicted ligand-binding site residues and MCC and BDT scores with 20% box calculation for T0954 (PDB 
ID 6cvz) 
Models are listed in numerical order following docking with change in MCC and BDT given as a percentage increase or 
decrease. The model with the best MCC and BDT is in bold. The grid box calculation was based 20% of the ligand-binding site  

 
 
Table S.79. Predicted ligand-binding site residues and MCC and BDT scores with 50% box calculation for T0954 (PDB 
ID 6cvz) 
Models are listed in numerical order following docking with change in MCC and BDT given as a percentage increase or 
decrease. The model with the best MCC and BDT is in bold. The grid box calculation was based 50% of the ligand-binding site  

 

Model 
number 

Predicted ligand-binding site 
residues  

MCC Score 
change 

BDT Score 
change 

1 25,27,43,44,45,75,76,77 -0.019 -0.004 0.022 -0.006 
2 Same as complex 1 - - - - 
3 77,119,187,213,214,231,275 -0.018 -0.003 0.027 -0.001 
4 77,119,187,213,231,273,275 -0.018 -0.003 0.026 -0.002 
5 119,187,213,231,275 -0.015 0 0.025 -0.003 
6 187,213,231,275 -0.013 0.002 0.016 -0.012 
7 25,27,43,75,76,77,274,323,340 -0.020 -0.005 0.022 -0.006 
8 119,187,213,231,273,275 -0.016 -0.001 0.023 -0.005 
9 25,27,43,75,76,77 -0.016 -0.001 0.025 -0.003 

Model 
number 

Predicted ligand-binding site 
residues  

MCC Score 
change 

BDT Score 
 change 

1 27,77,119,231,273,274,275 -0.018 -0.003 0.025 -0.003 
2 Same as complex 1 - - - - 
3 77,119,273,274,275 -0.015 0 0.028 0 
4 27,77,119,273,274,275 -0.016 -0.001 0.027 -0.001 
5 77,119,187,231,273,274,275 -0.018 -0.003 0.026 -0.002 
6 Same as complex 4 - - - - 
7 Same as complex 4  - - - - 
8 27,77,274,275 -0.013 0.002 0.020 -0.008 
9 27,77,273,274,275 -0.015 0 0.023 -0.005 

Model 
number 

Predicted ligand-binding site 
residues  

MCC Score 
change 

BDT Score 
 change 

1 27,119,187,231,274,275 -0.016 -0.001 0.025 -0.003 
2 27,77,119,231,274,275 -0.016 -0.001 0.027 -0.001 
3 77,119,187,273,274,275 -0.016 -0.001 0.028 0 
4 25,27,43,77,273,274,275 -0.018 -0.003 0.021 -0.007 
5 77,119,187,231,273,274,275 0.018 0.033 0.026 -0.002 
6 27,43,77,273,274,275 -0.016 -0.001 0.022 -0.006 
7 25,27,77,274,275,323 -0.016 -0.001 0.023 -0.005 
8 25,27,77,94 -0.013 0.002 0.022 -0.006 
9 27,77,274,275 -0.013 0.002 0.020 -0.008 

Model 
number 

Predicted ligand-binding site 
residues  

MCC Score 
change 

BDT Score 
change 

1 25,27,43,76,77,274,323,340 -0.019 -0.004 0.022 -0.006 
2 25,27,43,75,77,274,323,340 -0.019 -0.004 0.021 -0.007 
3 25,27,43,75,77,94 -0.016 -0.001 0.025 -0.003 
4 25,27,43,75,76,77 -0.016 -0.001 0.025 -0.003 
5 25,27,43,75,76,77,274,323,340 -0.020 -0.005 0.022 -0.006 
6 27,43,75,77,94 -0.015 0 0.027 -0.001 
7 25,27,43,76,274,340 -0.016 -0.001 0.020 -0.008 
8 77,119,187,231,273,274,275 -0.018 -0.003 0.026 -0.002 
9 25,27,43,75,77,274,323,340 -0.019 -0.004 0.021 -0.007 
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Table S.80. Predicted ligand-binding site residues and MCC and BDT scores with box calculation 22.5Å for T1003 (PDB 
ID 6hrh) 
Models are listed in numerical order following docking with change in MCC and BDT given as a percentage increase or 
decrease. The model with the best MCC and BDT is in bold. The box calculation is 22.5Å 

 
Table S.81. Predicted ligand-binding site residues and MCC and BDT scores with 10% box calculation for T1003 (PDB 
ID 6hrh) 
Models are listed in numerical order following docking with change in MCC and BDT given as a percentage increase or 
decrease. The model with the best MCC and BDT is in bold. The grid box calculation was based 10% of the ligand-binding site   

 
Table S.82. Predicted ligand-binding site residues and MCC and BDT scores with 20% box calculation for T1003 (PDB 
ID 6hrh) 
Models are listed in numerical order following docking with change in MCC and BDT given as a percentage increase or 
decrease. The model with the best MCC and BDT is in bold. The grid box calculation was based 20% of the ligand-binding site  

 
 
Table S.83. Predicted ligand-binding site residues and MCC and BDT scores with 50% box calculation for T1003 (PDB 
ID 6hrh) 
Models are listed in numerical order following docking with change in MCC and BDT given as a percentage increase or 
decrease. The model with the best MCC and BDT is in bold. The grid box calculation was based 20% of the ligand-binding site  

Model 
number 

Predicted ligand-binding site residues  MCC Score 
change 

BDT Score 
change 

1 46,47,368,369,370,371,399,401,445 -0.03 0.01 0.05 -0.01 
2 172,173,219,247,395,473,474 -0.02 0.02 0.-03 -0.03 
3 56,57,58,59,91 -0.02 0.02 0.01 -0.05 
4 106,109,110,120,121,122,312 -0.03 0.01 0.01 -0.05 
5 72,173,219,220,395,404,473,474 -0.02 0.02 0.04 -0.02 
6 172,173,219,247,278,395,474 -0.02 0.02 0.03 -0.03 
7 106,109,110,111,120,122,312 -0.06 -0.02 0.14 0.08 
8 50,146,172,219,247,389,390,391,404,473,474 0.06 0.1 0.15 0.09 
9 106,110,120,121,122,312 -0.02 0.02 0.01 -0.05 

Model 
number 

Predicted ligand-binding site 
residues  

MCC Score 
change 

BDT Score 
change 

1 143,144,145,146,277,283,284,473,474 -0.03 0.01 0.11 0.05 
2 146,172,219,247,278,395,404,474 -0.03 0.01 0.05 -0.01 
3 146,172,173,174,177,473,474 -0.02 0.02 0.02 -0.04 
4 146,147,150,172,173,174,177 -0.03 0.01 0.03 -0.03 
5 144,146,172,284,473,474 -0.02 0.02 0.06 0 
6 146,277,282,283,284,472,473,474 -0.02 0.02 0.06 0 
7 109,110,111,112,308,309,311,313 -0.03 0.01 0.02 -0.04 
8 144,146,147,172,473,474 -0.02 0.02 0.04 -0.02 
9 147,150,151,154,181,302,303 -0.03 0.01 0.03 -0.03 

Model 
number 

Predicted ligand-binding site 
residues  

MCC Score 
change 

BDT Score 
change 

1 143,144,145,146,277,283,284,473,474 -0.03 0.01 0.11 0.05 
2 146,172,173,219,395,474 -0.02 0.02 0.03 -0.03 
3 146,172,173,219,247,278,395 -0.03 0.01 0.04 -0.02 
4 172,173,247,395,404,473,474 -0.02 0.02 0.03 -0.03 
5 146,172,219,247,394,395,404 -0.03 0.01 0.05 -0.01 
6 144,145,146,277,283,284,472,473,474 -0.02 0.02 0.10 0.04 
7 146,172,173,174,177,473,474 -0.02 0.02 0.02 -0.04 
8 143,144,277,283,284,473,474 -0.02 0.02 0.08 0.02 
9 144,146,277,283,284,473,474 -0.02 0.02 0.07 0.01 

Model 
number 

Predicted ligand-binding site residues  MCC Score  
change 

BDT Score 
change 

1 143,144,146,277,282,283,284,472,473,474 -0.03 0.01 0.10 0.04 
2 170,171,172,173,219,247,395,404 -0.03 0.01 0.04 -0.02 
3 146,172,395,473,474 -0.02 0.02 0.02 -0.04 
4 171,172,173,219,220,395 -0.02 0.02 0.03 -0.03 
5 146,172,219,247,394,395,404 -0.03 0.01 0.05 -0.01 
6 146,172,173,219,395,474 -0.02 0.02 0.03 -0.03 
7 172,173,219,247,395,473,474 -0.02 0.02 0.03 -0.03 
8 171,172,173,218,219,220,395,404 -0.03 0.01 0.05 -0.01 
9 172,219,395,404,473 -0.02 0.02 0.03 -0.03 
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Table S.84. Predicted ligand-binding site residues and MCC and BDT scores with box calculation 22.5Å for T1009 (PDB 
ID 6dru) 
Models are listed in numerical order following docking with change in MCC and BDT given as a percentage increase or 
decrease. The model with the best MCC and BDT is in bold. The box calculation is 22.5Å 

 
Table S.85. Predicted ligand-binding site residues and MCC and BDT scores with 10% box calculation for T1009 (PDB 
ID 6dru) 
Models are listed in numerical order following docking with change in MCC and BDT given as a percentage increase or 
decrease. The model with the best MCC and BDT is in bold. The grid box calculation was based 10% of the ligand-binding site  

 
Table S.86. Predicted ligand-binding site residues and MCC and BDT scores with 20% box calculation for T1009 (PDB 
ID 6dru) 
Models are listed in numerical order following docking with change in MCC and BDT given as a percentage increase or 
decrease. The model with the best MCC and BDT is in bold. The grid box calculation was based 20% of the ligand-binding site  

 
Table S.87. Predicted ligand-binding site residues and MCC and BDT scores with 50% box calculation for T1009 (PDB 
ID 6dru) 
Models are listed in numerical order following docking with change in MCC and BDT given as a percentage increase or 
decrease. The model with the best MCC and BDT is in bold. The grid box calculation was based 50% of the ligand-binding site  

Model 
number 

Predicted ligand-binding site 
residues  

MCC Score  
change 

BDT Score 
change 

1 287,289,291,292,356,357,359,360 -0.013 -0.923 0.09 -0.85 
2 291,292,356,357,358,359,360 -0.012 -0.922 0.04 -0.9 
3 287,289,290,291,292,329,356,357 -0.013 -0.923 0.10 -0.84 
4 287,289,291,292,357,360 -0.011 -0.921 0.08 -0.86 
5 158,493,496,637,641 -0.010 -0.92 0.016 -0.924 
6 490,491,492,526,533,536,537 -0.012 -0.922 0.05 -0.89 
7 490,492,526,533,536,537,540 -0.012 -0.922 0.04 -0.9 
8 490,492,533,536,537,540 -0.011 -0.921 0.04 -0.9 
9 109,110,112,113,142,145,147 -0.012 -0.922 0.005 -0.935 

Model 
number 

Predicted ligand-binding site 
residues  

MCC Score  
change 

BDT Score  
change 

1 679,681,682,695,697,700 -0.011 -0.921 0.007 -0.933 
2 257,258,260,527,560 0.13 -0.78 0.16 -0.78 
3 257,258,527,560 0.14 -0.77 0.15 -0.79 
4 258,260,527,560 -0.009 -0.919 0.07 -0.87 
5 257,258,560 0.17 -0.74 0.15 -0.79 
6 286,325,395,396,487 0.53 -0.38 0.40 -0.54 
7 286,325,395,396,487,520 0.61 -0.3 0.49 -0.45 
8 286,325,395,396 0.45 -0.46 0.31 -0.63 
9 257,258,527,560 0.14 -0.77 0.15 -0.79 

Model 
number 

Predicted ligand-binding site 
residues  

MCC Score  
change 

BDT Score  
change 

1 286,287,292,325,355 0.26 -0.65 0.23 -0.71 
2 Same as complex 1 - - - - 
3 173,325,355,396,400,403 0.11 -0.8 0.16 -0.78 
4 257,258,260,527,560 0.13 -0.78 0.16 -0.78 
5 286,287,292,325,355,356 0.24 -0.67 0.24 -0.7 
6 Same as complex 5 - - - - 
7 679,681,682,697,700 -0.01 -0.92 0.006 -0.934 
8 173,396,487 0.17 -0.74 0.14 -0.8 
9 173,325,396,403,487 0.26 -0.65 0.24 -0.7 

Model 
number 

Predicted ligand-binding site 
residues  

MCC Score  
change 

BDT Score  
change 

1 289,290,292,356,357,359,360 -0.012 -0.922 0.05 -0.89 
2 292,329,354,355,356,360,362 -0.012 -0.922 0.04 -0.9 
3 292,354,356,357,360 -0.010 -0.92 0.03 -0.91 
4 287,289,291,292,329,356,357 -0.012 -0.922 0.08 -0.86 
5 287,291,292,356,357,360 -0.011 -0.921 0.07 -0.87 
6 287,291,292,329,356,357 -0.011 -0.921 0.07 -0.87 
7 173,396,400,401,403 -0.010 -0.92 0.07 -0.87 
8 325,348,353,355,396,400,401,402,403 0.087 -0.823 0.17 -0.77 
9 256,264,528,560,568,570,571 -0.012 -0.922 0.09 -0.85 
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Table S.88. Predicted ligand-binding site residues and MCC and BDT scores with box calculation 22.5Å for T1014 (PDB 
ID 6qrj) 
Models are listed in numerical order following docking with change in MCC and BDT given as a percentage increase or 
decrease. The model with the best MCC and BDT is in bold. The box calculation is 22.5Å 

 
Table S.89. Predicted ligand-binding site residues and MCC and BDT scores with 10% box calculation for T1014 (PDB 
ID 6qrj) 
Models are listed in numerical order following docking with change in MCC and BDT given as a percentage increase or 
decrease. The model with the best MCC and BDT is in bold. The grid box calculation was based 10% of the ligand-binding site  

 
Table S.90. Predicted ligand-binding site residues and MCC and BDT scores with 20% box calculation for T1014 (PDB 
ID 6qrj) 
Models are listed in numerical order following docking with change in MCC and BDT given as a percentage increase or 
decrease. The model with the best MCC and BDT is in bold. The grid box calculation was based 20% of the ligand-binding site  

 
Table S.91. Predicted ligand-binding site residues and MCC and BDT scores with 50% box calculation for T1014 (PDB 
ID 6qrj) 
Models are listed in numerical order following docking with change in MCC and BDT given as a percentage increase or 
decrease. The model with the best MCC and BDT is in bold. The grid box calculation was based 50% of the ligand-binding site  

 

  

Model 
number 

Predicted ligand-binding site 
residues  

MCC Score 
change 

BDT Score 
change 

1 100,101,102,103 -0.03 0.02 0.006 -0.044 
2 53,57,120,123 -0.03 0.02 0.01 -0.04 
3 103,104,105,115,116 -0.03 0.02 0.01 -0.04 
4 116,117,118,119 -0.03 0.02 0.007 -0.043 
5 103,104,114,115,116,117 -0.03 0.02 0.01 -0.04 
6 110,113,115 -0.02 0.03 0.009 -0.041 
7 89,90,91,107 -0.03 0.02 0.04 -0.01 
8 53,57,119 -0.02 0.03 0.01 -0.04 
9 124,133,134 -0.02 0.03 0.01 -0.04 

Model 
number 

Predicted ligand-binding site residues  MCC Score 
change 

BDT Score 
change 

1 61,85,88,89,90,98,103,104,105,110,115,116,144,146 -0.05 0 0.13 0.08 
2 61,85,87,88,89,90,98,103,104,105,110,113,115,116, 

117,120,144 
-0.06 -0.01 0.12 0.07 

3 61,88,90,98,104,105,110,113,115,120,146 -0.05 0 0.06 0.01 
4 61,88,89,90,98,103,104,105,107,110,113,114,115, 

116,117,120 
-0.06 -0.01 0.07 0.02 

5 61,88,89,90,91,98,104,105,107,110,113,114,115,120 -0.05 0 0.09 0.04 

Model 
number 

Predicted ligand-binding site residues  MCC Score 
change 

BDT Score 
change 

1 61,88,89,90,98,103,104,105,107,110,113,114, 
115,116,120 

-0.06 -0.01 0.08 0.03 

2 61,88,89,90,91,98,103,104,105,107,110,113,115,116, 
117,120,140 

-0.06 -0.01 0.10 0.05 

3 61,88,89,90,91,94,98,103,104,105,107,110,113,115,116 -0.06 -0.01 0.09 0.04 
4 61,88,90,91,98,104,105,107,110,113,114,115,116 -0.05 0 0.07 0.02 
5 61,88,89,90,98,103,104,105,107,110,113,114,115,116,120 -0.06 -0.01 0.08 0.03 

Model 
number 

Predicted ligand-binding site 
residues  

MCC Score  
change 

BDT Score 
change 

1 53,57,60,114,116,117,118,119,122 -0.04 0.01 0.02 -0.03 
2 52,53,56,57,60,102,116,117,118,119 -0.04 0.01 0.02 -0.03 
3 57,104,114,116,117,118,119 -0.04 0.01 0.02 -0.03 
4 60,102,104,114,115,116,117,118,119 -0.04 0.01 0.02  -0.03 
5 53,60,114,115,116,117,118,119 -0.04 0.01 0.02 -0.03 
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Appendix 5  

 
Comparison to C-I-TASSER  
 
Contact-guided Iterative Threading ASSEmbly Refinement or C-I-TASSER is a method 

extended from I-TASSER for high accuracy protein structure and function 

predictions.(Zheng, Li, et al., 2019) Starting from a query sequence, C-I-TASSER first 

generates inter-residue contact maps using multiple deep neural-network predictors.(Zheng, 

Li, et al., 2019)C-I-TASSER predicted 3D structural models and function annotations for all 

proteins encoded by the genome of SARS-CoV-2, for comparison the predicted models from 

ReFOLD were compared against predictions by C-I-TASSER. Additionally, using the C-I-

TASSER models ligand-binding site predications will be made to determine if potentially 

improvements in the 3D structure could have improved the predictions. A comparison of the 

3D models selected by ModFOLD8 and then refined ReFOLD3 using and C-I-TASSER are 

given below in Figure S.83, only models which were included as CASP Commons targets 

are being compared and comparisons the second round of the full structure, where 

applicable. 
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Figure S.83. Comparison of 3D predicted structures by C-I-TASSER and ReFOLD 
(A) The structure in blue is the nsp2 structure from C-I-TASSER and the predicted structure for C1901 from ReFOLD is shown 
in red. A TM-score of 0.26184 was achieved for the protein structures. (B) The structure in blue is the nsp4 structure from C-I-
TASSER and the predicted structure for nsp4 (C1902) from ReFOLD is shown in red. A TM-score of 0.26293 was achieved for 
the protein structures. (C) The structure in blue is the nsp6 structure from C-I-TASSER and the predicted structure for C1903 
from ReFOLD is shown in red. A TM-score of 0.28611 was achieved for the protein structures. (D) The structure in blue is the 
0RF3a structure from C-I-TASSER and the predicted structure for C1905 from ReFOLD is shown in red. A TM-score of 
0.25072 was achieved for the protein structures. (E) The structure in blue is the Membrane protein structure from C-I-TASSER 
and the predicted structure for C1906 from ReFOLD is shown in red. A TM-score of 0.42324 was achieved for the protein 
structures. (F) The structure in blue is the ORF6 structure from C-I-TASSER and the predicted structure for C1907 from 
ReFOLD is shown in red. A TM-score of 0.37708 was achieved for the protein structures. (G) The structure in blue is the ORF8 
structure from C-I-TASSER and the predicted structure for C1908 from ReFOLD is shown in red. A TM-score of 0.33229 was 
achieved for the protein structures. (H) The structure in blue is the ORF10 structure from C-I-TASSER and the predicted 
structure for C1909 from ReFOLD is shown in red. A TM-score of 0.45423 was achieved for the protein structures.  

A B 

C D 

E F 

G H
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As can be seen from the comparison in Figure S.83, there was a poor overall structural 

superposition between the 3D structures from C-I-TASSER and top server models selected 

by ModFOLD8 and then refined using ReFOLD3, the structures with better structural 

homology were the proteins with smaller residues lengths e.g. ORF10, ORF6 and 

Membrane protein. The next stage, was to utilise the C-I-TASSER 3D structure models for 

FunFOLD3 ligand-binding site predictions. Of the eight proteins, only one has ligand 

predicted and is shown below in Figure S.84. Similarities can be seen with the predictions 

from FunFOLD3, with HEM ligand being predicted with both structures. 

 

 

Figure S.84. Predicted ORF6 protein structure from C-I-TASSER  
Predicted structure of ORF6 using the software C-I-TASSER. Predicted structure is shown as cartoon and coloured green. The 
predicted ligand HEM is shown as sphere and coloured yellow and the predicted ligand ILE is shown as sphere and coloured 
blue  
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