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Nonequilibrium response of magnetic nanoparticles to time–varying magnetic fields
beyond linear response: contributions from Brownian and Néel processes

Patrick Ilg
School of Mathematical, Physical, and Computational Sciences,

University of Reading, Reading, RG6 6AX, United Kingdom

Many technical and biomedical applications of magnetic nanoparticles rely on their response to
time–varying magnetic fields. While well–established models exist for either immobile or thermally
blocked nanoparticles, the intermediate regime where Brownian as well as Néel relaxation occur at
the same time is less well explored. Here, we use an efficient model that allows us to study the non-
linear dynamics of individual magnetic nanoparticles in response to different time–varying magnetic
fields over a broad range of field parameters, taking into account both relaxation mechanisms. We
provide quasi–exact solutions for the longitudinal dynamics as well as approximate formulae from
dynamic mean–field theory. Our results are relevant e.g. for magnetorelaxometry, magnetic fluid
hyperthermia and magnetic particle imaging. For these example applications, we show that the ra-
tio of characteristic Brownian to Néel relaxation time can have a profound impact on characteristic
response quantities, especially at large field strengths.

I. INTRODUCTION

Colloidal magnetic nanoparticles (MNPs) suspended in
viscous carrier media are known as ferrofluids and have
attracted considerable attention as field–responsive ma-
terials since their properties can be manipulated by ex-
ternal fields [56]. In recent years, several exciting techni-
cal and biomedical applications of MNPs have been ex-
plored [57–59]. Within these biomedical applications, the
response of MNPs to time–varying magnetic fields is of
crucial importance [60]. In magnetorelaxometry, for ex-
ample, a step–change in the magnetic field is used to de-
tect the binding kinetics of coated MNPs [61, 62]. When
large molecules bind to the surface and hinder the rota-
tional motion of the MNPs, the resulting changes in the
magnetization relaxation can be detected, which allows
to determine the amount and time of binding. Another
example is Magnetic Fluid Hyperthermia (MFH), which
is a promising tumor therapy where MNPs are used to
locally heat tissue with the help of an externally applied
oscillating field [63–66]. The magnetic losses within the
MNPs – that are created by the magnetization dynamics
in response to the oscillating magnetic field – are trans-
ferred to heat which is then released to the neighborhood
of the nanoparticle. In magnetic particle imaging (MPI),
on the other hand, the response of tracer MNPs to static
and oscillating fields is used to obtain high-resolution im-
ages [67–70].

Significant efforts have been undertaken to bring these
promising methods into clinical applications [59, 64, 70,
71]. Thereby, one focus has been to improve the efficiency
of the methods and at the same time to reduce possible
side effects. Several studies have addressed the synthe-
sis and choice of the most suitable MNPs for the specific
applications [72, 73] as well as finding the corresponding
optimal magnetic fields [74, 75]. However, finding opti-
mal conditions is a very demanding task since the pa-
rameter space is very large. Therefore, overly simplified
model assumptions are often made to design and inter-

pret MNP applications [64]. Typically, non–interacting
MNPs with equilibrium, field–independent properties are
assumed that are either governed solely by Brownian or
solely by Néel relaxation. The latter assumption is par-
ticularly problematic since these processes show very dif-
ferent field dependencies, such that seemingly irrelevant
processes at zero field can become dominant at strong
fields [76, 77]. A recent review of theoretical approaches
[78] concludes that equilibrium and linear models are typ-
ically insufficient to model the nonequilibrium dynamics
in the nonlinear regime that arises in MFH and MPI.

To account for the nonlinear dynamics of the cou-
pled field–dependent Brownian and Néel relaxation, the
so–called “egg model” combines the stochastic Landau–
Lifshitz–Gilbert (LLG) equation of the internal magne-
tization dynamics with the rotational Brownian particle
motion in a viscous medium [79, 80]. This model has been
used e.g. to study hysteresis curves [81] and response to
oscillating fields [82], as well as mode–coupling effects and
non–exponential relaxation [77]. However, despite some
recent advances [83, 84], the egg model remains compu-
tationally very demanding for magnetically hard MNPs
with large anisotropy barriers. In this case, there is a
huge gap in time scales between the microscopic attempt
frequency and the effective Néel relaxation time resulting
from rare, thermally activated magnetization reversals.

Here, instead, we use an efficient diffusion–jump (DJ)
model for magnetically hard MNPs [85] that is able to
describe the coupled nonequilibrium dynamics of field–
induced Brownian and Néel relaxation in the fully non-
linear regime. We here focus on the ultra–dilute regime
and consider only non–interacting MNPs. For interaction
and concentration effects see e.g. Refs. [86–88] and ref-
erences therein. Besides approximate analytical expres-
sions that are useful to discuss various trends, we also
provide quasi–exact solutions to the DJ model. Quasi–
exact solutions are obtained by transforming the original
model formulation into a system of linear ordinary differ-
ential equations that can be solved with great accuracy.
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We illustrate the model and investigate its predictions
for several cases of interest for biomedical applications.
The paper is organized as follows. First, the model is
introduced in Sec. II. Then, solutions to the model are
discussed in Sec. III. First, approximations to the model
are derived in Sec. III A before quasi–exact solutions are
found for the longitudinal dynamics by expansion into
Legendre polynomials in Sec. III B. Results and predic-
tions of the model are presented in Sec. IV. First, the
spectrum of relaxation times and their weights are given
in Sec. IV A. Furthermore, we consider the magnetiza-
tion response to a step–change in the magnetic field in
Sec. IV B, similar to the situation in MRX. The field–
dependent AC susceptibility is investigated in Sec. IV C
before the response to an oscillating field for a range of
amplitudes is discussed in Sec. IV D with an eye on MFH
applications. Lastly, the tracer response to a high fre-
quency oscillating field superposed to a static bias field
as in MPI is studied in Sec. IV E. Finally, we discuss the
proposed model and approach in Sec. V and set it into
the wider context before conclusions are offered in Sec.
VI.

II. DIFFUSION–JUMP MODEL

A. Justifications and limitations of the model

The stochastic LLG equation and its extension to the
egg model are well established models to describe the
dynamics of frozen and mobile magnetic nanoparticles,
respectively [79, 80]. The stochastic LLG equation de-
scribes the dynamics of the magnetization and the parti-
cle’s easy axis on the timescale of the attempt frequency,
typically on the order of τ0 ∼ 10−10 . . . 10−9s [56]. The
Néel relaxation time τN describes magnetization rever-
sals over the magnetic anisotropy barrier and grows ex-
ponentially with the magnetic volume of the nanoparticle
[56, 89]. For many MNPs used in technical and medical
applications a time-scale separation is found, τN � τ0,
and the LLG and egg model become extremely ineffi-
cient to describe the long-time/low-frequency dynamics
[86]. For spatially frozen MNPs, several authors have
therefore replaced the LLG equation with an empirical
kinetic Monte-Carlo scheme to model magnetization re-
versals on time scales large compared to τ0 [90–93]. Such
approaches can be interpreted as the result of integrating
out the fast vibrations of the magnetization around the
easy axis of the MNP. For mobile MNPs, the situation
is more complicated as a third time scale (τB) appears
which characterizes the rotational Brownian diffusion of
the nanoparticle. Since τB � τ0 for typical MNPs, an
approach combining rotational particle diffusion with ki-
netic Monte-Carlo methods representing magnetization
reversals has been suggested [85, 86, 94]. Eliminating the
microscopic time scale τ0, the diffusion-jump (DJ) model
[85] is not only very efficient, but has also been shown to
give quantitatively accurate results compared to the un-

derlying egg model for large magnetic anisotropies with
τN � τ0 and not too high frequencies ω � 1/τ0 [77].
Thus, in a sense, the DJ model can be considered as cor-
rection to the rigid-dipole approximation for mobile and
magnetically hard MNPs.

B. Model formulation

Starting point is the diffusion–jump equation [85] for
the time-dependent single–particle probability density
function (pdf) f(u; t) for the orientation u of the mag-
netic moment at time t,

∂

∂t
f(u; t) = [LB(h) + LN(h)]f(u; t). (1)

As mentioned in Sec. II A, we assume sufficiently large
magnetic anisotropy barriers that the magnetic moment
can be considered to be well-aligned with the easy axis
of the MNP. From the solution f(u; t) to Eq. (1), we can
calculate all quantities of interest as the time–dependent
expectation values of u. The dimensionless magnetiza-
tion at time t, for example, is obtained by

m(t) =

∫
uf(u; t)du, (2)

where the integration is performed over the three–
dimensional unit sphere. In Eq. (1), the Brownian rota-
tional diffusion (Fokker–Planck) part is identical to the
classical model proposed by Martsenyuk et al. [95],

LB(h)f =
1

2τB

[
L2f −L · fL(u · h)

]
, (3)

where τB denotes the Brownian rotational diffusion time
of a single MNP in a viscous medium and L = u× ∂/∂u
the rotational operator. The action of an external mag-
netic field H is described by the dimensionless field
h = µ0µH/kBT with h = |h| its magnitude, µ0 the per-
meability of free space, µ the magnetic moment of the
MNP, and kBT the thermal energy. Note that an explicit
time–dependence enters the operator only via the exter-
nal field H which might be time–dependent, LB(h(t)).

Without the contribution LN(h), the model (1) corre-
sponds to the rigid–dipole approximation where MNPs
are considered to be thermally blocked such that Néel
relaxation can be ignored. Properties of the model in
the rigid–dipole approximation have been studied quite
extensively [96–99]. The DJ model [85] goes beyond the
rigid–dipole approximation and includes Néel relaxation
in the form of jump processes that are described by

LN(h)f(u; t) =
1

2τN

[
eu·hf(−u; t)− e−u·hf(u; t)

]
, (4)

where τN denotes the Néel relaxation time. Also for the
Néel contribution, explicit time–dependence enters only
via the external magnetic field, LN(h(t)).
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By construction, the DJ model conserves the normal-
ization of the probability density,

∫
f(u; t)du = 1 for any

time t. In addition, the Boltzmann equilibrium

feq(u) = z−1
eq exp [u · h] (5)

with zeq = 4π sinh(h)/h is the stationary solution to Eq.
(1) for time–independent fields h.

In the absence of external magnetic fields, the DJ
model is fully characterized by the bare Brownian (τB)
and bare Néel (τN) relaxation times and the combined
dynamics is governed by the effective relaxation time τeff

defined by [66]

1

τeff
=

1

τB
+

1

τN
(h = 0). (6)

In the results shown below, we typically use τeff as refer-
ence time scale and indicate with q = τB/τN the ratio of
these two basic time scales.

III. SOLUTION METHODS

We are primarily interested in the nonequilibrium mag-
netization dynamics. Taking the time derivative on both
sides of Eq. (2) and inserting the kinetic equation (1)
leads to [77, 85]

d

dt
m = − 1

τB
m +

1

2τB
[h− 〈uu〉 · h]− 1

τN
〈u e−u·h〉, (7)

where we introduced the short notation 〈•〉 =∫
•f(u; t)du for time–dependent averages with respect

to f(u; t). As is common in nonequilibrium statistical
physics [100], Eq. (7) does not provide a closed time
evolution equation for the magnetization since it couples
to higher order moments of f . Sections III A and III B
present approximate and exact solutions to this equation,
respectively.

A. Effective field approximation

A powerful closure approximation within the rigid–
dipole limit (τN → ∞) was suggested in [95] and found
to be rather accurate for rigid dipoles [101, 102]. Here,
we apply this effective field approximation (EFA) to the
DJ model. In [77], we instead used a first order perturba-
tion theory for small deviations from equilibrium. EFA
is a stronger assumption that allows us to go beyond the
linear regime.

To close the magnetization equation, Martsenyuk et al
[95] suggested to evaluate all expectation values with the
following ansatz for the pdf

fξe
(u) =

ξe
4π sinh(ξe)

eξeu·n, (8)

which is of the same form as the equilibrium pdf (5)
but with the applied field h replaced by an effective field

ξe = ξen, where the unit vector n denotes the orientation
of the effective field. Thus, the time–dependent pdf is
approximated Eq. (8) with a time–dependent effective
field, f(u; t) ≈ fξe(t)(u). In equilibrium the effective field

reduces to the applied field, ξe = h and n = ĥ.
With the ansatz (8), we can evaluate all expressions

on the right hand side of the magnetization equation (7)
to obtain

d

dt
m = − 1

τB

[
S1n−

2 + S2

6
h +

S2

2
(h · n)n

]
− 1

τN

ξe sinh(ν)L(ν)

sinh(ξe)ν2
ν, (9)

where m = S1n and Sk = 〈Pk(u · n)〉 denote the orien-
tational order parameters with Pk(x) the kth order Leg-
endre polynomial. Evaluating the averages with the help
of (8) we find Sk = Lk(ξe) with

Lk(x) =
Ik+1/2(x)

I1/2(x)
, (10)

where In(x) denote modified Bessel functions [97].
Note that L1(x) equals the Langevin function L(x) =
coth(x) − 1/x. In Eq. (9) we have also introduced the
deviation of the effective field from the applied field,
ν = ξe − h, and its magnitude ν = |ν|.

The ansatz (8) solves the closure problem in Eq.
(7) since the approximate magnetization equation (9)
depends only on the effective field ξe. For practical
purposes, it is more convenient to solve for the time–
dependent effective field ξe(t) first and calculate the
resulting magnetization from m = S1n with S1(t) =
L1(ξe(t)) [102]. To derive the time evolution equations

for the effective field, we use ṁ = Ṡ1n + S1ṅ with
Ṡ1 = L′(ξe)ξ̇e, where the dot is a short notation for the
time derivative and L′(x) = dL(x)/dx. From scalar mul-
tiplication of Eq. (9) with n and using ṅ · n = 0 we find

d

dt
ξe = − 1

τB

(
1− h‖

ξe

)
L(ξe)

L′(ξe)
− 1

τN

ξe sinh(ν)L(ν)

sinh(ξe)L′(ξe)ν2
ν‖,

(11)
where h‖ = h · n and ν‖ = ν · n = ξe − h‖. Inserting Eq.
(11) back into (9), we find

d

dt
n =

1

τB

ξe − L(ξe)

2ξeL(ξe)
h⊥ − 1

τN

ξe sinh(ν)L(ν)

sinh(ξe)L(ξe)ν2
ν⊥, (12)

where the components perpendicular to n are defined by
h⊥ = h − h‖n, ν⊥ = ν − ν‖n. Therefore, dn2/dt =
n · dn/dt = 0 and the time evolution (12) ensures that n
remains a unit vector. Equations (11) and (12) represent
coupled but closed ordinary differential equations that
allow us to determine the effective field ξe(t) = ξe(t)n(t)
which in turn determines the time-dependent magnetiza-
tion m(t) = L(ξe(t))n(t).

To derive more explicit expressions for the late stage

characteristic relaxation times, we assume h0 = h0ĥ to
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be constant and linearize equations (11) and (12) in the

deviation ν to arrive at d
dtm = −[S1 − L(h0)]ĥ/τ‖ −

m⊥/τ⊥ with

1

τ‖
=

L(h0)

τBh0L′(h0)
+

h0

3τN sinh(h0)L′(h0)
, (13)

1

τ⊥
=
h0 − L(h0)

2τBL(h0)
+

h2
0

3τN sinh(h0)L(h0)
. (14)

These expressions agree with the ones derived in [77] via
perturbation theory. The relaxation times (13) and (14)
replace expression (6) for the effective relaxation time in
the presence of a constant bias field of strength h0. For
vanishing fields h0 → 0, Eqs. (13), (14) reduce to Eq. (6).
In the rigid-dipole approximation, τN →∞, the classical
result obtained in Ref. [95] is recovered from Eqs. (13),
(14). In the opposite limit of frozen dipoles, τB → ∞,
the EFA (8) breaks down due to insufficient sampling
of orientations and we need to resort to other methods
of solution. In Ref. [77], a different ansatz for the pdf
was used to derive Brown’s result for the effective par-
allel Néel relaxation time for frozen MNPs from Eq. (7)
for large magnetic anisotropy barriers. Since the mag-
netic anisotropy barrier is included in this model only
implicitly via the bare Néel relaxation time τN, correc-
tions to the asymptotic value for large anisotropies are
not captured for any orientation of the field relative to
the frozen easy axis [103]. Thus, the DJ model should
mainly be used for mobile MNPs.

When a weak oscillatory field h1 = h1(t)ĥ1 with
h1(t) = h1e

iωt is applied in addition to the static field
h0, the complex AC susceptibility becomes anisotropic.
Repeating the above calculations with h0 replaced by
h = h0 + h1(t) and linearizing in h1, we obtain explicit
expressions for the susceptibilities parallel and perpen-

dicular to the static field direction ĥ,

χ∗‖ = 3χLL
′(h0)

1− iωτ‖

1 + (ωτ‖)2
, (15)

χ∗⊥ = 3χL
L(h0)

h0

1− iωτ⊥

1 + (ωτ⊥)2
, (16)

where χL denotes the Langevin susceptibility. The sus-
ceptibilities (15) and (16) are of the Debye form with
field–dependent prefactors. We note that the Debye form
is not a consequence of using EFA but results from the
linearization about the steady state. In the zero–field
and zero–frequency limit, χ∗‖ and χ∗⊥ both become equal
to χL.

B. Expansion in Legendre polynomials

Since the Legendre polynomials Pn(x) form a complete
basis for functions on the interval [−1, 1], we can use the
following ansatz for the time–dependent pdf [100],

f(u; t) = f0 +

∞∑
n=1

cn(t)Pn(u · ĥ), (17)

with f0 = 1/(4π) the isotropic distribution on the unit
sphere. The ansatz (17) satisfies the normalization con-

dition
∫
f(u; t)du = 1 since

∫
Pn(u · ĥ)du = 0 for

n ≥ 1. The expansion coefficients cn(t) are related
to the time–dependent orientational order parameters

Sn(t) =
∫
Pn(u·ĥ)f(u; t)du introduced above by Sn(t) =

4πcn(t)/(2n+ 1). We note that the ansatz (17) restricts

the pdf to the uniaxial form f(u; t) = f(u · ĥ; t), there-
fore eliminating any dependence on the azimuthal angle.
Thus, the ansatz (17) allows us to study only longitudinal
dynamics parallel to the field direction.

Inserting the ansatz (17) into the kinetic equation (1)
and using the orthogonality relation of Legendre polyno-
mials, ∫ 1

−1

Pk(x)Pn(x)dx =
2

2k + 1
δkn, (18)

we can express the partial differential equation (1) for the
probability density f(u; t) as an infinite set of coupled
ordinary equations for the coefficients cn(t) as

d

dt
cn = −

∞∑
k=1

Ankck + bn, (19)

where the elements of the matrix A = AB + AN are
defined by

AB,nk(h) = −
∫
Pn(u · ĥ)LB(h)Pk(u · ĥ) du, (20)

AN,nk(h) = −
∫
Pn(u · ĥ)LN(h)Pk(u · ĥ) du. (21)

Since the coefficient c0 is constant due to the normaliza-
tion condition, we have separated this contribution into
the vector b = bB + bN with components

bB,n(h) =

∫
Pn(u · ĥ)LB(h)f0 du (22)

bN,n(h) =

∫
Pn(u · ĥ)LN(h)f0 du. (23)

Since details of the derivation of the matrix AB can be
found e.g. in Refs. [79, 98], we here only give the result,

τBAB,nk(h) = n(n+ 1)δnk

+
h

2

[
k(k − 1)

2k + 1
δn,k−1 −

(k + 1)(k + 2)

2k + 1
δn,k+1

]
(24)

τBbB,n(h) =
h

3
δn,1. (25)

To calculate the matrix elements of AN from Eq. (21),
we first note that

AN,nk(h) =

{
(−1)k+1

τN
Enk(h) ; n odd

0 ; n even
(26)

bN,n =
1− (−1)n

4τN
en(h), (27)
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where we defined the auxiliary symmetric matrix E and
vector e as

Enk(h) ≡
∫ 1

−1

ehxPn(x)Pk(x)dx (28)

en(h) =

∫ 1

−1

ehxPn(x)dx. (29)

For the special case h = 0, i.e. no external mag-
netic field, the Legendre polynomials are eigenfunctions
of LB(0) + LN(0), resulting in a diagonal matrix A. For
this special case, the solution can therefore be written as

f(u; t) = f0 +

∞∑
n=1

cn(0)e−λ
0
ntPn(u · ĥ), (h = 0) (30)

with the zero-field relaxation rates

λ0
n =

{
n(n+1)

2τB
+ 1

τN
; n odd

n(n+1)
2τB

n even.
(31)

We now turn to the general case h 6= 0. In this case,
the matrix AB is tri–diagonal and linear in h, whereas
all entries in odd rows of the matrix AN are non–zero
and highly nonlinear in h. While such infinite couplings
are in principle problematic for calculations, in practice
their magnitude decays rather quickly if h is not too large,
allowing us to truncate the infinite system (19).

To evaluate AN and bN, the integrals in Eqs. (28) and
(29) can be performed numerically for given h. However,
doing so for time–dependent fields h(t) becomes com-
putationally expensive for large orders n and k. More
efficient expressions for calculating these quantities are
provided in A.

IV. RESULTS

We seek solutions to the linear system of equations
(19) with time–dependent magnetic fields. In particular,
we consider step–changes in the field strength as well as

oscillating fields of the form h(t) = h(t)ĥ with time–
dependent amplitude

h(t) = h0 + h1 sin(ωt), (32)

i.e. a superposition of a static field of strength h0 and an
oscillating field with amplitude h1 and angular frequency
ω. Having specified the magnetic field h(t), Eq. (19)
represents an infinite system of coupled linear ODEs with
time–dependent coefficients. To solve these equations in
practice, we need to truncate this infinite system at some
finite order nmax. By choosing the value of nmax large
enough, the truncation error can be made smaller than a
given tolerance. We found that choosing nmax = 11 for
h ≤ 2 and nmax = 15 for 2 < h ≤ 5 gives very accurate
results that are practically indistinguishable from those
obtained for larger nmax.

A. Spectrum of relaxation times

Diagonalizing the matrix A in Eq. (19), we find the
spectrum of eigenvalues {λ1, λ2, . . .}, which are the in-
verses of the corresponding relaxation times. We order
the eigenvalues such that λ1 < λ2 < . . ., i.e., that the
smallest eigenvalue λ1 corresponds to the longest relax-
ation time.

We compare the lowest eigenvalue with the late–stage
relaxation time within EFA obtained in Sec. III A. From
Fig. 1 we find that Eq. (13) provides a good description of
λ1 for weak up to moderate fields, but overpredicts the
rates at high field strengths. In other words, EFA un-
derestimates the relaxation times for strong fields. Note
that for q = 0.01, the prediction from Eq. (13) is indis-
tinguishable on this plot from the rigid dipole approxi-
mation where 1/τN → 0.

0 1 2 3 4 5
0

1

2

3

4

(a)

0 1 2 3 4 5
0

1

2

3

4 (b)

FIG. 1. Lowest eigenvalue λ1 of the matrix A in Eq. (19) as
a function of the strength of the static field h0 for different
values of q indicated in the legend. In panels (a) and (b),
the eigenvalues are normalized with τB and τeff , respectively.
Dashed lines show the EFA result (13).

For the special case of time–independent fields, h(t) =
h, and isotropic initial conditions, ck(0) = 0 for k ≥ 1,
we can use our knowledge of the eigenvalues λn to write
the analytical solution to Eq. (19) as

cn(t) =

nmax∑
k=1

wnk(1− e−λkt), (33)

where we truncated the infinite sum at nmax. The weights
wnk appearing in (33) are given by Eq (4.56) in [84],

wnk =

nmax∑
i=1

V −1
nk

1

λk
Vkibi, (34)

where the matrix V−1 contains the eigenvectors of A in
its columns.

We are particularly interested in the reduced magneti-
zation (2) with the component parallel to the magnetic
field, S1(t) = (4π/3)c1(t). In Fig. 2 we show the sorted
inverse eigenvalues 1/λk together with their weights w1k

contributing to the magnetization relaxation, which we
calculate from Eq. (34) for different values of h and q.
We note that there is no pronounced gap in the spec-
trum. The second lowest eigenvalue λ2 is within a factor
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of two of the lowest eigenvalue λ1, and similarly for the
higher eigenvalues. Also shown in Fig. 2 are the absolute
values of the weights w1k defined in (34). We observe
that |w1k| increases with h for small k (note the different
scales in the different panels in Fig. 2). We note that
the absence of a gap in the spectrum is potentially a
threat for the validity of closure approximations in terms
of the magnetization only, such as EFA. The need for ex-
tended closure approximations in the case of magnetically
weak MNPs has been discussed in Ref. [77]. However, for
the present conditions, the weights are generally found
to decrease very fast with increasing k. For weak field
strengths, almost all the weight is accumulated at the
slowest mode, k = 1, implying a near single-exponential
magnetization relaxation. For increasing field strengths,
the weights for the modes k = 2 and k = 3 are increas-
ing, implying stronger deviations from single-exponential
relaxation. Therefore, we expect the EFA result (13) to
be less reliable in this regime, consistent with our obser-
vations from Fig. 1.

It is interesting to observe that the ratio q = τB/τN has
very little influence on the weights for weak fields h . 1.
For stronger field strengths, however, increasing q reduces
the weights for the lowest modes and increases the weight
of higher order modes, leading to even stronger deviations
from single–exponential behavior.
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FIG. 2. Symbols show the inverse eigenvalues 1/(τeffλk) of the
matrix A in Eq. (19) normalized with the effective relaxation
time τeff , whereas bars indicate the absolute value of their
corresponding weights w1k, Eq. (34). Blue, green, and orange
symbols and bars represent results for q = 1, 0.1, and 0.01,
respectively. In panels (a), (b), (c), (d), the static field h0

was chosen as h0 = 0.5, 1, 2 and 5, respectively.

B. Transient dynamics following step–change in
field strength

In this section, we consider step–changes of the applied
magnetic field. Figures 3(a),(b) show the transient dy-
namics of the orientational order parameters S1,2(t) from
an initial isotropic state, Sk(0) = 0, k = 1, 2, . . ., after
a constant field of strength h has been switched on with
h = 1 and h = 5, respectively. The exact solutions (33)
are compared to ensemble averages of stochastic simu-
lations of the DJ model (1). The corresponding algo-
rithm for the stochastic simulations is given in Appendix
C. The usual slow convergence of stochastic simulations
with ensemble size is seen. For small fields (h = 0.5), con-
vergence is found to be rather poor due to pronounced
fluctuations. For stronger fields, the signal–to–noise ratio
is much more favourable for stochastic simulations. In a
sense, stochastic simulations can be considered comple-
mentary, since the Legendre expansion is an expansion
around the isotropic state and is therefore very efficient
for weak fields where stochastic simulations are notori-
ously noisy. For strong magnetic fields, however, many
terms are required in the expansion (17) to represent
strongly peaked pdfs. Therefore, the Legendre expan-
sion becomes less efficient for very strong fields where
stochastic simulations become more favourable.
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FIG. 3. The orientational order parameters S1, S2 as a func-
tion of time t after a constant field h = 1 (a) and h = 5 (b) has
been switched on. Isotropic initial conditions have been cho-
sen. The ratio of relaxation times has been chosen as q = 0.1.
Solid line shows the exact solution (33), while symbols are
obtained from stochastic simulations with different ensemble
sizes indicated in the legend.

C. Field-dependent AC susceptibility

Consider now longitudinal time–dependent fields

h(t) = h(t)ĥ of the form (32), which for convenience we
write as h(t) = h0 + h1e

iωt, where a time-independent
bias field h0 is superimposed to an oscillating field with
angular frequncy ω and small amplitude h1 � 1. After
initial transient dynamics, the expansion coefficients ck
in Eq. (17) are of the form ck(t) = ceq

k +δc∗k(ω)eiωt where
ceq
k = (2k + 1)Lk(h0)/(4π), with Lk(x) defined in Eq.

(10). The time–dependent deviations from their station-
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ary value, δc∗k(ω), are proportional to h1 and therefore
small.

We rewrite the system of time evolution equations (19)
in the compact form ċ = −A(h) · c + b(h) where we
explicitly denote the dependence of A and b on the field
h. For h = h0, i.e. h1 = 0, we recover the result for
ceq
k given above. To first order in h1, we find that the

amplitudes δc∗k can be calculated as

δc∗(ω) =
h1

h0
[A(h0) + iωI]−1 · (A(0) · ceq − b(0)), (35)

with I the identity matrix. Equation (35) agrees with
Eq. (4.47) of Ref. [84] for the corresponding solution of
the egg model.

We are interested in the induced magnetization
M1 = χ∗‖H1 due to the oscillating field with M1 =

Msat(4π/3)δc∗1ĥ, where Msat = nµ denotes the sat-

uration magnetization and H1 = H1ĥ with h1 =
µ0µH1/kBT . Therefore, the complex AC susceptibility
is given by

χ∗‖(ω) = 4πχL
δc∗1(ω)

h1
, (36)

where, as above, χL = nµ0µ
2/(3kBT ) denotes the

Langevin susceptibility.
To calculate the susceptibility χ∗‖ we therefore need

to obtain δc∗1(ω) from Eq. (35). Rather than invert-
ing the matrix A(h0) + iωI for every frequency ω, we
use the diagonalization A(h0) = V−1ΛV, where Λ =
diag(λ1, λ2, . . .). Thanks to the diagonalization, we can
represent the inverse as [A(h0) + iωI]−1 = V−1(Λ +
iωI)−1V which allows us to conveniently separate real
and imaginary part for any ω,

(Λ + iωI)−1 = diag
(
λ1−iω
λ2
1+ω2 ,

λ2−iω
λ2
2+ω2 , . . .

)
. (37)

Results for the real and imaginary part of the AC sus-
ceptibility obtained from Eq. (36) with the help of Eqs.
(35) and (37) are shown in Fig. 4. For weak fields h ≤ 1,
we find that the EFA result (15) provides a rather ac-
curate prediction of the exact results. Furthermore, we
observe that the influence of the parameter q can be ab-
sorbed mostly by scaling the frequency with the effective
relaxation time τeff = τB/(1 + q), defined in Eq. (6). For
stronger fields, h > 1, the situation is different, with the
peak position of χ′′‖ moving to higher frequencies more

strongly the smaller q. For these stronger fields, the EFA
prediction becomes less accurate the larger q. The anal-
ogous conclusions have been drawn when discussing the
lowest eigenvalues in Fig. 1.

D. Field–dependent response to oscillating
magnetic fields

In this section, we apply oscillating magnetic fields of
the form h(t) = h1 sin(ωt) with amplitude h1 and fre-
quency ω. Compared to Sec. IV C, no static bias field
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FIG. 4. Real (χ′) and complex (χ′′) part of the longitudinal
dynamic susceptibility χ∗‖ normalized with the Langevin sus-
ceptibility χL are shown as a function of reduced frequency
τeffω. Panels (a), (b), (c), (d) correspond to static fields with
strengths h0 = 0.5, 1, 2, and 5, respectively. Dashed lines
show the corresponding EFA predictions (15).

is applied here, h0 = 0, and the amplitude h1 is not
restricted to be small. Thus, the response is no longer
determined by the dynamic susceptibility χ∗ alone.

We solve Eqs. (19) subject to such oscillating mag-
netic fields for different amplitudes h1 and frequencies
ω. Figure 5 shows the resulting hysteresis curves of the
magnetization component parallel to the field direction
S1(t) versus h(t). After a relatively short initial tran-
sient, we observe the well–known ellipsoidal shape of the
hysteresis curve for weak fields (see Fig. 5(a)). For strong
fields, characteristic deviations from the ellipsoidal shape
are clearly visible in Fig. 5(b). Note that the shape of
the hysteresis curve is also sensitive to the ratio q of re-
laxation times.
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FIG. 5. Hysteresis curves for oscillating magnetic field (32)
with h0 = 0, τBω = 1. The amplitude is chosen as h1 = 1 and
h1 = 5 in panel (a) and (b), respectively. Different values for
the ratio q are chosen as indicated in the legend.

Oscillating magnetic fields are used in MFH to induce
local heating. To study the energy transfer from the mag-
netic field to the local environment, we follow Ref. [66]
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and consider the volumetric power dissipation over one
cycle, P , which is given by the area enclosed by the hys-
teresis curve, P = ω

2πµ0

∮
HdM . With M = MsatS1,

where Msat is the saturation magnetization, P can be
expressed as

P = nkBT
ω

2π

∮
hdS1. (38)

In the linear response regime, i.e. for small enough h1,
the volumetric power dissipation (38) can be calculated
as

Plinear = 1
6nkBTωh

2
1χ
′′
0(ω)/χL, (39)

where χ′′0(ω) denotes the zero-field AC susceptibility. In
the absence of a magnetic field, the EFA results (15), (16)
reduce to a Debye susceptibility centered at the effective
relaxation time τeff [85],

χ′′0(ω) = χL
ωτeff

1 + (ωτeff)2
. (40)

We note that Eqs. (39) with (40) are routinely used to
estimate MFH efficiency, but are valid only for small os-
cillation amplitudes and non–interacting MNPs [64].

Here, we consider non–interacting MNPs but study
a range of amplitudes of the oscillating magnetic field.
From the solution to Eq. (19) for h(t), we numerically
perform the integral in Eq. (38) over one cycle. To
eliminate possible transient effects, we discard the first
four cycles. For different frequencies ω, the power ab-
sorbed over one cycle P is shown in Fig. 6 as function
of the field amplitude h1. Irrespective of the chosen val-
ues for the frequency ω and the ratio q, we find that P
increases monotonically with h1. For high frequencies
(ωτB = 5), we find that the linear response result (39)
provides rather accurate predictions even for amplitudes
up to h1 . 5. For lower frequencies, however, Eq. (39)
is restricted to h1 . 1 and significantly overpredicts P
for larger oscillation amplitudes. It is interesting to note
that increasing q decreases τeffP for ωτB = 1, whereas
there is a non-monotonic dependence for ωτB = 5.

While a quadratic increase of the power dissipation
P with amplitude h1 is manifest in the linear response
regime (39), power-law fits P ∼ hx1 with exponents x
larger than two have been reported for some samples in
experiments [104]. Figure 7 shows the same data as Fig. 6
but on a double-logarithmic scale. Our results show that
non–linearities in the magnetization dynamics typically
lead to a decrease of the effective exponent and can not be
used to explain values of exponents x significantly larger
than two.

E. Tracer response

In this section, we consider general magnetic fields of
the form (32) where a bias field h0 is present in addition
to a high–frequency oscillation h1 sin(ωt). Different from

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

(a)

1 2 3 4 5
0

1

2

3

4

5

(b)

FIG. 6. The dimensionless volumetric power dissipation
Pτeff/(nkBT ) over one cycle as a function of the amplitude
h1 of the oscillating field. Panels (a) and (b) show the results
for frequencies ωτB = 1 and ωτB = 5, respectively. Dashed
lines show the linear response result (39).

10-1 100 101
10-4

10-3

10-2

10-1

100

101

FIG. 7. Data of Fig. 6 are shown on a log-log scale. From
bottom to top, the frequency is increasing as ωτB = 0.5, 1, 5.

the situation considered in Sec. IV C, here the amplitude
h1 is not necessarily small.

In MPI, MNPs are detected via their time–dependent
magnetization which induces a characteristic signal in
pick–up coils. To measure MPI performance of MNP
samples, Garraud et al [105] introduced a tracer response
quantity defined by the ratio of the time derivative of the
induced magnetization over the time derivative of the
applied field. Here, we use a dimensionless form of the
tracer response,

Υ =
Ṡ1(t)

ḣ(t)
, (41)

which is similar to the quantity studied in [69]. By defi-
nition, the tracer response (41) is time–dependent. With
an eye on MPI applications, we are particularly inter-
ested in relatively high frequencies ω. We therefore con-
sider the time–averaged tracer response Ῡ over one cycle.
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In the linear response regime

Ῡlinear =
χ′‖

3χL
=

L′(h0)

1 + (ωτ‖)2
, (42)

where we used the EFA result (15) in the last equation.
Strictly speaking, since the time integral over the addi-
tional term proportional to χ′′‖ tan(ωt) appearing in Υ

in the linear response regime is ill–behaved, we inter-
pret Ῡ to denote the Cauchy principal value to arrive at
(42). Note that the result (42) holds for any strength
h0 of the bias field as long as the amplitudes h1 of the
high–frequency oscillating field are small enough. While
the static limit (ω = 0) of (42) was derived in [105],
our result includes the full frequency dependence. Note
that τ‖ = τ‖(h0) given by Eq. (13) also depends on the
strength of the static bias field h0.

To avoid numerical issues with the tracer response (41)

for times t where ḣ = 0, we use a cubic spline interpo-
lation of the solution to (19) to accurately calculate the
time–average of (41) over one cycle. A finite–difference

approximation was used to determine Ṡ1 from the nu-
merical solution S1(t). As above, we discard the first
four cycles to eliminate possible initial transient effects.

Figure 8 shows the time–averaged tracer response Ῡ as
a function of the bias field h0 and the amplitude h1 of the
oscillating field. The linear response result (42) is found
to be remarkable accurate for small q where Ῡ is rather
insensitive to h1 . 5 in this regime (see Fig. 8(b)). For
large q, however, the linear response result is restricted
to h1 < 1, in agreement with our findings in Sec. IV D. In
addition, we find from Fig. 8(a) that the dependence on
the static field h0 is well captured by Eq. (42) for small
q, but marked differences are seen for q = 1.
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FIG. 8. (a) Dimensionless tracer response (41) averaged over
one cycle versus the magnitude h0 of a static bias field which
was applied in addition to an oscillating field with amplitude
h1 = 1 and frequency ωτeff = 5. (b) Same quantity but shown
versus the amplitude h1 of the oscillating field for a fixed value
of the constant bias field h0 = 1. The frequency was again
chosen as ωτeff = 5. Dashed lines show the linear response
result (42).

V. DISCUSSION

In this study, we have employed the DJ model [85] to
explore the nonequilibrium response of MNPs to time–
varying magnetic fields beyond the linear regime over a
broad range of parameter values. Extending previous
works, we study different ratios of the basic Brownian
and Néel relaxation times and their influence on the mag-
netization dynamics for different field strengths and fre-
quencies. We establish quasi–exact solutions to the longi-
tudinal dynamics of the model in terms of an expansion
in Legendre polynomials. We also derive approximate
analytical results from dynamical mean-field theory. The
widely used EFA is found to provide accurate predictions
when Brownian relaxations dominate, but becomes less
reliable the stronger the Néel contribution.

It is important to point out that treating the com-
bined effect of Brownian and Néel processes as a single–
exponential relaxation with effective relaxation time τeff

given in Eq. (6) is valid only for non–interacting MNPs in
the absence of external fields. With increasing strength
of an applied magnetic field, deviations from single–
exponential behavior become more and more pronounced
(see Fig. 2). It is remarkable that the relative weights of
the higher–order relaxation modes provide a fingerprint
of the underlying mechanism since they depend on the
ratio q of the characteristic Brownian to Néel relaxation
time.

Within the DJ model, Néel relaxation processes are
modelled as independent and thermally activated events
following a Poisson statistics. Instead, one could con-
sider the more microscopic egg model [79, 80] where inter-
nal relaxation is modelled using the stochastic Landau–
Lifshitz–Gilbert equation coupled to Brownian particle
rotation. While the DJ model was first proposed phe-
nomenologically [85], it was later shown [77] to provide
rather accurate results when compared to the micro-
scopic egg model for large magnetic anisotropies (“mag-
netically hard” MNPs). We emphasize that this limit
corresponds to thermally activated Néel relaxation, as in-
deed assumed in the DJ model. Note that the egg model
is highly inefficient in this regime since the underlying
Landau–Lifshitz–Gilbert equation resolves the attempt
frequencies on time scales τ0 ∼ 10−10s, which is much
smaller than the Néel time scale τN for magnetization
reversals for large anisotropy barriers as well as typical
values for τB [94]. Therefore, the success of the DJ model
relies on the time scale separation τ0 � τB, τN, which al-
lows us to neglect processes on fast time scale τ0 when
we are interested in long-time dynamics. For MNPs with
small magnetic anisotropies, on the other hand, τ0 ∼ τN,
which undermines the assumptions made in the DJ model
and one needs to resort to the egg model to resolve these
short time scales.

Another deliberate limitation of the present study is
the focus on non–interacting MNPs. While a large num-
ber of experiments are performed in very dilute condi-
tions, the importance of dipolar interactions for larger
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concentrations is well known [56, 106]. Exploring the
enlarged parameter space with additional interaction ef-
fects via detailed computer simulations is very challeng-
ing when Néel and Brownian processes are both kept.
Some first steps in this direction have been made recently
[86, 88, 94, 107].

VI. CONCLUSIONS

Detailed understanding the field–induced nonequilib-
rium dynamics of MNPs is crucial for developing and
optimizing a variety of technical and biomedical appli-
cations. In view of the large parameter space, many
researcher resort to highly simplified linear equilibrium
models. Here, we show that the more realistic DJ model
is able to describe the fully nonequilibrium and non–
linear field–induced dynamics resulting from the com-
bined Brownian and Néel relaxation at moderate com-
putational cost. We also provide approximate analytical
expressions for effective field–dependent relaxation times,
dynamic magnetic susceptibilities, volumetric power dis-
sipation, and tracer response.

The DJ model is restricted to magnetically hard MNPs
where Néel relaxation can be treated as rare, thermally
activated magnetization reversals. The efficient mod-
elling in this parameter regime also allows us to study
concentration and interaction effects via detailed simu-
lations using a straightforward generalization of the DJ
model [88, 107]. Furthermore, the DJ model could also
be helpful for other applications, e.g. to estimate the local
temperature from MNP relaxation by extending the anal-
ysis proposed by Perreard et al [108] beyond the rigid–
dipole approximation.

Appendix A: Calculating the quantities E and e
efficiently

Using the well–known recursion formula for Legen-
dre polynomials, (n + 1)Pn+1(x) = (2n + 1)xPn(x) −

nPn−1(x), we can derive a recursion formula for the func-
tions en(h) defined in Eq. (29),

en+1(h) = en−1(h)− 2n+ 1

h
en(h), (A1)

where e0(h) = 2 sinh(h)/h and e1(h) =
(2/h2)[h cosh(h) − sinh(h)]. While formally exact,
we found that the recursion relation (A1) becomes
numerically unstable for small h at large orders n.
Instead, we find the exact expression

en(h) =
2 sinh(h)In+1/2(h)

h I1/2(h)
(A2)

in terms of modified Bessel functions to be more sta-
ble numerically. For very small h � 1, en(h) van-
ish smoothly and can be approximated by e0(h) =
2 + (1/3)h2 + O(h4), e1(h) = (2/3)h + O(h3), e2(h) =
(2/15)h2 + O(h4) and ek(h) = O(hk) can be neglected
for k ≥ 3.

Unfortunately, we could not find a corresponding ana-
lytic expression for Enk(h) valid for arbitrary h. Instead,
we suggest to use a classical formula for the product of
two Legendre polynomials [109],

Pn(x)Pk(x) =

n+k∑
`=|n−k|

(
` n k
0 0 0

)2

(2`+ 1)P`(x), (A3)

with the Wigner (3j) symbol

(
` n k
0 0 0

)2

=
(2s− 2`)!(2s− 2n)!(2s− 2k)!

(2s+ 1)!

[
s!

(s− `)!(s− n)!(s− k)!

]2

, (A4)

where 2s = ` + k + n must be even and `, n, k satisfy
the triangle inequality |a− b| < c < a+ b, otherwise the
Wigner (3j) symbol is zero. With the help of (A3), we
can write the matrix elements (28) as

Enk(h) =

n+k∑
`=|n−k|

(
` n k
0 0 0

)2

(2`+ 1)e`(h), (A5)

with e`(h) defined in Eq. (29). Therefore, knowledge of

the integrals (29) from Eq. (A2) is sufficient to build all
the matrix elements of AN via Eqs. (A5) and (26). In
Sec. B, we provide the explicit expressions for the first
elements of AN and bN.
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Appendix B: Analytical expression for some matrix
elements

The exact expressions for the first four elements of the
vector b defined in Eqs. (22) and (23) read

b1(h) =
h

3τB
+

1

τNh2
[h cosh(h)− sinh(h)]

b2(h) = 0

b3(h) =
1

τNh4
[h(15 + h2) cosh(h)− 3(5 + 2h2) sinh(h)]

b4(h) = 0.

The first elements of the matrix AN defined in Eq. (21)
read explicitly

AN,11(h) =
2

τNh3
[(2 + h2) sinh(h)− 2h cosh(h)]

AN,12(h) = − 2

τNh4
[h(9 + h2) cosh(h)− 2(9 + 4h2) sinh(h)]

AN,13(h) =
2

τNh5

[
(60 + 27h2 + h4) sinh(h)

− h(60 + 7h2) cosh(h)
]

AN,21(h) = −AN,12(h)

AN,22(h) = − 2

τNh5

[
(54 + 24h2 + h4) sinh(h)

−6h(9 + h2) cosh(h)
]

AN,23(h) =
2

τNh6

[
h(450 + 54h2 + h4) cosh(h)

− 3(150 + 68h2 + 3h4) sinh(h)
]

AN,31(h) = AN,13(h)

AN,32(h) = −AN,23(h)

AN,33(h) =
2

τNh7

[
(4500 + 2070h2 + 102h4 + h6) sinh(h)

−6h(10 + h2)(75 + 2h2) cosh(h)
]
.

Appendix C: Stochastic simulations of the
diffusion-jump model

We here collect the essential ingredients for the
stochastic simulation of the diffusion–jump model (1).
More details can be found in Ref. [88] which also covers
the interacting many-body generalization of the model.

Using a small time step ∆t, we can use operator split-
ting methods to approximate the solution to Eq. (1) as

f(u; t+ ∆t) ≈ (1 + ∆t LN)e∆t LBf(u; t). (C1)

Therefore, in one time step ∆t, we first propagate the
system according to the Fokker–Planck operator LB be-
fore applying the jump operator LN. Representing the
pdf f(u; t) by an ensemble of N unit vectors {ut}, we
use the well–known equivalence between Fokker-Planck
and stochastic differential equations [110] to perform one
time step of rotational Brownian Dynamics [97, 110],

ut → u′t =
ut + ∆Ωt × ut
|ut + ∆Ωt × ut|

, (C2)

where the increment in angular velocity is given by
∆Ωt = ∆t/(2τB)ut×h(t) + ∆Wt with ∆Wt increments
of a three-dimensional Wiener process with zero mean
and variance 1/τB. In fact, for the results shown here,
we use a second order Heun algorithm [110] where Eq.
(C2) serves as the predictor step.

To implement the jump process associated with the
operator LN, we define the rate rt = e−u

′
t·h(t)/(2τN) and

use the characteristic property of Poisson processes that
the probability of no event occurring in the time interval
[t, t + ∆t] is given by e−rt∆t. Therefore, we reverse the
magnetic moment u′t → −u′t with probability 1−e−rt∆t.
Thus, to complete one time step of the stochastic simu-
lation algorithm we set

ut+∆t =

{
u′t for ζ < e−rt∆t

−u′t for ζ ≥ e−rt∆t (C3)

where ζ ∈ [0, 1] is a uniform random number.
Updating the ensemble of unit vector {ut} by repeat-

ing the steps (C2) and (C3) provides an algorithm for
stochastic simulations of the DJ model. This hybrid
scheme combines Brownian Dynamics (C2) and kinetic
Monte–Carlo–type (C3) schemes. For the simulation re-
sults shown above, we use a time step of ∆t = 10−3τB.
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[88] P Ilg and M Kröger. Dynamics of interacting mag-
netic nanoparticles: effective behavior from competition
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